
PARALLEL PRECONDITIONING TECHNIQUES FOR NUMERICAL
SOLUTION OF THREE DIMENSIONAL PARTIAL DIFFERENTIAL

EQUATIONS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ABDULLAH ALİ SİVAS

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

SCIENTIFIC COMPUTING

JULY 11TH, 2016

Approval of the thesis:

PARALLEL PRECONDITIONING TECHNIQUES FOR NUMERICAL
SOLUTION OF THREE DIMENSIONAL PARTIAL DIFFERENTIAL

EQUATIONS

submitted by ABDULLAH ALİ SİVAS in partial fulfillment of the requirements for
the degree of Master of Science in Department of Scientific Computing, Middle
East Technical University by,

Prof. Dr. Bülent Karasözen
Director, Graduate School of Applied Mathematics

Assoc. Prof. Dr. Ömür Uğur
Head of Department, Scientific Computing

Assoc. Prof. Dr. Murat Manguoğlu
Supervisor, Computer Engineering, METU

Examining Committee Members:

Assoc. Prof. Dr. Murat Manguoğlu
Department of Computer Engineering, METU

Prof. Dr. Hasan U. Akay
Department of Mechanical Engineering, Atilim University

Assoc. Prof. Dr. Ömür Uğur
Scientific Computing, METU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: ABDULLAH ALİ SİVAS

Signature :

v

vi

ABSTRACT

PARALLEL PRECONDITIONING TECHNIQUES FOR NUMERICAL
SOLUTION OF THREE DIMENSIONAL PARTIAL DIFFERENTIAL

EQUATIONS

Sivas, Abdullah Ali
M.S., Department of Scientific Computing

Supervisor : Assoc. Prof. Dr. Murat Manguoğlu

July 11th, 2016, 42 pages

Partial differential equations are commonly used in industry and science to model ob-
served phenomena and gain insight regarding phenomena or solve related problems.
Recently three dimensional partial differential equations started to become more and
more essential and popular. Numerical solution of these problems generally is com-
posed of two steps; discretization and solving resulting sparse linear systems which are
large and usually ill-conditioned. For large three dimensional problems, it is impera-
tive to use iterative solvers rather than direct solvers due to small memory requirement
and short solution times, but iterative solvers mostly fail for ill-conditioned coefficient
matrices hence they are not as robust as direct solvers without an effective precondi-
tioner. Preconditioning is a remedy for this problem. Solution of large sparse linear
systems require large amounts of time and usually solution of multiple linear systems
is necessary. Parallel computing techniques are used to overcome this problem. Vari-
ous preconditioning techniques with iterative techniques and their scalability on three
different parallel computing platforms are investigated for the solution of two three
dimensional partial differential equations arising in large scale problems which are im-
portant for industrial applications and scientific modelling. Results of this investigation
are also compared against the state-of-the-art direct solvers.

vii

Keywords : numerical linear algebra, preconditioner, sparse approximate inverse, high
performance computing, parallel computing

viii

ÖZ

ÜÇ BOYUTLU KISMİ DİFERANSİYEL DENKLEMLERİN NÜMERİK
ÇÖZÜMÜ İÇİN PARALEL ÖNKOŞULLANDIRMA TEKNİKLERİ

Sivas, Abdullah Ali
Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Doç. Dr. Murat Manguoğlu

11 Temmuz 2016, 42 sayfa

Kısmi diferansiyel denklemler genellikle gözlenen olguları modelleme ve bu olgu-
larla ilgili içgörü kazanmak veya ilgili sorunları çözmek için sanayi uygulamaları ve
bilimde kullanılmaktadır. Son zamanlarda üç boyutlu kısmi diferansiyel denklemler
daha önemli ve popüler olmaya başlamıştır. Bu sorunların sayısal çözümü genellikle
problemin seyrek doğrusal sistem çözümü problemine dönüştürülmesi ve çoğunlukla
büyük ve kötü koşullandırılmış bu doğrusal sistemlerin çözülmesinden oluşur. Büyük
boyu nedeniyle doğrudan çözücüler yerine küçük bellek gereksinimi ve kısa çözüm
süreleriyle iteratif çözücüler çekici gelse de, yinelemeli çözücüler çoğunlukla kötü
koşullandırılmış doğrusal sistemleri çözememektedirler dolayisiyla doğrudan çözücüler
kadar gürbüz değillerdir. Önkoşullandırma bu sorun için bir çaredir. Büyük seyrek
doğrusal sistemlerinin çözümü büyük miktarda zaman gerektirmektedir ve genellikle
problemin çözümü için pek çok dogrusal sistemin çözümü gereklidir. Paralel hesaplama
teknikleri bu sorunun üstesinden gelmek için kullanılır. Çeşitli önkoşullandırma teknikleri
iteratif çözüm yöntemleriyle sanayi uygulamaları ve bilimsel modelleme açısından
önemli olan iki kısmi diferansiyel denklemin çözümü için incelenmiştir. Bu araştırmanın
sonuçları, en modern doğrudan çözücüler ile karşılaştırılmıştır.

Anahtar Kelimeler : nümerik lineer cebir, önkoşullandıcılar, seyrek yaklaşık ters, yüksek
başarımlı hesaplama, paralel hesaplama

ix

x

To everyone who supported me

xi

xii

ACKNOWLEDGMENTS

I would like to express my great appreciation of my thesis advisor Assoc. Prof. Dr.

Murat Manguoğlu. His guidance and support strongly affected my class and thesis per-

formance in the best way. During my studies with him, I have learned many interesting

things which I was interested in but not accustommed to. I also want to thank Prof.

Dr. Bülent Karasözen for suggesting me Scientific Computing program and introduc-

ing me to my thesis advisor. I also want to acknowledge his patient lecturing during

implementation of three dimensional extension of finite volume schemes. My thesis

studies started with a problem by Dr.ir. J.H.M. ten Thije Boonkkamp and Dr.ir. Martijn

Anthonissen. They have patiently answered all my questions about the problems and

this study resulted with a presentation in ENUMATH 2015. Also during my studies,

I got to know Prof. Dr. Hasan Akay and Dr. Erdal Oktay. Both of them taught me a

lot, gave me important perspectives and I enjoyed working with them. They both have

great knowledge and great ideas to improve themselves, their students and, in general,

industry and science. Last but not least, I want to thank everyone in the Institute of

Applied Mathematics, for nice and friendly environment they provided.

xiii

xiv

TABLE OF CONTENTS

ABSTRACT . vii

ÖZ . ix

ACKNOWLEDGMENTS . xiii

TABLE OF CONTENTS . xv

LIST OF FIGURES . xvii

LIST OF TABLES . xix

CHAPTERS

1 INTRODUCTION . 1

2 SOLUTION METHODS FOR LARGE SPARSE LINEAR SYSTEMS 3

2.1 Sparse Linear Systems . 4

2.1.1 Coordinate Format(COO) 4

2.1.2 Compressed Sparse Row Format(CSR) 5

2.2 Direct Solution of Sparse Linear Systems 5

2.3 Iterative Solution of Sparse Linear Systems 6

2.3.1 Projection Methods 6

2.3.2 (Some) Krylov Subspace Methods 8

2.3.3 Preconditioners 13

2.4 Parallelization . 17

xv

3 APPLICATIONS . 23

3.1 TOPOLOGY OPTIMIZATION 23

3.1.1 Background . 23

3.1.2 Multidisciplinary Examples 24

3.2 ADVECTION-DIFFUSION-REACTION TYPE EQUATIONS 25

3.2.1 3D formulation of the complete flux scheme 27

3.2.2 A three-dimensional flow problem 30

4 RESULTS . 33

4.1 Computing Environments 33

4.2 Performance for Topology Optimization 34

4.3 Performance for 3D ADR-type Problems using Complete-Flux
scheme . 37

5 CONCLUSION AND FUTURE WORK 39

REFERENCES . 41

xvi

LIST OF FIGURES

Figure 3.1 Multidisciplinary topology optimization examples 26

Figure 3.2 Compass notation for points in discretization stencil. 30

Figure 3.3 The problem domain and velocity field for the flow problem. The
inlet is shaded red; the outlet blue . 31

Figure 4.1 Eigenvalue distributions . 35

Figure 4.2 Speedup graphs for small-scale problem 35

Figure 4.3 Node based speedup and efficiency graphs for large-scale problem . 36

Figure 4.4 Number of iterations vs. Number of cores 37

Figure 4.5 Parallel running time in seconds 38

xvii

xviii

LIST OF TABLES

Table 4.1 Parallel computing platforms . 34

Table 4.2 Total time spent for sequential solve in seconds 34

Table 4.3 Number of iterations for the iterative solvers using different diffusion
(ε) coefficients . 38

xix

xx

CHAPTER 1

INTRODUCTION

Linear systems of equations are frequently encountered in linear programming, opti-
mization, computational fluid dynamics, etc. Solution of linear system of equations
is an essential part in solution of these problems. Main challenges are large number
unknowns and ill-conditioning of the coefficient matrix. Large number of unknowns
implies the need for large amounts of memory. If the coefficient matrix is sparse, nec-
essary amount is less (since number of nonzeros is small with respect to number of
zeroes and zeros are not stored explicitly) as well as amount of operations done, as we
do not perform arithmetic operation with zeros.

Numerical solution of partial differential equations (PDEs) usually requires the solu-
tion of a large sparse linear system of equations. Direct methods and iterative meth-
ods are two commonly used methods. Direct methods, even though robust, are slow
and memory consuming if fill-in occurs. Iterative methods are not as robust as direct
methods but are faster and require much less memory. With increased availability of
multi-core processors and clusters it is inevitable to come up with scalable techniques.

Parallel scalability is measured in terms of the speedup as the number of processing
elements are increased. Ideally, for example, when an eight-core computer used, a
method should complete same work at 1/8 of the time it requires when a single-core
computer is used. Some large scale applications take quite long times which can be re-
duced to a fraction using scalable algorithms and parallel computing platforms. There-
fore, scalability of a method is important for time sensitive, industrial applications and
scientific modelling.

In this thesis, we have investigated iterative methods and preconditioning technigues
in the context of two important PDE-related problems. Direct methods are used as a
robust baseline for comparison. Different iterative methods are used to suit require-
ments of PDEs. Various preconditioners are applied and their scalability and effect on
performance are examined.

Two application problems that we are focused on are topology optimization and three
dimensional advection-diffusion-reaction (ADR) equation. Both problems are impor-
tant and has many applications. For example topology optimization is used for design-
ing structures that are optimized for performance and at time minimized the material
being used. This not only saves the production costs but also minimizes the negative

1

effects on the enviroment. ADR equations arise in plasma physics, fluid dynamics,
combustion theory and in many more areas. Fast and high precision solution of these
equations are important for simulations as actual experiments which may be expen-
sive, time consuming and sometimes even dangerous. These simulations give crucial
insights for modelled phenomena.

Results obtained in this thesis are (accepted) to be published in [1, 24].

The content of this thesis is summarized as; in Chapter 2 solution methods and precon-
ditioners for sparse linear system of equations are explained and parallelization of the
methods are given, in Chapter 3 application problems are elaborated and challenges in
solving them are mentioned. Later in Chapter 4 results of numerical experiments are
presented and discussed and in Chapter 5 conclusions are given with possible future
work.

2

CHAPTER 2

SOLUTION METHODS FOR LARGE SPARSE LINEAR
SYSTEMS

In this chapter, we explain some methods for solving a specific class of linear systems.
We can, among other possible ways, classify linear systems of equations in two groups;
dense and sparse. In the following, we will consider solution methods for the sparse
linear systems.

Solving large sparse linear system of equations is a challenging problem. Historically,
the main difficulty is finding a balance between robustness, time and space complex-
ities. With the introduction of multi/many-core processors, parallel scalability of the
algorithm also plays an important role.

A sparse linear system contains substantially less nonzeros elements compared to ze-
ros. We can take advantage of this by avoiding multiplication by zeros and summation
by zeros. Therefore, solving large sparse linear systems greatly differs from solving
dense or full linear systems in terms of performance and time required. Even more
performance gain can be achieved by exploiting further properties of the linear system,
such as symmetry, bandedness and positive definiteness.

There are two main classes of solvers, namely direct and iterative solvers for sparse
linear systems. It is well known that direct solvers are robust but have higher time and
space complexity and their parallel scalability is often limited especially for systems
that arise from three dimensional problems. This is mainly because of the fill-in that is
generated during the factorization. Iterative solvers are more prone to error than direct
solvers but they require less memory and short solution times provided an effective
preconditioner is used. Their parallel scalability is also better than direct solvers, again
if used together with a scalable preconditioner.

Main difference between direct and iterative solution methods is robustness. Except
error from finite precision arithmetic, direct solution methods are guarenteed to find the
solution if one exists. Iterative solution methods are in some cases may not find any
solution (divergence) or find a solution which is wrong. This is due to conditioning of
the linear system. In cases which system is ill-conditioned, to solve linear system with
an iterative method, it is possible to precondition the system. It introduces another cost
(computation and application of preconditioner), but in many cases it is still preferable
over direct solution methods.

3

Stationary and non-stationary iterative methods are two main classes of iterative solvers.
They are further divided into many sub-classes. In practice, Krylov subspace solvers,
which are non-stationary methods, are often used. Some examples of Krylov sub-
space methods include, Conjugate Gradient (CG), Generalized Minimum Residual
(GMRES), Bi-Conjugate Gradient Stabilized (BiCGStab), Quasi-Minimum Residual
(QMR) and others. The list of possible Krylov subspace algorithms that can be used
(see for example [6]) can narrowed down depending on the properties of the coefficient
matrix. Even then, there are still some decisions that needs to be made and it might get
complicated if one takes parallel scalability into account as well.

In addition to that, using an iterative scheme without a preconditioner would not be
practical as it will require many iterations and hence an effective preconditioner is
needed. The preconditioner is chosen so that the preconditioned system has a more
favorable eigenvalue distribution and hence the number of iterations to convergence
is reduced. The performance of three parallel preconditioners, that are based on the
sparse approximate inverse (SAI) and incomplete LU (ILU) factorization and also
Block-Jacobi preconditioner, are compared and studied.

2.1 Sparse Linear Systems

Sparse linear systems are vaguely defined as linear systems which have substantially
less nonzeros compared to zeros in coefficient matrix. Usually this ratio is quite small
in systems resulting from solution of PDEs, so they are sparse. If a matrix is sparse,
we can take advantage of large number of zeros, for example by avoiding operations
like multiplication and summation by zeros. Another advantage is that, we do not have
to store zeros explicitly. Storing nonzeros and their locations is enough as any value
that is not stored is obviously zero. Therefore sparse matrices hold much less mem-
ory space. Compatibility is a challenge when designing storage methods for sparse
matrices as some designs may prevent efficient implementation of commonly used
operations, like solution of linear systems. We now outline two of common storage
schemes for sparse matrices.

2.1.1 Coordinate Format(COO)

This is the simplest storage format for sparse matrices. Basically matrix is stored as
three arrays; first array stores the row numbers of nonzeros, second array stores the
column numbers of nonzeros and third array stores the values of nonzeros. Lengths of
all arrays are equal to the number of nonzeros. For example, consider;

A =

1 0 2 0 0
0 3 0 4 0
9 0 5 0 0
0 8 0 6 0
0 0 0 0 7

 . (2.1)

COO representation of this matrix is;

4

I = [1 1 2 2 3 3 4 4 5]
J = [1 3 2 4 1 3 2 4 5]
V = [1 2 3 4 9 5 8 6 7]

where I holds the row numbers, J holds the column numbers and V holds the values.
Note that all arrays are of length 9, which is the number of nonzeros and matrix A is
of size 5x5.

2.1.2 Compressed Sparse Row Format(CSR)

Compressed sparse row format, sometimes also called as Yale format, employs a sim-
ple idea. If matrix values are listed in row order, storage for array of the row numbers
can be compressed. If number of nonzeros is large this may save a lot of space. As we
know that the values are ordered by their row numbers, i.e. nonzeros on first row are
stored in first part of array V, rather than holding row numbers we can somehow hold
how many nonzeros are there on that row.

A sparse matrix is stored using three arrays in CSR format; first array contains pointers
to where a row begins in other two arrays, second array contains column numbers and
third array contains values. Again considering the matrixA (2.1), its CSR representa-
tion is;

IA = [1 3 5 7 8 9]
JA = [1 3 2 4 1 3 2 4 5]
VA = [1 2 3 4 9 5 8 6 7]

where IA holds the pointers, JA holds the column numbers and VA holds the values.
Length of IA is 6 while rest is of length 9. Last 9 in array IA is to point to the end of the
matrix and saving number of nonzeros at last row which is IA(6)-IA(5)= 9-8= 1.

2.2 Direct Solution of Sparse Linear Systems

Direct solution methods for sparse linear systems mostly make use of LU factorization.
These methods try to minimize fill-in to save memory as much as possible. Fill-ins are
the nonzero elements introduced during factorization process which were zeros to be-
gin with. As zeros are not explicitly stored, introducing new nonzeros may be a com-
plicated task depending on storage scheme. For example, if the coefficient matrix is
stored in COO format, introducing a new nonzero is just adding a new element to each
of the arrays and sorting them. Even though it seems very simple, dynamically real-
locating the memory is costly. Guessing the amount of fill-ins and allocating memory
on that guess is the usual way to avoid dynamic reallocation at any point. Introducing
fill-in in CSR format is more complicated, as arithmetic operations must be done on
row array and sorting of column and values arrays.

5

Usually direct solution of sparse linear systems consists of four parts. These parts are
mentioned but not elaborately explained as they are out of scope of this thesis. First
of all system is reordered to minimize fill-in and to enhance parallelism. Later, LU-
factorization (symbolic factorization followed by the numerical factorization) is done.
At this part, pivoting may be necessary to prevent zeros on the diagonals of L and U.
Third part is the where linear system solved by using forward and backward triangular
sweeps. Last part is optional, if ||b − Ax|| is not small enough, iterative refinement
can be applied to increase precision of solution.

2.3 Iterative Solution of Sparse Linear Systems

There are many variations of iterative solvers. Historically, they were based on re-
laxation of coordinates. Main idea is to start with an initial guess and update it to
eliminate one or few nonzeros in residual vector r = ||b−Ax||. Examples are Jacobi,
Gauss-Seidel and SOR. These are historically important but rarely preferred in prac-
tice. Commonly used methods uses some kind of projection process. These methods
aims to find an approximation to solution from a subspace. If this subspace is cho-
sen to be a Krylov subspace, these methods are called as Krylov subspace methods.
Algorithms given in this chapter are from [22].

Most of the linear systems resulting from solution of PDEs have large condition num-
bers which may result in divergence, false convergence or failure of iterative methods.
Even though none of these happen, convergence may be slow. Preconditioning is es-
sential to enhance the parallel performance and the robustness of iterative methods.

2.3.1 Projection Methods

Consider the linear system;
Ax = b (2.2)

where A is an n × n matrix. Projection methods try to find an approximate solution
to the linear system from a subspace of Rn. Let K be the search subspace and m be
its dimension. Some constraints must be imposed to extract approximation, these con-
straints are usually described with m independent orthogonal vectors. These vectors
define another subspace L which is called subspace of constraints. Constraints are im-
posed with the condition b−Ax ⊥ L. This idea is widely known as Petrov-Galerkin
conditions and commonly used in various mathematical methods.

There are two choices for K and L which results in different classes of projection
methods. If K = L then methods is called orthogonal projection method, otherwise it
is called oblique projection method.

Now, again consider the linear system above and let K and L be subspaces of Rn.
Projection methods try to solve below problem;

Find x̃ ∈ K, such that b−Ax̃ ⊥ L. (2.3)

6

Provided initial guess x0 is given, then instead of K, x0 + K should be used. Then
problem turns into;

Find x̃ ∈ x0 +K, such that b−Ax̃ ⊥ L. (2.4)

Approximate solution can be written as;

x̃ = x0 + δ, δ ∈ K, (2.5)
(b−A(x0 + δ),ω) = 0, ∀ω ∈ L. (2.6)

Rather than using subspaces themselves we can use matrices whose column vectors
form bases for these subspaces. This greatly helps to derive algorithms. Let V be
matrix representation of K and W be matrix representation of L. Then approximate
solution is;

x̃ = x0 + V y. (2.7)
Imposing orthogonality conditions, ω ∈W ,

0 = (b−A(x0 + δ),ω) (2.8)

= W Tb−W TA(x0 + V y), (2.9)

we get following linear system equations for y;

W TAV y = W Tb−W TAx0. (2.10)

AssumingW TAV is non-singular, it can be shown that;

x̃ = x0 + V (W TAV)−1(W Tb−W TAx0). (2.11)

Now, a prototype algorithm can be given as;

while not converged do
Choose subspaces K and L
Determine bases V andW for K and L
r := b−Ax
y := (W TAV)−1W Tr
x := x+ V y

end
Algorithm 1: Prototype Projection Method

Notice that algorithm above only works if W TAV is non-singular. This may not be
guaranteed even ifA is non-singular. But it can be easily seen that if no vectors inAK
is orthogonal to L,W TAV is non-singular.

There are two important cases whereW TAV is known to be non-singular. These are;

• A is positive definite and L = K,

• A is not singular and L = AK.

We refer the reader to [22] for proof and the analysis of the projection methods.

7

2.3.2 (Some) Krylov Subspace Methods

Krylov subspace methods are projection methods where subspace K is chosen to be a
Krylov subspace. The Krylov subspace of dimension m is;

Km(A, r0) = span{r0,Ar0,A2r0, . . . , ,A
m−1r0},

where r0 = b−Ax0. Different Krylov subspace methods are created depending on the
choice of subspace Lm and preconditioning (which is the subject of subsection 2.3.3).

Notice that if K = Km approximation can be written as;

xm = x0 +
m−1∑
i=0

aiA
ir0,

or simply initial guess summed with linear combination of span of Krylov subspace.
All Krylov subspace methods give this type of approximation, but choice of constraints
(subspace Lm) has great effect on iterative method. Two well-known choices are
Lm = Km(A, r0) and Lm = Km(AT , r0). Firstly we will discuss CG algorithm
which assumes Lm = Km(A, r0), then later on we will discuss BICGSTAB which
assumes Lm = Km(AT , r0). The vectors in the basis of Krylov subspaces become al-
most linearly dependent for large m because of construction of basis, Krylov subspace
methods involve orthogonalization schemes to prevent this phenomena.

First of these orthogonalization schemes is the Arnoldi’s method [3]. It was first pro-
posed to reduce a dense matrix to its Hessenberg form using unitary transformations.
Later it was found to be efficient to approximate eigenvalues of large sparse matri-
ces then it is extended to the solution of large sparse linear systems. Using Arnoldi’s
method, Full Orthogonalization Method (FOM) and its variations are developed. After
these by using a similar idea to FOM, Generalized Minimum Residual Method (GM-
RES) is derived.

Another scheme is the symmetric Lanczos algorithm. It is in a way simplified version
of Arnoldi’s method when matrix is known to be symmetric. If matrix is symmetric
then the Hessenberg form of matrix is symmetric tridiagonal. We will consider the
Conjugate Gradient algorithm (CG) resulting from this algorithm in detail as CG is
one of the methods we have used for solution of large sparse linear systems.

CG is one of the best known and widely used iterative techniques. It is also one of the
very interesting as it can both be derived as a Krylov subspace method or as a solution
of an optimization problem. Method is proven to be convergent for symmetric positive
definite linear systems.

We will derive CG starting from Algorithm 1, but let us first introduce Lanczos’s algo-
rithm.

Given initial guess x0, Krylov subspace Km, an algorithm for solution of symmetric
positive definite (SPD) linear systems is as follows;

Last step of the algorithm contains a tridiagonal solve to compute ym = T−1
m (βe1).

This can be included into the loop. First compute the LU factorization of Tm =

8

Choose an initial vector v1 with ||v1||2 = 1. Set β1 ≡ 0 and v0 ≡ 0
for j = 1, 2, . . . ,m do
wj := Avj − βjvj−1

αj := (wj ,vj)
wj := wj − αjvj
βj+1 = ||wj||2. If βj+1 = 0 then Stop
vj+1 := wj+1/βj+1

end
Algorithm 2: Lanczos’s Algorithm

Compute r0 = b−Ax0, β := ||r0||2, v1 := r0/β
for j = 1, 2, . . . ,m do
wj := Avj − βjvj−1 (If j = 1, β1v0 = 0)
αj := (wj ,vj)
wj := wj − αjvj
βj+1 = ||wj||2. If βj+1 = 0 then Break Loop
vj+1 := wj+1/βj+1

end
Set Tm = tridiag(βi, αi, βi+1) and Vm = [v1, . . . ,vm]
Compute ym = T−1

m (βe1) and xm := x0 + Vmym
Algorithm 3: Lanczos’s Algorithm for Linear Systems

LmUm. If Lm is assumed to be unit lower bidiagonal, then;

Tm =

1
λ2 1

.
λm 1

η1 β2

η2
. . .
. . . βm

ηm

 .

The approximate solution is;

xm = x0 + Vmym = x0 + VmT
−1
m (βe1)

= x0 + VmU
−1
m L

−1
m (βe1).

Defining Pm = VmU
−1
m and zm = L−1

m (βe1), it can simply be written as;

xm = x0 + Pmzm.

Last column of Pm can be computed as;

pm = η−1
m [vm − βmpm−1]

where βm is a scalar computed from Lanczos algorithm, ηm is computed from m-th
step of Gaussian elimination process, and following are computed;

λm =
βm
ηm−1

(2.12)

ηm = αm − λmβm. (2.13)

9

Moreover, by defining ξm = −λmξm−1 with ξ0 = ||r0||2, following can be shown;

zm =

[
zm−1

ξm

]
.

Therefore, update of approximate solution at each step simply reduces to;

xm = xm−1 + ξmpm.

Algorithm 4, which is called direct version of the Lanczos algorithm for linear systems
(D-Lanczos), builds on this idea.

Compute r0 = b−Ax0, ξ1 := β := ||r0||2, v1 := r0/β
Set λ1 = β1 = 0, p0 = 0
for m = 1, 2, . . . ,M or until convergence do
wm := Avm − βmvm−1 amd αm = (wj,vm)

If m > 1 then compute λm = βm
ηm−1

and ξm = −λmξm−1

ηm = αm − λmβm
pm = η−1

m [vm − βmpm−1]
xm = xm−1 + ξmpm
If xm has converged then Stop
wm := wm − αmvm
βm+1 = ||w||2,vm+1 = w/βm+1

end
Algorithm 4: D-Lanczos

We refer the reader to [22] for the proof and we give following properties of this algo-
rithm;

Let rm = b−Axm and pm, m = 0, 1, 2, . . . , be as defined in Algorithm 4,

• rm = σmvm+1 for some σm, therefore residual vectors are orthogonal to each
other.

• pi vectors form anA-conjugate set, i.e., (Api,pj) = 0 for i 6= j.

If this orthogonality and conjugacy properties are imposed as constraints, CG algo-
rithm is obtained. The approximate solution can be written as;

xj = xj−1 + αj−1pj−1. (2.14)

Now consider
rj = b−Axj, (2.15)

inserting 2.14 in 2.15, following is obtained;

rj = rj−1 − αj−1Apj−1. (2.16)

10

By the orthogonality condition, (rj, rj−1) = (rj−1−αj−1Apj−1, rj−1) = 0, therefore;

αj−1 =
(rj−1, rj−1)

(Apj−1, rj−1)
. (2.17)

pj+1 can be determined as a linear combination of rj+1 and pj ,

pj+1 = rj+1 + βjpj. (2.18)

Using A-conjugacy condition,

(Api, ri) = (Api,pi − βi−1pi−1) = (Api,pi)− (Api, βi−1pi−1) = (Api,pi),
(2.19)

and as (Api,pi+1) = 0 and considering 2.18;

βj = −(rj+1,Apj)

(pj,Apj)
. (2.20)

Using 2.15 further simplication can be done, resulting;

βj = −(rj+1, rj+1)

(rj, rj)
. (2.21)

Also as a result of 2.19, αj−1 = (rj−1, rj−1)/(Apj−1,pj−1). Using above calcula-
tions, we will give algorithm for CG method(Algorithm 5).

Compute r0 = b−Ax0 and set p0 = r0
for j = 1, 2, . . . ,M or until convergence do

αj−1 =
(rj−1,rj−1)

(Apj−1,pj−1)
xj = xj−1 + αj−1pj−1

rj = rj−1 − αj−1Apj−1

βj−1 = − (rj ,rj)

(rj−1,rj−1)

pj = rj + βj−1pj−1

end
Algorithm 5: Conjugate Gradient

If matrices are symmetric and positive definite, assuming exact arithmetic, CG is guar-
anteed to converge. Situation is different in case of finite precision arithmetic, as round-
off errors may and will accumulate and prevent finding the exact solution. But usually
if coefficient matrix A is well conditioned, with each iteration approximate solution
progressively gets better. Usually CG iterations are stopped when ||rm||/||r0|| drops
below a predefined small tolerance, like 10−8. Due to numerical errors that may occur,
such tolerance may not be achievable. Therefore, a maximum number of iterations is
set to prevent infinite loops (denoted as M in algorithms).

It is beneficial to consider number of operations per iteration. There are 4 inner prod-
ucts, 3 axpy operations (y ← αx + y) and 2 matrix-vector products. These can be
reduced to 3 inner products, 3 axpy operations and 1 matrix-vector product. Such an
algorithm is presented in Algorithm 6.

11

Compute r0 = b−Ax0 and set p0 = r0
for j = 1, 2, . . . ,M or until convergence do

rr = (rj−1, rj−1)
ap = Apj−1

αj−1 = rr
(ap,pj−1)

xj = xj−1 + αj−1pj−1

rj = rj−1 − αj−1ap

βj−1 = − (rj ,rj)

rr
pj = rj + βj−1pj−1

end
Algorithm 6: A more cost-efficient Conjugate Gradient

For general matrices, there exists an extension of CG which makes use of Lanc-
zos Biorthogonalization algorithm, which is called Bi-Conjugate Gradient Stabilized
(BiCGStab). BiCGStab have quite interesting properties but it is hard to make a theo-
retical analysis. BiCGSTAB is not guaranteed to converge and there is no convergence
proof. For details we refer the reader to [26], general BiCGStab algorithm is in Algo-
rithm 7.

Compute r0 = b−Ax0, r∗0 arbitrary, p0 = r0;
for j = 1, 2, . . . ,M or until convergence do

αj−1 =
(rj−1,r

∗
0)

(Apj−1,r∗0)

sj−1 = rj−1 − αj−1Apj−1

ωj−1 = (Asj−1, sj−1)/(Asj−1,Asj−1)
xj = xj−1 + αj−1pj−1 + ωj−1sj−1

rj = sj−1 − ωj−1Asj−1

βj−1 = − (rj ,r
∗
0)

(rj−1,r0j)
× αj−1

ωj−1

pj = rj + βj−1(pj−1 − ωj−1Apj−1)

end
Algorithm 7: Bi-Conjugate Gradient Stabilized

Similar to CG case let us consider number operations per iteration for BiCGStab. There
are 6 inner products, 6 axpy operations and 7 matrix-vector products. But using the
idea in CG these can be reduced to 6 inner products, 6 axpy operations and 2 matrix-
vector products.

This show us if we can use both CG and BiCGStab to solve a linear system, it is better
to use CG as it is known to converge and number of operations per iteration is much
less than BiCGStab. Nevertheless, in the cases where CG can not be used, we have
used BiCGStab as it is a good alternative.

12

Compute r0 = b−Ax0, r∗0 arbitrary, p0 = r0;
for j = 1, 2, . . . ,M or until convergence do

ap = Apj−1

as = Asj−1

αj−1 =
(rj−1,r

∗
0)

(ap,r∗0)

sj−1 = rj−1 − αj−1ap
ωj−1 = (as, sj−1)/(as, as)
xj = xj−1 + αj−1pj−1 + ωj−1sj−1

rj = sj−1 − ωj−1as

βj−1 = − (rj ,r
∗
0)

(rj−1,r0j)
× αj−1

ωj−1

pj = rj + βj−1(pj−1 − ωj−1ap)
end

Algorithm 8: A more cost efficient Bi-Conjugate Gradient Stabilized

2.3.3 Preconditioners

Iterative methods are not robust when compared to direct solvers. Therefore, even
though they are memory and computation efficient, in some cases (especially for large
sparse linear systems) direct solvers are preferred over iterative methods. Precondi-
tioning improves both robustness and efficiency of the iterative methods. Precondi-
tioning is basically transforming a linear system of equations into another one with
same solution but has better eigenvalue distribution, hence easier to solve using itera-
tive methods.

First we want to discuss what makes a preconditioner a good preconditioner. Let M
be preconditioner. First requirement is that the computation ofM . It should not take a
lot of time so that choosing iterative methods over direct methods stays feasible, even
in presence of computational overhead preconditioner introduces. Most important re-
quirement is that application of preconditioner must be computationally inexpensive.
All Krylov subspace methods apply preconditioner at each iteration, because this ap-
proach is usually cheaper and flexible rather than applying before starting to solve
linear system and change the system. Preconditioner should be nonsingular since its
application is most of the time done by solvingMx = b. AlsoM should approximate
the original coefficient matrix in a way which will be elaborated later.

There are three ways a preconditioner can be applied. If it is applied from left, called
left preconditioning,

M−1Ax = M−1b, (2.22)
if it is applied from right, called right preconditioning,

AM−1Mx = AM−1u = b. (2.23)

Note that, u = Mx. Therefore to find solution x another linear system must be
solved. Thirdly, if preconditioner is available in the factored form, left and right
preconditioning can be used at same time, called split preconditioning. Let M =
MLMR, it can be applied in following way,

M−1
L AM

−1
R MRx = M−1

L AM
−1
R u = M−1

L b (2.24)

13

with u = MRx.

If the original matrix is symmetric, to be able to use methods that work for symmetric
matrices, it seems like preconditioner should be a carefully chosen split preconditioner.
But this is not true as there are methods to preserve symmetry even when precondi-
tioner is not available in factored form. We will consider preconditioned version of CG
(PCG) to explain how left preconditioning may be applied without disturbing symme-
try.

Assume we are trying to solve Ax = b and we have preconditioner M . Necessarily
A and M must be SPD. Then M can be applied in three ways (left, right or split). If
left or right preconditioning is chosen, preconditioned system may not be symmetric
(because (AB)T = BTAT = BA 6= AB for some symmetric matrices A and B).
In last case since M is SPD, it can be Cholesky factorized, i.e. there exists lower
triangular matrix L such that M = LLT . So split preconditioning preserves SPD
property of original linear system.

Often the Cholesky factorization of the preconditioner is not available and hard to
compute from the preconditioner itself. Even so, it is possible to preserve symmetry
using left or right preconditioning. Consider;

(M−1Ax,y)M = (Ax,y) = (x,Ay) = (x,MM−1Ay) = (x,M−1Ay)M

which shows M−1A is self-adjoint for the M-inner product. Thus, using M-inner
product rather that usual Euclidean inner product preserves symmetry.

Introducing this inner product to CG, left preconditioned Conjugate Gradient method
is obtained. We will now derive PCG. Let rj = b −Axj and zj = M−1rj , residual
of the preconditioned system. Then

αj =
(zj, zj)M

(M−1Apj,pj)M
=

(rj, zj)

(Apj,pj)
,

xj = xj−1 + αj−1pj−1,

rj = rj−1 − αj−1Apj−1 and zj = M−1rj,

βj = −(zj+1, zj+1)M
(zj, zj)M

= −(rj+1, zj+1)

(rj, zj)
,

pj+1 = zj+1 + βjpj.

Algorithm 9 summarizes this calculations into the algorithm of left preconditioned CG.
Split preconditioned CG is a direct consequence of left preconditioned with some more
auxillary vectors introduced and iterations are identical in exact arithmetic. Right pre-
conditioned CG can be derived in a similar way to left preconditioned CG by observing
thatAM−1 is self-adjoint for theM−1-inner product.

It is beneficial to discuss preconditioners and preconditioning techniques in detail. It
was mentioned that idea of using a preconditioner is to transform the linear systems to
linear systems which are easier to solve with iterative solvers. Convergence of itera-
tive solvers strongly depends on the eigenvalues hence on the condition number of the

14

Compute r0 = b−Ax0 and set p0 = r0
for j = 0, 1, 2, . . . ,M or until convergence do

αj =
(rj ,zj)

(Apj ,pj)
xj+1 = xj + αjpj
rj+1 = rj − αjApj
zj+1 = M−1rj
βj = − (rj+1,zj+1)

(rj ,zj)

pj+1 = zj+1 + βjpj
end

Algorithm 9: Left Preconditioned Conjugate Gradient

coefficient matrix. Consider Ax = b with cond(A) >> 1. Assume M is a left pre-
conditioner to the system, then we expect that cond(A) > cond(M−1A) ≥ 1. Earlier
it was told that M should resemble coefficient matrix A in a way. It is because, if it
was not too expensive to compute, the best preconditioner for the linear system would
the coefficient matrix of linear system since cond(A−1A) = 1. But this requires com-
putation of inverse of A, which is computationally expensive (as expensive as solving
directly, therefore meaningless). Cheapest preconditioner in that sense is identity ma-
trix, because it is free, but does not affect the condition number of the linear system
at all. So a compromise must be done. We will consider three of those compromises,
which are Incomplete LU factorization (ILU), Block-Jacobi and sparse approximate
inverse (SAI) type preconditioners, but we refer the reader to the surveys [4] and [9]
for a more detailed discussion of various preconditioning techniques.

The main idea in ILU-type preconditioners is to find an approximate LU factorization
of the coefficient matrix A where M = L̃Ũ ≈ A. Notice that this kind of precondi-
tioning is appropriate for split preconditioning and if Ũ is chosen such that Ũ = L̃T ,
called Incomplete Cholesky Factorization (ICC), application of preconditioner pre-
serves symmetry by default. We impose the condition of that L̃ and Ũ must be sparse.
Satisfying this condition is relatively easy. A nonzero structure may be assumed in
their construction or by dropping elements which are less than some threshold in ab-
solute value.

An example for first case is to choose nonzero structure as nonzero structure of A,
this is called zero fill-in ILU (ILU(0)). In general nonzero structure can be assumed of
nonzero structure of A(p+1) for p ≥ 0, called ILU(p). Assume S is nonzero structure
ofA, an algorithm can be given as follows;

This algorithm is an in-place algorithm, which saves ILU factors over coefficient ma-
trix A. L̃ assumed to be lower unit triangular matrix, so strictly lower part of A
summed with identity matrix of suitable size is L̃ while Ũ is the upper part ofA after
algorithm ends. Note that, this algorithm fails if akk = 0 so another algorithm which
employs pivoting must be used in those cases. ILU has many implementations but a
good example is Euclid [18], which is a parallel ILU type preconditioner.

15

for i = 0, 1, 2, . . . , n do
for k = 0, 1, 2, . . . , i− 1 and for (i, k) ∈ S do

Compute aik = aik/akk
for j = k + 1, 2, . . . , n do

Compute aij = aij − aikakj
end

end
end

Algorithm 10: ILU(0)

Block-Jacobi preconditioner idea is simpler than ILU idea. ConsideringAx = b with;

A =

A11 A12

A21 A22 A23

A32 A33 A34

A43 A44

 ,

where Aij’s are square submatrices (or blocks) of A. Some i, j values are skipped
to emphasize sparsity but structure of coefficient matrix is only given as an example.
Before starting to construct Block-Jacobi preconditioner, we must decide how many
blocks will be used. If one block is to be used as preconditioner then M = A. In
this case for application of preconditioner, another method should be used to decrease
the cost of application. An example may be using ILU to apply the preconditioner. If
more blocks are to be used, for example two and four blocks;

M2 =

A11 A12

A21 A22

A33 A34

A43 A44

and

M4 =

A11

A22

A33

A44

 ,

application of preconditioner may be formulized as independent direct solution of k
much smaller linear systems (compared to A), where k is the number of blocks. Even
more blocks may be used with the limiting case of number of blocks being the dimen-
sion of coefficient matrix. Furthermore, sparse DS factorization based schemes could
be considered as a generalization of the block-jacobi including important nonzeros in
the off-diagonal blocks [20].

SAI idea is, given a linear system Ax = b, to find a sparse matrix M such that the
Frobenius norm of the error ||MA − I||F < ε for some ε > 0 under a sparsity con-
straint onM . If the structure ofA−1 is known, it can be used for the sparsity pattern of
M . If it is not known, one of common approaches is to assume that preconditionerM
has the same nonzero structure asAk for some k, but as k gets larger this is costly, and
there is a limit to ε as the structure is fixed. Alternatively, for a given ε, trying to find

16

a structure for M that satisfies given ε is another possibility. Well-known examples
are ParaSails [12] for assuming a priori structure and SPAI [16] which tries to find an
appropriate structure to satisfy ε condition.

ILU type preconditioners are not scalable as much as other two due to inherently se-
quential nature and limited scalability of triangular solves. Also computation of pre-
conditioner has limited scalability.

Block-Jacobi preconditioners are quite parallel due to application of preconditioner
can be done independently for each block. But as number of blocks increase, precon-
ditioner starts to diverge from coefficient matrix, which may cause in false or slow
convergence.

SAI type of preconditioners are expected to be scalable on parallel computing plat-
forms since computing the preconditioner matrix can be split into completely indepen-
dent linear least squares problems. Another reason is that applying the preconditioner
is just a matrix-vector multiplication which is usually possible to parallelize.

In next section, parallelization of iterative solvers and preconditioners will be dis-
cussed.

2.4 Parallelization

Advancement and large availability of parallel computing platforms in last decade,
put parallelization of existing algorithms to an important place for solution of large
scale problems. As three dimensional models have gained importance in applications,
related problem of solving large sparse linear systems gained importance too which
are quite large scale problems.

Solution methods for this problems have different advantages and disadvantages. Di-
rect methods are robust, but they require a lot of storage and scalability is limited. Most
popular and known parallel direct solvers are Pardiso [23], MUMPS [2], WSMP [17]
and SuperLU [19]. Iterative solvers require much less memory and far more scalable
and easier to implement, but they are not robust. Preconditioned iterative methods are
more efficient and robust, yet with more cost. Packages like PETSc [5], Hypre [15]
provide both parallelized versions of iterative solvers and preconditioners.

Discussion of parallel computing platforms is beneficial before further inspection of
parallelization. There are two types of parallel computing platforms which are used
and compared in this thesis, even though there are more models. These two are shared
memory architectures and distributed memory architectures.

Shared memory architectures have many cores connected to a single (usually large)
memory unit that is addressable by any core. Common bottlenecks in these kind of
architectures are cache coherence and memory bandwidth. Memory conflicts, actions
those disrupt cache coherence, happen when a core tries to change a data which other
cores need, or two or more cores tries to write to same place, problem is more difficult

17

when multi levels of caches are used. Memory bandwidth is more related to reading
data from memory. If an algorithm requires frequent reads of large amount of data
from memory, computation step of algorithm waits for reading to complete. But if at
any moment data that must be read is much larger than bandwidth (data that can be
read in unit time), performance of algorithm will suffer.

A distributed memory architecture is a collection of processors (each having their ”pri-
vate” memory storages) which are connected through a high speed network. In this
model, processors can not read any data that is not stored in their memory. As data is
not shared, if any data exchange is required that must be foreseen and programmed by
programmer. Advantage of this architecture is that the aggregated memory bandwidth
is quite large and is no longer a bottleneck. A disadvantage is the need for message
passing. Network communications, even though may be quite fast, are not as fast as
memory reads and involves higher latency. Usually it is possible to minimize com-
munication by manipulating data, but for many problems communication is inherently
required.

There are many different approaches to parallelize direct methods on shared memory
architectures but relatively simpler than distributed memory architectures. Consider
Gaussian Elimination without pivoting or iterative refinement. All cores can read the
first line of coefficient matrix and make relative operations at the same time. Each
core should operate on distinct lines to prevent memory conflicts. Same algorithm can
be used on distributed memory structures, but at each step of Gaussian Elimination
a vector is broadcasted and each different processors does elimination on their local
rows. This have two problems, (1) a global communication (i.e. with all processing
units on the structure) is required at each step and (2) some processors may complete
their job due to smaller number of rows that should be eliminated and wait for others
to finish. Solution for these problems is complicated and out of scope of this thesis.
For further details, we refer the reader to [23], [2],[17] and [19].

Parallelization of a Krylov subspace method involves parallelization of each step that
the algorithm involves. All Krylov subspace methods uses same three operations,
namely, inner product, summation of two vectors and matrix-vector multiplication.
If methods are also preconditioned, depending on type of preconditioner, application
of the preconditioner is also another operation that is necessary. Therefore, basically
by parallelizing these operations, Krylov subspace methods can be parallelized. Let
us to divide and conquer each of operations, except linear system solve as we have
already considered. Firstly, inner product of two column vectors is defined as;

(x,y) = xTy = x1y1 + x2y2 + x3y3 + · · ·+ xmym + · · ·+ xnyn.

This can be written as,

(x,y) = (x1y1 + · · ·+ xmym) + (xm+1ym+1 + · · ·+ xnyn) = (x1,y1) + (x2,y2),

where x1 = [x1, . . . , xm] and x2 = [xm+1, . . . , xn], similarly for y. As it can be clearly
seen inner product is an embarrasingly parallel operation. If a distributed memory
architecture is used, processing units do not have to send-receive data except at the
last part where individual inner products must be summed. Summation of two vectors

18

is quite similar to inner product. Only difference is that, if result should be gathered
in one core on distributed memory structures then rather than sending numbers whole
vectors (arrays) must be send using a parallel reduce operation. Therefore summation
of two vectors may also be considered as embarrasingly parallel.

Matrix-vector product requires special attention, even though it can simply be thought
as multiple inner products. This is a valid approach to problem and a simple algorithm
arises from this idea. Attention must be paid on the part concerning the storage of
sparse matrix. Sparse matrices are not stored as two dimensional arrays, instead they
are usually stored in multiple one dimentional array using one of the many formats.
Let us consider the matrix 2.1 and its more common CSR representation,(— shows
where data is divide between processors).

IA = [1 3 | 5 7 8 9]
JA = [1 3 2 4 | 1 3 2 4 5]
VA = [1 2 3 4 | 9 5 8 6 7]

Assume, it is necessary to multiply this matrix with a vector of ones (thus practically to
find row sums). Firstly second core should send IA(3)=5 to first processor as it needs
that information to know where to stop. We should also make another assumption
for distribution of ones vector. It usually is not probable to hold full vector in each
individual memory for large scale problems. So let’s assume first two elements of ones
is in first processor and rest is in second processor.

A1 =

1 0 2 0 0
0 3 0 4 0
9 0 5 0 0
0 8 0 6 0
0 0 0 0 7

1
1
1
1
1

Note that, if structure is a distributed memory structure processors must communicate
for the parts of ones vector they do not have. But before that we will introduce al-
gorithm for CSR matrix vector multiplication. As long as processors have all the

for i=1,2,. . . ,n+1 do
for j=IA(i),. . . ,IA(i+1) do

y(i) = y(i) + VA(j)*x(JA(j))
end

end
Algorithm 11: CSR Matrix-Vector Multiplication

information they need, they can run this algorithm independently and gather the re-
sulting vector on a single core upon conclusion, if necessary. But for example second
processor needs first element of ones vector to complete multiplication but does not
have. So a parallel algorithm for CSR MV is;

Processors should not wait for confirmation from other processor as this algorithm is
run on all processors at the same time, all will be waiting for confirmation but since

19

for i=local start,. . . ,local end+1 do
Determine out of processor data needed,
Send information about necessary data to relative processor, do not wait for
confirmation of receiving,
Before starting to wait data from other processors, check if they need any
data from local memory,
Send any data asked, do not wait for confirmation of receiving
Receive data needed,
for j=IA(i),. . . ,IA(i+1) do

y(i) = y(i) + VA(j)*x(JA(j))
end

end
Algorithm 12: CSR Matrix-Vector Multiplication

none of them is received anything they will not send confirmations. This will cause
a deadlock. Send-receive operations that does not wait for confirmations are called
immediate (unblocking) send-receive operations.

If method is preconditioned, depending on preconditioner, application of precondi-
tioner is either linear system solve (in case of ILU and Block-Jacobi) or matrix-vector
multiplication (SAI). As both are covered, let us discuss parallelization of computation
of preconditioners.

Computation of Block-Jacobi is straight forward if number of blocks is chosen to be
number of cores, which is the usual approach. For example partition for matrix 2.1,
with 3 cores, is;

A =

1 0 2 0 0
0 3 0 4 0
9 0 5 0 0
0 8 0 6 0
0 0 0 0 7

 .

Each core now only should keep the part on the diagonal and ignore rest for precondi-
tioner, therefore;

M =

M1

M2

M3

 ,

where

M1 =

(
1 0 0 0 0
0 3 0 0 0

)
,M2 =

(
0 0 5 0 0
0 0 0 6 0

)
,M3 =

(
0 0 0 0 7

)
.

This operation can be done without any communication. Computation of Block-Jacobi
preconditioners are quite parallel. Application of preconditioner is also can be thought
as independent solutions of, in this case, three linear systems of equations. The prob-
lem with this type preconditioner is that as number of blocks increase, quality of the
preconditioner degrades. It starts to diverge from coefficient matrix. With the increas-
ing number of iterations, the scalability of these kind of preconditioner are usually
limited.

20

ILU-type preconditioners are inherently sequential in their calculation. Similar to di-
rect solution methods for linear systems (as ILU idea takes root from complete LU
factorization), at each step a vector can be broadcasted and each processor may act
upon that information. Another possibility is to find Block-Jacobi preconditioner with
blocks overlapping to a degree and find ILU factorization of those blocks and use as
a preconditioner for coefficient matrix. More complicated parallelizations of ILU pre-
conditioners may be found in [22] and [18].

In contrast to ILU-type preconditioners, computation of sparse approximate inverse
(SAI) type preconditioners is parallel. The idea is to solve the following optimization
problem under some constraints to the nonzero structure, which we mentioned earlier,
ofM−1;

min ||M−1A− I||. (2.25)

Rather than solving that problem, by applying triangle inequality, we can solve;

min
(
||M−1

1 A− I1||+ ||M−1
2 A− I2||+ · · ·+ ||M−1

p A− Ip||
)
, (2.26)

where p is number of workers, M−1
n denotes nth part of M−1 when it is partitioned

rowwise and In is corresponding part when I is partitioned columnwise. Now, it is
obvious that;

min
(
||M−1

1 A− I1||+ ||M−1
2 A− I2||+ · · ·+ ||M−1

p A− Ip||
)

= (2.27)

min ||M−1
1 A− I1||+ min ||M−1

2 A− I2||+ · · ·+ min ||M−1
p A− Ip||. (2.28)

Then each minimization problem can be solved by a different processor independently
from others.

21

22

CHAPTER 3

APPLICATIONS

In this chapter, test problems are introduced. These problems are important in sense of
industrial applications and scientific interest, which are explained in detail in respec-
tive sections. Their constructions are illustrated, even though not in great detail, for
sake of emphasising the challenges those arise in solution of resulting linear system of
equations.

Results and figures in this chapter are (accepted) to be published in [1, 24].

3.1 TOPOLOGY OPTIMIZATION

Topology optimization, also sometimes called as layout optimization, is a multidisci-
plinary design tool with purpose of minimizing usage of precious materials and opti-
mizing material distribution. This is of quite importance by itself as resources on earth
are finite and, in case of industrial applications, are expensive. Using right amount of
materials in right way benefits both the environment and the industry.

Challenge in these problems are threefold. Successive solution of linear systems of
equations is necessary to find solution to optimization problem. This is the most time
consuming part especially for large, three dimensional problems. For practical three
dimensional problems, number of unknowns can easily reach to millions. Lastly, the
condition number of linear systems worsens as the optimization progresses.

3.1.1 Background

Bendsoe and Kikuchi in 1988 [7] applied the density-based material distribution ini-
tially to structural problems. Method is later applied to heat transfer and fluid flows
[10, 11, 13]. Optimization steps in this method consists discretization of linear elas-
ticity equilibrium equations with finite element method, solution of resulting linear
system of equations and removing or adding material, via help of the well-known op-
timality criteria method [8] with gradient-based sensitivity calculations, to an initial
design domain until an optimal distribution of material for a given volume ratio is
achieved. At each optimization step, condition number of coefficient matrix of linear

23

systems of equations worsens to the point of becoming singular and becomes highly
stiff for iterative solvers. Therefore, achieving good scalability when iterative methods
are parallelized is very challenging and choice of preconditioner is quite important.
Referring back to Section 2.3.3, as at each optimization step iterative solution must
be done and preconditioner should be calculated again (coefficient matrix changes as
material distribution changes), calculation and application of chosen preconditioner
heavily affect parallel performance of both iterative solution method and optimization
problem. In earlier work, topology optimization of structural problems to optimize
wings of airplanes under aerodynamic loads is studied and direct and iterative solvers
are compared [21]. This work showed that direct methods such are usually not feasible
to solve large scale problems with due to large need for memory resulting from fill-in.
Also in [21], the CG paired with Block-Jacobi preconditioner in PETSc [5] is used for
solution of large-scale problems, but parallel efficiency was low as increasing number
of blocks (= increasing number of cores) causes a drop on quality of preconditioner.

Topology optimization for structural, heat transfer and potential flow problems is de-
fined as;

min
ρ

c(ρ) = UTK(ρ)U in Vo
s. t. Vf =

∑
e (ρeVe) /Vo

K(ρ)U = F (ρ) in Vo
u = uo on ∂Vo
0 < ρe ≤ 1

(3.1)

where , c is the objective function, Ve is the element volume, Vf is the target volume
fraction of the design space, Vo is the initial volume of the design space, ρ is the design
vector composed of element densities ρe (element volume fractions),K is the stiffness
matrix of the system, U is the solution vector of field variables (e.g., displacements,
temperature, velocity potential), F is the load vector, uo is the boundary condition for
u on the boundary ∂Vo. All variables are functions of the design variable ρ, which is to
be determined as the minimum point of c. The element properties is a function of the
design variable defined as Ee = ρpEo, where p is a penalty constant, Eo is the material
property in the initial design space Vo, Ee is the modified property of the element e.
For p > 1 intermediate volume fraction values are penalized. p = 3 is a common
choise. The well-known optimality criteria method, which is a gradient-based method,
[8] is used here. A special filtering technique for calculation of gradients [8] is used
to prevent checker-board patterns. The third term in Eq. 3.1 is the linear system of
equations which is to be solved repeatedly at each step of the optimization. Solving it
efficiently and fast is important for the performance of the optimization method.

3.1.2 Multidisciplinary Examples

In following we present some practical applications of topology optimization for vari-
ous disciplines. Even though physical applications, or physical meanings of solutions,
may vary, mathematical foundation is the same. Initial design domain which is chosen

24

to be a full for all cases, then they are gradually emptied at each optimization step to
achieve target volume fraction. The regions found to be empty are defined to have
small material density values rather than zero values (10−3 to avoid introducing a zero
line or row to coefficient matrix).

Figure 3.1a is the result for when three-dimensional cube topology is optimized, under
uniform load on the top and non slipping four bottom corners to reach the target volume
fraction Vf = 0.3. Initial design space is the cube which is represented by black lines,
brown color represents final design, empty regions are transparent. Given loading and
boundary conditions final structure has minimum compliance energy and is a sound
structure. Using denser meshes we can achieve higher resolution and capture more
details which can be used to find microstructural designs. For this purpose, one should
be able to solve large size problems efficiently.

Figure 3.1b is the result for the optimization of a heated domain where the right side
is partially cooled and the rest insulated and the target volume ratio is Vf = 0.2. Near
empty elements are shown by blue color, red and green colors denote, respectively,
full and partially full elements. The topology optimization for thermal problems is
to minimize the maximum temperature in the region by optimizing distribution of a
given amount of an expensive conductive material. The tree-like structured structure
with large amounts of details for this moderately dense mesh are also of interest.

Figure 3.1c is the result for the optimization of a heated domain where its bottom center
is the source of heat, the surface transfer heat convectively for cooling and the target
volume ratio is Vf = 0.3. Near empty elements are shown by blue color, red and green
colors denote, respectively, full and partially full elements. Here again, problem is to
minimize the maximum temperature in the region by optimizing distribution of a given
amount of an expensive conductive material.

Figure 3.1d is the result for the optimization of a flow domain where the right side is
inlet and there are two exits at the left side and the target volume ratio is Vf = 0.3.
Again near empty elements are shown by blue color, red color denotes full elements,
for this case the flow channel. Objective is find a flow network which limits pressure
loss as much as possible and distributes velocities uniformly.

These problems require hundreds or thousands of optimization steps to reach the fi-
nal topology. As problem size grows number of steps required increases. Results
presented in Figure 3.1 are obtained and plotted using EDA’s proprietary software
CAEeda, http://www.caeeda.com.

3.2 ADVECTION-DIFFUSION-REACTION TYPE EQUATIONS

Advection-Diffusion-Reaction(ADR) type of equations are of great interest as they are
used in modelling phenomena often. These kind of equations also sometimes called
as convection–diffusion equation or drift–diffusion equation. Variable of interest may
be concentration of species or heat. ADR type equations may be used to describe
chemical phenoma or plasma simulations which may be used preparations before ac-

25

(a) A structural optimization problem (b) A heat transfer optimization problem

(c) A convective heat transfer optimization
problem (d) A fluid flow-path optimization problem

Figure 3.1: Multidisciplinary topology optimization examples

26

tual experiments to reduce the costs of experiment by limiting cases of interests. These
will accelerate design of new experiments and increase success rates. Both steady and
unsteady (time-dependent) cases are important and quite challenging.

Three dimensional ADR equations share the curse of dimensionality. Linear systems
are quite large and ill-conditioned, and direct solvers suffer from fill-in. If problem is
unsteady (it is not considered in this thesis, but is interest of future work) successive
solution of linear system of equations is necessary. This linear system may be chang-
ing or stay the same as time progresses depending on whether coefficients of ADR
equation are time-dependent or not. Therefore, as in case with topology optimization
problem, calculation and application of preconditioner heavily affects the performance.

3.2.1 3D formulation of the complete flux scheme

Let us consider a stationary conservation law of advection-diffusion-reaction type,

∇ · (uϕ− ε∇ϕ) = s, (3.2)

where u = u ex+v ey+w ez is a mass flux or (drift) velocity, ε ≥ εmin > 0 a diffusion
coefficient, and s a source term describing, e.g., chemical reactions or ionization. The
unknown ϕ is then the mass fraction of one of the constituent species in a chemically
reacting flow or a plasma. The parameters ε and s are, for the sake of discretization,
assumed to be functions of the spatial coordinates.

Let the flux vector f be, f := uϕ − ε∇ϕ. Then equation 3.2 can be simplified as
∇ · f = s. Integrating this equation over a fixed domain Ω and applying Gauss’s
theorem the integral form of the conservation law is obtained,∮

Γ

(f ,n) dS =

∫
Ω

s dV, (3.3)

where n is the outward unit normal on the boundary Γ = ∂Ω. This equation is the
basic conservation law, provided ϕ is smooth enough, is equivalent to 3.2. In the FVM
[14] the domain is covered with a finite number of disjoint control volumes or cells
and the integral form (3.3) is imposed on each one of these cells.

In three-dimensional Cartesian coordinates, first grid points xi,j,k = (xi, yj, zk) is
chosen where solution for ϕ has to be found approximately. Next, control volumes
Ωi,j,k := (xi−1/2, xi+1/2)×(yj−1/2, yj+1/2)×(zk−1/2, zk+1/2) are defined. Here xi±1/2 :=
1
2
(xi + xi±1) etc. The boundary of control volume Ωi,j,k is the union of six surfaces

Γi±1/2,j,k, Γi,j±1/2,k and Γi,j,k±1/2. Taking Ω = Ωi,j,k in conservation law (3.3) and
approximating all integrals with the midpoint rule, we find(

fx,i+1/2,j,k − fx,i−1/2,j,k

)
∆y∆z

+
(
fy,i,j+1/2,k − fy,i,j−1/2,k

)
∆x∆z

+
(
fz,i,j,k+1/2 − fz,i,j,k−1/2

)
∆x∆y

.
= si,j,k ∆x∆y∆z, (3.4)

where we have used that f = fx ex + fy ey + fz ez. Approximating the fluxes fx, fy
and fz we get Fx, Fy and Fz to find FVM (3.4).

27

Let us find the x-component of the flux, fx,i+1/2,j,k, from solution of a local one-
dimensional ordinary differential equation. Consider the flux f := uϕ − εdϕ

dx
and

the model BVP:

d

dx
(f) = s, xi < x < xi+1, ϕ(xi) = ϕi, ϕ(xi+1) = ϕi+1. (3.5)

ε > 0 and s are assumed to be sufficiently smooth functions of x. To solve (3.5) let the
variables a, A and S be

a :=
u

ε
, A :=

∫ x

x
i+1

2

a(ξ) dξ, S :=

∫ x

x
i+1

2

s(ξ) dξ, (3.6)

and integrate (3.5) from the cell boundary xi+ 1
2

to x ∈ (xi, xi+1) to find the integral
relation f − fi+ 1

2
= S. By rewriting the flux in terms of its integrating factor, f =

−ε eA d
dx

(
e−A ϕ

)
, and substituting it in the integral relation, then integrating over the

interval (xi, xi+1), we get,

fi+ 1
2

=
e−Aiϕi − e−Ai+1ϕi+1

〈ε−1, e−A〉︸ ︷︷ ︸
f hom
i+ 1

2

−〈ε
−1S, e−A〉
〈ε−1, e−A〉︸ ︷︷ ︸
f inh
i+ 1

2

. (3.7)

To sum up, fi+ 1
2

= f hom
i+ 1

2

+f inh
i+ 1

2

. Here inner product is defined as 〈f, g〉 :=
∫ xi+1

xi
fg dx

when calculating the homogeneous flux f hom and the inhomogeneous flux f inh, which
are the advection-diffusion operator and the source term, respectively. When u and ε
are both constants,

A =
u

ε

(
x− xi+ 1

2

)
, 〈a, 1〉 =

u

ε
∆x, 〈ε−1, e−A〉 =

1

u
〈a, e−A〉, (3.8)

and f hom reduces to the constant coefficient flux

f hom
i+ 1

2
=

ε

∆x

(
B(−P)ϕi −B(P)ϕi+1

)
, (3.9)

in which B(x) := x/(ex − 1) and the Péclet number P := u
ε

∆x. For the inhomoge-
neous flux we find

f inh
i+ 1

2
=

∫ 1

0

G(σ;P) s(x(σ)) dσ, (3.10)

where we have used the normalized coordinate σ(x) := (x− xi)/∆x (note that x(σ) :=
xi + σ∆x) and the Green’s function for the flux

G(σ;P) :=

e−σP − 1

e−P − 1
, for 0 ≤ σ ≤ 1/2,

−e(1−σ)P − 1

eP − 1
, for 1/2 < σ ≤ 1.

(3.11)

28

For the numerical fluxes, two averages are used: the normal arithmetic average εi+ 1
2

:=

(εi + εi+1)/2 and a weighted average ε̃i+ 1
2

:= W (−P i+ 1
2
)εi + W (P i+ 1

2
)εi+1. The

weight function used here is W (x) := (ex − 1− x)/(x (ex − 1)). A detailed deriva-
tion can be found in [25]. We use (3.9) to find the following numerical homogeneous
flux

F hom
i+ 1

2
= αi+ 1

2
ϕi − βi+ 1

2
ϕi+1, (3.12a)

αi+ 1
2

:= B
(
− P i+ 1

2

) P̃i+ 1
2

P i+ 1
2

ε̃i+ 1
2

∆x
, βi+ 1

2
:= B

(
P i+ 1

2

) P̃i+ 1
2

P i+ 1
2

ε̃i+ 1
2

∆x
. (3.12b)

The numerical inhomogeneous flux is based on (3.10). We take s(x) equal to si on the
interval (0, 1/2) and equal to si+1 on (1/2, 1). Next we integrate the Green’s function
to find

F inh
i+ 1

2
:= γi+ 1

2
si − δi+ 1

2
si+1, (3.13a)

γi+ 1
2

:= ∆x

∫ 1/2

0

G(σ;P i+ 1
2
) dσ = C(−P i+ 1

2
) ∆x, (3.13b)

δi+ 1
2

:= ∆x

∫ 1

1/2

G(σ;P i+ 1
2
) dσ = C(P i+ 1

2
) ∆x, (3.13c)

in which C(x) := (e
1
2
x − 1− 1

2
x)/(x (ex − 1)). Note: C(x) → 1/8 for x → 0,

C(x)→ 0 for x→∞, and C(x)→ 1/2 for x→ −∞. Notice that γ and δ are almost
equal for small Péclet numbers and the inhomogeneous flux is small. The upwind value
of s is dominantly effective for large (positive or negative) Péclet numbers. Adding
(3.12) and (3.13), numerical complete flux is found:

Fi+ 1
2

= αi+ 1
2
ϕi − βi+ 1

2
ϕi+1 + γi+ 1

2
si − δi+ 1

2
si+1. (3.14)

By combining the one-dimensional schemes, we will extend FVM scheme to the 3D
equation (3.2). Including the cross-fluxes ∂fy/∂y and ∂fz/∂z in the computation of
the flux in x-direction is the main idea . By doing this, we can reduce the crosswind
diffusion and find much sharper layers for advection-dominated flows. In [25] we have
shown that for 2D problems, the inclusion of cross-flux terms is essential to maintain
second order accuracy, whereas the homogeneous flux scheme (without cross-fluxes)
reduces to first order. We can find the numerical flux Fx,i+ 1

2
,j,k from the quasi-one-

dimensional boundary value problem:

∂

∂x

((
uϕ− ε∂ϕ

∂x

))
= sx, xi < x < xi+1, y = yj, z = zk, (3.15a)

ϕ(xi,j,k) = ϕi,j,k, ϕ(xi+1,j,k) = ϕi+1,j,k, (3.15b)

where the modified source term sx is defined by sx := αs−β(∂fy/∂y+∂fz/∂z), with
α and β coefficients that are yet to be determined. If we take β = 1, the cross-fluxes
are completely included; taking β = 0 ignores them.

The numerical flux is similar to derive as in the case of (3.14), the main difference is
the inclusion of the cross-fluxes ∂fy/∂y and ∂fz/∂z in the source term. To compute

29

C

DC

UC

W

E

NW

NESW

SES

N

UW

UE

UNW

UNEUSW

USEUS

UN

DW

DE

DNW

DNEDSW

DSEDS

DN

Figure 3.2: Compass notation for points in discretization stencil.

sx, ∂fy/∂y is replaced by its central difference approximation and for fy we take the
homogeneous numerical flux. We treat ∂fz/∂z in the same way. Similar procedures
apply to the y- and z-components of the flux. We shall take β = 1/2 in the numerical
simulations. Adding the three one-dimensional problems in x, y and z-direction, we
find that we need to choose α = (1 + 2β)/3 for consistency. The numerical fluxes
presented above are substituted into (3.4) and we find 27-point stencil for the unknown
ϕ. The points of the stencil are presented in Figure 3.2. We denote the resulting linear
system byAx = b. The matrixA has in general 27 nonzero diagonals.

The resulting sparse linear system from the 3D discretization is most suitable for it-
erative solvers since direct solvers are known to scale poorly and memory require-
ments are usually very high due to fill-in. We use Bi-Conjugate Gradient Stabilized
(BiCGStab) with preconditioning. We will study and compare the performance of two
parallel preconditioners that are based on the sparse approximate inverse (SAI) and
incomplete LU (ILU) factorization.

3.2.2 A three-dimensional flow problem

We consider the following flow problem as our test problem. It is a three-dimensional
extension of the problem in Section 8, Example 3 of [25]. The problem domain is
given by −1 ≤ x ≤ 1, 0 ≤ y ≤ 1 and 0 ≤ z ≤ 1.

∇ · (uϕ− ε∇ϕ) = 0, in (−1, 1)× (0, 1)× (0, 1) (3.16)

with velocity field u(x, y, z) = (1−x2)y(1−2z) ex+x(1−y2)(1−2z) ey+4xyz(1−
z) ez, see Figure 3.3. We impose the following boundary conditions (c is a constant
that determines the steepness of the profile; we take c = 10)

• At the inlet (given by y = 0, x ≥ 0, 0 ≤ z ≤ 1/2 and y = 0, x ≤ 0,
1/2 ≤ z ≤ 1) we set ϕ(x, y, z) =

(
1 + tanh(c(2x+ 1))

)
z

30

x y

z

0
1 1

1
2

1

−1
−0.5

0

0.5
0.2

0.4
0.6

0.8

0

0.2

0.4

0.6

0.8

1

x

y

z

Figure 3.3: The problem domain and velocity field for the flow problem. The inlet is
shaded red; the outlet blue

• At the outlet (given by y = 0, x < 0, 0 ≤ z < 1/2 and y = 0, x > 0,
1/2 < z ≤ 1) we set ∂ϕ

∂y
(x, y, z) = 0

• At the front (x = 1), back (x = −1), right (y = 1), bottom (z = 0), and top
(z = 1), we set ϕ(x, y, z) =

(
1 + tanh(c(2x+ 1))

)
(1− y)z.

31

32

CHAPTER 4

RESULTS

In this chapter, we present the performance and efficiency of proposed methods of so-
lution against some other widely used methods. The problems we consider are, even
though from different formulations, similar in sense of sparsity, bandedness and be-
ing ill-conditioned. In both cases, linear systems to be solved may become very large
depending on required accuracy. Thus, solving these using direct solution methods be-
comes increasingly infeasible. Iterative methods may not converge as methods to solve
problems usually result in ill-conditioned linear systems. Preconditioners are required
for iterative methods to converge. But computation and application of preconditioners
are extra costs which are not included in direct solution methods. Therefore, for an it-
erative method to be feasible over direct method, an easy to compute, easy to apply and
at the same time good preconditioner is necessary. On the two problems we consider,
we show that our proposal is a good candidate.

We want to emphasize that, beside those problems mentioned above, it is important
for a method to be parallelizable. Even though a method may prove itself to be faster
than any other algorithm in sequential sense, it may take too long time to be considered
feasible. A method that has long computational time(wall clock time) in sequential,
but scales well in parallel, may be made run shorter by using more computational units
(nodes, cores). This is very crucial in both problems that we consider.

Results and figures in this chapter are (accepted) to be published in [1, 24].

4.1 Computing Environments

Throughout numerical experiments presented in this thesis, platforms presented in Ta-
ble 4.1 are used for computations. While Avokado and Greyfurt are one node, shared
memory parallel machines, NAR is a (multiple nodes, distributed memory) cluster.
All computers are located at the Department of Computer Engineering, Middle East
Technical University and NAR is provided by same department again.

33

Table 4.1: Parallel computing platforms

OS Processors RAM

Avokado CentOS 6.6 2 x Intel Xeon E5-2650v3 64 GB
Greyfurt Debian Wheezy AMD Opteron 6376 128 GB
NAR Scientific Linux v5.2 64-bit 46 x 2 x Intel Xeon E5430 16 GB per node

4.2 Performance for Topology Optimization

It is noted at the start of this section, problems we consider are similar in nature. On
the contrary to that, a difference between those is that Topology Optimization prob-
lems requires solution of linear systems successively. This poses a great challenge for
any solution method that may be suggested. For any method to solve Topology Opti-
mization problems, it is most important to be as much as parallelizable to shorten total
time spent.

Usually these matrices are very ill-conditioned. Before starting to solve the linear sys-
tem itself, scaling is required to enhance eigenvalue distribution. Let us consider a
heat topology optimization problem with 100.000 elements. Solution to the problem
can be seen in Figure 3.1c. Note that, coefficient matrix for this problem is a symmet-
ric matrix of size 112.221. Eigenvalue distribution of original problem (Figure 4.1a)
is undesirable due to accumulation of eigenvalues around 0 and eigenvalues of order
1014. Scaling as seen in Figure 4.1b make eigenvalue distribution by eliminating eigen-
values of large order. Symmetric diagonal scaling (Ã = D−1/2AD−1/2) is applied to
preserve symmetry of original matrix. As symmetry is preserved we still can use CG
as iterative solver rather than BiCGStab which introduces a computational overhead.
Lastly applying SPAI preconditioner Figure 4.1c gathers eigenvalues around 1. This
way we can solve, otherwise unsolveable, problems by iterative solvers.

As small scale experiment, we have compared three methods in shared memory envi-
ronments (Avokado and Greyfurt) for same heat transfer problem we have presented
eigenvalue distributions for. These three methods are ParaSails preconditioner paired
with CG, Block-Jacobi preconditioner with CG and Pardiso, direct solver. Stopping
criteria for CG iterations is either the relative residual norm drops below 10−8 or max-
imum number of iterations 10000 is reached. In Table 4.2 sequential solve times of
different methods are given.

Table 4.2: Total time spent for sequential solve in seconds

ParaSails Block Jacobi Pardiso
Avokado 2,37 1,19 4,38
Greyfurt 6,56 2,75 10,18

In Figure 4.2, we present speedups of different methods with respect to increasing

34

(a) (b)

(c)

Figure 4.1: Eigenvalue distributions

(a) Speedup obtained in Avokado (b) Speedup obtained in Greyfurt

Figure 4.2: Speedup graphs for small-scale problem

number of processors. Speedups are calculated by;

Speedup =
Best Sequential Time

Time with n number of cores
. (4.1)

Ideal speedup would be equal to number of workers. But it usually is not possible due
to memory bandwidth limitations or communication between processes. Speedups are
calculated with respect to Block-Jacobi sequential time (application of preconditioner
is done using iterative solver without preconditioning) as on both platforms it is the best
time. On Avokado, when 20 cores are used, ParaSails is faster than Block-Jacobi. On
Greyfurt both has poor scalability, which is possibly resulting from memory bandwidth
limitations of platform, and throughout Block-Jacobi is better.

For large scale experiment, scalability of methods across multiple nodes of NAR clus-
ter is studied and compared. This linear system is of size 3.090.903 which with

35

(a) Speedup graph for large-scale problem (b) Efficiency graph for large-scale problem

Figure 4.3: Node based speedup and efficiency graphs for large-scale problem

248.529.012 nonzeros. This linear system results from the structural problem with
1.000.000 elements, solution is visualized in Figure 3.1a. Similar to small scale exper-
iment, we have compared CG with ParaSails preconditioner and CG with Block-Jacobi
Preconditioner. Stopping criteria for CG is to stop when relative residual norm is below
10−8. Figure 4.3a presents the speedup of methods with respect to best solution time
achieved on a single node, in this case CG paired with Block-Jacobi preconditioner
and Figure 4.3b shows efficiency which is Speedup divided by Number of cores. We
have chosen this method of representation as inside a node speedup is low because of
memory bandwidth limitations. If all cores of a single node are used, due to limitations
speedup is around 2,3. Load on the memory bandwidth can be relaxed, for example
by using less cores from each node and distributing load to cluster, and in turn better
speedup is achieved (around 3,6) for same number of cores (8 cores, 2 cores from 4
nodes). This is not a reasonable choice as we do not use valuable resources for the sake
of speedup. When all cores in nodes used, Block Jacobi preconditioner seems to be
best choice for one node, as number of nodes increases its performance worsens and
ParaSails preconditioner scales almost linearly for large number of nodes.

Note that reference solve time is for one node. CG with ParaSails spends 3.038 seconds
and CG with Block-Jacobi requires 2.746 seconds.

The number of block-Jacobi iterations appears to remain constant as number of cores
increases from 128 to 256. This is expected as block size gets smaller Block-Jacobi
preconditioners start converge diagonal preconditioner. Difference between them gets
smaller. As we are using a scaled version of the linear system, the diagonal precondi-
tioner is actually identity matrix. This is equivalent to solving linear system without a
preconditioner, in which case CG diverges. Therefore, in theory, as number of blocks
increases (equivalently, block size gets smaller) number of iterations required for con-
vergence increases, even though it may be slow.

For all test problems, we have found out CG method when paired with ParaSails pre-
condtioner gives good performance. Block-Jacobi preconditioner is used for compari-
son as it was used in an earlier work [21]. Pardiso is used for comparison against direct
solution methods. On distributed memory platforms scalability of CG with ParaSails

36

Figure 4.4: Number of iterations vs. Number of cores

preconditioner is almost linear.

4.3 Performance for 3D ADR-type Problems using Complete-Flux scheme

All runs for this problem are done on Avokado. Hypre ([15]) version 2.10.0b is
used for solution. It provides parallel environment for variety of iterative solvers and
preconditioners using MPI. We choose preconditioned BiCGStab [26], since when
problem is advection dominated linear system is not symmetric, as the Krylov sub-
space method. We tested two preconditioners, namely, Euclid [18] and ParaSails [12].
Euclid is a parallel ILU implementation and ParaSails is a parallel SAI type precondi-
tioner. Euclid supports Parallel-ILU(k) and Block-Jacobi ILU. We use Parallel-ILU(1).
For ParaSails, parameters are set so that in the worst case the preconditioner has same
nonzero structure as coefficient matrix. Nonzeros of coefficient matrix, which are less
than 0,2 in absolute value, are ignored when determining sparsity structure of precon-
ditioner. Also after computing preconditioner, nonzeros of preconditioner which are
less than 0,05 in absolute value are dropped.

Pardiso, with default parameters, is used for comparison against direct solver.

Two different systems with same size are used for the following experiments. They
result from different choices for diffusion coefficients of 1 and 10−5. Initially systems
are generated including boundary conditions. To reduce the size of system, Dirich-
let boundary conditions are removed. After this step, system are of size 992.319
unknowns and, have 18.467.751 and 17.452.253 nonzeros respectively for diffusion
coefficients of 1 and 10−5. Smaller diffusion coefficient results in sparser coefficient
matrix. For BiCGStab, the stopping criterion is set to be either relative residual norm
drops below 10−8 or maximum number of iterations (10.000) is reached. Each MPI
process is mapped on a single physical core.

Table 4.3 shows change of number of iterations for different diffusion coefficient with
respect to number of cores. When ParaSails is used, the number of iterations are in-
dependent of the number of cores, even though large. Euclid requires more iterations

37

(a) ε = 1 (b) ε = 10−5

Figure 4.5: Parallel running time in seconds

as the number of cores increases, and for diffusion coefficient of 10−5 BiCGStab fails
when used with Euclid.

Table 4.3: Number of iterations for the iterative solvers using different diffusion (ε)
coefficients

ε = 1 ε = 10−5

Cores ParaSails Euclid ParaSails Euclid
1 226 44 1178 94
2 212 44 1183 125
4 215 49 1186 164
8 236 45 1191 235

16 220 51 1151 415
20 213 52 1177 -

Figure 4.5 shows solution times for Pardiso, BiCGStab with ParaSails and BiCGStab
with Euclid as number of cores increases. As expected Pardiso is the slowest due to
fill-in during the factorization stage. Euclid is faster for 1 core but for larger number of
cores it gets slower. This is probably due increasing number of iterations and inherently
sequential time of triangular solves. ParaSails both have best time for large number of
cores and best scalability.

38

CHAPTER 5

CONCLUSION AND FUTURE WORK

In science and engineering (that is, theoretical and practical applications), partial dif-
ferential equations are important tools for modelling. As dimension of problem in-
creases (even though more than three dimensions in space may be meaningless in
physical world) numerical solution of the PDEs become infeasible (because of time
spent solving) and impossible (because of usually high condition number of resulting
linear system). We have investigated direct and iterative solution methods for solu-
tion of such systems. With the introduction of multi and many core architectures,
parallelism is one way to shorten the simulation time. We have studied how one can
improve the parallel scalability and the number of iterations using various precondi-
tioning techniques.

We have confirmed the poor performance of direct solvers due to fill-in. Iterative meth-
ods while having better performance, may fail. This problem is not unique to iterative
solvers, but for direct solution methods there are precautions like pivoting, iterative re-
finement of solution by default even though user may not be aware of. Preconditioners
are remedy for this problem in case of iterative methods. We have applied different
types of preconditioners to two important problems. Results show that, iterative meth-
ods when paired with SAI type preconditioners are both scalable and have relatively
much better performance.

Future work consists diverse interests. Firstly, during experiments we noticed that due
to memory bandwidth limitations of systems performance suffers in shared memory ar-
chitectures. This can possibly be prevented using threads rather than message passing
inside each node and message passing between nodes. For example, OpenMP and MPI
together in a hybrid model can be used and also MPI-3 has routines to achieve this. In
both cases if PETSc or some other library is being used to accelerate implementation,
there may be modifications those has to be done on libraries. Recomputation of pre-
conditioner from scratch at each iteration in case of topology optimization problems
is also great computational overhead, it may be possible to reuse same preconditioner
with small changes if coefficient matrix does not change significantly (which is ob-
served as optimization iteration progresses). Extension of three dimensional complete
flux scheme to time-dependent problems and solution is another interest.

39

40

REFERENCES

[1] H. U. Akay, E. Oktay, M. Manguoglu, and A. A. Sivas, Improved parallel pre-
conditioners fo multidisciplinary topology optimizations, International Journal of
Computational Fluid Dynamics.

[2] P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent, MUMPS: MUltifrontal Mas-
sively Parallel Solver, version 2.0, Report TR/PA/98/02, 1998.

[3] W. E. Arnoldi, The principle of minimized iterations in the solution of the matrix
eigenvalue problem, Quarterly of applied mathematics, 9(1), pp. 17–29, 1951.

[4] O. Axelsson, A survey of preconditioned iterative methods for linear systems of
algebraic equations, BIT Numerical Mathematics, 25(1), pp. 165–187, 1985.

[5] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman,
L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes,
K. Rupp, B. F. Smith, S. Zampini, and H. Zhang, PETSc Web page, http:
//www.mcs.anl.gov/petsc, 2015.

[6] R. Barrett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Ei-
jkhout, R. Pozo, C. Romine, and H. Van der Vorst, Templates for the solution of
linear systems: building blocks for iterative methods, volume 43, Siam, 1994.

[7] M. Bendsoe and N. Kikuchi, Generating optimal topologies in structural design
using a homogenization method, Computer Methods in Applied Mechanics and
Engineering, 71(2), pp. 197 – 224, 1988, ISSN 0045-7825.

[8] M. P. Bendsøe and O. Sigmund, Topology Optimization: Theory, Methods and
Applications, Berlin, Springer, second edition, 2003.

[9] M. Benzi, Preconditioning techniques for large linear systems: a survey, Journal
of computational Physics, 182(2), pp. 418–477, 2002.

[10] T. Borrvall and J. Petersson, Topology optimization of fluids in stokes flow, In-
ternational Journal for Numerical Methods in Fluids, 41(1), pp. 77–107, 2003,
ISSN 1097-0363.

[11] T. E. Bruns, Topology optimization of convection-dominated, steady-state heat
transfer problems, International Journal of Heat and Mass Transfer, 50(15-16),
pp. 2859–2873, July 2007.

[12] E. Chow, Parallel implementation and practical use of sparse approximate inverse
preconditioners with a priori sparsity patterns, International Journal of High Per-
formance Computing Applications, 15(1), pp. 56–74, 2001.

41

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc

[13] J. Deaton and R. Grandhi, A survey of structural and multidisciplinary continuum
topology optimization: post 2000, Structural and Multidisciplinary Optimization,
49(1), pp. 1–38, 2014, ISSN 1615-147X.

[14] R. Eymard, T. Gallouët, and R. Herbin, Finite volume methods, in P. G. Ciarlet
and J. L. Lions, editors, Handbook of numerical analysis, volume VII, pp. 713–
1020, Elsevier, North-Holland, 2000.

[15] R. Falgout and U. Yang, hypre: A library of high performance preconditioners,
Computational Science—ICCS 2002, pp. 632–641, 2002.

[16] M. J. Grote and T. Huckle, Parallel preconditioning with sparse approximate in-
verses, SIAM Journal on Scientific Computing, 18(3), pp. 838–853, 1997.

[17] A. Gupta, Wsmp: Watson sparse matrix package (part-i: direct solution of sym-
metric sparse systems), IBM TJ Watson Research Center, Yorktown Heights, NY,
Tech. Rep. RC, 21886, 2000.

[18] D. Hysom and A. Pothen, A scalable parallel algorithm for incomplete factor
preconditioning, SIAM Journal on Scientific Computing, 22(6), pp. 2194–2215,
2001.

[19] X. Li and J. W. Demmel, Superlu dist: A scalable distributed-memory sparse di-
rect solver for unsymmetric linear systems, ACM Trans. Mathematical Software,
29, pp. 110–140, 2003.

[20] M. Manguoglu, Parallel Solution of Sparse Linear Systems, pp. 171–184,
Springer London, London, 2012, ISBN 978-1-4471-2437-5.

[21] E. Oktay, H. Akay, and O. Sehitoglu, Three-dimensional structural topology op-
timization of aerial vehicles under aerodynamic loads, Computers & Fluids, 92,
pp. 225 – 232, 2014, ISSN 0045-7930.

[22] Y. Saad, Iterative methods for sparse linear systems, Siam, 2003.

[23] O. Schenk and K. Gärtner, Solving unsymmetric sparse systems of linear equa-
tions with pardiso, Future Gener. Comput. Syst., 20(3), pp. 475–487, April 2004,
ISSN 0167-739X.

[24] A. A. Sivas, M. Manguoglu, J. H. M. ten Thije Boonkkamp, and M. J. H. An-
thonissen, Discretization and iterative schemes for advection-diffusion-reaction
problems, Lecture Notes in Computational Science and Engineering, Numerical
Mathematics and Advanced Applications - ENUMATH 2015.

[25] J. H. M. ten Thije Boonkkamp and M. J. H. Anthonissen, The finite volume-
complete flux scheme for advection-diffusion-reaction equations, Journal of Sci-
entific Computing, 46(1), pp. 47–70, 2011.

[26] H. A. van der Vorst, Bi-CGSTAB: A Fast and Smoothly Converging Variant of
Bi-CG for the Solution of Nonsymmetric Linear Systems, SIAM Journal on Sci-
entific and Statistical Computing, 13(2), pp. 631–644, 1992.

42

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTERS
	INTRODUCTION
	SOLUTION METHODS FOR LARGE SPARSE LINEAR SYSTEMS
	Sparse Linear Systems
	Coordinate Format(COO)
	Compressed Sparse Row Format(CSR)

	Direct Solution of Sparse Linear Systems
	Iterative Solution of Sparse Linear Systems
	Projection Methods
	(Some) Krylov Subspace Methods
	Preconditioners

	Parallelization

	APPLICATIONS
	TOPOLOGY OPTIMIZATION
	Background
	Multidisciplinary Examples

	ADVECTION-DIFFUSION-REACTION TYPE EQUATIONS
	3D formulation of the complete flux scheme
	A three-dimensional flow problem

	RESULTS
	Computing Environments
	Performance for Topology Optimization
	Performance for 3D ADR-type Problems using Complete-Flux scheme

	CONCLUSION AND FUTURE WORK
	REFERENCES

