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ABSTRACT

DETECTION AND SEGMENTATION OF MITOCHONDRIA
FROM ELECTRON MICROSCOPE TOMOGRAPHY IMAGES

Taşel, Faris Serdar 
Supervisor: Prof. Dr. Ünal Erkan Mumcuoğlu 

Co-Supervisor: Assist. Prof. Dr. Reza Zare Hassanpour

May 2016, 89 pages

Recent studies exhibit that mitochondria have a significant role in cellular functions
that are associated to the diseases of aging caused by neuron degeneration. These
studies accentuate that the peripheral membrane and crista morphology of a
mitochondrion deserves attention in order to reveal the relation between mitochondrial
function and its physical structure. The analysis of the inner structures of mitochondria
is carried out by electron microscope tomography (EMT) which provides detailed
visualization of large volumes. In order to accelerate the studies that investigate the
correlation between mitochondrial structure and its function, computerized
segmentation of mitochondria with minimum manual effort is required. As a
preliminary study, 2D detection and segmentation of mitochondria from transmission
electron microcopy (TEM) images were performed on a limited dataset. An ellipse
fitting algorithm utilizing double membrane features followed by a balloon snake
extraction and a livewire-based automatic segmentation refinement process was
applied. By considering the deficiencies of the initial attempt, a curve fitting approach
was adopted and tested on a several datasets. For this purpose, a membrane extraction
process was performed by utilizing a parabolic arc model. Then, active contour model
based on curve energy was used to outline candidate mitochondrial regions. The final
segmentation data were obtained by a validator function. Additionally, 3D extension
of the algorithms were studied and provided. The proposed method achieved an F-
score performance of 0.84 on average. Average Dice similarity coefficient and median
boundary error were measured as 0.87 and 14 nm respectively.

Keywords: Image Processing, Electron tomography, Curve fitting, Active contour,
Mitochondrion
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ÖZ

ELEKTRON MİKROSKOBU TOMOGRAFİSİ GÖRÜNTÜLERİNDEN 
MİTOKONDRİLERİN SAPTANMASI VE BÖLÜTLENMESİ 

Taşel, Faris Serdar 
Tez Danışmanı: Prof. Dr. Ünal Erkan Mumcuoğlu 

Yardımcı Tez Danışmanı: Yrd. Doç. Dr. Reza Zare Hassanpour 

Mayıs 2016, 89 sayfa 

Güncel çalışmalar, yaşlılığa bağlı olarak nöronların dejenerasyonu nedeniyle ortaya 
çıkan hastalıklara ilişkin hücresel işlevlerde mitokondrilerin önemli sorumluluk 
taşımakta olduklarını ortaya çıkarmıştır. Bu çalışmalar, mitokondri işlevinin ve 
fiziksel yapısının arasındaki ilişkinin araştırılması açısından mitokondrilerin membran 
ve krista yapısına dikkat çekilmesi gerektiğini vurgulamaktadır. Elektron mikroskobu 
tomografisi (EMT), geniş hacimlerde yüksek detayda görsel veri sağlayarak 
mitokondrinin içyapısının incelenmesine imkân tanımaktadır. Mitokondrilerin el ile 
harcanan eforun en aza indirilerek bilgisayarla bölütlenmesi, mitokondri yapısı ve 
işlevi arasındaki bağıntının çalışmasına hız kazandırılması açısından temel bir öneme 
sahiptir. Hazırlık çalışması olarak, kısıtlı bir veri seti üzerinde Geçirimli Elektron 
Mikroskobu (GEM) görüntülerinden mitokondrilerin 2B saptanması ve bölütlenmesi 
gerçekleştirilmiştir. Çift membran özniteliklerini kullanan bir elips uydurma 
algoritmasını takiben balon yılan çıkarımı ve canlı-tel tabanlı otomatik bölütleme 
iyileştirme işlemi uygulanmıştır. İlk yöntemin yetersizlikleri göz önünde 
bulundurularak, bir eğri uydurma yaklaşımı benimsenmiş ve çeşitli veri setleri 
üzerinde test edilmiştir. Bu amaçla, membran yapılarının çıkarılması için parabolik 
yay modeli kullanılmıştır. Daha sonra, ana hatlarını kabaca çevreleyen aday 
mitokondri bölgelerini elde etmek amacıyla eğri enerjisi tabanlı aktif çevritler 
çalıştırılmıştır. Bir geçerleme fonksiyonu yardımı ile son bölütleme verisi elde 
edilmiştir. Ayrıca, algoritmaların 3B uyarlanması çalışılmış ve gösterilmiştir. Öne 
sürülen yöntemin ulaşmış olduğu F-skoru performansı ortalama 0.84’tür. Ortalama 
Dice benzerliği katsayısı ve sınır hatası sırasıyla 0.87 ve 14 nm olarak ölçülmüştür. 

Anahtar Kelimeler: Görüntü İşleme, Elektron tomografisi, Eğri Uydurma, Aktif 
Çevrit, Mitokondri
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CHAPTER 1

INTRODUCTION

This study presents an investigation for computerized detection and segmentation of
mitochondria from electron tomography. The introduction section encapsulates
notable morphological properties of mitochondria and highlights imaging techniques
which are used to visualize subcellular structures in detail. Motivating factors, aims
and scope of this study are described in the following sections. A comprehensive
review of studies published in related areas is additionally introduced.

1.1. Mitochondrion

A mitochondrion is a subcellular structure that mainly controls the synthesis of
adenosine-triphosphate used as the source of energy. It has substantial responsibility
in organization of several cellular activities and actions such as cell division cycle,
cellular differentiation, cell signaling, cell growth and programmed cell death which
is also known as apoptosis [1], [2]. Correlation of mitochondrial structure and its
function is receiving remarkable attention as the link between mitochondrial function
and degenerative disorders associated to aging such as Parkinson’s and Alzheimer’s
diseases is emphasized by recent studies [3]–[5].

Mitochondria are pleomorphic and have a distorted ellipsoid shape with different size
depending on cell type, tissue type and the physical connection of other sub-cellular
structures. The cell may contain many mitochondria that are close or even touching to
each other. Mitochondria have double membranes: an outer membrane which
surrounds the whole mitochondrion and an inner membrane which extends along the
inner side of the outer membrane. Mitochondria have also crista structures inside [6].
Crista structures and inner membrane are connected by small tubular structures called
crista junctions. Morphological deformation in the mitochondrial structure may occur
with the presence of a disorder or a disease in the functions of mitochondria [7], [8].

The diameter of majority of mitochondria is usually 0.25 μm or larger. It is an unusual 
case for mitochondria to have the width (the size of the smallest cross-section) larger
than 2 μm. However, the length (the size of the largest cross-section) of mitochondria 
can be 20 μm or longer. Typical mitochondrial membrane thickness for different cell 
types is in 4–6 nm range [9]. The mitochondrial inner and outer membrane separation
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is mostly uniform in healthy cells. This separation is roughly in the range of 10–36
nm (mean ± two standard deviation) for the majority of cell types [10]–[13].

Mitochondria are commonly visualized by several imaging techniques based on
electron microscope tomography (EMT). In tomographic images, the mitochondria
appear as mostly elliptical structures and the cristae appear as small circular or
elongated structures according to the orientation of slices. Membrane structures and
separation of inner and outer membrane of mitochondria are also visualized in
tomographic images.

1.2. Imaging Techniques

EMT facilitates effective analysis of subcellular structures. Three dimensional (3D)
visualization of mitochondria has a vital importance since the detailed investigation of
high-resolution morphological deformations in mitochondria is necessary to expose
mitochondrial function-disease correlations [14], [15]. The resolution of the
tomographic volume and structural integrity of the sample affect visualization details.
In order to segment mitochondria in detail from such volumes, both peripheral and
cristae should be visualized in high contrast with respect to the image background.

EMT images can be obtained by several electron microscopy techniques. Two popular
techniques to obtain electron microscope images are Transmission Electron
Microscopy (TEM) and Scanning Electron Microscopy (SEM). These techniques are
briefly described in the following subsections.

1.2.1. Transmission Electron Microscopy

In TEM technique [16], [17], an electron beam is produced by an electron gun and
projected by electric field that is generated by condenser and objective lenses (see

Electron gun

Condenser lenses

Specimen
Objective lens

Specimen

Scanning coils

Detector

Fluorescent screen
Detector

(a) (b)

Figure 1: Schematics for (a) Transmission Electron Microscopy and
(b) Scanning Electron Microscopy.
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Figure 1a). The electron beam creates an image on the fluorescent screen after it
penetrates through an ultra-thin specimen. The intensity on this image is proportional
to the projected electron density and it is measured by a detector. The projected
electron density depends on the amount of electron absorption by the tissue that yields
the total density on the path where the electron beam passes through. The detector
scans the projected image to obtain projection data. This process is then repeated for
different tilt angles of the electron beams or the specimen. Thus, projection data which
correspond to the density sums on different paths are obtained as illustrated in Figure
2. Back-projection techniques in spatial or in Fourier domain may be applied to the
projection data to obtain 3D reconstructed image [18]. The tilt angles are physically
limited to a typical range of ±70°. The angular separation of each consecutive
projection is typically 1°-2°. These limitations cause some reconstruction artifacts such
that particles may appear elongated in the direction normal to the surface of the
specimen. Another limitation is the thickness of the specimen that must allow
sufficient penetration. The visualization of microscopic structures is possible in a
resolution of down to a few nm by TEM tomography [19], [20]. The 3D image
obtained by this technique is typically large in two dimensions (x and y axes) but thin
in the third dimension (z axis). Therefore, entire mitochondrion may not be visualized
in TEM tomography. But a detailed 3D membrane and crista structures can be
reconstructed. TEM tomography exposes the peripheral and crista membrane heavy-
metal staining and provides a clear imaging of the double membrane structure of
mitochondria and cristae as well as other subcellular structures such as synaptic
vesicles (SV) and the endoplasmic reticulum (ER).

1.2.2. Scanning Electron Microscopy

In SEM technique, the surface of specimen is visualized in two dimension (2D). The
electron beam is focused on the specimen and deflected by the electric field which is
generated by the scanning coils (see Figure 1b). The electrons hit the surface of
specimen and scatter. The intensity of electrons back-scattered from the surface is
measured by a detector. In order to obtain a 2D image, electron beams are deflected
onto different locations to scan the whole surface. The acquisition of a 3D volume can
be achieved by utilizing a special type of SEM technique which is called Serial Block-
Face Scanning Electron Microscopy (SBFSEM). In SBFSEM technique [21], a stack

Detector

Specimen

Incident electron beam Incident electron beam

Figure 2: Projection and detection of tilted electron beams with different angles
in Transmission Electron Microscopy Tomography (TEM).
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of 2D images are obtained by cutting ultra-thin sections from the surface using a
diamond knife and then imaging by SEM (see Figure 3). This technique supplies 3D
volumetric data formed by a series of 2D images each associated to a single slice. But,
there is no limitation for the number of slices and specimen thickness. Typical image
size of 3D datasets provided by this modality is 5 – 10 nm in x- and y-axes and 20 –
80 nm in z-axis [22], [23]. On the contrary to TEM tomography, the slice thickness
can be much higher than the lateral resolution.

1.3. Motivation

Mitochondria segmentation of renders possible to study mitochondrial morphology
and to perform computerized analysis and diagnosis. A manual segmentation by
utilizing specialized software tools such as IMOD [24] and Amira is currently
necessary to visually investigate tomographic volumes of mitochondria. However,
flawed results may be obtained by hand segmentation of features of a volume due to
human error even with highly trained experts. Moreover, considering that the size of
mitochondria changes between 0.3 and 10 μm, large 3D tomographic volumes are 
frequently required to analyze the physical structure of entire mitochondria [2].
Because mitochondria appear in many different forms due to its pleomorphic structure
depending on cell type, preparation process of the sample, respiration or disease state,
a flawless automated mitochondrion segmentation is still an unsolved problem.

Perkins and colleagues [13] hypothesized that various structural features pertaining to
mitochondria including the membrane thickness of the peripheral inner and outer
membranes and cristae, the number of crista segments, junctions and contact site
diameters have potential effect on the function of mitochondria. The motivation of this
study originates from the need for the cristae segmentation which entails the
development of an automatized segmentation algorithm for the peripheral membrane
of mitochondria to be used in TEM tomography.

ScanningCutting

Knife

Specimen

Scanning

Incident electron
beam

Scattered
electrons

Cutting

Figure 3: Scanning and cutting phases in Serial Block-Face Scanning Electron
Microscopy (SBFSEM).
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1.4. Aims and Scope

This dissertation covers the development of automatized algorithms for detection and
segmentation of mitochondria from TEM tomography and realization of a quantitative
performance evaluation. The detection procedure involves the localization of both full
and partially seen mitochondria from a set of tomograms. The segmentation is limited
to the determination of peripheral membrane of the detected mitochondria. The
performance measurement includes testing the behavior of detection and segmentation
algorithms for several mitochondria having various sizes and shapes.

1.5. Literature Review

Current studies on the segmentation of the cell or sub-cellular structures such as
mitochondria are mostly based on the detecting membrane-like structures and
distinguishing them from the background on the images acquired by TEM or SEM
imaging techniques. The importance of processing high throughput data with minimal
user interaction is being emphasized in these studies. Although the segmentation
methods covered in this section were applied on mitochondria or neurons, they are
generally not organelle or cell specific algorithms.

In a study by Nguyen and Ji [25], a proposed watersnake model expresses the classic
watershed segmentation problem as the minimization of an energy function including
smoothness and a prior shape term. The prior shape term regulates the energy with
respect to the similarity between the current shape and reference shapes. Reference
shapes are the previously segmented sample shapes of the structures which are to be
segmented. The watershed energy term typically depends on the gradient of the image

(a) (b)

Figure 4: Tested mitochondrion images in the study of (a) Nguyen and Ji [25]
and (b) Bazán et al. [27].
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and has the minimum value on the edges in the image. The watershed segmentation
method requires initial markers outside and inside the region to be segmented. The 3D
extension to the algorithm is additionally presented in the study. The algorithm
requires an exhaustive search to solve the minimization problem so that adaptation of
the algorithm to 3D makes the model even more complicated. The study demonstrates
a result of the 2D version of the algorithm for the slice images of a mitochondrion
without any salient crista membrane (see Figure 4a). However, the edges of cristae can
create local minima on the watershed energy term which utilizes gradient based
features. No discussion or result about the effect of cristae to the performance of the
algorithm is provided. Nevertheless, the study attracts attention to active contour
models which are practical for segmentation of sub-cellular structures.

A segmentation approach for sub-cellular structures proposed by Narasimha et al. [26]
involves texton-based classification in which some isotropic and anisotropic texture
features are utilized. The method adopts a training phase of a texton dictionary for
mitochondria by determining cluster centers in the feature space for both background
and mitochondrial structure classes. The study comprises training of the classifier with
SEM images and comparison of k-Nearest Neighbor (kNN), Support Vector Machines
(SVM) and Adaptive Boosting (AdaBoost) classification methods. A 3D segmentation
is achieved by applying the segmentation method slice-by-slice basis. The method is
able to distinguish mitochondria membranes and cristae from the background.
However, any membrane-like structure would also be classified as a mitochondrion
membrane since they appear very similar. A manual elimination of segmented
structures is necessary to clean up the result. The algorithm provides promising results
for cristae segmentation when the mitochondrial regions are already known.

A method by Bazán et al. [27] incorporates the confidence connected and the level set
method for 2D segmentation of mitochondria (see Figure 4b). Anisotropic nonlinear
diffusion [28]–[30] and bilateral filtering [31]–[34] are recommended methods for
denoising of electron microscopy images. The algorithm entails the initialization of
the confidence connected method with some seed points provided by the user in order
to produce connected components which are associated to mitochondrial regions. The
approach requires a manual elimination of undesired connected components to
initialize the level set method with the remaining connected components. The signed
distance function of the level set employs a gradient based edge indicator function.
The study demonstrates a successful segmentation of peripheral membranes and
cristae of a mitochondrion. Although the level set is a robust method, the initialization
of the signed distance function requires a careful manual work for the segmentation of
complicated structures such as mitochondria.

In a study by Macke et al. [35], a probabilistic framework for the level set segmentation
method is established to segment neurons from 2D SBFSEM images using prior
information of segmentation of previous neighboring slice. In this framework, each
pixel has a probability of pertaining to a class (neuron or background) depending on a
distribution of the pixel intensities and previous segmentation. The signed distance
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function is updated by a probabilistic approach such that minimizing energy function
leads to minimization of the classification error. Exceptionally, the first slice has to be
segmented using without any prior information and the segmentation of the first slice
is achieved by utilizing only pixel intensity distribution. The intensity distribution is
determined by the user interaction. Instead of using only intensity distribution, texture
information can also be included to create a feature space for the segmentation of
mitochondria. The study encourages to use prior segmentation to segment remaining
slices. In this context, pseudo-3D (or two-and-half dimensional (2.5D)) approaches
can be taken into consideration in segmentation problem of mitochondria.

A study by Jurrus et al. [36] presents an investigation of boundary tracking of neuron
axons through SBFSEM slices. The study introduces a 2.5D scheme in which a
Kalman filter [37] fed by active contours and optical flow is used. The very first slice
is segmented by manually initialized watershed segmentation. Next slices are
automatically traced by Kalman filter. The method is able to track and segment up to
about 30 axons successfully through 100 slices of a neuron. It fails to track the correct
axon when the tracked axon is not visible for too many slices. Although the algorithm
was actually designed to follow the axon center, it can be modified to follow the points
on mitochondrion membranes. Considering that the sub-cellular membranes appear
ridge-like structures in EMT images, the algorithm can be modified to track ridge
features instead of edge features.

A graph theoretical approach adopted by Turaga et al. [38] performs a segmentation
of neuron from a 3D volume of SBFSEM images. In this approach, a convolutional
network is responsible to create affinity graph by processing a raw 3D image without
requiring any pre-processing. Manually prepared affinity graphs are necessary for
training phase. It is shown that a convolutional network is able to create an affinity
graph that can be easily segmented into connected components successfully by using
a simple threshold. The algorithm achieves an accuracy close to manual segmentation.
Although it is difficult to analyze and manipulate the features acquired by the system
that remains hidden in the convolutional network, this study reveals that the graph
theoretical approaches worth studying for the segmentation of mitochondrial
structures. An affinity or cost graph specialized for mitochondrion can be arranged to
recognize membrane patterns. Template matching methods are another way to
construct such graphs. The graph search methods can be utilized to follow membranes
and cristae structures in a graph and find an optimal path or surface which covers entire
mitochondrion.

The intensity distribution in mitochondrial regions and differentiation from
background are basically used features in mitochondria segmentation methods which
are based on contour pairs and classification of random forest patches [39], supervoxel
segmentation [40], [41] and spectral clustering approaches [42]. However, these
methods are not capable of segmenting specimens prepared for especially cristae
investigation since the intensity differentiation is markedly lost in the preparation stage
of the sample. In another study [43], 2D mitochondrion images were segmented based
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on algebraic curves which is useful to trace the mitochondrial boundary. However, the
segmentation is effected by cristae and it is not able to separate multiple mitochondria
from each other.

Segmentation of membrane-like thin structures from electron tomography are carried
out by several generic methods. Hessian-based ridge detection methods was proposed
to extract membrane-like structures such as mitochondria boundary, SV and ER [44]–
[46]. Bartesaghi et al. [47] utilized closed geodesic curves with minimal surface to
develop a semi-automated 3D segmentation procedure. Another approach was
introduced by Sandberg and Brega [48] in which line and orientation filter transforms
were utilized to extract local features for a contour tracing mechanism. Pantelic et al.
[32] presented a bilateral edge filtering method for 2D segmentation of noisy electron
microscopy and cryo-electron microscopy [49] images. Ali et al. later proposed a 3D
extension for this method [50]. Seyedhosseini et al. [43] asserted a cascaded
hierarchical model (CHM) which was used to segment membranes in SBFSEM and
TEM tomography images and produced promising results. Page et al. [51] established
another intriguing semi-automated method to perform cell segmentation which is
based on watershed segmentation utilizing the diversification of structures located
inside and outside of the cell. In spite of acquisition of substantial results, these
procedures are not able to separate mitochondria from each other or from membranes
of other subcellular structures.

The second chapter of this dissertation, a preliminary study [52] is presented in which
kernel pairs are utilized to detect double membranes and 2D detection and separation
of mitochondria are achieved by an ellipse fitting mechanism. Then, 2D accurate
segmentation of mitochondria are performed by active contour models and a modified
livewire method. The proposed algorithm depends on the successful removal of cristae
in the detection step to properly locate the peripheral mitochondrial membranes.

The third chapter describes a better approach to separate peripheral membranes from
cristae membranes which is based on extraction of parabolic arcs. 2D detection method
involves a membrane detection process for mitochondria which is based on active
contours. In this new framework [53], “an active contour model driven by a curve
energy image” is used to extract candidate mitochondrial regions. As a final step, a
validator function filters false detections by utilizing several features obtained from
boundary continuity, curvature and signature characteristics and curve energy of the
internal region. Instead of eliminating cristae (as in the preliminary study), a
mechanism which uses presence of cristae as an indication of mitochondria is adopted
considering that crista structures are only possessed by mitochondrion inside a cell.

The fourth chapter introduces datasets that are used for testing the proposed work.
Detection and segmentation accuracy of both 2D and 3D approaches are compared and
discussed. In the fifth section, a further discussion is presented. Limitations of the
study and future work are additionally described.
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CHAPTER 2

PRELIMINARY STUDY

Although the segmentation of mitochondria has been studied moderately, these studies
suffer the lack of proper detection of mitochondria or distinguishing mitochondrial
structures from other sub-cellular structures in high resolution EMT images. The
aforementioned methods in the literature require hand manipulation in order to extract
mitochondrial membrane from other membrane-like structures. Most of these
approaches are not mitochondrion-specific and not interested in distinguishing
mitochondria from other structures. Nevertheless, they emphasize that computerized
segmentation is essential in order to process and prepare high amount of data for
further processes such as data-mining.

The problem of automatic detection and contour extraction from large images (see
Figure 5) revealing multiple mitochondria and cristae structures remains unsolved. A
robust detector requires the use of information regarding mitochondrial features such
as shape, internal arrangement and boundary properties. The purpose of this
preliminary work is to form a basis for better understanding of mitochondria in order
to develop computer algorithms to detect and segment both fully and partially seen
mitochondria on EMT images by using such mitochondrial features. Minimizing user
interaction is essential to provide processing of high throughput data. In this chapter,
the preliminary study which involves a 2D detection and segmentation of mitochondria
is summarized.

Challenging aspects of the problem can be summarized as follows:

i. A simple model for mitochondria is not sufficient due to the pleomorphic
structure of mitochondria. Peripheral and cristae membranes appear differently
in the images depending on the orientations of cross-sections. Mitochondrial
shape also differs with respect to the cell type.

ii. Various non-mitochondrial sub-cellular structures appear together with
mitochondria.

iii. Many mitochondria appear (even in touching to each other) in a single image.
iv. Cristae show different patterns (circular or elongated).
v. EMT provides noisy images which affect appearance of the double membrane

and crista structures.
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(a) (b)

(c) (d)

Figure 5: TEM images showing mitochondria used in the preliminary study.
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In this chapter, 2D detection and segmentation of mitochondria are realized
considering the following features of mitochondria:

i. Double membrane and cristae patterns are exhibited by all mitochondria.
ii. Cristae show up as elongated or small circular structures.

iii. The most of mitochondria have globular or elongated shapes (similar to
ellipsoid). The diameter of the most of the mitochondrial is in the range of 0.25
μm – 2 μm in general. 

2.1. Methods

The system consists of pre-processing, feature extraction, mitochondria detection and
segmentation steps. These steps are summarized below:

i. Preprocessing: In order to facilitate optimization of parameters presented in
algorithms, the image resolution is fixed to 2 nm by using interpolation. Such
a resolution is sufficient to clearly identify double membrane and crista
structures. Gaussian smoothing [54] is applied to the interpolated image for
denoising purposes. Mitochondrial structures in a tomogram appear as ridge-
like structures with a particular thickness. In order to strengthen ridges while
suppressing plain regions, mean difference filter and contrast adjustment are
applied to the smoothed image. Sample images are provided in Figure 6(a), (b)
and (c) respectively.

ii. Feature extraction: In this step, a double ridge detector is employed to detect
peripheral membranes of mitochondria and to provide features associated to
double membranes such as strength of double membrane, membrane thickness,
separation of membranes and direction. A double ridge energy image (see
Figure 6(d)) is obtained from the output of the detector. Although the double
ridge detector is insensitive to single ridges, it is affected by the existence of
cristae and noise. In order to facilitate the mitochondria detection and
segmentation, the system employs an algorithm that suppresses non-double
membrane structures based on morphological and connected component
analysis. In the first step, the smoothed image is normalized and thresholded to
obtain a binary image (Figure 7(a)). Small particles are removed by a
connected component filtering (Figure 7(b)). Then, morphological closing
followed by opening is applied (Figure 7(c)). Finally, small connected
components are removed again (Figure 7(d)). This algorithm removes circular
shaped cristae and thin single ridges by preserving double membranes and thus
it creates a template image which indicates a rough approximation of double
membrane locations. In subsequent steps, the detection of double membranes
are strengthened by combining the double ridge energy image with the
template image created by the morphological and connected component
analysis.
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(a) (b)

(c) (d)

Figure 6: (a) Smoothed image; (b) mean-difference image; (c) contrast adjusted
image and (d) double ridge energy image.
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iii. Mitochondria detection: This step involves a mitochondria detection scheme
based on the detection of ellipses. A 2D cross-section of a mitochondrion can
be roughly expressed as an ellipse or the superposition of ellipses. An ellipse
fitting algorithm searches candidate ellipses with different size, location and
orientation. The double ridge energy image and template image prepared in the
previous step is multiplied to combine both features and to increase the
accuracy of double membrane detection. The image is then down-sampled to
speed up the mitochondria detection step. In down-sampling process, the image
is separated into blocks as shown in Figure 8. A total double ridge energy for
each ridge direction is individually computed within each block. Hence, the
down-sampled image contains total double ridge energy for each pair of ridge
direction and block. For all boundary points of each candidate ellipse, the sum
of total energy of the blocks which are associated to the angle of ellipse
tangential direction is computed. Boundaries of candidate ellipses are expected
to pass through the blocks with high double ridge energy. Since the shape of
mitochondrion is not exactly an ellipse, neighboring blocks are also considered
in evaluating ellipses as illustrated in Figure 9(a) and (b). A double membrane
structure should not exist inside the ellipse. Therefore, a score is assigned to
each candidate ellipse such that presence of a double ridge on the boundary
gives positive contribution whereas a double ridge inside the ellipse gives
negative contribution to the score. Depending on the search parameters,
structure and distribution of mitochondria, false positive ellipses may be
detected along with the correctly detected ellipses (see Figure 9(c)). A user
interaction is necessary in this intermediate step to manually eliminate such
ellipses in this preliminary study. The other detected ellipses were merged or
split with respect to the amount of overlapping area. Hence, a rough detection
of mitochondria is achieved as illustrated in Figure 9(d).

iv. Mitochondria segmentation: In segmentation step, an active contour model
is used to obtain more precise boundary which improves accuracy of the
segmentation. A balloon snake [55] is employed as an active contour model.
Each detected ellipse is first shrunk and then inflated outwards. The boundary
is iteratively updated by a direction vector which is determined by internal and
external energy terms (see Figure 10(a) and (b)). The internal energy term
regulates the smoothness of the boundary whereas the external energy term fits
the model to the object relying on double ridges which are perpendicular to the
direction vector. Snake-based extraction methods are explained in detail in
Section 3.1.6. The active contour model supplies a set of points indicating the
boundary of each mitochondrion as depicted in Figure 10(c). The model may
produce an incorrect boundary due to false positive or false negative detection
of double membrane. In the final step, the boundary is refined by employing a
modified live-wire algorithm [56] in which the boundary points of the balloon
snakes are used as seed points. The live-wire algorithm is based on Dijkstra’s
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(a) (b)

(c) (d)

Figure 7: Images associated to the intermediate steps of morphological and
connected component analysis after (a) thresholding; (b) the first connected

component filtering; (c) morphological closing followed by opening and (d) the
second connected component filtering (template image).
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graph-searching algorithm [57] and used to find an optimal path between two
seed points on the image. In order to operate the live-wire algorithm, a local
cost function that determines the cost between neighboring pixels is required.
In the proposed system, the local cost function relies on a linear combination
of the template and double ridge energy images. An automatic seed point
selection algorithm is additionally employed. The algorithm starts with the
strongest seed point and finds another seed point that maximizes the ratio of
total cost of the path (extracted by live-wire) to the squared length of the path.
Then, this operation is repeated for remaining seed points that are not covered
by the current path until no seed point is remained. Such a treatment tends to
select the farthest seed point that provides an optimal contour encircling the
boundary of the mitochondrion and passing between the inner and outer
membranes.

2.2. Results and Discussion

Preliminary study includes three evaluation categories for the detection and
segmentation algorithms applied on four TEM tomograms depicted in Figure 5:

Figure 8: The down-sapling process in which the double ridge energy image is
multiplied by template image and separated into blocks where the total double

ridge energy for each direction is computed.
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(a) (b)

(c) (d)

Figure 9: (a) Down-sampled double ridge energy image; (b) evaluation of a
candidate ellipse; (c) extracted ellipses and (d) detected mitochondria after merging

and separation of ellipses.
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i. Evaluating ellipse detection: The detected ellipse is considered a true positive
detection if at least 70% of the area of the detected ellipse is part of a single
mitochondrion, otherwise it is assumed as a false positive. A false positive
detection happens when a significant part of the region is not inside a single
mitochondrion. Experimental analysis exhibits an extraction of 52 ellipses of
which 42 is true and 10 is false detections (i.e. ~80% precision).

ii. Evaluating mitochondria detection: The method achieves a successful
detection of 14 out of 15 fully seen mitochondria and four out of seven partially
seen mitochondria after a manual elimination process of false positive ellipses.

iii. Evaluating segmentation performance: The segmentation performance is
exposed by the measurement of two metrics: Dice similarity coefficient (DSC)
and median symmetric boundary error (MSBE). Experimental results reveals a
DSC value of 91% and MSBE of 4.9 nm on average when compared with a
trained reader. The measurement metrics are described in detail in Section 4.2.

Experiments show that the live-wire algorithm utilizes only a few seed points in order
to achieve a successful segmentation. Although the system produces the seed points
automatically (after the manual elimination of ellipses), it additionally supports an easy
and fast manual segmentation of mitochondria. The user is allowed to specify the seed
points through an interactive segmentation. In live-wire segmentation process, the
algorithm is initiated with a seed point supplied by the user. Then, the user specifies
another seed point by observing the contour drawn to the previous seed point in real-
time. The procedure is repeated until the entire boundary is extracted.

The features provided by the double ridge detector is also useful for segmentation of
the inner and outer membranes. The local separation, direction and thickness of inner

(a) (b) (c)

Figure 10: (a) The boundary of a detected mitochondrion; (b) direction vectors
inflating the active contour model; (c) snake boundary (blue/red dots), used seed

points (red dots), live-wire output (white).
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and outer membranes directly locates the peripheral membranes. The preliminary
study covers the implementation of a mitochondrion segmentation tool with a
graphical interface that lets the user change the input parameters and run the detection
and segmentation algorithms. Figure 11 illustrates a snapshot of the program in which
a sample run providing the segmentation of both peripheral membranes is shown. The
tool supports manual segmentation in addition. The segmentation data can be stored
in various image formats or in text files containing pixel locations of the extracted
contour.

The detection and segmentation accuracy achieved in this preliminary study
substantially depends on the successful detection of double membranes and removal
of cristae. In many cases, cristae structures are locally very similar to double

Figure 11: A snapshot from the mitochondrion segmentation tool showing
extracted mitochondrial boundary (yellow: livewire output, blue and green: inner

and outer membranes indicated by the double ridge detector.
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membranes so that the elimination of such cristae by morphological and connect
component analysis is not successful. Discontinuities in peripheral membranes and
ineffectively performed cristae elimination in the feature extraction step arise a major
problem in the ellipse detection process since the candidate ellipses are evaluated
based on the integral of a local descriptor over the boundary and the internal region of
the ellipse.

Ellipse detection is not convenient for detection of mitochondria which have a
significantly distorted elliptical shape. In such cases, candidate ellipses are assigned to
a low score due to a large amount of gap. Another remarkable problem arises due to
lack of double membrane detection since it is an essential feature for both detection
and segmentation. In low resolution images, the separation between inner and outer
peripheral membranes may not be clear or a mitochondrion does not exhibit a double
membrane pattern in rare cases.

The observation realized in the preliminary study point to the following evidences:

 The features relying on a local intensity distribution usually causes misleading
interpretations.

 Ellipse-based model does not suitably fit to the whole mitochondrion in
distorted cases.

 Mitochondria can be represented by the unification of multiple morphological
models.

 Semi-automatic tools are useful to achieve fast and accurate segmentation of
mitochondria.

Further information is available for this preliminary study in a publication by
Mumcuoglu et al. [52]. The next chapter describes the proposed work of the thesis in
which those evidences have been taken into consideration in order to accomplish the
detection and segmentation of mitochondria from more challenging TEM datasets.
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CHAPTER 3

PROPOSED WORK

This section describes a novel detection and segmentation approach based on a
validated active contour method which is driven by a parabolic arc model [53], [58].
In Section 3.1, the methods developed for the detection and segmentation in two
dimension are presented. The extension of 2D algorithms to three dimensions are
provided in Section 3.2.

3.1. Detection and Segmentation in Two Dimensions

The proposed method for detection and segmentation of mitochondria is composed of
preprocessing, ridge detection, energy mapping, curve fitting and filtering, snake-
based shape extraction, validation and post-processing steps. Figure 12 illustrates a
flowchart of the algorithm and sample images related to the output of intermediate
steps. The proposed 2D method is described by the following subsections.

3.1.1. Preprocessing

The preprocessing step removes the potential effect of weak membrane strength and
contrast problems of the input image on the output of other steps. Noise of TEM
images are additionally handled in this step. Moreover, difficulty in parameter tuning
process which is originating from the pixel size differences of the datasets is dissipated.
Figure 12(a) and Figure 12(b) show a sample image before and after processing
respectively. The preprocessing step comprises three parts as described below:

i. Auto-contrast adjustment: Extreme values may be contained in
reconstructed EMT images due to artifacts caused by the utilized gold markers
or X-rays and charge-coupled device (CCD) camera flaws. The contrast is
skewed by those extreme low or high values. The image contrast is
substantially degraded by the normalization of gray values in such datasets.
Assuming that the distribution in gray values has some extreme points, gray
values of pixels in the image are re-normalized into a certain range (such as 0-
1 or 0-255) by auto-contrast adjustment. A small fraction (e.g. 0.5%) from the
lowest and highest gray values in the histogram are set to the minimum and the
maximum gray value (i.e. 0 and 255) respectively. Auto-contrast adjustment
step realizes the normalization by scaling the other pixel values linearly among
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(a) (b) (c)

(d) (e)

(f) (g) (h)
Figure 12: Flowchart of the mitochondria detection and segmentation algorithm (top)
and sample images (a-g) showing the output of intermediate steps: (a) Input image;
(b) Preprocessed and (c) Ridge energy image; (d) Low frequency ridge energy map
(LFREM) image and (e) High frequency ridge energy map (HFREM) image for the
region indicated by the red square shown in (c); (f) Detected curves after filtering
(blue: large-scale curves, red: small-scale curves); (g) Validated snake output; (h)

Output boundary after post-processing. Reprinted from [58].
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these maximum and minimum values. A sample TEM tomogram and the
corresponding auto-contrast adjusted image are shown in Figure 13(a) and (b)
respectively. The histograms of the original and processed images are
illustrated in Figure 13 (c) and (d).

ii. Resampling: In this step, a resampled image with a fixed pixel size is obtained
by interpolation in order to ease the parameter tuning. Interpolation of the
image to 2 nm pixel size does not produce data loss issues on mitochondrial
membranes as justified in the preliminary study since the membrane thickness
in a typical mitochondria is in the range of 4–6 nm [9], [52].

iii. Smoothing: Bilateral filtering [31] is recommended smoothing technique for
electron microscopy since it is an edge-preserving filtering method which is
applied as a noise removing procedure [27], [34]. In bilateral filtering, the
contribution of each pixel depends on both the spatial proximity and
differences in the gray values of pixels in a neighborhood as formulated below:

(ݔ)ܫ = න ()ܫ|)ܩ()ܫ − −‖)௦ܩ(|(ݔ)ܫ ݀(‖ݔ (Equation 1)

(a) (b)

(c) (d)

Figure 13: (a) An original TEM tomography image; (b) Auto-contrast adjusted
image; (c) Histogram of original image shown in (a) and (d) Histogram of the

auto-contrast adjusted image shown in (b).
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where andܫ ܫ denote the input and the filtered image; the terms ܩ and ௦ܩ are
the weights of gray value differences and spatial proximity respectively. These
weights are usually chosen as a Gaussian distribution with zero mean:

(ݔ)ܩ =
1

ߨ2√ߪ
݁
ି
௫మ

ଶఙమ (Equation 2)

where ߪ parameter controls the amount of contribution of each neighboring
pixel with respect to the distance to the smoothed pixel (for (ܩ and the
difference in gray value (for .(௦ܩ The effects of the noise and the non-
membrane-like structures are reduced whereas membranes are preserved by
this technique.

3.1.2. Ridge Detection

The ridge detection step extracts membrane-like structures. Membranes reside at the
locations where intensity increases in opposite directions and remains constant in
tangential direction since membrane profile shows bright-dark-bright transition. A
Hessian-based ridge detector which is sensitive to valley-like shapes is constructed and
applied to the preprocessed image in order to detect membranes. Let ଵߣ and ଶߣ be
eigenvalues of Hessian matrix defined as:

ܪ = 
௫௫ܩ ௫௬ܩ
௬௫ܩ ௬௬ܩ

൨ (Equation 3)

where the eigenvalues satisfy |ଵߣ| ≥ |ଶߣ| and ,௫௫ܩ ,௬௬ܩ ௫௬ܩ and ௬௫ܩ are the second
order Gaussian derivatives of the image with respect to the axis indicated by the

Figure 14: Topographic shapes to be detected with respect to eigenvalues of
Hessian matrix and assigned ridge energy. Reprinted from [58].
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subscript. As illustrated in Figure 14, a valley is obtained at a location where ≪ଵߣ
.|ଶߣ| When ଵߣ ≈ ≪ଶߣ 0 on the other hand, it turns into a gap (i.e. a dark blob-like
object) as in the first quadrant of the coordinate system in Figure 14. A saddle point
on a valley which is interpreted as a relatively weak point on a membrane is obtained
in the fourth quadrant when ≪ଵߣ 0 and ≫ଶߣ 0. Considering membranes have some
discontinuities, the ridge energy is defined as:

(ଶߣ,ଵߣ)ݎ = ൝
−ଵߣ ଶߣ if ଵߣ > 0 and ଶߣ > 0
ଵߣ if ଵߣ > 0 and ଶߣ < 0
0 otherwise

(Equation 4)

According to Equation 4, the ridge energy depends on the difference between ଵߣ and
ଶߣ when both eigenvalues are positive. A discontinuity or a weak point exists on the
membrane when ଶߣ is negative and the ridge energy depends on only the first
eigenvalue (ଵߣ) which indicates the depth of valley. Hence, it detects objects which
are in the shape of elongated dark stripes. Since hill-like (i.e. bright) structures are not
in interest, the ridge energy is equal to zero in the second and third quadrants. Figure
12(c) illustrates a sample ridge image where bright pixels indicate high ridge energy
where peripheral and crista membranes are located. Additionally, the second
eigenvector provides the ridge direction which is normal to the membrane.

3.1.3. Energy Mapping

Although the ridge strength formulation detects membrane-like structures, it only
stores local information and is not capable of classifying peripheral and cristae
membranes of mitochondria. Therefore, a ridge energy map which carries features
associated to the “big picture” [58] is constituted assuming that peripheral membranes
of mitochondria are longer and have relatively low curvature in most cases.

The ridge image is scanned within a sliding window with a size ߱ in order to analyze
distribution of ridge intensity over a large region instead of relying on local
information. To increase computation efficiency and supply smoothness to ridge
points having extreme curvature, the ridge direction is binned to four angles such that
the intervals (8/ߨ,8/ߨ−) and ,8/ߨ7) (8/ߨ9 correspond to 0; ,8/ߨ) (8/ߨ3 and
,8/ߨ5−) (8/ߨ7− correspond to ;4/ߨ ,8/ߨ3) (8/ߨ5 and (8/ߨ5−,8/ߨ3−) correspond
to 2/ߨ and finally the intervals ,8/ߨ5) (8/ߨ7 and (8/ߨ3−,8/ߨ−) correspond to
.4/ߨ3 The total ridge energy is given by the summation of ridge energy of the points
within the window having the same ridge angle. This total energy is computed for all
four angles individually. The window is passed over the entire image to obtain an
energy map ఏ݁(ݏ) that accumulates the total ridge energy for the angle ߠ around the
point .ݏ

Figure 12(d) and (e) show sample ridge energy map images for the same portion of the
ridge image by setting the window size ߱ to 30 nm and 8 nm respectively. The major
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direction (having the highest energy) is indicated by dashes. High frequency
information (subtle detail) is obtained by using a small value of ߱ whereas low
frequency information (rough detail) are supplied by a large value of ߱ . The detail of
both cristae and mitochondrion boundary is preserved in the high frequency ridge
energy map (HFREM) (see Figure 12(e)). On the other hand, cristae detail is mostly
filtered because of the large window used in the low frequency ridge energy map
(LFREM) (see Figure 12(d)). However, LFREM preserves mitochondrial boundary on
the contrary. These two cases are depicted in Figure 15 by sampling two points to
demonstrate the energy map histogram. In LFREM, the histogram is expected to have
more uniform distribution for crista structures compared to mitochondrion boundary.

3.1.4. Parabolic Arc Model

Composition of curve segments can be used to represent the peripheral and cristae
membranes of mitochondria. In general, the peripheral membranes are composed of
smooth and long curve segments whereas cristae are in forms of relatively short curves
with higher curvature relative to peripheral membranes. Figure 16 delineates a 2D
parabolic arc model utilized to detect membrane-like patterns by using the ridge energy
maps, LFREM and HFREM. This model is denoted by two tip points ሺݔଵǡݕଵ), ሺݔଶǡݕଶ)
and a sagitta length (height) ℎ.

A parabolic arc having a chord length (width) ܴ and a sagitta length ℎ which pass
through the origin of the plane-ݐ݇ is given by:

݇= ଶݐܽ + ,ݐܾ 0 ≤ ≥ݐ ܴ (Equation 5)

Figure 15: Sample points A and B on the ridge image (left); corresponding windows
placed on A and B (right); energy maps ( ఏ݁(A) and ఏ݁(B)) (bottom-right). Each

point on the energy map corresponds to a histogram indicating the total ridge energy
with respect to each ridge angle within the window. Reprinted from [58].
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where�ܾ ൌ
ସ

ோ
, ܽ ൌ െ



ோ
and ܴ ൌ ඥȟݔଶ  ȟݕଶ with

Δݔ= −ଶݔ ଵݔ (Equation 6)

and

Δݕ= −ଶݕ ଵݕ (Equation 7)

Then, a point onݏ the rotated parabolic arc in plane-ݕݔ is given by:

=ݏ ቂ
ݔ
=ቃݕ ቂ

cosߙ − sinߙ
sinߙ cosߙ

ቃቂ
ݐ
݇
ቃ+ ቂ

ଵݔ
ଵݕ
ቃ (Equation 8)

where �ߙ�� ൌ
௫

ோ
and ߙ��� ൌ

௬

ோ
. The tangential angle ߮௦ of the parabola on the point

isݏ approximated as:

߮௦ = arctan
−ݐ)ݕ Δݐ) − +ݐ)ݕ Δݐ)

−ݐ)ݔ Δݐ) − +ݐ)ݔ Δݐ)
(Equation 9)

where the step size on the axis-ݐ is specified by ȟݐthat can be adjusted to locate the
equidistant points on the parabolic arc. A smoother curve is obtained by a smaller step
size by acceding the increase in computation time. A dynamic step size is used to
achieve the identical smoothness for arcs with different scale (see Appendix A):

Δݐ=
ܵ

ඥ1 + +ݐ2ܽ) )ܾଶ
(Equation 10)

Figure 16: A parabolic arc model represented by two tip points ሺݔଵǡݕଵ), ሺݔଶǡݕଶ)
and height ℎ. Reprinted from [58].
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where ܵ denotes the distance between each neighboring point on the arc (e.g. 1 pixel
size). Additionally, a scale invariant curvature measurement for the parabolic arc
model is defined as:

κ =
|ℎ|

ܴ
(Equation 11)

The next section describes the curve fitting algorithm developed for the parabolic arc
model.

3.1.5. Curve Fitting and Filtering

The curve fitting step involves the extraction of membrane-like structures by utilizing
ridge energy maps (LFREM and HFREM) and the parabolic arc model explained in
the previous sections. The energy function of the curve segment is given by:

E(Ω) =   (ߠ,௦߮)ݓ ఏ݁(ݏ)

ఏ௦∈ஐ

(Equation 12)

where Ω denotes the set of points on the curve segment generated by Equation 8. The
tangential angle of the curve at the point isݏ represented by ߮௦ (see Figure 17(a)). The
term ݓ is the weight function defined as:

(ଵ,߶ଶ߶)ݓ = cos൫2(߶ଵ− ߶ଶ)൯ (Equation 13)

Equation 12 involves a weight coefficient that controls the contribution of the energy
on the point byݏ considering difference in tangential angle of the curve (߮௦) and the
ridge direction .(ߠ) The maximum contribution is allowed if these two angles are
similar (i.e. if the difference between ߮௦ and ߠ is close to zero) since the weight
coefficient is close to one. If the angles are different (i.e. the difference is close
to ,(2/ߨ± it gets closer to minus one and provides a negative contribution. Hence, the
parabolic arc is expected to pass through points where strong ridges with suitable
angles are available in order to accumulate high energy. This framework enforces the
maximization of the curve energy. Hence, an iterative curve fitting algorithm is
employed in which the parabolic arcs are initialized as single points on local maxima
of the ridge energy maps having the total ridge energy for the major direction is
adequately high (i.e. max

ఏ
ఏ݁(ݏ) > mܶap where mܶap is a threshold).

The curve fitting algorithm [58] is described below:

I. Initialization: Initialize a parabolic arc as a single point ݏ on each local
maximum point of max

ఏ
ఏ݁(ݏ) (as illustrated in Figure 17(b)) that satisfies

max
ఏ

ఏ݁(ݏ) > mܶap such that (ଵݕ,ଵݔ) = (ଶݕ,ଶݔ) = ;ݏ ℎ = 0.
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II. Growing phase 1: Figure 17(c-e) depicts the growing phase which is
summarized below:

i. Let ൫ݔଵ
ሺሻǡݕଵ

ሺሻ൯ൌ ;(ଵݕଵǡݔ) ℎሺሻ= ℎ and ݅ൌ Ͳ.
ii. Compute E(Ω) for each parameter set candidate by using Equation 12:

൫ݔଵ
(ାଵ)ǡݕଵ

(ାଵ)൯א ൛ݔหݔଵ
() െ ௫߬  ݔ ଵݔ

()  ௫߬ൟ

��������������������������������ൈ ൛ݕหݕଵ
ሺሻെ ௬߬  ݕ ଵݕ

()  ௬߬ൟ

and height ℎሺାଵሻא ൛ܽ ห݄ ሺሻെ ߬  ܽ  ݄()  ߬ൟwhere the set of curve
points Ω is generated by using Equation 8 for the current values of
parameters ሺݔଵ

ሺାଵሻǡݕଵ
ሺାଵሻǡݔଶǡݕଶ, ℎ

ሺାଵሻ) and ൌݐ Ͳǡοݐǡʹ οݐǡ͵ οݐǡǥ ǡܴ .
Select the parameter set which maximizes E(Ω).

iii. If ሺݔଵ
ሺሻǡݕଵ

ሺሻ, ℎሺሻሻ് ሺݔଵ
ሺାଵሻǡݕଵ

ሺାଵሻ, ℎሺାଵሻ), increment �݅and go to
step ii.

iv. Set (ଵݕଵǡݔ) ൌ ൫ݔଵ
ሺሻǡݕଵ

ሺሻ൯and ℎ = ℎሺሻ.
III. Growing phase 2: Repeat the first growing phase by changing the

parameters ሺݔଶǡݕଶ, ℎ) and keeping ሺݔଵǡݕଵ) fixed (see Figure 17(f-h)).

The terms ௫߬, ௬߬ and ߬ are the update parameters which specify the size of searching

region at each iteration and adjust growing speed. Model parameters ሺݔଵǡݕଵ), ሺݔଶǡݕଶ)
and ℎ are evolved within the interval determined by the update parameters to maximize
the curve energy iteratively.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 17: The energy map ( ఏ݁(ݏ)) and growing curve: (a) a parabolic arc (blue)
and the tangent line (red); (b) the curve fitting algorithm initialized by a point on a

local maximum; (c-e) the first growing phase; (f-h) the second growing phase.
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The curve fitting algorithm described above is repeated for two different adjustment
of window size ߱ utilized in the energy mapping step. Therefore, two different sets of
parabolic arc are extracted. The extracted arcs are shown in blue in Figure 18(a) and
(b) by utilizing LFREM (߱ ൌ Ͳ͵�nm) and HFREM (߱ ൌ ͺ �nm) respectively.
Generally, HFREM provides shorter curve segments since a parabolic arc cannot
suitably fit in large-scales to HFREM. They are called “small-scale curves” [58]
throughout this work. These small-scale curves can be acquired on all membrane-like
structures (peripheral membrane, cristae, etc.). On the other hand, LFREM provides
longer parabolic arcs which have relatively high energy. The curves mostly appear on
the mitochondrion boundary and endoplasmic reticulum when LFREM is used and
they are called “large-scale curves” [58].

(a) (b) (c)

(d) (e) (f)

Figure 18: Curve segments obtained by using low frequency energy map (a); high
frequency energy map (b) and filtered curves (c). In (a) and (b), blue curves show
successful detections and red curves are eliminated curves due to weakness and
shortness. In (c), blue and red curves show the accepted detections in (a) and the

obtained curves from (b) respectively after the elimination and filtering process are
applied; (d), (e) and (f) are close-up images taken from the yellow region placed on

(a), (b) and (c) respectively. Reprinted from [58].
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Unreliable curves are considered as false detections and thus removed in the
subsequent filtering step. Parabolic arcs with an excessive height can be detected
although the curve does not reasonably fit into the membrane of mitochondria.
Therefore, a curve is removed if the curvature is unexpectedly high (i.e. <ߢ 1 which
implies |ℎ| > ܴ such that a sharp bend occurs at the sagitta point of the parabola). The
parabolic arc initialized at irrelevant locations (e.g. cytoplasm) are not expected to
grow and gather high energy .((Ω)ܧ) Therefore, the arcs that are not sufficiently long
and strong are also removed. In this filtering step, the large- and small- scale curves
having an arc-length shorter than 100 nm and 20 nm respectively or having an average
curve energy less than 30% of the maximum of the energy map were eliminated in the
conducted experiments presented in Chapter 4. The eliminated curves are delineated
in red in Figure 18(a) and (b).

Figure 18(b)) clearly indicates that the set of points on small-scale curves covers the
set of points on large-scale curves (Figure 18(a)). As a final process in the curve
filtering step, both curve sets are combined on a single image by eliminating small-
scale curves which overlaps a large-scale curve. A large-scale curve is overlapped by
a small-scale curve if 70% of the latter resides within ߱ neighborhood of the former
(here ߱ is the window size used for curve fitting on LFREM).

Figure 18(c) and Figure 12(f) illustrates large-scale curves as blue curves which were
extracted from LFREM. These curves are mostly extracted on mitochondrial boundary
of long membrane-like structures. The curve segments in red are the detected curves
in only HFREM and generally extracted on small scale membrane-like structures such
as cristae.

3.1.6. Snake-Based Shape Extraction

Employing only a curve fitting process is not sufficient for mitochondria segmentation
since membranes may not seem to fully surround the mitochondria. Moreover, a
weakness in the appearance of membrane may lead to a failure in curve fitting process
due to insufficient ridge detection. Multiple mitochondria located close to each other
may be overlapped by a single curve segment. Therefore, further processing is
necessary to separate mitochondrial regions considering that mitochondria are
polymorphic.

To deal with the segmentation difficulties in this problem, a variant of the active
contour model called the balloon snake method is utilized. Active contour models
render possible the segmentation of irregular shapes and are able to compensate
boundary discontinuities [59]. An additional inflation property is integrated in balloon
snakes in order to start segmentation by approaching from the internal region of the
object. The balloon snakes show a remarkable stability when they are initialized far
from contours in a plain region [55].
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The snake model is evolved by the minimization of snake energy formulated as:

(ݒ)snakeܧ = න൫ܧint(ݒ) + (ݒ)extܧ + ൯݀(ݒ)infܧ ݐ (Equation 14)

where ݒ denotes the boundary of the object (i.e. mitochondrion) to be segmented that
is represented by ݔ and ݕ coordinates of the snake contour along a trajectory .ݐ intܧ is
a smoothness term that consists of the first and second order derivatives of :ݒ

intܧ =
1

2
൭ݓa ฯ

dݒ

dݐ
ฯ
ଶ

+ bݓ ብ
݀ଶݒ

dݐଶ
ብ

ଶ

൱ (Equation 15)

where aݓ and bݓ are the weight parameters which control the tension and the curvature
on the contour generated by the first derivative and the second derivative respectively.
The external energy term extܧ pulls the snake boundary towards the desired contour
and an inflation force is created outwards by .infܧ In the proposed snake-based shape
extraction approach, boundary of the snake is controlled by a curve energy image
which is formed by a curve energy function E(Ω) based on average curve energy:

(,ݔ)curveܧ = ቐ

E൫Ω൯

หΩห
if ∋ݔ Ω

0 otherwise

(Equation 16)

where  is a large-scale curve segment, Ω is the set of points on  and ݔ is a point on

the image. The cardinality term หΩหis equal to the number of points on . Then, the

external energy term extܧ is given by the summation of curve energy images:

(ݔ)extܧ = cݓ−  (,ݔ)curveܧ

∈ಽ

(Equation 17)

where cݓ regulates how much the snake contour is affected by curves and ܥ is the set
of large-scale curves. Since the snake is converged by the minimization of energy, the
negative valued energy function is presented in Equation 17. Hence, the boundary
should evolve towards the curve points. Moreover, overlapping curve segments form
a stronger contour since the energy is based on accumulation of all detected curves.

The minimization of the snake energy (Equation 14) is carried out iteratively by
altering the snake contour until it is converged. The snake is initialized near to the
vertex of a parabola as a unit circle. The initialization process of snakes is discussed
in detail in Section 3.2.2. The snake contour is updated by the equation defined as:

ାଵݒ = −ݒ (ݒ)snakeܧ∇ߛ (Equation 18)
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where ߛ is step size and generally set to a dynamic value (i.e. |snakeܧ∇|/1 ) in order to
provide a feasible speed to the snake to catch the mitochondrion boundary. The
neighboring points on the snake contour may align unequally during evolution of snake
due to the vector field created by .(ݒ)snakeܧ∇ In order to solve this problem, an
equidistant correction mechanism is employed in addition to the presented model [60].
The term snakeܧ∇ is given by:

snakeܧ∇ = intܧ∇ + extܧ∇ + infܧ∇ (Equation 19)

where the internal energy update term intܧ∇ is given by (see Appendix B):

(ݒ)intܧ∇ = aݓ−

߲ଶݒ

ଶݐ߲
+ bݓ

߲ସݒ

ସݐ߲
(Equation 20)

Five neighboring points on the snake boundary are used to compute Equation 20
numerically. On the other hand, the term extܧ∇ is obtained by the derivative of the
image provided by extܧ with respect to the ݔ and ݕ axes individually. The gradients of
internal and external energy terms are the forces that move the snake contour towards
the object to be segmented and can be thought as inversely oriented vectors.
Accordingly, infܧ∇ is constructed as the negatively weighted outwards normal vector:

(ݒ)infܧ∇ = dݓ−
ሬܰሬ⃗
௩ (Equation 21)

where ሬܰሬ⃗௩ is the unit normal vector at the snake boundaryݒand dݓ controls the strength
of the inflation. This creates a force pulling the boundary outwards and prevents the
boundary from shrinking in case of weak external forces. Therefore, the snake
boundary will inflate when it is placed on a plain region far from curves. Besides, after
the boundary grows a while, the forces regarding the internal and inflation energy will
cancel out each other and the snake will stop growing since the internal force is
increased. The snake is enforced to grow by using a strong inflation force when internal
and external forces acting on the snake are weaker. In this respect, convergence of the
snake depends on the size of the region and the strength of curves around the region.
In order to segment a small mitochondrion, a small value of dݓ is adequate. A higher
value of dݓ is necessary in case of a larger mitochondrion. If dݓ is too high, the
boundary of the mitochondrion may not stop inflation of the snake due to presence of
weak curves. On the other hand, considering the potential false-positive detections of
large-scale curves on cristae, dݓ should be set to a high value.

The following algorithm is designed to extract candidate regions considering different
boundary strength, cristae detections and mitochondrion size.



34

For each curve segment, repeat the following steps:

i. Set dݓ to a small value.
ii. Initialize the snake as a unit circle near to a curve segment.

iii. Run the snake algorithm.
iv. If the obtained boundary is different, save the snake boundary .ݒ
v. Increase .dݓ

vi. If dݓ is less than a threshold ( iܶnf), go to step ii.

The snake boundaries are obtained iteratively by using ascending values of dݓ by
algorithm described above. A sample output of the algorithm for different iterations is
depicted in Figure 19. The algorithm is executed for each curve segment located on
different locations to scan the entire image. Since misleading snake initializations
would occur due to false curve detections, weak parabolic arcs are ignored as stated in
the preceding curve filtering step. A non-mitochondrial region may be extracted by
this process if the snake is initialized outside a mitochondrion and the snake coincides
curve segments that surround the snake. Therefore, validation procedure is employed
in the subsequent step to discard irrelevant or awkward segmentations.

3.1.7. Validation

A mitochondrion is separated from the background by a surrounding membrane and
presence of cristae structures inside. Although a particular shape cannot strictly
represent the mitochondria, the most of mitochondria appear in the form of “distorted,

(a) (b) (c)

Figure 19: Sample output of the shape extraction algorithm: (a) 1st iteration; (b) 2nd

iteration and (c) 3rd iteration. Reprinted from [58].
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bended or laterally compressed form of an ellipsoid” [53] (see Figure 21). Candidate
shapes detected in the previous step are subjected to a validation process to filter out
potential false positives. This validation scheme employs a binary valued validator
function (ݒ)ܨ that decides the acceptance or rejection of the shape .ݒ The validator
function verifies a set of descriptor-condition pairs as depicted in Figure 20. If all of
the conditions are met, a decision is given towards acceptance of the shape ݒ as a
correct mitochondrial detection. The circumference and area of the candidate shape
denoted by C and A respectively are utilized to ensure the scale-invariance property
by normalizing quantities in the equations given in this section. The descriptors
computed in (ݒ)ܨ are described in five categories below:

i. Energy: The presence of a mitochondrion is partially indicated by strong
curves on the boundary and cristae inside the shape. The average boundary
energy of the shape ݒ is formulated as:

(ݒ)boundaryܧ =
1

C
  (,(ݐ)ݒ)curveܧ

∈ಽ௧

(Equation 22)

where ܥ is the set of the large-scale curves. The average energy which
corresponds to internal region of the shape is calculated by arranging Equation
22 to work on the small-scale curves. Hence, the formulation of the average
region energy is as follows:

(ݒ)cristaܧ =
1

A
  (,ݍ)curveܧ

∈ೄ∈ௌೡ

(Equation 23)

Figure 20: Internal structure of validator function.
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Note that ௩ܵ denotes the set of points inside the closed region constructed by ݒ
and ௌܥ is the set of small-scale curves. Hence, the acceptance criteria pertaining
to the shape energy comprises boundaryܧ > eܶnergy_b and cristaܧ > eܶnergy_c where

right-hand side terms are the energy thresholds adjusted for boundary and crista
respectively.

ii. Area: The area is utilized to specify if the size of the shape is within the
acceptable limits. Hence, this quantity is expected to be in a range determined
by the physical limitations. Note that the area of cross-sectional region of a
mitochondrion may be close to zero depending on location and orientation of
the cross-section. However, excessively small slices of mitochondria may not
be dependable. Thus, the criterion for acceptance is defined as:

aܶrea_min < A < aܶrea_max.

iii. Discontinuity: The snake model has a gap compensating property that may
cause incorrect segmentation such that boundary of the shape has significant
portions with too weak boundary energy. For such cases, reliability of the shape
must be checked. Since the cross-sectional region of a mitochondrion may
appear as roughly closed, the candidate boundary is allowed to have a gap.
Moreover, it may be seen partially on the image border. Nevertheless, the false
positive rate would increase by allowing shapes with extreme gaps. Hence, a
gap detection process is applied to filter the shape with respect to the gap
length. A gap exists on the boundary point ݐ if the boundary energy term
∑ ∈ಽ(,ݐ)curveܧ is less than a threshold gܶap_energy. The other gap descriptors

are the total gap length ,(gap_totalܮ) the maximum gap length ,(gap_maxܮ) the ratio

of gap_totalܮ to C (gap_ratioܮ) and the ratio of the total gap length on the image

border to C .(gap_borderܮ) Thus, four acceptance criteria related to the continuity

descriptors of boundary are determined by allowing an upper bound for each
descriptor:

(1) gap_totalܮ < gܶap_total,

(2) gap_maxܮ < gܶap_max,

(3) gap_ratioܮ < gܶap_ratio

(4) gap_borderܮ < gܶap_border.

Therefore, if one of the gap descriptors reveals an excessive discontinuity on
the boundary, the shape is rejected.

iv. Curvature: A correct detection is expected to have a reasonably smooth shape
boundary. Therefore, average and local curvature on the boundary is inspected
in this category. A shape is accepted if the curvature is suitable for the contour
of a mitochondrion. If the change in direction of the boundary path is frequent
or sharp, then the shape is inadmissible. The local curvature is given by [61]:
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=ߢ ብ
dTሬሬ⃗

d݈
ብ (Equation 24)

where Tሬሬ⃗ denotes the unit tangent vector and ݈ is the arc length. The local
curvature at a sample point of (ݐ)ݒ in the discrete case can be approximated by
utilizing the formulation below (see Appendix C):

(ݐ)ߢ ≅
2

‖(ݐ)݀‖ + +ݐ)݀‖ 1)‖
ฯ
(ݐ)݀

‖(ݐ)݀‖
−

−ݐ)݀ 1)

−ݐ)݀‖ 1)‖
ฯ (Equation 25)

where (ݐ)݀ = +ݐ)ݒ 1) − .(ݐ)ݒ Calculating the average of Equation 25 over
entire boundary yields the average curvature which is formulated as:

(ݒ)ߢ =
1

݊
 (ݐ)ߢ

௧

(Equation 26)

where ݊ denotes the number of sample points on the boundary. The acceptance
criteria associated to curvature descriptors are given by max

௧
(ݐ)ߢ < cܶurv_max

and (ݒ)ߢ < cܶurv_ave. Restricting the maximum local curvature and average
curvature ensures that every point has satisfactory smoothness and tortuosity
is precluded.

v. Signature: The cross-sections of mitochondria frequently appear as “circular,
elliptical or elongated patterns” [53]. Figure 21(c) demonstrates an example for
an elongated region. On the other hand, an asterisk shape is an unusual case for
a mitochondrion in tomographic images (see Figure 21(d)). Signature functions
reserve indicative features which expose such morphologic properties. The
signature function of the boundary point ݆of shape ݒ relative to a reference
point ݅is the distance between ݅and ݆as depicted in Figure 21(b) which is
given by:

ܵ( )݆ = )ݒ‖ )݆ − )ݒ )݅‖ (Equation 27)

The “extension count” [53] of the object is a useful feature which is determined
by the local extrema count ܰ of the signature function. The quantity ܰ
measured within a single period of ܵ( )݆ is proportional to the extension count
(e.g. ܰ≤ 2 and ܰ≤ 4 is satisfied for a circular object and an elliptic object
respectively) as illustrated in Fig 7(c-d). ܰ is found to be equal to 6 for the
shape given in Figure 21(d). The location of reference point affects the number
of local extrema and it should be tested for each boundary point of the shape
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in the proposed system. Hence, the condition max

ܰ≤ 4 must be checked in

order to accept the candidate shape.

Another useful descriptor is the minimum cross-sectional thickness minܮ (see
Figure 21(a)) which can be calculated from ܵ( )݆. minܮ is given by the least
local extrema of the signature function:

୫ܮ ୧୬ = min
,

ܵ(݉ ) ,݅≠ ݉  (Equation 28)

where local extrema points are denoted by ݉ . In the validation mechanism,
too short minܮ is not allowed. Hence, the candidate shape must satisfy the
condition minܮ > sܶig_min. Two additional descriptors are obtained by the length

of major and minor axes. The length of major axis (majorܮ) is provided by

max
,

ܵ( )݆. The width of the bounding rectangle aligned with the major axis

determines the length of minor axis (minorܮ) as depicted in Figure 21(a). The
descriptors majorܮ and minorܮ are utilized to check if the candidate shapes does

not violate the physical limitations of mitochondria. Therefore, acceptance
criteria for major and minor axes’ lengths are designated as majorܮ < mܶajor and

minorܮ > mܶinor.

3.1.8. Post-processing

A competent segmentation of mitochondria may not be achieved by performing a
single snake initialization due to the mitochondrial shape and false-positive curves
extracted on cristae. For instance, strong internal forces are caused by curvy and

narrow mitochondria and prevents the snake from locating the real boundary. In the
proposed approach, multiple initialization is performed for all the curves which
surround the same mitochondrion in order solve this problem. A different portion of
the mitochondrial region is expected to be covered by each snake as it can be seen
from validated shapes shown in Figure 12(g). If the ratio of overlapping area is greater
than a threshold, the validated shapes are merged to achieve a better result. The merged
contours in Figure 12(h) were obtained by joining shapes continually while the
intersectional area with another contour is greater than 30% of the area of the whole
shape. Such an automatized merging scheme has a major drawback: it may merge
multiple mitochondria together erroneously when an over-inflated snake overlapping
more than one mitochondrion is accepted as valid. Nonetheless, this approach can be
useful when utilized by semi-automatic systems.

3.2. Extension of the Method to Three-Dimensions

The evolution of 2D snake models are based on the forces created by internal, external
and inflation energy acting on 2D vertices. The model is extended to 3D by redefining
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(a) (b)

(c)

(d)

Figure 21: (a) Major axis length ,(majorܮ) minor axis length (minorܮ) of a shape and

the minimum thickness ;(minܮ) (b) Signature function ܵሺ݆ሻfrom the reference
point t݅o boundary point ;݆ (c-d) The reference point ݅and local extremum points
݉ on the shape boundary and sketch of corresponding signature function. Adapted

from [58].
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vertices as points (ݖǡݕǡݔ) in 3D space and arranging the forces as vectors computed
along the boundary path on plane-ݕݔ and also axis-ݖ [62]. This formulation creates
forces which move the vertices in three dimensions and let the snake contour evolve
along the axis-ݖ as well as on the .plane-ݕݔ

In the proposed system, the 2D balloon snake method employs external forces
provided by the large-scale curves which are detected on peripheral membranes of
mitochondria. As a drawback, a curve cannot be detected and no force can be created
for membranes which are parallel to the plane-ݕݔ since such membranes do not show
ridge-like pattern in the tomogram. Hence, the 3D extended model cannot be directly
integrated to the proposed 2D system. Instead, a pseudo-3D (also known as 2.5D)
mechanism is introduced in which a stack of 2D snakes are utilized to build a model
in 3D space. Figure 22 depicts internal forces influenced by vertices on the neighboring
slices, but acting on their own slice. In this scheme, coordinates-ݖ of vertices does not
change. As described in the 2D model, the external and inflation forces are still based
on 2D features in this pseudo-3D approach.

3.2.1. A Pseudo Three-Dimensional Snake Approach

Let (ݐǡݖ)ݒ ൌ ሺݔ௭ǡ௧ǡݕ௭ǡ௧) denote the snake boundary as a 2D point on .level-ݖ The
internal energy term is extended as follows:

intܧ =
1

2
൭ݓat ฯ

ݒ∂

ݐ∂
ฯ
ଶ

+ btݓ ብ
߲ଶݒ

ଶݐ߲
ብ

ଶ

+ azݓ ฯ
ݒ∂

ݖ∂
ฯ
ଶ

+ bzݓ ብ
߲ଶݒ

ଶݖ߲
ብ

ଶ

൱ (Equation 29)

Figure 22: A stack of snakes and acting forces on a vertex of the snake. Reprinted
from [58].
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The weight parameters atݓ and azݓ controls the tension on the plane-ݕݔ and along the
axis-ݖ respectively. Similarly, the weights btݓ and bzݓ controls the amount of
curvature. Therefore, minimization of the internal energy is realized by the new update
vector as given below:

intܧ∇ = atݓ−

߲ଶݒ

ଶݐ߲
+ btݓ

߲ସݒ

ସݐ߲
− azݓ

߲ଶݒ

ଶݖ߲
+ bzݓ

߲ସݒ

ସݖ߲
(Equation 30)

Note that a 2D vector is produced by Equation 30 since the vertex ݒ denotes a 2D
point. Therefore, 2.5D snake can be considered as the composition of 2D snakes which
evolve on their own .level-ݖ The snake update equation can be rewritten by adding
external and inflation energy terms:

snakeܧ∇ = intܧ∇ + extܧ∇
(௭)

+ infܧ∇ (Equation 31)

where extܧ∇
(௭)

is the gradient of external energy image obtained for slice andݖ infܧ∇ is
update term for the inflation energy which is acquired in a 2D manner on a slice-by-
slice basis. Figure 22 visualizes the update terms as the forces acting on vertices

generated by inversely oriented update vectors (i.e. ܨ⃗ = .(ܧ∇− int_tܨ⃗ and int_zܨ⃗ are

internal forces illustrated in Figure 22 that originates from the first two and the last

two terms given in Equation 30 respectively. The internal force int_zܨ⃗ obtained by the

derivation over axis-ݖ endeavors to align the vertices along .axis-ݖ Therefore, the
snake boundary indirectly evolves in 3D via the interaction of forces while the energy
is minimized considering neighboring slices.

3.2.2. Snake Initialization

The 2D algorithm implies the initialization of snakes as small circles (e.g. unit circle)
near to the large-scale curves which have sufficiently high energy indicating the
presence of mitochondrion. Although this approach can be used to scan the entire
image to detect mitochondria, it is problematic for 3D segmentation since the snakes
may be initialized differently since the curves can be displaced for other slices.
Moreover, the validator function individually evaluates resulting snakes in slice-by-
slice basis. As a result, obtained contours can be inconsistent depending on
initialization and validation of snakes for each slice. Hence, a smooth 3D mesh cannot
be generated by a 2D system. However, the inconsistency problems can be reduced by
utilizing a better initialization approach in which large-scale curves extracted from
multiple slices are used considering that the potential displacement of membranes and
diversity in membrane detection alongݖ�-axis. In this approach, a modified version of
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [63]
algorithm is used to determine the initial locations of snakes.
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The cue point of a curve segment is defined as the point located in the perpendicular
direction to the vertex point with distance inݎ the concave side of the parabolic arc as
illustrated in Figure 23(a). Cue points residing in a certain neighborhood support each
other if they are located in the concave sides of the curve segments. For instance, the
points ଵ and ଶ support each other whereas ଷ is blackballed as illustrated in Figure
23(b). The actual initial points are determined by the center of clusters which are
formed by the adequately populated supportive cue points located in a neighborhood.
Hence, snakes are initiated as a cylinder (or a circle in the 2D case) on the cluster
centers. The distance parameter andݎ cylinder diameter should be adjusted to a value
less than the expected minimum cross-sectional thickness for the mitochondrion in
order to ensure that the mitochondrion boundary is caught by the snake boundary. On
the other hand, thickness-ݖ of the cylinder should be adjusted according to the height

(a) (b)

(c) (d)

Figure 23: (a) A cue point  of a curve segment and (b) a cluster formed by the cue
points; (c) Cue points extracted from the dataset “od_sub” (slice range: 70–89) and

(d) corresponding cluster centers. Reprinted from [58].
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of the mitochondrion visualized in 3D volume. A better surface is expected to be
extracted when thickness-ݖ is high since more information is utilized. However, a
snake cannot successfully converge if thickness-ݖ is longer than the size of the
mitochondria. The clusters which are not sufficiently populated by cue points are
neglected in order to perform a reliable snake initialization. Thus, false positive
detections are reduced.

The initialization of snakes is carried out by the following algorithm:

i. Determine a cue point for each curve detected in a given .range-ݖ
ii. Find all supportive cue points within neighborhoodߝ for every cue point.

iii. Create a cluster for each neighborhood if sufficient number of cue points are
available in the cluster.

iv. Initialize snakes as cylinders at cluster centers (i.e. the center of mass populated
by the cue points in the cluster).

Multiple curve segments overlapping each other can be detected on a strong
membrane. Similarly, the curves detected on a strong membrane are expected to have
neighboring curves at close-range along the .axis-ݖ Therefore, the neighboring cue
points along axis-ݖ may also support each other based on the proximity on .plane-ݕݔ
Cue points extracted from 20 slices of a dataset and corresponding cluster centers are
displayed in Figure 23(c) and Figure 23(d) respectively. Since a range of tomograms
are utilized for the initialization process, mechanism is a robust against noise and false
detections.

The original version of DBSCAN algorithm forms dense clusters in which each point
is within a neighborhood of at least one point in the cluster. Such an approach makes
the cluster as wide as possible by covering a pervasive distribution in a single cluster.
However, this is not a desired property in the proposed system since attempting
multiple initializations inside the mitochondrion could lead to a better segmentation.
In the proposed modified algorithm, the extent of clusters is bounded by ߝ
neighborhood such that centers of created clusters are located at least .distantߝ2

3.2.3. Adaptation of the Validator Function

A given 2D snake is accepted or rejected by the validator function in the 2D method.
Formally, the validator function is defined as →ݒ:ܨ {0,1} where ݒ denotes a 2D
shape. Hence, the function returns 0 in case of rejection and returns 1 in case of
acceptance. The 2.5D snakes are validated by a validity measurement which utilizes
2D validator function and is formulated as:

(ݒ)ܸ =
1

݇
 (௭ݒ)ܨ



௭ୀଵ

(Equation 32)
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where ௭ݒ denotes a 2D cross section of snake atݒ level-ݖ and ݇denotes the thickness-ݖ
of the snake such that ͳ ݖ .݇ The validity measurement ܸ is a real-valued function
ranging over [0,1] indicating the probability of the shape being correct. In a sense, a
voting process is applied for the validity measurement that produces the acceptance
ratio over all voters. Hence, if the validity value (ݒ)ܸ is greater than a threshold ( ܶ),
the snake ݒ is accepted. Otherwise it is rejected.

The 2.5D model has gap-filling property along bothݐ�- and axis-ݖ by means of internal
energy gained by neighboring slices despite the lack of external energy. In such cases,
some of cross-sections of snake may appear invalid due to a large amount of gaps in
different .levels-ݖ This problem leads to unexpectedly low validity value although a
successful segmentation is obtained. An explanatory example is depicted in Figure
24(a) in which each snake slice has significant gaps which results in the rejection of
the 2D cross-sectional shape. Therefore, the validity value of the entire shape is found
to be very low. This problem can be solved by applying median filter to the boundary
energy measurement ∑ ಽאሻǡݐcurveሺܧ within the window placed along axis-ݖ as

shown in Figure 24(b). A vertex point on the snake is assumed to be a gap if this
measurement is below a threshold. Thus, the filtering operation artificially fills the gap
if there exists sufficient neighbors with high boundary energy. Conversely, if there is
no sufficiently strong neighborhood along the ,axis-ݖ the vertex point is considered a
false detection and becomes a gap.

3.2.4. Adaptation of the Post-Processing

The merging operation is performed by considering overlapping volumes of extracted
regions in the 3D case. In this manner, validated 2.5D snakes are iteratively joined
together until there exist no region such that the ratio of the overlapping volume to the
whole volume is greater than the threshold (i.e. 70% of the entire volume of the shape).

(a) (b)

Figure 24: (a) A 2.5D snake is assumed to have gaps where boundary energy is
weak; (b) gap filling mechanism. Reprinted from [58].
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CHAPTER 4

RESULTS

This chapter presents properties of the datasets utilized in the experiments, evaluation
and comparison of the algorithms described in Chapter 3. Both 2D and 2.5D
algorithms were tested on eight datasets listed in Table 1. The parameter sets used in
the experiment are listed in Table 2. The validation process were exerted to the
candidate detections attained from the 2.5D snake algorithm by both enabling and
disabling the gap filling mechanism (as described in Section 3.2.3).

The test range for parameters and experimental setup is given below:

 The size of gap filling window (ܹgap) was set to 3, 5, 7 and 9.

 The thickness-ݖ ( )݇ was separately adjusted as 10, 20, 30 and full (i.e. dataset
thickness) for the 2.5D snake model.

 Each dataset has been divided into sub-sections such that ݇ consecutive slices
are contained in each sub-section. For instance, a dataset composed of 100
slices was divided into five sections for ݇= 20. Then, the snakes were
initialized and executed individually for each sub-section.

 In post-processing step, obtained regions have been merged if the overlapping
area (or volume in 3D case) was larger than to 30% of the whole region.

 The entire test procedure was repeated by adjusting gap parameters to three
individual settings presented in Table 2.

Figure 25 illustrates the convergence comparison of 2D and 2.5D snakes. Figure 25(a)
demonstrates that 2D snake encounters over-inflation problems caused by inadequate
curve detection on peripheral membranes. Figure 25(b), on the other hand, shows the
capability of the 2.5D model compensating false-negative error. Similarly, the
presence of false-positive curves on cristae prevents the balloon from inflating
properly in 2D approach whereas 2.5D model managed to cope with this problem by
means of neighboring slices. Instability problems were also encountered in the 2D
model such that false-positive and false-negative error is significantly visible
neighboring slices. On the contrary, 2.5D model exhibits a robust behavior when
compared to the 2D model.

Figure 26(a) illustrates a sample segmentation of sub-sections of a mitochondrion for
the snake thickness ݇= 20. The segmentation of the same mitochondrion with full -ݖ
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thickness (i.e. dataset thickness) is shown in Figure 26(b). Figure 26(c) illustrates the
segmentation results for several mitochondria acquired by using the full .thickness-ݖ
Figure 27 demonstrates sample tomograms delineating the boundary of segmentation
chosen from each dataset.

4.1. Dataset

The datasets used for the experiments in this study were gathered from the Cell
Centered Database (CCDB) supported by the National Center for Microscopy and
Imaging Research (NCMIR) [64]–[66]. Eight TEM datasets were chosen which show
variety in image contrast and mitochondrial membrane and crista patterns.
Mitochondria appear in different shapes and sizes in the dataset collection. Table 1
lists some attributes of the datasets such as voxel size, dataset thickness and image
size.

The dataset collection comprises a total of 622 slices and 96 mitochondria. Ground
truth was obtained by specifying the outer membranes of mitochondria via a manual
segmentation process using IMOD software [24]. The tomograms pertaining to the
very top and bottom slices of the datasets are very blurry and useless. Therefore, those
parts were neglected in ground truth. It is notable to stress that preparing such a ground
truth database necessitates significant amount of manual exertion. It is obvious that
such a process consumes a considerable amount of time justifying that computerized
detection and segmentation is essential to accelerate analysis of electron tomography.

Table 1: Properties of datasets used in the experiments.

Dataset
basename

Accession
number

Image size
(width ×
height)

Number
of slices

used

Voxel size (nm)
(X × Y × Z)

6_22.sub 5274878 1960 × 2560 91 1.1 × 1.1 × 1.1

bclpb-d.sub 5274930 720 × 878 61 2.4 × 2.4 × 2.4

cone.sub 54 736 × 1010 97 2.4 × 2.4 × 2.4

gap18_sub 8747 350 × 600 54 2.2 × 2.2 × 2.2

mac_serial_sub 5274996 907 × 1172 111 2.4 × 2.4 × 2.4

od.sub 8752 1960 × 2560 91 1.1 × 1.1 × 1.1

pedicle 5274970 950 × 1280 31 2.4 × 2.4 × 2.4

spherule24mos1 8495 1996 × 1996 86 1.67 × 1.67 × 1.67
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Table 2: List of parameters and settings used in the proposed system.

Parameter description Used setting

Preprocessing parameters
Auto-contrast histogram cut 0.5%

Resampling pixel-size 2 nm

Bilateral filtering spatial kernel size 60 nm
Bilateral filtering gray deviation 0.2

Ridge detection parameters
Gaussian derivative sigma 3 nm
Energy mapping parameter

Window size (߱)
30 nm (LFREM)
8 nm (HFREM)

Curve fitting parameters
Threshold energy ( mܶap) for initialization 40% of max ఏ݁(ݏ)

Curve update parameters ( ௫߬, ௬߬, ߬) 8 nm

Curve filtering parameters
Max. allowed value for curvature (ߢ) 1

Min. arc length
100 nm (large-scale curves)
20 nm (small-scale curves)

Min. average energy 30% of max ఏ݁(ݏ)

Shape extraction / snake initialization parameters
Tension weight ,aݓ) (atݓ 1.0

Curvature weight ,bݓ) (btݓ 200

External energy weight (cݓ)
0.5 (2D)

1.0 (2.5D)
Inflation weights (dݓ) 0.5, 1.0, 1.5 … 3.0
Tension weight along z-axis (azݓ) 5.0
Curvature weight along z-axis (bzݓ) 5.0
z-thickness ( )݇ 1 (2D), 10, 20, 30, max.
Distance to the vertex point of arc (ݎ) 40 nm
Cluster neighborhood (ߝ) 100 nm
Min. cluster size ⌊1.5 x ⌊thickness-ݖ

Validator function parameters
Min. average boundary energy ( eܶnergy_b) 20

Min. average region energy ( eܶnergy_c) 0.1

Max. local curvature ( cܶurv_max) 1/45 nm-1

Max. average curvature ( cܶurv_ave) 1/180 nm-1

Max. local extrema count (max

ܰ) 4

Min. thickness ( sܶig_min) 70 nm

Max. major axis length ( mܶajor) 2000 nm

Min. minor axis length ( mܶinor) 140 nm

Min. area ( aܶrea_min) 0.02 μm2

Max. area ( aܶrea_max) 0.7 μm2

Gap-filling window size (ܹgap) 3, 5, 7, 9

1st setting 2nd setting 3rd setting
Boundary energy measurement threshold ( gܶap_energy) 5 10 15

Total gap length ( gܶap_total) 500 nm 500 nm 600 nm

Max. gap length ( gܶap_max) 400 nm 400 nm 600 nm

Max. gap ratio ( gܶap_ratio) 0.4 0.4 0.4

Max. gap ratio on border ( gܶap_border) 0.3 0.3 0.4

Post-processing parameter
Merging threshold 30% of area (or volume) overlapped
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(a)

(b)

Figure 25: Boundary of an identically initialized (a) 2D snake output (performed in
slice-by-slice manner) and (b) 2.5D snake output for the dataset “bclpb-d.sub”

(slice range: 20–39). Adapted from [58].
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Figure 26: A sample merged shape with (a) ݇ ൌ Ͳʹ and (b) ݇ ൌ ͺ Ͳ; (c) Merged
shape samples for maximum valid .݊ The outputs were visualized by MeshLab tool

[72]. Adapted from [58].

(a) (b)

(c)
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 27: Mitochondria segmentation results (Image basename and slice number):
(a) cone.sub (slice #: 40); (b) gap18_sub (slice #: 35); (c) 6_22.sub (slice #: 120);
(d) od.sub (slice #: 70); (e) pedicle (slice #: 40); (f) mac_serial_sub (slice #: 20);

(g) spherule24mos1 (slice #: 45); (h) bclpb-d.sub (slice #: 50). Adapted from [58].
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4.2. Performance Evaluation

Two fundamental indicators for algorithm performance are precision and recall that
are frequently used to measure the detection accuracy. Precision is equal to the ratio
of the correct detections to all detections (true positives/all positives). Recall equals
to ratio of correct detections to all true elements (true positives/all true elements). For
an image see)ܫ Figure 28), formal definitions of precision and recall are as follows:

Precision =
ܩ| ∩ |ܵ

| |ܵ
(Equation 33)

Recall =
ܩ| ∩ |ܵ

|ܩ|
(Equation 34)

where ܩ denotes the actual region to be segmented and ܵ denotes the region which is
segmented by the algorithm. The definitions of precision and recall are generally
adapted to image segmentation problems by using the pixels as the elements to be
detected. Thus, precision is measured by the ratio of the size (i.e. area in 2D or volume
in 3D domain) of correctly detected regions to the total size of all extracted regions
whereas recall is measured by the ratio of the size of correctly detected regions to the
total size of all true regions in accordance with formal definitions. However, these
definitions can be altered due to the problem domain, interpretation and expectations
from the results.

In the preliminary study (described in Chapter 2) [52], a detection was assumed to be
correct if at least 70% of the extracted region belongs to a single mitochondrion. Then,
precision and recall were measured by calculating the number of correct regions (not
the area of regions). This approach ensures an accuracy evaluation for each extracted
region considering whether one region only segments a single mitochondrion or not.
However, this definition also implies that an extracted region is assumed as correct

Figure 28: An imageܫ�, a region ܩ to be segmented and the region ܵ segmented by
the algorithm.
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even if it corresponds to only a small fragment of the mitochondrion. In other words,
the entire mitochondrion is accepted as successfully detected even if the most part of
the mitochondrion is not segmented. Indeed, even a small segmented region entails a
successful detection of entire mitochondrion. In order to dissipate this drawback, a
new procedure has been followed to measure precision and recall in the proposed study
(described in Chapter 3) by considering potential regions produced by algorithm. In
the first step, each extracted region is matched to a single mitochondrion which
maximizes the Dice Similarity Coefficient (DSC). The DSC is given by:

DSC(ܩ, )ܵ =
ܩ|2 ∩ |ܵ

|ܩ| + | |ܵ
(Equation 35)

where ܩ and ܵ denote the ground truth and the extracted region produced by the
algorithm respectively. The cardinality operator |∙| expresses the area (or volume in
3D case) of the region. Let ܵ be the ݅th extracted region and ܩ be the ground truth
corresponding to the ݅th mitochondrion and let ܩ

ᇱbe the matched ground truth for ܵ.
The measurement of precision and recall are formulated as below:

Precision =
|⋃ ܩ

ᇱ∩ ܵ |

|⋃ ܵ |
(Equation 36)

Recall =
|⋃ ܩ

ᇱ∩ ܵ |

|⋃ ܩ |
(Equation 37)

Note that the union of intersections of each shape with the matched ground truth is
involved in the numerator of the fractions in Equation 36 and Equation 37. Therefore,
the detection accuracy is evaluated based on integrity of segmentation while a single
mitochondrion is allowed to be segmented by a union of regions. Since the
measurement of area (or volume in 3D case) is involved in recall and precision
formulation, reasonable values are obtained. Segmentation accuracy has been
additionally measured by using two metrics:

i. Dice Similarity Coefficient (DSC): The average DSC (see Equation 35) over
all matched ground truth has been computed.

ii. Median Symmetric Boundary Error (MSBE): MSBE is equal to the median
of Euclidean distances from each point on snake boundary to mitochondrion
boundary and from each point on mitochondrion boundary to snake boundary.
This quantity may be formulated as:

MSBE൫ܩ, መܵ൯= median൬൜݀ ฬ݀ = min

ฮܵመ( )݅ − )ܩ )݆ฮ,݅= 1,2, … ,ܰൠ

∪ ቄ݀ ቚ݀ = min

ฮܵመ( )݅ − )ܩ )݆ฮ,݆= 1,2, … ܯ, ቅ൰

(Equation 38)
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where )ܩ )݆ and መܵ( )݅ are boundary points, ܰ and ܯ are the number of points
on the boundary of ground truth and snake output respectively.

4.3. Quantitative Results

The precision and recall have been measured for all possible validity threshold values
( ܶ). The recall has been individually calculated for both fully seen and all available
mitochondria. DSC and MSBE have been calculated for both original and merged
extracted regions. Additionally, F-score metric (harmonic mean of precision and
recall) has been utilized to facilitate the comparison of algorithm performance since it
performs a balanced evaluation depending on precision and recall [67].

Table 3 lists average precision and recall values corresponding to snake thickness and
several validation parameters which maximize F-score. 2D method has a precision
value of 0.71 whereas it goes up to 0.81 for 2.5D method. Recall was also slightly
improved for fully seen mitochondria. It was found as 0.84 and 0.87 for 2D and 2.5D
methods respectively. The best results were attained for the snake thickness ݇= 20
and the validity threshold ܶ = 0.75. Henceforth, the best-case outcomes of the 2D
and 2.5D snakes with respect to ݇ and ܶ are presented and discussed below unless
stated otherwise.

Table 3: The best achievements of the algorithms and corresponding parameters.

Snake
thickness

( )݇

Gap
window
(ܹgap)

Gap
setting

Validity
threshold

( ܶ)
Precision

Recall F-Score

Fully
seen

All
Fully
seen

All

1 (2D) N/A 2nd N/A 0.71 0.84 0.71 0.77 0.71
10 (2.5D) 5 1st 0.5 0.74 0.87 0.76 0.80 0.75
20 (2.5D) 5 3rd 0.75 0.81 0.87 0.71 0.84 0.76
30 (2.5D) 5 3rd 0.7 0.80 0.86 0.69 0.82 0.74

Full (2.5D) 3 3rd 0.6 0.79 0.87 0.71 0.83 0.75

The precision and recall graph versus ܶ is exhibited in Figure 29(a). While ܶ is
increasing, the precision increases and the recall decreases. In other words, when a
stronger consensus is achieved, the more reliable voting process is attained. However,
some of the correct detections are lost for precise decisions (false negative error). The
F-score versus ܶ graph is illustrated in Figure 29(b) indicating the performance of the
2D method. According to the figure, 2.5D method performed better than 2D method
for a wide range of ܶ.

Table 4 shows a comparison between the detection achievements of 2D and 2.5D
methods for eight datasets. Since the mitochondria boundaries do not appear as ridge-
like structures in the dataset “mac_serial_sub”, both methods are unsuccessful for this
particular dataset due to inaccurate ridge detection. Although the outer membrane is
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Table 4: The detection performance of 2.5D snake (݇= 20; ܹgap = 5; gap setting: 3rd;

ܶ = 0.75) and 2D snake (gap setting: 2nd) algorithms for eight datasets.

Dataset basename

2D 2.5D

Precision
Recall

Precision
Recall

Fully
seen

All
Fully
seen

All

6_22.sub 0.76 0.86 0.65 0.84 0.80 0.58
bclpb-d.sub 0.82 0.73 0.59 0.88 0.95 0.57
cone.sub 0.87 0.93 0.73 0.92 0.93 0.81
gap18_sub 0.79 0.79 0.60 0.85 0.84 0.60
mac_serial_sub 0.31 0.23 0.20 0.45 0.06 0.11
od.sub 0.60 0.75 0.64 0.65 0.62 0.52
pedicle 0.68 0.86 0.83 0.90 0.95 0.92
spherule24mos1 0.43 0.95 0.95 0.62 0.99 0.99
Average 0.66 0.76 0.65 0.76 0.77 0.64
Average
(excluding
mac_serial_sub)

0.71 0.84 0.71 0.81 0.87 0.71

(a) (b)

Figure 29: (a) The detection performance of 2.5D snake (݇= 20; ܹgap = 5; gap

setting: 3rd) and comparison with 2D snake (gap setting: 2nd): (a) Precision-recall
(fully seen) vs. validity threshold ( ܶ) graph; (b) F-score (fully seen) vs. validity

threshold ( ܶ) graph. Reprinted from [58].
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visible, the cristae and inner boundary membranes are not apparently observable since
condensed mitochondria are populated in this dataset. Although this is not an
exceptional case, a high contrast between membranes and background is expected in
order to perform a cristae segmentation. Therefore, the average performance is
individually presented by including and excluding the problematic dataset. When it is
ignored, precision and recall for 2.5D approach are improved by 14% and 1%
respectively relative to 2D performance. Apparently, 2D method achieves a better
recall value compared to the 2.5D in the datasets “od_sub” and “6_22.sub”. Note that
2D algorithm performance was evaluated on a slice-by-slice basis since the
segmentation is individually accomplished for each particular slice.

The effect of gap filling mechanism to algorithm performance with respect to the
window size (ܹgap) is presented in Table 5. This process leads to a decrease in

precision but an increase in recall. Specifically, a larger window induces a greater
decrease in precision but a greater increase in recall. Activating this mechanism is
reasonable, since the loss in precision is less than the gain in recall. Experiments show
that adjusting ܹgap = 5 (in terms of the number of tomograms) is generally feasible.

Table 5: The detection performance of 2.5D snake (݇= 20; gap setting: 3rd;

ܶ = 0.75) with respect to different values of gap window size (ܹgap).

Gap window
size (ܹgap)

Precision
Recall F-Score

Fully
seen

All
Fully
seen

All

Disabled 0.82 0.75 0.59 0.78 0.68
3 0.81 0.82 0.66 0.82 0.73
5 0.81 0.87 0.71 0.84 0.76
7 0.78 0.87 0.71 0.82 0.75
9 0.77 0.88 0.72 0.82 0.75

The segmentation accuracy of algorithms evaluated by two metrics (DSC and MSBE)
according to the snake thickness ( )݇ is given in Table 6. MSBE values are presented
in terms of nanometers. Assessment results of the original and merged versions of
extracted regions are exhibited separately. The best achievements have been attained
by using the 2nd gap setting for 2D snakes. 2.5D snakes have performed best when
݇= 20, ܹgap = 5 and ܶ = 0.75 with the 3rd gap setting (the entire list for parameter

adjustments is given in Table 2). The average DSC was found as 0.79 and 0.84 for the
2D and 2.5D method respectively. A finer segmentation has been usually achieved by
the merged regions since some of the mitochondria are represented by the union of
regions. However, merging operation may accidentally merge more than one
mitochondrion causing a false detection. Segmentation accuracy of merged snakes
were measured by removing such falsely merged regions. The average of MSBE was
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Table 6: Segmentation accuracy of 2D snake (gap setting: 2nd) and 2.5D snake
(݇= 20; ܹgap = 5; gap setting: 3rd; ܶ = 0.75) algorithms for different thickness

values and datasets.

Metric DSC

Snake state Original Merged

Dataset
Snake thickness ( )݇ Snake thickness ( )݇

1
(2D)

10 20 30 Full
1

(2D)
10 20 30 Full

6_22.sub 0.68 0.68 0.72 0.74 0.73 0.72 0.76 0.75 0.77 0.82
bclpb-d.sub 0.85 0.89 0.92 0.92 0.91 0.86 0.90 0.91 0.91 0.89
cone.sub 0.86 0.86 0.93 0.93 0.94 0.88 0.87 0.90 0.90 0.90
gap18_sub 0.82 0.84 0.82 0.82 0.85 0.85 0.89 0.87 0.86 0.87
mac_serial_sub 0.68 0.71 0.73 0.77 0.35 0.65 0.69 0.70 0.77 0.35
od.sub 0.75 0.77 0.78 0.78 0.75 0.70 0.73 0.77 0.76 0.72
pedicle 0.73 0.72 0.79 0.77 0.74 0.78 0.78 0.91 0.83 0.84
spherule24mos1_ 0.85 0.82 0.92 0.87 0.98 0.92 0.95 0.97 0.97 0.97

Average 0.78 0.79 0.83 0.82 0.78 0.79 0.82 0.85 0.85 0.80

Average
(excluding
mac_serial_sub)

0.79 0.80 0.84 0.83 0.84 0.81 0.84 0.87 0.86 0.86

Metric MSBE (in nanometers)

Snake state Original Merged

Dataset
Snake thickness ( )݇ Snake thickness ( )݇

1
(2D)

10 20 30 Full
1

(2D)
10 20 30 Full

6_22.sub 33 30 24 24 18 32 23 32 34 14
bclpb-d.sub 16 11 8 10 9 17 11 9 11 9
cone.sub 18 17 10 10 9 14 14 10 10 10
gap18_sub 12 9 9 8 9 12 9 9 9 10
mac_serial_sub 26 19 28 21 110 31 23 42 21 110
od.sub 20 19 18 18 22 31 26 22 24 31
pedicle 48 49 41 49 50 32 32 11 21 21
spherule24mos1_ 30 31 18 28 8 15 9 7 7 8

Average 25 23 20 21 29 23 18 18 17 27

Average
(excluding
mac_serial_sub)

25 24 18 21 18 22 18 14 17 15
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Table 7: Average execution time of major steps in the system.

Step name Scale Duration (sec)

Preprocessing Per slice 0.6
Curve detection Per slice 18.1

Snake algorithm (2D)
Per slice 293.7
Per snake-slice 0.5

Snake algorithm (2.5D)
Per slice 194.1

Per snake-slice 0.5

found as 14 nm for the best-case. The segmentation is not so precise compared to the
preliminary study [52]. This is an expected consequence since the accurate double
membrane extraction step has not been employed. Nonetheless, it is adequate to
specify rough annotations considering that the total double membrane thickness of
most of mitochondria is between 18 and 48 nm.

Table 7 exhibits average computation times for major steps in the proposed system.
All computations were accomplished by a single thread on a computer running on Intel
Core 2.4 GHz microprocessor. The entire system was implemented in C++
programming language by using OpenCV library. CPU utilization was approximately
33% less for 2.5D snake algorithm with respect to the 2D method since the proposed
initialization process precipitates even better segmentation by generating 33% less
initial points. Although 2.5D method involves relatively complex computation, no
significant increase in CPU time per snake slice was measured.

The signal-to-noise ratio (SNR) robustness of the system was tested by using a
mitochondrion phantom (see Figure 30) taken from Figure 7 in the study by Fernández,
J.J. [68]. Although the phantom was not adequately realistic in order to assess the
entire system, the algorithm was executed to observe the curve fitting and the snake
segmentation behavior on synthetic peripheral membrane. The phantom was subjected
to additive Gaussian noise. Figure 31 depicts a sample tomogram with different SNR
values (∞, 20, 10, 4, 2, 1.33, 1.0, 0.80, 0.66 and 0.5). The curve fitting results are 
shown in Figure 32. No small-scale curve (shown in red) was obtained for SNR ≥ 4 
since the phantom does not possess realistic curvy cristae patterns. Some false-positive
curves were obtained for SNR ≤ 2. The whole boundary was covered by large-scale 
curves (show in blue) in all tomograms for SNR ≥ 0.80. However, small-scale curves 
were too sparse to validate the candidate regions. Hence, the average region energy
threshold ( eܶnergy_c) was lowered to zero (i.e. disabled) in order to observe the final

results. Other parameters were left unchanged. The boundary was partially covered for
SNR = 0.66. Since ridges are remarkably weakened for SNR = 0.5, large-scale curves
were mostly mislaid. Initial points of snakes were depicted in Figure 33. All initial
points were discovered inside of the mitochondrion. The algorithm was not successful
for SNR = 0.5 due to insufficient large-scale curves detection. Figure 34 exhibits the
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segmentation results. Although satisfactory results have been obtained for SNR ≥ 0.80, 
small amount (a few pixels) of fluctuation was observed on the segmentation boundary
along the z-axis for SNR ≤ 1. Although all snakes were invalidated by the validator 
function for SNR = 0.66, a candidate snake extracted from the phantom is still useful
as illustrated in Figure 35.

Although the proposed algorithms are designed for the detection of mitochondria, it
employs a Hessian-based ridge detector which is comparable to generic methods
proposed for membrane detection (aforementioned in Section 1). According to the
initial experiments, the utilized Hessian ridge detector (Equation 4) exhibits
remarkable success compared to generic methods. Moreover, subsequent steps can be
integrated to more sophisticated membrane detectors in order to enhance the accuracy.

The algorithm was additionally applied to a cryotomography (cryoET) dataset (ID:
6471) taken from EMDataBank [69]. This large dataset has very low SNR. Small

Figure 30: A mitochondrion phantom taken from Figure 7 in the study by
Fernández, J.J. et al. in [68].

      SNR = ∞            SNR = 20          SNR = 10           SNR = 4            SNR = 2 

SNR = 1.33 SNR = 1.0 SNR = 0.80 SNR = 0.66 SNR = 0.5

Figure 31: Additive Gaussian noised cross-section of phantom with respect to
different SNR values. Reprinted from [58].
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snippets (composed of 500 x 500 x 20 voxels) were cropped from the entire dataset. A
sample tomogram (slice #: 310) from the dataset is illustrated in Figure 36.

Figure 37(a) depicts the initial snake locations and Figure 37(b) illustrates obtained
large- (blue) and small-scale (red) curves. The final segmentation is shown in Figure
37(c). The method was able to detect and segment the mitochondrion by using the
same parameter set given in Table 2. Figure 38 illustrates a segmentation example such
that a successfully extracted region was eliminated by the validator function due to
lack of small-scale curves inside the extracted shape (low .(cristaܧ

      SNR = ∞            SNR = 20          SNR = 10           SNR = 4            SNR = 2 

SNR = 1.33 SNR = 1.0 SNR = 0.80 SNR = 0.66 SNR = 0.5

Figure 32: Curve fitting results extracted from LFREM (blue) and HFREM (red).
Reprinted from [58].

      SNR = ∞            SNR = 20          SNR = 10           SNR = 4            SNR = 2 

SNR = 1.33 SNR = 1.0 SNR = 0.80 SNR = 0.66

Figure 33: Auto-generated snake initial points (failed for SNR ≤ 0.5). Reprinted 
from [58].
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      SNR = ∞            SNR = 20          SNR = 10           SNR = 4            SNR = 2 

SNR = 1.33 SNR = 1.0 SNR = 0.80 SNR = 0.66

Figure 34: Segmentation results (Candidate contour for SNR = 0.66 was filtered by
validator function due to weak boundary energy). Reprinted from [58].

Figure 35: A candidate snake extracted from a 30 slice-range of the phantom
(SNR = 0.66). Reprinted from [58].
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Figure 36: A tomogram (slice #: 310) from a cryotomography dataset
(EMDataBank ID: 6471)

(a) (b) (c)

Figure 37: (a) A cropped section from the dataset referred to in Figure 36 showing
the snake initial points; (b) Curve fitting results obtained from LFREM (blue) and

HFREM (red); (c) Final segmentation result. Reprinted from [58].
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Figure 38: A candidate snake extracted from 20 slices taken from the dataset. The
top-left picture shows the snake initial points. The extracted shape was refused by
the validator function due to weak region (crista) energy .(cristaܧ) Reprinted from

[58].
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CHAPTER 5

CONCLUSION AND DISCUSSION

5.1. Summary

In this study, 2D and 3D detection and segmentation of both fully and partially seen
mitochondria from TEM datasets were investigated. The proposed method aims to
extract mitochondrial peripheral membrane. The algorithm starts with the
preprocessing step. In this step, resampling, smoothing and auto-contrast adjustment
are applied to the input image. Then, a Hessian-based ridge detector evaluates
membrane strength. The summation of local energy within two windows with different
size is calculated to generate energy maps. The subsequent step is the parabolic arc
fitting operation in which the energy maps are used to determine the segments of
mitochondrial peripheral membranes and cristae. Then, the obtained curves are utilized
in a snake algorithm which extracts candidate segmentation regions. Finally, the
results are refined by a validator function.

5.2. Discussion

Although there are several attempts for computerized segmentation of mitochondria,
this problem has not been solved satisfactorily yet due to multifarious appearance of
mitochondria based on the preparation of specimens, cell type, and health condition.
In this study, challenging datasets having a cluttered arrangement of mitochondrial
membranes (boundary membranes and cristae) were preferred since the main problem
is high throughput automatic and accurate cristae segmentation. It is worthy of note
that automatic segmentation of images for other types (in which mitochondrial regions
show dark blob-like patterns) is a much simpler problem since intensity-based features
can be distinctive as addressed by the previous studies.

The non-mitochondrion specific studies in literature require hand manipulation in
intermediate steps such as initialization of algorithm or manual filtering. Under such
conditions, it was shown that these methods can be successful at the segmentation of
peripheral and crista membranes of mitochondria. However, a low level intervention
is not desired since the user needs experience to know the behavior of image
processing algorithms. The mitochondrion specific methods in the literature are
designed to work on condensed mitochondria and thus, they are not competent at
segmenting peripheral membranes from the images as in the datasets collected for this
study. On the other hand, generic membrane segmentation methods are used to extract
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all kind of membrane-like objects and do not provide separation and recognition of
sub-cellular structures.

In order to accomplish a successful segmentation, the proposed method are equipped
with several procedures which utilize both low- and mid-level features. Without
building such a sophisticated mechanism, it is not reasonable to expect a spectacular
performance from a single step procedure involving a basic segmentation algorithm.
Indeed, each step of the proposed system has a positive contribution to the
performance. Hence, simple variants of segmentation methods such as watershed,
Hough transform or even snakes utilized in the system are also inadequate to achieve
a good segmentation quality. Snakes were preferred in this study because of their gap-
compensating property. However, performance of snakes or watersheds based on the
gradient of input image (as applied in standard usage) is fairly poor since the model is
highly attracted by cristae arrangements. Hough transform, on the other hand, is useful
(as employed in the preliminary study) but requires an eligible model to detect
mitochondria. The ellipse model is proficient to a certain extent since not all
mitochondria are in ellipse-shape. The 3D detection is also another challenging issue
due to the number of model parameters which may be infeasible from the computation
perspective.

The 2.5D snake model achieves a significant increase in precision while keeping recall
stable. Moreover, detection accuracy of 2D model does not guarantee the convenience
of 3D segmentation. In some cases, 2D snake boundaries extracted from the
neighboring tomograms appears valid but discordant so that the segmentation is not
stable along theݖ-direction. For 2.5D snakes, on the other hand, an appreciable number
of acceptable slices must be achieved to assume that a 2.5D snake is valid. Otherwise,
the validator function would refuse the whole shape. Hence, 2D snakes which perform
better whereas 2.5D method fails causes an illusory upswing in recall. Note that a high
recall in the 2D model does not mean a proper 3D segmentation. On the other hand,
the recall performance of 2.5D model can be increased by tuning the algorithm the ܶ

parameter (see Figure 29(a)).

Snake initialization process described in Section 3.2.2 utilizes parabolic arcs as an
indication to the presence of mitochondria. Since large-scale curves are obtained
mostly on elongated membranes such as peripheral membranes, snakes are initialized
near such curves. This approach is expected to decrease false positive rates as well as
computation time compared to random initialization strategy. Although the validator
function aims to eliminate false positives, it is reasonable to input false detections to
the validator function at low rates.

Specifying thickness-ݖ ( )݇ of the snake is another remarkable issue. The curves
pertaining to different slices is not effectively utilized if the snake is not sufficiently
thick (i.e. contains only a few slices). On the other hand, the snake partially converges
if it is too thick such that the range-ݖ of the snake exceeds the length of the target
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mitochondrion. Hence, the segmentation may be refused by the validator function in
this case. Segmentation can be performed in all slices by repeating the whole process
for consecutive sections of dataset by adjusting a moderate thickness even if the
mitochondrion is longer than the snake thickness. Figure 26(a) exhibits an example for
resulting four snakes for ݇= 20. As a drawback, transitions between the bottom and
top slices of the sections may not be smooth in some cases. To solve this problem, the
snake algorithm can be re-executed with total thickness-ݖ to segment the entire
mitochondrion as shown in Figure 26(b).

The evaluation technique for the detection accuracy described in Section 4.2 aims to
reveal the ability of the algorithm to detect and separate mitochondria from each other.
Figure 39 illustrates potential segmentation boundaries. The detected shape obtained
by the snake method and ground truth boundary of mitochondria are illustrated as
dashed and solid lines respectively. Contributions of these regions to precision and
recall are discussed in Table 8.

The parameter set given in Table 2 may require a revision for low SNR conditions. For
example, the validator function rejected all candidate shapes for SNR = 0.66 due to
insufficient boundary energy. Nevertheless, the extracted contour was indeed useful
as shown in Figure 35. In order to handle such cases, the user may be prompted to use
alternative parameter sets arranged to deal with low SNR conditions in semi-automatic
systems. A further discussion for system parameters is available in Section 5.3.

The cryoET datasets rarely inhabited by mitochondria may necessitate an improved
preprocessing step that emphasizes the double membranes in order to achieve a good
precision performance. The validation process rejects the most of the segmented
regions due to weak boundary and region energy for the current parameter set. Hence,
revision of the parameter set is another choice for cryoET datasets.

5.3. Parameter Analysis

The effect of different parameter values to the behavior of the proposed system to were
analyzed and discussed for each step of the algorithm below:

i. Preprocessing: The preprocessing parameter values presented in Table 2 were
experimented for both high and low contrast images. Good and enduring
outcomes were attained. In order to remove only extreme intensity values, the
histogram cut parameter of auto-contrast adjustment step should be lowered as
small as possible since high threshold may lead to data loss. Many parameters
of the system (especially validation parameters) are defined in terms of spatial
distance. Hence, the resampling process is useful to ease parameter tuning by
converting the pixel size to a fixed value. A pixel size of 2 nm appears to be
sufficient to visualize membranes in detail. In the conducted experiments, the
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Table 8: Description of the shapes given in Figure 39 and the corresponding
contributions to precision and recall.

Shape Description Contribution

Figure 39(a)
Mitochondrion is
segmented by a single
snake.

The contribution to precision and
recall depends on segmentation
accuracy.

Figure 39(b)
A single snake
surrounds multiple
mitochondria.

Recall is contributed by the area of
intersection of the best match
mitochondrion. Precision is weakly
contributed due to size of snake.

Figure 39(c)
Mitochondrion is
segmented by multiple
snakes in collaboration.

The contribution to precision and
recall depends on segmentation
accuracy of the region obtained by
union of snakes.

Figure 39(d)
Mitochondrion is
covered by a large
snake.

Maximum contribution to recall.
Precision is weakly contributed due to
size of snake.

Figure 39(e)
Mitochondrion is
partially segmented.

Maximum contribution to precision.
Recall is weakly contributed due to
size of snake.

Figure 39(f)

An awkward
segmentation of
multiple mitochondria
by a single snake.

Recall is weakly contributed due to
small intersection of the best match.
Contribution to precision is expected
to be even weaker since the rest of
snake is outside of the best match.

Figure 39(g)
No snake on
mitochondrion (false
negative)

No contribution to precision or recall.

Figure 39(h)

Snake segments some
region other than
mitochondria (false
positive).

No contribution to precision or recall.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 39: Potential segmentation and mitochondria boundaries.
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effect of ridges associated to non-membrane structures were reduced by the
bilateral filtering. This process was able to dilute the noise without removing
weak membrane when the size parameter of spatial filtering kernel was
between 30 and 60 nm. However, values lower than 30 nm triggered extraction
of false positive curves on cristae. On the contrary, too large kernels
precipitated the loss of true curves. The gray deviation parameter yielded a
reasonable degree of smoothing for background and membranes when it was
adjusted to 0.1–0.2 considering that the gray values are normalized between 0
and 1. Higher values precipitated smoothing of the edges pixels located
between background and membrane.

ii. Ridge detection: Gaussian derivatives are able to detect membranes when the
sigma parameter are adjusted according to membrane thickness. Hence, this
parameter should be arranged proportional to the expected thickness of
mitochondrial membrane (4–6 nm). Extracted ridges were relatively strong in
the experiments when it is set to 2–3 nm (half of membrane thickness).

iii. Energy mapping: The double membrane structure of mitochondria should be
covered by the window of energy mapping step in order to distinguish cristae
from the peripheral membranes. A robust detection is achieved when the total
energy within the window is doubled for double membranes (compared to
single). Therefore, the ߱ parameter can be set to a value up to the maximum
thickness of the double membrane (~48 nm). Considering the distance among
potential cristae membranes (that show double membrane motif), the average
double membrane thickness (~30 nm) was preferably used as the ߱ parameter
in the experiments. In case of crista detection, the window size should be
adjusted to include a single membrane (>6 nm). However, it should be kept
below the minimum expected thickness of a double membrane (<18 nm) to
avoid strengthening effect of the double membranes.

iv. Curve fitting: Experiments indicate that utilizing local maxima of
LFREM/HFREM having at least 30-50% of the maximum energy yield a stable
curve fitting on both crista and peripheral membranes by avoiding false
positives on non-membrane structures. Reasonably high values of update
parameters ௫߬, ௬߬ and ߬ assure the avoidance from local maxima of the energy

function .(Ω)ܧ On the other hand, extremely high values may lead to extraction
of distinct membranes by a single curve. According to experiments, arranging
these parameters around 4–8 nm yields the best results.

v. Curve filtering: Curve filtering parameters (i.e. arc-length and curve energy
thresholds) were tuned empirically to eliminate the most of the unwanted
curves detected at irrelevant locations while preserving large- and small- scale
curves at the peripheral membrane of mitochondria and cristae. Note that the
window size (߱) (used in the energy mapping) affects the curve energy and
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length. Thus, it is reasonable to tune these thresholds by searching from values
that were scaled linearly proportional to ߱ when it is necessary to modify
empirically. In general, acceptable results were introduced when recommended
adjustments in Table 2 were used within a range of ±70%.

vi. Snake-based shape extraction: This step is not delicate to small alterations in
weights of the snake model ,aݓ) ,atݓ ,bݓ ,btݓ ,cݓ ,dݓ ,azݓ .(bzݓ The parameter
arrangements presented in Table 2 do not necessitate additional tuning
depending on the dataset or mitochondria morphology. Nevertheless, the ratio
of weights with respect to each other is a substantial property. It is easier to
tune the weight parameters by assigning a fixed value (i.e. 1.0) to the tension
weights ,aݓ) .(atݓ Gap filling capability and false positive tolerance were
increased by the stiffness of the snake according to the experimental study.
Hence, the curvature weights ,bݓ) (btݓ were specified by following a strategy
satisfying ,bݓ btݓ ≫ ,cݓ .dݓ Since the internal energy of 2.5D additionally
calculated along the z-axis, the corresponding external energy weight (cݓ) was
doubled for 2.5D snakes. On the other hand, a wide range of values (i.e.
0.5, 1.0, 1.5 … 3.0) should be scanned by the inflation weight (dݓ) considering
potential false-positive large-scale curves and diversity in membrane strength.
However, the step size in dݓ can be set to an even smaller value to compensate
the membrane weakness and the effect of false-positive curves although the
computation time would be increased. Considering that the circumference of
the snake slice is much larger than the z-thickness, tension and curvature
weights associated to the z-axis ,azݓ) (bzݓ should be adjusted to a value greater
than atݓ and btݓ in order to improve the effect of neighboring slices.

vii. Snake initialization: Snake may fail growing if it is initialized too close to
parabolic arc since external forces may be too strong compared to inflation
force. The distance (ݎ) between the initial point and the vertex of arc should be
adjusted in conformity with weight parameters of snake model. In the
experiments, boundary of snakes properly evolved while <ݎ 20 nm with the
suggested weight settings. The size of cluster neighborhood (ߝ) and upper limit
of ݎ should be adjusted with respect to the minimum expected size of
mitochondrial cross-section (~250 nm). Considering a small mitochondria, ߝ
was set to 100 nm. Clusters may be affected by nearby cue points pertaining to
other mitochondria for larger values. The threshold concerning the minimum
number of cue points contained in a cluster was specified according to the z-
thickness of the model in the experiments. Recall improves indirectly by the
utilization of small values by augmenting initializations. However, the clusters
are more reliable when supported by more cue points. Acceptable results were
attained when this threshold was set to 1.0–2.0 times the z-thickness.

viii. Validator function: The parameters of validator function were roughly
adjusted by taking the morphology of mitochondria into consideration. The
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parameters mܶajor, mܶinor, aܶrea_min, aܶrea_max are determined by physical limits of

mitochondria to supply an indelicate constraint for candidate regions.
However, they can be tuned properly if mitochondria of a particular size are in
interest. The curvature parameters ( cܶurv_max and cܶurv_ave) are upper-limits for

radial displacement of the outer membrane. These parameters regulate the
removal of regions according to degree of tortuosity and can be lowered in
order to detect only a globular mitochondrion if necessary. The energy
parameters ( eܶnergy_b and eܶnergy_c) were kept as small as possible to include

mitochondria with weakly appearing membranes and rarely populated cristae.
Although validation parameters may be refined in accordance with the input
dataset, it must be done by considering overfitting problems.

ix. Post-processing: In the conducted experiments, the merging threshold
arranged between 15% and 35% yielded acceptable results. This operation can
merge separate mitochondria erroneously if the threshold is too low. On the
contrary, snakes may not be merged in case of utilization of high threshold
causing an over segmentation problem.

5.4. Limitations

A flawless segmentation still requires a manual effort. Thus, augmenting the
automatized algorithm developed in this study with some semi-automatic tools can
reduce the manual effort. These tools perform several operations such as manual
validation of false negatives, rejection of false positives, semi-automatic merging and
splitting and manual boundary correction by dragging [70]. The user can interfere in
the validation process to label correct or incorrect detections in order to reduce false-
negative and false-positive error. The segmentation can be rapidly refined by initiating
auto-splitting mechanism on erroneously auto-merged regions by taking basic
commands from the user. Similarly, over-segmentation issues can be dissipated by the
utilization of merging tools. Fortunately, the user interaction can be realized in real-
time since these tools will work on pre-extracted regions. In case of inadequate
detection, these tools additionally allow the user to execute the snake algorithm at a
suitable location. The defective boundary may be dragged to the correct location by
the user in case of a partially inconsistent segmentation.

The implementations of algorithms are not fully optimal yet. Hence, the system is not
currently able to respond to users’ commands in real time. Fortunately, a tremendous
speed-up can be gained by parallelizing the algorithms developed since they are highly
adaptable to be executed on a GPU.

Hessian ridge detector fails to detect membranes of condensed mitochondria (see
Figure 27(f)). However, Hessian matrix (Equation 3) can be replaced with a tensor
matrix which is based on the first derivative to detect edge features instead of ridges.
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Additionally, it is advantageous to utilize the first derivative since it is less sensitive
to noise.

The snake boundary generated by the proposed algorithm passes through mid-
locations of double membranes of mitochondria since LFREM is used for the
formulation of the external energy terms. The total ridge energy within a wide
neighborhood (30 nm) is stored in this energy map which usually covers both inner
and outer membranes. Therefore, the energy is maximized at the mid-point between
these membranes. The system is expected to produce a perfect segmentation since
parabolic arcs roughly fit into membranes. However, the segmentation accuracy can
be remarkably improved by utilizing techniques described in a study by Jorstad and
Fua [71] or a modified live-wire algorithm used in the preliminary study [52] in order
to refine the segmentation.

5.5. Future Work

Curve fitting and snake algorithms will be parallelized on GPU in the future. By the
end of the second quarter of 2016, the first release of current software is planned to be
made accessible. Additionally, a user-friendly application will be built as soon as
parallelization and optimization of algorithms are complete.

Since the auto-merging algorithm operates based on only intersectional volume of
overlapping regions, it may produce erroneously merged outputs. Such composed
regions may not satisfy all validation criteria. After auto-merging process, the
outcomes can be validated again to ensure that the final region satisfies desired
properties. Thus, false-positives can be reduced by revalidating auto-merged regions.

The feature extraction operators can be extended to 3D to provide a better membrane
detection. The proposed 2D ridge detector is not capable of extracting membranes
passing parallel to tomograms. Therefore, it is reasonable to enhance the membrane
detection procedure by utilizing 3D Hessian matrix. In this case, 2D parabolic arc
model must be extended to cover 3D geometrical objects as well. Surface patch models
such as paraboloids (including hyperbolic paraboloids) appears to be eligible to
segment peripheral and crista membranes of mitochondria in 3D. Employment of a
fully 3D snake models then will be feasible once the 3D features are extracted.

The validation procedure in the proposed system is a dichotomy problem in pattern
recognition methods. Particularly, each extracted region corresponds to a point in a
hyper-rectangular region in the parameter space. On the other hand, machine learning
methods are capable of classifying objects by linear and non-linear combinations of
validation descriptors. For future work, the validation function can be improved by
utilization of the validation descriptors based on supervised learning techniques in
order to construct a robust validation mechanism.
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In addition, development and implementation of a software package involving the
proposed system integrated into aforementioned semi-automatic segmentation tools
and the establishment of cristae segmentation methods can be considered for future
work.
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APPENDICES

APPENDIX A: DYNAMIC STEP SIZE ON PARABOLIC ARC

In order to have a smooth curve, the size isݐ∆ arranged to locate equidistant points on
the parabolic arc and it depends on t. As shown in Figure 40, equidistant points are
located by an approximation with a fixed distance ܵ on the tangent line. The tangent
line of the parabolic arc satisfies ∆݇= +ݐ2ܽ)ݐ∆ )ܾ and +ଶݐ∆ ∆݇ଶ = ܵଶ. By
substitution of the former equation into the latter and after suitable arrangements, as in

Equation 10, isݐ∆ found as /ܵඥ1 + +ݐ2ܽ) )ܾଶ.

Figure 40: Equidistant points on a parabolic arc and step size on t-axis.
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APPENDIX B: DERIVATION OF INTERNAL ENERGY UPDATE TERM

There are several approaches available to derive Equation 20 from Equation 15. Since
the solutions are distracting and complicated, many papers involving snakes simply
use the solution and omit the intermediate steps. A solution for Equation 20 is
described below.

Since snakesܧ∇ involves integration, the linearity property leads to the integration:

intܧ = ∫
ଵ

ଶ
൬ݓa ቛ

d௩

d௧
ቛ
ଶ

+ bݓ ቛ
ௗమ௩

d௧మ
ቛ
ଶ

൰݀ݐ.

For simplicity, it can be denoted as (ݒ)ܧ =
ଵ

ଶ
ᇱ‖ଶݒ‖ߙ) + .(ᇱᇱ‖ଶݒ‖ߚ For a small change

ݒߜ in ,ݒ one can substitute +ݒ ݒߜ to ݒ to obtain:

+ݒ)ܧ (ݒߜ =
ଵ

ଶ
+ᇱݒ‖ߙ) ᇱ‖ଶݒߜ + +ᇱᇱݒ‖ߚ .(ᇱᇱ‖ଶݒߜ

Consider the following equation:

+ݒ‖ ଶ‖ݒߜ = ݒ ∙ +ݒ ݒ2 ∙ +ݒߜ ݒߜ ∙ ݒߜ

where ݒߜ ∙ ݒߜ is negligible. Hence, the following approximation is obtained:

+ݒ‖ ଶ‖ݒߜ ≈ ଶݒ + ݒ2 ∙ ݒߜ

Assuming that ܧ is linear for the small interval, the formulation is simplified by using
above approximation to:

(ݒ)ܧ + (ݒߜ)ܧ = න ൭
ߙ

2
൫ݒᇱ

ଶ
+ ∙ᇱݒ2 +ᇱ൯ݒߜ

ߚ

2
൫ݒᇱᇱ

ଶ
+ ∙ᇱᇱݒ2 ݐᇱᇱ൯൱݀ݒߜ

Again using linearity property, it can be written as:

(ݒ)ܧ + (ݒߜ)ܧ =
ߙ

2
න൫ݒᇱ

ଶ
+ ∙ᇱݒ2 ᇱ൯݀ݒߜ +ݐ

ߚ

2
න൫ݒᇱᇱ

ଶ
+ ∙ᇱᇱݒ2 ᇱᇱ൯݀ݒߜ ݐ

Now, subtracting (ݒ)ܧ from above equation yields:
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(ݒߜ)ܧ = නߙ ∙ᇱݒ +ݐᇱ݀ݒߜ නߚ ∙ᇱᇱݒ ݐᇱᇱ݀ݒߜ

This equation is further simplified by applying integration by parts once to the first
term and twice to the second term and after some factorization, one can obtain:

(ݒߜ)ܧ = නߙ− ∙ᇱᇱݒ ݒ݀ߜ +ݐ නߚ ∙ᇱᇱᇱᇱݒ ݒ݀ߜ ݐ

(ݒߜ)ܧ = න +ᇱᇱݒߙ−) ݒ݀ߜ(ᇱᇱᇱᇱݒߚ ݐ

In the above equation, +ᇱᇱݒߙ−) (ᇱᇱᇱᇱݒߚ provides the direction of the gradient. In the
steepest descent algorithm, the update operation should be arranged as ←ݒ −ݒ ݒ∆ in
order to minimize energy.



85

APPENDIX C: APPROXIMATION OF LOCAL CURVATURE

ߢ is an approximation of the local curvature defined in Equation 25. Formally, the

curvature is the magnitude of the difference vector dTሬሬ⃗ per unit length where Tሬሬ⃗ is the
unit tangent vector. The tangent vector can be approximated by (ݐ)݀ = +ݐ)ݒ 1) −
(ݐ)ݒ where ݒ denotes (ݕ,ݔ) coordinates of the point indicated by ݐ on the snake
boundary. Hence, the tangent vector (ݐ)݀ is a vector from the point (ݐ)ݒ to the next
point. It is used as an approximation for the tangent of point “A” that is placed on the
halfway between (ݐ)ݒ and +ݐ)ݒ 1). Then, the term�݀ ‖(ݐ)݀‖/(ݐ) provides a unit

vector which is an approximation for Tሬሬ⃗. Similarly, −ݐ)݀ −ݐ)݀‖/(1 1)‖ gives unit

tangent vector Tሬሬ⃗ for the point “B” placed on the halfway between −ݐ)ݒ 1) and .(ݐ)ݒ

Then, dTሬሬ⃗ is given by:

dTሬሬ⃗=
(ݐ)݀

‖(ݐ)݀‖
−

−ݐ)݀ 1)

−ݐ)݀‖ 1)‖

The distance d t݈ravelled between the points “A” and “B” is given by
‖ௗ(௧)‖

ଶ
+

‖ௗ(௧ି ଵ)‖

ଶ
.

Dividing dTሬሬ⃗by d݈yields:

dTሬሬ⃗

d݈
=

2

‖(ݐ)݀‖ + +ݐ)݀‖ 1)‖
൬
(ݐ)݀

‖(ݐ)݀‖
−

−ݐ)݀ 1)

−ݐ)݀‖ 1)‖
൰

The local curvature is approximated by the magnitude of this vector:

(ݐ)ߢ ≅
2

‖(ݐ)݀‖ + +ݐ)݀‖ 1)‖
ฯ
(ݐ)݀

‖(ݐ)݀‖
−

−ݐ)݀ 1)

−ݐ)݀‖ 1)‖
ฯ



86



87

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Taşel, Faris Serdar 
Nationality: Turkish (TC)
Date and Place of Birth: August 27, 1981, Afyonkarahisar
Marital Status: Married
Phone: +90 312 284 45 00
Fax: +90 312 286 40 78
E-mail: fst@cankaya.edu.tr

EDUCATION

Degree Intuition Year of Graduation
M.Sc. Çankaya Üniv., Computer Engineering 2008
B.Sc. Çankaya Üniv., Computer Engineering 2004
High School İzmir Atatürk Lisesi, İzmir    1999 

WORK EXPERIENCE

Year Place Enrollment
2012 – Present Çankaya Üniv. Lecturer
2005 – 2012 Çankaya Üniv. Research Assistant

LANGUAGES

Turkish (Native), English (Advanced), German (Elementary)

PUBLICATIONS

I. SCI & SSCI & Arts and Humanities:

Tasel, S.F., Mumcuoglu, E.U., Hassanpour, R.Z., Perkins, G., 2016. A validated active
contour method driven by parabolic arc model for detection and segmentation of
mitochondria. J. Struct. Biol. 194, 253–271. doi:10.1016/j.jsb.2016.03.002

Mumcuoglu, E.U., Hassanpour, R., Tasel, S.F., Perkins, G., Martone, M.E., Gurcan,
M.N., 2012. Computerized detection and segmentation of mitochondria on electron
microscope images. J. Microsc. 246, 248–265. doi:10.1111/j.1365-2818.2012.03614.x



88

II. International Conferences and Proceedings:

Tasel, S.F., Hassanpour, R., Mumcuoglu, E.U., Perkins, G.C., Martone, M., 2014.
Automatic detection of mitochondria from electron microscope tomography images: a
curve fitting approach, in: SPIE Medical Imaging 2014. p. 903449.
doi:10.1117/12.2043517

III. National Conferences and Proceedings:

Taşel, F.S.,2012. Hough Dönüşümünün Dairesel Şekil Tespiti İçin CUDA Üzerinde 
Paralelleştirilmesi, in: 5. Mühendislik ve Teknoloji Sempozyumu Bildiri Kitabı, 
Çankaya Üniversitesi, Ankara.

Taşel, F.S., Sönmez A.B.,2010. Metinden Bağımsız Otomatik Konuşmacı Tanıma 
Sistemleri ve Performans Karşılaştırması, in: 3. Mühendislik ve Teknoloji 
Sempozyumu Bildiri Kitabı, Çankaya Üniversitesi, Ankara. 

IV. Others:

Taşel, F.S., Temizel A., 2012. Parallelization of Hough Transform for Circles using
CUDA, in: GPU Technology Conference 2012.



89

VITA

Faris Serdar Taşel was born in Sultandağı, Afyonkarahisar on August 27, 1981. He 
received his B.S. and M.S. degrees in Computer Engineering from Çankaya University
in August 2004 and in June 2008 respectively. He worked in Çankaya University as a
research assistant in Department of Computer Engineering from 2005 to 2012. He
continued to work as a lecturer in Çankaya University afterwards. His research
interests include image processing, computer vision and GPU computing.


