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ABSTRACT

AN ADAPTIVE, ENERGY-AWARE AND DISTRIBUTED FAULT-TOLERANT
TOPOLOGY-CONTROL ALGORITHM FOR HETEROGENEOUS WIRELESS

SENSOR NETWORKS

Deniz, Fatih
Ph.D., Department of Computer Engineering

Supervisor : Prof. Dr. Adnan Yazıcı

Co-Supervisor : Dr. Hakkı Bağcı

August 2016, 96 pages

Wireless sensor networks(WSNs) are being used in numerous fields, such as battle-
field surveillance, environmental monitoring and traffic control. They are typically
composed of large numbers of tiny sensor nodes with limited resources. Because
of their limitations and because of the environments they are being used, there are
problems unique to WSNs. Due to the error-prone nature of wireless communication,
especially in harsh environments, fault-tolerance emerges as an important property in
WSNs. Also, because of the battery limitations, solutions to reduce energy consump-
tion and prolong network lifetime are quite valuable. In this thesis, we propose two
algorithms, namely Adaptive Disjoint Path Vector (ADPV) and Minimum Supern-
ode Disjoint Path Vector (MSDPV), for heterogeneous WSNs. In this heterogeneous
model, we have resource-rich supernodes as well as ordinary sensor nodes that are
supposed to be connected to the supernodes. MSDPV algorithm considers the de-
sired fault-tolerance degree and the positions of ordinary sensor nodes to determine
optimal number of supernodes and their locations. It provides a novel optimization
based on the well-known set-cover problem. ADPV is an adaptive, energy-aware
and distributed fault-tolerant topology-control algorithm. Unlike the static alternative
Disjoint Path Vector (DPV) algorithm, the focus of ADPV is to secure supernode
connectivity in the presence of node failures, and ADPV achieves this goal by dy-
namically adjusting the sensor nodes’ transmission powers. The ADPV algorithm
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involves two phases: a single initialization phase, which occurs at the beginning,
and restoration phases, which are invoked each time the network’s supernode con-
nectivity is broken. Restoration phases utilize alternative routes that are computed at
the initialization phase by the help of a novel optimization based on the well-known
set-packing problem. Through extensive simulations, we demonstrate that ADPV
is superior in preserving supernode connectivity. In particular, ADPV achieves this
goal up to a failure of 95% of the sensor nodes; while the performance of DPV is
limited to 5%. In turn, by our adaptive algorithm, we obtain a two-fold increase in
supernode-connected lifetimes compared to DPV algorithm.

Keywords: Topology control, fault-tolerance, energy efficiency, prolonged network
lifetime, k-connectivity, heterogeneous wireless sensor networks, maximum set pack-
ing
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ÖZ

HETEROJEN KABLOSUZ SENSÖR AĞLARI İÇİN UYARLANABİLİR, ENERJİ
SEVİYESİ FARKINDA VE DAĞITIK HATA TOLERANSLI TOPOLOJİ

KONTROL ALGORİTMASI

Deniz, Fatih
Doktora, Bilgisayar Mühendisliği Bölümü Bölümü

Tez Yöneticisi : Prof. Dr. Adnan Yazıcı

Ortak Tez Yöneticisi : Dr. Hakkı Bağcı

Ağustos 2016 , 96 sayfa

Kablosuz sensör ağları savaş gözetimi, çevresel izleme ve trafik kontrolü gibi bir-
çok alanda kullanılmaktadır. Bu ağlar, algılama, işleme ve aktarma yeteneğine sahip
çok sayıda küçük sensör düğümlerinden oluşmaktadır. Bu ağları oluşturan sensör dü-
ğümleri genellikle herhangi bir altyapısı bulunmayan bir ortamda kendi kendilerine
organize bir şekilde çalışmakta ve kendilerine verilen görevi işbirliğiyle yerine ge-
tirmektedir. Bu ağların en büyük üç problemi sensör düğümlerinin sınırlı kaynakları
sebebiyle enerjilerinin tükenmesi, çalışma ortamlarının zorlu koşulları nedeniyle bazı
sensor düğümlerinin bozulması ve veri iletişiminde yaşanan problemler olarak sayıla-
bilir. Bu nedenle, bu problemlere çözüm olarak önerilen ağ ömrünü uzatan algoritma-
lar ve hata toleranslı topoloji kontrol algoritmaları yüksek öneme sahiptir. Bu tezde
heterojen kablosuz sensör ağları için Adaptif Ayrık Yol (ADPV) ve Minimum Sü-
per Düğüm Ayrık Yol (MSDPV) isminde iki algoritma sunulmaktadır. Temel alınan
heterojen mimaride kaynak bakımından zengin süper düğümler ve süper düğümlere
bağlı olması gereken sınırlı kaynağa sahip sıradan sensör düğümleri bulunmaktadır.
MSDPV algoritması hedeflenen hata tolerans seviyesi ve sıradan sensör düğümleri-
nin konumlarına göre en uygun süper düğüm sayısı ve konumlarını hesaplamaktadır.
Bu hesaplama sırasında bilinen matematiksel bir optimizasyon problemi olan mak-
simum küme kapsama algoritması kullanılmaktadır. ADPV algoritması ise uyarlana-
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bilir, enerji seviyesi farkında ve dağıtık bir hata toleranslı topoloji kontrol algorit-
masıdır. Sensör düğümlerinin herhangi bir sebeple ölmesi ve ağın hata toleransının
belirli bir seviyenin altına inmesi durumunda Adaptif Ayrık Yol (ADPV) algoritması
sensör düğümlerinin iletim güçlerini ayarlamakta, ağdaki hata toleransının belirli bir
seviyenin altına inmemesini garanti etmekte ve enerji seviyesi farkındalığı sayesinde
de yükü dengeli bir şekilde dağıtabilmektedir. ADPV algoritması iki evreden oluş-
maktadır: bilgi toplama ve alternatif yollar belirleme adımlarından oluşan başlangıç
aşaması ve sensör düğümlerinin süper sensörler ile olan bağlantıları koptuğu durum-
larda çalışan restorasyon aşamaları. Restorasyon aşamaları sırasında kullanılan alter-
natif yollar, bilinen matematiksel bir optimizasyon problemi olan maksimum küme
paketleme algoritması kullanılarak oluşturulmaktadır. Gerçekleştirilen simülasyonlar,
ADPV’nin ağın bağlantılı bir şekilde çalışmasındaki başarısını göstermektedir. DPV
algoritması ile ağdaki düğümlerin en fazla %5’i öldüğünde ağ bağlantısı koparken,
ADPV algoritması ile sensör düğümlerinin %95’i ölene kadar ağ bağlantılı bir şekilde
çalışabilmektedir. Bununla birlikte, ADPV algoritması, DPV algoritmasına göre iki
kat daha fazla bağlantılı bir ağ ömrü elde edebilmektedir.

Anahtar Kelimeler: Heterojen Kablosuz Duyarga Ağları, Topoloji Kontrol, Hata To-
leransı, Uzun Süreli Ağ Ömrü, Ayrık Yollar
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CHAPTER 1

INTRODUCTION

Wireless sensor networks (WSNs) are typically composed of large numbers of tiny

sensor nodes that are capable of sensing, processing and transmitting data over wire-

less channels. Such networks can be used in numerous fields, such as battlefield

surveillance [26, 22, 82], environmental monitoring [105, 59, 32] and traffic control

[65, 92, 14]. Sensor nodes collaborate in a distributed, autonomous and self-organized

manner to accomplish a certain task, usually in an environment with no infrastructure.

Sensor nodes in WSNs should be low-cost and should have small form-factor. This

restricts sensor nodes in many ways as they have limited energy, short transmission

range, relatively slow CPU and small memory. These limitations bring out many

challenges unique to WSNs, such as very low power consumption. Since sensor

nodes are battery powered and these batteries are usually not rechargeable, coming

up with solutions that reduce energy consumption and prolong network lifetime are

very important. Numerous studies address this problem [87, 28, 4, 12] in literature.

According to Li and Mohapatra [50], 90% of a sensor network’s energy is still avail-

able after first node dies. Despite this substantial amount of remaining energy, the

existence of highly-loaded and bottleneck nodes cause early network demise. There

are numerous studies that address balancing energy consumption among nodes to en-

sure that all nodes will run out of energy at about the same time [103]. Low-energy

Adaptive Clustering Hierarchy (LEACH) [34] is a well-known early study that uses

dynamic transmission ranges to better balance the load and prolong network lifetime.

There are also some recent studies which reestablish lost connectivity by adjusting

transmission ranges. CoRAD [38] and RESP [88] can be listed as some of those stud-
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ies. With the recent developments in the hardware of WSNs, dynamic transmission

range assignment has become even more effective [69].

Another approach to prolong network lifetime is to form a heterogeneous WSN ar-

chitecture with supernodes which act as alternative gateways to the monitoring center

of a WSN [7]. That means it is enough if the sensory data can reach any one of these

supernodes. A heterogeneous WSN with supernodes is known to be more reliable

and has longer network lifetime than the homogeneous counterparts without supern-

odes. Yarvis et al. [97] reported that heterogeneity can triple the average delivery rate

and provide a five-fold increase in the network lifetime if supernodes are deployed

carefully.

Fault-tolerance is another critical issue in WSNs. Due to the error-prone nature of

wireless communication, links may fail, packets can get corrupted or congestion may

occur [93, 62]. There are also factors that cause long-term faults in sensor nodes,

such as energy depletion, hardware failure, link breaks, malicious attacks. Multi-

hop communication multiplies the chances of faulty incidents for a packet stream

traveling from a source to a destination. Therefore, fault-tolerance methods, including

fault-tolerant topology control, are essential for improving WSN reliability as well as

network lifetime.

As stated by Liu et al. [55], most existing works on fault-tolerant topology-control aim

to obtain k-vertex connectivity between any two sensor nodes, where the topology is

guaranteed to remain connected until the failure of the kth sensor node.

In this study, the focus is on two-tiered heterogeneous WSNs, where the network

consists of two different types of nodes: resource-rich supernodes and simple sensor

nodes with limited battery power. In this network model, sensor nodes are connected

to the set of supernodes via multi-hop paths. To reflect this asymmetry, [10] pro-

poses k-vertex supernode connectivity, where each sensor is connected to at least one

supernode by k vertex-disjoint paths. In such topologies, the sensor nodes remain

connected to the supernodes as long as at most k − 1 sensor nodes fail.

Most studies on fault-tolerance propose static solutions, that is, they do not adapt the

topology to the changing network conditions. Bagci et al. [6] propose a static algo-
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rithm called the Disjoint Path Vector (DPV) to optimize total transmission power for

a given k-vertex supernode-connected network. That study does not consider residual

battery energy and disregards the unbalanced load distribution on sensor nodes. As

a result, k-vertex supernode connectivity is achieved but may not be preserved for a

sufficient amount of time.

Another critical issue in heterogeneous WSNs with supernodes is the number of su-

pernodes and their possible locations. In the literature [10, 6, 18] addresses fault-

tolerance, connectivity and heterogeneity at the same time. However, they mainly

concentrate on the transmission powers of the sensor nodes and share a common

drawback, that is, they all assume that a certain number of supernodes are initially

deployed without considering where sensor nodes are located.

In this thesis, we propose two algorithms, namely Adaptive Disjoint Path Vector

(ADPV) and Minimum Supernode Disjoint Path Vector (MSDPV), for heterogeneous

WSNs.

ADPV is a novel adaptive and distributed topology-control algorithm, which effi-

ciently constructs a k-vertex supernode-connected network topology and adapts the

topology to node failures, which in turn increases network lifetime. The contribution

is two-fold. First, the residual battery power levels of individual sensor nodes are con-

sidered to prolong k-vertex supernode connectivity. Second, an adaptive solution is

proposed to restore, if necessary, k-vertex supernode connectivity after a node failure.

MSDPV, on the other hand, has a completely different aim. It aims to locate minimum

number of supernodes into a network of sensor nodes, so that the resulting topol-

ogy becomes k-vertex supernode-connected. MSDPV is also a novel energy-aware

and distributed algorithm and it considers the desired fault-tolerance degree and the

positions of ordinary sensor nodes to determine optimal number of supernodes and

their locations. Through extensive simulations we demonstrate that MSDPV achieves

up to 40% improvement in supernode-connected lifetimes compared to random and

uniform distribution of supernodes. When MSDPV algorithm is used together with

ADPV algorithm, both supernode locations and transmission powers of the sensor

nodes is optimized and a more efficient solution for heterogeneous WSNs is being

formed.
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The remainder of this thesis is organized as follows: Chapter 2 gives a brief overview

of WSNs and presents a background for our research. Chapter 3 discusses the related

studies in the literature that address fault-tolerance and connectivity restoration in het-

erogeneous WSNs. In Chapter 4, we present our proposed adaptive topology-control

solution and in Chapter 5, we present our solution to supernode placement problem

that calculates minimum number of resource-rich supernodes and their possible lo-

cations. The results for simulation experiments are presented in Chapter 6. Finally,

Chapter 7 concludes the thesis.
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CHAPTER 2

BACKGROUND

2.1 Overview of Wireless Sensor Networks

Wireless sensor networks (WSNs) consist of tiny sensor nodes deployed over a geo-

graphical area for monitoring physical phenomena like temperature, humidity, vibra-

tions, and so on [3]. In general, sensor networks support new opportunities for the

interaction between humans and their physical world and are used in a wide range of

areas, such as military applications, public safety, medical applications, environmen-

tal monitoring, commercial applications. Due to the recent technological advances

in low-power digital and analog circuitry, wireless communications and microelec-

tronic systems, the manufacturing of small, low-cost and multifunctional sensors has

become technically and economically feasible. Typically, a sensor node is a tiny de-

vice that includes four basic components: a sensing unit for acquiring data from the

environment, a processing unit to process the gathered data, an antenna used for wire-

less communication and data transmission, and a battery unit to supply the required

energy.

2.2 Heterogeneous WSNs

Usually, there are two types of sensor nodes that build up the architecture of homo-

geneous WSNs. These are sensor nodes and sink nodes.

• Sensor nodes are the main entities that form the WSN architecture. Their main

objectives are making discrete, local measurement about the environment sur-
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rounding them, forming a wireless network by communicating over a wireless

medium, collecting data from its neighbors and routing it to the sink nodes.

• Sink nodes are also known as base stations that have higher resources in terms

of battery power, computation capability, communication range and storage

capacity. This also increases their costs and only a few sink nodes exist in the

whole WSN. Collected data from the sensor network is routed back to the sink

nodes and sinks usually inform user application regarding the gathered data.

Contrary to homogeneous WSNs, heterogeneous WSNs consist of sensor nodes with

different capabilities, such as different computing power, sensing range, communica-

tion range or energy capacity [21]. These differences make topology control and de-

ployment of sensor nodes in heterogeneous WSNs more complex than homogeneous

counterparts, but provides more flexibility in the deployment process [94]. Also, a

heterogeneous WSN is known to be more reliable and has longer network lifetime

than the homogeneous counterparts. Yarvis et al. [97] reported that heterogeneity

can triple the average delivery rate and provide a five-fold increase in the network

lifetime.

Nodes with superior capabilities compared to ordinary nodes are called supernodes.

Supernodes are also called as actors in wireless sensor and actor networks (WSANs)

and they are usually well-equipped nodes in terms of battery power, computation ca-

pability and communication range [68]. They are usually located inside the sensor

field and they act as alternative gateways to the monitoring center of WSNs [7]. That

means it is enough if the sensory data can reach any one of the supernodes. Heteroge-

neous deployments usually contain a mixture of resource-rich supernodes and much

cheaper sensor nodes with limited computation and communication capabilities. In

this way, a mixed deployment achieves a balance between performance and cost [94].

There are also some other types of heterogeneity such as nodes with different trans-

mission powers, nodes with different battery supplies, relay nodes together with the

regular sensor nodes. Relay nodes are quite expensive sensor nodes and generally

used for forwarding the data traffic originated from the sensor nodes to the sink nodes

and most of the studies regarding heterogeneity address this type of sensor networks.
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In this study, the focus is on two-tiered heterogeneous WSNs, where the network

consists of two different types of nodes: resource-rich supernodes and simple sensor

nodes with limited battery power. In this network model, sensor nodes are connected

to the set of supernodes via multi-hop paths. To reflect this asymmetry, [10] pro-

poses k-vertex supernode connectivity, where each sensor is connected to at least one

supernode by k vertex-disjoint paths. In such topologies, the sensor nodes remain

connected to the supernodes as long as at most k − 1 sensor nodes fail.

In this study, we apply two types of heterogeneity. First, we use supernodes together

with sensor nodes to form a hierarchical network structure. Second, we adapt the

transmission powers of the sensor nodes to the changing network topology and form

a heterogeneous network structure with different transmission ranges. In this way,

we aim to prolong connected lifetime of the network, and at the same time preserve

fault-tolerance property of the network.

2.3 Design Factors and Requirements of WSNs

A sensor node by itself has severe resource constraints, such as limited battery power,

computation and communication capabilities. However, a group of sensors collabo-

rating with each other can accomplish much bigger tasks efficiently.

Sensor networks may contain hundreds to thousands of sensing nodes that are aim-

ing to send its sensed data to a base station and it is totally desirable to make these

nodes as energy efficient as possible. Also, network protocols must be designed to

achieve fault-tolerance in presence of unexpected node failures. Moreover, bandwidth

of wireless channels is very limited and shared by all sensors in the network. Thus,

routing protocols and topology control algorithms should be able to perform local

collaboration to reduce bandwidth requirements.

Also, sensor nodes have limited processing capability, storage capacity and commu-

nication range. In order to make an application for WSNs, it is necessary to consider

all these limitations which make the work very challenging. In the literature, many

design factors have been proposed by many researchers. In this section, we intend

to describe and give more detail on some of these limitations, design factors and re-
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quirements of algorithms and protocols for WSNs. In this study, we mainly focus on

connectivity, fault-tolerance and power consumption design factors, but also consider

other limitations like hardware constraints, scalability, dynamic network structure and

self-configuration.

2.3.1 Power Consumption

In mobile and ad hoc networks, power consumption is not the most important con-

sideration since the power resources can be recharged or replaced by the user. For

WSNs, sensor nodes can only be equipped with a limited power source. In most

applications, even the replacement of power resources is impossible. Usually sen-

sor nodes are deployed in a hostile environments, which makes it impossible or at

least inconvenient to recharge the battery. On the other hand, lifetime requirements

of WSN applications can be weeks to months or even years [71]. Therefore, energy

should be used very sparingly and solutions to prolong network lifetime in WSNs is

of considerable importance.

In the literature, there are several approaches to minimize the network’s total energy

consumption and improve network lifetime. Some of these approaches are adjusting

transmission powers [9], developing energy-efficient MAC or routing protocols [77,

57, 64], and putting some sensor nodes into sleep mode and using only a necessary

set for sensing and communication [86].

For most applications, algorithms proposed to minimize power consumption also

needs to consider quality-of-service up to some point. Since dis-functioning of few

nodes can also cause significant topological changes and might require re-routing of

packets which will consume more power, while making a trade-off, more importance

and higher privilege is given to power consumption, but still with the aim of reducing

overall power consumption, connectivity and fault-tolerance requirements are also

needed to be considered.
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2.3.2 Connectivity

In WSNs, the information collected by the sensor nodes is needed to be sent to data

collection centres and this is only possible if there exists a path from each node to the

collection centre. Therefore, connectivity of a WSN is also one of the most impor-

tant design factors and is usually studied by considering a graph associated with that

WSN. A network is called connected if its associated graph is connected and a graph

is connected if and only if there exists a path between any pair of its vertices [20].

In WSNs, if there exists a path (single or multi-hop) between a sensor node to any of

the sink nodes, then the sensor node is said to be connected. If every (alive) sensor

node in the network is connected, then the network is also considered as connected. In

WSNs, each sensor node has a communication range that determines the maximum

distance it can transmit data and sensor nodes communicate with the nodes within

their range. In WSNs, with the increase in transmission power, communication range

also increases and this leads to the increased probability of network connectivity.

However, the increase in power consumption is not directly proportional, but much

higher than the increase in the communication range. Also, larger power results in

severe interference within the network. On the other hand, reducing the commu-

nication range reduces the probability of connectivity and increases the number of

hops required to reach the destination. Therefore, while proposing topology control

algorithms for WSNs this tradeoff should be carefully studied.

2.3.3 Coverage

WSNs are used to monitor a given field of interest for changes in the environment and

coverage is usually defined as a measure of how well the sensor network monitors the

field of interest [60]. The sensor node’s view of the environment that it is situated in

is limited both in range and in accuracy. This means the ability of sensor nodes to

cover physical area of the environment is limited.

The coverage problem for WSNs has been studied extensively in recent years, es-

pecially when combined with connectivity and energy efficiency [24]. According

to different objectives and application requirements there are two types of coverage

9



problems: area and border coverage [96]. Area coverage problem asks for the min-

imum number of sensor nodes when the region is covered by a connected WSN.

Similarly, border coverage requires every point on the border line to be covered by a

connected WSN.

2.3.4 Fault-tolerance

Another very critical design factor in WSNs is fault-tolerance. Causing from the

lack of power, environmental interference or physical damage, some sensor nodes

may be blocked or failed to work. Fault-tolerance is defined as the system to work

correctly under such circumstances and sustain sensor network functionalities without

any interruption [46].

Fault-tolerance can be considered for both coverage and connectivity problems. For

connectivity, in order to establish fault-tolerance it is useful to consider stronger forms

of connectivity, such as k-connectivity, in which the network remains connected even

if k − 1 nodes are removed. If a network is k-connected (k ≥ 2), it has better fault-

tolerance than if it is merely 1-connected. It is stated that ensuring k-connectivity ex-

tends the network lifetime if nodes fail at random times [49]. Similarly for coverage,

it is desirable for each point to be tracked by at least k sensing nodes for establishing

stronger coverage.

Fault-tolerance requirement is subject to change according to the environmental con-

ditions of the sensor nodes. For example, if the sensor nodes are deployed in a house

environment to keep track of sound level, it is not necessary for the system to have a

high-level of fault-tolerance, since this kind of sensor networks is not easily damaged

or interfered. Therefore, during the design phase of WSNs, fault-tolerance degree of

the network should be determined according to application needs and environmental

conditions.

10



2.3.5 Scalability

Depending on the application, number of sensor nodes deployed in the sensing area

may be hundreds or even thousands. The routing scheme should not be dependent on

the number of sensor nodes and should be able to work with huge number of sensor

nodes. Also, sensor network routing protocols should be scalable enough to respond

to density of events in the environment. For example, when the human body is being

tracked, the density of the sensor nodes and generated event packets will be extremely

high. Therefore, density of the nodes should also be considered in designing the

scalability of the sensor networks.

2.3.6 Hardware Constraints

Sensor node consists of four main components: a sensing units, processing unit, trans-

mission unit, and power unit. They may also have application-dependent additional

components such as position/location finding systems, power generator, and mobi-

lizer. Sensing units are usually composed of two subunits: Sensors and ADC (Analog

to Digital Converter). Analog signals produced by sensors based on the observed

phenomenon are converted by ADC to digital signal and fed into the processing unit

to be processed. Processing unit, generally associated with storage unit, manages the

procedures that make the sensor node collaborate with other nodes to perform the

assigned sensing tasks. Transmission unit connects the sensor node to the network.

Power unit may be supported by a power scavenging such as solar cells. Sometimes,

a mobilizer is needed to move sensor nodes to carry out the assigned tasks. There-

fore, while designing an algorithm or protocol in WSNs, all these constraints should

be taken into account.

2.3.7 Data Aggregation/Data Fusion

In WSNs, as sensor networks made of large number of sensor nodes; network can

easily be congested with the flooding information. A solution to data congestion in

sensor networks is to use computation to aggregate or fuse data within the sensor

nodes, and then transmit only the aggregated data to the controller. Especially for
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dense deployments like body area networks, where a huge upstream traffic can be

generated, data aggregation is a quite important design factor [48].

2.3.8 Security

WSNs suffer from many constraints, including limited energy resources, computation

capability, and small memory. These constraints make security in WSNs quite chal-

lenging. For example, the limited energy and processing power makes use of public

key cryptography in WSNs almost impossible [90]. Some of the security threats in

WSNs are categorised as follows [75]: passive information gathering, false node,

node outage, supervision of a node, message corruption, and denial of service. Espe-

cially for mission critical applications, like military applications, considering security

in WSNs is quite essential [39].

2.3.9 Self-Configuration

Because of the unattended work of sensor nodes in dynamic environments; self-

configuration to establish a topology that supports communications under severe en-

ergy constraints is quite important. Also, since the densely deployed sensor nodes in

a sensor field may fail due to many reasons (e.g., lack of energy, physical destruction,

environment interference, communications problem, inactivity, etc.) and new nodes

may join the network, sensor nodes should self-organize to adopt to the changing

environment and topology. Thus, self-configuration is also one of the critical design

issues in almost all WSN applications.

2.3.10 Network Dynamics

In many applications, the movement of sensor nodes or the base station (sink) is quite

important. This means sensor nodes are mobile nodes (i.e., not stationary as assumed

by many of network architectures). There are several recent studies regarding mobile

sink nodes [43, 44]. In this approach, sink nodes move within the sensing field,

collect data from the sensor nodes and bring them back to the base. In this way,
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due to reduced multi-hop communication, significant energy-saving and prolonging

network lifetime is possible.

Also, in addition to using mobile nodes, the specific sensed phenomenon may ei-

ther be dynamic (e.g., target detection/tracking applications) or stationary (e.g., forest

monitoring) depending on the applications. Therefore, while designing an algorithm

for WSNs, considering network dynamics is also quiet important.

2.3.11 Quality of Service

For some applications, data delivery within a bounded latency have great importance.

If the application does not comply with the time constraints, the sensed data that

delivered after certain latency will be useless. In other applications the conserva-

tion of power is more important than the quality and latency of the delivered data.

Hence; there is a tradeoff between the quality of service/the quality of data sent and

the energy conservations or consumption depending on the applications. For instance,

although mobile sinks that collect sensed data can significantly prolong network life-

time, because of the low movement speed of mobile nodes, their usage is limited for

time-constraint applications [98]. During our studies, we have given more importance

to the energy conservation, but we also ensure some level of quality of service with

the constraints like maximum-hop-count for the longest possible paths.

2.4 Topology Control in WSNs

Unit Disk Graph (UDG) is a commonly used model to reflect the behaviour of sen-

sor nodes. In this model, it is assumed that all the sensor nodes has a fixed radius

for transmission ranges and all the nodes within their range are neighbours [47]. Al-

though, UDG is a simple yet effective approach, it consumes too much energy, which

is the scarcest resource in WSNs. Topology control is a method used to close this

gap of UDG using the multiple energy level support of the sensor nodes. The current

sensor nodes commonly support multiple energy levels and under different energy

levels, transmission ranges of the sensor nodes also vary [51]. Topology control is

defined as controlling the set of neighbour nodes to forward the messages to by ad-
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justing transmission ranges (by adjusting energy levels) and/or by selecting specific

nodes [89].

The primary goal of topology control in WSNs is to prolong network lifetime while

preserving connectivity. Besides reducing the energy consumption, topology control

also reduces radio interference, which increases network’s traffic carrying capacity. In

the literature there are several topology control algorithms [3, 51, 91, 52]. According

to their aims topology control algorithms are categorized into two groups [74]:

• In the homogeneous topology control, all the sensor nodes have the same trans-

mission range and relevant literature asks for the minimum common value for

the transmission range that keeps the network connected.

• In the nonhomogeneous topology control, sensor nodes are allowed to have dif-

ferent transmission ranges, but the resulting network still needs to be connected.

In this study, we propose a nonhomogeneous topology control algorithm that

considers residual battery power levels of the sensor nodes to determine their

transmission ranges.

2.5 Adaptive Approaches in WSNs

There are several approaches in WSNs that adaptively change network topology dur-

ing networks’ lifetime [54, 29].

Low-energy Adaptive Clustering Hierarchy (LEACH) [34] is a well-known early

study that uses adaptive transmission ranges to better balance the load and prolong

network lifetime. LEACH is a clustering based protocol that utilizes randomized ro-

tation of local cluster heads that are used as routers to the sink. According to the

changing cluster heads, sensor nodes adjust their transmission power to reach its new

cluster head. The main purpose of the protocol is evenly distributing the energy load

among all sensor nodes. Since sensor nodes transmit their data only to their clus-

ter head, rather than all sensor nodes, LEACH enables significant energy savings.

LEACH enables scalability and robustness by using localized coordination and it es-

timates optimal number of cluster heads to be 5% of the total number of sensor nodes.
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In order to reduce amount of information carried between sensor nodes, LEACH also

uses data fusion in the cluster heads.

One other example to adaptive approaches is Adaptive Self-Configuring sEnsor Net-

works Topologies (ASCENT) [11]. ASCENT is an adaptive solution for making sure

network is connected throughout its lifetime. It is build on the notion that, as density

increases, only a subset of the nodes is necessary to establish a routing forwarding

backbone and therefore, initially only some nodes are active. Passive nodes listen to

packets but do not transmit. If the number of active nodes is not large enough, the sink

node may experience a high message loss from sources. The sink then starts sending

help messages to solicit neighbouring nodes that are in the passive state to join the

network by changing their state from passive to active. This process continues until

message loss rate experienced by the sink is below a predefined threshold. The pro-

cess will restart when some future network event like node failure or environmental

effect causes packet loss again.

2.6 Placement of Sink Nodes in WSNs

In WSNs, sensor nodes can be placed carefully to engineered positions or thrown in

bulk to random positions [3]. Each of these methods has their own advantages and

disadvantages. Placement of the sensor nodes obviously has an important effect on

the resource management of WSNs [19]. On the other hand, it is not always feasible

to place thousands of tiny sensor nodes to known locations. First, usually number of

sensor nodes to be deployed is very large and second, the application environment

is usually not completely accessible. Because of these reasons, especially for the

ordinary sensor nodes, it is usually preferable to sacrifice some more resources than

work on the placement problem.

Most of the existing studies on placement of sensor nodes aim to minimize number of

required sensor nodes, and at the same time preserve application specific constraints

like coverage, connectivity or fault-tolerance [30, 41, 79]. In this study, we consider

determining the minimum number of required supernodes and placing them to known

locations according to randomly distributed sensor node locations. We also have the
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constraints of preserving connectivity and fault-tolerance factors.

Our approach is different than the relay node placement approaches that aim to re-

store connectivity. The aim in the relay node placement algorithms are connecting

sensor nodes within each other or sink nodes using relays. In this study we aim to

place supernodes, where the traffic is destined to, so that network becomes k-vertex

supernode-connected.

In the literature there are several studies that address multiple sink placement prob-

lem [16, 78, 72].
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CHAPTER 3

RELATED WORK

In this chapter we give a brief overview of some of the prominent recent work ad-

dressing fault-tolerance and connectivity restoration in WSNs. We also give a brief

overview of the DPV algorithm [6].

Fault-tolerance techniques can be categorized into four [83]:

• Prevention attains network connectivity and establishes redundant links/nodes

when necessary.

• Detection monitors traffic and sends alerts when any indication of fault hap-

pens, such as a decrease in packet delivery rate, which would imply a packet

loss, interruption, or delay.

• Isolation diagnoses and identifies the alert.

• As for recovery, after detecting and identifying the fault, the system should be

able to recover in either a centralized or distributed manner. Note that due to

the nature of WSNs it is essential for the recovery scheme to be a distributed

method.

The replication and redundancy of components prone to failure is the most commonly

used method for fault prevention and recovery [55]. For instance, if some nodes

have problems and fail to sense the environment, the redundant nodes in the vicin-

ity can still provide data. Keeping redundant links or multiple paths also provides

fault-tolerance when some communication links are broken due to node failures or

communication errors.
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3.1 Connectivity Restoration in WSNs

Due to the error-prone nature of wireless communication, links may fail, packets can

get corrupted or congestion may occur [93, 62]. There are also factors that cause

long-term faults in sensor nodes, such as energy depletion, hardware failure, link

breaks, malicious attacks. As a result of these failures, nodes may leave some areas

uncovered and reduce the accuracy of the collected data. However, the most seri-

ous consequence is when the network gets disconnected. Since losing connectivity

prevents data exchange and coordination among sensor nodes, it has a very negative

effect on the applications. Therefore, restoring the overall network connectivity is

very crucial. In WSNs, there are three approaches for restoring connectivity: mobile

node relocation, relay node placement and topology-control via transmission range

adjustment. In this section we briefly discuss these approaches.

3.1.1 Mobile Node Relocation in WSNs

In the first approach, as the nodes are mobile, the main idea is to reposition the ex-

isting alive nodes to restore connectivity. The general objective in this approach is

to minimize the total distance traveled by the involved nodes. One example of this

method is PADRA, developed by Akkaya et al. [2]. In this approach, each node

chooses one of its neighbors to be the failure handler, which will start recovery if

the node dies. The restoration process only occurs if the entire network gets discon-

nected, in which case the closest node that can take the dead node’s place is relocated

to that position. Distributed Actor Recovery Algorithm (DARA) [1] is another simi-

lar approach that aims to restore connectivity using a localized and distributed algo-

rithm. Recovery through Inward Motion (RIM) [100] is also a distributed approach

that restores connectivity by relocating one of the neighbors of the dead node. While

PADRA and DARA requires 2-hop neighborhood information, RIM requires 1-hop

neighborhood information. However, all these approaches mainly handle single node

failure and cannot be used in cases of multi-node failures or when nearest suitable

node is multi-hops away.

Autonomous Repair (AuR) [36] is another approach handles multi-node failures using
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mobile nodes. The main idea of this approach is regrouping the healthy nodes in the

center of the area by repositioning them towards one another. In this approach, all

nodes assumed to be mobile and in case of a network partitioning, it is expected for

so many nodes to be repositioned.

Another recent such approach is Resource Constrained Recovery (RCR) [37] pro-

posed by Joshi and Younis. In this approach, not the alive sensor nodes, but relay

nodes are repositioned to reconnect the disjoint segments of the partitioned network.

3.1.2 Relay Node Placement in WSNs

The objective in the relay node placement problem is to place minimum number of

relay nodes in a region where sensor nodes are already deployed so that the resulting

topology is connected and/or fault-tolerant. In the literature there are several such

studies [30], [56], [41], [84], [104], [13]. There are also some recent studies like [76]

to determine least number of relay nodes to maintain multi-hop paths between every

pair of sensor nodes.

As stated by Liu et al [55], existing solutions to obtain fault-tolerance aim to obtain k-

vertex connectivity between any two sensor nodes and achieve that using least number

of relay nodes. Although such optimization is a very challenging work and proven to

be NP-hard [53], it does not conform with the general objective of WSN applications.

For WSN applications, general objective is to send the received data to the sink nodes.

Therefore, it is more convenient to have fault-tolerant paths from sensor nodes to the

sinks. Our aim differs from the existing solutions at this point. We aim to provide

fault-tolerant disjoint paths between every sensor node to the set of supernodes, but

not between every pair of sensor nodes.

Recently, Azharuddin and Jana [5] proposed a method to place minimum number of

additional relay nodes to achieve fault-tolerance for heterogeneous WSNs. However,

they do not allow sensor-to-sensor communication and thus locate relay nodes in such

a way that there is at least k relay nodes within the transmission range of each sen-

sor node. Our approach, on the other hand, allows sensor-to-sensor communication

and hence potentially decreases the required number of supernodes to be placed to
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achieve a certain degree of fault-tolerance. GRASP-ARP [79] is another relay node

placement approach that aims to deploy minimum number of relay nodes, so that in

the resulting network each sensor node is connected to the sink nodes by at least k

disjoint paths. In terms of the resulting network topology, GRASP-ARP has similar

intentions with our approach, however being a centralized approach restricts its usage

in WSN applications.

3.1.3 Topology-control via transmission range adjustment

These first two approaches, that is, mobile node relocation and relay node placement,

may not be practical in real-world scenarios because sensor nodes are often deployed

in remote and inhospitable regions with harsh environments that render manual node

placement or relocation infeasible. Note that due to the dynamic nature of WSNs,

node placement and/or relocation must be repeated periodically. In addition, these

approaches require overall network information, something that is also not suitable

for most real-world applications.

As a remedy to the problems discussed above, topology-control emerges as a third

approach for connectivity restoration. In this approach, the topology is controlled

by adjusting the sensor nodes’ transmission ranges. One example of this method

is RESP [88], which is an energy-aware topology-control algorithm that ensures k-

edge connectivity for flat networks. The RESP algorithm assumes sensor nodes are

aware of their location information via GPS or other localization techniques, and pe-

riodically updates the network topology to adapt to sensor nodes’ residual battery

power levels. Because of ensuring k-edge connectivity, but not k-vertex connectiv-

ity, RESP cannot keep the network connected up to k − 1 node failures. Another

recent approach, Energy-harvesting Heterogeneous WSN (EHWSN) [99], also aims

to preserve k-vertex supernode-connectivity for heterogeneous WSNs. EHWSN is a

centralized approach and ignores residual battery power levels, therefore not scalable

and not energy-aware.
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3.2 DPV Algorithm

The aim of the DPV algorithm [6] is to minimize the total transmission power of a

WSN while maintaining k-vertex disjoint paths from each sensor node to the set of

supernodes. The DPV algorithm gets a k-vertex supernode-connected network topol-

ogy as an input and generates a subnetwork consisting of the same set of sensors but

fewer connections. The output of the DPV algorithm is a total transmission power op-

timized and k-vertex supernode-connected network topology. Consider the example

topology given in Figure 3.1, which consists of one supernode and three sensor nodes.

When the aim is to provide one-vertex supernode connectivity, DPV removes three

edges and optimizes the given network topology, as in Figure 3.2. The main con-

tribution of DPV is its efficiency in computing such network topologies. The DPV

algorithm requires O(n∆2) message transmissions, whereas the best alternative [10]

incurs O(∆5) messages, where n is the number of sensor nodes and ∆ refers to the

maximum degree of a sensor node. Note that we assume a dense network, where ∆ is

sufficiently large. The DPV algorithm consists of five main stages:

1. Collecting path information and calculating disjoint paths,

2. Calculating the set of required neighbors,

3. Notifying the nodes in the disjoint paths and updating the required neighbors,

4. Removing the non-required neighbors and

5. Reducing the power level to a point sufficient only to reach the farthest required

neighbor.

Among these stages, first one is the most crucial one. Most of the work is done during

this stage. It is initiated by the supernodes through ‘Init’ messages. An ‘Init’ message

contains the ID of the supernode that created the message and can only be transmitted

by a supernode. When a sensor node receives these messages it updates its local

path information, where disjoint paths to the set of supernodes are stored. If there

is an update in this path list, sensor node creates and transmits a ‘PathInfo’ message

containing its local path information. Upon receiving a ‘PathInfo’ message, each

sensor node computes the disjoint paths to the set of supernodes by using the union
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Figure 3.1: Initial network.

Figure 3.2: Optimized network.

of local data and the path information received from the ‘PathInfo’ message. If the

incoming message changes the disjoint paths and decreases path costs, sensor node

updates its local path data and notifies its 1-hop neighbors by transmitting a ‘PathInfo’

message. This process continues until no more update occurs in the network.

As a result of the first phase, each sensor node calculates k pairwise disjoint paths to

the set of supernodes in their local path information table. During the second phase,

DPV calculates its required neighbors according to the chosen disjoint paths. In the

third phase, each sensor node initiates a ‘Notify’ for each disjoint path to inform in-

form the nodes on the paths regarding the path information. When a sensor node

receives a ‘Notify’ message, it marks its 1-hop neighbors on the disjoint path as re-

quired neighbors and forwards the message to the next node on the path. In the forth

stage, neighbors that are not marked as required are removed from the neigbor list

and finally, transmission power is adjusted to reach the farthest remaining neighbor.
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3.3 Multiple Sink Placement

Due to the scarce energy supplies of WSNs, it is necessary to design energy-efficient

architectures and optimize energy consumption. In small networks, sensors can send

their data directly to the sink node. In larger networks, multi-hop communication

is required and most of the energy is spent for data relaying. Especially the sensors

within one-hop distance from the sink have to relay the data for the other sensor nodes

and most of their energy is spent on data relaying. Therefore, in order to use the en-

ergy efficiently, it is important to shorten number of hops a packet has to travel until

reaching the sink and balance the relaying job among sensor nodes. Deploying mul-

tiple sinks is a method to shorten these hop counts, balance relaying job and prolong

network lifetime [8, 27]. Multiple sink usage also improves various network perfor-

mance including average data delivery latency [102] and system throughput [67].

WSNs experience failure problems due to various factors such as power depletion,

environmental impact, radio interference, dislocation of sensor node and collision.

The problem of missing sensor node and communication link errors are inevitable

in WSNs. In addition to failures of sensor nodes, sinks may also fail due to differ-

ent reasons such as hardware failure, software failure or intentional attacks [42, 70].

Therefore, fault-tolerance is an important design factor that should be considered

during the deployment of sink nodes. Deployment solutions are mainly designed to

ensure coverage and connectivity requirements of WSNs. In multiple sink placement

problem, the aim is to ensure network’s connectivity while keeping the maximum

hop-count constraint. Together with fault-tolerance requirements, sinks are placed so

that all the sensor nodes are connected to multiple sinks or connected to the set of

sinks with fault-tolerant paths. In this way, multiple sink placement solutions sup-

port fault-tolerance by ensuring the existence of alternative routes to the sinks when

failure occurs.

In general, finding minimum number of required sink nodes is NP-hard [73] and de-

termining locations for these sinks is NP-complete [8]. Since optimal sink placement

has proved to be NP-complete, several sub-optimal heuristics were proposed with

the objective of balancing energy consumption [95, 58], reducing packet delivery la-

tency [102] and meeting fault-tolerance requirements [80]. Xu and Liang [95] and
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Oyman and Ersoy [61] aim to minimize number of deployed sink nodes, while other

mentioned approaches get number of sink nodes as an input and deploy sinks into

precomputed locations. Sitanayah et al. [80] and Xu and Liang [95] are the only two

approaches that take maximum hop-count into consideration and Sitanayah et al. [80]

is the only approach that considers fault-tolerance in the multiple sink placement

problem. None of the multiple sink placement approaches consider residual energy

levels of the sensor nodes and also none of the mentioned approaches is distributed.

In [66], Poe and Schmitt discuss four different sink placement strategies. These are:

Random Sink Placement (RSP), Geographic Sink Placement (GSP), Intelligent Sink

Placement (ISP) and Genetic Algorithm-based sink placement (GASP). Among these,

GSP and GASP are most efficient strategies. Recently, Pardesi and Grover [63] im-

proves GSP and proposed a new strategy, namely I-GSP, that divides the network in

concentric circular rings around the central circular region. In [15], Dandekar and

Deshmukh propose an algorithm named Optimal Multiple Sink Placement (OMSP)

that divides the network into clusters for the given number of sink nodes and calcu-

lates locations for them using particle swarm optimization. Das et al. [17] proposes

two algorithms, namely Candidate Location with Minimum Hop (CLMH) and Cen-

troid of the Nodes in a Partition (CNP), and they also compare their results with

Geographic Sink Placement (GSP) strategy. Das et al. assume a partitioned network,

where partitions is given as an input and try to find locations for the cluster heads that

will minimize transmission delay and extend network lifetime.

In this study, we present an energy-aware and distributed solution to determine sink

positions and form a fault-tolerant network topology. In terms of the intended network

topology, our aim differs from all existing solutions. Only one of the existing multiple

sink placement solutions addresses fault-tolerance. However, that study only consid-

ers sink failures, but not sensor node failures, and provides ensures sensor nodes are

connected to multiple sinks [80]. Greedy-MSP and GRASP-MSP are the two ap-

proaches mentioned in [80] to calculate multi-hop paths to multiple sinks. In this

study, we consider both sink and sensor node failures and also take residual energy

levels of the sensor nodes into account to calculate number of required sink nodes and

their locations and achieve a more robust network topology.
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3.4 Power Consumption Model

Our ADPV algorithm aims at prolonging network lifetime, and thus it should first

model the amount of time until the battery powers of the sensor nodes are depleted.

The ADPV algorithm uses a well-known power consumption model, proposed by

Heinzelman et al. [33, 35]. This approach is based on the observation that the main

factor in WSN power consumption is data communication, which consists of two

factors: data transmission and data reception. In this model, the power to transmit a

bit to a distance of d is

Pt(d) = α1 + α2 × dn, (3.1)

where α1 and α2 are parameters that depend on the transmitter circuitry, and n is

the path loss exponent for the environment, which often has a value between 2 and

4. In our power consumption model, α1, α2, and n are assumed to be 50 nJ/bit,

100pJ/bit/m2 and 2, respectively.

In our model, the energy consumption for data reception is a constant value per bit.

We represent this constant with β and assume it equals 50 nJ/bit.

For our experiments, we assume all sensor nodes are sensing the environment and

generating traffic at a fixed rate. We also assume that data aggregation is applied and

that all nodes on a path carry the same load. Therefore, total power consumption for

receiving a bit and transferring it to the next hop equals:

P f (d) = β + α1 + α2 × dn. (3.2)

If the residual battery energy level of sensor node i is denoted as ei, then the lifetime

of node i equals:

li = ei/((rri × β) + (rri + rgi) × (α1 + α2 × dn
i )), (3.3)

where rri is the incoming data rate to node i, rgi is the data rate generated in node i

and di is the transmission range.
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CHAPTER 4

ADAPTIVE DISJOINT PATH VECTOR ALGORITHM

In this chapter, we present our novel adaptive and distributed algorithm, ADPV, which

aims to construct and maintain a k-vertex supernode-connected topology to prolong

the k-vertex supernode-connected lifetime of the network. The ADPV algorithm con-

trols the topology by adjusting the transmission ranges of sensor nodes, and to comply

with real-life situations it considers node failures. The algorithm requires only one-

hop neighborhood information and constructs the network topology by a series of

message exchanges.

The ADPV algorithm consists of two phases: initialization and restoration. It collects

necessary information and builds an initial topology during the initialization phase.

Whenever a node failure breaks k-vertex supernode connectivity, ADPV restores con-

nectivity within the restoration phase. Similar to DPV, ADPV utilizes disjoint paths

and within each restoration phase each sensor node decides whether or not to change

its disjoint paths. At the end of each restoration phase, sensor nodes’ transmission

ranges are adjusted according to the intended topology. The main differences be-

tween ADPV and DPV are as follows:

• ADPV is an adaptive approach, adapting to node failures and remaining energy

levels, whereas DPV is a static one.

• ADPV considers residual battery power levels of sensor nodes, therefore it is an

energy-aware solution. DPV on the other hand ignores sensor nodes’ remaining

energy levels.

• ADPV balances energy consumption and optimizes the lifetime of disjoint
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paths, as opposed to DPV, which optimizes the total transmission power of

sensor nodes.

• ADPV significantly prolongs both one-vertex and k-vertex supernode-connected

lifetimes of the network with its solutions for restoration path selection, k-

vertex supernode-connectivity verification and connectivity restoration.

4.1 Network Model

Consider a mission critical border surveillance system that is integrated with a two-

tiered heterogeneous wireless sensor network. In this network, there are supernodes

located on each tower and regular sensor nodes that are uniformly distributed into the

target area as shown in Figure 4.1. In this network, sensor nodes are responsible for

detecting potential intrusion activities and inform the towers by forwarding data to

the supernodes located at those towers. Since it is common to lose some sensor nodes

because of energy depletion, harsh environmental conditions or hostile activities of

intruders, it is desired for every sensor node to have more than a certain number of

independent paths to the supernodes. In the figure, we can see a soldier crossing the

border, and a sensor node close-by informs some towers via three disjoint paths.

1 

Figure 4.1: Sample scenario.
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This network model is first described in [10], and also used by the DPV algorithm.

In this model, the network consists of M supernodes that are deployed at known lo-

cations and N sensor nodes that are randomly distributed in the 2D plane so that

M << N. We assume the supernodes have transmission ranges long enough to com-

municate with the base station or any other supernode in the network. Therefore, we

do not model and are not concerned with supernode-to-supernode communication.

We are only interested in sensor-to-sensor and sensor-to-supernode communication.

We represent the initial network topology with an undirected weighted graph G =

(V, E), where V is the set of nodes and E = {vi, v j | dist(vi, v j) < Rmax} is the set of

edges; dist(vi, v j) defines the distance between nodes vi and v j.

4.2 Problem Definition

We first give the formal definition of k-vertex supernode connectivity.

Definition 4.2.1 (k-vertex supernode connectivity [10]) An heterogeneous WSN is

said to be k-vertex supernode-connected if removal of any k − 1 sensor nodes does

not disconnect any sensor node from all the supernode(s), that is, each sensor node

is still connected to some supernode(s). �

Initially we are given a k-vertex supernode-connected network with M supernodes

and N sensor nodes, where the sensor node transmission range can be adjusted up to

a predefined constant Rmax. As we model node failures, the number of active sensor

nodes decreases during the network lifetime. We use Nt to denote the set of active

sensor nodes at time t, where time is represented by discrete time intervals. Our

problem is to determine the transmission ranges of all active sensor nodes at any time,

such that the resulting topology is still k-vertex supernode-connected, so that network

lifetime can be improved. Now, we formally state the problem of maximizing fault-

tolerant lifetime.

Definition 4.2.2 (Fault-tolerant lifetime maximization) Given a k-vertex supernode-

connected WSN G = (V, E) with a set M ⊂ V of supernode vertices and a set Nt ⊂ V
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of active sensor node vertices, such that M ∩ Nt = ∅, find a set of edges F ⊂ E such

that G(V, E −F) is k-vertex supernode-connected and
∑|Nt |

i=1 li is maximized, where li is

the lifetime of the minimum lifetime path among the disjoint paths of v ∈ Nt. �

4.3 Residual Battery Power Level-Aware Disjoint Path Selection

The ADPV algorithm adapts the network topology dynamically during network oper-

ation by adjusting the sensor nodes’ transmission ranges according to residual energy

levels. For instance, if a node has low remaining energy, it should choose closer

neighbors; otherwise, it may choose farther ones. In this way, we attain a fair distri-

bution of total residual energy among sensor nodes.

The DPV algorithm is not an energy-aware solution, and ignores sensor nodes’ resid-

ual energy levels. This design may cause early battery depletion, since a node with

low residual energy may be assigned to a high transmission power range. The ADPV

algorithm, on the other hand, takes residual energy levels into consideration when

selecting disjoint paths. Estimating the lifetime of each sensor node on a path lies at

the core of our approach. The motivation behind this method is that a chain is only as

strong as its weakest link, and thus a path survives only as long as all nodes survive in

the path. Therefore, the shortest node lifetime on the path determines the lifetime of

the path. The ADPV algorithm chooses a set of disjoint paths such that the minimum

lifetime of those paths is maximized.

We formally define the lifetime of a path as follows: Let a path P consists of nodes

n0, n1, .., nl, in which n0 is the starting sensor node and nl is a supernode. Let bi denote

the residual energy level of sensor node ni and di denote the distance between ni and

ni+1 for each 0 ≤ i < l. Then, the lifetime of P is defined as:

Lifetime(P) = min
0≤i<l
{bi/(β + α1 + α2 × dn

i )},

where β, α1, α2 and n are the constant parameters of power consumption, defined in

Section 3.4.
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4.4 Initialization Phase

This section describes our proposed approach for selecting alternative routes in the

initialization phase of the algorithm, where those routes are to be used to restore

connectivity during restoration phases. In ADPV, each sensor node keeps alternative

routes, here referred to as restoration paths, that start with that node.

The primary goal is to consume the minimum possible resources while attaining high-

quality restoration paths. The resources include memory, CPU, and network. Regard-

ing memory, for instance, if all possible paths from sensor nodes to supernodes were

held, the memory requirement would be intractable. In [85], Valiant discusses the

average number of paths from a node to a given set of nodes. In terms of CPU, Bagci

et al. [6] show that the complexity of selecting k disjoint paths from a pool of p al-

ternatives is O(pk). Therefore, with a higher number of restoration paths of size r,

it takes longer to compute a disjoint path set of size k during each restoration phase.

As for the network, which is last but not least, we aim to communicate using mini-

mum number of messages. Each restoration path incurs communication between its

nodes in order to update its lifetime. As a result, we should maintain a very restricted

set of restoration paths for the sake of network performance, but at the same time,

the amount of those paths should be high enough to restore connectivity whenever

needed.

To overcome these restrictions and efficiently construct restoration paths, ADPV em-

ploys a well-known method, called maximum set packing (MSP) [25]. This method

is the optimization version of the set packing (SP) problem and asks for the maximum

number of pairwise disjoint sets among a family of sets. More formally, for a given

universe U and a family S of subsets of U, MSP is a subfamily C ⊆ S of sets such

that all sets in C are pairwise disjoint, and C uses as many sets as possible, so that

the size of the packing ‖C‖ is maximum. Maximum set packing is NP-hard [40] and

cannot be approximated within any constant factor [31].

For example, consider the universe U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and a family S =

{S a, S b, S c, S d}, consisting of the subsets shown in Figure 4.2:

• S a = {1, 2, 3, 4}
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• S b = {4, 5, 6}

• S c = {5, 6, 7, 8}

• S d = {9, 10}

SA SB 

.1 

.2 

.3 

.5 

.6 .4 

SC 

.7 

.8 

SD 

.9 

.10 

Figure 4.2: Subsets of family S.

Pairwise disjoincy of these subsets is as follows:

• S a is pairwise disjoint with S c and S d

• S b is pairwise disjoint with S d

• S c is pairwise disjoint with S a and S d

• S d is pairwise disjoint with S a and S b.

For this example, since S b is not pairwise disjoint with S a and S c, any set packing C

that contains S b can at most has 2 elements. Excluding S b, set {S a, S c, S d} contains 3

pairwise disjoint elements, therefore is a MSP.

There is a well-known greedy heuristic, shown in Algorithm 4.4.1, to solve the MSP

problem and it runs in polynomial time. We employ this heuristic to construct restora-

tion paths. At the beginning, we have a pool of candidate paths of a relatively large
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size. The heuristic performs with many iterations, where each iteration selects the

most diverse path from the pool. We use the term diverse as being disjoint with oth-

ers, that is, the one that is disjoint to the largest number of paths among others in the

pool. We add the selected path into the restoration path set and remove all the paths

from the pool that intersect with the selected path. The iterations continue until the

pool becomes empty or the number of restoration paths reach a predefined threshold.

Since the initial sensor node and the destination supernode do not violate disjoincy,

ADPV represents each path by the set of its intermediate sensor nodes.

Algorithm 4.4.1 Maximum Set Packing (MSP)
Input: S

Output: M

1: M ← ∅;
2: while S , ∅ do
3: m←MinIntersectingPath(S );
4: M ← M

⋃
m;

5: for all Path p ∈ S do
6: if p

⋂
m , ∅ then

7: S ← S − p;
8: end if
9: end for
10: end while

Algorithm 4.4.2 shows path-information-collection and restoration-path-selection pro-

cedures. The variables used in the pseudo codes are defined in Table 4.1. In Al-

gorithm 4.4.2, each sensor node maintains a local path set along with disjoint and

restoration path sets. As an input, the algorithm takes a ‘PathInfo’ message that con-

tains the local path set of the sender node and generates two outputs, which are the

disjoint path and restoration path sets of size k and a relatively large size, respec-

tively. Local paths are logical paths that are used for informing neighbor nodes about

the paths they can use over the sender node. Therefore, local paths have a very criti-

cal role in determining disjoint and restoration path sets and need to be selected very

carefully. When a sensor node receives a ‘PathInfo’ message containing a local path

set, it first calculates the union of the sender’s and receiver’s local path sets. It then

executes the MSP procedure on this union to eliminate paths that have too many sen-

sor nodes in common. The procedure then determines a candidate local path set T ′

as the first L minimum-cost path of the remaining set. While doing so, the procedure

also updates the restoration paths by executing the MSP procedure on the union of
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local sets and the current restoration path set.

Algorithm 4.4.2 Path Information Collection in ADPV
Input: I, L, k

Output: D, R

1: T ← ∅;
2: R← ∅;
3: for all received PathInfo message I do
4: D←MinDisSet(T, k);
5: c← Cost(D);
6: U ← I.T ∪ T ;
7: R←MaxSetPacking(R ∪ U); (Algorithm 4.4.1)
8: U′ ←MaxSetPacking(U);
9: Sort(U′);
10: T ′ ← {pi ∈ U′ | i <= L} ;
11: D′ ←MinDisSet(T ′, k);
12: c′ ← Cost(D′);
13: if c′ < c then
14: T ← T ′;
15: Transmit PathInfo(T );
16: end if
17: end for

Using the candidate local path set, the set of disjoint paths with minimum cost is cal-

culated using Algorithm 4.4.3. In this algorithm, all disjoint subsets with k elements

are traversed and the one with the minimum cost is selected. If the minimum-cost

disjoint path set has a smaller cost than the current disjoint path set, both the disjoint

and the local paths are updated and a ‘PathInfo’ message containing the new local

path set is transmitted to the set of neighbors. This process continues until there are

no more updates in the disjoint path sets.

After determining the disjoint paths, each sensor node determines its required neigh-

bors, which include the neighbors that disjoint paths use the edges between. After

determining the required neighbors, each node adjusts its transmission power to reach

its farthest neighbor according to the resulting topology.

4.5 Connectivity Restoration Phase

We start the connectivity restoration procedure only when k-vertex supernode connec-

tivity is broken due to node failure. Thus, the first step after a node failure is to check

whether the network is still k-vertex supernode-connected or not. As this is a costly
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Table 4.1: ADPV notations.
I Received PathInfo message

L Maximum number of paths to be

stored

k Disjoint connectivity degree

R Set of restoration paths

T and T ′ Set of local paths

D and D′ Set of disjoint paths

c and c′ Cost of disjoint paths, which equals

the minimum lifetime of the dis-

joint paths

U Union of two path sets

S Set of paths

M Set of paths in MSP

m, p, r Variables referencing paths

sr Supernode ratio

n Total number of sensors

∆ Maximum degree of a node

r Amount of a node’s restoration

paths

l Average path length in the restora-

tion set

n0, n1, .., ni Number of remaining sensor nodes

after each restoration phase
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Algorithm 4.4.3 Finding Disjoint Paths to Supernodes (MinDisSet)
Input: T and k

Output: D

1: D← ∅;
2: if |T | > k then
3: Q← { q ⊂ T | |q| = k };
4: c← ∞;
5: qmin ← ∅;
6: for all q ∈ Q do
7: if q consists of disjoint paths then
8: if Cost(q) < c then
9: c← Cost(q);
10: qmin ← q;
11: end if
12: end if
13: end for
14: D← qmin;
15: end if

operation [23], ADPV employs a simple distributed greedy heuristic with no false

positives. That is, if ADPV postulates the network is k-vertex supernode-connected,

then the network is definitely connected. However, the network can still be connected

even if ADPV claims it is not. Therefore, ADPV ensures strong k-vertex supernode

connectivity.

When a node failure occurs, ADPV ensures all the node’s neighbors initiate a failure

message to inform others about the failure. Upon receiving a failure message, a sen-

sor node removes all paths including the failed node from its restoration set. Since

frequent transmission power adjustment is difficult to realize in practice, we employ

periodical transmission power control, and during each period we check whether any

failed nodes exist on any of the disjoint paths. If a failed node disconnects a disjoint

path, the restoration process takes place. Note that this event does not necessarily

imply k-vertex supernode disconnectivity, yet because ADPV takes early action it

never allows the connectivity to break. After deciding k-vertex supernode connec-

tivity must be restored, ADPV applies a two-step process: updating the lifetimes of

the restoration paths and computing minimum-cost disjoint paths from the restoration

set.

In the first step, path lifetimes in the restoration set are updated via messages transmit-

ted along the path from the source node to the destination supernode. Each node redi-
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rects a received message to the next hop in the path and returns a message that con-

tains updated lifetime information of the sensor nodes back along that path. In the sec-

ond step, minimum-cost disjoint paths are computed using the previously discussed

disjoint-path-selection algorithm, Algorithm 4.4.3. An overview of the connectivity-

checking and connectivity-restoration procedures are given in Algorithm 4.5.1.

Algorithm 4.5.1 Connectivity Restoration in ADPV
Input: k, R, D

Output: D

1: FailedNodes← ∅;
2: for all received node failure message δ do
3: for all Path r ∈ R do
4: if r contains δ.FailedNode then
5: R← R − r;
6: end if
7: end for
8: FailedNodes← FailedNodes ∪ δ.FailedNode

9: if certain time elapsed since last period then
10: for all Path p ∈ D do
11: if (p ∩ FailedNodes) , ∅ then
12: UpdateCosts(R);
13: D←MinDisSet(R, k);
14: break;
15: end if
16: end for
17: FailedNodes← ∅;
18: end if
19: end for

For instance, continuing from the example given in Section 3.2, for k = 2, ADPV

optimizes the topology shown in Figure 3.1, as in Figure 4.3(a). In this topology,

all initial energy levels are equal. Assuming the data generation rate is uniform for

all nodes, the power consumption of nodes x, y and z are 1.2, 2 and 1, respectively.

With this power consumption, node y dies first (100/2=50 seconds later), both node

x and node z lose one of their disjoint paths and the network becomes one-vertex, but

not two-vertex, supernode-connected. The ADPV algorithm restores connectivity, as

in Figure 4.3(b), by adjusting the transmission range of z, which introduces a link

from node z to supernode A. Because of its increasing power consumption, node z

happens to be the second dying node (50/5=10 seconds later) and thus node x loses

two-vertex supernode connectivity once more. However, because it has no alternative

routes, it adjusts its transmission power again and works as a connected node, as in
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Figure 4.3(c), for the rest of its life (28/1=28 more seconds). For this network, the

two-vertex supernode-connected lifetime is broken when node z dies. Therefore, the

two-vertex supernode-connected lifetime of this network equals 60 seconds and the

one-vertex supernode-connected lifetime equals 88 seconds.

Lemma 4.5.1 The connectivity restoration process of ADPV ensures k-vertex supern-

ode connectivity.

Proof. By definition, the network gets k-vertex supernode-connected if each sensor

in the network is connected to at least one supernode with k-vertex disjoint paths.

This translates into the disjoint path set of each sensor node of being size k, and if

there exist more than k paths in the restoration set, ADPV chooses a disjoint set and

ensures k-vertex supernode connectivity. �

Lemma 4.5.2 In the restoration path set, there are at most ∆ paths, where ∆ is the

maximum degree of a sensor node.

Proof. We are going to prove this by contradiction. As discussed in Section 4.5, each

sensor node keeps a maximum set pack of some size in their restoration sets, so that

each path in the set is pairwise disjoint with the others. Let ∆ denote the maximum

degree of a node and assume there exists a node, say node i, that has more than ∆

paths in its restoration set. Since there are more than ∆ paths that are using at most

∆ neighbors, according to the pigeonhole principle, there exist two restoration paths

that use the same neighbor. Let Figure 4.4 represent node i and its one-hop neighbors.

If the neighbor that two paths have in common is a supernode, then node i will have

exactly the same two paths in its restoration set, which is not possible, because the

MSP procedure calculates the union of the selected paths to guarantee diversity. If

that neighbor is a sensor node, those paths will not be disjoint, which violates the

MSP definition. Therefore, no neighbor, neither sensor node nor supernode, can have

two paths in common, and the number of elements in the restoration set cannot exceed

∆. �
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Figure 4.3: Sample connectivity restoration for k = 2.
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ni 

Figure 4.4: One-hop neighbors of node i.

4.6 Running Time Analysis

We compute the lifetime of a restoration path via messages transmitted along the path

from the source node to the destination supernode. Each node redirects a received

message to the next hop in the path and returns a message that contains the sensors’

updated lifetime information back along the same path. Therefore, for each restora-

tion path, the number of messages equals two times the length of the path. We assume

that path length is bounded by a constant, say l, following previous studies [6]. No-

tice that the number of restoration paths is less than or equal to ∆, where ∆ is the

maximum degree of a node. Then, there are at most l×∆ messages in total, and thus,

the message complexity is O(∆) at each connectivity-restoration phase. In the worst

case, for each sensor node, connectivity restoration is carried out for O(∆) times, as

the restoration path set embodies at most l×∆ nodes. Therefore, at each sensor node,

total message complexity becomes O(∆2) for connectivity restoration. For path infor-

mation collection, ADPV has the message complexity of O(n∆), which also equals

that of DPV [6]. Therefore, the total message complexity becomes O(∆2) + O(n∆) =

O(n∆).

The ADPV algorithm consumes computational power in the initialization phase for

disjoint and restoration path construction and during the connectivity restoration phase

for determining new disjoint paths from the restoration set. During the initialization

phase, when sensor nodes receive a ‘PathInfo’ message, they calculate the union of
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the local path information and the received paths in the incoming message. The run-

ning time complexity of this step depends on the number of paths (p) in the local path

information table. In ADPV, since the maximum number of paths that can be stored

in a sensor node’s path information table is set to a constant value, both calculating

the union of the two path information tables and sorting the paths according to their

costs take constant time.

In the initialization phase, there are two more procedures that consumes processing

power: maximum set packing and disjoint-path-selection algorithms. The greedy

heuristic for MSP, shown in Algorithm 4.4.1, is used twice: once for constructing the

restoration path and again for selecting the local path information table. As discussed

in the second lemma, the number of restoration paths is limited by the maximum

degree of node (∆), and the number of paths in the local path information table is

a constant (l). Therefore, the MSP algorithm consists of numerous iterations, each

consisting of two steps: i) selecting the minimum intersecting path and ii) removing

the paths that intersect with it. In the latter step, the algorithm traverses all path

pairs and determines the minimum intersecting one. The activity of removing the

intersecting paths also traverses the set once more. Considering set size is represented

by s, the running time complexity of the MSP algorithm equals O(s2 + s). Step-by-

step details of running time complexity of MSP algorithm is shown in Figure 4.5.

Therefore, the MSP running time complexity in each step is O(∆2 + ∆ + l2 + l), which

can be reduced to O(∆2).

To calculate the minimum disjoint set, Algorithm 4.4.3 enumerates all subsets of

size k and finds the set with the minimum cost. Enumerating all these subsets takes

O(pk), where p represents the number of paths in the given set. Since the input of

the minimum disjoint set procedure is the local path information table, which has a

constant number of elements, the running time complexity of the minimum disjoint

set calculation is also a constant.

Considering that the message transmission complexity of ADPV is O(n∆) and the

dominating step (MSP) is executed once for every incoming message, the running

time complexity of the total initialization phase is O(n∆3).

For the restoration phases, as discussed above, the maximum number of restoration
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Figure 4.5: Running time complexity of MSP algorithm.

phases a node can execute is O(l∆), and in each phase there are two operations: updat-

ing path costs, which only uses message transmissions, and calculating the minimum

disjoint set from the restoration set. Details of the running time complexity of each

restoration phase is given in Figure 4.6. Since the maximum number of elements in

the restoration set is ∆, the running time complexity of one time execution of restora-

tion phase for determining the minimum-cost disjoint paths from the restoration set

will be O(∆k), and the total running time complexity of the restoration phases will be

O(∆k+1).

Since n >> ∆, and the commonly accepted values of k are 2 and 3 [10], the ADPV

running time complexity equals O(n∆3).

4.7 Expected Number of Restorations in ADPV

In this section we discuss theoretical expectations resulting from the ADPV algorithm

and analyze how many times ADPV can restore k-vertex supernode connectivity for a

given node. Since ADPV can restore such connectivity when there are at least k paths

in the restoration set, we will determine the expected number of node failures before
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Figure 4.6: Running time complexity of restoration phase.
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a node cannot restore its connectivity. Let n denote the number of sensor nodes in the

network and assume the sensor node batteries deplete uniformly in any order with the

same probability ρ. The parameters used in this section are given in Table 4.1.

Considering that the number of sensor nodes in the restoration set equals r × l, the

expected number of sensor nodes that die before one of these r × l sensor nodes dies

equals:

n
r × l

. (4.1)

For example, if there are 100 nodes in the entire network and 20 take part in the

restoration set, then the expected number of node failures before one of the nodes in

the restoration set fails equals five. When a node on a path dies, then that path will

no longer be valid and therefore will be removed from the restoration sets available.

As a result, with a node failure, the number of restoration paths will diminish by one.

Therefore, when the first node on a restoration set dies, r − 1 paths, which consist

of (r − 1) × l sensor nodes, will remain. At the same time, the number of remaining

sensor nodes in the entire network will equal:

n −
n

r × l
. (4.2)

Continuing from the previous example, 100 − 5 = 95 sensor nodes will remain in the

entire network after the first node in the restoration set dies. The remaining sensor

nodes after the ith restoration path removal can be generalized as follows:

ni+1 = ni −
ni

(r − i) × l
, (4.3)

which also equals:

ni+1 = ni × (1 −
1

(r − i) × l
) (4.4)

and which can also be written as a product of:
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ni+1 = n ×
i∏

j=0

(1 −
1

(r − j) × l
). (4.5)

Since ADPV can restore k-vertex supernode connectivity when there are at least k

paths in the restoration set, the number of sensor nodes when k-vertex supernode

connectivity of the given node cannot be restored equals nr−k+1 and can be calculated

as:

nr−k+1 = n ×
r−k∏
j=0

(1 −
1

(r − j) × l
). (4.6)

Then by changing the parameter to t = r − j,

nr−k+1 = n ×
r∏

t=k

(1 −
1

t × l
). (4.7)

According to the above formula, the number of successful restorations will be pro-

portional to the sensor node count. Also, with the increasing average path length,

the number of remaining sensors increases, which in turn decreases the possibility of

successful restorations. Therefore, choosing paths with smaller path lengths may be

preferable.
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CHAPTER 5

MINIMUM SUPERNODE DISJOINT PATH VECTOR

ALGORITHM

In this chapter, we present our novel energy-aware and distributed algorithm, MS-

DPV, which aims to determine minimum number of supernodes and their possible lo-

cations to construct a k-vertex supernode-connected network topology. In this chap-

ter, we first discuss the related network model and then describe our algorithm in

detail.

5.1 Network Model

Consider a mission critical border surveillance system that is integrated with a two-

tiered heterogeneous WSN. In this network, sensor nodes are randomly and uniformly

deployed on the border line and initially there are no supernodes as shown in Fig-

ure 5.1(a). After MSDPV algorithm determines supernode locations, supernodes that

are located on the steerable artillery units are deployed as shown in Figure 5.1(b).

When sensor nodes sense a potential intrusion activity, they inform the artillery units

by forwarding the data to the supernodes and artillery units decide whether to attack

or not. In this scenario, fault-tolerance is achieved by forwarding the sensed data to

the set of supernodes using three disjoint paths as illustrated in Figure 5.1(b).

We represent the initial network topology with an undirected weighted graph G =

(V, E), where V is the set of nodes and E = {vi, v j | dist(vi, v j) < Rmax} is the set of

edges, where dist(vi, v j) defines the distance between nodes vi and v j and Rmax is the

maximum transmission range.
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1 

(a) Initial network

1 

(b) After supernode deployment

Figure 5.1: Sample scenario.
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5.2 Collecting Path Information and Determining Preferred Paths

The MSDPV algorithm involves two steps. In the first step, the algorithm treats all

sensor nodes as potential supernodes and computes paths from sensor nodes to the

supernodes. In this way, sensor nodes choose a set of other sensor nodes that they

prefer to be a supernode. The second step chooses minimum number of sensor nodes

to be supernodes, so that network gets k-vertex supernode connected.

MSDPV is a distributed algorithm that determines possible locations for the supern-

odes by message transmissions among sensor nodes and requires only one-hop neigh-

borhood information. MSDPV is also an energy-aware solution that considers resid-

ual battery power levels of the sensor nodes. The MSDPV algorithm consists of two

main steps:

1. Collecting path information and determining preferred paths,

2. Determining supernode locations.

During the first step, MSDPV uses a modified version of ADPV algorithm. Unlike

ADPV, MSDPV’s aim is not to determine transmission powers of the sensor nodes,

but to determine possible locations for the supernodes. For this aim, MSDPV has

a simple, yet effective modification over ADPV algorithm. During the first phase,

MSDPV determines preferred paths for each sensor node, which are used as alterna-

tive paths for the aim of restoring connectivity in the ADPV algorithm described in

Chapter 4.

Initiation method of MSDPV also differs from the ADPV algorithm. ADPV algo-

rithm starts with the ‘Init’ messages initiated by the supernodes and, in the case of

MSDPV, the aim is to determine supernode locations and initially there are no su-

pernodes. MSDPV algorithm is initiated by the ‘Init’ messages transmitted by the

ordinary sensor nodes. In this way, every sensor node behaves like a supernode and

lets sensor nodes compute disjoint paths destined to itself. Since ADPV determines

minimum cost disjoint paths to the set of supernodes, MSDPV determines minimum

cost disjoint paths to a subset of sensor nodes. In this way, ignoring the intermediate

sensor nodes and just considering the destination nodes, every sensor node chooses a
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Table 5.1: MSDPV notations.
N Set of sensor nodes

P Union of preferred paths for all sen-

sor nodes

T Destination node, source node pairs

of preferred paths

k Disjoint connectivity degree

M Set of chosen supernodes

U List of uncovered sensor nodes

s Chosen sensor node

m, n, x, y Variables referencing sensor nodes

subset of sensor nodes that it prefers to be a supernode.

5.3 Determining Supernode Locations

Second phase makes use of the preferred paths calculated by each sensor node during

the first phase and determine a subset of sensor nodes that will cover all sensor nodes.

Aside from preferred paths, this phase requires two more inputs, which are list of sen-

sor nodes and expected fault-tolerance degree (k). It has a single output, which is the

locations for the supernodes. Since only source and destination nodes used in the sec-

ond phase, as a first step, MSDPV ignores all the intermediate nodes in the preferred

paths. Considering all the paths in the preferred list are pairwise disjoint, selecting

any k elements from this set and choosing the destination nodes as supernodes will

enable a k-vertex supernode connectivity.

Algorithm 5.3.1 shows the details of the second phase. The variables used in the

pseudo code are defined in Table 5.1. Since MSDPV aims to determine set of desti-

nation nodes that will cover all the sensor nodes at least for k times, MSDPV uses a

list of uncovered elements that initially contains every node for k times. To determine

the smallest subset of sensor nodes that will cover all sensor nodes, MSDPV uses an

optimization based on the well-known set-cover problem. Set-cover problem is one

of the Karp’s 21 NP-complete problems [40] and optimization version of this prob-
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Algorithm 5.3.1 Determining Supernode Locations (DSL)
Input: N and P and k

Output: M

1: M ← ∅;
2: T ← { m, n | ∃ p ⊂ P where m = p.Dst, n = p.S rc };
3: U ← ∅;
4: i← 0;
5: while i ≤ k do
6: U ← U

⋃
N;

7: i← i + 1;
8: end while
9: while U , ∅ do
10: s←MaxIntersection(U, T );
11: M ← M

⋃
{s};

12: U ← U − { x | x ∈ N, (s, x) ∈ T };
13: T ← T − { (s, y) | y ∈ N, (s, y) ∈ T };
14: end while

lem, which is the one required in our case, is an NP-hard problem [45]. Therefore,

we use a well-known greedy heuristic to determine the smallest subset that covers all

the sensor nodes. This heuristic works in iterations and in each iteration it asks for

the node that contains the largest number of uncovered elements. It adds the cho-

sen node to the result and removes all the nodes it covers from the uncovered nodes

list. The iterations terminate when no elements remain in the uncovered list. This

greedy approach guarantees coverage of all nodes and also approximately guarantees

the minimum number of supernodes [81]. In the case of set-packing heuristic, which

is used for constructing preferred paths, there was no guarantee for the optimality of

the result, but for the set-cover heuristic there is.

For instance, consider the example given in Section 4.4 about maximum set packing.

In this section for the same given sets we are going to calculate maximum set cover.

For the given sets, shown in Figure5.2, universeU = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and a

family S = {S a, S b, S c, S d}, consisting of the subsets:

• S a = {1, 2, 3, 4}

• S b = {4, 5, 6}

• S c = {5, 6, 7, 8}

• S d = {9, 10}
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When all the elements are needed to be covered once, first iteration of maximum

set cover heuristic chooses one of the subsets S a or S c, because they have the most

elements. Since S a and S c has the same number of elements, maximum set cover

heuristic randomly chooses one of them. Let the chosen subset be S a. After choos-

ing S a, the algorithm removes the elements the chosen subset covers from the other

subsets. Since S a intersects with only S b, the intersection is removed from S b and

after the first iteration S b has two remaining elements, which are {5, 6}. During the

second iteration, since S c has the most uncovered elements, the algorithm chooses

S cand removes the elements it covers from other subsets. As a result of second itera-

tion, subset S bhas no elements. During the third iteration, the algorithm chooses S d

and as a result, no elements remain uncovered and the algorithm terminates with the

chosen subsets S a, S c and S d.

SA SB 

.1 

.2 

.3 

.5 

.6 .4 

SC 

.7 

.8 

SD 

.9 

.10 

Figure 5.2: Maximum set cover example.

As an example of sample WSN, consider the sample topology given in Figure 5.3(a)

with the desired connectivity degree (k) value of two. In this topology there are five

sensor nodes, so that all of them are initially pairwise connected. During the first step

all the sensor nodes behave like they also have supernode capabilities and asks sensor

nodes to calculate disjoint paths destined to themselves. Sensor nodes compute their

preferred paths to other sensors using the initialization phase of ADPV algorithm,
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described in Section 4.4. According to these paths, ignoring the intermediate nodes

and denoting number of occurrences with exponents, destination nodes of node a are

c2, e and d; destination nodes of node b are c2 and d2; destination nodes of node

c are a,b,d3 and e; destination nodes of node d are b, c3 and e; finally destination

nodes of node e are c2 and d2. During the second step, using the set-cover algorithm

that chooses the node that covers most elements in each iteration, MSDPV algorithm

chooses node c to be a supernode. In this way, all the sensor nodes in the uncovered

node list are covered twice and uncovered node list becomes empty. Therefore one

supernode is adequate for this sample topology when k = 2. Final topology, where a

supernode is located at the location of node c is shown in Figure 5.3(b).

With the increasing k value, the additional load on the MSDPV algorithm does not

significantly increase and MSDPV algorithm works very efficiently. Continuing from

the example above, when k = 3, there will be no change in the first step, but uncovered

node list, in the second step, will initially have three copies of each node. During the

first iteration node c will be chosen and there will remain one copies of node a, b

and e in the uncovered node list. In the second iteration, node d will be chosen and

algorithm will terminate with the decision of placing two supernodes to the locations

of node c and d.
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Figure 5.3: Example supernode location determination for k = 2.
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CHAPTER 6

EXPERIMENTS AND RESULTS

In this chapter we report our measurements for ADPV and MSDPV algorithms and

try to evaluate their success. In Section 6.1, we provide experimental results regarding

lifetime and other metrics for ADPV algorithm and in Section 6.2, we provide exper-

imental results regarding minimum number of supernodes and lifetimes for MSDPV

algorithm.

6.1 Experimental Results for ADPV Algorithm

In this section we report our measurements regarding lifetime and other metrics for

the DPV and ADPV algorithms and try to evaluate ADPV’s success. For this evalua-

tion, we implemented ADPV using an extended version of a custom simulator, which

has also been used for evaluating the DPV algorithm. We added a time dimension

and a battery model into the existing framework and thus provided an environment

that could evaluate network lifetime.

6.1.1 Experimental Setup

In our experiments, we assumed that sensor nodes and supernodes are uniformly and

randomly deployed in an area of 600m x 600m and that the initial maximum trans-

mission range Rmaxof the sensor nodes is set at 100m. We repeated our experiments

for {100, 150, . . . , 500} sensor node, for k = 2, 3 (as these are commonly accepted k

values), and for a supernode ratio (sr) of 5% and 10% over the region. Finally, we as-
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Table 6.1: Simulation parameters for ADPV.

Deployment Area 600m x 600m

Initial Transmission Range of Sensor Nodes: Rmax 100m

Number of Sensor Nodes: N [100 . . . 500]

Number of Supernodes: M 5% and 10% of N

Degree of Disjoint Connectivity: k 2 and 3

Packet Loss Rate 10%

sumed a packet loss rate of 10% for each message transmission. As a result, we had

9×2×2 experimental instances, and on each we executed both algorithms 20 times

and reported the averages. Our simulation parameters are summarized in Table 6.2.

6.1.2 Results

In Figure 6.2, we compare the node failure tolerance of DPV and ADPV. For each al-

gorithm, we measure performance in terms of the fraction of dead sensor nodes when

the network gets (i) supernode disconnected and (ii) k-vertex supernode disconnected.

If there exists a path (single or multi-hop) between a sensor node and any one of the

supernodes, then the sensor node is said to be connected. If every (alive) sensor node

in the network has k disjoint paths to the set of supernodes, then the network is con-

sidered as k-vertex supernode-connected. With these measurements we determine

the maximum number of node failures that can occur before supernode connectivity

is broken. Here, we observe the most striking result, and at the same time, evidence of

this study’s motivation regarding the instability of static algorithms and effectiveness

of ADPV for keeping the network supernode-connected. As seen in the Figure 6.1,

even before the failure of 5% of the sensor nodes, the network’s supernode connec-

tivity is broken when we employ the DPV algorithm. Also, Figure 6.2 compares the

results for 2- and 3-vertex supernode connectivity and when DPV algorithm is em-

ployed, networks k-vertex supernode-connectivity gets broken even before the failure

of less than 1% of the sensor nodes. These results limit using DPV as a fault-tolerant

alternative. On the other hand, as can be observed in Figures 6.1 and 6.2, ADPV

successfully keeps the network supernode-connected up to failure of about 90% and
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k-vertex supernode-connected up to failure of 85% of the sensor nodes.

In the figure, we observe that when the network becomes denser, ADPV keeps it

supernode-connectivity for longer. This result can be attributed to ADPV becoming

more effective at finding alternative routes due to the increasing number of sensor

nodes. For instance, in one extreme, when we examine the results of a 500-node net-

work for k = 2 and sr = 10%, as shown in Figure 6.1(a), we see that the network

is still supernode-connected up to a failure of 95% of the sensor nodes. In the other

extreme, where the number of initially deployed sensor nodes equals 100, ADPV sus-

tains supernode connectivity up to the failure of 20% of the sensor nodes. Looking

into each of the sub-figures in Figure 6.1 , when the initial number of sensor nodes

is between 250 and 300, we notice that ADPV succeeds in keeping supernode con-

nectivity even after the active sensor nodes are halved. Considering all experimental

instances, on average, ADPV maintains supernode connectivity up to a failure of 52%

of sensor nodes for k = 2, and 55% of sensor nodes for k = 3. Since the optimized

network topologies for k = 3 contain more connections, it is expected that those

networks will have a higher tolerance for node failures. On the other hand, more

connections will consume more battery power, which will affect network lifetime.

We therefore also examine lifetime measurements of the networks for the same set of

scenarios.

Further, as we can observe in Figure 6.2, network topologies generated by the DPV

algorithm become k-vertex supernode-disconnected after the failure of at most 1% of

the sensor nodes. Even though the initial optimized topologies generated by DPV are

k-vertex supernode-connected, after the failure of a few sensor nodes, the remaining

topologies become at most (k−1)-vertex supernode-connected. The ADPV algorithm,

on the other hand, maintains two-vertex supernode connectivity up to a failure of 32%

of sensor nodes, and three-vertex supernode connectivity up to a failure of 21% of

sensor nodes, on average among all experimental instances.

In Figures 6.3 and 6.4, we compare the lifetime measurements of the same set of

experimental instances with those of Figure 6.1 and 6.2. A prominent aspect of ADPV

is considering the sensor nodes’ remaining energy levels; as a result, energy depletion

occurs less frequently. This factor, when coupled with the adaptive nature of the
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(c) k=3, sr=10%
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Figure 6.1: Percentage of failed sensor nodes when the network becomes supernode

disconnected.
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(c) k=3, sr=10%
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Figure 6.2: Percentage of failed sensor nodes when the network becomes k-vertex

supernode disconnected.
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algorithm, results in longer network lifetimes.

As we observe in Figure 6.3, in terms of one-vertex supernode-connected lifetimes,

on average, ADPV results in a two-fold increase with respect to DPV. For the same

experimental instances, as shown in Figure 6.4, ADPV provides respectively 65% and

46% longer two-vertex and three-vertex supernode-connected lifetimes than DPV. As

we observe in the figures, network density has almost no effect on the lifetimes of the

topologies generated by DPV. On the other hand, ADPV successfully prolongs the

network lifetime almost proportionally to the network density for all k = 1, 2, 3.

We observe in Figures 6.4(c) and 6.4(d) that if the number of sensor nodes drops

below a certain threshold (in our case, 150 sensor nodes in a 600m x 600m area when

sr = 10%, and 200 sensor nodes when sr = 5%), it is hard to restore three-vertex su-

pernode connectivity. This finding suggests that a minimum number of sensor nodes

for every k and sr value is necessary to restore k-vertex supernode connectivity. Fig-

ures 6.2 and 6.3 respectively compare node failure tolerance and network lifetime

for different values of sr = 5%, 10% and k = 2, 3. According to the results, with

the increasing number of supernodes, lifetime also increases, however, the relation

between the increase in the number of supernodes and the increase in the lifetime is

sublinear, and therefore, we expect that the increase in the lifetime becomes insub-

stantial as the number of supernodes exceeds a certain threshold. We also notice that,

with the increasing k value, more disjoint paths are required and this makes providing

alternative routes harder. In Figures 6.5(a) and 6.5(b), we compare DPV and ADPV

algorithms for k = 4 in terms of network lifetime and node failure tolerance, respec-

tively. As seen in Figure 6.5(a), ADPV successfully prolongs both one-vertex and

four-vertex supernode-connected lifetimes of the network. Also, in Figure 6.5(b), we

see that ADPV can preserve four-vertex supernode-connectivity up to the failure of

50% of the sensor nodes on dense networks, which in turn, achieves almost a two-fold

increase in the four-vertex supernode-connected lifetime.

Another important metric we measure during our analysis is the number of message

transmissions. Message transmission is an important metric because we must not

only consider power consumption in the resulting topologies but also consider the

power required to generate those topologies, which can be viewed as a fixed cost
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Figure 6.3: Connected lifetime comparison of the DPV and ADPV algorithms.
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Figure 6.4: 2- and 3-connected lifetime comparison of the DPV and ADPV algo-

rithms.
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Figure 6.5: Lifetime and node failure tolerance of DPV and ADPV algorithms for

k = 4.
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of obtaining the final topologies. If this cost is high, then the power efficiency of

the resulting topology might become meaningless. In Figure 6.6, we compare the

number of DPV and ADPV message transmissions and in Figure 6.7 we compare ratio

of these message counts. To simulate the worst-case scenario of ADPV, we set the

waiting period in the restoration phase to zero, which means that every node failure

that affects disjoint paths will trigger a restoration phase for that node. According

to the results, for k = 2, ADPV makes at least 2.25 times and at most three times

the message transmissions than DPV does, and for k = 3, ADPV makes at least

three times and at most 3.5 times the message transmissions of DPV. As seen in the

sub-figures of Figure 6.6, the number of message transmissions of both algorithms

increases almost linearly with the number of sensor nodes, but as seen in Figure 6.7

the ratio of these message counts does not significantly change. This result is also

compatible with the expected number of message transmissions. As it is discussed in

Section 4.6, in terms of number of transmitted messages ADPV and DPV is expected

to have the same message complexity and with the simulation results this expectation

is also verified.

In Figure 6.8 and Figure 6.9, we can see total number of connectivity restorations in

ADPV algorithm for different k values and supernode densities. Our first observa-

tion according to these results is, number of connectivity restorations is proportional

with the sensor node density. With the increasing number of sensor nodes, number of

connectivity restorations also increase. Our second observation is, number of connec-

tivity restorations is higher for lower supernode densities. The reason for this result

is, with less supernodes, there exist more critical sensor nodes which break supernode

connectivity with their battery depletion and therefore more connectivity restoration

phase takes place. Another and probably the most important observation is, as seen in

Figure 6.9, when k = 3 ADPV restores supernode connectivity almost 350 times and

more importantly as seen in Figure 6.7 ADPV achieves it with only 3.5 times the mes-

sage transmissions compared to DPV algorithm. Considering the extra messages in

ADPV are used for updating the residual energy levels of the remaining active sensor

nodes in the disjoint paths, these messages are very crucial for better load balancing

and for making maximum use of the available sensor nodes.

In Figure 6.9, we observe that number of connectivity restorations for k = 3 is always
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Figure 6.6: Number of message transmissions in DPV and ADPV algorithms.
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higher than for k = 2, but the difference in number of connectivity restorations does

not significantly change when network density changes and the resulting graphs are

parallel to each other. We also observe that, for both k values, number of connectivity

restorations are proportional with the sensor node count. As we can see more clearly

in Figure 6.10, number of connectivity restorations per node does not significantly

change with the increasing sensor count. In the worst case scenario, which occurs

when k = 3 and sr = %5, number of connectivity restorations per node in the average

equals to 1.00. This means, each node executed connectivity restoration process only

once in the average and as a result, a two-fold increase in the supernode-connected

lifetime of the network is obtained.

In Figure 6.10, we can also observe that, average number of connectivity restorations

increases with the increasing k values and decreasing supernode ratios. Since ADPV

restores connectivity whenever connectivity degree gets below k, it is an expected

result to have more connectivity restorations for higher k values. For the decreasing

supernode counts, there will be more critical nodes, that will break connectivity with

its battery depletion, therefore will result more connectivity restoration processes.

In order to observe the optimality of ADPV, we also compared it with multiple DPV
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Figure 6.8: Number of successful connectivity restorations for different supernode

counts.
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executions. In the multiple DPV case, we assume DPV algorithm has no cost and

whenever networks supernode connectivity is broken, we set transmission ranges of

all the remaining sensor nodes to Rmax and execute DPV from scratch. Since DPV

makes sure it will calculate a k-vertex supernode-connected sub-network from the

given k-vertex supernode-connected network, as a result of executing DPV algorithm

a new network topology that contains the remaining sensor nodes and if possible

is k-vertex supernode-connected is calculated. Although, compared to ADPV, DPV

has very high cost and make lots of message transmissions and changes the global

network topology, we ignore all these costs and observe up to what point DPV can

preserve 1- and 2-vertex supernode connectivity. For instance, if every sensor node

failure breaks supernode-connectivity in a 500 sensor node network, after each sensor

node failure DPV will be executed in total of 499 times.

In Figure 6.11, node failure tolerance of ADPV and multiple DPV executions is

compared. As expected, multiple DPV preserves network’s supernode-connectivity

longer than ADPV does. However, when supernode-ratio equals to 10%, as shown

in Figures 6.11(a) and 6.11(c) this difference is less than 10% and this shows the ro-

bustness of ADPV algorithm. Although ADPV makes local changes, it can preserve

the global supernode-connectivity for sufficiently long time, that is almost compara-

ble with the multiple executions of DPV algorithm. In Figures 6.11(b) and 6.11(d),

we can observe the results for less supernodes. According to these results, we can

observe the success of multiple DPV does not significantly change with the chang-

ing supernode counts, but ADPV’s does. With the decreasing supernode count, the

difference between ADPV and multiple DPV increases up to 50%.

In addition to fault-tolerant lifetimes, in order to show ADPV maintains the aim of

optimizing total transmission power we also evaluated average and maximum life-

times of the given networks. ADPV adapts network structure to node failures and

achieves this by choosing paths which are not initially preferred. Therefore, one may

expect ADPV to have worse results than DPV for these criteria. However, as it can

be derived from Figure 6.12 and Figure 6.13 while choosing initially not preferred

paths, ADPV still considers the aim of optimizing total transmission power.

In terms of average lifetimes, which equals to the arithmetic mean of the lifetime of
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Figure 6.11: Comparison with multiple DPV execution.
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sensor nodes, DPV and ADPV algorithms seems to have similar results, which are

both better than UDG algorithm. Since, for UDG algorithm, when there are more

nodes in range to communicate with, there will obviously be more power consump-

tion, this is an expected result. DPV and ADPV removes non-required connections

and as a result an increase in network density does not have a big impact on the

average lifetime performance of these approaches.

In terms of maximum lifetimes, which shows the elapsed time until the last node

dies, DPV and ADPV algorithms have similar results and which is better than Unit

Disk Graph algorithm. Also, ADPV first changes network topology after first node

dies. Therefore, in terms of lifetime of first dying node, DPV and ADPV exact same

results.

Figure 6.12: Average lifetimes.

In order to observe the success of ADPV in terms of load balancing, we compared it

with Low Energy Adaptive Clustering Hierarchy (LEACH) algorithm [34]. LEACH

is a clustering based protocol that utilizes randomized rotation of local cluster heads

and the main purpose of the protocol is even distribution of energy load among all

sensor nodes. The operation of LEACH is broken up into rounds and in each round

nodes decide whether or not to become a cluster-head for the current round. This

decision is based-on the suggested percentage (p) of cluster-heads for the network and

the last time the node was a cluster-head. The most common cluster-head percentages
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Figure 6.13: Maximum Lifetimes

are p = 0.05 and p = 0.10. As it can be seen in Figure 6.14, in terms of connected-

lifetimes ADPV performs better than LEACH algorithm. Considering the success of

LEACH algorithm in balancing the energy load, we can conclude ADPV is also quite

successful in load balancing the energy consumption among sensor nodes.

6.2 Experimental Results for MSDPV Algorithm

In this section we report our measurements regarding the minimum number of supern-

odes required to maintain k-vertex supernode connectivity. We also discuss the con-

tribution of placing supernodes at known locations to the network lifetime compared

to random distribution of supernodes. We implemented MSDPV using an extended

version of a custom simulator, which has also been used for evaluating DPV and

ADPV algorithms. This framework has the ability to measure supernode-connected

and k-vertex supernode-connected lifetimes of the given heterogeneous WSNs. In or-

der to measure the lifetime with random and uniform distribution of supernodes, we

use the ADPV algorithm with random supernode locations and represent it as ADPV

with random supernode locations (ADPVR) throughout this section.
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Figure 6.14: Lifetime comparison of ADPV and LEACH algorithms.

6.2.1 Experimental Setup

In our experiments, we vary the number of sensor nodes in the network between 100

to 500, and assume they are uniformly and randomly deployed in a 600m x 600m

area. We assumed maximum communication range of sensor nodes to be equal to

100m, and for the degree of disjoint connectivity we executed the simulations for

both k = 2 and k = 3. For each message transmission we assumed a packet loss rate

of 10% and pathloss exponent of 2. Finally, we repeated our experiments for 20 times

and report the averages. Our simulation parameters are summarized in Table 6.2. For

each set of scenario, we first determine the minimum number of supernodes and their

locations using the MSDPV algorithm. Then by randomly relocating the supernodes

we generate another network topology and measure lifetimes of both topologies.

6.2.2 Results

In Figure 6.15, we present the results of MSDPV algorithm and also the main aim of

this study regarding the minimum number of supernodes required to maintain two-

and three-vertex supernode connected network topology. According to the results,
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Table 6.2: Simulation parameters for MSDPV.
Number of Sensor Nodes: N [100 . . . 500]

Deployment Area 600m x 600m

Initial Transmission Range of Sensor Nodes: Rmax 100m

Degree of Disjoint Connectivity: k 2 and 3

Packet Loss Rate 10%

Power Attenuation Exponent 2

our first observation is that with the increasing k values, number of required supern-

odes also increases. Since larger k values require more disjoint paths from the sensor

nodes to the set of supernodes, this is an expected behavior. Our second observation

is that number of sensor nodes is inversely proportional to the required number of

supernodes. With the increasing number of sensor nodes, required supernode counts

to maintain k-vertex supernode connectivity decreases for both k = 2 and k = 3. This

is a quite interesting result. When we examine the experimental instances in [10],

[6] and [18] with the increasing number of sensor nodes, they also increase number

of supernodes. However, the results in Figure 6.15 indicate that with the increasing

number of supernodes it gets easier to find alternative routes and less number of su-

pernodes is sufficient to provide k-vertex supernode connectivity. Because of higher

number of alternative routes this is also an expected behavior and the results of MS-

DPV copes with the expected behavior.

For dense networks, we can observe that number of required supernodes to provide

higher network connectivity is quite small. For instance, in one extreme, when we

examine the results of a 500-node network, for k = 2, MSDPV determines number

of required supernodes to be about 5. Even though this number may not be the min-

imum, it shows MSDPV is quite successful in determining almost minimum number

of supernodes and their locations. In other extreme for sparser networks with higher

k values, when we examine 100-node network for k = 3, MSDPV determines number

of required supernodes to be about 15.

In Figure 6.16 and 6.17, we compare the supernode-connected and k-vertex supern-

ode connected lifetimes of the topologies generated by MSDPV and ADPVR algo-

rithms and observe the most striking result. Note that, for this evaluation we consider
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Figure 6.15: Number of required supernodes.
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the first time supernode-connectivity and k-vertex supernode connectivity is broken.

We observe that, just by changing the locations of the supernodes, MSDPV can im-

prove both supernode-connected and k-vertex supernode connected lifetimes of the

networks. For k = 2, MSDPV shows 29% improvement and for k = 3, MSDPV shows

22% improvement, in the average, in supernode-connected lifetimes (Figure 6.16) of

the network compared to random deployment of supernodes.

Also, as shown in Figure 6.17, for the same experimental scenarios, MSDPV provides

respectively 35% and 19% longer two-vertex and three-vertex supernode-connected

lifetimes, in the average, than random deployment of supernodes. Therefore, we can

infer that, MSDPV does not only calculate minimum number of required supernodes,

but also proposes a good method for the places of supernodes to increase connected

lifetime of the network compared to uniform distribution.

Since sensor nodes consume most of their battery power for the transmission of mes-

sages, another important metric we need to consider is the number of required mes-

sage transmissions. Figure 6.18 shows the total number of required message transmis-

sions to execute the MSDPV and ADPVR algorithms. Since ADPVR algorithm ran-

domly determines supernode locations without making any message transmissions,

number of message transmissions of ADPVR algorithm, as expected, is lower than

MSDPV algorithm. However, for all experimental instances, this increase is linear.

As shown in Figures 6.18(a) and 6.18(b), for k = 2 and k = 3, MSDPV incurs a

100% and 50% increase on the required number of message transmissions compared

to ADPVR, respectively. It does not increase the complexity of message count, but in

the worst case, doubles the number of transmitted messages.

Another important observation is that, as expected, number of message transmissions

in MSDPV algorithm does not significantly change with the increasing k value. Since

MSDPV makes message transmissions during the first phase, in which k value is not

being used as an input, number of message transmissions does not get effected by

the increasing k value. In this phase, all sensor nodes are assumed to be candidate

supernodes and find alternative paths to other candidate supernodes. As it is also

expected theoretically, experimental results shown in Figure 6.19 suggest that with

the increasing k value number of message transmissions of MSDPV algorithm does
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Figure 6.16: Lifetime comparison of the MSDPV and ADPVR algorithms.
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Figure 6.17: Lifetime comparison of the MSDPV and ADPVR algorithms.
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Figure 6.18: Number of message transmissions in MSDPV and ADPVR algorithms.
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not differ. Therefore, with the increasing k value, MSDPV brings less overhead over

ADPVR.
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Figure 6.19: Number of message transmissions during the first phase of MSDPV
algorithm.
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CHAPTER 7

CONCLUSION

Wireless sensor networks (WSNs) have been widely recognized as a promising tech-

nology and studied extensively for their advantages over traditional communication

technologies including their low cost and easy deployment without any infrastruc-

ture. WSNs have their unique challenges and requirements such as energy efficiency

and fault-tolerant operation. In many applications, WSNs operate in inhospitable and

harsh environments, such as battlefields and forests, where the nodes are subject to

increased risk of getting damaged. Also, nodes are equipped with small batteries and

their operation ceases upon depleting of their energy supply. Therefore, solutions to

prolong network lifetime and provide fault-tolerance is of considerable importance.

Recent studies have revealed that heterogeneous WSNs, where the network consists

of different kind of sensors can result better energy efficiency and a higher fault-

tolerance compared to homogeneous wireless sensor networks [97]. In this work,

we focus on heterogeneous two-layered network architectures where the lower layer

consists of ordinary sensor nodes and the upper layer consists of resource-rich su-

pernodes. In such topologies, sensor nodes forward their data towards supernodes

using multi-hop paths. Supernodes collect and process the incoming data and can

make critical decisions based on the application. For some scenarios, data delivery

can be critical, so a fault-tolerant topology would be essential where each node has a

certain degree of connectivity to the set of supernodes.

In this study, we present two algorithms, namely ADPV and MSDPV. ADPV is an

adaptive, energy-aware and distributed topology-control algorithm. The motivation of

this algorithm is to prolong the supernode-connected lifetime of given heterogeneous
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WSNs. The ADPV algorithm consists of two phases: initialization and restoration.

During initialization, ADPV computes alternative routes in the network. To deter-

mine routes efficiently ADPV employs a novel method based on set packing. When-

ever k-vertex supernode connectivity is broken, the restoration phase is activated. To

restore connectivity, ADPV utilizes those alternative routes and adjusts the sensor

nodes’ transmission ranges accordingly. The ADPV algorithm is a distributed al-

gorithm in both the initialization and restoration phases. A broad set of conducted

simulations agrees well with the theoretical anticipation that ADPV can significantly

prolong supernode-connected lifetimes of heterogeneous WSNs. Our adaptive al-

gorithm increases the durability of network connectivity against node failures, from

5% up to 95%. As for k-vertex connectivity, we are able to keep the network two-

and three-vertex supernode-connected up to the failure of 90% and 75% of sensor

nodes, respectively.

In ADPV, we assume that supernodes are stationary and arbitrarily deployed with no

concern for sensor node positions. MSDPV algorithm relaxes these assumptions and

when together used, they form a more concrete framework to be used in heteroge-

neous WSNs with fault-tolerance requirements. MSDPV a distributed and energy-

aware approach to locate minimum number of supernodes to maintain k-vertex su-

pernode connectivity. The motivation of this algorithm is to optimize supernode us-

age in heterogeneous WSNs and also to prolong supernode-connected network life-

time. MSDPV places supernodes with respect to the positions of already-deployed

sensor nodes using an optimization that is based on the well-known set-cover prob-

lem. In this way, MSDPV uses the opportunity to find more center-like positions

within sensor nodes, and in turn improve system efficiency. Experimental results for

the MSDPV algorithm validates our theoretical expectations and the number of su-

pernodes required to make topology k-vertex supernode connected decreases as the

sensor node density increases. With the extensive simulations, we demonstrate that

MSDPV can significantly prolong supernode-connected lifetime of the network up to

40% compared to uniform distribution of supernodes.

In this study, we assume that supernodes are stationary and deployed during the ini-

tialization phase of the network. It would be an interesting future work to relax these

assumptions and instead of being stationary, supernodes can be mobile and thus could
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be repositioned to further increase network lifetime. In the literature, there is no

work to restore k-connectivity using mobile nodes in a distributed and efficient man-

ner [101]. Also, in this study, fault-tolerance is achieved for ordinary sensor nodes

and it would also be an interesting future work to provide some level of fault-tolerance

for supernodes together with the ordinary sensor nodes.
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