%Q/Q,’l.

NUMERICAL METHODS FOR THE SOLUTION
OF
THE NEOCLASSICAL GROWTH MODEL

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF SOCIAL SCIENCES
OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

BULENT DEDEOGLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE
oF) Gghe O
MASTER OF SCIENCE
IN
THE DEPARTMENT OF ECONOMICS

T WKSEKOGRETIM KURULY
DOKDMANTASYON MERKEZI

SEPTEMBER 1999

Approval of the Graduate School of Social Sciences

Prof. Dr. Bahattin Aksit

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science

z X -
Pg{f. Dr. Erol Taymaz
Head of Department

This is to certify that we had read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

_ % Prof. Dr. Nazim Ekinci

Supervisor

Examing Committee Members

Assoc. Prof. Dr. Nazim Ekinci M
(2 \

Assoc. Prof. Dr. Alper Giizel

\

Assistant Prof. Dr. Cemal Akyel o >
C "

ABSTRACT

NUMERICAL METHODS FOR THE SOLUTION
OF
THE NEOCLASSICAL GROWTH MODEL

Dedeoglu, Biilent
M.S., Department of Economics

Supervisor: Assoc. Prof. Dr. Nazim Ekinci

September 1999,‘ 108 pages

This thesis is an attempt to write a software program which solves dynamic
optimisation problems (optimal control problems) specifically for the neoclassical
growth model and find the approximate polynomial equation of the saddle path and
sketch the graph of this path by using the numerical and simulation techniques.

Keywords: The Neoclassical Growth Model,
Optimum Control Theory.

iii

NEOKLASIK BUYUME MODELLERININ COZUMU iCIiN
NUMERIK METODLAR

Dedeoglu, Biilent
Yiiksek Lisans, [ktisat Bolimii

Tez Yoneticisi: Dog. Dr. Nazim Ekinci

Eyliil 1999, 108 pages

Bu ¢aligma, ozellikle biiyiime modellerinde karsilasilan, dinamik optimizasyon
problemlerini (optimal kontrol problemlerini) numerik metodlar kullanarak ¢6zen ve
saddle-path’in polinom denklemini bulan ve grafigini ¢izen bir software program

yazilimin1 amaglamaktadir.

Anahtar Sozciikler: Neoklasik Biiylime Modelleri,

Optimum Kontrol Teori

iv

ACKNOWLEDGMENTS

I express sincere appreciation to Assoc. Prof. Dr. Nazim Ekinci for his
encouragement, guidance and insight throughout the research. I offer sincere thanks
to Hakan Yetkiner for his amity and assistance. To my parents, I thank them for their

support.

TABLE OF CONTENTS

ABSTRACT ..t et e e ettt e e e s enenes iii
OZ. ..o iv
ACKNOWLEDGEMENTS.ttt ee e s eee e eaeneaes \%
TABLE OF CONTENTS. ..ot vi
LIST OF TABLESttt e es ix
LIST OF FIGURES. ...ttt ettt ettt e X
CHAPTER
1. INTRODUCTION. ... ottt ettt e e e e 1
2. DYNAMIC OPTIMISATION
2.1. An Introduction to Dynamic Optimisation............cccevveiiineiieeneennnennn 3
2.1.1 The Maximum Principle..........cccovviiiiineieiiiiiiieieieereeeeieneenee 7
2.2. The Typical Problem of Optimal Control Theory..........cccceeeevenenanenn. 9
2.3. Heuristic Derivation of the First-Order Conditions.............c.c.coeeue.i. 11
2.4. Transversality Condition...........ccoiiiiiiiiiiiiiriiiir i ieeeeeeeeen 14
2.5. The Behaviour of the Hamiltonian..............cocveeieiiininiiiinininannee 15
2.6. Sufficient Conditions.........ccoviiiiiiiiiiiiiiiii it 16
2.6.1 The Mangasarian Sufficiency Theorem..........ccceevviieieeneiinnnn.e. 16
2.6.2 The Arrow Sufficiency Theorem..........cccooiviininiiiiiniininininen., 18
2.7 Infinite Horizon Problem..........cc.ooviiiiiiiiiiiiiiiiiiiiiieiein e 19
2.8 An Economic Interpretation of Optimal Control Theory...................... 19
2.8.1 The Basic EQUAtionS......ccouvuiiiiiiiiiiiieiiieieiieeeieeienereeenenenan, 20

vi

3. THE NEOCLASICAL THEORY OF OPTIMAL GROWTH

AND RAMSEY’S ANALYSIS
3.1 The Neoclassical Growth Model...........ccoviiiiiiiiiiiiiiiiiiiiiiiinn 27
3.2 The Maximum Principle.......cccoeeviiiiiiiiiieiiiiiiiiniinivnee 31
3.3 Phase Diagram AnalysiS.......c.ceeveiiineiniiennininniieiiiiiiiiiinen, 36
3.4 Transversality Conditions.......cceuieriiireieireiennrniiiiiiiiiiiiinnen. 40
3.5 Checking The Saddle Point by Characteristic Roots.........ccccvevuinninnnne. 41
3.6 The Shape of the Stable-Arm.........cocoviiiiiiiiiiiiiiiiiiiiiie 43

3.7 Typical Example of Solving The Stable Arm Equation by Using The
Method of Taylor’s Approximation in the Cobb-Douglass Production

FUNCHION G ot tiiitiiiittie ittt ittt teassaarettsesesseessossnsnnrnssseecesssones 44

4. NUMERICAL METHODS FOR SOLVING ORDINARY

DIFFERENTIAL EQUATIONS

4.1 Ordinary Differential Equations and The Lipschitz Condition............... 51
42 Euler’s Method.......ccoviiiiiiiiiiiiiiii i 52
4.3 The Trapezoidal Rule.......c.coviiiriiiiiiiiiiineiiiiiiciiiiiieecaeeee 56
4.4 The Theta Method........c.ovvviiiiiiiiiiiiiiiiieee e 60
4.5 The Adams Method..........coveiiiiiiiiiiiiiiiiiiiir 61
4.6 Order and Convergence of Multistep Methods.............ccoooeviiiin. 63
4.7 Backward Differentiation Formula.............ccooiiiiiiiiiiiiiin 65
4.8 Taylor’s Theorem and Runge Kutta Methods..........c.ccoovviiiiiiiin 67
4.9 Gaussian Elimination and Pivoting...........ceeeiiiiiiiiiiiiiiiiiiiinnenn. 71

5. TYPICAL EXAMPLE OF THE NUMERICAL SOLUTION OF THE STABLE
ARM BY USING THE SIMULATION PROGRAM

5.1 Input Initial Values and Parameters............cveeeeiiiniiiiinenennineanennnn. 75
5.2 Choosing The Numerical Methods and Approximating Polynomial......... 77
5.3 Results and Required Options........cccoeveiniiiiniieiiinineiierinieniieennenn 80
5.4 CONCIUSIONS. .. vuviinininiiiiitinii ettt e e eaeasneetetssseanene 83

vii

REFERENCES......cccoviiiiiiinininiiiiinine,

APPENDICES
1. The Simulation Algorithm in Mathematica
2. The Simulation Algorithm in Pascal........

viii

.....................................

......................................

.....................................

LIST OF TABLES

1. The iteration results for the theta method for the solution of the non-linear

differential €QUALION SYSTEM.......cereereerrerrrerrereriesieneessessnesnisressessesssessassssesrsensns

ix

1. Phase Diagram analysis

2. Phase Diagram analysis

LIST OF FIGURES

...

...

CHAPTER1
INTRODUCTION

In the First Phase of the Neoclassical Growth Theory, the most well known approach
is developed by Robert Solow (and independently by Trever Swan). The key aspect
of the Solow-Swan model is the neoclassical form of the production function, a
specification that assumes constant returns to scale, diminishing returns to each
input, and some positive constant elasticity of substitution between the inputs. This
production function is combined with a constant-saving-rate rule to explain
macroeconomic growth dynamics of an economy. The main conclusion of the
Solowian approach is as follows: in the absence of continuing (exogenous)
improvements in technology, per capita growth must eventually cease. Thus it is
known that positive rates of per capita growth persist over a century and these
growth rates have no tendency to decline. So, we end up with a model of growth in
which long run growth is exogenously determined. David Cass and Tjalling
Koopmans brought Ramsey’s analysis of consumer optimisation back into the
neoclassical growth theory and thereby provided for an endogenous determination of
the saving rate. This extension allows for richer transitional dynamics but does not
eliminate the dependence of the long run per capita growth rate on exogenous

thecnological progress.

In the Second Phase, research on economic growth has experienced a new boom,
beginning with the seminal works of Paul Romer and Robert Lucas since mid-1980s.
The incorporation of R&D and imperfect competition, human capital, governmental
actions, international trade, financial markets, and other aspects of the economy into
the growth framework have enriched growth literature and have been shown that a

positive steady-state growth exists.

Most of these studies are presented in dynamical general equilibrium environment
and are basically constructed in discrete or continuos time framework. For those in
the latter form, a dynamic optimisation problem is solved by using optimal control
theory method given that saving rate is endogenously determined. However, as
literature grows, it has been observed that optimisation problems becomes highly
complicated. Most studies have started to present only steady-state solutions as it
becomes almost impossible to solve these problems for their transition periods.
Moreover, some models need to be simulated as they are presented in parametric

form and parameter values are not known empirically.

This study is an attempt to write a software programme which solves dynamic
optimisation problems (optimal control problems) specific to growth problems (that
is newly emerging endogenous growth models) and find a polynomial equation of the
saddle path and sketch the graph of this path by using numerical simulation
techniques. It is known that, after reducing an optimal control theory problem into a
system of differential equations, it will be quite easy to obtain dynamics of variables
under consideration as well as their steady-state values by means of numerical
methods. Thus users will be able to see how a system of variables dynamically move
together (time paths of variables) besides their steady-state values by the help of this

software programme.

The simulation programme which solves the non-linear differential equations by
using numerical techniques is written on the programming language ‘PASCAL’ and
the other programme which solves these equations by linearizing them around the
steady-state points with the help of Taylor’s expansion is written under the
Mathematica background. This second solution is suggested by Ramsey and is very
well known. However the first one which involves a polynomial approach to the

equation of the saddle path provides a new way of obtaining transitional dynamics.

CHAPTER 2

DYNAMIC OPTIMIZATION

2.1 An Introduction to Dynamic Optimisation

Optimisation is a predominant theme in economic analysis, Chiang (1992). A
dynamic optimisation problem poses the question of what is the optimal magnitude
of a choice variable in each period of time within the planning period (discrete time
case) or at each point of time in a given time interval, say [0,T] (continous time case).

This problem can be represented by the following formula:

,
Maximize or minimize Viy] = _[F[t, y(0),y' ())dt
0

subject to y(0) =4 (4 given)
and yI)=Z (T, Zgiven) (2.1)

It is also possible to consider an infinite planning horizon, so that the relevant time
interval is [0,). The solution of dynamic optimization problem would thus take the

form of an optimal time path for every choice variable.

Regardless of whether the variables are discrete or continous, a simple type of

dynamic optimization problem would contain the following basic ingredients:

1. a given initial point and a terminal point,

2. aset of admissible paths from the initial point to the terminal point;

3. a set of path values serving as performance indices associated with the various
paths;

4. a specified objective -either to maximize or minimize the path value or

performance index by choosing an optimal path.

The assumption of a given initial point may not be unduly restrictive, because, in the

usual problem, the optimizing plan must start from some specific initial position, say,
the current position. The terminal position, on the other hand, may very well turn out
to be a flexible matter, with no inherent need to for it to be predetermined. For
instance, we may face only a fixed terminal time, have complete freedom to choose
the terminal state. On the other hand, we may also be assigned a rigidly specified
terminal state but are free to select the terminal time. In such a case the terminal point

becomes a part of the optimal choice.

As the first type of variable terminal point, we may be given a fixed terminal time T,
but a free terminal state. In such a problem, the planner has much greater freedom in
the choice of the optimal path and, as a consequence, will be able to achieve a better
optimal path value than if the terminal point is rigidly specified This type of problem
is commonly referred to in the literature as a fixed-time-horizon problem, or fixed-
time problem, or alternatively vertical-terminal-line problem meaning that the

terminal time of the problem is fixed rather than free.

The second type of variable-terminal-point problem reverses the roles played by the
terminal time and terminal state; now the terminal state is stipulated, but the terminal
time is free. Again, there is greater freedom of choice as compared with the case of a
fixed terminal point. This type of problem is commonly referred to as a fixed-

endpoint problem, or alternatively horizontal-terminal-line problem.

In the third type of a variable-terminal-point problem, neither the terminal time nor
the terminal state is individually preset, but the two are tied together via constraint

equation of the form Z =¢(T). This type of problem is called the ferminal-curve

(or terminal-surface) problem.

The common feature of variable-terminal-point problems is that the planner has one
or more degree of freedom than in the fixed-terminal-point case. But this fact
automatically implies that, in deriving the optimal solution, an extra condition is
needed to pinpoint the exact path chosen and can conclusively distinguish the
optimal path from the other admissible paths. Such a condition is referred to as a
transversality condition, because it normally appears as a description of how the

optimal path crosses the terminal line or the terminal curve.

An optimal path is, by definition, one that maximizes or minimizes the path value
V[y]. Inasmuch as any y path must perforce travel through an interval of time, its
total value would naturally be a sum. In the discrete-stage framework, the path value

is the sum of the values of its component arcs. The continous-time counterpart of

.
such a sum is a definite integral, I(arcvalue)dt. Three pieces of information is
0

needed for defining the “arc value™: (1) the starting stage (time) 7, (2) the starting
state y(7), and (3) the direction in which the arc proceeds y’(f) = dy/dt. It follows

that the general expression for arc values is F[t, y(t), y(t)], and the path-value

functional -the sum of arc values- can generally be written as the definite integral:

Yyl = IF [1, (1), y' (1))t 2.2)

The continued study of variational problems has led to the development of the

modern method of optimal control theory.

In optimal control theory, the dynamic optimization problem is viewed as consisting
of three types of variables. Aside from the variable ¢ and the state variable y(7) ,
consideration is given to a control variable u(?). An optimum control problem must
contain an equation that relates y to u:

@
= SIy0.u0)]

Such an equation, called an equation of motion (or transition equation or state
equation), shows how, at any moment of time, given the value of the state variable,
the planner’s choice of u will drive the state variable over time. Once we have found
the optimal control-variable path u'(%), the equation of motion would make it
possible to construct the related optimal state-variable path y'(#). So this approach

can be represented by the formula:

Maximize or minimize Viul = IF [z, y(8),u())dt
subject to y'@)y = fltLy@),u)]
y(0) = A (4 given)
and W) =Z (T. Zgiven) (2.3)

Note that, in (2.3), not only does the objective functional contain # as an argument,
but it has also been changed from V[y] to V[u]. This reflects the fact that # is now the

ultimate instrument of optimization.

The single most significant development in optimal control theory -a first order
necessary condition- is known as the maximum principle. The powerfulness of that
principle lies in its ability to deal directly with certain constraints on the control

variable.

Specifically, it allows the study of problems where the admissible values of the

control variable u are confined to some closed, bounded convex set U.

2.1.1 The Maximum Principle
In effect we have been led to construct the auxiliary or Hamiltonian function
H = ulk,x,t) + AO)f(k,x,1),

to compute its partial derivative with respect to x, and set that partial derivative equal
to zero. This construction has substantial economic significance. If we imagine H to
be multiplied by A, we can see that it is the sum of the total profits earned in the
interval A plus the accrual of capital during the interval valued at its marginal value.
(HA) is thus the total contribution of the activities that go on during the interval A,
and the value of the capital accumulated during the interval. Naturally, then, the
decision variable x during the current interval should be chosen so as to make H as
great as possible. It is for this reason that the procedure we are describing is called

the maximum principle.

We have also, in effect, computed the partial derivative of H with respect to k£ and

equated that partial derivative to —A . The common sense of this operation can be

seen best from a modified Hamiltonian,

d
= u(k —A
H u(k,x,t) + o k

ulk,x,t) + M + Ak

(H' DY is the sum of the profits realized during an interval of length A and the
increase in the value of the capital stock during the interval, or in a sense, the total
contribution of activities during the interval to current and future profits. If we

maximize H formally with respect to x and k we obtain:

Ou of

Ox * A ox 0,

Ou of .

ok + A 7 + A = 0,

There is one additional feature that has to be mentioned. This feature is the boundary
conditions. To see how the boundary data effect the solution, we should consider

how the three basic formulas operate:

E = flk,x,0)

Ou of

i A— =

ox 4 ox o
Ou of .
ok + }bak = —A.

The three formulas are conveniently written and remembered in terms of the

Hamiltonian. In this form they are:

0H
OA

oH

oH
Ok

These three formulas jointly determine completely the time paths of the choice
variable, the capital stock, and the value of capital. Now look at the second formula

ax 27 ax (sV .

With £ and A known, this formula determines the value of x, the choice variable.

Putting this value into the first formula we obtain £, the rate at which the value of a
unit of capital is changing. Thus we know the capital stock and the value of a unit of
capital a short time later. Using these new values, we can repeat our substitutions in
the three formulas above and so find, in order, a new value of the change in the
capital stock and a new rate for the change in the value of capital. Repeating this
cycle over and over again, we can trace through the evolution of all the variables

from time zero to time 7.

In short, these three formulas working together determine the optimal paths of all the
variables starting out from any given initial position. In other sense, then, the
problem of the choice of an optimal path has been reduced to a much simpler
problem, the problem of choosing an optimal initial value for the value of a unit of
capital. This is not by any means an easy problem, but it is obviously a great deal

easier than finding an entire optimal path without the aid of these formulas.

Same results above can be deduced from the more familiar method of maximizing
subject to a finite number of constraints. The following typical problem of optimal

control theory can be given as an example of this method.

2.2 The Typical Problem of Optimal Control Theory

In this part we want to demonstrate how to use Pontryagin’s technique. This
technique will provide us to solve the various dynamic models. Thus the typical
problem explained in Barro and Sala-i-Martin (1995), that we want to solve takes the
folldwing form. The agent chooses or controls a number of variables, called control
variables, so as to maximize an objective function subject to some constraints. These
constraints are dynamic in that they describe the evolution of the state of the

economy, as represented by a set of state variables, over time. The problem is given

by:

T

max V(0) = [v[k(r),c(t),!].dr, subjectto

(1) 0

(@) k(1) = g[k(1),c(t),t],
() k(0)=k, > 0, given,

() k(T)-e" " > 0 (2.4)

where V(0) is the value of objective function as seen from the initial moment 0, 7(¢)
is an average discount rate that applies between dates 0 and ¢, and T is the terminal
planning date, which could be finite or infinite. The variable k(?) is the state variable
and the variable c(?) is the control variable. Each of these variables are functions of
time. The objective function in (2.4) is the integral of the functions, v(e), over the
interval from 0 to 7. These functions depend, in turn, on the state and control
variables, k(¢) and c(?), and on time, ¢. The accumulation constraint is a differential
equation in k(?); this constraint shows how the choice of the control variable, c(?),

translates into a pattern of movement for the state variable, k(z). The equation for

k(z) is called the transition equation or equation of motion.

The initial condition in Eq. (2.4) says that the state variable, (z), begins at a given
value, k; . The final constraint, in Eq.(2.4), says that the chosen value of the state

variable at the end of planning horizon, k(?), discounted at the rate #(7") must be
nonnegative. For finite values of T, this constraint implies k(7" =0, as long as the

discount rate #(7) is positive and finite.

An economic example of this kind is a growth model in which v(e) is an
instantaneous utility function that depends on the level of consumption and is

discounted by a time preference factor,
v(k,c,t)=e ™ -ufc(1)].

In this example v(e) does not depend on the capital stock, k(?), and depends directly

on time only through the discount factor, ¢ ™ .

2.3 Heuristic Derivation of the First-Order Conditions

The starting point is the static method for solving nonlinear optimization problems,
the Kuhn-Tucker Theorem. This theorem suggests the construction of a Lagrangian

of the form,

T

L = [k@)e),-de + j{x(t).(g[k(t),c(t),r]—k(t))}.dt

]

+ A k(T)-e 7, 2.5)

where A(f) is the Lagrange multiplier associated with the constraint in Eq. (2.4a),
and A, is the multiplier associated with the constraint in Eq. (2.4c). Since there is a
continuum of constraints (a), one for each instant ¢ between 0 and 7, there is a

corresponding continuum of Lagrange multipliers, A (7).

11

The A (f)and A, are called costate variables or dynamic Lagrange multipliers. These
costate variables can be interpreted as shadow prices: A(¢) is the price or value of an
extra unit of capital stock at time ¢ in units of utility at time 0. Since each constraints,

g(*)— £, equals 0, each of the products, A (1) .[g(e)— k1, also equals 0. It follows

that the sum of all the constraints equals 0;

[(elk(r).c0.1— k) dt = 0.

To find the set of first order necessary conditions in a static problem, we would

maximize L with respect to c(?) and k(?) for all # between 0 and 7. The problem with
this procedure is that we do not know to take the derivative of £ with respect to k. To
avoid this problem, we can rewrite the Lagrangian by integrating the term A (7) - k(r)

by parts to get:

T T
L = j(v[k(r),c(r),t]+x(t)-g[k(t),c(t),t]).dt E. jx'(t).k(t).dz

+ M0)-ky —MT)-K(T) + Dy -K(T)-e" DT (2.6)
The expression inside the first integral is referred to as the Hamiltonian function,
H(k,c,t,AM) = v(k,c,t) + A-glk,c,t) 2.7

The Hamiltonian function has an economic interpretation. At instant in time, the
agent consumes c(f) and owns a stock of capital k(#). These two variables affect
utility through two channels. First, the direct contribution of consumption, and
perhaps capital, to utility, is captured by the term v(e)in Eq. (2.7). Second, the

choice of consumption affects the change in the capital stock in accordance with the

transition equation for & in Eq. (2.4a).
12

The value of this change in the capital stock is the term A - g(k,c,t) in Eq. (2.7).
Hence, for a given value of the shadow price, A, the Hamiltonian captures the total

contribution to utility from the choice of ¢().

Rewrite the Lagrangian from Eq.(2.6) as:

T
L = [(HIK®.c).0+X@) k@) d + 20)-kO0) — MT)-k(D)

0

S N k(T 2.7)

Let Z(z‘) and z(t) be the optimal paths for the control and state variables,

respectively. If we perturb the optimal path Z(t) by an arbitrary perturbation function,

p, (1), then we can generate a neighboring path for the control variable,

o(t) = c(t) +.p, (1)

When c() is thus perturb, there must be a corresponding perturbation to k(%) and k(7)

so as to satisfy the budget constraint

k(1) = k() +£.ps (1)

k(T) = k(T) +s.dk(T).

If the initial paths are optimal, then 0L/de should equal zero. Before we compute

such a derivative, it will be convenient to rewrite the Lagrangian in terms of € :

L(.€) = [(HIkC,e)se(.6)]+ K()- k()) de

+1(0).k(0) = A(T).k(T,&) + As.k(T,€).e" "

13

We now take the derivative of the Lagrangian with respect to € and set it to zero:

o Ljoe = [[@H/oe)+ .- @k 6)] dt + [y ~M(T)] GK(T.£)/2€) = 0.

The chain rule of calculus implies 0H/de = [oH/oc] p,(t)+ [oH/ok | p,(s) and
Ok(T,c)/0e =dk(T). By using these formulas and rearranging terms in the

expression 67/38 to get:

oL/3%e =]‘{6H/6c]- p()+ [orjor +3] p, (t)}dt

+ e -aD] k(1) = o (2.8)

Equation (2.8) can hold for all perturbation paths, described by p,(¢), p,(¢) and

dk(T), only if each of the components in the equation vanishes, that is:

8H/oc = 0, (2.9)
BH/ok + A =0, (2.10)
Ay -e" DT = 0(T). (2.11)

The first order condition with respect to the control variable in Eq.(2.9) says that if

Z(t) and z(t) are a solution to the dynamic problem, then the derivative of the
Hamiltonian with respect to the control ¢ equals 0 for all ¢. This result is called the
Maximum Principle. Equation (2.10) says that the partial derivative of the
Hamiltonian with respect to the state variable equals the negative of the derivative of
the multiplier, — A . This result and the transition equation in (2.4a) are often called
the Euler equations. Finally equation (2.11) says that the costate variable at the
terminal date,A equals 2, the static Lagrange multiplier associated with the non-

negativity constraint on £ at the terminal date, discounted at the rate 7(T).

14

2.4 Transversality Conditions

In the present problem, there is an inequality constraint that says that the stock of

capital left at the end of the planning period, discounted at the rate 7(7") cannot be
negative, k(T)-e"”7 >0. The condition associated with this constraint
A - k(T)-e " =0, with A, >0. Equation (2.11) implies that we can rewrite this

condition as:
AMT)-k(T)=0. (2.12)

This boundary condition is often called the transversality condition. 1t says that if

the quantity of capital left is positive, £(T) > 0, then its price must be zero, A(7) =0

Alternatively, if capital at the terminal date is has the positive value, A(T) 2 0, then

the agent must leave no capital, k(7) =0.

2.5 The Behavior of the Hamiltonian over Time

To see how the optimal value Hamiltonian behaves over time, take the total

derivative of H with respect to time to get:
dH(k,c,\t)/dt = [oH/ok]k + [oH[oc}¢ + [oH/oA}x + oH/at

The first order condition in Eq.(2.9) implies that at the optimum, [6H /6c]= 0; hence

the second term on the right hand side of the above equation equals 0. Equation

(2.10) requires OH/ok = —X. Since 8H /) = k, the first and the third terms on the

right hand side of the above equation cancel.

15

Hence at the optimum, the total derivative of the Hamiltonian with respect to time
equals the partial derivative,0H/ét . If the problem is autonomous -that is, if neither
the objective function nor the constraints depend directly on time- then the derivative
of the Hamiltonian with respect to time is zero. In other words, the Hamiltonian

associated with autonomous problems is constant at all points in time.

2.6 Sufficient Conditions
2.6.1 The Mangasarian Sufficiency Theorem:

In static, nonlinear maximization problem, the Kuhn-Tucker necessary conditions are
also sufficient when the objective function is concave and the restrictions generate a
convex set, Mangasarian (1966) extends this result to dynamic problem and shows

that if the functions v(e) and g(e)are both concave and & and c, then necessary

conditions are also sufficient, Chiang (1992).

A basic sufficiency Theorem due to O. L. Mangasarian states that for the optimal
control problem the necessary conditions of the maximum principle are also
sufficient for the global maximization of V/c] , if both the v(e) and g(e) functions
are differentiable and concave in the variables (k, ¢) jointly, and in the optimal
solution it is true that A(r) 20 for all ¢ €[0,T7] if g is nonlinear in £ or in ¢ [if g is

linear in & and in ¢, then A(¢) needs no sign restriction.]

The optimal control path ¢'(#) -along with the associated £'(z) and A"(¢) paths- must

satisfy the maximum principle, so that:

H(k,c,t,A) = v(k,c,t) + A-g(k,c,t)

oH

Ec‘ = v (k*,c,t) + ANg(k',c't) = 0

16

This implies that v,(k",c",¢) = -A"g (k" ,c",t). Moreover, from the costate equation

of motion, A = —dH, /0k , we should have

A —v, (k*,c",0) — Mg (k*.c',0)

- = Ag (kL)

= v, (k*,c",t)

Finally, assuming for the time being that the problem has a vertical terminal line, i.e;

the terminal capital is free which means that k'(7)>0 , which also means that the
shadow price A"(T) equals to zero; then the initial condition and the transversality

condition should give us k,” =k, (given) and A" (T)= 0.

Now let both the v(e) and g(e) functions be concave in (%, c). Then, for two distinct

points (£, ¢, £) and (k, ¢, ?) in the domain, we have:

vk t) — wk,er) < vk, k=K + vk t)(c—c")
glk,e,t) — gk, c',t) < g (k"¢ o) k—k") + g.(k".c".t)(c—c")

Upon integrating both sides of the first inequality above over [0,T], that inequality

becomes:

V- v o< [t -k +v k(e - de

0

T

= [Fra-e)-ng @ e 0tk -k)-2g k" e 0 —c) | de

The first component of the last integral relating to the expression — A"(k—k"), can

be integrated by parts to yield:

17

T T
[k= k*ydr = [3[gh,c.t) - g(k" " 1)) dr
0 0

This result enables us to write:

T
V- < [X[glhe.)- gk’ e) - g, (k")k~ k) = g, (" c") (e —c) }
0
<0

Consequently, the final resultis ¥ < V" which establishes V" to be a (global)
maximum. This theorem is based on the v(s) and g(e) functions being concave. If
these functions are strictly concave, the weak inequalities will become strict
inequalities. The maximum principle will then be sufficient for a unigue global

maximum of V.,

Although the proof of the theorem has proceed on the assumption of a vertical

terminal line, the theorem is also valid for other problems with a fixed 7.

2.6.2 The Arrow Sufficiency Theorem

Another sufficiency theorem, due to Kenneth J.Arrow, uses a weaker condition then

Mangasarian’s theorem, and can be considered as a generalization of the latter.

At any point of time, given the values of the state and costate variables k and X, the
Hamiltonian function is maximized by a particular c, ¢”, which depends on ¢, k and A
¢ =c'(k X, f). When this expression is substituted into the Hamiltonian, we obtain

“what is referred to as the maximized Hamiltonian function

H(k,t,0) = v(kt,X) + A-g(kt,))

18

The Arrow theorem states that the conditions of the maximum principle (necessary
conditions) are sufficient for the global maximization of ¥, if the maximized
Hamiltonian function H°(k,A,t) is concave in the variable k for all ¢ in the time
interval [0,T], for given A. Concavity of v(e) and g(e)is sufficient, but not

necessary, for the Arrow condition to be satisfied.

2.7 Infinite Horizon Problem

Most of the growth models involve economic agents with infinite planning horizons.

The typical problem in Barro and Sala-i-Martin (1995) takes the form:

-]

max V(c) = Iv[k(t),c(t),t].dt, subject to

c(1) 0

(@ k(t) = glk(®),c(0),1],
) k(0)=k, > 0, given,

(¢) im[k(T)-e™] 2 0 (2.13)

The first-order conditions for the infinite horizon problem are the same as those for
the finite horizon case. The key difference is that the transversality condition, (2.12)
applies not to a finite 7, but to the limit as 7 tends to infinity. In other words the

transversality condition is now:
llim[?»(t) k(0)]=0 (2.14)

The intuitive explanation for the new condition is that the value of the capital stock
must be asymptotically 0, otherwise something valuable would be left over. If the
quantity k(¢), remains positive asymptotically, then the price, A(¢), must approach 0
asymptotically. If k(r) grows forever at a positive rate then the price A(f) must

approach 0 at a faster rate so that the product, A(T)-k(T), goes to zero.
19

2.8 An Economic Interpretation of Optimal Control Theory

Capital theory is explained as the economics of time by Dorfman. Its task is to
explain if, and why, a lasting instrument of production can be expected to contribute
more to the value of output during its lifetime than it costs to produce or acquire. All
this has changed abruptly in the past decade as a result of a revival of the calculus of
variations. In its modern version, the calculus of variations is called optimal control
theory. It has become the central tool of capital theory and has given the latter a new
lease onlife. As a result, capital theory has become so profoundly transformed that it
has been rechristened growth theory, and has come to grisps with numerous
important practical and theoretical issues that previously could not even be

formulated.

2.8.1 The Basic Equations

Consider the decision problem of a firm that wishes to maximize its total profits over
some period of time. At any date 7, this firm will have inherited a certain stock of
capital and other conditions from its past behavior. Denote these by k(). With this
stock of capital and other facilities £ and at that particular date ¢, the firm is in a
position to take some decisions which might concern rate of output, price of output,
or product design. Denote the decisions taken at any date by x(z). From the inherited
stock of capital at the specified date together with the specified current decisions the
firm derives a certain rate of benefits or net profits per unit of time. Denote this by
u(k(r), x(r), £). This function u determines the rate at which profits are being earned at

time £ as a result of having & and taking decisions x.

Now look at the situation as it appears at the initial date # = 0. The total profits that

will be earned from then to some terminal date T are given by:

20

T

Wko,®) = [ulk,x,t)-dt

0

which is simply the sum of the rate at which profit is earned at every instant and
added up for all instants. This notation asserts that if the firm starts out with an initial
amount of capital 4, and then follows the decision policy denoted by X , it will obtain
a total result /7, which is the integral of the results obtained at each instant. The firm
is able to choose the limits of the time path of the decision variable ¥ but it cannot
choose independently the amount of capital at each instant. This constraint is
expressed by saying that the rate of change of the capital stock at any instant is a

function of its present standing, the date, and the decisions taken. Symbolically:

. dk
k = 7T - fk,x,1t)

Thus the decisions taken at any time have two effects. They influence the rate at
which profits are earned at that time and they also influence the rate at which the

capital stock that will be available at subsequent instants of time.

These two formulas express the essence of the problem of making decisions in a
dynamic context. The problem is to select the time path symbolized by ¥ so as to
make the total value of the result, W, as great as possible taking into account the
effect of the choice of x on both the instantaneous rate of profit and the capital stock
to be carried into the future. The strategy of the solution is to reduce the problem
which, as it stands, requires us to find an entire time path, to a problem which
demands us to determine only a single number. This transformation of the problem
can be performed in a number of ways. One way, which dates back to the eighteenth
century, leads to the classical calculus of variations. Another way leads to the
maximum principle of optimal control theory. First, introduce a formula for the value
that can be obtained by the firm starting at an arbitrary decision policy x until the

terminal date. It is:

21

T

Wk, %50 = [u(k,xt)-dv

1

Now break W up into two parts. Think of a short time interval of length A beginning
at time £. A isto be thought of as being so short that the firm would not change x in

the course of it even if it could. Then we can write:

.
W50 = ukx,HA + [ulk(),x1]dr.

1+A

This formula says that if the amount of capital at time ¢ is &£ and if the policy denoted
by X is followed from then on, then the value contributed to the total sum from date
t on consists of two parts. The first part is the contribution of a short interval that
begins at date £. It is the rate at which profits are earned during the interval times the
length of the interval. It depends on the current capital stock, the date, and the current
value of the decision variable, here denoted by x,. The second part is an integral of
precisely the same form as before but beginning at date 7+ A. It should be noticed
that the starting capital stock for this last integral is not () but &(¢ + A). We can take

the advantage of the fact that the same form of integral has returned by writing
W(k,,x,t) = u(k,x,,0)A + W(k,,,X,t+A)
where the changes in the subscripts are carefully noted.

If the firm knew the best choice of X from date ¢ on, it could just follow it and
thereby obtain a certain value. We denote this value, which results from the optimal

choice of X by V", as follows:

V' (k1) max W (k,,%,1).

22

Now suppose that the policy designated: by x, is followed in the short time interval
from ¢t to t+A and that thereafter the best possible policy is followed. The

consequence of this peculiar policy can be written as:

V(k,,x,,t) = ulk,x,,H)A + V'(k,,,t+A).

In words, the result of following such a policy are the benefits that accrue during the
initial period using the decision x, plus the maximum possible profits tat can be
realized starting from date #+ A with capital k(¢ +A) which results from the

decision taken in the initial period.

Now we have arrived at the ordinary calculus problem of finding the best possible
value for x,. If the firm adopts this value, then ¥ of the last formula will be equal to
V'. For the present we assume that the partial derivatives vanishes at the maximum,

differentiate V(k,, x,, f) with respect to x,, and obtain

0 0
A—ulk,x,,t) + —V'(k(t+A)t+A) = 0 (2.15)
Ox, Ox,
where,
o’ ov*' ok(t+A)
ox, Ok(t+A) o,

To simplify this expression we can use the approximation

k¢+A) = k@) + kA

That is, the amount of capital at 7+ A is equal to the amount of capital at ¢ plus the

rate of change of capital during the interval times the length of the interval.

Remembering the formula which £ depends on x, :

23

. dk
k = E - f(kaxat)

Thus we can write

Ok(t+4) A o
Ox - T,

H
Turn, now, to the first factor, oV" /6k. This derivative is the rate at which the
maximum possible profit flow from time 7+ A on changes with respect to the
amount of capital available at ¢+ A. It is, therefore, the marginal value of capital at

time ¢ + A. We denote this marginal value of capital at time # by A(¢), defined by:
All) = 9 V*(k,t)
- ok e

Inserting these results in formula (2.4), we obtain:

u of
-— A+AA— = 0 2.16
Mg + Mi+MALS (2.16)

and furthermore, the constant A can be canceled out. The marginal value of capital

changes over time and so, to a sufficiently good approximation,

AME+A) = A + MDA
That is, the marginal value of capital at #+ A is the marginal value at ¢ plus the rate
at which it is changing during the interval multiplied by the length of the interval.

Insert this expression in equation (2.5), after canceling the common factor A . in the

equation as written, to obtain:

24

ou
o + A1)

A A
6x+Mt)A6x_0°

1 ! !

Now allow A to approach zero. There results:

565: + l% = 0. (2.17)
This is our first major result which makes perfectly good sense to an economist. It
says that along the optimal path of the decision variable at any time the marginal
short-run effect of a change in decision must just counter-balance the effect of that
decision on the total value of the capital stock an instant later. We see that because
the second térm in the equation is the marginal effect of the current decision on the
rate of growth of capital with capital valued at its marginal worth, A . The firm
should choose x at every moment so that the marginal immediate gain just equals the
marginal long-run cost, which is measured by the value of capital multiplied by the

effect of the decision on the accumulation of capital.
Now suppose that x, is determined so as to satisfy equation (2.17). On the assumption

that this procedure discovers the optimal value of x,, V(k, x,, #) will then be equal to

its maximum possible value or V'(k, f). Thus:
Vik,t) = u(k,x,,0)A + V7 (k(t+A),t+A).
Now differentiate this expression with respect to k. The derivative of the left-hand

side is by definition A (). The differentiation of the right-hand side is very similar to

the work that we have already done and goes as follows:

25

+ 2y)+ A

Al = A'a—k o
= AZ—Z + %}:A)-Mt+A)
= AZ—Z + (1+A%)(X+XA)
= Ag% + A+ Ak% + AN+ XZ—jI;-AZ.

We can ignore the term in A’ and make the obvious cancellations to obtain:

. ou of
A = — e 2
A K + X PR (2.18)

This is the second major formula of the maximum principle and possesses an

illuminating economic interpretation.

To an economist, A is the rate at which the capital is appreciating. - (f) is therefore
the rate at which a unit of capital depreciates at time f. Accordingly the formula
asserts that when the optimal time path of capital accumulation is followed, the
decrease in value of a unit of capital in a short interval of time is the sum of its
contribution to the profits realized during the interval and its contribution to
enhancing the value of the capital stock at the end of the interval. In other words, a
unit of capital loses value or depreciates as time passes at the rate at which its

potential contribution to profits becomes its past contribution.

26

CHAPTER 3

THE NEOCLASSICAL THEORY OF OPTIMAL GROWTH
AND
RAMSEY’S ANALYSIS

3.1 The Neoclassical Growth Model

In this chapter, according to Barro and Sala-i-Martin (1995), we assume that the path
of consumption and hence the saving rate are determined by optimizing households
and firms that interact on compeﬁtive markets in closed economy. We deal, in
particular, with infinitely-lived households that choose consumption and saving to
maximize their dynastic utility, subject to an intertemporal budget constraint. This
specification of consumer behavior is a key element in the Ramsey growth model as

constructed by Ramsey(1928) and refined by Cass and Koopmans (1965).

The central question addressed by Ramsey is that how much of the national output at
any point of time should be for current consumption to yield current utility, and how
much should be saved (and invested) so as to enhance future production and
consumption, and hence yield future utility? This important issue of intertemporal
resource allocation has exerted a strong influence on economic thinking, although
this influence did not come into being until after World War II, when that model
rediscovered by growth theorists. In a more recent development, this basic issue is
formulated as a problem of optimal control. Moreover, this new treatment -labeled as
“the neoclassical theory of optimal growth™- extends the Ramsey model in two major

respects:

27

(1) The labor force (identified with the population) is assumed to be growing at an
exogenous constant rate #>0 (the Ramsey model has »n=0), and (2) the social
utility is assumed to be subject to time discounting at a constant rate p >0 (the

Ramsey model has p =0).

The households in the economy provide labor services in exchange for wages,
receive interest income on assets, purchase goods for consumption, and save by
accumulating additional assets. Each household contains one or more adults, working
members of the current generation. In making plans, these adults take account of the
welfare and resources of their actual or prospective descendants. We model this
intergenerational interaction by imagining that the current generation maximizes
utility and incorporates a budget constraint over an infinite horizon. That is, although
individuals have finite lives, we consider an immortal extended family. The current
adults expect the size of their extended family to grow at the rate » because of the net
influences of fertility and mortality. But at this point, we continue to simplify by
treating n as exogenous (given) and constant. We also neglect the migration of
persons. Thus under these assumptions we may formulate the family size at time ¢

(which corresponds to the adult population) is :
L(t) = L(0).e"

If we normalize the number of adults at time 0 to unity, then the family size becomes
L(t)y=e". If C(r) is total consumption at time ¢, then c(¢)=C(t)/ L(t) is
consumption per adult person. Thus if we denote the utility enjoyed by a person
consuming at rate c(¢) by u[c(#)], We assume that the social utility index function

ulc(?)] is assumed to posses the following properties:

u'le(r)]>0 u"[c(t)]<0 forall c>0

lciilgu’[c(t)] = and 11_{2 u'le(t)]=0

28

The total utility enjoyed by all the persons alive at time 7 with per capita consumption

at rate c(f) is e” .u[c(r)].

Let p > 0 be the social rate of time preference. Then the importance at time 0 of the

consumption achieved at time ¢ is e™™.e™ .u[c(?)]. A positive value of p means that
utils are valued less the later they are received. The other reason is that utils far in the
future correspond to consumption of later generations. Suppose that, starting from a
point at which the levels of consumption per person in each generation are the same,
parents prefer a unit of their own consumption to their children’s consumption. This
parental “selfishness™ corresponds to p >0. Ramsey assumed p=0. He then
interpreted the optimizing agent as a social planner, rather than a competitive
household, who choose consumption and saving for today’s generation as well as
future generations. The discounting of utility for future generations (p >0) was,
according to Ramsey, “ethically indefensible”. It is also plausible that parents would
have diminishing utility with respect to the number of children. We could model this

effect by allowing the rate of time preference, p, to increase with the population

growth rate, n.

Then the defensible objective for a society with infinite time horizon is to maximize:

0

U = [ue@)]-e”-e -dt G.1)

0

This formulation assumes that the household’s utility at time 0 is a weighted sum of
all future flows of utility, #[c(¢)]. We also assume p > n, which implies that U is

bounded if c(¢) is constant over time.

The analytic framework of the neoclassical theory revolves around the neoclassical
production function Y(r) = Y[K(¢), L(t)], assumed to be characterized by constant

returns to scale, positive marginal products, and diminishing returns to each input.

29

Such a production function, being linearly homogenous, can be rewritten in per
capita terms. Let k(r) = K(¢)/L(t) denote capital per capita and y(¢) = Y(¢)/L(t)

denote the output per capita. We can express the production function by:

W) = f(k()),
Fk@)>0, f'k(@®))>0, f"k(t)<0 for k>0,
lim f'(k(1)) =0, lim f'(k(1)) =0,

By virtue of constant returns to scale, we can write the production function of the

economy as:

Y(t) = L(0)- f (k1)) =€" . f k(D))

Gross investment equals output minus consumption, or Y(¢)— L(¢).c(t). Net
investment equals gross investment minus physical depreciation. Suppose that
physical capital deteriorates the rate 8 so that the total rate of decay of the physical

stock, when it is K(¥), is 8. K(¢). Then net capital accumulation is:

K(®) =Y(t) = L(t).c(t) = 8.K(r) = LIS (k(1)) - c(1)] - 8. K (2)
= LOLS k(1)) = c(1)] = 8. L(2). k(1)
= L(OLf k(1) — (1) = 8. k(1)]- M

Finally, eliminate K(¢) by noticing:

i L KO _ K(t)(f((t) L(t))

0= L) ~ LO)\K(@) L)
o KO
_k(t)(l,(t).k(t) ")

30

= KO+kOn=T

= K@) = L(t).[k(t) + k(2).n]
So by equating the two equations (I) and (II), we obtain:
k(t) = f(k@) = c(t) - (n+8).k(?)

The problem of optimal growth is thus simply to

Maximize U = Iu[c(t)]-e(""’” -dt

0

subject to k@) = f(k@) —c(t) - (n+8).k(2)
k(0) = k,
and 0<c(t) < fTk(D]

3.2 The Maximum Principle

Hamiltonian for this problem is,

H = ufe®]-e™™ + ALF(k(cE)—c(t)-(n+8).k(0)]

We can accordingly find the maximum of H by setting

oH u'(c).e" " -x = 0

oc

OoH .
- AMSf'(k(e)-(n+8)] = -4
OH .

31

(D

(3.2)

(3.3)

(3.4)

@

1

ey

This three equations, inprinciple enable us to solve for the three variables ¢, A, and

k.

From the equation (I), we obtain the condition:

u'le(t)] = 1.eP™

which states that, optimally, the marginal utility per capita consumption should be
equal to the shadow price of capital amplified by the exponential form. In other
words, the value of a unit of capital at time ¢ is the marginal utility of consumption at

that time, adjusted for population growth and the social rate of time preference.

Now take the logarithm of both sides of equation (7) with respect to base e:

Ine" " +Inu'(c) =InA

= (n—p).r+Inv'(c)=Ink, taking the derivative of both sides with respect to t:

u"(c) . A
C=_,

u'(c) A

= (m-p)+

A
Form equation (7I), we obtain = (n+8)- f'(k(c)), so by equating this equation
with the result of the above derivation, we can easily get the following equation:
u"(c)
r ‘ c
u

J'(k(c)) =p+8 7@

which asserts that along the optimal path the rate of consumption at each moment

must be chosen so that the marginal productivity of capital is the sum of three

components:

32

(1) p, the social rate of time preference,

(2) 8, the rate of physical deterioration of capital, and

(3) the rather formidable looking third term which, however, is simply the percentage
rate at which the psychic cost of saving at any time is #'(c), its time rate of
change is u"(c).¢, and its percentage time rate of change is the negative of the

third term in the sum.

In other words, along the optimum path of accumulation the marginal contribution of
a unit of capital to output during any short interval of time must be just sufficient to
cover the three components of the social cost of possessing that a unit of capital,
namely, the social rate of time preference, the rate of physical deterioration of capital,
and the additional psychic cost of saving a unit at the beginning of the interval rather
than at the end. All of these are expressed as percents per unit of time, which is also

the dimension of the marginal productivity of capital.

Rewriting the same equation,

__u()
~ w0

[k - (p +8) (3.5)
which is a differential equation in the variable c. Consequently, we now can work

with the differential equation system

k() = f (kD) —c(t) ~ (n+8).k(2)

u'(c())

O e

/7@ - (p +8) (3.6)

If we divide both sides of the equality in the second equation above by c, then we get

the following equation:

33

Q1 w(e)
(o) o) u'(e)

£/ k@) - (p +8)

1)
o) u(e(e)’

elasticity of intertemporal substitution. The intertemporal substitution between

The term, — on the right-hand side of the above equation is called the

consumption at times #, and ¢, is given by the reciprocal of the magnitude of the slope
of an indifference curve in response to a proportionate change in the ratio

c(t,)/ c(t,). If we denote this elasticity by ¢ , then we get

ey afeeyyswteen]
—ule@))/wle)] dle()/ e(ty)]

where —u'[c(t,)]/ u'[c(t,)] is the magnitude of the indifference curve. If we let ¢,

approach #,, then we get the instantaneous elasticity,

o =—u'[e(t)]/ fe(t).u"[c(®)]

which is the inverse of the magnitude of the elasticity of marginal utility. We

therefore follow the assumption of the functional form

o)™ -1
(1-6) ~’

ule(t)] =
where 0 >0, so that the elasticity of marginal utility equals the constant —0 . The
elasticity of substitution for this utility function is et constant o =1/0 . Hence this
form is called the constant intertemporal elasticity of substitution (CIES) utility
function. The higher 0, the more rapid is the proportionate decline in u'[c(¢)] in
response to increases in ¢ and, hence, the less willing households are to accept

deviations from a uniform pattern of ¢ over time.

34

As 0 approaches 0, the utility function approaches a linear form in ¢. So that we can

write our second equation in (3.6) as:

{n 1

o "o L ED)=(+8) 3.7

However, our analysis has not finished yet because now in the above equation we
look the term f'(k(f)) under microscope such as this term explains the marginal

productivity of the representative firm.

The representative firm’s flow of net receipts or profit at any point in time is given

by
profit = F(K,L)-(r+38).K—-w.L

where r denotes the rental price of the capital and w denotes the wages of the
workers. We assume that the firm seeks to maximize the present value of profits.
Because the firm rents capital and labor services and has no adjustment costs, there
are no intertemporal elements in the firm’s maximization problem. That is, the
problem of maximizing the present value of profits reduces here to a problem of

maximizing profits in each period without regard to the outcomes in other periods.
A competitive firm, which takes r and w as given, maximizes profit by setting
S'k@)=r+3

That is, the firm chooses the ratio of capital to effective labor to equate the marginal

product of capital to the rental price.

This analysis makes us to conclude that the equation (3.6) can be written as:

35

a_1
c(t) 0

1
[ram-e+8)]=5-¢-p).
Therefore, the relation between » and p determines whether households choose a
pattern of per capita consumption that rises over time, stays constant, or falls over
time. A lower willingness to substitute intertemporally (a higher value of 0) implies

a smaller responsiveness of ¢/c to the gap » and p.

3.3 Phase Diagram Analysis

To construct the phase diagram, Chiang (1992), we first draw the £ =0 curve and

the ¢ =0 curve. These are defined by the two equations

@) c(t) = fk(t)—(n+8).k(r) [Equation for k =0 curve]
a f'k@)=p+o [Equation for ¢ =0 curve]

The & =0 curve shows up in the ke space as a concave curve, as illustrated in Fig.
(3.1b). As the equitation (I) above indicates, this curve expresses ¢ as the difference
between two functions of k& f(k(z)) and (n+8).k(¢). Plotting the difference
between these two curves then yields the desired & = 0 curve in Fig.(3.1b). It has the
shape drawn because of the conventional assumptions that the marginal productivity
of capital is positive but diminishing, and the very plausible assumption that for
every low levels of capital per worker, f'(k(¢))>n+8 . We also assume that no
output is possible without some capital, i.e., f(0)=0. As to the ¢=0 curve the
equation (II) above requires that the slope of the f(k(¢)) curve is the specific value
p+8.The f(k(¢)) curve being monotonic, this requirement can be satisfied only at
a single point on that curve, point B, which corresponds to a unique & value k* . Thus
the ¢=0 curve must plot as a vertical straight line in Fig.(3.1b), with horizontal

intercept &

36

Fig.(3.1)

(n + &)k
Slope = n + 8 o (k)
Slope = n +38 + r /,—' H
A - [
(a) :
0 3 ; k
k'’ k '
c : ;
¢ : :
— 2 . :
C‘ : » k ;
E H '
(b) H E
0 - ~— k
k k

At the same time, from the equation (I) above, we can obtain the highest possible

steady-state c is attained such that:

oc
Py S'(k(@)-(n+8)=0
that is, when

fk(@#) = (n+8).

This given condition is known as the golden rule of capital accumulation.

Since f(k(t)) is monotonic, there is only one value of & that will satisfy this
condition. Let that particular value of & be denoted by k , and let the corresponding

golden-rule value of ¢ denoted by ¢. Then ¢ = f(k(t))—(n+8)k . This value of ¢
represents the maximum sustainable per-capita consumption stream, since it is

derived from the maximization condition dc/dk=0.

37

The intersection of the two curves in Fig.(3.1b), at point E determines the steady-
state values of k and ¢. Denoted by k" and c¢" respectively, these values are referred
to in the literature as the modified golden rule values of capital-labor ratio and per-
capita consumption, as distinct from the golden rule values ¥ and ¢. Since k* is
defined by f'(k")=n+p, which involves a larger slope of f(k(f)) than the
golden-rule case. Since the golden rule value is the maximum attainable consumption
value, then the other values for consumption must be less than this value and from
the assumption that the marginal productivity of capital is positive but diminishing,
and the very plausible assumption that for every low levels of capital per worker,

f'(k(2)) >n+38 , the discount rate should be greater than the depreciation rate, i.e.,

p>38.

Redrawing the fig.(3.1b) more specifically we can analyze the saddle-path more

easily. To prepare the analysis of the phase diagram, we draw the streamlines. These

streamlines must cross the k£ =0 curve with infinite slope and cross the ¢ =0 curve

with zero slope.

Fig.(3.2)

38

If consumption per capita is less than the rate on the locus, capital per capita
increases (% >0). Above the locus (£ <0). If we accept the usual assumptions of
positive but diminishing marginal utility #’[c(¢)]>0, u#"[c(#)]<O0. Then ¢>0, i.e.,
per capita consumption grows, to the left to this line. The reason is that the low levels
of capital per capita the amount of depreciation is small and the amount of capital
needed to equip the increment in population with the current level of capital is also
small. For clues about the general directions of the streamlines, we partially

differentiate the two differential equations in (3.6), we find that

ok

"3; = -1 <« 0

& W) .,

&k - wieq B <0

According to the first equation above, as ¢ increases (going nortworth), k should

follow the (+,0,—) sign sequence. So, the k-arrowheads must point eastward below

the £ =0 curve, and westward above it. Similarly the second equation indicates that
¢ should follow the (+,0,~) sign sequence as k increases (going eastward). Hence,
the c-arrowheads should point upward to the left of the ¢ =0 curve, and downward

to the right of it.

These considerations enable us to depict qualitatively the laws of motion of the
system. The entire evolution of the system is determined by the choice of the initial
level of per capita consumption. If a low initial level is chosen, such as point 4 in the
Fig.(3.2), both consumption and capital per capita will increase for some time,
following the curved arrow that emanates from point 4. But when the level of capital
per capita reaches the critical value, consumption per capita will start to fall though
capital per capita will continue to increase. This is a policy of initial generosity in
consumption followed by increasing abstemiousness intended, presumably to attain

some desired level of capital per capita.

39

Similarly, the path emanating from point B represents a policy of continually
increasing consumption per capita, with capital initially being accumulated and

eventually being consumed.

The path originating at point C is of particular interest of this theses. It leads to the
intersection of the two critical loci, the steady state of the system in which neither per
capita consumption nor per capita income changes. Once at this point all the absolute

values grow exponentially at the common rate ».

It is now seen that if the initial capital per capita is given, the entire course of the
economy is determined by the choice of the initial level of per capita consumption.
This choice determines, among other things, the amount of capital per capita at any
specified date. If the conditions of the problem prescribe a particular amount of
capital at some date, the initial ¢ must be the one with a path that leads to the
specified point. If there is no such prescription for capital accumulation, the initial ¢
will be the one that causes the capital stock to be exhausted at the terminal date under

consideration. So that the only possible solution is the path that originates at point C

and terminates at the point where ¢ = k = 0.

3.4 Transversality Conditions

To select a stable branch from the family of streamlines is tantamount to choosing a
particular solution from a family of general solutions by definitizing an arbitrary
constants. This is to be done as explained above, with the help of some boundary
conditions. The requirement that we choose a specific initial ¢, such that the ordered
pair (k,, c,) sits on the stable branch is one way of doing it. An alternative is to look

at an appropriate transversality condition.

One transversality condition we may expect the steady state solution to satisfy is that

40

A—>0 as — o

This is because the objective functional does contain a discount factor and the
terminal the terminal state is free. Since the solution path for A in the maximum

principle is
A =u'[e’ (D)].e"

and since the limit of #'[c*(¢)] is finite as ¢ —> o, this expression satisfy the

transversality condition..
Another condition we may expect is that in the solution,
H->0 as t—>oo

For the present problem, the solution path for H takes the form
H =ulc"(O].e" ™ + M. [f(k* (1) —c"(t) —(n+8)k" ()]

Since u[c”(¢)] is finite as t — o, the exponential term u[c" (¢£)].e"® tends to zero

as t becomes infinite. In the remaining term, we already know A* — 0 as t — .

Therefore, this second transversality condition is also satisfied.

3.5 Checking The Saddle Point by Characteristic Roots

On the basis of the two-equation system

k() = f(k(1) () ~ (n +8).k(2)

e

ey EO=(p+8)

() =

41

we first form the Jacobian matrix and evaluate it at the steady-state point E.

ok ok
_ |Ok Oc
Je = | e
ak ac (k‘,c')

The four partial derivatives, when evaluated at E, where f'(k*) =8 + p, turn out to
be

Z—fE = SIE@)-(n+8) > 0

g—" - 1<

3, - e o <o

¥, - OISR P w -6 o] -

It follows that the Jacobian matrix takes the form

p—n -1

Jp = |=¥()
E " k 0
"(c) f ()

The qualitative information we need about the characteristic roots », and r, to

confirm the saddle point is conveyed by the result is that

= —_ _M. " ®
nno= = - E O < 0

42

This implies that the two roots have opposite signs, which establishes the steady state
to be locally a saddle point. The saddle path property can also be verified by
linearizing the system of dynamic equations around the steady state and noting that
the determinant of the characteristic matrix is negative. This sign for the determinant
implies that the two eigenvalues have opposite signs, an indication that the system is

locally saddle-path stable.

3.6 The Shape of the Stable Arm

The stable arm expresses the equilibrium ¢ as a function of £. This relation is known
in dynamic programming as a policy function: it relates the optimal value of a control
variable, c, to the state variable £4. This policy function is an upward sloping curve
that goes through the origin and the steady state position. Its exact shape depends on

the parameters of the model.

Consider, as an example, the effects of the parameter 6 on the shape of the stable
arm. Suppose that the economy begins with k, < k*, so that future values of ¢ will

exceed c,. High values of 0 indicate that households have a strong preference for
smoothing consumption over time; hence, they will try hard to shift consumption

from the future to the present. Therefore, when 0 is high, the stable arm will lie close

to the k£ =0 curve.
Conversely, if 0 is low, then households are more willing to postpone consumption

in response to high rates of return. The stable arm in this case is flat and close to the

horizontal axis for low values of k.

43

3.7 Typical Example of Solving The Stable Arm Equation by Using The Method

of Taylor’s Approximation in the Cobb-Douglass Production Function Case

From the equations (3.6)'and (3.7) we can rewrite our differential equation system

where the production function is the Cobb-Douslass production function which can
be defined as F[K(r), L(t)] = K(1)*.L(t)"™. When we divide both sides of this
equation by L(f), we get the per capita equation f(k(¢)) = k(#)®. Then our system
will be as follows:

k=flk,c)=k* —(n+8)k—c (3.8)

¢ = g(k,c)= 5@k = p-8) (3.9)

The steady-state values for ¢ and k are determined by setting the expressions in

equations (3.8) and (3.9) to zero. The equilibrium steady state values for ¢ and & are

. a I
k =(p+aj (3.102)
¢ =(p;6 —(n+5)).(p‘18)"a (3.10b)

The system defined in equations (3.8) and (3.9) is highly nonlinear. Therefore, it is
very difficult to solve this system. However one of the suggestions made in the
literature is to linearize the system of dynamic equations by Taylor’s expansion

around the steady state

Then we can expand the equation (3.8) around the equilibrium points as follows:

flk,e)= f(k',)+ [, (K, Ye-k)+ £, (K ¢ Ye—=c") (3.11)

SN N AT L
M= fE)=)™ =)) [a (n+5)}[p+aJ

o -« o 21%3_ o -1
=(p+8) {(p+6) (p+oc)}

= f &, cH=a.(H) " -n+d)

o -1
) el

= f.(k',c)=-1

by substituting the above equations (I), (II), and (III) into equation (3.11); we obtain:

o '_-15 a Zli-;l p+8 o '*ll p+d o =
i Tl o I e SR e e

2a a 1 !

o = | o fe o = [p+3 o =
=[pT8] —[p+8:, +(p—n).k-—(p—n){p+6} —c+[a —(n+8)J.[p+8}

20 o 1

. o |- a [[l1-a o |-
= k= I:P+5J _LHS] +|:T(p+8):":pT5:l +(p—-n)k-c

So, we have linearized the first differential equation of our system. We can write the

above equation in simpler form as:

k=A4,+(p—-n).k—c where A, is a constant term
45

Now we are going to apply the same method to the second differential equation (3.9)
of our system:

glk,c) =gk, ")+ g, (K", Wk~ k) + g, (kK ,c"Ne~c)

. . 1[p+d = "
o = g(k,c):a{f—;——(nw)].[pis}' .{a.{p‘:s] —(p+8)}

(3.12)

»* = 1 * 1 8
I = g.(k',c)=6-[a.(k) —(p+8) =6-|:a.%—(p+8)j|=0

By substituting equations (I), (II) and (III) into the equation (3.12), we obtain

-1 R
g(k,c)=g6—.(p +5)["0+8-(n +8)}.(k—k)

-1
= c'=a—(

- p+6)[paﬁ-(n+5)].(k—k‘)

46

-1 -1
c"=[0;—9(p+8)2—OLT(p+8)(rz+E‘3)].k—B0 where B, is constant.

So we have the following differential equation system which is now linear:

k=d4,+(p-n)k—c

-1 -1
é=[0;—e(p +8) —“—e—(p +6).(n+8)}.k—Bo

For homogenous equation solutions (complimentary solutions) , we set 4, and B,

equal to zero.

k=(p-n)k—-c

é =[9‘&§(p +5)? —“T_l(p +‘8).(n+8)].k

or, in the vectorial form, these equations can be shown as:
: p—n -1
k k
= -1
H 2o +e">){3§E ~(n +6)] 0 u
i.e;

y=A.X where 4isa 2x2 matrix.

-1 +3
det 4 =g‘6‘—-(p +8).[pT—(n+8)}<0

47

detA is negative, because

(i) 0<a<l=>0a-1<0and6>0
(i) p+6>0,

>n+d

(iii)

p+0
o
so we have concluded that roots have opposite signs.

p—-n—-»XA -1

N det(d - . 1) = O‘T‘l(pﬁus){%ﬁ—(ma)} Y

=—X.(p—n—7»)+aT_l(p +5)[‘p;—8-(”l+5)} =0

Y -(p—n)x+°‘T“1(p +5)[p0+8—(n+5)] -0

4(a —1 o
p~n¢\/(p—n)2—-~(~9fe)[(p+6)(-"~;’—~—(n+8>ﬂ

= ha = 3(p-n)

One of the roots will be positive and the other one will be negative (saddle path
stable). Without loss of generality lets assume A, and A, be the roots of the

characteristic equation. So for negative root, we can find characteristic vector, say v,,

v
where, v, = l:vzl} so the solution will be :
22

48

or;
k(t)=a,.e™ v, +k

c(t)y=a,.e™.v,, +c'

Now let’s try to solve eigenvector which means saddle-path in our sense:

p-n-», iy,
(A=ha D7 = “T'l(pw)[ﬂ—(nm] -2, L}
a
(p—n-2)vy — vy =0
Then, gé__1°(P+8)'|i%L8_(”+5):|'v2| - Ay =0

If we define v,, in the first equation above in terms of v,, and substitute this in to

the second equation then we obtain the following critical equation:

-1 5
aT-(p+8)-[P‘§“—(’l+5):l - h(p-n-i) = 0 @13

= “—e‘—l-(p+6)-[ﬁ;’—8—(n+8)} - (p-mA, + K =0

What we have obtained is the determinant of the characteristic equation when A is
/
replaced by the root A,. So for v,, =/, we obtain v,, =m and the

eigenvector or direction vector of the saddle-path is

49

so we can write the equations of capital and consumption functions with respect to ¢

as:

/ .
k@) :a,.elz’.p——-——+k

-n-2,

c(t)=a,.e™'.l+c

The computer solution of this typical problem which is written in the language

Mathematica is at the appendix1.

50

CHAPTER 4
NUMERICAL METHODS FOR SOLVING
ORDINARY DIFFERENTIAL EQUATIONS
4.1 Ordinary Differential Equations and the Lipschitz Condition

We commence our exposition of the computational aspects of differential equations
by a close examination of numerical methods for ordinary differential equations

(ODEys), Arieh (1996).
Our goal is to approximate the solution of the problem
y'o= flty, 121y, Y=y, 4.1)

Here fis a sufficiently well-behaved function that maps [¢,,20) x RY to R“ and the
initial condition y, € RY is a given vector. R? denotes the d-dimensional real

Euclidian space.

The ‘niceness’ of f may span a whole range of desirable attributes. At the very least,

we insist on f obeying, in a given vector norm ||, the Lipschitz condition.

lfen-fen| s rx-y forall xyeR?, t21, (42

51

Here A > 0 is a real constant that is independent of the choice of x and y. Subject to
(4.2), it is possible to prove that the ODE system (4.1) possesses a unique solution.
Taking a stronger requirement, we may stipulate that f is analytic function. So the
Taylor series of f about every (t,y,) €[0,0)x R’ has a positive radius of

convergence. It is then possible to prove that the solution y itself is analytic.

4.2 Euler’s Method

Let us ponder briefly the meaning of the ODE (4.1). We possess two items of
information, we know the value y at a single point ¢ =¢, and, given any function
value y € R? and time ¢ >1t,, we can tell the slope from the differential equation.

The purpose of the exercise being to guess the value of y at a new point, the most

elementary approach is to use a linear interpolant. In other words we estimate y(¢)
by making the approximation f(z,y(¢))= f(t,,y(t,)) for te[ty.t, +h], where

h > 0 is sufficiently small, Integrating (4.1),

YO = Y+ [Fay@Nd =~ y+@-1).f(ty)) (43)

Given a sequence f,,f, =1, +h,t, =1, +2h,..... where 7> 0 is the time step, we

denote the numerical estimate of the exact solution y(z,) by y,, n=01,...

Motivated by (4.3) gives

Yio= Yo + hf(ty.))

Y. = »n + hf@,y)
+

yn = yn—l + h‘f(tn—l’yn—l)

52

In general, we obtain the recursive scheme

Vo, = Yo + hf(,.y,) n=01,... h=t,-t,, (4.4)

Euler’s method can be easily extended to cater for variable steps. Thus for a general

monotone sequence £, <?, <t, <..... we approximate as follows

y(tn+]) ~ yn+l = yn + hn'f(tn’yn)

where h, =t,,, —t,, n=0,,.... However, for the time being we resrict ourselves to

constant steps.

How good is Euler’s method in approximating (4.1). Suppose that we wish to

compute a numerical solution of (4.1) in the compact interval [to o + tj with some
time stepping numerical method, not necessarily Euler’s scheme. In other words, we
cover the interval by an equidistant grid and employ the time stepping procedure to
produce a numerical solution. Each grid is associated with a different numerical
sequence and the critical question is whether, ads #— 0 and the grid is being
refined, the numerical solution tends to the exact solution of (4.1). More formally, we

express the dependence of the numerical solution upon the step size by the notation
Vo =Vpp> = 0,1,....,[t" /h] A method is said to be convergent if, for every ODE
(4.1) with a Lipschitz function fand every ¢* > 0, it is true that

lim max
h=>0 n=01.]r" 4]

Von — y(tn) = 0 (45)

Hence convergence means that, for every Lipschitz function, the numerical solution
tends to the true solution as the grid becomes increasingly fine. Unless it converges, a

numerical method is useless.

53

Theorem 4.1 Euler’s method is convergent.

Proof: We prove this theorem subject to the extra assumption that the function f(and
therefore also y) is analytic.

Given >0 and y,=y,,, n= 0,1,....,[1"/}] ,welete, =y, , —y(,) denote the

numerical error. Thus we wish to prove that lim, , max =0.

h—0* 4

en,h
By Taylor’s theorem and the differential equation (4.1),
V) = YE)+hy't)+o(h*) = y(,)+hf(t,,(,))+o(h)

and, y being continuously differentiable, the o(4*) term can be bounded uniformly

forall >0 and n< [t'/h] by a term of the form ch’, where ¢ > 0 is a constant.

= Ve Ya) = Y, +hf(,.y,)-y(,)-hf(,,5(1,)) - o(h?)

= en+|,h = enﬁ +h[f(tn’y(tn)+en,h)_f(tn’y(tn)]_o(hz)

Thus it follows by the triangle inequality form the Lipschitz condition:

= Cois| = ens|+ B[F vt + e - £ 90|+ R
= < (1+m)e, | +ch? | n=0L..[r/n]-1
We now claim that:
c n
el < x.h.[(1+hl) -1] n=0L,...

54

The proof is by induction on ». When n =0, we need to prove that ”eo y ” <0 and

hence that e,, = 0. This is certainly true, since at #, the numerical solution matches

the initial condition and the error is zero.

For general n >0, we assume that the inequality is true up to # and use this to argue

that:

(Wm0 iy -1}k

IA

en+1,h H

IA

%-h(1+hx)”*' —%h(1+hx)+ ch?

c n+
x-h[(1+hx) '-1]

IA

The index 7 is allowed to range in {),1,...[t‘/h] , hence (1+4))" < el 11 < g

< o -1] n=0L...[r" /]

nh

Since c.(e'™ —1)/ A is independent of 4, it follows that

lim =0
h—0

osnhst®

en,h

In other words, Euler’s method is convergent. However the error bound from this

proof must not be used in practical estimation of numerical error.

Euler’s method can be rewritten in the form y,,, —[y, + 4 (¢,,5,)]= 0. Replacing
v, by the exact solution y(¢,), k =n,n+1, and expanding into the first few terms

of the Taylor series about ¢ = ¢, + nh, we obtain

55

Y(t,) =) + B @y) =) + @) + o) |- o) + ' e,)]= o).

We say the Euler’s method is of order one. In general given an arbitrary time-

stepping method

Yo = K,(f,h,yoay;,----y,,), n=0,1,
for the ODE (4.1), we say that it is of order p if
W) — K:(fahayo’yl’"‘yn) = O(hp+l)
for every analytic fand n =0,1,.....

As far as Euler’s method is concerned theorem (4.1) demonstrates that all is well and

the error indeed decays as o(h) .

4.3 The Trapezoidal Rule

Euler’s method approximates the derivative by a constant in [¢,,?,,;], namely by its
value at 7. Clearly, this approximation is not very good and it makes more sense to
make the constant approximation of the derivative equal to the average of its values
at the end-points. Bearing in mind that derivatives are given by the differential

equation, we thus obtain an expression similar to (4.3).

¥ =)+ [f@ @)k

1
~ St YN+ s) (4.6)

56

This is the motivation behind the trapezoidal rule.

1
yn+l = yn + 5h°[f(tn9yn)+f(tn+l9yn+l)] (4'7)

to obtain the order of (4.7), we substitute the exact solution,

1
y(r,,+1>—{y(t,,)+5h. [f(t",y(rn))+f(r,,+1,y(r"+l)]}
= [0 enya)+ 3Ry o)

- (e e n)))+t

= o)

Therefore the trapezoidal rule is of order two. This means that error decays globally

as o(h?).
Theorem 4.2 The trapezoidal rule is convergent.

Proof : Subtracting
1
y(tn+1) = y(tn) + Eh‘[f(tn’y(tn))+f(tn+l’yn+l)] + 0(h3)
from (4.7), we obtain

1
e'l+|/7 = eﬂ,h +Eh {f(ln’yﬂ)_f(tn ’y(tn))]+ [f(tm-l’yn-i-l)_f(tn+1’y(tn+l))]

o(h’).

57

For analytic f we may bound the o(h’) term by ck’ for some ¢ >0, and this upper

bound is valid uniformly throughout [¢,,¢, +¢"]. Therefore, it follows from the
Lipschitz condition and the triangle inequality that

| <

1
+>hide,

en+1,h en J +

en+l,h

’}+ch3.

Since we are ultimately interested in letting # — 0, there is no harm in assuming that
hh <2, and we can thus deduce that

1+ - hA
2 c
en+1,h ‘ s —r— en,h + 1 5 .h3 °
=5 hA —2‘ A
We thus argue that
1+ -lhk "
£ 2 1 h2
Call =3, 1 s

fa—y

!
1+ . hA o
hA 1 hA hA
% = 1+ I < ZF 1 = exp 1
- _ = =0+ 14 2 _
1 5 hA 1 5 hh 1 5 hAi 1 5 hA

Consequently, this derivation yields

58

) ch? “5"}” - ch® exp nh\.
mhil =, 1 Y 1
1— - - -

2hx 1 zhx

This bound is true for every nonnegative integer » such that nh <t¢". Therefore

ch? A
el < exp
n }\' 1
1-_hA
2
and we deduce that
limles| =0-

osnhsr®

In other words, the trapezoidal rule converges.

The number ch’ exp[t’?» (1 -(1 2)hk):Vl is again, of absolutely no use in practical

error bounds.

Most important one of the differences between the trapezoidal rule and Euler’s
method is that Euler’s method can be executed explicitly; knowing y, we can

produce y,,, by computing a value of f and making a few arithmetic operations,

1
this is not the case with the trapezoidal rule. The vector v=y, + Eh' f(,,y,) canbe

evaluated from known data, but that leaves us in each step with the task of finding

. . 1
V.1 as the solution of the system of algebraic equations. v=y,,, — Eh. S s Vnar) -

The trapezoidal rule is thus said to be implicit, to distinguish it from the explicit

Euler’s method.

59

Two assumptions have led us to the trapezoidal rule. Firstly, for sufficiently small 4,
it is a good idea to approximate the derivative by a constant and, secondly, in
choosing the constant we should not discriminate between the endpoints hence the

average is a sensible choice. Similar reasoning leads, to an alternative approximant,

1 1
y'(@t) = f(t,7 +§h,-2—(y” +yn+,)) R t E[tn,th

and to the implicit midpoint rule

1 1
yn+| = yn + h'f(tn +§h’5(yn +yn+l)) *

The implicit midpoint rule is a special case of the Runge Kutta method.

4.4 The Theta Method

Both Euler’s method and the trapezoidal rule fit the general pattern

yn+] = yn + h'[e'f(tnﬂyn)+(1—e)'f(tn+l’yn+lﬂ n= O’l’ """

1 .
with 6 =1 and 0 = 5 respectively. We may contemplate using the above equation

for any fixed value of 6 €[0,1] and this, appropriately enough, is called a theta

1
method. It is explicit for 8 =1. Also this method is of order two for 6 = 5 and

otherwise of order one and is convergent for every 6 [0,1].

60

4.5 The Adams Method

Why discard a potentially valuable vector y,? With greater generality, why not make

the solution depend on several past values, provided that these values are available?

Let us thus suppose again that y, is the numerical solution at ¢, =, + nh, where
h>0 is the step-size, and let us attempt to derive an algorithm that intelligently

exploits past values. To that end, we assume that
Yo = Mt,) + oA, m=01,..n+s-1 (4.7)

where s> 1 is a given integer. Our wish being to advance the solution from ¢,,_,, to

t,.., we commence from the trivial identity

n+s?

y(tn+s) = y(tn+.v—l) + n:fy'(-c)dT

Tposot

= W) + | f@y@)E 48)

[

We note that the integral on the right incorporates y not just at the grid points where

approximants are available but throughout the interval [z‘,m_l ,t,,, . The main idea of
an Adams method is to use past values of the solution to approximate y' in the
interval of integration. Thus let p be an interpolation polynomial that matches

f(@,,y,) for m=n,n+1,.....,n+s—1.Explicitly,

PO = 3 paO)Str o)

m=0

s=1 _ _1\s-I-m s=1 _
P = [[— = 2 H(t htn_l)

€=0 tn+m - trl+l m'(s -1 —m)’ 5:0

61

for every m=n,n+1,.....,s—1, are Lagrange interpolation polynomials. We can

easily verify that p(¢,) = f(¢,,,y,) for all m=nn+1,....n+s—1. Hence (4.7)

implies that p(t,) = y'(t,) +o(h") for this range of m. We now use Interpolation

Theory to argue that, y being sufficiently smooth.

PO = y@© + o), 2

We next substitute p in the integrand of (4.8), replace y(¢,,,.;) by ,.,., there and,

having integrated along an interval of length /4, we incur an error of o(#*"). In other

words, the method

s-1
Ynes = Vo B by ftremsYrem) (4.9)
m=0
where,
toas h
b, = h Ipm('r)a"r = h” J.pm(t,,,ﬂ‘,_l +1)dv m=nn+1,..,5-1
’n+.v-l 0

is of order s. The scheme (4.9) is called the s-step Adams-Bashforth method. For

s =1 we encounter the Euler’s method, whereas s =2 gives:

Vo = Ynnt + hl:%’f(tnﬂ’ynﬂ)—%'f(tn’yn)} (410)

and s =3 gives

23 4 5
Vurz = Va2 + hl:a'f(tm»zaymz)—E'f(tnﬂaynﬂ)+§'f(tn’yn):| (411)

62

Euler’s method error decreases linearly, the error of the two-step Adams-Bashforth
method (4.10) decays quadratically and the three-step Adams-Bashforth method
displays cubic decay. Generally, the order of the s-step Adams-Bashforth method is

after all, s and the global error decays as o(h").

4.6 Order and Convergence of Multistep Methods

We write a general s-step method in the form

Dty Yom = B2 b S tromsVuin) » n=0,1,.. (4.12)
m=0

m=0

where a,,, b,,, m=0,l,....,s are given constants, independent of #, n. When b, =0

and a, =1 the method is said to be explicit; otherwise it’s implicit.

We note that the method (4.12) is of order p >1 if and only if

W(t,y) = Da,pt+mh) — hY.b,.y(t+mh) = o), h—0
m=0

m=0

The method (4.12) can be characterized in terms of the polynomials

p(w) = ian,.wm and c(w) = ibm.w"’.
m=0 m=0

Theorem 4.3 The multistep method (4.12) is of order p > 1 if and only if there exists

¢ # 0 such that

o) — cwinm) = cw-0"" + ofw-170), wol @13

63

proof: We assume that y is analytic and that its radius of convergence exceeds s.A.

Expanding in Taylor series and changing the order of summation,

s 21 s © 1
\p(t,y) = Zamk opy(k)(t)'mk'hk _ hzbmzzy(k“)(t)-mk-hk

m=0 m k=0

- (Zs:am)y(t) + i;(imk.am—k.im"“'.bm]-h"y"‘)(t),
m=0 m=0 prs

k=] v+

Thus to obtain order p it is necessary and sufficient that

iam = 0, imk,am = k'imk'l.b”7’ k:l,z,....’p
m=0 m=0 m=0

Yoma, # (p+D.Ym'b,. (4.14)
m=0 m=0

Let w=e"; therefore w— 1 corresponds to z—» 0. Expanding again in a Taylor

series,
p(e’) - z.o(e’) = Zam.e"" - z.me.e”’"', k=12,.....p
m=0 m=
= ia iim"zk - zib iim" k
B m= " k=0k' .m=0 " k=0k’ B
C I(S k j k c 1 (" k-1) k
= — ma,_ l|-z" - m-b |-z
;k' m=0 " ;(k_l)' m=0 "
Therefore

p(e’) — zo(e’) = ch™ + oh"?)

for some ¢ # 0 if and only if (4.14) is true. The theorem follows by restoring w = e°.

64

Root Condition We say that a polynomial obeys the root condition if all its zeros

reside in the closed complex unit disc and all its zeros of unit modulus are simple.

Theorem 4.5 (The Dahlquist Equivalence theorem) Suppose that the error in the
starting values y,,,,....,Y,; tends to zero as 7 — 0. The multistep method (4.12)
is convergent if and only if it is of order p>1 and the polynomial p obeys the root

condition.

Note that Adams-Bashforth methods are safe for all s>1 according to the root

condition, since p(w) = w*" (w—1).

The multistep method (4.12) has 2s+1 parameters. Had order been the sole
consideration, we could have utilized all the available degrees of freedom to
maximize it. The outcome, an (implicit) s-step method of order 2s, is unfortunately
not convergent for s>3. In general, the maximal order of a convergent s-step
method (4.12) is at most 2[(s+2)/2] for implicit schemes and just s for explicit

ones; this is known as the Dahlquist first barrier.

4.7 Backward Differentiation F ormula

Certain multistep methods are significantly better than other schemes of the type

(4.12). These are the backward differentiation formula (BDF).

An s-order, s-step method is said to be a BDF if o(w) = B.w" for some B € R— {0}.

65

Lemma For a BDF we have

s 1 -1 s 1
B = (Z—) and p(w) = B.Z;-w“”’(w—l)”’. (4.15)

m=1

The simplest BDF is the backward Euler method Which can be obtained by

substituting one for s. So when s =1 we have the following formula

s=1 = B=1 = pwy=w-1,

So,
W—l = h‘f(tn+l’yn+l) 0= 01
yn-)-l '—yn = h‘f(tn+l’yn+1) o
= Yo = Vo + hf(t,,Y.m) “Backward Euler’s method’
The next two BDF’s are:
_2 __1___2 _2(22:_1_ 2-m lm
S= = B— 1 “'3 = p(w)_3 —]m'w (W—)
1+ m=
2
= _ 23 2 +l
= 32" T
So,
4 1 2
27 I -z
w 3w+3 3h.f(t,,+2,y,,+2)
4 1 2 w ,
= yn+2__3—yn+]+§yn = gh-f(f,,+2,y,,+2) TWO-SfepBDP
1 6 6 18 9 2
=3 = = = — =—. i =
s P RSN = p(w) 11[’” TR 11]
2 3

66

18 9 2

6
= Y3z~ ﬁym - l—l‘y,,+1 T Yy, = ﬁh' S(th35Y0e3) Three-step BDF

Theorem 4.6 The polynomial (4.15) obeys the root condition and the underlying
BDF method is convergent ifand only if 1< s<6.

4.8 Taylor’s Theorem and Runge Kutta Methods, Mathews (1992)

Theorem 4.7 Assume that y(r) e C¥*'[t,,b] and that y(¢) has a Taylor series

expansion of order N about the fixed value ¢ =¢, €[¢,,b]:

yt, +h) = y¢,) + hT,(,,¥t) + ok, (4.16a)
where
. N L, t 4
T, (@, () = jZly j(!")-h"‘ (4.16b)

and y (1) = fY7"(t,y(t)) denotes the (j—1)st total derivative of the function f

with respect £. The formulas for the derivatives can be computed recursively:

yw = f,
y'o = fi+f,y' = LSS,

y"’(t) = .fll +2f;y"y,+fw'[y']2
= fu+2f S+ AL+ 1)

and in general,
yM (@ = PYY f(,p(10), 4.17)

67

where P is the derivative operator

0 0
Po= [a*fa)

The approximate numerical solution to the initial value problem y’'(¢) = f(t,y) over

[to,t M] is derived by using the formula (4.16a) on each subinterval [z‘,,,,t,,+l . The

general step for Taylor’s method of order N is

) P s d h"
yn+l - yn+ 1 + 2! + 3! + N!

(4.18)

where d, = y'(t,) for j=12,.....,N ateachstep n=0,12,.....,M -1.

The Taylor method of order N has the property that the final global error is of order

o(h"); hence N can be chosen as large as necessary to make this error as small as
desired. However, the shortcoming of the Taylor methods is the a priori
determination of N and the computation of the higher derivatives, which can be very
complicated. Each Runge-Kutta method is derived from an appropriate Taylor
method in such a way that the final global error is of order o(#"). A trade-off is
made to perform several function evaluations at each step and eliminate the necessity
to compute the higher derivatives. These methods can be constructed for any order N.
The Runge-Kutta method of order N =4 is most popular. It is a good choice for

common purposes because it is quite accurate, stable, and easy to program.

The fourth-order Runge-Kutta method simulates the accuracy of the Taylor series

method of order N = 4. The method is based on computing y,,, as follows:

68

Vour = Yo + Wk + wok, + wyk; + w.k, (4.19)

where k,,k,,k;, and k, have the form

= hf(@,,y.)

= hf(t,+a,.hy,+b.k),

= h.f(t,+a,.h,y, +b,.k +b;.k,),

. = hf(,+a3.hy, +b, .k +bs.k, +b. k).

—

w
|

oA a
N
[

By matching coefficients with those of the Taylor series method of order N =4 so

that the local truncation error is of order o(%’), Runge and Kutta were able to obtain

the following system of equations:

b =a,, b, +b, =a,, b, +bs+b; =ay, W tWw, +wy+w, =1,
1
Wyl + W38y +W,.0; = 7,
2 2 2 1
w,.a,” +w;.a,” +w,.a, =3
3 3 3 1
Wyl Wiy WAy =
1
ws.a,.b; +w,.(a,.b; +a,.by) = rE
w;.a,.a,.b; + w,.a,.(a,.bs +a, .by) = 3
2 2 2 1
wy.a,".by +w,.(a,".bs +a, .b6)=1—2—,
1
W4-a|.b3.b6 =EZ'

69

The system involves 11 equations in 13 unknowns. Two additional conditions must

be supplied to solve the system. The most useful choice is

Therefore; starting from the initial point (¢,,y,) , the Runge-Kutta method of order

N =4 can be stated as follows:

Yo = Vo * h‘(f'+2fz6+2f3+f4)
where

fi = F.y),

fo= f(’"’“g’yﬁgfl),

fio= f(tn+g,y”+-gf2)’

fi = [, +hy,+hf;)

70

4.9 Gaussian Elimination and Pivoting

In this section we state an efficient scheme for solving a general system AX = B of
N equations and N unknowns. The crucial step is to construct an equivalent upper-

triangular system UX =Y.

Two linear systems of dimension N by N are said to be equivalent provided that their
solution sets are the same. Theorems from linear algebra show that when certain

transformations are applied to a given system, the solution sets do not change.

Theorem 4.8 Suppose that 4 is an N x N nonsingular matrix; there exists an

equivalent system UX =Y where U is an upper-triangular matrix with u, , # 0.

After U and Y are constructed, back substitution can be used to solve UX =Y for X.

) w07 (1)

a4 A, | *) pal
1
agy a3y - aj) | x ajh.,
Proof AX = r . . R = .
m 0 m
an,l an,Z an,n xn an,m-]

Then we will construct an equivalent upper-triangular system UX =Y :

U] (1) N 4]

ay Gy o G, 1%) p1
(2) .. 2) (2)

UX = 0 a; - a4y | x| |6,
e (n) (m

O O an,n xn an,n+]

Step 1. Store the coefficients in the array. The superscript on a!) means that this is

the first time a number is stored in location (7,c).

71

m LM D

ayy Ay o 4y, a1,y
[€)] ()) _(H

Ay Gyy 0 Gy, Gy,
n) () _(H

an,l an,z an,n an,n+1

Step 2. If necessary, switch rows so that af) #0; then eliminate x, in rows 2

through N. The new elements are written a2 to indicate that this is the second time

that a number has been stored in the array at location (r,c). The result after step 2 is

m M
a,; 4ap A1n Alpn

2) 2y (2)
0 a7 - Arp0 A3 441

.

0 a? ... g® g0

n2 nn “nn+l

Step p+1. This is the general step. If necessary, switch row p with some row beneath

it so that a’) # 0, then eliminate x, in rows p+1 through N. The final result after

xy_; has been eliminated from row N is

mm (M

a,y gy Ay i
@ .. Q) @

0 a2,2 aZ,n aZ,n+1
L

0 0 Q. Ay

The upper-triangularization process is now complete.

Since A4 is nonsingular, when row operations are performed the successive matrices
are also nonsingular. This guarantees that a,ﬁ’f,} #0 for all £ in the construction

process. Hence back substitution can be used to solve UX =Y for X.

72

The number a,, in position (p,p) that is used to eliminate x, in rows
p+1L,p+2,...,N is called the pth pivotal element and the pth row is called the

pivotal row. If a{?) = 0, row p cannot be used to eliminate the elements in column p

below the diagonal. It is necessary to find row &, where a,((f’; #0 and k£ > p and then

interchange row p and row k so that a nonzero pivot element is obtained. This

process is called pivoting, and the criterion for deciding which row to choose is

called a pivoting strategy. The trivial pivoting strategy is as follows. If aL’,’; #0,do

not switch rows. If a/) =0, locate the first row below row p in which a{”) # 0 and

(p)

»p # 0, which is a nonzero

switch rows & and p. This will result in a new element a

@

pivot element.

If there is more than one nonzero element in column p that lies on or below the
diagonal, there is a choice to determine which rows to interchange. Because the
computer uses fixed-precision arithmetic, it is possible that a small error is
introduced each time an arithmetic operation is performed. To reduce the propagation
of error, it is suggested that one check the magnitude of all the elements in column p
that lie on or below the diagonal, and locate row & in which the element has the

largest absolute value, that is,

a

prlploeeee Py

}ak,p‘ - max{ap,p,

and then switch row p with row & if k> p. Usually, the larger pivot element will

result in a smaller error being propagated.

A matrix A4 is called ill-conditioned if there exists a vector B for which small

perturbation in the coefficients of 4 or B will produce large changes in X = 4™'B.
The system AX =B is ill-conditioned when A is ill-conditioned. In this case,
numerical methods for computing an approximate solution are prone to have more

€1TOoT!.

73

One circumstance involving ill-conditioning occurs when A4 is ‘nearly singular’ and
the determinant of A4 is close to zero. Ill-conditioning can also occur in systems of
two equations when two lines are nearly parallel (or, in three equations when three

planes are nearly parallel).

The computer solution of finding the saddle path equation by using these numerical

simulation techniques is written in the language Pascal is at the appendix2.

74

CHAPTER 5

TYPICAL EXAMPLE OF THE NUMERICAL SOLUTION
OF
THE STABLE ARM
BY
USING THE SIMULATION PROGRAM

5.1 Input Initial Values and Parameters

As we have already mentioned in the third chapter our model is written from (3.8)

and (3.9) as:

k=k®-n+d)k-c

c'=g(a.k°"1—p—8) (5.1)

When the simulation program is executed it will ask for the initial values and the
input parameters. Firstly, the user should give the following initial values and input
parameters and after that he or she can continue to the following menu which one of

the numerical methods the program is going to use should be chosen by the user.

75

e Initial value for capital (ko) .

« Initial value for consumption (co).
o The step size for time increment (/).

o The value of the power of the Cobb-Douglass Production function (o). Note
that this simulation program can be modified for the other production function

forms but for the time being we use the most well-known one.

« The population growth rate ().

o The value of social time preference rate (p) We also noted that this rate must
be positive and greater than the population growth rate (the reason is explained
at the page 29).

« The absolute value of the elasticity of marginal utility ().

o The value of the depreciation rate of the capital 6).

e The number of iterations (7). This number is chosen by the user according to

the simulation results.

Now let us assume the initial values as:

k,=1, ¢,=065, k=001, a=05, n=005,
=03, 0=033680, &=007, m=33.

After substituting these values into the differential equation system (5.1) we get the

following :

k=k" —(005+007)k —c¢

_ (&
" 033680

¢ (05.£° —=03-0.07) (5.2)

76

5.2 Choosing the Numerical Methods and Approximating Polynomial

After giving the initial values and pressing the enter button the user should choose
the numerical method that he or she wants to execute. The numerical methods used
by this program are as follows (Of course other methods can be added to the

following list as required):

1..Theta Method

2..Two step Adams Baschforth
3..Three step Adams Baschforth

4.. Two step Backward Differentiation

5..Runge Kutta

Now let us assume that our user choose the first one i.e., the theta method then the
program is going to ask him or her to give the value of the theta which is used as the
weighted average in the theta method as it is explained at the page 59. Let us also
assume that our user enter the value 0.5 for the value of the theta then the program
now ask for the order of the polynomial which is approximated for the saddle-path.
For the time being we can assume that the order of the polynomial to be entered as 2,
however it can be changed as desired by choosing the option 1 at the following

menu.

So the theta method which is going to be used for our example can be formulated as

follows:

1 1
Vo = Vo + (0.01).{5.f(t,, Ve)+ Ef(tnﬂ Vsl)] n=01,....

77

-kn+l kn
where; Yo = Vo =

£, k,..
and f(tn’yn) = :I f(tn+1’yn+l) = I:-”+:|

kol +ky” —(012)-(k,,, +k,) = (C, +C,)

= [k”"'} [k} + (0’01) 05 037
= T) . 104 04)_ : .
cn+l cn 2 (033680) (kn+] + kn) (033680) (cn+l +cn)

After giving these values the iteration is going to be started and when it is ended
successfully the following menu can be seen. If the execution is not ended
successfully then the program will give the warning as ‘WARNING!!! This is an ill-
conditioning system or diagonal has a zero element’. The meaning of this message is
explained at the page 71. In this situation the user can be increase the number of

iterations to remove this warning.

For our example the iteration will end successfully and we get the following iteration

results:

78

Table 5.1 The iteration results of the theta method for the solution of the

non-linear differential equation system

Iterations | Input Data (k) | Input Data (c) | Calculated Data
1 1.00 0.65 0.6525
2 1.01 0.65 0.6550
3 1.01 0.66 0.6574
4 1.02 0.66 0.6599
5 1.02 0.66 0.6623
6 1.03 0.66 0.6648
7 1.03 0.67 0.6672
8 1.04 0.67 0.6696
9 1.04 0.67 0.6720
10 1.05 0.67 0.6743
11 1.05 0.68 0.6767
12 1.06 0.68 0.6791
13 1.06 0.68 0.6814
14 1.07 0.68 '0.6837
15 1.07 0.69 0.6860
16 1.08 0.69 0.6883
17 1.08 0.69 0.6906
18 1.09 0.69 0.6928
19 1.09 0.70 0.6951

20 1.09 0.70 0.6973
21 1.10 0.70 0.6995
22 1.10 0.70 0.7017
23 1.11 0.70 0.7039
24 1.11 0.71 0.7061
25 1.12 0.71 0.7082
26 1.12 0.71 0.7104
27 1.13 0.71 0.7125
28 1.13 0.71 0.7146
29 1.14 0.72 0.7167
30 1.14 0.72 0.7188
31 1.15 0.72 0.7209
32 1.15 0.72 0.7230
33 1.16 0.72 0.7250

79

5.3 Results and Required Options

Now after obtaining a successful execution the required results options can be chosen

from the following menu:

1..to change order of approximating polynomial
2..to see input data, calculated data and differences
3..to see approximating polynomial

4..to draw polynomial

5..to see equilibrium point

6..to calculate the polynomial at a point

7..to add-delete-change data points

8..to draw tangent to graph at a point

9..to change graphic settings

10..to start

11..to exit

For our example the equilibrium points where £ =0 and ¢=0 can be seen by
choosing option 5 as £* =116 and ¢* = 0.72 for our input values, when the option 2
is chosen the calculated values from the execution can be seen as ky; =116 and
c;; =0.72. It can be seen that the calculated values are fitted with the equilibrium
values so our approximated polynomial of order two which is obtained by using the
Gaussian Elimination Method which is explained in chapter 4 page 69 can be seen

by choosing the option 3 as follows:

c(k) = —03745.k> + 12830.k - 02586

The graph of this equation can be seen from the option 4. If the user requires to find
the value of the consumption at any point of capital then the option 6 should be

chosen.
80

If it is also desired to change the order of the approximating polynomial then the
option 1 must be chosen. By using option 7, more data points can be added or some
of them can be deleted or changed. Option 8 can be chosen for drawing a tangent to
the graph at any point and at last by using option 9 the graphic settings can be
changed. Options 10 and 11 can be chosen whether to start from the beginning or to

exit from the program.

From the first menu if the two step Adams Baschforth method is chosen then the

approximating polynomial of order 2 will be as:

c(k) = -03737k> + 12751k - 02514

If three step Adams Baschforth method is chosen then the approximating polynomial

of order 2 will be as:

c(k) = -03723.k* + 12620.k — 02397

If two step backward differentiation method is chosen with the number of iterations
to be 17 and the elasticity of marginal utility to be 0.03840, then the calculated

values from the execution will be £, =116 and ¢, =0.72 and the approximating

polynomial of order 2 will be:

c(k) = —-0369Lk* + 12659.k - 02468

Other approximating polynomials can be obtained by changing the order of the
approximating polynomial by choosing option 1 from the last menu for the above
numerical method options which are be able to chosen from the previous menu. For
our example when the theta method is chosen and when the order of the
approximating polynomial is chosen from 1 to 9 we obtain the following

polynomials:
81

fororder 1: c(k) = 04733.k + 01783

fororder2: c(k) = -03745.k> + 12830.k - 02586

fororder3: c(k) = -01043.k° - 00362.k* + 09176.k — 01272

01818.k* — 08907.k° + 12383.k7 + 00004k
- 01202

for orderd: (k)

0.0808.k° — 02549.k* + 00532.k° + 02189.k
+ 05505.k + 00015

for order5: c(k)

Il

for order6: c(k) 0.1476.k* - 08775.k° + 2335Lk* — 36789.k°

+ 32420.k* - 0.7550.k + 02363

fororder7: c(k) = 02249.k7 — 14590.k° + 4.0223.k° - 5930Lk*
+ 46459.k* - 17607.k* + 09046.k + 0.0021

for order8: c(k) = -00229.k* + 03198.k7 — 17532.k° + 52210.%°
— 92602.k* + 98239.k° - 62417.k' + 29430.k
- 03798

fororder9: c(k) = -02082.k° + 09636.k°% - 09563.k" — 2.4969.k°

+ 74236.k° - 72676.k" + 1618Lk> + 22250.k>
~ 09783k + 03272

It can be checked easily that for k = 1.08, all of the above polynomials give the result
¢(1.08) = 0.69 . Other iteration points can also be checked in a similar way. So we can
conclude from here that:

82

By using any of the polynomials above, not only the equilibrium values of the capital
and consumption variables of our neoclassical growth model but also the transition
period values of these variables can be obtained. This is our critical result for this

theses.

5.4 Conclusions

As stated in the first chapter, by using this software program dynamic optimization
problems (optimal control problems) specifically for growth problems can be easily
solved with the numerical methods and the approximating polynomial equation at
any desired order of the saddle path can be obtained and the graph of this path can be
sketched.

This program can be extended to not only the Cobb-Douglass production function
but also other forms of the production functions which are obeyed the Inada
conditions. Also the program can be modified such as to help the development of the
new models in growth theory but of course the increase of the number of differential
equations to be solved in these models make to apply numerical techniques more

difficult.

For the further studies this model and techniques can be used not only in growth

models but for other dynamic optimization problems in any field. _

83

REFERENCES

Arieh Iserless, “A First Course In The Numerical Analysis of Differential

Equations”, Cambridge University, 1996.

Barro J. Robert, Sala-i-Martin Xavier, “Economic Growth”, McGraw-Hill, Inc.,
1995.

Cass David, “Optimum Growth in an Aggregate Model of Capital Accumulation”,
Review of Economic Studies, 32, pp233-240, 1965.

Chiang C. Alpha, “Elements of Dynamic Optimization”, McGraw-Hill, Inc., 1992.

Robert Dorfman, “An Economic Interpretation of Optimal Control Theory”, The
American Economic Review, 59, 5, December, pp817-831.

Koffman B. Elliot, “Turbo Pascal”, Borland International, 1992.

Mathews H. John, “Numerical Methods for Mathematics, Science and Engineering”

Printice Hall International Editions, Second Edition, 1992.

84

APPENDIX 1

ALGORITHM FOR TAYLOR’S APPROXIMATION METHOD

Clear[k,c]

Util = Input[" Write the utility function: "]

kapf = Input["Write the kapital function: "]

depr = Input["Write the deprecitation rate: "]

prfr = Input[" Write the rate of time preference: "]

popn = Input["Write the population parameter: "]

depop = depr + popn

deprf = depr + prfr

fk[t]_.c[t]_] = kapf-(depop*k[t])-c[t]

csabit = (-1)*(D[UtiL,{c[t],1})/(D[Util,{c[t],2}])

glk(t]_.c[t]_] = csabit*(D[kapf, {k[t],1}]-deprf)

sol = Solve[{{Ik[t]_.c[t] 1==0.g[k[t]_.c[t]_]==0,c[t]!=0},{k[t].c[t]}]
f1[k[t]_.c[t]_] = fIk[t]_.c[t] 1/.sol

gl[K[t]_e[t]_1= glk[t]_c[t]_V-sol

f2[k[t]_c[t]_1= (DIIk[t]_c[t]_1,{k[t],1}]/. soD*(k[t]-(k[t}/.s01))
g2[k[t]_c[t]_]= (DIgk[t]_clt]_1,{kt],1}]/. sol)*(k[t]-(k[t}/.sol))
3[k[t]_.c[t]_] = (DIIk[t]_c[t]_I,{c[t].1}] /. sol)*(c[t]-(c[t])/.soD))
g3[k[tl_clt]_1= (Dlglkit]_clt]_],{clt].1}]/. sol)*(c[t]-(c[t]/.sol))
flin[k[t]_,c[t]] = f1[k[t]_.c[t] J+2[k[t]_,c[t]_1+3[k[t]_,c[t] 1/ Simplify
glin[k[t]_,c[t]_]= glk[t]_.c[t]_J+g2[k[t] .c[t]_]+g3[k[t]_,c[t]_}// Simplify

85

all = D[flin[k[t] ,c[t] 1.{k[t].1}]

al2 = D[flin[k[t] ,c[t]_].{c[t],1}]

a21 = D[glin[k[t]_c[t]_],{k[t],1}]

a22 = D[glin[k[t]_c[t]].{c[t],1}]
matrixA={{al1,a12},{a21,a22}}

detA = (al1*a22)-(al2*a21)

Print[detA]
detmatA=Solve[(((al1-z)*(a22-z))-(al12*a21))==0,z] // Simplify
listz=z /. detmatA

expz = N[E~(listz[[1]]*t)]

matrAz = {{(all-listz[[1]]),al12},{a21,(a22-listz[[1]])} }
Clear[vl,v2]

eigvect = {v1[t],v2[t]}

dot1[v1[t]_,v2[t]_] = eigvect.{(all-listz[[1]]),al2}

dot2[v1]t] ,v2[t]_] = eigvect.{a21,(a22-listz[[1]])}

solEgve = NSolve[{dot1[v1[t] ,v2[t] == 0,dot2[v1[t]_,v2[t] |—
0,v1[t]!=0,(v2[t]=1)},{v1[t]}]//Simplify

k[t] = (c1*expz)(v1[t])/.solEgve) + (k[t]/.sol)

solc1 = Solve[{(% /.t->0) = 0},{c1}]

k[t] = ((c1/.solcl)*expz)(v1[t)/.solEgve) + (k[t]/.sol)
Plot[%,{t,0,10},AxesLabel -> {"t", "k(t)"}, PlotRange -> All]
c[t_]= (c2*expz) + (c[t]/.sol)

solc2 = Solve[{(% /.t->0) == 0},{c2}]

c[t_] = ((c2/.solc2)*expz) + (c[t)/.sol)
Plot[%,{t,0,10},AxesLabel -> {"t", "c(t)"}, PlotRange -> All]
Plot[{((c1/.solc1)*expz)(v1[t)/.solEgve) + (k[t)/.sol),((c2/.s0lc2)*expz) + (c[t])/.s0l)}
,{1,0,100},AxesLabel -> {"c", "t"}, PlotRange -> All]

86

APPENDIX 2

THE SIMULATION ALGORITHM

program LinSysEq;
{$N+}

uses crt,graph;

type arraytypel=array [1..70] of extended;
arraytype2=array [0..25,0..25] of extended;
stringty=String[5];

const e=1e-10;

var
K1, KStar, C1, CStar, K2, C2, D1K, D2K, D3K, D4K, D1C, D2C, D3C, D4C,
pg, p, dr, t, el, h, pw, w :Real;
i,j,k,m,n,0,c,gd,gm,mx,my,xx,y1,cc,mc,RC,op :integer;
Kin,Cin ,su :arraytypel;
A,L,U,Heq,x,b,bi,d :arraytype2;
mm,kl,ma,f,x0,y0,tt,slope,fx,fy,Ix,ly,
stepx,stepy.gx,gy,ff,aa,bb,data :extended;
satr,sat :string[10];
ch :char;
ffile :file of extended;
filename :string[20];

procedure Initialize;
begin
gd:=detect;
initgraph(gd,gm,'");
mc:=getmaxcolor;
setbkcolor(white);
setcolor(red);
rectangle(40,40,getmaxx-40,getmaxy-40);
rectangle(45,45,getmaxx-45,getmaxy-45);

87

settextstyle(1,0,2);
setcolor(blue);
outtextxy(80,120,' THIS PROGRAM DRAWS GRAPH OF DATA

OBTAINED';

outtextxy(80,160,' FROM ;
outtextxy(80,200,' THE NUMERICAL SOLUTION ;
outtextxy(80,240,' OF %

outtextxy(80,280,' THE RAMSEY GROWTH MODEL ";
settextstyle(0,0,0);

setcolor(red);

outtextxy(140,350,'Copyright (c) ,1999, Ankara, BULENT DEDEODLU");
setcolor(lightblue);
outtextxy(80,420,* #*** < Press a key to continue, press ENTER to help > ***** 1),
ch:=readkey;
closegraph;
if ch=#13 then
begin
clrscr;
gotoxy(15,10);writeln('File helpDG.doc does not found !!!");
repeat until keypressed;
end;
end;

procedure InputDatas;

begin
textcolor(blue);
textbackground(white);
clrscr;gotoxy(2,2);
textcolor(red); Write('1..");
textcolor(blue);
Write('Enter the initial values for capital D
textcolor(black);ReadL.n(K1); Writeln;gotoxy(2,4);
textcolor(red); Write('2..");
textcolor(blue);
Write('Enter the initial values for consumption "
textcolor(black);ReadL.n(C1); Writeln;gotoxy(2,6);
textcolor(red); Write('3..");
textcolor(blue);
Write('Enter the stepsize for time increase)
textcolor(black);ReadLn(h); Writeln;gotoxy(2,8);
textcolor(red); Write('4..");
textcolor(blue);
Write('Enter the value of the power of the Cobb-Douglass : ');
textcolor(black);ReadLn(pw); Writeln;gotoxy(2,10);
textcolor(red); Write('5..");
textcolor(blue);
Write('Enter the value of population growth-rate)

88

textcolor(black);ReadL.n(pg); Writeln;gotoxy(2,12);
textcolor(red); Write('6..");

textcolor(blue);
Write('Enter the value of time-preference-rate R
textcolor(black);ReadLn(p); Writeln;gotoxy(2,14);
if p < pg then begin
textcolor(red);
writeln(" WARNING!!! Time preferenece rate must be greater *);
writeln(' than the population growth rate'); Writeln;

Write(' ..");textcolor(blue);
write('Enter the value of time-preference-rate again :');
textcolor(black);readln(p); Writeln;gotoxy(2,19);
Rc:=99;
end;
textcolor(red); Write('7..";
textcolor(blue);
Write('Enter the value of elasticity of marginal utility :");
textcolor(black);ReadLn(el); Writeln;
if rc = 99 then begin gotoxy(2,21); end
else begin gotoxy(2,16); end;
textcolor(red); Write('8..");
textcolor(blue);
Write('Enter the value of depreciation rate of the kapital: ');
textcolor(black);ReadL.n(dr); Writeln;
if rc = 99 then begin gotoxy(2,23); end
else begin gotoxy(2,18); end;
textcolor(red); Write('9..");
textcolor(blue);
write('Enter the number of iterations (m))
textcolor(black);readln(mm);
m:=trunc(mmy);
end;

procedure StarValues;
begin

RC =0;

KStar := Exp((1/1-pw)*Ln(pw/(p+dr))) ;

CStar = (((p+dr)/pw)-(pg+dr)) * Exp((1/1-pw)*Ln(pw/(p+dr)));
end;

procedure PrintStarVal,;

begin
clrscr;gotoxy(1,10);
textcolor(blue) ; Write("Equilibrium point');
textcolor(blue) ; Write(' (K,C) :);
textcolor(red) ;Write('('); Write(KStar:5:2);

89

Write(' ,'); Write(CStar:5:2); Write(’)');
repeat until keypressed;
end;

procedure ThetaMethod Aplication;

b

egin

writeln('m: ', m);

fori:=1tomdo

begin
K1 :=KI + ((w*h) * (Exp(pw * Ln(K1)) + ((pg + dr)*K1) - C1));
C1:=Cl+ ((w*h) * (Cl/el) * (pw * (Exp((pw-1) * Ln(K1))) - (p + dr)));
K1 =K1+ (((1-w)*h) * (Exp(pw * Ln(K1)) + ((pg + dr)*K1) - C1));
C1 :=CI1 + (((1-w)*h) * (Cl/el) * (pw * (Exp((pw-1) * Ln(K1))) - (p + dr)));
WriteLn('K1:',K1:5:2,'/Cl1:',C1:5:2);
kin[i]:=K1;
cin[i]:=C1;
writeln(kin[i] , '/, cin[i]);

end; {for}

WriteLn('KStar: ', KStar:5:2 , ' / CStar: ', CStar:5:2);

end;

procedure AdamsBasch2Step;
begin

);

writeln('m: ', m);

for i:=1 tom do

begin
K1 =K1+ (((-1D*(1/2))*h * (Exp(pw * Ln(K1)) + ((pg + dr)*K1) - C1));
Cl:=C1+(((-1)*(1/2))*h * (Cl/el) * (pw * (Exp((pw-1) * Ln(K1))) - (p + dr))

K1 =K1+ ((3/2)*h * (Exp(pw * Ln(K1)) + ((pg + dr)*K1) - C1));
Cl1:=CI1 +((3/2)*h * (Cl/el) * (pw * (Exp((pw-1) * Ln(K1))) - (p + dr)));
WriteLn('K1: ', K1:5:2,'/Cl1:", C1:5:2);
kin[i]:=K1;
cin[i]:==C1;
writeln(kin[i], ' /', cin[i]);

end; {for}

WriteLn('KStar: ', KStar:5:2 , '/ CStar: ', CStar:5:2);

end;

procedure AdamsBasch3Step;
begin

writeln('m: ', m);
fori:=1 tomdo
begin
K1 =K1+ ((5/12)*h * (Exp(pw * Ln(K1)) + ((pg + dr)*K1) - C1));
C1 :=C1+((5/12)*h * (Cl/el) * (pw * (Exp((pw-1) * Ln(K1))) - (p + dr)));

90

K1 :=K1 + (((-1)*(4/3))*h * (Exp(pw * Ln(K1)) + ((pg + dr)*K1) - C1));
Cl :=Cl + (((-1)*(4/3))*h * (C1/el) * (pw * (Exp((pw-1)-* Ln(K1))) - (p + dr))

K1 =K1+ ((23/12)*h * (Exp(pw * Ln(K1)) + ((pg + dr)*K1) - C1));
C1:=C1 +((23/12)*h * (Cl/el) * (pw * (Exp((pw-1) * Ln(K1))) - (p + dr)));
WriteLn('’K1:',K1:5:2,'/Cl1:", C1:5:2);
kin[i]:=K1;
cin[i]:=C1;
writeln(kinfi] , '/, cin[i]);

end; {for}

WriteLn('KStar: ', KStar:5:2 , ' / CStar: ', CStar:5:2);

end;

procedure Backward2Step;
begin

writeln('m: ', m);
fori:=1 tom do
begin

K2 :=K1/3;

C2 :=Cl1/3;

K1 :=K1 + (h * (Exp(pw * Ln(K1)) + ((pg + dr)*K1) - C1));

Cl1:=C1+ (h*(Cl/el) * (pw * (Exp((pw-1) * Ln(K1))) - (p + dr)));

K1 = (4/3)*K1;

C1 :=(4/3)*Cl;

K1 :=KI1-K2 + ((2/3)*h * (Exp(pw * Ln(K1)) + ((pg + dr)*K1) - C1));
Cl =C1-C2+((2/3)*h* (Cl/el) * (pw * (Exp((pw-1) * Ln(K1))) - (p +dr)));
WriteLn('K1:', K1:5:2,'/Cl1:', C1:5:2);

kin[i]:=K1;

cin[i]:=C1;

writeln(kin[i] , ' /', cin[i]);

end; {for}
WriteLn('KStar: ', KStar:5:2, '/ CStar: ', CStar:5:2);

end;

procedure RungeKutta;
begin

writeln('m: ', m);
fori:=1tom do
begin

D1K = (Exp(pw * Ln(K1)) + ((pg + dr)*K1) - C1);
DI1C :=(Cl/el) * (pw * (Exp((pw-1) * Ln(K1))) - (p + dr));

DI1K := (h/2)*DI1K;

DI1C :=(h/2)*D1C;

D2K = (Exp(pw * Ln(D1K)) + ((pg + dr)*D1K) - D1C);

D2C = (D1C/el) * (pw * (Exp((pw-1) * Ln(D1K))) - (p + dr));

91

D2K := (b/2)*D2K;
D2C := (h/2)*D2C;

D3K := (Exp(pw * Ln(D2K)) + ((pg + dr)*D2K) - D2C);

D3C := (D2C/el) * (pw * (Exp((pw-1) * Ln(D2K))) - (p + dr));

D3K :=h * D3K;

D3C :=h * D3C;

D4K := (Exp(pw * Ln(D3K)) + ((pg + dr)*D3K) - D3C);

D4C = (D3C/el) * (pw * (Exp((pw-1) * Ln(D3K))) - (p + dr));

K1 =KI + ((b/6) * (DIK + (2 * D2K) + (2 * D3K) + D4K));
Cl :=Cl+((W6) * (DIC + (2 * D2C) + (2 * D3C) + D4C));

WriteLn('’K1:', K1:5:2,'/Cl1: ', C1:5:2);
kin[i]:=K1;
cin[i]:=C1;
writeln(kin[i] , ' /", cin][i]);
end; {for}
WriteLn('KStar: ', KStar:5:2 , '/ CStar: ', CStar:5:2);
end;

procedure CreatFile;
{creats a file to store the kapital and consumption values}
begin
filename:='grpoints. DG#';
assign(ffile,filename);
rewrite(ffile);
write(ffile,mm);
fori:=1 tomdo
begin
data:=kin[i];
write(ffile,data);
data:=cin[i];
write(ffile,data);
end;
close(ffile);
end;
function POW(var base:extended;power:integer):extended;
{returns power of a number}
var p:extended;
s:integer;
begin
p=1;
for s:=1 to power do
P:=P*base;
POW:=p;
end;

92

procedure Init(var Ma:arraytype2);
{initiates the elements of a matrix to zero}
var ii,jj:integer;
begin
for ii:=1 to 2*n do
for jj:=1 to 2*n do
Ma[ii,jj]:=0;
end;

procedure Filelnput;
{gets the data from a file initially stored}

begin
filename:='grpoints.DG#';
assign(ffile,filename);

{$1-} reset(ffile);read(ffile,mm){$I+};
if ioresult=0 then
begin
m:=trunc(mm);
fori:=1 tomdo
begin
read(ffile,data);
kin[i]:=data;
read(ffile,data);
cinfi]:=data;
end;
close(ffile);
end
else
begin
writeln(" File not found ,try again...");
delay(3000);
end;
end;

procedure printout;forward;

procedure Changelnput;

begin
clrscr;gotoxy(1,10);
textcolor(red);writeln('" Choose one of the following: ");
Writeln;
textcolor(red);write(" 1..");textcolor(blue);
Writeln('adding new data point');
textcolor(red);write(' 2..");textcolor(blue);
Writeln('delete a data point');
textcolor(red);write(" 3..");textcolor(blue);

93

Writeln('change a data point');
textcolor(black);
ch:=readkey; .
if (ch='1") or (ch="2") or (ch="3") then
begin
printout;
if ch="1" then
begin
mm:=mm-+1;
m:=m-+1;
textcolor(red);write('Enter data point Kin[',m,"] to be added : ');
textcolor(black); {$I-}readIn(Kin[m]); {$I+}
if ioresult=0 then
begin
textcolor(red);write('Enter data Cin[',m,'] at the point Kin[',m,"] :");
textcolor(black);readln(Cin[m]);
assign(ffile,filename);
rewrite(ffile);
write(ffile,mm);
fori:=1 tom+1 do
begin
data:=kin[i];
write(ffile,data);
data:=cin[i];
write(ffile,data);
end;
close(ffile);
end;
end
else if ch="2' then
begin
textcolor(red);write(" Enter no of data to be deleted : ");
textcolor(black);readln(j);
mm:=mm-1;
m:=m-1;
assign(ffile,filename);
rewrite(ffile);
write(ffile,mm);
for i:=1 to m+1 do
if i<>j then
begin
data:=kin[i];
write(ffile,data);
data:=cin[i];
write(ffile,data);
end;

94

close(ffile);
end
else if ch="3' then
begin
textcolor(red);write(' Enter no. of the data to be changed:");
- textcolor(black);read(i);
textcolor(red);write(' Enter data point Kin[',i,'] to be changed : ');
textcolor(black);readln(Kin[i]);
textcolor(red);write(' Enter data Cin[\,i,"] at the point Kin[',i,'] :");
textcolor(black);readln(Cin[i]);
assign(ffile,filename);
rewrite(ffile);
write(ffile,mm);
for i:=1 tom+1 do
begin
data:=kin][i}];
write(ffile,data);
data:=cin[i};
write(ffile,data);
end;
close(ffile);
end;
assign(ffile,filename);
reset(ffile);
read(ffile,mm);
m:=trunc(mm);
fori:=1tomdo
begin
read(ffile,data);
kin[i]:=data;
read(ffile,data);
cin[i]:=data;
end;
close(ffile);
end;
end;

procedure FindMatrixForm;

{Finds solution matricies A and b with respect to polinomial order}

begin
clrscr;gotoxy(2,10); textcolor(red);
write(' Enter order of the aproximating polynomial (1-9) : ');

{$I-} textcolor(black);readln(n); {$I+}

if (ioresult= 0) and (n>0) and (n<10) then begin
clrscr;gotoxy(30,10);write('Please Wait !");

95

n:=n+l1;
init(A);
fori:=0tondo
begin
for j:==0 tondo
for k:=1 tomdo
Afi+1,j+1]:=A[i+1,j+1 HFPOW(Kin[k],(+));
end;
init(b);
fori:=0 tondo
for j==1 tom do
b[i+1,1]:=b[i+1,1[+POW(Kin[j],i)*Cin][j];
end
else findmatrixform;
end;

procedure Printout2;

{finds and prints polynomial at a value onto the screen}

var ss,ye:extended;

begin
clrscr;gotoxy(1,10);
write(" Enter k value to be calculated: ');
{$I-} textcolor(black);readln(ye); {$I+}

if (ioresult= 0) then begin

ss:=0;

for i:=0 to n-1 do ss:=ss+x[i+1,1]*POW(ye,i);
sufj]:=ss;

writeln(ye:10:4,su[j]:20:4);

writeln(');

repeat until keypressed;end
else printout2;
end;

function cal2(var mm:extended):extended;forward;
function cal(var mm:extended):extended;forward,;

procedure Diff;
begin
for i:=n downto 2 do
begin
d[i-1,1]:=x[i,1]*(-1);
end;
end;

96

procedure PrintPoly;
{prints approximating polynomial onto screen}
begin
clrscr;gotoxy(1,10);
writeln ('C(K) =");
for i:=n downto 2 do
writeln(" 'x[i,1]:10:4,' KV,i-1);
writeln(" 'x[1,1]:10:4);
repeat until keypressed;
end;

procedure Printout;

{prints data on the screen}

var ss,Cf:extended;

begin
cf:=0;
clrscr;gotoxy(1,10);
Writeln(" ');
textcolor(brown);writeln(" Order of Approximating Polynomial: ',(n-1):3);
textcolor(red);writeln(" Input Data Point Input Data Calculated Data

Difference');

textcolor(black);writeln('

for j:=1 to m do
begin
ss:=0;
for i:=0 to n-1 do ss:=ss+x[i+1,1]*POW(Kin[j],i);
sufj]:=ss;
textcolor(blue);writeln(j:2 kin[j]:15:2,cin[j]:20:2,su[j]:20:4,(cin[j]-su[j]):20:4);
Cf:=Cf+sqr(Cin[j]-su[j]);
end;
end;

function cal(var mm:extended):extended;

var ss :extended;

begin
ss:=0;
for i:=0 to n-1 do ss:=ss+x[i+1,1]*POW(mm,i);
cal:=ss;

end;

function cal2(var mm:extended):extended;

var ss :extended;

begin
ss:=0;
for i:=0 to n-2 do ss:=ss+d[i+1,1]*POW(mm,i);
cal2:=ss;

end;

97

procedure readsettings;forward;

procedure drawing;
begin
readsettings;
gd:=detect;
initgraph(gd,gm,'');
mx:=getmaxx;my:=getmaxy;
gx:=(mx-150)/(1x-fx);
gy:=(my-180)/(ly-fy);
rectangle(0,40,mx-10,my-50);
ff:=fx;
fi=fy;
fori:=0to 3 do
begin
if f£>0 then ff:=0;
if £>0 then £:=0;
line((59-+i-round(ff*gx)),60,(59+i-round(ff*gx)),my-95);
line(50,(my-102+round(f*gy)+i),mx-50,(my-102+round(f*gy)+i));
end;
ff:=fx;aa:=fx;if aa>0 then aa:=0;
f:=0;bb:=fy;if bb>0 then bb:=0;
settextstyle(2,horizdir,4);
outtextxy(round(50-fx*gx),round(my-95+fy*gy).'0");
repeat
if ((Ix-fx)/stepx)>=10 then cc:=0
else if ((1x-fx)/stepx)>=1 then cc:=1
else if ((1x-fx)/stepx)>=0 then cc:=2;
str(ff:(cc+2):cc,satr);
if ff<>0 then outtextxy(round(50+f* gx),(my-85+round(bb*gy)),satr);
line(round(60+f*gx),my-104+round(bb*gy),round(60+f*gx),my-
96+round(bb*gy));
ff:=ff+(Ix-fx)/stepx;
f:=f+(1x-fx)/stepx;
until f£>1x;
ff:=0;
f:=fy;
repeat
if ((Ix-fx)/stepy)>=10 then cc:=0
else if ((1x-fx)/stepy)>=1 then cc:=1
else if ((1x-fx)/stepy)>=0 then cc:=2;
str(f:5:cc,satr);
if f<0 then outtextxy(20-round(aa*gx),round(my-107-ff*gy),satr);
line(56-round(aa*gx),round(my-100-ff*gy),64-round(aa* gx),round(my-100-
ff*gy));

98

fi:=ff+(ly-fy)/stepy;
f:==f+(ly-fy)/stepy;
until £>ly;
settextstyle(defaultfont,horizdir,1);
ff:=0;
fi=fx;
setcolor(round(2+getmaxcolor / 2));
outtextxy(50,450,'Wait !.. ";
repeat
£:=0.02+f;
ff:=0.02+fT;
xx:=round(60+{f*gx);
y1:=round(my-100-(cal(f)-fy)*gy);
if (xx>10) and (xx<mx-10) and (y1<my-50) and (y1>40) then
circle(xx,y1,0);
until £>=Ix;
f:=40/gx;outtextxy(round(60+f*gx),round(my-120-cal(f)*gy),'f(x)");
setcolor(getmaxcolor+1);
outtextxy(50,450,'Wait !.. "
setcolor(5+round(getmaxcolor/2));
if c<>8 then
begin
outtextxy(50,450, Press any key to return.... "
repeat until keypressed;
closegraph;
end;
end;

{AFTER HERE PROCEDURES ARE USED TO SOLVE }
{ THE SYSTEM OF EQUATIONS }

procedure Factorization;

var Ar:arraytype2;ch:char;
{$M 25384,0,655360}
begin
fori:=1 tondo
for j:==1 to n do Ar[i,j]:==Alij];
init(U);
init(L);
fori:=1tondo
begin
for j:=i to n do U[i,j]:=Ar[i,j];
fork:=itondo

99

begin
if Ar[i,i]=0 then
begin
clrscr;

Writeln(' A pivot reached to zero.Cannot pivoting!!!");
repeat until keypressed;
textcolor(white);

textbackground(black);
clrscr;
halt(0);
end
else L[k,i]:=Ar[k,iJ/Ar[i,i];
end;
for o:=(i+1) ton do
begin
ma:=Ar[o,i}J/Ar[ii];
for k:=itondo
begin
kl:=Ar[i,k]*(-ma)+Arfo.k];
ar[o,k]:=kl;
end;
end;
end;
end;

procedure Inverse(var inv:arraytype?2);
var Ar:arraytype2;
begin
fori:=1 tondo
for j:==1 to 2*n do Ar[i,j]:=L[i,j];
init(inv);
for j:=1 to n do Ar[j,j+n]:=1;
fori:=1tondo
begin
for j:=i to 2*n do Inv[i,j]:=Ar[i,j];
for o:=(i+1)ton do
begin
ma:=Ar[o,i}/Ar[i,i];
for k:=i to 2*n do
begin
kl:=Ar[i,k]*(-ma)+Arfo,k];
ar[o,k]:=kl;
end;
end;
end;

100

fori:=1tondo
for j:=1 to 2*n do Ar[i,j]=Inv[i,j];
for i:=n downto 2 do
begin
for j:=i to n do Inv[i,j]:=ar[i,j];
for o:=i-1 downto 1 do
begin
ma:=Ar[o,i]/Ar[i,i];
for k:=i to 2*n do
begin
kl:=Ar[i,k]*(-ma)+Arfo.k];
ar[o,k]:=kl;
end;
end;
end;
fori:=1tondo
forj:==1tondo
Inv[i,j]:=Ar[i,n+j)/Ar[i,i];
end;

procedure product(var A1,A2,P:arraytype2);
begin

init(p);

fori:=1tondo

forj:==1tondo

for k:=1 ton do

P[i,j]:=P[i,j]+A1[Lk]*A2[k,j];

end;

procedure PivotalCheck;
var Sum,p:extended;

begin
if n>2 then
begin
Sum:=0;
for i:=0 to n-1 do
begin
p=1
for j==1 tondo
begin
if (i+j)>n then k:=i+j-n
else k:=itj;
p:=p*(Al.k]);
end;
Sum:=Sum-+p; TC. WKSEKGGRETIM KURULY
end; pOKDMANTASYON

101

fori:=1tondo
begin
p=1;
for j:=n downto 1 do
begin
if (n+i-j)>n then k:=i-j
else ki=nti-j;
p=p*(ALk,j]);
end;
Sum:=Sum-p;
end;
end
else sum:=A[1,1]*a[2,2]-A[1,2]*A[2,1];
for i:=1 to n do if (A[i,1]=0) or (abs(Sum)<=1e-6) then
begin
clrscr;gotoxy(1,10);textcolor(red);
Writeln(" WARNING!!! This is an ill-conditioning system’);
writeln(' or diagonal has a zero element.");
repeat until keypressed;
textcolor(white);
textbackground(black);
clrscr;
halt(0);
end;
end;

function cal3(var mm:extended):extended;
begin
slope:=cal2(tt);
YO0:=cal(tt)-(slope*tt);
cal3:=slope*mm+y0;
end;

procedure tangent;

begin
drawing;
outtextxy(50,20, Enter the point x where the tangential to be drawn...");
writeln(' ');
write(');

{$I-} readin(tt); {$I+}
if (ioresult= 0) and (tt<Ix) and (tt>fx) then begin
outtextxy(50,450,'Wait !.. ;
fillellipse(round(60-+(tt-fx)*gx),round(my-100-(cal(tt)-fy)*gy),3,3);
setcolor(round(5+getmaxcolor/2));
fi=fx;
ff:=0,

102

repeat
£:=0.02+f;
ff:=0.02-+T;
xx:=round(60-+{f*gx);
yl:=round(my-100-(cal3(f)-fy)*gy);
if (xx>15) and (xx<mx-20) and (y1<my-60) and (y1>45) then
circle(xx,y1,0);
if (£>0) and (£<0.03) then outtextxy(xx-10,y1,'A");
if (cal3(£)>-0.02) and (cal3(£)<0.04) then outtextxy(xx,y1+10,'B");
until ((£>1x+20/gx));
f:=tt+20/gx;
outtextxy(round(60+f*gx),round(my-120-cal3(f)*gy), T(x)");
setcolor(getmaxcolor+1);

outtextxy(50,450,'Wait !.. ;
setcolor(round(10+getmaxcolor/2));
ff:=0;

str(cal3(ff):(cc+2):cc,satr);
outtextxy(mx-110,60,'A=(0.0;"+satr+")');
ff:=-y0/slope;

str(ff:(cc+2):cc,satr);

outtextxy(mx-110,80, B=("+satr+';0.0)");
str(cal(tt):(cc+2):cc,satr);
str(tt:(cct+2):cc,sat);
outtextxy(mx-110,100,"T=(+sat+';'+satr+')");
rectangle(mx-125,40,mx-10,125);
outtextxy(50,450,Press a key to return... ;
repeat until keypressed;

end else ¢:=0;

closegraph;

end;

procedure BackSubs;
var sum:extended;
begin
product(Heg,b,bi);
x[n,1]:=bi[n,1}/u[n,n];
for i:=n-1 downto 1 do
begin
sum:=0;
for k:=i+1 to n do Sum:=Sum-+u[i,k]*x[k,1];
x[i,1]:=(bi[i,1]-Sum)/u[i,i];
end;
end;

103

procedure WriteSetting;
var ffile:file of extended;
filename:string[20];
data:extended;
begin
i:=0;
assign(ffile,'settings.dat");
rewrite(ffile);
write(ffile,fx);
write(ffile,1x);
write(ffile,fy);
write(ffile,ly);
write(ffile,stepx);
write(ffile,stepy);
close(ffile);
end;

procedure ReadSettings;
var ffile:file of extended;
filename:string[20];
data:extended;
begin
clrscr;gotoxy(1,10);
assign(ffile,'settings.dat');
{$I-} reset(ffile);{SI+};
if ioresult=0 then
begin
read(ffile,fx);
read(ffile,lx);
read(ffile,fy);
read(ffile,ly);
read(ffile,stepx);
read(ffile,stepy);
close(ffile);
end
else
begin
fx:=-100;
1x:=100;
stepx:=10;
stepy:=10;
fy:=-100;
ly:=100;
WriteSetting;
end;
end;

104

procedure readdata(var value :extended);
begin
satr:=ch;write(ch);
repeat
ch:=readkey;

if ch<>#13 then
begin
satr:=satr+ch;
write(ch);

end;

until ch=#13;
writeln(');
val(satr,value,i);
end;

procedure ChangeSettings;
begin
clrscr;gotoxy(1,10);
Writeln(" 1.. AUTO');
writeln(2 .. MANUAL'); Writeln;
Write(" To Change Graphic Settings Choose One :');
ch:=readkey;
if ch="1" then
begin
fx:=-20;
Ix:=20;
stepx:=5;
stepy:=5;
fy:=-20;
ly:=20;
writesetting;
end
else if ch="2' then
begin
repeat
clrscr;gotoxy(1,10);
if i=-1 then writeln(' Input Error !!!");
Writeln(" Write New Settings :');
writeln(" (press ENTER if no change)');
writeln(" ');
{$I-}
i:=0;
write(MinX ="'1x:15:3,"--->");
ch:=readkey;if ch=#13 then writeln(fx:4:3) else readdata(fx);
write(Max X ="'1x:15:3,'--->");
ch:=readkey;if ch<>#13 then readdata(lx) else writeln(lx:4:3);

105

write(MinY ='fy:15:3,'--->");
ch:=readkey;if ch<>#13 then readdata(fy) else writeln(fy:4:3);
write((MaxY =']ly:15:3,--->");
ch:=readkey;if ch<>#13 then readdata(ly) else writeln(ly:4:3);
write('Step for X axis ="',stepx:15:0,'--->");
ch:=readkey;if ch<>#13 then readdata(stepx) else writeln(stepx:1:0);
write('Step for Y axis =',stepy:15:0,'--->");
ch:=readkey;if ch<>#13 then readdata(stepy) else writeln(stepy:1:0);
{$I+}
if i<>0 then i:=-1;
if (ioresult= 0) and (fx<Ix) and (fy<ly) and (stepx<>0) and (stepy<>0) and (i<-1)
then writesetting else i:=-1;
until i<-1;
end;
end;
procedure Main;
begin {main}
InputDatas;
StarValues;
if RC =0 then
begin
clrscr;gotoxy(1,10);
textcolor(red);writeln(' Choose one of the following methods: ');
Writeln;textcolor(red);write(' 1..");textcolor(blue);
Writeln('Theta Method");
textcolor(red);write(" 2..");textcolor(blue);
Writeln('Two step Adams Baschforth');
textcolor(red);write(' 3..");textcolor(blue);
Writeln('Three step Adams Baschforth');
textcolor(red);write(" 4..");textcolor(blue);
Writeln('Two step Backward Differentiation");
textcolor(red);write(" 5..");textcolor(blue);
Writeln('Runge Kutta');
{$1-} textcolor(black);readln(op);texicolor(blue); {$I+}
ifop=1 then
begin
clrscr;gotoxy(2,10);
textcolor(red); Write(' Enter the value of the theta : ');
{$1-} textcolor(black);readln(w);textcolor(blue); {$I+};
ThetaMethodAplication;
end
else if op = 2 then begin AdamsBasch2Step; end
else if op = 3 then begin AdamsBasch3Step; end
else if op = 4 then begin Backward2Step; end
else if op = 5 then begin RungeKutta; end;
CreatFile;
end;

106

repeat

FileInput;

repeat;
FindMatrixForm:;
Factorization,
Inverse(Heq);
PivotalCheck;
BackSubs;
diff;
readsettings;
repeat
clrscr;gotoxy(1,10);
textcolor(red);write('

1");textcolor(blue); writeln('..to change order of

approximating polynomial');

textcolor(red);write('
and differences ');
textcolor(red);write('
polynomial');
textcolor(red); write('
textcolor(red); write('
textcolor(red); write('
point');
textcolor(red); write('
points");
textcolor(red);write('
point");
textcolor(red);write(’
textcolor(red); write('
textcolor(red);write('

writeln(' ");

2");textcolor(blue);writeln('..to see input data, calculated data
3');textcolor(blue);writeln('..to see approximating
4";textcolor(blue);writeln('..to draw polynomial');
5");textcolor(blue);writeln('..to see equilibrium point');
6');textcolor(blue);writeln('..to calculate the polynomial at a
7");textcolor(blue);writeln('..to add-delete-change data
8");textcolor(blue);writeln('..to draw tangent to graph at a
9');textcolor(blue);writeln('..to change graphic settings');

10");textcolor(blue);writeln('..to start');
11");textcolor(blue);writeln('..to exit');

write(' Make a choice :’);textcolor(red+b1ink);write(' ;
{$I-} readin(c);textcolor(blue); {$I+}

if ioresult=0 then
begin

if c=2 then begin Printout;repeat until keypressed;end
else if c=3 then PrintPoly

else if c=4 then drawing

else if ¢c=5 then PrintStarVal

else if ¢=6 then Printout2

else if ¢=7 then Changelnput

else if c=8 then Tangent

else if c=9 then ChangeSettings

else if ¢c=10 then Main;

end
else ¢:=0;

107

until (c=1) or (c=11) or ((c=7) and ((ch="1") or (ch="2") or (ch='3")));
until (c=11) or (c=5);
clrscr;
until(c=11);
textcolor(white);
textbackground(black);
normvideo;
clrscr;

end;
begin
Initialize;
Main
end.

T.C. YOKSEXGGRETIM KURULU
DOKDRMANTASYON MERKEZI

108

