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ABSTRACT

ON SOME CONSEQUENCES OF THE ISOMORPHIC CLASSIFICATION OF
CARTESIAN PRODUCTS OF LOCALLY CONVEX SPACES

Kızgut, Ersin

Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Murat Yurdakul

July 2016, 36 pages

This thesis takes its motivation from the theory of isomorphic classification of Carte-
sian products of locally convex spaces which was introduced by V. P. Zahariuta in
1973. In the case X1 ×X2 ≃ Y1 × Y2 for locally convex spaces Xi and Yi, i = 1,2;
it is proved that if X1, Y2 and Y1,X2 are in compact relation in operator sense, it
is possible to say that the respective factors of the Cartesian products are also iso-
morphic, up to their some finite dimensional subspaces. Zahariuta’s theory has been
comprehensively studied for special classes of locally convex spaces, especially for
finite and infinite type power series spaces under a weaker operator relation, namely
strictly singular. In this work we give several sufficient conditions for such operator
relations, and give a complete characterization in a particular case. We also show that
a locally convex space property, called the smallness up to a complemented Banach
subspace property, whose definition is one of the consequences of isomorphic classi-
fication theory, passes to topological tensor products when the first factor is nuclear.
Another result is about Fréchet spaces when there exists a factorized unbounded op-
erator between them. We show that such a triple of Fréchet spaces (X,Z,Y ) has a
common nuclear Köthe subspace if the range space has a property called (y) which
was defined by Önal and Terzioğlu in 1990.
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Keywords: Isomorphic classification of Cartesian products, unbounded operators,
strictly singular operators, compact operators, smallness up to a complemented Ba-
nach subspace property
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ÖZ

YEREL KONVEKS UZAYLARIN KARTEZYEN ÇARPIMLARININ
İZOMORFİK SINIFLANDIRILMASININ BAZI SONUÇLARI ÜZERİNE

Kızgut, Ersin

Doktora, Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Murat Yurdakul

Temmuz 2016 , 36 sayfa

Bu tez motivasyonunu V. P. Zahariuta tarafından öncülük edilen yerel konveks uzay-
ların Kartezyen çarpımlarının izomorfik sınıflandırılması teorisinden almaktadır. Xi

ve Yi, i = 1,2 yerel konveks uzayları verilmiş olsun. X1 ×X2 ≃ Y1 × Y2 durumunda
çarpan uzayların da sonlu boyutlu birer altuzay hariç izomorfik olabilmesi için X1, Y2
ve Y1,X2 uzayları arasında operatör teorisi bağlamında bir kompakt bağıntı olması
gerektiği ispatlanmıştır. Zahariuta’nın bu teorisi daha sonra sonlu ve sonsuz tipi kuv-
vet toplamlı uzaylar başta olmak üzere bazı özel yerel konveks uzaylar için daha
zayıf operatör bağıntıları-strictly singular-altında detaylı bir şekilde ele alınmıştır. Bu
çalışmada söz konusu operatör bağıntılarının varlığı için yeterli koşullar türetilmiş
ve belli bir durumda karakterizasyon elde edilmiştir. Bunun dışında izomorfik sınıf-
landırma teorisinin sonuçlarından biri olarak yerel konveks uzaylar için tanımlanan
SCBS (tümlenebilen bir Banach altuzayı dışında yeterince küçük olma) özelliğinin,
ilk çarpanın nükleer olması koşuluyla, topolojik tensör çarpımına geçtiği ispatlan-
mıştır. Bir diğer sonuç ise Fréchet uzayları üzerine olup, iki Fréchet uzayı arasında
tanımlı üçüncü bir Fréchet uzayı üzerinden çarpanlarına ayrılan bir sınırsız operatörün
varlığına dayanmaktadır. Bu durumun sonucunda bu üç uzayın ortak nükleer Köthe
altuzayı olabilmesi için, görüntü uzayında Önal ve Terzioğlu tarafından 1990’da ta-
nımlanan (y) özelliğinin olmasının yeterli olduğu ispatlanmıştır.
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CHAPTER 1

INTRODUCTION

The set of results obtained in this thesis is in connection with the theory of isomorphic

classification of Cartesian products (ICCP) of locally convex spaces (lcs) which was

initiated by the remarkable note of Zahariuta [70] published in 1973. In that paper he

defined and characterized a relation between locally convex spacesX and Y called the

relation K which means that every continuous linear operator T ∶ X → Y is compact.

It is proved that for lcs’s X = X1 × X2 and Y = Y1 × Y2 with (X1, Y2) ∈ K and

(Y1,X2) ∈ K being isomorphic to each other is equivalent to the case that the factors

are near isomorphic, that is, they are isomorphic up to their some finite dimensional

subspaces. Namely, he made use of Fredholm operator theory to compose an ICCP

of locally convex spaces. In Chapter 2, we introduce some results concerning the

relation K in the class of Banach spaces. We then briefly mention strictly singular

operators on lcs’s in the context of operator ideals and emphasize the situation when

their class is an operator ideal. The last part of Chapter 2 is devoted to unbounded

operators and their factorization in Fréchet spaces. We prove that the existence of an

unbounded operator T ∶ X → Y over a third Fréchet space Z causes the existence of

a common nuclear Köthe subspace of the triple (X,Z,Y ) when the range space has

the property (y), which was introduced by Önal and Terzioğlu [60].

In 1998, Djakov, Önal, Terzioğlu and Yurdakul [20] investigated the ICCP of a special

class of lcs’s, called finite and infinite type power series spaces (pss). They modified

Zahariuta’s method to obtain a similar ICCP of pss’s with the help of a weaker oper-

ator theoretic relation. This relation is based on the type of operators called strictly

singular. We denote (X,Y ) ∈ S iff every operator T ∶ X → Y is strictly singular. In
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Chapter 3, we give sufficient conditions to obtain this relation under some conditions.

First we introduce such conditions in terms of Banach spaces, and then we extend

some of them to the class of lcs’s via projective limit topologies and Grothendieck

space ideals. It is even possible to claim a characterization when we slightly mod-

ify the assumptions for (X,Y ) ∈ K. These results are helpful to extend the ICCP of

pss’s to general lcs’s. In Chapter 3, we also revisit the advances in the ICCP of lcs’s.

We see the consequences of changing the assumptions on various types of spaces in

Zahariuta’s theorem. Here we also mention about bounded operators. It is denoted

(X,Y ) ∈ B when every operator between X and Y is bounded. Referring to the

note of Djakov, Terzioğlu, Yurdakul, and Zahariuta [19] which investigate the ICCP

of Fréchet spaces up to basic Banach subspaces under the assumption of (X,Y ) ∈B,

we finally setup the basis of the definition of smallness up to a complemented Banach

subspace property (SCBS) which is enjoyed by all Köthe spaces. In Chapter 4, we

give its definition and prove that it is stable under topological tensor products, pro-

vided that the first factor is nuclear. We also mention the class of `-Köthe spaces as

a type of generalized Köthe spaces, in which the canonical basis {en} is an uncondi-

tional one. Their topological tensor products are not known explicitly. However, with

the help our result, we deduce that this product has the SCBS property when the first

factor is nuclear.
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CHAPTER 2

OPERATORS IN LOCALLY CONVEX SPACES

2.1 Preliminaries

In this chapter, we focus on the operator theory of lcs’s. Our concentration will be on

compact, strictly singular, bounded and unbounded operators and their roles in com-

posing relations between lcs’s. We give results concerning compact and unbounded

operators. Results on compact operators will be in terms of Banach spaces which

are in particular locally convex. These results rest on weak and strong convergence,

hereditary properties, some other well-known vector space properties such as Schur

property (SP), Dunford-Pettis property (DPP), approximation property and so on.

The duality theory of Banach spaces is also used in the proofs. We will continue

our discussion of Banach spaces in Chapter 3 in strictly singular operators perspec-

tive. We then extend some of these results to the general class by means of projective

limit topologies, and Grothendieck space ideals. The results for unbounded operators

highly depend on failure of bounded factorization property and continuous norm ar-

guments. There we consider the class of Fréchet spaces. Now let us define the tools

we need for the proofs.

A vector spaceX over the field K is said to be a topological vector space (tvs) denoted

(X,τ) if X is equipped with the Hausdorff topology τ which is compatible with its

vector space structure (the maps + ∶ X ×X → X and ⋅ ∶ K ×X → X are continuous).

A tvs (X,τ) is said to be locally convex if it has a base of neighborhoods U = {Uα}

of the origin consisting of convex sets Uα. Let such U be a filter-base of absolutely

convex absorbent (a subset S is called absorbent if for all x ∈ X there exists r ∈ R

3



such that for all α ∈ K, ∣α∣ ≥ r implies x ∈ αS) subsets Uα of a vector space X

with ⋂
α
Uα = θ. If each set ρUα ∈ U for ρ > 0 when Uα ∈ U , then a lcs (X,τ)

is defined by considering U as a base of neighborhoods of the origin. Each lcs can

be constructed this way. Alternatively, let {pα(x)} be a system of semi-norms on a

vector space X , such that for each x0 ≠ θ there is at least one pα with pα(x0) ≠ 0.

If Uα = {x ∈ X ∶ pα(x) ≤ 1}, then the system ρU (ρ > 0) of U =
n

⋂
ι=1
Uαι. This

base is composed of absolutely convex open sets. Each lcs can also be constructed

this way. A complete metrizable lcs is called a Fréchet space. The metrizable lcs

(X,τ) can always be topologized by a system of absolutely convex neighborhoods

of θ(X). This system constitutes a decreasing sequence. The latter is equivalent to

the topology generated by the increasing sequence of semi-norms associated to these

neighborhoods. A vector space X is called a normed space if its topology is given by

a norm, which is a functional satisfying norm axioms. A complete normed space is

called a Banach space. For a more detailed description, the reader is referred to [38].

Let U be an absolutely convex closed neighborhood of a lcs X . N(U) = p−1U (0) is a

closed subspace of X , where pU is the gauge functional of U . Let XU ∶= X/p−1U (0)

be the quotient space with the norm induced by pU(⋅). Its dual is the Banach space

X ′[U ○] ∶=
∞
⋃
n=1

nU ○ (cf. Definition 2.4.2) with the norm defined by U ○. If V ⊂ ρU

for some ρ > 0 and V ∈ U (X) also, then N(U) ⊂ N(V ). Let πU ∶ X → XU be the

canonical quotient map. Then for all U , one can find V ⊂ U such that there exists

φUV ∶XV →XU making the following diagram commutative.

X

πV
��

IX // X

πU
��

X̃V φUV

// X̃U

If φUV ∈ A(XV ,XU), for a pre-ideal A of operators then X is called a Grothendieck

A-space and we denote X ∈ Groth(A). Here, X̃U and X̃V are Banach spaces.

This construction may be useful to get a grip on the nuclearity assumption in The-

orem 4.2.1. A nuclear space X actually belongs to Groth(N), where N denotes the

class of nuclear operators. Almost every class of well-known lcs’s is generated by an

operator ideal. A non-example is the class of Montel spaces. For necessary condi-

tions for a class of Hausdorff lcs’s to be generated by an operator ideal one may read

[9, Theorem 1].
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Given a family {φk ∶X →Xk} of linear maps from a tvs X to tvs’s Xk, the projective

topology induced on X by the family is the weakest topology on X which makes

each of the maps φk continuous. A family {Xk, φkm} where k,m belong to a directed

set I, Xk is a tvs for each k ∈ I, {φkm ∶ Xm → Xk} is a continuous linear map for

each pair k,m ∈ I with k < m and φkm ○ φmn = φkn whenever k < m < n is called an

inverse directed system of tvs’s. The projective limit lim
←Ð

Xk of such a system is the

subspace of the Cartesian product ∏Xk consisting of elements {xk} which satisfy

φkm(xm) = xk, k < m. The projective limit lim
←Ð

Xk is a closed subspace of ∏Xk

and has the projective topology induced by the family of maps {φk ∶ lim
←Ð

Xk → Xk}

where φk is the inclusion lim
←Ð

Xk →∏Xk followed by the projection on Xk. If X is a

lcs, and {Xk} are the local Banach spaces for k ∈ I then the canonical mappings are

φn ∶X →Xn, for n ∈ I and φnm ∶Xn →Xm, for n <m.

Throughout, unless otherwise stated, a "subspace" always means an infinite dimen-

sional closed subspace, and will be denoted Y ≤X .

2.2 Compact operators

Definition 2.2.1 Let X and Y be lcs’s. T ∈ L(X,Y ) is called (weakly) compact

if there exists a zero neighborhood U of X such that its image T (U) is (weakly)

precompact in Y .

As usual we denote (X,Y ) ∈ K (resp. (X,Y ) ∈ W) when any operator from X

to Y is compact (resp. weakly compact). Zahariuta [70, Proposition 1.1] character-

ized (X,Y ) ∈ K in the following sense: Y is a pre-Montel (each bounded subset B

of Y is pre-compact) lcs iff (X,Y ) ∈ K for each normed space X . Obviously we

have K(X,Y ) ⊂ W(X,Y ). The converse is not true in general, unless the domain

space has the Schur property (the equivalence of weak and strong convergence) [39,

Lemma 9]. Note that (weakly) compact operators have the conjugacy property on

Banach spaces, that is, T ′ ∶ Y ′ → X ′ is (weakly) compact iff T ∶ X → Y is (weakly)

compact. In this section, we introduce some results concerning sufficient conditions

for (X,Y ) ∈ K, whereX and Y are Banach spaces. For similar results in the category

of lcs’s, the reader is referred to [3], [14], [15], [48], and [70, Section III]. To work

5



with Banach spaces, we will need some concepts related to sequences and equiva-

lence of their convergence with respect to different topologies. A Banach space X

is said to be weakly sequentially complete (wsc) if weakly Cauchy sequences in X

converges weakly. It is called almost reflexive if every bounded sequence (xn) ∈ X

has a weakly Cauchy subsequence.

Theorem 2.2.2 Let X ′ have SP and let Y be wsc. Then, (X,Y ) ∈ K.

Proof By [39, Corollary 11], (X,Y ) ∈ W. Let T ∶ X → Y . Then, the conjugate

map T ′ ∶ Y ′ → X ′ is also weakly compact. Then, T ′ maps bounded sequences in Y ′

into the sequences in X ′ which have weakly convergent subsequences. But X ′ has

SP, so those weakly convergent subsequences converge in norm. In other words, T ′

is compact. By the conjugacy property, T is also compact. Therefore, (X,Y ) ∈ K.

Lemma 2.2.3 [57] A Banach space X is almost reflexive iff `1 0X .

Theorem 2.2.4 Let X ′ and Y have SP. Then, (X,Y ) ∈ K.

Proof By [42] and [59], L(X,Y ) has SP. Now suppose there exists T ∈ L(X,Y )

which fails to be compact. Since Y has SP, T cannot be almost weakly compact

because if so, for every bounded sequence (xn) ∈X , there would exist a subsequence

(xkn) ∈ X such that T (xkn) is convergent. So there exists a sequence (γn) ∈ X with

no weak Cauchy subsequence. That implies by Lemma 2.2.3 that `1 ↪ X . However,

by [18], X is almost reflexive. Contradiction.

2.3 Strictly singular operators

Definition 2.3.1 Let X and Y be lcs’s. T ∈ L(X,Y ) is said to be strictly singular if

for any M ≤X , the restriction T ∣M is not a topological isomorphism.

The definition above, which is a generalization of the concept of compact operators

in Banach spaces, is due to Kato [33]. In this work, Kato also proved that the operator

6



ideal property is preserved. Later, van Dulst first [63] stated the obvious generaliza-

tion of strictly singular operators acting on the general class of vector spaces and gave

characterization on Ptak spaces (or B-complete spaces). Then he pursued his inves-

tigation for generalized Hilbert spaces in [64]. Goldberg [24] proved that a linear

operator T ∶ X → Y is stricly singular iff for every M ≤ X there exists N ≤M such

that the restiction T ∣N has a norm not exceeding ε, for any positive ε. The conjugacy

property of strictly singular operators acting on Banach spaces is shown to be absent

by Goldberg and Thorp [25] with a counterexample. The conditions under which this

property exists are investigated by Whitley in [67].

Note that a compact operator T ∶X → Y is strictly singular (see [11, Theorem 10.3.2]

for a relatively new proof), while the converse is not true in general (the injection map

ι ∶ `p ↪ `q,1 ≤ p < q < ∞). If the pair (X,Y ) belongs to the class of Hilbert

spaces, then S(X,Y ) = K(X,Y ). It is also understood that K(X) = S(X), if

X = `p for 1 ≤ p < ∞ or X = c0. Alternatively, a non-compact operator is non-

strictly singular if it fixes an isomorphic copy of `p, that is, for a bounded linear

operator T ∶ X → Y there exists M ≤ X with M ≃ `p for which ∃α > 0 so that

∥Tx∥ ≥ α∥x∥, ∀x ∈ M . To find the equivalence of strictly singular and compact

operators on Hardy and Bergman spaces in terms of composition, Hankel, Toeplitz,

or Volterra-type operators is also a popular research area recently [31], [40], [44].

Strictly singular operators also have a role in the theory of invariant subspaces [4],

[11], [26], [27]. Fortunately, strictly singular operators are somehow ubiquitiously

compact. That is why they are called semi-compact in some resources. Wrobel [68]

characterized strictly singular operators on lcs’s for the class of Br-complete spaces.

There he used Ptak-type Br-completeness. To understand that, let X be a barrelled

lcs (every barrelled set in X is a neighborhood of the origin), and let T ∶ Y → X be

a linear map where Y is a barrelled space which has a closed graph. If any such T is

continuous, X is then called a Br-complete lcs.

Lemma 2.3.2 [68, Theorem 1-IV] Let X and Y be Br-complete lcs’s. Then, TFAE

1. T ∈S(X,Y ).

2. For every M ≤X , there exists N ≤M such that T ∣N is precompact.

7



Now let us investigate strictly singular operators in the operator ideal perspective.

Definition 2.3.3 An operator ideal A(X,Y ) ≤ L(X,Y ) satisfies the following con-

ditions:

1. IK ∈ A.

2. If A,B ∈ A(X,Y ), then A +B ∈ A(X,Y ).

3. If C ∈ L(E,X),B ∈ A(X,Y ),A ∈ L(Y,F ), then A ○B ○C ∈ A(E,F ).

S(X,Y ) is a non-surjective operator ideal, if the pair (X,Y ) belongs to the class of

Banach spaces. As proved in [17] by construction of a non-strictly singular operator

which can be written as the summation of two strictly singular operators, this is not

the case when it belongs to the class of general lcs’s. Remember that K(X,Y ) is

an operator ideal in lcs’s. With the help of the latter, we readily prove the following

using Wrobel’s characterization.

Theorem 2.3.4 Let X and Y be Br-complete lcs’s. Then, S(X,Y ) forms an opera-

tor ideal.

Proof Suppose that T ∶ X → Y and S ∶ X → Y are strictly singular operators. Then,

for any M ≤ X , by Lemma 2.3.2, find N ≤ M such that T ∣N is precompact. Then

find P ≤ N such that S∣P is precompact. The ideal property of precompact operators

on lcs’s yields the result.

Let X and Y be lcs’s. For M ≤ X , α ∈ I and β ∈ J , ωαβ(T ∣M) ∶= sup{qβ(Tx) ∶

pα(x) ≤ 1, x ∈ M}. The following is a characterization of strictly singular operators

in lcs’s.

Lemma 2.3.5 [46, Theorem 2.1] Let X and Y be lcs’s and let T ∈ L(X,Y ). Then T

is strictly singular iff for any ε > 0, β ∈ J and M ≤ X there exists α0 ∈ I and there

exists N ≤M such that ωαβ(T ∣N) ≤ ε for all α.
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The following theorem is an extension of [2, Problem 4.5.2] to Br-complete lcs’s by

means of Theorem 2.3.4 and Lemma 2.3.5.

Theorem 2.3.6 Let Xi, i = 1,2, . . . n and Yj, j = 1,2, . . .m be Br-complete lcs’s, and

let τ ∶
n

⊕
i=1
Xi →

m

⊕
j=1
Yj be continuous. τ can be represented by uniquely determined

continuous operators Tji ∶Xi → Yj so that the matrix representation of τ is

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

T11 T12 . . . T1n

T21 T22 . . . T2n

⋮ ⋱ ⋮

Tn1 Tn2 . . . Tnn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Then, τ is strictly singular iff each of Tij is strictly singular for each i = 1,2, . . . , n

and for each j = 1,2, . . . , n.

Proof Let X ∶=
n

⊕
i=1
Xi and Y ∶=

m

⊕
j=1
Yj , for simplicity of notation, and assume that

each Tji is strictly singular. Let πi ∶ X → Xi be the canonical projection and define

ρj ∶ Yj → Y by ρyj = 0 ⊕ 0 ⊕ ⋅ ⋅ ⋅ ⊕ 0 ⊕ yj ⊕ 0 ⊕ ⋅ ⋅ ⋅ ⊕ 0, for which yj is the j-th

summand. Consider X
πi
Ð→ Xi

Tji
Ð→ Yj

ρj
Ð→ Y , and write τji = ρj ○ Tji ○ πi. Then

τji(x1 ⊕ x2 ⊕ ⋅ ⋅ ⋅ ⊕ xn) = 0 ⊕ 0 ⊕ ⋅ ⋅ ⋅ ⊕ 0 ⊕ Tjixi ⊕ 0 ⊕ ⋅ ⋅ ⋅ ⊕ 0, where Tji is the j-th

summand. By Theorem 2.3.4 and rewriting τ =
n

∑
i=1

m

∑
j=1
τji, τ is strictly singular.

For the converse, let τ ∈ S(X,Y ), and suppose that the operator Tji is not strictly

singular for some i, j. Then by Lemma 2.3.5, for any M ≤ Xi and for some β ∈ J ,

ωαβ(τN) > ε, for all α ∈ I . If we write M̂ ∶= {0} ⊕ {0} ⊕ ⋅ ⋅ ⋅ ⊕M ⊕ {0} ⊕ ⋅ ⋅ ⋅ ⊕ {0}

where M places in the i-th summand, M̂ is a vector subspace of X . ωαβ(τM̂) > ε, for

all α ∈ I . But, that contradicts the assumption τ is strictly singular.

We refer the reader to Section 3.2 for sufficient conditions satisfying (X,Y ) ∈ S for

which we also give a characterization. Concerning the smallest surjective operator

ideal SS(X,Y ) containing S(X,Y ), Weis [66] proved that X is almost reflexive iff

(X,Y ) ∈SS .
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2.4 Factorized unbounded operators

Definition 2.4.1 A linear operator T ∶ X → Y between lcs’s is called bounded if

there exists a neighborhood U of θ(X) whose image T (U) is a bounded set in Y .

An operator T is bounded iff it can be factored over a normed space. T is called

almost bounded if it can be factored over ω ×B, where ω is the set of all sequences

(it admits no continuous norm) and B is a Banach space. We call T unbounded,

when it is not necessarily bounded. A triple (X,Z,Y ) is said to have the bounded

factorization property and it is written (X,Z,Y ) ∈ BF if each T ∈ L(X,Y ) that

factors over Z (that is, T = R1 ○ R2, where R2 ∈ L(X,Z) and R1 ∈ L(Z,Y )) is

bounded.

Nurlu and Terziog̃lu [49] proved that under some conditions, existence of continuous

linear unbounded operators between nuclear Köthe spaces causes existence of com-

mon basic subspaces. Djakov and Ramanujan [21] sharpened this work by removing

nuclearity assumption and using a weaker splitting condition. In [62], it is shown that

the existence of an unbounded factorized operator for a triple of Köthe spaces, under

some assumptions, implies the existence of a common basic subspace for at least two

of the spaces. Concerning the class of general Fréchet spaces, the existence of an

unbounded operator in between is studied in [61]. The motivation was there the paper

of Bessaga, Pelczynski, and Rolewicz [7] in which it is proved that any non-normable

Fréchet space which is not isomorphic to ω ×B where B is a Banach space, contains

a subspace isomorphic to a Köthe space. In the light of [7, Theorem 1] it is proved

that the existence of a continuous unbounded linear operator T ∶ X → Y implies that

X and Y have a closed common nuclear subspace when Y has a basis, and admits a

continuous norm. When the range space has the property (y), that implies the exis-

tence of a common nuclear Köthe quotient as proved in [60]. Combining these two

results, when the range space has the property (y), common nuclear Köthe subspace

is obtained in [52, Proposition 1]. The aim of this section is to prove the Fréchet space

analogue of [62, Proposition 6], that is, under the condition that Y has property (y),

and (X,Z,Y ) ∉BF there is a common nuclear subspace for all three spaces.

Definition 2.4.2 A lcsX with neighborhood base U (X) is said to have property (y)

10



if there is a neighborhood U1 ∈ U (X) such that

X ′ = ⋃
U∈U (X)

X ′[U ○
1 ] ∩U

○⟨X,X
′⟩
,

Condition (y) implies that X ′[U ○
1 ] is dense in X ′ and hence pU1 is a continuous

norm on X (See also [50]). Property (y) is equivalent to being locally closed [65,

Lemma 2.1], or being isomorphic to a closed subspace of a Köthe space admitting a

continuous norm[65, Theorem 2.3].

Theorem 2.4.3 Let X,Y,Z be Fréchet spaces where Y has property (y). Assume

there is a continuous, linear, unbounded operator T ∶ X → Y which factors through

Z such as T = R ○ S. Then, there exists a nuclear Köthe subspace M ≤ X such that

the restriction T ∣M and the restriction R∣S(M) are isomorphisms.

Proof Let T ∶X → Y be an unbounded operator factoring through Z.

X

S
��

T // Y

Z
R

>>

By [52, Proposition 1], there exists a closed nuclear Köthe subspace M of X such

that the restriction T ∣M is an isomorphism onto T (M). Since T is injective on M , R

is injective on S(M) and maps S(M) onto T (M) = R(S(M)). Now let y ∈ S(M).

So find a sequence (S(mn))n∈N in S(M) such that limS(mn) = y. R is continuous

at y, then limRS(mn) = limT (mn) = Ry ∈ T (M) = T (M), since T (M) is closed.

Thus limT (mn) = T (m) = Ry for some m ∈ M . Since T is an isomorphism on

M , limT −1T (mn) = T −1T (m), that is, limmn = m. S is continuous at m, and

that implies limS(mn) = S(m) = y ∈ S(M). Therefore S(M) is closed. Hence

R ∶ S(M)→ R(S(M)) is an isomorphism by the Open Mapping Theorem.

Note that this result is consistent with [7, Theorem 1]. Indeed, ifZ were isomorphic to

ω×B for a Banach space B, that is, T were almost bounded, then by [69, Proposition

1] there would be a continuous projection P ∶ Y → Y such that P (T (X)) = P (Y ) ≅

11



ω. Since Y has property (y), it has a continuous norm and therefore the operator T

which factors over Kn ×B must be bounded.

The article [37] is composed of this section.
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CHAPTER 3

ISOMORPHIC CLASSIFICATION OF CARTESIAN

PRODUCTS OF LOCALLY CONVEX SPACES

Before we start our discussion on the concept of ICCP, let us re-state Zahariuta’s

result. Let X(i) denote an arbitrary subspace of the lcs X of codimension i (all such

subspaces are isomorphic) when i > 0; and when i < 0 an arbitrary spaceX×Z, where

dimZ = −i. Now let X =X1×X2 and Y = Y1×Y2 be lcs’s such that X ≃ Y . Suppose

(X1, Y2) ∈ K, (Y1,X2) ∈ K. Then X ≃ Y iff there exists s such that Y1 ≃ X
(s)
1 , Y2 ≃

X
(−s)
2 [70, Theorem 7.1]. His result highly depends on the assumptions (X1, Y2) ∈ K,

(Y1,X2) ∈ K. In this chapter we see how weakening these assumptions slightly will

affect the theory. As we mentioned before, compactness condition is stronger than

that of strict singularity.

3.1 Strictly singular operators and isomorphic classification

Remember that we mentioned Zahariuta [70] made use of Fredholm operator the-

ory to construct a method to classify Cartesian products of lcs’s as we explained

above. Djakov, Önal, Terzioğlu, and Yurdakul [20] modified Zahariuta’s method

for `p-finite and `q-infinite type pss’s. Let 0 ≤ a0 ≤ a1 ≤↗ ∞, r ∈ {0,∞}. Then

Λr(a) = {x = (xj) ∶ ∥x∥t =∑
j

∣xj ∣te
tai < ∞,∀t < r} is called a pss, if r = ∞ of infi-

nite type, if r = 0 of finite type. They proved that Λ0(a) ×Λ∞(b) ≃ Λ0(ã) ×Λ∞(b̃) is

equivalent to ∃s such that Λ0(ã) ≃ (Λ0(a))(s) and Λ∞(b̃) ≃ (Λ∞(b))(−s). In the proof,

they made use of the fact that (Λ0(a),Λ∞(b)) ∈ B and by means of projective limit

arguments applied through (`p, `q) ∈ S to end up with (Λ0(a),Λ∞(b̃)) ∈ BS, and
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(Λ0(ã),Λ∞(b)) ∈BS. Those combined with the properties of factorized Riesz-type

operators gives the result. Even if they did not assume any operator based relations in

advance, it turns out that their selection of a special type of lcs’s shows that actually

they implicitly did. In this chapter, we focus on (X,Y ) ∈ S and (X,Y ) ∈ BS in a

more general sense as far as the classes of domain and range spaces are concerned.

We investigate the sufficient conditions implying these relations. Our starting point

will be the class of Banach spaces and sequential arguments on it as we did in Sec-

tion 2.2. There we extensively use H. Rosenthal’s celebrated `1-Theorem [57], and

intersections of operator classes explained in [39, Section II]. Again, with the help

of projective limit structure, we extend some of our result to the class of lcs’s and

topological tensor products. In a particular case, we obtain a characterization (see

Theorem 3.2.32). Our ultimate aim here is to enhance the classification in [20].

3.2 Sufficient conditions for (X,Y ) ∈S

The most commonly known example for (X,Y ) ∈S in Banach space theory is when

we choose X = `p and Y = `q such that 1 ≤ p < q < ∞. This example is non-trivial

since (`p, `q) ∉ K. This fact was cruical for the ICCP of pss’s [20] since Λ0(a) =

lim
←Ðk

`p(exp(−1/k an)) and Λ∞(b̃) = lim
←Ðm

`q̃(exp(kb̃n)). By virtue of Lemma 3.2.26

they reached that (Λ0(a),Λ∞(b̃)) ∈ S. The aim of this section is to generalize this

classification by relaxing the choice of lcs’s. To do that, we start with finding pairs

of Banach spaces (X,Y ) ∈ S. A pair of Banach spaces (X,Y ) is called totally

incomparable if there exists no Banach space Z which is isomorphic to a subspace of

X and to a subspace of Y .

Theorem 3.2.1 (X,Y ) ∈ S for every totally incomparable pair of Banach spaces

(X,Y ).

Proof Suppose T ∶ X → Y is a non-strictly singular operator. Then, we may find

M ≤ X to which T restricted is an isomorphism. This means M ≃ T (M). But

T (M) ≤ Y . Since X and Y are totally incomparable, this is impossible.

A Banach space X is said to be very-irreflexive if it contains no reflexive subspace.
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It is said to be quasi-reflexive (of order n), if X ′′/π(X) is of finite dimension n. A

quasi-reflexive space is reflexive iff it is wsc [12, Theorem 4.4].

Theorem 3.2.2 (X,Y ) ∈S if

1. X is very-irreflexive and Y is reflexive [25].

2. X is very-irreflexive, and Y is quasi-reflexive.

Proof 1. One may read the proof of [25, Theorem b].

2. Suppose there exists a non-strictly singular operator T ∈ L(X,Y ). Then, T

is an isomorphism when restricted to M ≤ X . Then, M is quasi-reflexive.

However, by [30, Lemma 2] there exists a reflexive N ≤ M . This contradicts

the assumption X is very-irreflexive.

A property P on a Banach space X is called hereditary if it is enjoyed by all of its

subspaces. X is said to have nowhere P if it has no subspace having the property P .

Up on that, we give a generalized version of Theorem 3.2.2.

Theorem 3.2.3 Let P be a property of Banach spaces which respects isomorphisms.

Then, (X,Y ) ∈S and (Y,X) ∈S if

1. Y has hereditary P ,

2. X has nowhere P .

simultaneously.

Proof Let X and Y be Banach spaces satisfying (1) and (2), and for some M ≤ X

suppose there exists T ∶ X → Y such that M ≃ T (M). But T (M) inherits P . Hence

M has P . This contradicts (2). Now let S ∶ Y → X be such that N ≃ S(N) ⊆ X for

some N ≤ Y . Since X has nowhere P , S(N) does not enjoy P . This contradicts (1).

Corollary 3.2.4 Let Y be almost reflexive. For any X which is hereditarily `1,

(X,Y ) ∈S.
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Corollary 3.2.5 (X, `1) ∈S for any almost reflexive X .

Proof Let M ≤ X on which T has a bounded inverse. So M ≃ T (M) which is a

subspace of `1. By [41, Proposition 2.a.2], T (M) contains a subspace Z with Z ≃ `1,

so does M . By a remark in [18], `1 can be embedded into X . Contradiction.

T ∈ L(X,Y ) is called completely continuous if for every weakly convergent sequence

(xn) ∈X , (Txn) converges in Y -norm. By [54, Proposition 1.6.3] we also know that

a completely continuous operator also maps weakly Cauchy sequences into norm

convergent sequences. We denote (X,Y ) ∈V if any such T is completely continuous.

It is not hard to prove that K(X,Y ) ⊂ V(X,Y ) [34]. The converse is also true iff

the domain space is almost reflexive. A Banach space X is said to have the Dunford-

Pettis property (DPP) if W(X,Y ) ⊆ V(X,Y ), for any Banach space Y . X is said

to have the reciprocal Dunford-Pettis property (rDPP), if V(X,Y ) ⊆W(X,Y ). One

may browse [53] for some relations between DPP and SP in connection with the

Radon-Nikodym property.

Lemma 3.2.6 [39, Theorem 1.7] Let Y be almost reflexive. Then (X,Y ) ∈V implies

(X,Y ) ∈S.

Theorem 3.2.7 Let X have the SP and Y be almost reflexive. Then, (X,Y ) ∈S.

Proof Any operator T with range Y maps bounded sequences into weakly Cauchy

sequences, since Y is almost reflexive. On the other hand, any such T defined on

X maps weakly Cauchy sequences into norm convergent sequences by the SP. That

implies (X,Y ) ∈V. Hence by Lemma 3.2.6 the result follows.

Lemma 3.2.8 Let X have SP. Then, for every M ≤X , `1 ↪M .

Proof Let X have the SP and suppose there exists M ≤ X for which `1 0M . Then,

any bounded sequence (xn) in M , has a weakly Cauchy subsequence since M is

equivalently almost reflexive. However, M inherits SP. Then the weakly Cauchy sub-

sequence of (xk) converges in X . Therefore, M is finite dimensional. Contradiction.
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Despite the result above, being a hereditarily `1 space does not imply satisfying the

SP. Indeed, some counter-examples are given in [6] and such a subspace of L1 is

constructed in [55]. As mentioned in [39], an almost reflexive Banach space has

nowhere SP. Hence, the following is straightforward in the light of Corollary 3.2.5.

Corollary 3.2.9 Let X have nowhere SP. Then, (X, `1) ∈S.

Theorem 3.2.10 Let Y have SP. Then (X,Y ) ∈S for every reflexive X .

Proof Let T ∈ L(X,Y ) have a bounded inverse on someM ≤X , that is,M ≃ T (M).

Since Y have SP, it also has the hereditary DPP [18]. Hence so does M . But M is

reflexive. By [34, Theorem 2.1], reflexive spaces have nowhere DPP. Contradiction.

Corollary 3.2.11 Let X ′, Y ′, Z ′ have the SP and let W be almost reflexive. Then,

((X⊗̂πY )′,W ⊗̂πZ) ∈S.

Proof By [39, Corollary 1.6], (W,Z ′) ∈ K (cf. Section 2.2). So by [23, Theorem 3]

we deduce W ⊗̂πZ is almost reflexive. On the other hand, by [58, Theorem 3.3(b)]

we reach that L(X,Y ′) has SP. But in [59] it is proved that L(X,Y ′) ≃ (X⊗̂πY )′.

So (X⊗̂πY )′ has SP. Therefore, Theorem 3.2.7 yields the result.

Lemma 3.2.12 [18] X ′ has SP iff X has DPP and X is almost reflexive.

Corollary 3.2.13 Let X and Y be almost reflexive, X have DPP. Then, (X ′, Y ) ∈S.

Proposition 3.2.14 Let X and Y be almost reflexive and let Y have DPP. Then,

(X⊗̂πY, `1) ∈S.

Proof By Lemma 3.2.12, Y ′ has SP. Then by [39, Corollary 1.6], (X,Y ′) ∈ K.

Hence, [23, Theorem 3] yields that X⊗̂πY is almost reflexive. So by Corollary 3.2.5,

we are done.

In the theorem above, DPP assumption on Y can be replaced by (xn ⊗ yn) is weakly

null whenever (xn) and (yn) are weakly null [16, Theorem 5]. A Banach space X
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is said to have the approximation property if every compact operator defined on X is

the limit of a sequence of finite rank operators.

Proposition 3.2.15 Let X and Y be reflexive spaces one of which having the approx-

imation property, and let (X,Y ′) ∈ K. Let W and Z be spaces having SP. Then,

(X⊗̂πY,W ⊗̌εZ) ∈S.

Proof By [59, Theorem 4.21], X⊗̂πY is reflexive. By [42], SP respects injective

tensor products. So W ⊗̌εZ has SP. Then, Theorem 3.2.10 finishes the proof.

Proposition 3.2.16 Let X have the hereditary DPP and let Y be reflexive. Then,

(X,Y ) ∈S.

Proof Let M ≤ X on which an arbitrary operator T ∶ X → Y has a bounded inverse.

Then, M ≃ T (M). So, M is reflexive. So M cannot have DPP. Contradiction.

Any operator T defined on any complemented subspace M of each of C(K), B(S),

L∞(S,Σ, µ), and L(S,Σ, µ) to a reflexive space is strictly singular [39].

Proposition 3.2.17 Let (X,Y ) ∈W where X has DPP. Then, (X,Y ) ∈S.

Proof Since X has DPP, (X,Y ) ∈V. Then, by [39, Theorem 2.3], (X,Y ) ∈S.

Corollary 3.2.18 Let (X,Y ) ∈V where X has the rDPP. Then, (X,Y ) ∈S.

Proof Since X has the rDPP and any T ∶ X → Y is completely continuous, T ∈

V ∩W. By [39, Theorem 2.3] , we are done.

A Banach space X is called a Grothendieck space if any weak*-convergent sequence

in X ′ is weakly convergent.

Theorem 3.2.19 Let X be a Grothendieck space with the DPP, and let Y be separa-

ble. Then, (X,Y ) ∈S.
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Proof By [47, Theorem 4.9], any such operator T ∶X → Y is weakly compact. Since

X has the DPP, T is completely continuous. Hence, by Corollary 3.2.17, (X,Y ) ∈S.

Example 3.2.20 Let K be a compact Hausdorff space and c0 cannot be embedded

into C(K). Then, C(K) is a Grothendieck space [56]. Hence, (C(K), c0) ∈S.

Theorem 3.2.21 Let X be almost reflexive. Then, for any wsc Banach space Y ,

(X,Y ) ∈W.

Proof Since X is almost reflexive, if (xn) is a bounded sequence in X , then (Txn)

has a weakly Cauchy sequence in Y . But Y is wsc, that is, every weakly Cauchy

sequence converges weakly in Y . Therefore, T is weakly compact.

Corollary 3.2.22 LetX be very-irreflexive and almost reflexive (see Example 3.2.23),

let Y be wsc. Then, (X,Y ) ∈S.

Proof By Theorem 3.2.21, (X,Y ) ∈ W. Now let T ∶ X → Y which has a bounded

inverse on M ≤ X . If (xn) is a bounded sequence in M , then there exists (Txkn) a

weakly convergent subsequence of (Txn) in Y . Hence (xkn) is weakly convergent

in M , since T has a bounded inverse on M . Thus, every bounded sequence in M

has a weakly convergent subsequence in M . This is equivalent to saying that M is

reflexive. Contradiction.

Example 3.2.23 Note that the non-reflexive space c0 is almost reflexive. Suppose

there exists a reflexive subspace E of c0. Since c0 fails SP, it is not isomorphic to any

subspace of E. But this contradicts [41, Proposition 2.a.2].

Lemma 3.2.24 Let X have the Dieudonné property (see [28] for definition) and let

Y be wsc. Then, (X,Y ) ∈W.

Proof Let (xn) ∈ X be weakly Cauchy, and let T ∈ L(X,Y ). Then (Txn) is weakly

Cauchy in Y . Since Y is assumed to be wsc, (Txn) converges weakly. But X has the

Dieudonné property, so T ∈W(X,Y ).
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Theorem 3.2.25 Let X possess both DPP and Dieudonné properties (e.g. C(K),

where K is a compact Hausdorff space [28], [34]), and let Y be wsc. Then, (X,Y ) ∈

S.

Proof By Lemma 3.2.24, (X,Y ) ∈ W. X possesses the DPP, so (X,Y ) ∈ V. By

[39, Theorem 2.3], (X,Y ) ∈S.

Now let us turn our attention to general class of lcs’s. Let P be a class of Banach

spaces having a certain property P . Then, s(P) [10] is defined by the set of lcs’s

X with local Banach spaces XU ∈ P for which XU is the completion of the normed

space obtained by X/p−1U (0), where U is an absolutely convex closed neighborhood

of θ(X) and pU its gauge functional. For instance, by s(X), we denote the class

of lcs’s such that each of their local Banach spaces are hereditarily `1. BS(X,Y )

denotes the intersection of B(X,Y ) and S(X,Y ). By virtue of [69, Proposition 1],

we know that a strictly singular operator defined on a Fréchet space into a complete

lcs cannot be unbounded since existence of such an unbounded operator contradicts

with the result in [51]. We see that such an operator is almost bounded or bounded.

If the range space admits a continuous norm, then we guarantee boundedness. A lcs

X is called locally Rosenthal [8], if it can be written as a "projective limit of Banach

spaces each of which contains no isomorpic copy of `1". A general lcs X with no

copies of `1 need not to be locally Rosenthal. A counterexample might be found in

[38]. In addition, one should assume that it is a quasinormable Fréchet space [45].

Lemma 3.2.26 [20, Lemma 2] Let X and Y be lcs’s such that X = lim
←Ð

Xk and

Y = lim
←Ð

Ym, where {Xk} and {Ym} are collections of Banach spaces. If (Xk, Ym) ∈S

for all m,k then B(X,Y ) =S(X,Y ).

Example 3.2.27 Let λ1(A) ∈ (d2), and λp(A) ∈ (d1) as they are defined in [22].

Then, by [70], (λ1(A), λp(A)) ∈B. It is known that λp(A) = lim
←Ð

`p(an), for 1 ≤ p <

∞. Since `p(an),1 < p <∞ has no subspace isomorphic to `1, (`1, `p) ∈ S. Then, by

Lemma 3.2.26, (λ1(A), λp(A)) ∈BS.

Theorem 3.2.28 Let X,Y be lcs’s where Y is locally Rosenthal, and X ∈ s(X).

Then, B(X,Y ) =S(X,Y ).
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Proof Since Y is locally Rosenthal, there exists a family of Banach spaces {Ym} each

of which does not contain an isomorphic copy of `1 such that Y = lim
←Ð

Ym. Because

X ∈ s(X), there exists a family of Banach spaces {Xk} such that every Mk ≤ Xk

contains a subspace isomorphic to `1. By Corollary 3.2.4, any linear operator Tmk ∶

Xk → Ym is strictly singular. Making use of Lemma 3.2.26, we deduce that every

bounded operator T ∶X → Y is strictly singular.

By s(V), we denote the class of lcs’s with local Banach spaces each of which having

SP. Notice that Groth(V) ≠ s(V), since the operator ideal V on Banach spaces is not

idempotent (see [54, pp. 60] for this property).

Corollary 3.2.29 Let Y be a quasinormable Fréchet space with `1 0 Y , and let

X ∈ s(V). Then, (X,Y ) ∈S.

Proof By [45, Theorem 6], Y is locally Rosenthal. SinceX ∈ s(V), by Lemma 3.2.8,

X ∈ s(X). Then, by Theorem 3.2.28, we are done.

A lcs X is called infra-Schwartz if each of its local Banach spaces Xk is reflexive.

An infra-Schwartz space turns out to be locally Rosenthal, as proved in [8]. Note that

by [13], Groth(W) = s(W), where W denotes the class of reflexive Banach spaces.

Corollary 3.2.30 Let X be infra-Schwartz lcs, and let Y ∈ s(V). Then, B(X,Y ) =

S(X,Y ).

Proof Since X is infra-Schwartz, any of its local Banach spaces Xk is reflexive.

The assumption on Y completes the conditions in Theorem 3.2.10. Combined with

Proposition 3.2.26, we are done.

Theorem 3.2.31 (X,Y ) ∈S for a pair of Fréchet spaces if they satisfy

1. X ∈ s(P¬).

2. Y ∈ s(P).
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Proof Since X ∈ s(P¬), one may rewrite X = lim
←Ð

Xk, where each Xk has nowhere

P . That is, no subspace of Xk has property P . Similarly, Y = lim
←Ð

Ym where each

Ym has the hereditary property P . Hence, by Theorem 3.2.3, (Xk, Ym) ∈ S for every

k,m. Applying Lemma 3.2.26, we obtain (X,Y ) ∈S.

Theorem 3.2.32 Let (X,Y,Z) be a triple of Fréchet spaces satisfying the following

1. Every subspace of X contains a subspace isomorphic to Z.

2. Y has no subspace isomorphic to Z.

Then, (X,Y ) ∈ S. Let Y have continuous norm in addition. Then, (2) is also neces-

sary if Y is a Fréchet-Montel space.

Proof The sufficiency part is very similar to the proof of Theorem 3.2.31. For neces-

sity, let Y be a Fréchet space equipped with the topology identified by an increasing

sequence of semi-norms (pk). Suppose ∥ ⋅∥ is a continuous norm on Y . If there exists

c > 0 and k0 such that ∥y∥ ≤ cpk0 , y ∈ Y , then pk0 is a norm and so the topology of Y

can be defined by a sequence of norms (pk), k ≥ k0. Let X be a Fréchet space and let

Y be an (FM)-space admitting a continuous norm. Let any linear operator T ∶X → Y

be strictly singular. Then, by [69, Proposition 1], it is bounded. Now let there exist

N ≤ Y which is isomorphic to Z. Then I ∣N ∶ N → Z is bounded, hence compact.

Then N is finite dimensional. Contradiction.

Example 3.2.33 Let Λ0(α) and Λ∞(α) denote pss’s of finite type and infinite type,

respectively. By [70] we know that no subspace of Λ∞(α) can be isomorphic to a pss

of finite type. Choose α as it is in the proof (b) of [5, Theorem 1] so that any subspace

X of Λ0(α) with a basis has a complemented subspace which is isomorphic to a pss

of finite type. By Theorem 3.2.31, every continuous operator T ∶ Λ0(α) → Λ∞(α) is

strictly singular.

This section constitutes the main substance of the paper [35].
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3.3 Bounded operators and isomorphic classification

In Section 3.1, we explained how Zahariuta’s method was modified to classify Carte-

sian products of pss’s without spoiling the Fredholm operator theory. GivenX1×X2 ≃

Y1 × Y2, Zahariuta assumed (X1, Y2) ∈ K and (Y1,X2) ∈ K to make his method work.

It turned out in the previous section that Djakov, Önal, Terzioğlu, and Yurdakul im-

plicitly assumed (X1, Y2) ∈ BS and (Y1,X2) ∈ BS to obtain a modified method

which makes the respective factors isomorphic up to finite dimensional subspaces. In

1998, Djakov, Terzioğlu, Yurdakul, and Zahariuta [19] weakened the operator rela-

tional assumptions on Xi, Yi even more, namely they started with (X1, Y2) ∈ B and

(Y1,X2) ∈ B. However, they discovered, that relaxation caused the failure of Fred-

holm theory. That is, "isomorphic up to a finite dimensional subspace" argument on

the respective factors dissappeared. Despite this failure, the authors still managed to

obtain a meaningful consequence in terms of Köthe spaces. In this case the argument

on the respective factors becomes "isomorphic up to a basic Banach subspace" with

an additional bounded factorization property assumption. In this note they proved

that if X1 is a Köthe space and X2, Y1, Y2 are topological vector spaces satisfying

X1 ×X2 ≃ Y1 × Y2 with (X1, Y2) ∈ BF, then there exist complementary basic sub-

spcaes E and B of X1 and complementary subspaces F and G of Y1 such that B

is a Banach space and F ≃ E, B × X2 ≃ G × Y2. In the same paper, while con-

structing their method, the authors consider Köthe spaces X whose bounded sets are

dominated by a basic Banach subspace of X added to εUk0 for any positive ε, where

Uk0 = {x ∈ X ∶ ∣x∣k0 ≤ 1}. At the end, they introduce this property as one which

is enjoyed by a class of lcs’s larger than the one of Köthe spaces. They named it

"smallness up to a complemented Banach subspace property" (SCBS) and used it to

generalize some results given for Köthe spaces. In Chapter 4 we investigate SCBS

property and its stability under topological tensor products. We consider the case

when the first factor is a nuclear Fréchet space. This condition causes the equivalence

of topologies of projective and injective tensor products.
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CHAPTER 4

TOPOLOGICAL TENSOR PRODUCTS OF LOCALLY

CONVEX SPACES

In this chapter, we see the definition of smallness up to a complemented Banach

subspace property (SCBS) which arises from the isomorphic classification theory of

Cartesian products of lcs’s. The question is whether the SCBS property respects

topological tensor products. We have an affirmative answer for that in case X or Y

is nuclear. Our proof takes its power from Jarchow’s lemma [32]. There it is proved

that given Fréchet spaces X (nuclear) and Y with complemented subspaces E and F .

Then E⊗̂πF is a complemented subspace of X⊗̂πY . After introducing our result, we

also mention projective tensor products of generalized Köthe spaces as a consequence

of our result.

4.1 The SCBS property

Definition 4.1.1 A Fréchet space X with fundamental system of semi-norms (∣ ⋅ ∣k) is

said to have smallness up to a complemented Banach subspace (SCBS) property if for

each bounded subset Ω ofX , for any k0 and for every ε > 0 there exist complementary

subspaces B and E in X such that B is a Banach space, and Ω ⊂ B + εUk0 ∩E.

This property was introduced by Djakov, Terzioğlu, Yurdakul and Zahariuta [19]

in connection with their investigations of the isomorphic classification of Cartesian

products of Fréchet spaces. They also proved that Köthe spaces have the SCBS prop-

erty. The characterization of Fréchet spaces having this property is put forward as
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an open problem. In [1] it is proved that certain generalized Köthe echelon spaces

(`-Köthe spaces), some quasinormable Fréchet spaces, and strong duals of some

asymptotically normable Fréchet spaces have this property, while the reflexive, quasi-

normable, non-Montel, primary Fréchet space `p+ ∶= ⋂
q>p
`q defined in [43], which has

no infinite dimensional Banach subspace, fails it. Hence it is mentioned that SCBS

property is neither hereditary nor passes to quotients.

4.2 Topological tensor products of Fréchet spaces with SCBS property

By B(X), we denote the family of all bounded subsets of the Fréchet space X .

acx(A) and co(A) represents the absolutely convex closed hull, and closed convex

hull of a set A, respectively. If Xi, i = 1,2 are Fréchet spaces with fundamental

systems of seminorms ∣ ⋅ ∣ki , X1⊗̂πX2 is a Fréchet space with fundamental system

of seminorms ∣ ⋅ ∣π by the fact that projective tensor product preserves metrizability

[32, Corollary 15.1.4]. As it is proved in [32, pp. 324], for any (U,V ) ∈ X1 ×X2,

co(U ⊗̂πV ) is absorbent in X1⊗̂πX2.

Theorem 4.2.1 Let Xi, i = 1,2 be Fréchet spaces with the smallness up to a comple-

mented Banach space property, where X1 is nuclear. Then, X1⊗̂πX2 has the small-

ness up to a complemented Banach space property.

Proof Let Xi, i = 1,2 be Fréchet spaces having the SCBS property with fundamental

systems of seminorms ∣ ⋅ ∣ki , where X1 is nuclear. Let ε > 0, and let π0 ∶= πUk0
,Vk0

=

πUk0
πVk0 [32, Proposition 15.1.5] be the gauge functional of acx(Uk0⊗̂πVk0), where

Uk0 ∈ U (X1) and Vk0 ∈ U (X2) for a fixed k0. Take any Ω ∈ B(X1⊗̂πX2). Since

X1 is nuclear, by [32, Theorem 21.5.8] there exist Ωi ∈ B(Xi), i = 1,2 such that

Ω ⊂ acx(Ω1⊗̂πΩ2). Since, by assumption, Xi have the SCBS property find comple-

mentary subspaces Bi,Ei for Xi, i = 1,2 such that Bi are Banach spaces satisfying

Ω1 ⊂ B1 + εUk0 ∩E1, and Ω2 ⊂ B2 + εVk0 ∩E2.

Take any z ∈ acx(Ω1⊗̂πΩ2) which might be represented by z = x ⊗ y where x ∈ Ω1

and y ∈ Ω2. Let us rewrite x = b1 + e1 for which b1 ∈ B1 and e1 ∈ E1 such that

πUk0
(e1) <

√
ε. Formulate y similarly as y = b2+e2 with πVk0(e2) <

√
ε. Then, b1⊗b2 ∈
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B1⊗̂πB2 sinceBi are Banach spaces. Consider πUk0
,Vk0

= πUk0
(e1)πVk0(e2) < ε. Thus

e1 ⊗ e2 ∈ ε ⋅ acx(Uk0⊗̂πVk0) ∩E1⊗̂πE2. Hence for any bounded subset Ω ⊂X1⊗̂πX2,

Ω ⊂ acx(Ω1⊗̂πΩ2) ⊂ B1⊗̂πB2 + ε ⋅ acx(Uk0⊗̂πVk0) ∩E1⊗̂πE2. (4.2.1)

Consider now X1⊗̂πX2. By assumption, the direct sum Xi = Bi ⊕ Ei is topologi-

cal. Therefore, by [32, Proposition 15.2.3(b)], B1⊗̂πB2 and E1⊗̂πE2 should also be

complementary in X1⊗̂πX2. Combining with 4.2.1, this is equivalent to saying that

X1⊗̂πX2 has SCBS property.

Theorem 4.2.1 is also valid for injective tensor products of Fréchet spaces by the

characterization of Grothendieck for nuclearity: X1 or X2 is nuclear iff X1⊗̂πX2 ≃

X1⊗̌εX2 [29].

4.3 `-Köthe spaces

Let ` denote the class of all spaces in which the canonical basis {en} is an uncondi-

tional one. For the Köthe matrix A, K`(A) is then defined to be

K`(A) = {x = (xn) ∶ xa = (xnan) ∈ `,∀a ∈ A}.

Equipped with the semi-norms ∥x∥a = ∥xa∥, for a ∈ A, we obtain a complete lcs

(K`(A), ∥ ⋅ ∥). In addition, if A is assumed to be countable, then K`(A) is a Fréchet

space.

Corollary 4.3.1 Let K be given by

K ∶=K`(A)⊗̂πK
˜̀
(B)

where K`(A) is nuclear. Then, K has the SCBS property.

Proof As proved in [1], `-Köthe spaces have SCBS property. SinceK`(A) is nuclear,

by Theorem 4.2.1, K has SCBS property.
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Note that Corollary 4.3.1 is not trivial, since it is not known whether the topological

tensor product of `-Köthe spaces is again an `-Köthe space. By means of Theo-

rem 4.2.1, [19, Theorem 7] can be restated as follows:

Corollary 4.3.2 Let X ∶= X1⊗̂πX2 as in Theorem 4.2.1 and let T ∈ B(X). Then

there exist complementary subspaces B and E of X such that

1. B is a Banach space,

2. if πE and iE are the canonical projection onto E and embedding into X , re-

spectively, then the operator 1E − πETiE is an automoprhism on E.

This chapter might also be read from [36].
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