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ABSTRACT

AN APPLICATION OF THE BLACK LITTERMAN MODEL IN BORSA
ISTANBUL USING ANALYSTS’ FORECASTS AS VIEWS

Adaş, Cansu

M.S., Department of Financial Mathematics

Supervisor : Prof. Dr. Zehra Nuray Güner

Co-Supervisor : Assist. Prof. Dr. Seza Danışoğlu

July 2016, 114 pages

The optimal number of stocks to include in a portfolio in order to achieve the maximum
diversification benefit has been one of the issues in which investors have focused on
since Markowitz introduced fundamentals of the Modern Portfolio Theory. Each stock
included in an investor’s portfolio decreases the portfolio risk, while increasing the
transaction costs incurred by the investor to create this portfolio. In this thesis, the
size of a well-diversified portfolio consisting of stocks included consistently in the
Borsa İstanbul-50 (BIST-50) Index during every calendar year from 2005 to 2015 are
determined. Due to the differences in the number of stocks consistently included in
the BIST-50 index and the correlation between these stocks from one year to another,
the range for the optimal number of stocks varies between 8-10 to 16-18 stocks for
the years in the sample period analyzed. The results in this thesis indicate that the
average size of the portfolio for the years examined in this thesis is between 11 and 13
stocks. The same analysis is repeated by using posterior variance-covariance matrix
derived from Black-Litterman (B-L) portfolio optimization model, which is another
subject of this thesis. When the results derived from both the prior and the posterior
variance-covariance matrices are compared, no remarkable differences are observed.

Another issue that investors have been interested in is the allocation of funds across
stocks included in a portfolio to earn the maximum return. Although Markowitz made
a significant contribution to portfolio optimization in theory, he was criticized in prac-
tice for his model’s high sensitivity to inputs and disregard to investors’ views. To

vii



resolve some of the problems with Markowitz Model, B-L, developed a model which
uses the market returns derived from the Capital Asset Pricing Model (CAPM) as its
first estimate, and updates this first estimate with investors’ views. In this thesis, mar-
ket returns of each stock included consistently in the BIST-50 Index during the whole
one year are combined with average return expectations of Bloomberg financial ana-
lysts for the corresponding stock to incorporate investor views. It is observed that the
weights of stocks on which Bloomberg analysts did not state any opinion do not change
that much from their market capitalization weights. It is observed that the posterior
weights of some stocks on which Bloomberg analysts specified views do not change
in the same direction as the views expressed on them. For example, it is possible to
observe a negative change in the weight of a stock when the analysts express a positive
view on this stock or vice versa. Possible reasons for these counterintuitive changes in
the weights of stocks are the covariance structure of the stocks and the way the analyst
views are defined. These explanations are shown to be instrumental by using an exam-
ple of a portfolio with 3 stocks. Furthermore, first the budget constraint and then the
short selling constraint in addition to the budget constraint are imposed on B-L portfo-
lio optimization, and the results are analyzed. Finally, optimal B-L portfolios obtained
by incorporating average views of Bloomberg analysts and the portfolios constructed
from the CAPM are compared in terms of the Sharpe ratio and efficient frontier. As a
result of these comparisons, it is seen that under certain conditions the portfolios based
on the B-L Model perform better than the portfolios based on the CAPM. However,
under some other conditions the portfolios based on the CAPM perform better than the
portfolios based on the B-L Model.

Keywords : Portfolio diversification, Black-Litterman model, BIST-50
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ÖZ

YATIRIMCI GÖRÜŞÜ OLARAK ANALİST TAHMİNLERİNİ KULLANAN
BLACK LITTERMAN MODELİNİN BORSA İSTANBUL ÜZERİNE BİR

UYGULAMASI

Adaş, Cansu

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Zehra Nuray Güner

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Seza Danışoğlu

Temmuz 2016, 114 sayfa

Markowitz’in Modern Portföy Kuramı’nın temellerini ortaya koymasından itibaren,
yatırımcıların odaklandığı konulardan bir tanesi portföy çeşitlendirmesinden en iyi
verimi alabilmek için portföye dâhil edilmesi gereken en uygun hisse senedi sayısını
belirlemek olmuştur. Portföye eklenen her bir hisse senedi portföyün riskinde azalış
sağlarken yatırımcının ödemesi gereken toplam işlem maliyetinde artışa sebep olmak-
tadır. Bu yüksek lisans tezinde, 2005’ten 2015’e kadar olan sürede her 1 yıl boyunca
BIST-50 endeksinde sürekli olarak yer alan hisse senetlerinden oluşturulan iyi çeşitlen-
dirilmiş bir portföyün büyüklüğünün ne olması gerektiği belirlenmeye çalışılmaktadır.
Araştırma döneminde yer alan her bir yıllık dönemde incelemeye dâhil edilen hisse
senedi sayısı ve hisse senetlerinin birbirleriyle olan korelasyonu değiştiği için iyi çeşit-
lendirilmiş bir portföyde yer alması gereken en uygun hisse senedi sayısının 8-10 ile
16-18 arasında değişkenlik gösterdiği görülmektedir. Gözlemlenen tüm yıllar için or-
talama en uygun hisse senedi sayısı 11 ila 13 hisse senedi arasında seyretmektedir.
Ayrıca, bu tezin bir diğer konusu olan B-L portföy optimizasyonundan elde edilen
varyans-kovaryans matrisi kullanılarak aynı çalışma tekrarlanmakta ve elde edilen so-
nuçlar ilk çalışmanın bulgularıyla karşılaştırılmaktadır. Bu iki uygulamanın bulguları
arasında dikkate değer bir fark gözlenmemektedir.

Yatırımcıların ilgilendiği konulardan bir diğeri de en yüksek getiriyi elde edebilmek
için bir potföyde yer alan her bir hisse senedine ne kadar yatırım yapılması gerektiğinin
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belirlenmesidir. Markowitz, portföy optimizasyonu konusuna teorik olarak önemli
katkılar sağlamış olmakla birlikte, geliştirmiş olduğu modelin yüksek girdi hassasiyeti
ve yatırımcı görüşlerinin dâhil edilemesine imkân tanımaması nedeniyle pratikte eleşti-
rilere maruz kalmıştır. Markowitz modelinin sorunlarını çözmek amacıyla B-L, hisse
senedi getirilerini hesaplamak için ilk tahmin olarak Finansal Varlık Fiyatlandırma
Modeli’nden (FVFM) elde edilen piyasa getirilerini kullanan ve çıkan sonuçları yatı-
rımcının görüşleriyle güncelleyen bir model geliştirmişlerdir. Bu çalışmada, güncellen-
miş getirileri elde etmek için 1 yıl boyunca BIST-50 endeksinde sürekli olarak işlem
gören her bir hisse senedinin piyasa getirisi ile Bloomberg finans analistlerinin aynı
hisse senedi için ortalama getiri beklentisi birleştirilmektedir. Bloomberg finans ana-
listlerinin görüş vermediği hisse senetlerinin portföy içindeki ağırlıklarının hisse senet-
lerinin piyasa ağırlıklarına çok yakın kaldığı gözlemlenmektedir. Bloomberg finans
analistlerinin görüş verdiği bazı hisse senetlerinin ağırlıklarının ise analistlerin verdiği
görüşlerle uyumlu olarak değişmediği durumlar olmaktadır. Örneğin finansal analist-
lerin olumlu görüş verdiği bir hisse senedinin portföy içindeki ağırlığı düşebilmektedir.
Sezgilere aykırı bu bulguların olası nedenlerinin hisse senetleri arasındaki kovaryans
yapısı ve görüşlerin tanımlanma şekli olabileceği 3 hisse senedinden oluşan bir portföy
örnek gösterilerek açıklanmaktadır. Bunlara ek olarak, B-L portföy optimizasyonuna
ilk olarak bütçe kısıtı, daha sonra da bütçe kısıtına ilaveten açığa satış yapılmaması
kısıtı getirilmekte ve çıkan sonuçlar analiz edilmektedir. Son olarak, Bloomberg ana-
listlerinin ortalama görüşleri ile elde edilen B-L portföyleri FVFM’den elde edilen
portföylerle Sharpe oranı ve risk-getiri eğrisi yaklaşımı kullanılarak karşılaştırılmaktadır.
Bu karşılaştırmalar sonucunda B-L Modeli’ne dayanan portföyün bazı koşullarda FVFM’
ye dayanan portföyden daha iyi performans gösterirken bazılarında da daha kötü per-
formans gösterdiği görülmektedir.

Anahtar Kelimeler : Portföy çeşitliliği, Black-Litterman modeli, BIST-50
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BEKO Beko Elektronik A.Ş.
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EGARCH Exponential Generalized Autoregressive Conditional Heteroskedas-
ticity
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KONYA Konya Çimento Sanayii A.Ş.
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NTHOL Net Holding A.Ş.
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PRKTE Park Elektrik Üretim Madencilik Sanayi ve Ticaret A.Ş.
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U.S. United States

VAKBN Türkiye Vakıflar Bankası T.A.O.

VESTL Vestel Elektronik Sanayi ve Ticaret A.Ş.
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CHAPTER 1

INTRODUCTION

Investors are concerned about the optimal number of securities to invest in from a wide
range of securities. Diversification is a risk management approach that enables an in-
vestor to reduce the effect of any one asset on the overall performance of a portfolio
by including a wide variety of assets in the portfolio. In other words, diversification
lessens the risk of a portfolio without effecting its return. By increasing the number of
securities in the portfolio, an investor can achieve the maximum diversification benefit
while incurring considerable amount of transaction costs. Therefore, an investor has
to set the balance between the reduction in the risk of the portfolio because of diversi-
fication and the increase in the transaction costs due to the large number of securities
included in the portfolio to achieve that diversification benefit [11].

The issue of the optimal number of securities needed to construct a well-diversified
portfolio, which is one of the subjects of this thesis, has been debated among re-
searchers since the middle of the nineteenth century. In the literature, the study of
Evans and Archer (1968, [12]) is one of the first attempts to determine the optimal
number of stocks to have from New York Stock Exchange’s Standard and Poor’s (S&P)
Index to construct a well-diversified portfolio. They start with a single stock portfo-
lio and then increase the number of securities included in the portfolio iteratively. By
simulating the risk of each of these portfolios that successively have more securities
in them, they show that approximately 10 randomly selected stocks are needed to con-
struct a well-diversified portfolio. Furthermore, they support their results by conduct-
ing a t-test on the risks of portfolios that have successively more securities in them.
Results of these tests reveal that no statistically significant decrease in the average risk
of the portfolio is achieved by increasing the number of stocks included in it once there
are already 10 stocks in the portfolio. In this thesis, the simulation technique of Evans
and Archer is used to demonstrate risk-reduction benefits of holding more than one
stock in a portfolio for Borsa Istanbul (BIST). Following their methodology, a t-test
is also used in order to determine the optimal portfolio size for BIST to achieve the
maximum diversification benefit.

Another research on this subject belongs to Beck, Perfect and Peterson (1996, [1]).
They focus on the effect of number of portfolio replications on the sensitivity of the
statistical test used. According to their research, portfolios should be replicated a sub-
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stantial number of times in order to detect a significant change in the portfolio risk as
the number of securities in the portfolio increases. This is because the curve show-
ing the relationship between the number of securities in the portfolio and the mean
standard deviation of the portfolio becomes flatter as the number of securities in the
portfolio increases. They show that high number of replications also affects the sensi-
tivity of statistical tests and hence probability of rejecting the null hypothesis. In this
thesis, number of replications is chosen to be 1000. In addition to this, successive port-
folio sizes are determined by increasing the number of securities in the portfolio by 2.
Then, the standard deviation of these successive portfolios are compared by using the
t-test.

Besides these studies on stocks trading on the U.S. Stock Exchanges mentioned in the
previous paragraphs, there are some studies conducted on BIST as well. For example,
Gökçe and Cura (2003, [10]), Tosun and Oruç (2010, [28]) and Demirci and Keskintürk
(2007) examine the stocks from BIST-30 index, and Atan and Duman (2007) study the
stocks from the BIST-100 index. This thesis is the first study that analyzes stocks from
BIST-50 Index.

In this thesis, the optimal number of stocks from BIST-50 index to form a well-
diversified portfolio for each year in the sample period from 2005 to 2015 are de-
termined. The optimal number of stocks to have for a well-diversified portfolio are
examined by using the classical variance-covariance matrix obtained from historical
stock returns and the posterior variance-covariance matrix as defined in the Black-
Litterman (B-L) Method.

In addition to determining the optimal number of stocks to form a well-diversified port-
folio, researchers are also concerned about how to allocate money from their budget
across stocks in a portfolio since Markowitz’s (1952, [19]) seminal paper on Modern
Portfolio Theory. According to his approach, expected returns and variance of each
stock and covariance of each pair of stocks in the portfolio should be estimated.

In the early 1990s, Fisher Black and Robert Litterman, two researchers at Goldman
Sachs Company, introduce a new model of asset allocation. This model, which is
known as the B-L model, is first introduced in the paper of B-L (1990, [4]), and ex-
tended in following studies of B-L (1991, [17], 1992, [5]). The B-L method enables
investors to adjust equilibrium returns on stocks to reflect their views on these stocks
by using the Bayesian approach. There are two key features of this model which differs
from the classical mean-variance approach. One of them is that investors can define
views on the expected returns of as many securities as they wish. In the classical mean-
variance approach, expected returns on each asset in a portfolio must be forecast and a
little change in the estimation of return on a security results in large change in the port-
folio weight allocated to that security. However, in the B-L method, this large change
in the portfolio weight as a result of changes in estimated returns is not observed. The
second one is that the equilibrium market returns are taken as prior estimation of se-
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curity returns and investor views are blended with this prior information set. Taking
into account investor views in determining optimal portfolio choices of investors is not
possible in the classical mean-variance approach.

In the first paper of B-L (1990, [4]), market views are mixed with the equilibrium
returns estimated by using the International Capital Asset Pricing Model (ICAPM) in-
stead of CAPM since the data set includes currencies, bonds and forward contracts
of different countries. In the second paper of B-L (1991, [17]), equity securities are
included in the universe of assets that can be invested in a portfolio in addition to the
currencies and the bonds from their first paper. In the third paper of B-L (1992, [5]),
effectiveness of different investment strategies are analyzed for global portfolio opti-
mizers. Their original papers do not provide an intuitive explanation of their model
in detail. However, the paper by He and Litterman (1999, [14]) reveal the intuition
behind the B-L model. Similarly, details on mathematical aspects of the B-L model
are not provided in the original papers of B-L. However, Satchell and Scowcroft (2000,
[23]) explain the Bayesian portfolio construction for incorporating the investors’ views
into prior information. In addition to this, Walters (2011, [29]) clarifies Theil’s Mixed
Estimation approach which is another method of blending prior returns with the views.

There is just one article applying the B-L method to stocks trading on the BIST by
Çalışkan (2012, [9]) and there are couple of master thesis written on this subject. In
these studies, either the subjective opinion of researchers or the pseudo stock returns
estimated by using quantitative methods such as EGARCH and AR(1) are considered
as view returns. All of these studies acknowledge the difficulty in obtaining subjective
views on the stocks listed on BIST. In this thesis, the analysts’ average target price es-
timates, available on Bloomberg database, on the stocks included in the BIST-50 Index
are taken as investors’ views. And these views are blended with the equilibrium re-
turns of these stocks. Moreover, real world constraints such as budget and short selling
constraints, are imposed iteratively on the optimization model while maximizing the
utility of the investors. Finally, the CAPM and the B-L portfolios constructed for each
of the years in the sample period from 2005 to 2015 are compared by using the Sharpe
ratios and the efficient frontiers. The results show that the B-L portfolios do not always
perform better than the CAPM portfolios in terms of these comparison methods.

The empirical findings in this thesis indicate that the range of the optimal number of
BIST-50 stocks needed to form a well-diversified portfolio varies between 8-10 and
16-18 stocks from one estimation year to another. Moreover, there is not much differ-
ence between the range of optimal number of stocks based on the classical variance-
covariance matrix and the posterior variance-covariance matrix for each estimation
year. Furthermore, the results show that the B-L portfolios do not always perform
better than the CAPM portfolios in terms of Sharpe ratio and efficient frontier compar-
isons.

The remaining parts of thesis is organized as follows. Chapter 2 describes literature
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review on the subjects regarding the optimal number of stocks needed to form a well-
diversified portfolio, portfolio theories before B-L model, their mathematical aspects
and an intuitive explanation of the B-L method. Chapter 3 has the mathematical deriva-
tions of the B-L Model. Chapter 4 discusses the methodology used in the thesis and
the data sources. Chapter 5 summarizes the empirical findings of this thesis. Finally,
Chapter 6 provides our conclusions.
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CHAPTER 2

LITERATURE REVIEW

A key factor of the Modern Portfolio Theory (MPT) is the principle of diversifica-
tion. The idiom “Do not put all your eggs in one basket” explains the concept of
diversification very well. It gives the advice of investing one’s money in a variety of
financial securities instead of only one security. The portfolio’s total risk is composed
of two parts: non-diversifiable (systematic) risk and diversifiable (firm-specific) risk.
The macroeconomic factors such as the business cycle, inflation, interest rates and ex-
change rates generate non-diversifiable risk which is an inherent risk regardless of the
operating activities of the firm. This risk thus remains even if one holds all the secu-
rities in the market in his portfolio. On the other hand, diversifiable risk is the unique
risk of an asset that comes from firm-specific effects such as personnel changes, and the
achievements of a department like research and development or marketing. Since firm
specific effects are not correlated across firms, this risk can be eliminated by adding
assets to a portfolio. In other words, diversification enables us to minimize the firm-
specific risk [6].

Markowitz (1952, [19]) who is known as the father of the MPT, shows that one can
decrease an individual asset’s risk to which investors are exposed to by holding a di-
versified portfolio of assets. In his study, in order to indicate the risk-reduction benefit
of holding more than one security, the mathematical formula for calculating the risk of
a portfolio of assets is constructed. Markowitz analyzes the expected portfolio return,
portfolio risk, correlation of assets in the portfolio and the impact of diversification
on the portfolio risk. The expected return on the portfolio is calculated as the sum of
weighted average of the expected returns on the securities in the portfolio. On the other
hand, the portfolio risk, which is described as the variance or the standard deviation of
returns on the portfolio, is shown to be not equal to a weighted average of variances
of assets in the portfolio. The variance of returns on the portfolio is shown to be the
weighted sum of the terms in the variance-covariance matrix of securities included in
the portfolio. Markowitz demonstrates the benefits from diversification for portfolios
that have less than perfectly positively correlated assets. Furthermore, it is shown that
the lower the correlation between the assets in a portfolio, the higher the gains from
diversification [6].

After the pioneering work of Markowitz, diversification is discussed in a variety of
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papers. Researchers show that when the number of assets in a portfolio increases, the
portfolio’s risk declines because of elimination of the firm-specific risk. However, they
wonder how many randomly selected assets are required to create a well-diversified
portfolio. Additional securities enhance the degree of diversification benefits at a de-
creasing rate and bring more transaction costs at the same time. The optimal number
of stocks needed for a well-diversified portfolio has been debated among many re-
searchers such as Evans and Archer (1968, [12]), Fisher and Lorie (1970, [13]), Elton
and Gruber (1977, [11]), Statman (1987, [25]), Beck, Perfect and Peterson (1996, [1]),
Gökçe and Cura (2003, [10]), Tosun and Oruç (2010, [28]) among others. The next
section summarizes the findings of these studies.

2.1 Literature related to Optimal Number of Stocks for a Well-diversified Port-
folio

First of all, Evans and Archer (1968, [12]) analyze the effect of additional number of
assets in the portfolio on the risk (the standard deviation) of the portfolios. The data
used in this study are coming from 470 securities included in the Standard and Poor’s
(S&P) 500 index in 1958. The securities are selected randomly and for each security
semi-annual observations are collected for the period from January 1958 to July 1967.
The return of each security for each period and the geometric mean return of each se-
curity as the average return for entire period is calculated and the standard deviation of
each stock is calculated as the dispersion of the logarithms returns around the average
return. First, only one stock is selected randomly from 470 securities. This is the one
stock portfolio and the average standard deviation of this portfolio is used to determine
the benefit of diversification from adding more stocks to a portfolio. Then equally
weighted two stock portfolios are formed without replacement which means that the
first stock is selected from 470 securities, and the second stock is selected from the
remaining 469 securities. This process is continued until the portfolio has randomly
selected 40 stocks in it. Each of these portfolios are formed 60 times. The portfolio
return and the standard deviation of the portfolio return are calculated and recorded in
a table. The average standard deviation of the portfolios are regressed on the inverse of
the number of stocks in the portfolio to determine the optimal number of stocks needed
to form a well-diversified portfolio. They show that the average standard deviation of
the portfolio asymptote to the average non-diversifiable risk estimated by calculating
the standard deviation of a portfolio containing all of 470 securities for the period they
examined. Finally, by using a t-test and an F-test at the significance level of 0.05, they
show that in order to achieve a statistically significant decrease in the average portfo-
lio standard deviation, a substantial increase in the number of securities included in a
portfolio is required once the portfolio already has 8 securities in it.

Evans and Archer (1968, [12]) deal with the change in the average standard deviation
of a portfolio returns as the number of stocks in the portfolio increases, but Fisher
and Lorie (1970, [13]) concentrate on the frequency distributions of returns on port-
folios, and also on individual stocks. Furthermore, although Evans and Archer keep
the holding period of investments constant, Fisher and Lorie conduct their analysis for
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different holding periods. They use the wealth ratio of the portfolio calculated as the
ratio of the ending value of the portfolio to the beginning value of the portfolio as their
return measure. Fisher and Lorie concentrate on three issues related to the variability
of portfolio returns containing stocks from the New York Stock Exchange. First, they
analyze the frequency distribution of returns over one to forty years during a sample
period from 1926 to 1965. Therefore, they provide a statistical view of diversification
effects in the literature. Second, they analyze the aggregated distribution of stock re-
turns in the portfolio for holding periods of 1, 5, 10, 20, and 40 years. Finally, the
return distributions of portfolios having only one stock to 128 stocks are determined.
They conclude that the frequency distribution of returns on portfolios with 8 stocks
are almost same as the frequency distribution of returns on portfolios with more than
8 stocks. According to the findings of their research, an investor can hold 8 stocks in
a portfolio instead of dealing with a large number of stocks in a portfolio and have the
same frequency distribution of portfolio returns.

Contrary to simulation techniques used in studies such as Evans and Archer (1968,
[12]), Elton and Gruber (1977, [11]) focus mostly on obtaining an analytical expression
for the relationship between the number of securities in the portfolio and the portfolio
risk. Elton and Gruber (1977, [11]) use the total risk due to not only mean differences
but also the second moment of the variance of returns as the portfolio risk, and sup-
port the study of Fisher and Lorie (1970, [13]) in which the distribution of all possible
portfolio returns instead of dispersion of mean portfolio return is found. The exact for-
mula for the expected variance of N -asset portfolio is first shown in the Markowitz’s
study [19]. In addition to this exact formula, Elton and Gruber derive an approxima-
tion to this formula by using simulated data. They use their approximation formula
in their empirical analysis. The data used in the analysis consists of weekly returns
from 150 to 3,290 securities from the New York and the American Stock Exchanges
for the period from June 1971 to June 1974. They expect the parameter estimates like
portfolio return and variance of that return to differ across samples with different num-
ber of stocks. However, values of the parameters estimated for the sample of 150 are
very close to those for the sample of 3,290. Securities are selected randomly without
replacement and they calculate the variance of an equally weighted portfolio of all se-
curities in the population. They find that the expected annualized standard deviation
is 23.701% for 1-stock portfolios, 11.506% for 10-stock portfolios and 9.211% for a
portfolio including all 3,290 stocks. Therefore, they conclude that the majority of the
possible decrease in the portfolio risk is attained once there are 10 stocks in the port-
folio. According to the results of previous papers mentioned in this article, most of the
risk of an individual security is diversified away by holding portfolios with 10 to 20
securities, whereas the risk-reduction benefits from adding stocks beyond 15 are still
significant.

Statman (1987, [25]) compares the risk of complete portfolios (passive portfolios) that
are on the Security Market Line constructed from the risk free asset and the S&P 500
(taken as the market portfolio) to the risk of one constructed by randomly selecting 10
to 50 stocks to form an active portfolio with the same return as the complete portfo-
lio. While making this comparison between returns of actively and passively managed

7



portfolios, he also takes into account the transaction and administrative costs of an
actively managed portfolio. These costs are estimated as the difference between the
returns of an actively and a passively managed portfolios. The passively managed
portfolio is taken as the S&P 500index and the actively managed portfolio is prox-
ied by the Vanguard Index Trust. Finally, the optimal number of stocks required for
a well-diversified portfolio by taking into consideration pros and cons of diversifica-
tion is found for both a borrowing and a lending investor. They allow for a difference
between the borrowing (approximated by the Treasury bill rate) and the lending rates
(approximated by the Call Money rate which is the interest rate charged on margin
loans having the stock as a collateral by brokers). He demonstrates that at least 30
stocks from the point of view of a borrowing investor, and 40 stocks from the point
of view of a lending investor are needed to form a well-diversified portfolio. The rea-
son behind the difference between the optimal number of stocks for a lending and a
borrowing investor is that a borrowing investor pays the spread between the borrowing
rate and the lending rate which is estimated to be 2 percent per year.

Beck, Perfect and Peterson (1996, [1]) deliberate a different aspect of the analysis car-
ried out to determine the required number of stocks for a well-diversified portfolio
than the previous studies. They state that in most of the diversification studies, number
of portfolio replications carried out to determine the portfolio expected return and the
risk are not taken into account. When a high number of replications is used, the curve
representing the relationship between the portfolio risk and the portfolio size becomes
more flat. However, the number of portfolio replications also affect the precision of
the statistical tests conducted in these studies. Therefore, a large number of replica-
tions leads to more sensitive test statistics so that statistically significant differences
between the variance of the sample portfolios and the market portfolio are always ob-
served. Monthly returns of 1,221 securities from the New York Stock Exchange and
the American Stock Exchange with data available in the University of Chicago’s Cen-
ter for Research in Securities Prices database are taken into account and an equally
weighted portfolio containing all of these stocks is considered as a proxy for market
portfolio. They conduct some hypothesis tests for portfolio replications ranging from
50 to 2000 at the 5% level of significance. The null hypothesis states that the portfo-
lio’s variance is equal to the market portfolio’s variance, and the alternative hypothesis
states that the portfolio’s variance is greater than the market portfolio’s variance. Ad-
ditionally, they conduct the same test with different alternative hypothesis which states
that the portfolio’s variance is equal to 1+ε (ε: the percentage away from the market
variance) times the market portfolio’s variance. If an investor wants to hold a portfolio
within 2% of the risk of the market portfolio, according to the power curves of chi-
square test in their study, 200 replications and 48 securities are the optimal numbers
in order to minimize the diversifiable risk by using this test. Increase in the number
of replication raised the precision of the test. They ask researchers to use more robust
statistical test and to be aware of the effect of the number of portfolio replications on
the sensitivity of the statistical test.

Gökçe and Cura (2003, [10]) study stocks from the Borsa Istanbul-30 (BIST-30) In-
dex in order to determine the optimal number of stocks to hold for a well-diversified
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portfolio. They work with weekly returns for these stocks over a period from January
1999 to June 2000. Their algorithm enables them to analyze all possible portfolios of
a specific size that can be created from a universe of certain number of securities. For
instance, if one wants to analyze all portfolios of 2 stocks that can be created from
a universe of 30 stocks, then one needs to look at 435 (30×29/2) different 2 stock
portfolios. Then, the geometric and the arithmetic portfolio returns, and the minimum
and the maximum portfolio standard deviation for both equally weighted and market
value weighted portfolios are calculated. To determine the optimal number of stocks
for a well-diversified portfolio, three different criteria are specified. The first one is
the ratio of average risk of the portfolio of a certain size to the market (BIST-30 in-
dex) risk. As the number of stocks used to form the portfolio increases, this ratio is
expected to get closer to 1. However, after having certain number of securities in the
portfolio, incremental decrease in the risk of the portfolio as a result of an incremental
increase in the number of stocks included in the portfolio becomes negligible. The
number of stocks included in the portfolio at that point is taken as the optimal number
of stocks to have in order to form a well-diversified portfolio according to this crite-
rion. The second criteria is the reduction in the diversifiable risk by comparison to
1-stock portfolio’s diversifiable risk as the number of stocks in the portfolio increases.
To calculate the second criteria, first the average non-systematic risk of N -stock port-
folios is subtracted from the average non-systematic risk of 1-stock portfolios. Then
this difference is divided by the average non-systematic risk of 1-stock portfolios and
multiplied by 100. When incremental percentage decrease in the non-systematic risk
is less than 1%, the number of stocks included in the portfolio at that point is taken
to be necessary and sufficient number of stocks to form a well-diversified portfolio
according to this criterion. The third and the last criteria is the reduction in the total
risk by comparison to 1-stock portfolio’s total risk as the number of stocks in the port-
folio increases. To calculate the last criteria, first, the ratio of the average total risk of
N -stock portfolio to the average total risk of 1-stock portfolio is calculated. Then, this
ratio is subtracted from 1, and the resulting value is multiplied by 100. As the number
of stocks in the portfolio increases, the average total risk decreases due to decrease in
the non-systematic risk of the portfolio. When incremental percentage decrease in the
average total risk is less than 1%, the number of stocks included in the portfolio at that
point is the required number of stocks for a well-diversified portfolio according to this
criterion. The minimum and the maximum number of stocks indicated by these crite-
ria are defined as the range of stocks needed to have a well-diversified portfolio. For
a well-diversified equally weighted portfolio, the optimal number of stocks needed is
determined to be between 6 and 13 stocks, whereas for a well-diversified market value
weighted portfolio, it is determined to be between 7 and 14 stocks.

Tosun and Oruç (2010, [28]) analyze the monthly returns and the standard deviation
of returns on 20 stocks that are consistently included in the BIST-30 Index during the
whole period from January 2001 to December 2008. Markowitz Mean-Variance (MV)
model is used in this study. Three criteria proposed by Gökçe and Cura (2003, [10])
are also utilized to determine the optimal number of stocks to have in a well-diversified
portfolio. Equally weighted portfolios consisting of 5 to 7 stocks are indicated to be
well-diversified portfolios. Some other studies on the BIST are cited in this paper as
well. However, author of this thesis can not find these studies electronically. The
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work of Demirci and Keskintürk (2007) is one of those studies cited. Demirci and
Keskintürk use weekly returns of the stocks included in the BIST-30 Index instead of
monthly returns as in the study of Tosun and Oruç (2010), and determine the optimal
portfolio size to be between 3 and 17 stocks. The work of Atan and Duman (2007)
is also cited in Tosun and Oruç (2010). Atan and Duman (2007) use monthly returns
of the stocks included in the BIST-100 index instead of those included in the BIST-30
index as in Tosun and Oruç (2010) and Gökçe and Cura (2003), and they conclude that
11 stocks are needed to form a well-diversified portfolio.

The number of stocks needed to have a diversified portfolio is different for the Amer-
ican and the Turkish Stock Exchanges. The reason behind this difference is the cor-
relation structure of returns on stocks in these markets. As the correlation between
securities decreases, the number of stocks needed to form a well-diversified portfolio
should also decrease. However, even though the correlation of the returns on Turkish
stocks is higher than that for the American stocks, less number of securities are needed
to form a well-diversified portfolio in Turkey. This finding is counterintuitive.

As pointed out above, diversification has been one of the main topics discussed in vari-
ous papers. The effect of diversification on a portfolio variance is explained mathemat-
ically in the following subsection. The remaining sections of this chapter are allocated
to the review of the literature on identification of assets to be included in a portfolio
and the allocation of portfolio value across these assets, another debated issue in the
portfolio theory literature.

2.1.1 Mathematical Preliminaries of Diversification

Markowitz (1952, [19]) defined the expected return on the portfolio as a weighted sum
of average returns of each security in the portfolio. The expected return on the portfolio
consisting of N assets is described analytically as:

E(rp) =
N∑
i=1

wiE(ri), (2.1)

where

wi : the weight of the security i,

E(ri) : the expected return on the security i.

The variance of the portfolio is defined as a weighted sum of covariances, and is de-
scribed analytically as:

σ2
p =

N∑
i=1

N∑
j=1

wiwjCov(ri, rj), (2.2)
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where

Cov(ri, rj) : the covariance between the returns of security i and j.

In order to investigate risk reduction, let us give a simple and clear example of a port-
folio containing only stocks A and B. The variance of the portfolio can be shown
as:

σ2
p = wAwACov(rA, rA) + wBwBCov(rB, rB) + 2wAwBCov(rA, rB). (2.3)

Since the covariance of the return on an asset with itself is the variance of the return
on that asset, the Equation (2.3) can be rewritten as:

σ2
p = w2

Aσ
2
A + w2

Bσ
2
B + 2wAwBCov(rA, rB). (2.4)

It can easily be deduced from the above Equation (2.4) of the portfolio variance that
the risk is eliminated when the covariance term is negative. On the other hand, even if
the covariance term is positive, some of the risk in individual securities is still elimi-
nated when these securities are combined in a portfolio. Just under the circumstance
that returns of these two securities are perfectly positively correlated, there will be no
diversification of individual security risks when these two securities are combined in a
portfolio.

To indicate this statement above, the covariance term can be rewritten in terms of the
correlation coefficient. Correlation coefficient is the measure of the extent to which two
securities move up and down together. It takes values between -1 and +1. If the corre-
lation coefficient is equal to -1, then the securities are perfectly negatively correlated.
If the correlation coefficient is equal to +1, then the securities are perfectly positively
correlated. Correlation coefficient is the normalized version of the covariance term:

ρAB =
Cov(rA, rB)

σAσB
. (2.5)

After substituting Equation (2.5) into the Equation (2.4), the portfolio variance equa-
tion becomes:

σ2
p = w2

Aσ
2
A + w2

Bσ
2
B + 2wAwBσAσBρAB. (2.6)

Consider the situation in which the correlation coefficient of the two stocks is equal to
+1. In that case, the variance of the portfolio becomes the perfect square of a weighted
sum of standard deviations of two securities:

σ2
p = (wAσA + wBσB)2. (2.7)

After taking the square root of both sides of the Equation (2.7), it becomes:

σp = wAσA + wBσB. (2.8)
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Thus, the standard deviation of the portfolio consisting of two perfectly positively cor-
related securities is equal to the weighted sum of their standard deviations indicating
that there is no diversification benefit from combining these two securities in a portfo-
lio. Apart from the case in which the correlation coefficient of these two stocks is equal
to +1, the standard deviation of the portfolio is smaller than the weighted average of the
standard deviations of two securities indicating that there is some diversification bene-
fit from combining these two securities in a portfolio. In other words, portfolios, apart
from the ones having all perfectly positively correlated securities, enable investors to
benefit from diversification to some extent. As the correlation between securities de-
creases, an investor can gain more from diversification [6].

Now, consider the situation in which the correlation coefficient of these two stocks is
equal to -1. In this instance, the variance of the portfolio becomes:

σ2
p = (wAσA − wBσB)2. (2.9)

After taking the square root of both sides, the standard deviation is:

σp = |wAσA − wBσB| . (2.10)

Since the portfolio standard deviation can be equal to zero in this case, the maximum
gain from diversification is obtained. Let us give a simple example of the portfolio
consisting of stock A with 20% standard deviation and stock B with 12% standard
deviation taken from [6]. For three cases, ρ = -1, ρ = 0, and ρ = +1, the relationship
between the standard deviation of the portfolio and the weight of stock A is represented
in Figure 2.1:

Figure 2.1: Portfolio Standard Deviation as a Function of the Weights of Stock A.

This figure shows the standard deviation of the portfolio including stocks A and B against
the weight of stock A. The standard deviation of stock A is 20% and the standard devi-
ation of stock B is 12%. The straight line in this graph shows the relationship between
the standard deviation of the portfolio and the weight of stock A when the correlation
between these two stocks equals to 1. The dotted curve represents this relation when
the correlation between these stocks equals to 0. The dashed line illustrates this relation
when the correlation between these stocks equals to -1.
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This graph illustrates that the largest decrease in the standard deviation of the portfolio
is captured when ρ = -1. Apart from the case of perfect positive correlation, as the
weight of stock A rises from 0 to 1, firstly the portfolio standard deviation declines due
to the effect of diversification. However, as the weight of stock A increase, portfolio
standard deviation increases as well since stock A has a higher standard deviation than
stock B. Finally the portfolio is undiversified when an investor puts all of his money in
stock A or stock B [6].

2.1.2 Naive Diversification Strategy

First of all, let us remark the variance equation of the portfolio consisting of N stocks:

σ2
p =

N∑
i=1

N∑
j=1

wiwjCov(ri, rj). (2.11)

Naive diversification strategy recommends constructing a portfolio of these N stocks
by investing equal amounts in each of them. It is also known as 1/N strategy. When the
stocks are equally weighted, the portfolio standard deviation Equation (2.11) becomes:

σ2
p =

1

N

N∑
i=1

1

N
σ2
i +

N∑
j=1
j 6=i

N∑
i=1

1

N2
Cov(ri, rj). (2.12)

Markowitz (1976, [20]) described the portfolio variance as a function of average vari-
ance and, the average covariance of the securities in that portfolio. This relationship
can be written as:

σ̄2 =
1

N

N∑
i=1

σ2
i , (2.13)

Cov =
1

N(N − 1)

N∑
j=1
j 6=i

N∑
i=1

Cov(ri, rj), (2.14)

σ2
p =

1

N
σ̄2 +

N − 1

N
Cov. (2.15)

Markowitz (1976, [20]) also clarifies the effect of diversification. There are two main
factors contributing to the decrease in the portfolio variance towards 0. As can be eas-
ily seen from the formula, one of them is reducing the average covariance to 0, and
the other one is raising the number of stocks (N ) in a portfolio. As more securities
added to the portfolio, the risk (standard deviation) of the portfolio decreases towards
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0. However, when N increases, the second term on the right-hand side of the equation
converges to Cov since the term N−1

N
converges to 1. This part is called the undiversi-

fiable risk. As can be easily seen from the formula, this undiversifiable risk is due to
the covariance of the returns on securities, and is considered to be caused by macroe-
conomic factors [6].

The relationship between undiversifiable risk and the correlations between securities
is displayed clearly when an identical standard deviation, σ for all securities, and an
identical correlation coefficient, ρ, between returns on all securities, are assumed. Then
the Equation (2.15) can be written as:

σ2
p =

1

N
σ2 +

N − 1

N
ρσ2. (2.16)

2.2 Literature related to Portfolio Theories

The pioneering work on this subject belongs to Markowitz. Markowitz (1952, [19])
formulates the decision-making problem as a trade-off between portfolio’s expected
return and its variance. Markowitz’s Mean-Variance optimization model under cer-
tain assumptions (i.e. rational and informed investors and efficient markets) allows us
to construct portfolios which have the maximum possible expected return for a given
level of risk or the minimum possible risk for a given level of expected return. These
portfolios form the efficient frontier. When a risk free asset is added to this environ-
ment, combinations of this risk free asset and a risky asset creates a capital allocation
line (CAL). The slope of a CAL is the ratio of excess return on the portfolio to the
risk of that portfolio (standard deviation). The slope is also called as Sharpe ratio. The
capital allocation line with the highest slope in a market is called as the capital market
line (CML) and it is the locus of all portfolios created from the risk free asset and a
broad index of stocks in the market [6].

In Markowitz model, to determine the best possible portfolio, an investor should con-
sider the expected returns of all stocks, the variances and the covariances of returns on
these stocks in the portfolio. Hence, when one’s portfolio includes a large number of
stocks, the large number of input data is needed for calculation and a larger variance-
covariance matrix needs to be estimated. For instance, if one’s portfolio consists of N
securities, then N expected returns, N variance and N (N -1)/2 covariance terms, that
is, a total of N (N+3)/2 inputs will be required. If the security returns satisfy the as-
sumptions of the Single-Index Model, then the number of parameters to be estimated
can be reduced significantly. This model requires regressing the excess return of a
stock (return on a stock minus risk-free rate) on the excess return of the market index.
Most observations reveal that stock prices move in the same direction with the market,
that is, prices of the stocks increase when the market goes up and prices of the stocks
decrease when the market goes down. This suggests that the stock returns might be
correlated with the market returns, and this correlation might be estimated by the re-
gression analysis of a stock’s returns on a stock market index returns (as a proxy for the
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market). Therefore, using the Single-Index model, N market expected excess returns
(called as alpha), N sensitivity coefficients (called as beta), N residual variances can
be estimated. The market risk premium and the variance of the returns on the market
index can also be determined easily. Using these inputs the variance-covariance ma-
trix of security returns can be constructed. Therefore, in this case, the total number
of variables to estimate is 3N+2 in order to construct the parameters needed for the
Markowitz optimization instead of N (N+3)/2.

The Capital Asset Pricing Model is developed by Sharpe (1964, [24]), Treynor (1962)
and Lintner (1965). The CAPM is a single-index model. It is the pioneering equi-
librium model (the model in which the demand for a stock is equal to the supply of
that stock). It has a set of strict assumptions such as no transaction costs and taxes,
investors with homogeneous expectations, mean-variance optimizing investors. Under
these assumptions, it is shown that all investors hold the same portfolio of risky assets
which is the market portfolio. Each stock in this market portfolio has a weight equal to
the market value of that asset divided by the total market value of all risky assets in the
market. An investor can borrow and lend an unlimited amount at the risk-free rate in
order to adapt the risk of the market portfolio to her preferred risk level. All combina-
tions of the risk-free and risky assets are located on the Security Market Line (SML).
The Security Market Line is the same as the Capital Market Line with one difference.
The relevant risk measure for the SML is the beta of a security whereas the relevant risk
measure for the CML is the standard deviation of security returns. The CAPM defines
the relationship between the expected return and the beta, systematic risk, of a security.

Although the CAPM is an important equilibrium model, Stephen Ross (1976, [26])
criticizes the CAPM on its assumption of a single factor determining the security re-
turns. Arbitrage Pricing Theory (APT), a multifactor model, is first suggested by Ross
(1976, [26]) as an alternative to the CAPM. In APT, unlike the CAPM, stock prices
can be affected from several macro factors such as anticipated growth or decline in
gross domestic product (GDP), and changes in interest rates. Underlying principle of
the APT is the law of one price, that is, two identical items can not be sold at differ-
ent prices. It states that an arbitrage opportunity arises only if an investor can gain a
riskless profit without spending any money out of his/her pocket [6].

Although Markowitz Mean-Variance approach has a significant effect on the portfolio
theory, most money managers believe that there are some shortcomings of this model
in practice [18]. The first one is that the model obliges investors to assign quite large
weights to stocks with large historical expected returns, or quite low weights to stocks
with low historical returns. The second and the more important one is that the model
does not allow investors to embed their current views with respect to current conditions
into the model. Here, the Black-Litterman (B-L) portfolio optimization model, which
is the fundamental subject of this thesis comes to rescue. Before the literature of the
B-L model is reviewed, the mathematics behind the Markowitz portfolio optimization
and the Capital Asset Pricing Model is described in the following subsections.
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2.2.1 Markowitz Mean-Variance Optimization

Markowitz (1952, [19]) describes the risk-return trade-off analytically as:

maximize
N∑
i=1

wiE(ri)

subject to

N∑
i=1

N∑
j=1

wiwjCov(ri, rj) ≤ c1,

N∑
i=1

wi = 1, wi ≥ 0 ∀i ∈ N.

where c1 is the specified level of portfolio risk.

In this optimization model, the portfolio expected return is maximized for a given level
of portfolio risk while satisfying the budget and no short-selling constraints. A budget
constraint represents that investors must spend all of their money on the securities
included in the portfolio. Short selling is the selling of a security that an investor does
not own. To be able to sell this security, an investor needs to borrow that security
from another investor and, promise to deliver the security back to its original owner
on demand. This type of trading is prevented by no short-selling constraint, i.e. by
requiring security weights to be positive.

The risk-return trade-off can also be modeled by minimizing the portfolio risk for a
given level of the portfolio expected return with similar constraints above:

minimize
N∑
i=1

N∑
j=1

wiwjCov(ri, rj)

subject to

N∑
i=1

wiE(ri) ≥ c2,

N∑
i=1

wi = 1, wi ≥ 0 ∀i ∈ N.

where c2 is the specified level of portfolio expected return.
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Markowitz optimization generates the efficient frontier of investment opportunity set.
The portfolios are formed by varying the proportion of each security in the portfo-
lio, thus the portfolios’ expected returns and standard deviations are represented by a
graph. The minimum-variance frontier is constructed from all points that satisfies the
minimum variance for any given portfolio expected return. The point that lies on the
minimum-variance frontier which has the lowest variance among all minimum vari-
ance portfolios is defined as the global minimum-variance portfolio. The part of the
minimum variance frontier that lies below the global minimum-variance portfolio is
inefficient, since for any portfolio on the inefficient part of the frontier, there is an-
other one on the efficient part that has the same standard deviation but higher expected
return. Therefore, risk averse utility maximizing investors will not be interested in
holding these inefficient portfolios. When this inefficient part is removed from the
minimum-variance frontier, the remaining part of this frontier is defined as the effi-
cient frontier. In Figure 2.2 obtained from He and Litterman (1999, [14]), minimum-
variance frontier, global minimum-variance portfolio and efficient frontier are marked
clearly.

Figure 2.2: The Minimum-Variance Frontier.

This figure shows the minimum-variance frontier of the portfolio consisting of the assets
in the study of He and Litterman (1999, [14]). One can plot the expected portfolio returns
on the Y axis and the standard deviations (risks) of the portfolio having these assets on the
X axis of a graph. The minimum variance-frontier is the set of all possible portfolios with
the minimum risk for each portfolio expected return. The lowest risk portfolio among
all minimum risky portfolios is known as the global minimum-variance portfolio. The
efficient frontier represents all efficient portfolios above the global minimum-variance
portfolio.

One of the other expansions of the portfolio optimization is investing in the risk-free
asset along with the risky assets. Capital allocation line (CAL) indicates all combina-
tions of the risk-free asset and a risky portfolio. The slope of the capital allocation line,
which is known as Sharpe ratio, is equal to incremental expected return of the portfo-
lio consisting of the risk-free asset and the risky portfolio per incremental standard
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deviation of the portfolio. Sharpe ratio can be written as:

S =
E(rp)− rf

σp
,

where rf is the expected return of the risk-free asset.

Many capital allocation lines can be drawn by combining the risk-free asset and a dif-
ferent risky portfolio on the efficient frontier. One of the lines, Capital Market Line
(CML), is the combination of the risk-free asset and the market portfolio which con-
tains all the assets in the market. This CAL has the highest Sharpe ratio. Therefore,
all investors prefer the portfolios that lies on the CML when compared to portfolios on
other CALs.

The choice of an optimal portfolio for each investor from the efficient portfolios is
another issue. The amount of the risk-free asset and the risky portfolio an investor is
willing to hold must be determined. At this point, the concept of risk aversion needs
to be introduced. Investors are categorized into groups based on their level of risk
aversion as risk lover, risk neutral and risk averse. Risk lover investors take a risk even
if there is no compensation for bearing that risk. Risk averse investors are willing to
invest in risky assets only if they offer a higher return than a safe alternative. Risk
neutral investors care only about the return of their investments, and are indifferent to
the risk. Investors are assumed to be risk averse in optimization problems. However,
there can be differences in their risk aversion levels. A less risk averse investor is will-
ing to take more risk to gain higher return. A more risk averse investor on the other
hand, prefer less risky investments. To convince a more risk averse investor to hold
higher risk investments, we need to offer much higher return. For instance, among two
investments with the equal expected return, but different risks, a risk averse investor
will always choose the one with the lower risk.

In order to determine the optimal portfolio weights for a preferred level of risk aver-
sion, the utility maximization can be used. Utility of an investor can be calculated
based on a utility function. The most commonly used utility function by financial
theorists has the following form:

U = E(r)− 1

2
λσ2,

U : utility value,
λ : the investor’s risk aversion coefficient (λ < 0 for risk lovers, λ = 0 for risk neutrals,
and λ > 0 for risk averse investors).

When the amount of w is invested in the risky portfolio, and the remaining part (1-w)
is invested in the risk-free asset, the optimal weight of the risky portfolio can be found
by maximizing the utility function of the investor:

maximizew U = E(rp)−
1

2
λσ2

p = rf + w[E(rrp)− rf ]−
1

2
λw2σ2

rp,

18



E(rrp) : the expected return of the risky portfolio,
σ2
rp : the variance of the risky portfolio.

In order to solve this maximization problem, we need to take the first derivative of this
expression and then equate it to 0. The optimal weight for the risky portfolio, w?, is
obtained as follows:

w? =
E(rrp)− rf

λσ2
rp

.

2.2.2 The Capital Asset Pricing Model

The Capital Asset Pricing Model is one of the most important innovations in modern
portfolio theory. It was developed by Sharpe (1964, [24]) and similar works were
observed in the papers of Treynor (1962) and Lintner (1965). The concept of the risk-
return trade-off is the main idea behind the modern portfolio theory. To put it more
explicitly, the more risk an investor takes, the higher the expected return that will be
gained from that investment to compensate the investor for risk taken. The Capital
Asset Pricing Model is one way to determine the potential return that an investor will
obtain by taking risk. Using the CAPM, the required rate of return on a security can
be calculated as a function of the systematic risk of that security. The model can be
represented as follows:

E(ri) = rf + βi[E(rM)− rf ], (2.17)

E(ri) : expected return on security i,
rf : risk-free rate,
βi : beta of security i,
E(rM) : expected return on market portfolio.

Before analyzing the CAPM explicitly, we will give the assumptions of the model.
Some of the assumptions are about an investor’s behavior and the others are about the
structure of the market. The main assumptions about the investors’ behaviors are, that
investors are rational, risk-averse and mean-variance optimizers. It means that all in-
vestors behave judiciously in market transactions, their risk aversion coefficients are
greater than 0, they follow Markowitz mean-variance optimization model. Another
assumption, which is related to market structure, is that investors are price-takers. In
other words, their own trading activities do not affect the stock prices, i.e. markets are
competitive. The other assumption is that investors have homogeneous expectations;
they have same input lists including identical expected returns, variances and covari-
ances of the securities. Final assumption of this part is that investors focus on a single
investment period. The main assumption about the market structure is that, there is no
taxes and transaction costs. Another one is that all information is publicly available,
that means there is no private information that is kept secret. Final one is that all se-
curities are publicly exchanged, short-selling is possible, and investors can lend and
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borrow any amount at the certain risk-free rate [6].

By means of these assumptions, the nature of the equilibrium in security market can be
examined. This equilibrium market model states that the supply and the demand of the
securities are equal to each other. When the demand exceeds the supply of a particular
security, the excess demand raises the price of the security, and decreases the expected
return of the security. Thus, the demand will decline and become equal to the supply
of the security, and the market will reach an equilibrium. In this market, each lender
can match with a corresponding borrower. Since all investors own the same input list,
their investment horizon is identical and they all apply the Markowitz method on the
same securities, all investors will hold the same portfolio of risky assets, which is the
market portfolio, M . Market portfolio contains all tradable securities with proportions
equal to the market value of a security divided by the total market value of all securities.

According to the CAPM, the risk premium on the market portfolio equals to the mul-
tiplication of its risk and the average degree of the risk aversion, it can be shown as:

E(rM)− rf = λ̄σ2
M .

The risk premium on a security is assessed by its contribution to the risk of the market
portfolio. The contribution of a security to the risk of the market portfolio, thus, can
be measured by the covariance of that security’s returns with returns on all the assets
that form the market portfolio.

The Sharpe ratio for investments in security i is:
security i’s contribution to risk premium

security i’s contribution to variance
=

E(ri)− rf
Cov(ri, rM)

.

The Sharpe ratio for investment in the market portfolio is:
Market risk premium

Market variance
=
E(rM)− rf

σ2
M

.

The equilibrium approach states that the Sharpe ratios of all investments must be equal.
If the Sharpe ratio for one investment is greater than the Sharpe ratio for another invest-
ment, then investors’ portfolios would be rearranged toward the portfolio with greater
Sharpe ratio. This would indicate that security prices would be pressured until the ra-
tios would again be equal. In equilibrium, the Sharpe ratio of any security i and the
market portfolio must be equal:

E(ri)− rf
Cov(ri, rM)

=
E(rM)− rf

σ2
M

.

and the risk premium for security i is:

E(ri)− rf =
Cov(ri, rM)

σ2
M

[E(rM)− rf ].
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The ratio Cov(ri,rM )

σ2
M

is called as beta and it is the measure of the contribution of security
i to the variance of the market portfolio divided by the variance of the market portfolio.
By putting the βi instead of this ratio, the Equation (2.17) is reached.

The expected return-beta relationship can be illustrated graphically as the security mar-
ket line (SML). Since the contribution of the market portfolio to the variance of the
market portfolio is equal to the total variance of the portfolio, the market has a beta of
1, and the slope of the SML is equal to the market risk premium. To demonstrate this
visually, Figure 2.3 taken from [8] is drawn.

Figure 2.3: Security Market Line.

This figure shows the relation between the expected return and the risk measured by beta.
The expected return on a security or a portfolio is shown on the Y axis and the risk (beta)
is shown on the X axis. Beta measures the sensitivity of the asset to the market portfolio.
The data was obtained from Financial Management [8]. The expected return of the risk
free asset is 8% and the expected return of the market portfolio is 15%. Since the market
portfolio is perfectly positively correlated with itself, it has a beta of 1.

Security Market Line can also be used to analyze whether securities are fairly priced or
not. SML provides investors the required rate of return necessary in order to compen-
sate them for the risk that they are taking. If the expected return of a security is greater
than the required rate of return on this security, in other words, this security lies above
the SML, then the security will be defined as underpriced. On the other hand, if the
expected return of a security is less than the required rate of return on this security, that
means this security lies below the SML, then the security will be defined as overpriced.
The securities that lies on the SML are described as fairly priced.

2.3 Literature related to Black-Litterman Method

The B-L model is first developed by Fisher Black who was a partner in Goldman Sachs
Asset Management group of companies and Robert Litterman who was a vice presi-
dent in the Fixed-Income Research Department at Goldman Sachs Asset Management
group of companies [4]. The B-L method allows investors to update the equilibrium
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expected returns based on their views. On the research of B-L (1990, [4]), the weights
from International Capital Asset Pricing Model (ICAPM) are used as a starting point
and these weights are adjusted to reflect their market views. Currencies, bonds and
forward contracts of different countries are taken as the assets investors can have in
their portfolios. Their observation for the Markowitz model is that small changes in
the expected returns result in large changes in the optimal weights of securities in the
portfolio. In their new model, views can be defined in a relative sense as well as in an
absolute sense and the level of confidence can be assigned to each view as well. On the
other hand, in Mean-Variance approach the views should be assigned to all securities
in the portfolio and the views have to be specified in an absolute sense. After defining
their current views on bonds and currencies in a manner formulated mathematically,
the optimal portfolio weights based on Mean-Variance approach are compared to the
optimal portfolio weights based on the B-L approach. Since the views are defined on
each security in an absolute sense, the optimal weights based on the Mean-Variance
approach are shown to be quite extreme when compared to the optimal weights based
on the B-L approach. In the B-L model, the posterior weights are different from the
market weights to the extent of defined views. In order to demonstrate this, they use an
example. Views of investors on certain assets are expressed and then these views are
used to update the market equilibrium excess returns. When investors are more con-
fident about their views, a higher than 50% is assigned to their views in updating the
equilibrium excess returns. The optimal weights of the portfolios created by assigning
100% weight to the views are a little bit extreme than the optimal weights of the ones
formed by assigning less weight to the views. Therefore, B-L state that because of the
ability of the model to assign different weights to the views, placing artificial limits on
investment amounts in order to construct balanced portfolios becomes unnecessary.

Even though B-L (1990, [4]) create an innovative model for asset allocation problem,
lots of question marks about their model are left in the minds of researchers. There-
fore, the papers of B-L (1991, [17]) and B-L (1992, [5]) are published within 2 years to
answer some of these equations. On the paper of B-L (1991, [17]), investment universe
is expanded to include equities as well as currencies and bonds. More details on this
new model and its application are presented in this article. The data is the monthly ex-
pected returns of stocks, currencies and bonds for the 7 countries (United States, Japan,
Germany, France, the United Kingdom, Canada, and Australia) from January 1975 to
August 1991. Calculation of currency hedged excess returns on an international bond
or stock, the mean and the standard deviation of these returns are explained. Compar-
isons similar to the ones in B-L (1990, [4]) are done by adding stocks. Lastly, how
to mix the equilibrium excess returns with the investor’s views by using the Theil’s
mixed estimation method (1971, [27]), how to define the views as vectors, and the for-
mula for the new combined return vector as a function of the excess equilibrium return
vector and the views are presented in details. In this new formulation, apart from the
equilibrium returns and the views, τ , which is a constant and scaling factor, is seen as
a multiplier of the variance. This scaling factor is assumed to have a value between 0
and 1, since B-L assume that uncertainty of the expected equilibrium returns is smaller
than the uncertainty of equilibrium returns.

22



In addition to the work of B-L (1991, [17]), the work of B-L (1992, [5]) has another
extension of the original model. This paper serves as a guide for global portfolio man-
agers. They use the same data as B-L (1991, [17]). They take the considerable increase
in expected portfolio returns as an indication of the benefit from global diversification.
To show how their model performs in simulations, three strategies consisting of in-
vesting in higher-yielding currencies, higher-yielding bonds of countries and stocks of
the countries having higher dividend to bond yield ratios are tested by using rolling
window approach. They conclude that the two strategies, which are investing in high-
yielding currencies and stocks of the countries having higher dividend to bond yield
ratios performed considerably better and the remaining strategy performed poorly.

He and Litterman (1999, [14]) clarify some issues of the B-L model known as a “black
box” model. The posterior expected returns based on the equilibrium returns and the
views are defined as random variables, and just their probability distributions are de-
rived. They clarify that in the B-L method the prior distribution is the equilibrium
distribution coming from the CAPM, and the additional information is the investor
views. In order to find the posterior distributions of expected returns, the CAPM equi-
librium returns and the investor views are blended by using the Bayesian approach.
Three intuitive features of the B-L model are verified analytically and numerically.
First of all, they show that the optimal risky portfolio for an unconstrained problem is
the weighted sum of the equilibrium portfolio and portfolios representing the investor’s
views. Secondly, when a view return is more optimistic than the implied equilibrium
return of that security and the view returns on other securities, a positive weight is
assigned to the portfolio representing that view. Lastly, the weights increase not only
due to the optimistic views, but also an increase in the level of confidence in the views.
Moreover, how to change the optimal weight vector when one new view is added, is
shown analytically.

Satchell and Scowcroft (2000, [23]) show each step needed to extract the posterior
distribution from the CAPM prior and the investor views by using Bayes’ theorem. In
Chapter 3 of this thesis, most of the derivations in this article are utilized and veri-
fied. They develop an alternative reference model and prove that results similar to the
original model can be obtained with this alternative model as well. In their alterna-
tive model, posterior returns follow a multivariate t distribution. Walters (2014, [29])
explains that, in this reference model, there is no information on the precision of the
estimate due to employing point estimates instead of distributions. Thus, the historical
covariance matrix without the scaling factor (τ ) is in the formula. Moreover, there is
no need to consider the posterior variance since the variance is not updated.

Application of the B-L method to different problems is explained in the article of Id-
zorek (2004, [15]). In the literature, there are a few examples of preparing essential
inputs of the model in the form of a matrix. On the other hand, in Idzorek, comprehen-
sive examples of constructing the vector of returns coming from the views, covariance
matrix of the views and the pick matrix of the views are given in order to produce in-
puts for the B-L model. Historical monthly returns for the eight assets including U.S.
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Bonds, International Bonds, U.S. Large Growth, U.S. Large Value, U.S. Small Growth,
U.S. Small Value, International Developed Equity, and International Emerging Equity
over a 5 year period are used in these examples. The views expressed are formed in
the same way as in B-L (1990, [4]). He develops a new approach in order to integrate
confidence levels assigned by the investors to their views. For each view, the implied
confidence in the view are calculated by using the B-L formula with 100% certainty of
the view. In light of the structure of the implied confidence, the tilts due to the views
on the portfolio weights are found, and sum of the squared differences between the
weights with tilts and without tilts is minimized. Hence, an investor can control the
extent of the tilts by changing confidence level ranging from 0% to 100%. While B-L
take a quantitative investor’s perspective, Idzorek (2004, [15]) provides information to
a qualitative investor to utilize the B-L model via his new method.

Meucci (2006, [22]) develops a new method in order to determine posterior distribu-
tion arising from the mixture of the equilibrium and the view distributions by using
the principle of opinion pooling instead of Bayesian approach in the B-L model. Thus,
unlike in B-L approach, the views are not needed to be normal and uncorrelated with
each other. The marginal distribution of each view is found out separately. However,
the views can be jointly co-dependent. The copula directly comes up from the market
structure. Finally, a joint distribution for the market can be extracted from the joint
distribution of the views by allowing an appropriate change in coordinates. In another
article of Meucci (2010, [21]), the B-L model and its extensions are explained with
related proofs.

Almost all derivations and transformations related to the B-L model are presented in
the article of Walters (2014, [29]). His work is like a literature survey of the B-L
method. By using Theil’s Mixed Estimation Model and Bayes’ Theory the deriva-
tion of the posterior mean and variance arising from the blending of the equilibrium
mean with the views, variance with the view’s mean, and confidences in views are
shown. Furthermore, differences between the canonical model which is proposed by
B-L (1992, [5]) and the reference model which is proposed by Satchell and Scowcroft
(2000, [23]), and Meucci (2006, [22]) are revealed. Some analysis are done by chang-
ing the parameters of the model. Thanks to this paper, one can access the whole history
of the B-L model.

The B-L method is applied to several financial instruments and securities traded on
different stock exchanges. There is only one article which is an application of the B-L
method to securities of Turkish Stock Exchange Market. Çalışkan (2012, [9]) uses
the data of daily returns of 17 stocks included in the BIST-30 Index over the period
from 2003 to 2009. Portfolios constructed from Mean-Variance method and the B-L
method are compared in terms of their unsystematic and total risks. In terms of system-
atic risks, in each period the portfolios constructed from the B-L method have lower
beta factors than the portfolios constructed from Mean-Variance method. With regard
to unsystematic risk, in 11 periods over 13 periods analyzed, the portfolios constructed
from the B-L method give better results than the portfolios constructed from Mean-
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Variance method. From the point of total risks, in 9 periods over 13 periods analyzed,
the portfolios formed from the B-L method have lower total risks than the portfolios
formed from Mean-Variance method.

Bozdemir (2011, [7]) has a master thesis on the application of B-L method to Turkish
Stock Market. He deals with returns on Turkish industrial price indexes for the period
from July 2000 to November 2010. Two information sets used in this thesis in order
to apply the B-L Model are the returns derived from the Capital Asset Pricing Model
and returns from an AR(1) Model used to represent investor views. These two infor-
mation sets are blended by Theil’s Mixed Estimation Method. However, the posterior
weights obtained are not consistent with the expectations. By giving a simple 2 as-
sets example he explains that the reason behind the unexpected relationship between
the expected return and the corresponding posterior weight is the covariance structure.
Finally, performances of the B-L and the CAPM strategy returns are compared with
regards to compounded returns, mean variance analysis, utility values and unpaired
student-t test. In the end, he concludes that B-L portfolio derived from the combina-
tion of CAPM and AR(1) returns is not superior to the market portfolio, because there
is not any statistically significant difference between the mean returns of the B-L and
the CAPM strategies.
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CHAPTER 3

MATHEMATICAL DERIVATIONS FOR THE
BLACK-LITTERMAN MODEL

It has been shown by Becker and Gürtler (2009, [2]) that Black and Litterman (B-L)
(1991, [4]) assume return vector of N specified assets is normally distributed with
N × 1 expected return vector µ and N ×N variance-covariance matrix Σ :

r ∼ N(µ,Σ).

It is also assumed that the variance-covariance matrix is known and is estimated from
historical return data of specified assets. Moreover, Becker and Gürtler (2009, [2])
indicate that B-L (1991, [4]) determine the vector of expected returns as a random
vector which is distributed normally with known parameters Π, τ and Σ :

µ ∼ N(Π, τΣ).

Π is theN×1 equilibrium return vector and is supposed to be a neutral reference point.
In the B-L model, “equilibrium” returns are considered as a starting point by Idzorek
(2004, [15]). Equilibrium returns are derived from the Capital Asset Pricing Model
(CAPM). These returns are the equilibrium returns that clear the market of all assets.
The equilibrium returns are calculated via a reverse optimization method in which the
vector of implied excess equilibrium returns is derived from the equation given as:

Π = λΣwMKT, (3.1)

where

Π is the implied excess equilibrium return vector (N × 1 column vector),

λ is the risk aversion coefficient,

Σ is the covariance matrix of excess returns (N ×N matrix), and

wMKT is the market capitalization weight (N × 1 column vector) of the assets.
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The risk aversion coefficient of all investors in the market (λ) describes a trade-off be-
tween the expected return and the risk. B-L assign 2.5 to λ which represents the world
average risk tolerance described in Black (1989, [3]). Idzorek (2004, [15]) assigns 3.07
to λ which is derived from dividing excess returns by the variance of excess returns.
The risk aversion coefficient serves as a scaling factor for the estimate of excess re-
turns from the reverse optimization. These estimated excess returns get higher as the
risk aversion coefficient increases.
To obtain the Formula (3.1), the following utility function is maximized:

U = wTΠ−
(
λ

2

)
wTΣw.

U is a concave function; therefore, it has a single global maximum. In order to find this
global maximum, the first derivative of the utility function with respect to w is taken.
After setting this derivative equal to zero, equation presented below is obtained:

dU

dw
= Π− λΣw = 0,

Π = λΣw.

The variance-covariance matrix of the expected return vector µ is supposed to be the
multiplication of the variance-covariance matrix of returns with a scaling factor τ > 0.
B-L (1992, [5]) assume that the uncertainty in the expected return is smaller than the
uncertainty of returns themselves. Therefore they assign a quite small number to τ .

In the B-L model, investors’ views are expressed as either in absolute terms such as
“asset A will have a return of X.” or in relative terms such as “asset A will outper-
form asset B by X.” Idzorek (2004, [15]) uses 8 asset classes consisting of US Bonds
(p1), International Bonds (p2), US Large Growth (p3), US Large Value (p4), US Small
Growth (p5), US Small Value stocks (p6), International Developed Equity (p7) and In-
ternational Emerging Equity (p8). Three sample views on these asset classes specified
in the article of Idzorek (2004, [15]) are restated below in the format of B-L (1990):
View 1: The excess return of International Developed Equity (p7) will be 5.25%.

View 2: The excess returns of International Bonds (p2) will be 25 basis points greater
than the excess returns of U.S. Bonds (p1).

View 3: The excess returns of U.S. Large Growth (p3) and U.S. Small Growth (p5)
will be 2% greater than the excess returns of U.S. Large Value (p4) and U.S. Small
Value (p6).1

1 Idzorek (2004, [15]) states that the portfolio including U.S. Large Growth and U.S. Small Growth assets is
the market-capitalization weighted portfolio and the portfolio including U.S. Large Value and U.S. Small Value is
the market-capitalization weighted portfolio as well.
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View 1 is an absolute view; on the other hand, views 2 and 3 are relative views.

Incorporation of these views into the B-L model is tricky. It is stated in the model that
there is no need to specify views on all assets. If we continue with Idzorek’s eight
assets example, the number of views (k) is 3; therefore, the View vector (q) is a 3×1
column vector. The uncertainty of views results in a random, unknown, independent,
normally-distributed Error Term Vector (ε) with a mean of 0 and a covariance matrix
Ω. Therefore, a view has the form of q + ε.

General Case: Idzorek’s Example:

q + ε =

 q1
...
qk

+

 ε1
...
εk

 , q + ε =

 5.25
0.25

2

+

 ε1
...
εk

 .
The Error Term Vector (ε) itself is not part of the B-L formula directly. However, the
variance of each error term (ω), which is the absolute difference from the error terms
(ε) expected value of 0, is incorporated into the formula by Idzorek (2004, [15]). The
variances of error terms (ω) constitute Ω, where Ω is a diagonal variance-covariance
matrix. Since views expressed on different assets are assumed to be independent of one
another, the off-diagonal elements of Ω are 0. The variances of error terms ω indicate
the uncertainty associated with these views.

General case:

Ω =

 ω1 0 0

0
. . . 0

0 0 ωk

 .
Views stated in the column vector q are assigned to the related assets by a weight matrix
P . Each stated view is shown as a 1×N row vector. Therefore, K views are shown in
a K × N matrix. If we look at Idzorek’s example based on the work of Satchell and
Scowcrof (2000, [23]), in which there are 8 assets and 3 views, P is a 3×8 matrix.

General case: Idzorek’s Example (Equally Weighted Method)

P =

 p1,1 . . . 0 p1,n
... . . . ...
pk,1 · · · pk,n

 , P =

 0 0 0 0 0 0 1 0
−1 1 0 0 0 0 0 0
0 0 0.5 −0.5 0.5 −0.5 0 0

 .
The first row of Matrix P represents view 1, an absolute view. Views 2 and 3, relative
views, are expressed by Rows 2 and 3, respectively.

In constructing the weight matrix depicted above, Satchell and Scowcroft (2000, [23])
assign a weight of zero to any asset that is not mentioned in a view. On the other
hand, if there are more than one assets mentioned in a view, all of these assets are
assigned equal weights. This is one of the methods of identifying the values of Matrix
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P . Idzorek (2004, [15]), on the other hand, uses another method in order to construct
pick or weight matrix, P . Idzorek (2004, [15]) assigns market value weights to all the
assets mentioned in a view. Assets that are not mentioned in a view still have a weight
of 0. More precisely, the relative weighting of each individual asset is calculated by
dividing that asset’s market capitalization by the total market capitalization of either
the outperforming or underperforming assets in that specific view.

Matrix P (Market Capitalization Method)

P =

 0 0 0 0 0 0 1 0
−1 1 0 0 0 0 0 0
0 0 0.9 −0.9 0.1 −0.1 0 0

 .
When Matrix P is constructed, the variance of each individual view portfolio can be
calculated. The variance of an individual view portfolio is pkΣpTk , where pk is a sin-
gle 1 × N row vector from Matrix P that corresponds to the kth view and Σ is the
covariance matrix of excess returns.

3.1 Blending Prior and Posterior Returns with Bayes Theorem

Bayes Theorem allows investors to blend implied equilibrium returns with investors’
views and states that:

f(E(r)|Π) =
f(Π|E(r))f(E(r))

f(Π)
,

f(E(r)) is the prior density function that expresses the (prior) beliefs of the investor,

f(Π) represents the marginal probability density function (p.d.f.) of CAPM equilib-
rium returns,

f(Π|E(r)) is the conditional p.d.f. of the CAPM equilibrium return, given the fore-
casts declared by the investor.

Satchell and Scowcroft (2000, [23]) explain comprehensive mathematics behind the
B-L model in detail. They make two normality assumptions:

Assumption 3.1.
Let Υ = PE(r). Υ follows a normal distribution with mean matrix q and covariance
matrix Ω:

Υ ∼ N(q,Ω).

As it is mentioned before in Idzorek’s example, Ω is a diagonal covariance matrix
having elements of 0’s on off-diagonals. Each diagonal element ωii indicates the level
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of certainty the investor has on that view. For example ωii = 0 indicates absolute
certainty. q and Ω are called as Bayesian hyper parameters.

Assumption 3.2.
Π given E(r) follows a normal distribution with mean matrix E(r) and covariance
matrix τΣ where τ is a scaling factor:

Π|E(r) ∼ N(E(r), τΣ).

One can deduce from this assumption that the equilibrium excess returns given the
investor’s estimates equal to the investor’s estimates on average. On the other hand, in
CAPM approach, where all investors have common beliefs and hold the same portfolio,
then Π indicates the equilibrium returns given the investors’ common beliefs.

Theorem 3.1. The p.d.f. of E(r) given Π is distributed normally such that:

f(E(r)|Π) ∼ N([(τΣ)−1+P TΩ−1P ]−1[(τΣ)−1Π+P TΩ−1q], [(τΣ)−1+P TΩ−1P ]−1),

where

µBL = [(τΣ)−1 + P TΩ−1P ]−1[(τΣ)−1Π + P TΩ−1q,

ΣBL = [(τΣ)−1 + P TΩ−1P ]−1.

Proof. 2

By Assumption (3.2), we can write

f(Π|E(r)) =
1√

(2π)N |τΣ|
e{−

1
2

(Π−E(r))T (τΣ)−1(Π−E(r))}.

By Assumption (3.1), the p.d.f. of E(r)

f(E(r)) =
1√

(2π)K |Ω|
e{−

1
2

(PE(r)−q)TΩ−1(PE(r)−q)}.

Let us define a constant c = 1√
(2π)N+K |τΣ||Ω|

.

By Bayes Formula

f(E(r)|Π) =
ce{−

1
2

[{(Π−E(r))T (τΣ)−1(Π−E(r))}−{(PE(r)−q)TΩ−1(PE(r)−q)}]}

f(Π)
. (3.2)

2 The major steps of the proof are obtained from the appendix of the paper by Satchell and Scowcroft (2000,
[23]). All formulas of distributions, some matrix operations and multiplications are inserted between steps in order
to clarify the transition from one step to another.
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Since p.d.f. of Π does not include any E(r) term, one can consider f(Π) as a nor-
malizing factor. After realizing that, we just need to deal with the exponential term in
Equation (3.2). By using some basic matrix operations and multiplications, this term
can be written in the following form:

−1

2
{(E(r))T (τΣ)−1E(r)− (E(r))T (τΣ)−1Π− ΠT (τΣ)−1E(r) + ΠT (τΣ)−1Π

+(E(r))TP TΩ−1PE(r)− qTΩ−1PE(r)− (E(r))TP TΩ−1q + qTΩ−1q}.

Remark 3.1.
(E(r))T (τΣ)−1Π = ΠT (τΣ)−1E(r),

(E(r))TP TΩ−1q = qTΩ−1PE(r).

By using Remark (3.1), the exponential term in Equation (3.2) becomes:

= −1

2
{(E(r))T (τΣ)−1E(r)− 2ΠT (τΣ)−1E(r) + ΠT (τΣ)−1Π + (E(r))TP TΩ−1PE(r)

−2qTΩ−1PE(r) + qTΩ−1q}

= −1

2
{(E(r))T [((τΣ)−1 + P TΩP )((τΣ)−1 + P TΩP )−1((τΣ)−1 + P TΩ−1P )]E(r)

−2[(ΠT (τΣ)−1 + qTΩ−1P )((τΣ)−1 + P TΩ−1P )−1((τΣ)−1 + P TΩ−1P )]E(r)

+qTΩ−1q + ΠT (τΣ)−1Π}.

Let

C = (τΣ)−1Π + P TΩ−1q,

H = (τΣ)−1 + P TΩ−1P , note that H is symmetric.

A = qTΩ−1q + ΠT (τΣ)−1Π.

Remark 3.2.
H is symmetric which means H = HT .

Σ is an N × N covariance matrix. Therefore, it is a square matrix. If Σ is invert-
ible, then ΣT is invertible and (Σ−1)T = (ΣT )−1. Furthermore, by the definition of
covariance matrix, this is also a symmetric matrix which indicates that ΣT = Σ.

Ω is an K × K square matrix. If Ω is invertible, then ΩT is invertible and (Ω−1)T =
(ΩT )−1. Furthermore, Ω is a diagonal matrix indicating that Ω = ΩT .

HT = [(τΣ)−1 +P TΩ−1P ]T = ((τΣ)T )−1 +P T (ΩT )−1P = (τΣ)−1 +P TΩ−1P = H.
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Using the property of H, we can rewrite the exponential terms as follows:

−1

2
{(E(r))THTH−1HE(r)− 2CTH−1HE(r) + A}

= −1

2
{(HE(r)− C)TH−1(HE(r)− C) + A− CTH−1C}

= −1

2
{(E(r)−H−1C)TH(E(r)−H−1C) + A− CTH−1C}.

Since there is noE(r) term inA−CTHC, terms likeA−CTHC appear to be constant
in the equation above. Later, when this equation is integrated in terms of E(r), these
terms disappear. Hence,

f(E(r)|Π) ∼ e{−
1
2

[(E(r)−H−1C)TH(E(r)−H−1C)]},

so that E(r)|Π has a mean of H−1C = [(τΣ)−1 + P TΩ−1P ]−1[(τΣ)−1Π + P TΩ−1q]

and the conditional variance of V ar(r|Π) = [(τΣ)−1 + P TΩ−1P ]−1.

Satchell and Scowcroft (2000, [23]) also explain an alternative formulation of the B-L
model in detail by making two more assumptions:

Assumption 3.3.
f(Π|E(r), τ) ∼ N(E(r), τΣ),

f(E(r)|τ) ∼ N(q, τΩ).

Assumption 3.4.
The marginal (prior) p.d.f. of ω = 1

τ
is given by the following

f(ω) =
(λ

2
)K/2ω(K/2)−1e(−λω

2
)

Γ(K/2)
, 0 < ω <∞.

This p.d.f. has two hyper parameters K and λ, and these parameters are assumed to be
independent of f(Π).

Theorem 3.2. By Assumptions (3.3) and (3.4)

f(E(r)|Π) ∼ [K + (E(r)− θ)Tλ?V (E(r)− θ)]−
N+K

2 ,
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which is a multivariate t distribution. The vector θ is E(r|Π) given in Theorem (3.1),
the matrix V is the V ar(r|Π) given in Theorem (3.1) while

λ? =
K

λ+ A− CTH−1C
,

where A, C, H are defined in the Proof of Theorem (3.1).

Proof. 3

By Bayes Formula

f(E(r), ω|Π) =
f(Π|E(r), ω)f(E(r), ω)

f(Π)
=
f(Π|E(r), ω)f(E(r)|ω)f(ω)

f(Π)

f(Π|E(r), ω) =
ωN/2√

(2π)N |Σ|
e{−

1
2

(Π−E(r))TωΣ−1(Π−E(r))}

f(E(r)|ω) =
1√

(2π)K |Ω|
e{−

1
2

(PE(r)−q)TωΩ−1(PE(r)−q)}.

If we define c = 1
(2π)(N+K)/2|Σ|1/2|Ω|1/2

f(Π|E(r), ω)f(E(r)|ω) = cωN/2e{−
ω
2
G},

where G = (Π− E(r))TΣ−1(Π− E(r)) + (PE(r)− q)TΩ−1(PE(r)− q).

By Assumption (3.4)

f(E(r), ω|Π) =
cωN/2e{−

ω
2
G} (λ

2

)K/2
ω(K/2)−1e{−

λω
2
}

Γ(K
2

)f(Π)

=
cω(N+K

2
)−1e{−

ω
2

(G+λ)} (λ
2

)K/2
Γ(K

2
)f(Π)

.

The probability distribution function shown above is integrated in terms of ω in order
to find f(E(r)|Π):

v = ω
2
(G+ λ), ω = 2v

(G+λ)
, dω = 2

(G+λ)
dv,

3 The major steps of this proof are obtained from the appendix of the paper by Satchell and Scowcroft (2000,
[23]). A few formulas of distributions are added in order to clarify the whole structure of the proof.
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f(E(r)|Π) = c′
(
λ

2

)K/2 ∫ ∞
0

e−v
(

2v

G+ λ

)(N+K
2 )−1(

2

G+ λ

)
dv.

then

=
c′(λ2 )

K/2
2(N+K)/2Γ(N+K

2 )
Γ(K2 )(G+λ)(N+K)/2

.

A multivariate t distribution is defined for matrices θ(l×1) and V (l× l). Furthermore,
a positive constant υ is defined:

f(x|θ, V, υ, l) =
υυ/2Γ

(
υ+l

2

)
|V |1/2[υ + (x− θ)TV (x− θ)](υ+l)/2

π1/2Γ
(
υ
2

) .

If G+ λ is rewritten in terms of A, C, and H as shown in the proof of Theorem (3.1),
we can obtain:

G+ λ = (E(r)−H−1C)TH(E(r)−H−1C) + A− CTH−1C + λ

= (E(r)−H−1C)T
KH

λ+ A− CTH−1C
(E(r)−H−1C) +K.

This shows that f(E(r)|Π) is multivariate t ,

θ = H−1C (as before),

υ = K
λ+A−CTH−1C

H , l = N and υ = K.

3.2 Some Extensions of Black-Litterman Model

He and Litterman (1999, [14]) bring a new perspective to the B-L model. In their
model, uncertainties about investors’ views are defined as follows:

ωii = Pi(τΣ)P T
i .

Since τ is a quite small number, diagonal elements of Ω become much smaller than
those in the case described above. As a result, weights assigned to securities with
views increase more.

They state that stock returns are distributed normally as follows:
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r ∼ N(µ,Σ),

where

µ = [(τΣ)−1 + P TΩ−1P ]−1[(τΣ)−1Π + P TΩ−1q],

M
−1

= [(τΣ)−1 + P TΩ−1P ]−1,

Σ = Σ +M
−1
.

Inputs of the standard mean-variance optimization method with security returns having
the mean µ and the covariance matrix Σ are different from those in B-L method. Apart
from this difference, following the same logic of B-L method, the utility function of
the investor is being maximized in the optimization:

maximize {wTµ− λ

2
wTΣw}.

Let us take the first derivative of this objective function with respect to w, and obtain

µ = λΣw?,

or, equivalently,

w? =
1

λ
Σ
−1
µ,

where w? is the vector of optimal portfolio weights. These optimal portfolio weights
can be written in the form of

w? =
1

λ
Σ
−1
M
−1

[(τΣ)−1Π + P TΩ−1q].

Remark 3.3.
(A+B)−1 = A−1 − A−1B(I + A−1B)−1A−1.

By Remark (3.3)

Σ
−1

= (Σ +M
−1

)−1 = M −M(M + Σ−1)−1M,

36



Σ
−1
M
−1

=
τ

1 + τ

(
I − P TA−1P

Σ

1 + τ

)
,

A =
Ω

τ
+

PΣ

1 + τ
P T w? =

1

λ
Σ
−1
µ,

w? =
1

1 + τ
(weq + P T × Λ),

where weq = (λΣ)−1Π

Λ =
1

λ
τΩ−1q − A−1P

Σ

1 + τ
weq −

1

λ
A−1P

Σ

1 + τ
P T τΩ−1q.

It can be easily understood from He and Litterman (1999, [14]) that Λ indicates tilts
of the posterior weights due to specified views. In other words, Λ is the measure of
impact of the investors’ views on portfolio weights assigned to securities. It can be
easily seen from the first term in the formula of Λ that Λ moves in the same direction
with q, and moves in the opposite direction with Ω. More precisely, if the investor state
bearish views, then Λ decreases. However, if the investor is less confident about these
bearish views, then Λ decreases less. The minus sign in front of the second term in
the equation indicates that the effect of investors views on security weights decreases
when the covariance between a view portfolio and the market equilibrium portfolio is
high. The minus sign in front of the third term in the equation implies that the effect of
views on security weights declines when the covariance between a view portfolio and
other view portfolios is high.

Meucci (2010, [21]) assumes that µ is estimated without any estimation error. In other
words, when τ ≡ 0, then B-L model boils down to the reference model, and

r ∼ N(Π,Σ).

B-L state that the investors assert the views on the parameter µ. In addition to this, the
K × N “pick” matrix P indicates K views in the linear form, and this matrix’s k-th
row determines the relative weight of each expected return in the corresponding view.
To incorporate the level of uncertainty with the corresponding view, B-L assume the
views’ returns follows a normal distribution:

Pµ ∼ N(v,Ω), (3.3)

v is the vector of the views’ returns,
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Ω is the matrix of the uncertainty of the views.

According to Meucci, if the investors have just qualitative views, they should set the
entries of v in terms of the volatility of the market:

vk ≡ (PΠ)k + ηk

√
(PΣP T )k,k (k = 1, ..., K),

ηk ∈ {−β,−α,+α,+β}.

Here, ηk allows investors to define views as “very bearish” (is indicated by−β), “bear-
ish” (is indicated by−α, “bullish” (is indicated by +α, and “very bullish” (is indicated
by +β). α and β are two constants. Meucci states that the values of these parameters
can possibly be chosen as α ≡ 1 and β ≡ 2. However, it can also be defined as in
Meucci (2005)

Ω =
1

c
PΣP T ,

where the part of PΣP T comes from the market volatilities and correlations and c ∈
(0,∞) indicates an overall level of confidence in the views. Additionally, to specify
a scale-independent and different relative uncertainty level to each view, the equation
above should be reconstructed as follows:

Ω =
1

c
diag(u)PΣP Tdiag(u),

where u ∈ (0,∞)K

Meucci analyzes the uncertainty of the views in two ways. First, when the levels of
confidence in the views are relatively low, i.e. Ω → ∞ in 3.3. Then, the posterior
becomes the reference model:

X ∼ N(Π,Σ).

Second, when investors are quite sure of their views, i.e. Ω → 0. Then, the posterior
becomes the reference model conditioned on the stated views. In that case, conditional
distribution is still normal:

X|v ∼ N(µ|v,Σ|v),

µ|v ≡ Π + ΣP T (PΣP T )−1(v − PΠ),
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Σ|v ≡ Σ− ΣP T (PΣP T )−1PΣ.

As it is mentioned before, in the B-L method, the investors assert their views on the
parameter µ, not on the return r, and hence, the confidence in the views just affects the
estimation risk part (τΣ) of the covariance ((1 + τ)Σ) , not its volatility-correlation
component Σ.

To start with the reference model, µ is not taken as a random variable. Thus, we set
µ ≡ Π in order to obtain the reference model while not taking the estimation risk
into consideration. Investors can specify their views on linear functions of the market
V = PX , where P is a pick matrix. The views, V , which is defined by the reference
model as a random variable given the market are distributed normally

V |x ∼ N(Px,Ω),

↗ X ∼ N(Π,Σ) (no confidence: Ω→∞)

X ∼ N(µmBL,Σ
m
BL)

↘ X ∼ N(µ|v,Σ|v) (full confidence: Ω→ 0)

Proof. 4

X ∼ N(Π,Σ),

f(x) =
1√

(2π)N |Σ|
e{−

1
2

(x−Π)TΣ−1(x−Π)},

v|x ∼ N(Px,Ω),

f(v|x) =
1√

(2π)K |Ω|
e{−

1
2

(v−Πx)TΩ−1(v−Πx)}.

By Bayes’ Rule:

f(X|v; Ω) =
f(v|x)f(x)

f(v)
.

4 The major steps of this proof are obtained from the technical appendix in the paper of Meucci (2010, [21]).
Meucci also cites the study of Satchell and Scowcroft (2000, [23]) in this technical appendix. All formulas of
distributions and some matrix operations and multiplications are inserted between steps in order to clarify the
transition from one step to another.

39



We can define c = 1√
(2π)(N+K)|Σ||Ω|

,

f(x|v) =
ce{−

1
2 [(x−Π)TΣ−1(x−Π)+(v−Πx)TΩ−1(v−Πx)]}

f(v)
,

f(v) can be considered as a normalizing factor. Then we just need to deal with the
exponential term

(x− Π)TΣ−1(x− Π) + (v − Πx)TΩ−1(v − Πx)

= xTΣ−1x− ΠTΣ−1x− xTΣ−1Π + ΠTΣ−1Π + vTΩ−1v − vTΩ−1Px− xTP TΩ−1v

+xTP TΩ−1Px.

Remark 3.4.
It should be stated that:

xTΣ−1Π = ΠTΣ−1x,

xTP TΩ−1v = vTΩ−1Px.

By Remark (3.4)

= xTΣ−1x− 2ΠTΣ−1x+ ΠTΣ−1Π + vTΩ−1v − 2vTΩ−1Px+ xTP TΩ−1Px

= xT [(Σ−1 + P TΩP )(Σ−1 + P TΩP )−1(Σ−1 + P TΩ−1P )]x

−2[(ΠTΣ−1 + vTΩ−1P )(Σ−1 + P TΩ−1P )−1(Σ−1 + P TΩ−1P )]x+ ΠTΣ−1Π

+vTΩ−1v,

C = Σ−1Π + P TΩ−1v,

H = Σ−1 + P TΩ−1P , note that H is symmetric.

A = ΠTΣ−1Π + vTΩ−1v.

Remark 3.5.
H is symmetric which means H = HT .

Σ is an N × N covariance matrix. Therefore, it is a square matrix. If Σ is invertible,
then ΣT is invertible and (Σ−1)T = (ΣT )−1. Furthermore, by definition of covariance
matrix, this is also a symmetric matrix which indicates that ΣT = Σ.

Ω is an K × K square matrix. If Ω is invertible, then ΩT is invertible and (Ω−1)T =
(ΩT )−1. Furthermore, Ω is diagonal indicating that Ω = ΩT .
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HT = [Σ−1 + P TΩ−1P ]T = (ΣT )−1 + P T (ΩT )−1P = Σ−1 + P TΩ−1P = H

xTHTH−1Hx− 2CTH−1Hx+ A = (Hx− C)TH−1(Hx− C) + A− CTH−1C

= (x−H−1C)TH(x−H−1C) + A− CTH−1C.

Since there is no x term in A − CTH−1C, terms like A − CTH−1C appear to be
constant. Later when this equation is integrated in terms of x, these terms drop out of
the equation. Hence,

f(x|v) ∼ e{−
1
2

(x−H−1C)TH(x−H−1C)},

so that x|v has a mean of H−1C = [Σ−1 + P TΩ−1P ]−1[Σ−1Π + P TΩ−1v]

and a variance of V ar(x|v) = [Σ−1 + P TΩ−1P ]−1.

Remark 3.6.
Using the matrix identity ( A and D invertible)

(A−BD−1C)−1 = A−1 − A−1B(CA−1B −D)−1CA−1,

µmBL = (Σ−1 + P TΩ−1P )−1(Σ−1Π + P TΩ−1v)

= (Σ− ΣP T (PΣP T + Ω)−1PΣ)(Σ−1Π + P TΩ−1v)

= Π− ΣP T (PΣP T + Ω)−1PΠ + ΣP TΩ−1v − ΣP T (PΣP TΩ)−1PΣP TΩ−1v

= Π + ΣP T (Ω−1 − (PΣP T + Ω)−1PΣ)(Σ−1Π + P TΩ−1v)

−ΣP T (PΣP T + Ω)−1PΠ.

Note that

Ω−1 − (PΣP T + Ω)−1PΣP TΩ−1 − (PΣP T + Ω)−1,

which can easily be checked. By left-multiplying both sides by (PΣP T + Ω), it can
be written as

µmBL = Π + ΣP T (PΣP T + Ω)−1(v − PΠ),

Σm
BL = (Σ−1 + P TΩ−1P )−1 = Σ− ΣP T (PΣP T + Ω)−1PΣ.
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3.3 Blending Prior and Posterior Returns with Theil’s Mixed Estimation Ap-
proach

Theil’s Mixed Estimation approach is another method used for blending prior returns
with the views. Walters (2011, [29]) explains the details of this approach in the ap-
pendix of his paper. B-L (1992, [5]) assume that prior returns can be written as a linear
model such as

Π = xβ + u,

Π is the equilibrium return vector,

β is the expected return vector,

u is the residual vector which follows a normal distribution with mean 0 and variance
Φ.

Walters also introduces views as a linear model such as:

q = Pβ + v,

where

q is the view vector,

v is residual vector which is normally distributed with mean 0 and variance Ω,

Walters assumes that both Ω and Σ are non-singular.

Prior returns and the returns coming from the views can be combined in the following
way:

[
Π
q

]
=

[
x
P

]
β +

[
u
v

]
,

where the expected value of the residual is 0, and the expected value of the variance is

E

([
u
v

] [
uT vT

])
=

[
Φ 0
0 Ω

]
.

In order to estimate β, Walters uses the generalized least squares method:

β̂ =

[[
x P

] [ Φ 0
0 Ω

]−1 [
xT

P T

]]−1 [
xT P T

] [ Φ 0
0 Ω

]−1 [
Π
q

]
.
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The above equation can be rewritten by using the matrix notation as follows:

β̂ = [xΦ−1xT + PΩ−1P T ]−1[xTΦ−1Π + P TΩ−1q].

By substituting formula of combination vector of equilibrium returns and the returns
coming from the views into the β̂ equation not written by using matrix notation, the
following equation can be obtained.

β̂ = [xΦ−1xT + PΩ−1P T ]−1[xTΦ−1(xβ + u) + P TΩ−1(Pβ + v)]

= [xΦ−1xT + PΩ−1P T ]−1[xβΦ−1xT + P TΩ−1Pβ + xΦ−1u+ PΩ−1v]

= [xΦ−1xT + PΩ−1P T ]−1[xΦ−1xTβ + PΩ−1P Tβ] + [xΦ−1xT + PΩ−1P T ]−1

[xΦ−1u+ PΩ−1v],

β̂ = β + [xΦ−1xT + PΩ−1P T ]−1[xΦ−1u+ PΩ−1v],

β̂ − β = [xΦ−1xT + PΩ−1P T ]−1[xΦ−1u+ PΩ−1v],

The variance is the expectation of (β̂ − β)2.

E((β̂ − β)2) = ([xΦ−1xT + PΩ−1P T ]−1[xΦ−1uT + PΩ−1vT ])2

= [xΦ−1xT + PΩ−1P T ]−2[xΦ−1uTuΩ−1xT + PΩ−1vTvΩ−1P T

+xΦ−1uTvΩ−1P T + PΩ−1vTuΦ−1xT ].

By Walters’ assumptions, it can be easily deduced that E(uuT ) = Φ, E(vvT ) = Ω and
E(uvT ) = 0 since u and v are independent variables.

E((β̂ − β)2) = [xΦ−1xT + PΩ−1P T ]−2[(xΦ−1ΦΦ−1xT ) + (PΩ−1ΩΩ−1P T ) + 0 + 0]

= [xΦ−1xT + PΩ−1P T ]−2[xΦ−1xT + PΩ−1P T ].

In order to obtain the B-L model, x should be identity matrix and Φ = τΣ. Therefore
after making these substitutions, Walters gets:

E((β̂ − β)2) = [(τΣ)−1 + PΩ−1P T ]−1.

To sum up, the B-L model helps investors with two specific features while computing
the optimal weights for securities in their portfolios. The first one is that the market
portfolio based on Capital Asset Pricing Model is defined as the initial portfolio before
incorporating investors’ views. Thus, the model has the substantial theoretical back-
ground and quantitative investors can easily calculate the initial portfolio returns and
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weights according to the CAPM framework. Moreover, in the B-L model the assets on
which analysts do not specify any views still have their market-capitalization weights.
In other studies in the literature, randomly weighted, equally weighted or global min-
imum variance portfolios are taken as initial portfolios [29]. The second attribute of
this model is that investors are able to express their views on the security returns ei-
ther in an absolute or a relative form. In Markowitz model, investors should estimate
each asset’s expected return in a portfolio, and this indicates that extreme weights can
be assigned to each security in the portfolio due to the high sensitivity of model to
small changes in inputs in the model. In the B-L model, the views can be expressed on
the returns of stocks for which investors have information or have conducted security
analysis. Furthermore, the confidence in these views can also be stated. Therefore,
final weights assigned to securities with views change from the initial market capital-
ization weights in the direction of the views specified. These changes in weights are
larger when investors are more confident about their views. Final weights assigned to
securities without views do not change by much from the initial market capitalization
weights.
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CHAPTER 4

DATA AND METHODOLOGY

4.1 Data

In the analysis of this thesis, monthly continuously compounded returns on the stocks
included in the Borsa Istanbul-50 (BIST-50) index are used. First, stocks that are
consistently included in BIST-50 index in any given year during the sample period
of this thesis are determined. Then monthly returns on these securities for the five
years prior to the year of analysis are used to estimate the expected excess returns and
variance-covariance matrix of these securities. For instance, for the year 2005, the
stocks which are included in the BIST-50 index in the 1st, 2nd, 3rd, and 4th quarters
of 2005 are identified. Then among those, the ones which have monthly return data
available from January 2000 to December 2004 are selected. Which stocks included
in the BIST-50 index for all periods in a particular year are found under the tab called
“Constituent Equities of Indices” on the web site of BIST (www.borsaistanbul.com).
Then, availability of monthly returns data for the prior 5 years are checked under the
tab called “Monthly Price and Return of Equity Market Data” on the web site of BIST.
List of the stocks analyzed for the periods from 2005 to 2015 are reported in the Table
4.1 on the next page. For each of the years from 2005 to 2015, monthly return data
on these stocks for the prior 5 years, a total 60 observations, are downloaded. These
returns are calculated from closing prices of the stocks adjusted for stock splits and
dividends.

The excess returns on sample stocks, is calculated by subtracting the monthly risk-free
rate from corresponding monthly stock returns. The effective annual return on the 3-
month Turkish government securities is taken as a proxy for the risk-free rate since
the data for 1-month Turkish treasury bills is not consistently available for the sample
period analyzed in this thesis. Data for 3-month Turkish government securities are
available under the tab called “Debt Securities Market Data” on the official website
of the BIST. From the daily bulletins of government securities, effective annual yields
on securities that have remaining time to maturity closest to 90 days in each month
are selected as the proxy for the risk-free security. These effective annual returns are
converted to monthly returns by using the following formula:

rfmonthly = (1 + rfcompounded)
1/12 − 1.
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Table 4.1: Stock Codes Used in This Thesis for the Period from 2005 through 2015
This table presents the sample stocks analyzed in each of the years between 2005 and 2015. To determine this
sample, first stocks that are consistently included in the BIST-50 index in each year are determined. After that,
the existence of the monthly return data for the prior 5 years is controlled for each of these securities on the
official web site of BIST. The stocks meeting both of these conditions are shown in this table.

XXXXXXXXXXXXXX
The Codes of
company

The estimation
years20052006200720082009201020112012201320142015

AEFES X X X X X X X X X X
AKBNK X X X X X X X X X X X
AKCNS X
AKENR X X X X X X
AKGRT X X X X X X
AKSA X
ALARK X X X
ANSGR X X X X X
ARCLK X X X X X X X X X X X
ASELS X X X X X X
ASYAB X X
AYGAZ X X X X X
BAGFS X X X X X
BEKO X
BIMAS X X X X X
CCOLA X X
DEVA X
DISBA X
DOAS X X
DOHOL X X X X X X X X X X X
DYHOL X X X X X X X X X
ECILC X X X X X X X X X
ENKAI X X X X X X X X
EREGL X X X X X X X X X X X
FENER X X
FINBN X X
FORTS X X
FROTO X X X X X X X
GARAN X X X X X X X X X X X
GLYHO X X X X
GOLTS X X
GOZDE X
GSDHO X X X X
GSRAY X
GUBRF X X X X X
HALKB X X X
HURGZ X X X X X X
IHLAS X X X X X X
IPEKE X X X
ISCTR X X X X X X X X X X X
ISGYO X X X X
IZMDC X
KARTN X
KCHOL X X X X X X X X X X X
KONYA X
KOZAA X X X X X X
KRDMD X X X X X X X X X X X
MGROS X X X X
MIGRS X X X X
NETAS X
NTHOL X X X X X
OTKAR X X
PETKM X X X X X X X X X X X
PRKME X
PRKTE X X
PTOFS X X X X X
SAHOL X X X X X X X X X X X
SISE X X X X X X X X X X X
SKBNK X X X X X
SNGYO X
TAVHL X X X
TCELL X X X X X X X X X X
TEBNK X X X
THYAO X X X X X X X X X X
TIRE X
TKFEN X X
TNSAS X
TOASO X X X X X X X X X X X
TRKCM X X X X X X
TSKB X X X X X X X
TTKOM X X
TTRAK X X X
TUPRS X X X X X X X X X X X
ULKER X X
VAKBN X X X X X
VESTL X X X X X X X
YAZIC X
YKBNK X X X X X X X X X X X
ZOREN X
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Finally, the natural logarithm of these excess returns are calculated by the formula
ln(1 + R) in Excel. As a result, monthly logarithmic excess returns of BIST-50
stocks are obtained to determine the optimal number of stocks needed to form a well-
diversified portfolio from BIST-50 stocks.

For the application of the Markowitz and the Black-Litterman (B-L) models, a prior
information set based on the CAPM approach is needed. Furthermore, for the B-L
model, a second information set consisting of investor views should be constructed.

Let us start with the prior information set based on the CAPM approach. For the prior
return estimation, the data used in this application are composed of monthly logarith-
mic excess returns on the stocks consistently included in the BIST-50 Index for the
period from January 2000 to December 2014. The last data needed for the prior in-
formation set is the market capitalization of stocks on the month before the beginning
of each 1 year period. This data is also collected from the tab called “Equity Market
Data” on the website of the BIST for the December of each year from 2004 to 2014.
Market capitalization weight of each stock is calculated by dividing market value of
this security by the total market value of all the stocks that are available for inclusion
in the portfolio for that year.

Investor view, in this thesis, is taken as the analysts’ forecasts of target stock price
for a company. This data is collected from the Bloomberg Analyst Recommendations
module. From the menu of analyst recommendations, one can reach the buy/sell rec-
ommendations of analysts for a company, target price for that company shares and
a time period over which this target price is expected to be observed. These recom-
mendations and forecasts are made by Bloomberg analysts and analysts all around the
world.

On the menu of analyst recommendations in the Bloomberg database, there is a list of
target prices which are expressed by several analysts for a selected stock, and also there
is an average target price for that stock. This average target stock price is used to rep-
resent the views of analysts, hence investors, in this thesis. Analyst recommendations
page displays several analysts’ target price estimates over the next 12 months from a
specified date. Average target price is calculated by taking the mean of analysts’ target
price estimates in the last 3 months from a specified date.

The average target prices available in the Bloomberg for the ith stock should be con-
verted into an average target return for that stock by using the following equation:

ri =
Average TargetPi − CurrentPi

CurrentPi
.

These target returns are for a 12-month period. However, the prior information set
of this thesis contains monthly returns. Therefore, these annual target stock returns
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should be converted into monthly target returns as follows:

rmonthly = (1 + r12months)
(1/12) − 1.

Since our prior information set has logarithmic monthly excess returns on stocks, and
the second information set should be consistent with the prior one, the views have to
expressed as monthly excess returns as well. First, the excess monthly target returns on
stocks are calculated by subtracting the corresponding risk free-rate for the estimation
year from these returns. Second, the natural logarithms of these excess target returns
are calculated by using the formula ln(1 + R) in Excel. Thus, the second set of infor-
mation needed to apply the B-L model is obtained.

4.2 Methodology

4.2.1 Diversification

The excess returns of BIST-50 stocks are expected to be normally distributed. First,
the normality of excess returns is checked by the Jarque-Bera test on MATLAB. The
Jarque-Bera test is one of the normality test based on skewness and kurtosis. Skewness
is a measure of how symmetric the returns are around their mean, and the sample
skewness is calculated as:

S =
µ3

σ3
=

1
N

N∑
i=1

(ri − r̄)3

(
1
N

N∑
i=1

(ri − r̄)2

)3/2
,

N : the number of observations (60 observations in our case).

Kurtosis is a measure of how thick the tails of the probability distribution of returns,
and the sample kurtosis is defined as:

K =
µ4

σ4
=

1
N

N∑
i=1

(ri − r̄)4(
1
N

N∑
i=1

(ri − r̄)2

)2 .

A normal distribution has the skewness of 0 and the kurtosis of 3. The Jarque-Bera
test is now introduced. The null hypothesis states that the data follows a normal dis-
tribution, and the alternative hypothesis states that the data does not follow a normal
distribution. The Jarque-Bera test statistic is:
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JB = N

[
S2

6
+

(K − 3)2

24

]
,

which asymptotically follows a chi-squared distribution with two degrees of freedom.
The test is proceeded as follows: when the calculated test statistic is greater than the
critical value obtained from the table of χ2

2 distribution at the particular significance
level, the null hypothesis is rejected.

As mentioned in Subsection 2.1.2, a naive diversification strategy is performed. For
each year, an Excel file is created with calculated logarithmic excess returns of the
stocks. This Excel file is imported into MATLAB1. By means of the covariance func-
tion available in MATLAB, the variance-covariance matrix of these returns is calcu-
lated. After that, a random number ranging from 1 to total number of stocks to be
analyzed in a given year is generated for the 1-stock portfolio. By taking the square
root of corresponding variance of the chosen stock, standard deviation of the selected
stock is calculated. This process is repeated 1000 times.

The standard deviation of each repeated 1-stock portfolio and the mean standard devi-
ation of these portfolios are kept in the program of MATLAB. For 2 stock portfolios,
a random number ranging from 1 to total number of stocks to be analyzed in a given
year is generated. After that another random number ranging from 1 to total number
of stocks to be analyzed excluding the number of the first stock selected is generated.
Hence, stocks are chosen without replacement. Corresponding variances and covari-
ances of these two chosen stocks are extracted from the variance-covariance matrix
via the program in MATLAB. The standard deviations of each 2 stock portfolio and
the mean standard deviation of these portfolios are calculated by the Equation 2.12
demonstrated in Subsection 2.1.2. This process is carried on with 3, 4, ..., total number
of stocks in a given year stock portfolios.

To determine the optimal range of stocks to form a well-diversified portfolio, a t-test
is performed. A statistically significant change in the mean standard deviation of two
portfolios that have N (sample 1) and N + 2 (sample 2) stocks in them respectively
are tested in this thesis by using a right tailed t-test at 5% significance level. Null
hypothesis states that mean of the two samples is equal, and the alternative hypothesis
states that mean of the first sample is greater than the mean of the second sample. T-test
statistic to compare the sample mean of portfolio standard deviations are calculated as:

t =
µ̄1 − µ̄2√
σ̄1
N1

+ σ̄2
N2

,

where
1 All MATLAB codes used to run the analyses of this thesis are represented in the Appendix B.
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µ̄1, and µ̄2 : sample means,
σ̄1, and σ̄2 : sample variances,
N1, and N2 : sample sizes.

When the calculated t statistic is greater than the critical t-value at 5% significance
level, the null hypothesis is rejected. That range for which the null hypothesis is re-
jected for the first time is defined as the optimal number of stocks to have in a well-
diversified portfolio.

To conduct this hypothesis testing, the program which is available in the Appendix B
is written in MATLAB. First of all, the data of standard deviations of all repeated port-
folios ranging from 1 to maximum number of stocks for a particular year is extracted
from the excel file generated by the first program in the Appendix B. The sample con-
sisting of standard deviations of 1 stock repeated portfolios and the sample including
standard deviations of 2 stock repeated portfolios are tested in terms of means, and this
process is continued with the data for 2-4 stock repeated portfolios, 4-6 stock repeated
portfolios, and so on. The last range of stocks for which their mean standard deviations
are statistically different from each other before no statistically significant difference
is obtained for the first time is determined as the optimal range of stocks to construct a
well-diversified portfolio.

4.2.2 Black-Litterman Method

In this Subsection, how the B-L model is constructed and applied in our study is ex-
plained in detail. There are four main steps to apply B-L model. First, the implied
equilibrium returns based on the CAPM approach are found. Second, analyst views
are formulated. Later, the posterior expected return and variance matrices are found
by inserting the calculated values in the first two steps into B-L formula. Finally, the
optimal posterior weight vector is found by the utility function optimization. Figure
4.1 represents each step of the B-L model. The details of each step are discussed in the
following paragraphs.

Along with the collected data which is described in Section 4.1, the logarithmic excess
equilibrium returns of stocks which are implied by the CAPM approach need to be
calculated and used as prior returns of stocks in the B-L method. In order to obtain
these equilibrium returns, the following utility function is required to be maximized:

U = wTΠ−
(
λ

2

)
wTΣw.

Here,

Π is the N× 1 logarithmic excess equilibrium return vector,
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λ is the risk aversion coefficient (scalar),

Σ is the N ×N covariance matrix of logarithmic excess returns,

w is the N× 1 weight vector of the assets, and

N is the number of assets in the portfolio (For instance, for year 2015, N=39).

Figure 4.1: Steps of the Black-Litterman Model.

This figure shows each step of the B-L model taken from [16]. B-L model includes two
information sets which are the prior information set derived from the CAPM and the
second information set coming from Bloomberg analysts’ views. Let us start explaining
the prior information set consisting of risk aversion coefficient, covariance matrix, market
capitalization weights. In this thesis, the world average risk aversion coefficient is taken
as 2.5 in accordance with the study of Black (1989, [3]). The covariance matrix is the
variance-covariance matrix of the 5-year historical returns. Each stock in the portfolio
is weighted according to its market capitalization. After attaining the first information
set, the implied equilibrium return vector can be calculated by taking the first derivative
of the utility function of an investor with respect to the weight vector (w), then equating
this to 0. The equilibrium returns are assumed to be distributed normally with mean Π
and variance τΣ. τ is a scaling factor. It is determined as the inverse of the number
of observations in this thesis. Let us continue explaining the second information set
involving analysts’ views. The weight vector q constitutes the stock returns derived from
Bloomberg analysts’ average target stock prices. The variance matrix of the views Ω is
determined as historical variances of the stocks scaled by τ as the study of Idzorek (2004,
[15]). Hence, the view returns are assumed to be distributed normally with mean q and
variance Ω. Finally, an investor can blend the implied equilibrium returns with analyst
views by Bayesian approach, and thus the posterior expected return and the posterior
variance can be obtained.

Since U is a concave function, it has a single global maximum. To find this global
maximum, the first derivative of this function with respect to w, has to be equated to 0.
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The closed form of the solution is obtained as:

w = (λΣ)−1Π.

According to the CAPM approach, optimal weights are the market capitalization weights
of the stocks in the portfolio. Market capitalization weight of kth stock is calculated
by dividing the market value of this security by the total market value of the portfolio
constructed from all the securities available for investment:

wMKT(k) =
Market Capitalization(k)
N∑
k=1

Market Capitalization(k)

.

Variance-covariance matrix, Σ, is estimated from 5-year historical logarithmic excess
returns of the stocks and is computed by using the covariance function in MATLAB.

In our study, the risk aversion coefficient is taken to be 2.5 which is estimated by Black
(1989, [3]) as the world average risk aversion coefficient. Then using this constant risk
aversion coefficient, the utility function of the investor with new expected returns (the
CAPM returns combined with analysts’ views) and variances of these returns is maxi-
mized.

Since the terms λ, Σ, and wMKT are estimated from market data, they are known. The
implied logarithmic excess equilibrium returns are obtained via a reverse optimization
method from known information:

Π = λΣwMKT.

Thus, the prior expected returns derived from the CAPM approach are obtained. Now
it is time to formulate analyst views.

To construct the P “pick matrix”, for each stock available for investment in any year
analyzed in this thesis, the average target price estimates of analyst are collected from
Bloomberg. As it is mentioned in Chapter 3, the views can be expressed either in an
absolute or relative form. Since the Bloomberg database covers only absolute infor-
mation about the stocks used in this thesis, we have just absolute views.

P is a K ×N matrix. K represents the number of stocks on which analysts expressed
a target price, and thus an average target price is available. N represents the total
number of stocks available for investment in a portfolio for the given estimation year.
For instance, for year 2015, the number of the stocks for which there is an average 12
month target price for the period from January 2014 to January 2015 is determined as

52



37 out of 39 stocks that are available for investment in a portfolio. Therefore, P is a
37×39 matrix for the year 2015. Each row of the matrix P represents one view. Since
we have only absolute views, each view involves only one asset. In each row of the
matrix P , there is only single 1 assigned to the stock on which a view is expressed,
and all the other assets have 0s. Hence, the sum of the elements of each row equals to 1.

The view vector q is a K×1 column vector. In our study, q vector demonstrates the aver-
age target returns for stocks. Therefore, average target price available in the Bloomberg
for the ith stock is used to calculate the logarithmic monthly excess returns based on
views as explained before.

After defining the expected logarithmic excess returns on the stocks, the uncertainty of
these expected returns needs to be estimated. These uncertainties are represented by a
K×K matrix, Ω. Ω is a diagonal matrix since the views are assumed to be independent
from each other. Because of the fact that some of analysts’ target prices are not reported
in the Bloomberg database to everyone but, when calculating the average 12-month
target price for a selected stock, these unreported estimates are also taken into account
by the Bloomberg, the exact variability of these expected target prices from the mean
target price can not be calculated. Hence, the historical variance of the actual returns
on a selected stock is used to estimate the uncertainty of the expected return on this
stock. The matrix Ω is constructed as mentioned in Idzorek (2004, [15]) by using the
following formula:

Ω = diag(P (τΣ)P T ).

Thus, the second information set is also ready to put in the B-L formula.

The main motivation of the B-L method is to combine a quantitative data and a quali-
tative view data into a joint framework. The equilibrium return vector (Π), the scalar
(τ ) and the historical variance-covariance matrix (Σ) are the components of the first
information set. The pick matrix (P ), the view vector (q), and the covariance matrix
of the views (Ω) are part of the second information set. All of these terms are esti-
mated in order to incorporate into the B-L formula. Blending of the CAPM returns
with investor views using Bayesian as well as Theil’s Mixed Estimation approaches
are shown in Chapter 3 of this thesis. Both methods give the same result shown below:

f(E(r)|Π) ∼ N([(τΣ)−1+P TΩ−1P ]−1[(τΣ)−1Π+P TΩ−1q], [(τΣ)−1+P TΩ−1P ]−1),

E(r) is a N×1 new combined logarithmic excess return vector,

Π is a N×1 logarithmic excess equilibrium return vector,

τ is a scaling factor of historical covariance matrix (τ is constant and equals to 0.0167
in this thesis),
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Σ is a N ×N covariance matrix of historical logarithmic excess returns,

P is a K ×N pick matrix of the stocks with views,

q is a K×1 logarithmic excess view returns vector,

Ω is a K×K the views’ covariance matrix ( Ω = diag(P (τΣ)P T ) in this thesis).

The result is that the new expected returns are normally distributed with a mean of µ
and a variance of M

−1
, where

µ = [(τΣ)−1 + P TΩ−1P ]−1[(τΣ)−1Π + P TΩ−1q],

M
−1

= [(τΣ)−1 + P TΩ−1P ]−1.

These updated mean returns, namely µ, can be rewritten as:

µ = Π + τΣP T [(PτΣP T ) + Ω]−1[q − PΠ].

This formula is derived by some matrix operations. Interested readers can refer to Wal-
ters (2011, [29]) for the derivation of this formula.

As it is indicated in the beginning of the Chapter 3, the prior expected return vector is
distributed normally with a mean µ and a variance Σ:

r ∼ N(µ,Σ).

Later, the mean returns are updated as µ. However, the distribution of the returns is not
N(µ,Σ). The posterior variance also needs to be updated. M

−1
is the posterior vari-

ance, which is the variability of the posterior mean estimate around the actual mean.
However, this, is not the variance of the posterior returns. In order to calculate the
variability of posterior returns, the variance of the posterior mean estimate around the
actual mean has to be added to the variance of the distribution of returns around the
mean.

As He and Litterman (1999, [14]) states the expected returns are themselves random
variables in the B-L model, therefore the distribution of the posterior returns becomes:

r ∼ N(µ,Σ),

Σ = Σ +M
−1
.
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This new combined return vector and the posterior variance are computed via MAT-
LAB for each estimation year, since most of the inputs such as Π, Σ, P , q, Ω, K and N
vary from one year to another.

In the final step, with the calculated µ and the calculated covariance matrix Σ, the
optimal posterior weights can be calculated by the mean-variance optimization model.
The utility function being maximized is as follows:

maximize
w

wTµ− λ

2
wTΣw.

Let us take the first derivative of this utility function with respect to w, and obtain

w? =
1

λ
Σ
−1
µ,

where w? is the vector of the optimal posterior weights.

This unconstrained optimization problem is solved using fminunc function in MAT-
LAB. All codes are presented in the Appendix B.

4.2.2.1 Black-Litterman Method with Budget Constraint

In this case, the optimization problem to be solved can be formulated as follows:

maximize
w

wTµ− λ

2
wTΣw

subject to
N∑
k=1

wk = 1.

This optimization problem with a budget constraint is solved by using fminconmaxu-
tility function in MATLAB. MATLAB codes of this program are presented in the Ap-
pendix B.

4.2.2.2 Black-Litterman Method with Budget and No Short Selling Constraint

The mathematical formulation of the optimization problem in the case of budget and
no short selling constrained B-L model can be shown as follows:
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maximize
w

wTµ− λ

2
wTΣw

subject to
N∑
k=1

wk = 1,

wk ≥ 0 ∀k.

This budget and no short selling constrained optimization problem is solved using
fminconmaxutility2 function in MATLAB. MATLAB codes for this program are pre-
sented in the Appendix B.
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CHAPTER 5

EMPIRICAL FINDINGS

5.1 Optimal Number of Stocks Needed to Create a Diversified Portfolio of BIST-
50 Securities

In this section, the optimal number of stocks to have in a well-diversified portfolio of
stocks included in the Borsa Istanbul-50 (BIST-50) Index are determined for the an-
nual periods from 2005 to 2015 by using Markowitz optimization method. In addition
to this, the same operation is performed for the posterior values of variance-covariance
matrix in the Black-Litterman (B-L) model. The goal in this section is to analyze the
change in the required number of stocks to create a well-diversified portfolio when
investor views are taken into account.

The Jarque-Bera test described in Subsection 4.2.1 is performed on logarithmic and
simple stock returns, and the results are reported in Table 5.1 on the next page. Since
logarithmic returns of more stocks are shown to be distributed normally by Jarque-
Bera test compared to simple returns for the majority of the years analyzed in this
thesis, logarithmic excess returns are used in the analyses of this thesis.

As described in Section 4.1, for BIST-50 stocks listed in the Table 4.1 for each year
of analysis, logarithmic excess returns data for the prior five years are prepared. After
that, analyses are carried out by using the method explained in Subsection 4.2.1 for
each year. 1000 portfolio replications are conducted for each portfolio sizes. Accord-
ing to the research of Beck, Perfect and Peterson (1996, [1]), as the number of portfolio
replications increases, more smoother curves are obtained and also the results reflect
the population much better. However, an increase in the number of replications also
results in an increase in the sensitivity of the test statistic. As mentioned in their study,
increase in the number of replications affects the rejection level of the null hypothesis
of equal mean standard deviations for two successive portfolio sizes. By defining a
smaller change in the number of stocks included in two consecutive portfolios used
in the statistical test, the issue can be resolved. Therefore, statistical significance of a
change in the mean standard deviation of two portfolios that have N (sample 1) and
N + 2 (sample 2) stocks in them respectively are tested in this thesis by using a t-test
to determine the optimal number of stocks needed to have well-diversified portfolio.
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Table 5.1: The Results of Jarque-Bera Test

This table summarizes the results of the Jarque-Bera test on prior 5-year historical simple and
logarithmic excess returns of all securities listed in the Table 4.1 for each year between 2005 and
2015 at 1% level of significance.

The estimation years 2005 2006 2007
The return data used
in J-B test Normal Logarithmic Normal Logarithmic Normal Logarithmic

The number of stocks
normally distributed 23 28 23 28 28 32

The number of stocks
not normally distributed 11 6 13 8 10 6

2008 2009 2010
Normal Logarithmic Normal Logarithmic Normal Logarithmic

The number of stocks
normally distributed 28 34 29 27 33 28

The number of stocks
not normally distributed 9 3 5 7 3 8

2011 2012 2013
Normal Logarithmic Normal Logarithmic Normal Logarithmic

The number of stocks
normally distributed 27 27 30 27 32 33

The number of stocks
not normally distributed 3 3 7 10 5 4

2014 2015
Normal Logarithmic Normal Logarithmic

The number of stocks
normally distributed 36 37 36 36

The number of stocks
not normally distributed 4 3 3 3

Number of stocks, mean standard deviation of monthly logarithmic excess portfolio
returns, and the ratio of mean standard deviation of an N -stock portfolio to mean stan-
dard deviation of a single stock portfolio for each year are shown in Table A.1 in the
Appendix A. It is observed that as number of stocks increases in the portfolio, mean
standard deviation of the portfolios declines due to diversification effect. For the year
2005, even if an investor holds the maximum number of stocks in the portfolio, only
17% of the total risk can be diversified away. On the other hand, for the year 2015,
if all stocks are held in a portfolio, even though the percentage of the risk diversified
away goes up to 31%, a significant portion of the total risk (69%) still remains in the
portfolio. This indicates that the share of the systematic (undiversifiable) risk in total
risk of a security in the Turkish financial market is quite high.

It is known that the more stocks an investor adds to a portfolio, the more risk-reduction
benefit an investor gets, while, incurring higher transaction costs. In order to deter-
mine the optimal number of stocks to have in a well-diversified portfolio, the portfolio
size for which there is no statistically significant reduction in the mean standard de-
viation of the portfolio has to be identified. If this analysis is done by comparing the
mean standard deviation of two portfolios that have N (sample 1) and N + 1 (sample
2) stocks in them respectively, no change in the mean portfolio standard deviation re-
quirement can be satisfied very quickly leading us to conclude that a few number of
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stocks are enough to create a diversified portfolio in Turkey. Thus, the statistically sig-
nificant change in the mean standard deviation of two portfolios that have N (sample
1) and N + 2 (sample 2) stocks in them respectively are tested in this thesis.

The results including t-test statistics and t critical values for each year are shown in
Table A.2 in the Appendix A. When no statistically significant difference in standard
deviations of two portfolios with N and N + 2 securities is observed for the first
time in a given year, the range of stocks prior to this, (N − 2 to N ) is taken as the
optimal number of stocks for that year. This range of optimal number of stocks for
each year analyzed in this thesis are shown in Table 5.2. In year 2005, by holding the
maximum number of stocks available, which is 34, at most 17% of the total risk of an
average security can be diversified away as seen in Table A.1 in the Appendix A. By
holding the optimal number of stocks which ranges from 10 to 12, approximately 16%
of the total risk of an average security has already been diversified away. Therefore,
a 1% reduction in the average standard deviation of the portfolio as we go from 10-
12 stocks to 34 stocks is not considered as a statistically significant reduction in the
portfolio risk. To gain a 1% risk-reduction benefit, high transaction costs may need
to be paid. On the other hand, in year 2015, 29% of the total risk of an average
security can be eliminated by holding 16 to 18 stocks in a portfolio. This reduction
in portfolio risk increases to 31% of the total risk of an average security when the
maximum number of stocks (39) available for investment are held in the portfolio.
In the case of year 2015, the additional risk reduction of 2% in the average standard
deviation of the portfolio as we increase the number of stocks in the portfolio from 16-
18 to 39 is not statistically significant. As for the other years, the reduction in the mean
portfolio standard deviation is at most 3% as we go from holding the optimal number
of stocks to the maximum number of stocks available for investment. Again these
reductions are not statistically significant and they may not be economically significant
to justify high transaction costs associated with larger portfolio sizes.

The results in Table 5.2 show that the optimal number of stocks to hold in a well-
diversified portfolio differs from one year to another due to change in correlation be-
tween the stocks. It is observed that an investor needs to hold more stocks in recent
years compared to earlier years to create a diversified portfolio. While 10-12 stocks are
needed to construct a well-diversified portfolio for the first observation year of 2005,
the range of the optimal number of stocks needed for a well-diversified portfolio goes
up to 16-18 for the last observation year of 2015.

Even though the sample stocks analyzed in this thesis are chosen from a different in-
dex and data from a different time period is analyzed, findings of this thesis are quite
consistent with the findings from earlier studies on Turkish stock market. For example,
Gökçe and Cura (2003, [10]) find the range for optimal number of stocks to be as 6-13
for equally weighted portfolios created from stocks included in the BIST-30 Index over
the period from January 1999 to June 2000. Over the years analyzed in this thesis, the
optimal number of stocks to hold ranges from 8-10 to 16-18. Whereas, an average
range of the optimal number of stocks over the observed periods is approximately 11-
13 which is consistent with the work of Gökçe and Cura (2003, [10]). Similarly, Atan
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Table 5.2: The Range of Optimal Number of Stocks for each Year

This table presents ranges of the optimal number of stocks to create a well-diversified
portfolio for each estimation year during the sample period from 2005 to 2015. The
analyzed year is shown in the first column of this table and the second column reports the
beginning and the end of the periods of historical monthly return data used in the analysis
for that year.

Estimation yearThe period of historical
monthly data used

The range of the optimal
number of stocks

2005 Jan 2000-Dec 2004 10-12
2006 Jan 2001-Dec 2005 8-10
2007 Jan 2002-Dec 2006 10-12
2008 Jan 2003-Dec 2007 12-14
2009 Jan 2004-Dec 2008 12-14
2010 Jan 2005-Dec 2009 10-12
2011 Jan 2006-Dec 2010 16-18
2012 Jan 2007-Dec 2011 8-10
2013 Jan 2008-Dec 2012 12-14
2014 Jan 2009-Dec 2013 14-16
2015 Jan 2010-Dec 2014 16-18

and Duman (2007) analyze stocks that are constituents of BIST-100 Index, and find
11, which is consistent with the findings in this thesis, as the optimal number of stocks
to have in a well-diversified portfolio.

Even though the optimal number of stocks to have in a well-diversified portfolio changes
from one year to another, according to the results reported in Table 5.2, over the period
analyzed in this thesis on average, an investor needs to hold 11-13 stocks to gain most
of the risk-reduction benefits from diversification.

5.1.1 Comparison of Results with Prior and Posterior Variance-Covariance Ma-
trix in terms of Diversification

In Section 5.1, when determining the optimal number of stocks for a well-diversified
portfolio, only the variance-covariance matrix of 5-year historical monthly returns is
used. B-L define this variance-covariance matrix as a prior matrix. In order to deter-
mine the optimal weights for each stock in the portfolio while taking into account in-
vestor views, they develop a new model which is explained in detail in Chapter 3 of this
thesis. In their model, the returns of stocks and the variances of these returns on stocks
based on the CAPM approach form the first information set and investor views on the
returns of stocks constitute the second information set. These two information sets are
blended by Bayes’ Formula. The posterior variance-covariance matrix consisting of
the combination of the prior one and the variances of stock returns based on investor
views is obtained. Mathematical background on the posterior variance-covariance ma-
trix construction is also explained in Chapter 3. The prior one is denoted as Σ, and the
formula for the posterior one as shown in the article of He and Litterman (1999, [14])
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is as follows:
Σ̄ = Σ + ((τΣ)−1 + P TΩ−1P )−1,

where τ is a scaling factor, P is the pick matrix which indicates the stocks on which
investors express their views, and Ω is the matrix indicating the uncertainty associated
with the views of investors.

τ is determined as inverse of the total number of observations. Since we use 60 monthly
historical returns for each year analyzed, τ equals to 0.0167 in this thesis. In addition
to this, Ω is constructed as diag(P (τΣ)P T ) in this thesis.

Analysis conducted in the previous section on the prior variance-covariance matrix is
repeated here for the posterior variance-covariance matrix. The objective is to see how
the optimal number of stocks change when investor views and the uncertainty associ-
ated with these views are taken into account. The posterior variance-covariance matrix
based on the B-L method is used as an input. Table A.3 in the Appendix A shows the
number of stocks in the portfolio, average standard deviation of the combination of
logarithmic excess returns and investor views’ returns, and the ratio of average stan-
dard deviation of the N -stock portfolio to average standard deviation of a single stock
portfolio over the period analyzed in this thesis. The average standard deviation of the
combined returns decreases as the numbers of stocks in the portfolio increases due to
diversification effect as it does with the prior variance-covariance matrix. For the year
2005, the percentage of the risk diversified is just 17% by holding all of the stocks
available for that period, whereas it increases to 31% for the year 2015. These results
are quite similar to the ones obtained by using the prior variance-covariance matrix.

The relation between the average portfolio standard deviation and the number of stocks
in the portfolio are shown in Figure 5.1 for each year in the sample when the prior
variance-covariance matrix based on the CAPM and the posterior variance-covariance
matrix based on the B-L method are used. There is no noticeable difference between
these graphs for any of the years analyzed.

In order to find the optimal number of stocks for a well-diversified portfolio, a right
tailed t-test at 5% significance level is also performed. The results are shown in Table
A.4 in the Appendix A. Average variances, covariances, correlation coefficients and
optimal range of stocks for a well diversified portfolio by using variance matrices based
on both methods are summarized in Table 5.3. This table indicates that the average
variances and covariances of the posterior matrix based on B-L approach are little bit
higher than the average variances and covariances of the prior one. Moreover, for 2005,
2006, 2011 and 2015, less number of stocks are needed to create a well-diversified
portfolio when the posterior variance matrix is used. For the remaining years, the
range for the optimal number of stocks is the same as in the case of prior variance.
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Figure 5.1: Risk-Reduction versus Number of Stocks in the Portfolio for both the Prior
Variance Based on the CAPM and the Posterior Variance Based on Black-Litterman
Method.

This figure shows the relation between the mean standard deviation of the portfolio and
the number of stocks included in the portfolio for each year from 2005 to 2015 by
using both the prior variance-covariance matrix (blue line) and the posterior variance-
covariance matrix (red line). The prior matrix is the variance-covariance matrix of prior
5-year historical monthly returns of stocks consistently included in the BIST-50 index.
The beginning and the end of these 5-year periods are shown above the graphs. After
taking into account the investor views and the variance of these views, this prior matrix
is converted into the posterior matrix by using the B-L formula.

Table 5.3: Comparison between the Prior and the Posterior Variance-Covariance Ma-
trices in terms of Diversification Effect

This table presents the average variances, average covariances, average correlations and the ranges of the op-
timal number of stocks when both prior variance-covariance matrix based on the CAPM and the posterior
variance-covariance matrix based on the B-L method are used for each year from 2005 to 2015. First, for each
year, the prior matrix is estimated by using prior 5 year historical monthly return data. Then, the average vari-
ance and the average covariance of the stocks in the portfolio are calculated. Later, average correlation of these
stocks in the portfolio is calculated by dividing average covariance by average variance. The same process is
repeated for the posterior matrix derived from the B-L formula. For the purpose of attaining the range of the
optimal number of stocks, first, the simulation technique of Evans and Archer (1968, [12]) is performed. By
replicating this procedure for 1000 times, the portfolios consisting of stocks ranging from 1 to total number
of stocks in any given year analyzed are generated and their mean standard deviations are found. In order to
determine whether any statistically significant decrease in the mean standard deviation of two portfolios that
have N and N + 2 stocks occurs or not, a t-test at 5% significance level is performed. Finally, the ideal range
of stocks to create a diversified portfolio is selected as the last range of stocks whose mean standard deviations
are statistically different from each other before the first range of stocks whose mean standard deviations are
statistically indifferent from each other. The same process is repeated for posterior matrix based on the B-L
method to obtain the range of the optimal number of stocks.

Prior Variance(CAPM) Posterior Variance(Black Litterman)

Average
Variance

Average
Covariance

Average
Correlation

The Range of the
Optimal Number

of Stocks

Average
Variance

Average
Covariance

Average
Correlation

The Range of the
Optimal Number

of Stocks
2005 491.53 321.12 0.65 10-12 494.03 321.46 0.65 8-10
2006 370.36 224.38 0.60 8-10 372.25 224.59 0.60 6-8
2007 236.73 131.28 0.55 10-12 238.00 131.38 0.55 10-12
2008 159.54 75.30 0.47 12-14 160.34 75.35 0.46 12-14
2009 196.14 93.32 0.47 12-14 197.07 93.39 0.47 12-14
2010 230.81 111.56 0.48 10-12 231.95 111.63 0.48 10-12
2011 210.45 95.03 0.45 16-18 211.56 95.11 0.44 14-16
2012 195.05 89.16 0.45 8-10 196.18 89.22 0.45 8-10
2013 197.18 106.75 0.54 12-14 198.04 106.81 0.53 12-14
2014 127.07 57.19 0.45 14-16 127.72 57.22 0.44 14-16
2015 102.72 45.99 0.44 16-18 103.26 46.02 0.44 14-16
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As in the case of prior variance, the range of the optimal number of stocks differs from
one year to another. However, taking into account investor views does not affect the
range of optimal number of stocks to hold, and the average portfolio standard devia-
tions that much.

In addition to this comparison, we consider the effect of scaling factor τ used to de-
termine the posterior variance on our results. To see this effect, a sensitivity analysis
for different τ value is conducted. The range of optimal number of stocks for a well
diversified portfolio by using posterior variance matrix for different τs for 2015 are
summarized in Table 5.4. Results in this table indicate that the range of the optimal
number of stocks is not that sensitive to the value of τ chosen.

Table 5.4: The Range of Optimal Number of Stocks for Different Values of τ for 2015

This table presents the ranges of optimal number of stocks when the posterior matrices
are constructed by using different values of the scaling factor τ for the estimation year
2015. τ is taken as the inverse of the number of observations (5 years = 60 observations)
in this thesis to determine the range of optimal number of stocks when the posterior
matrix is used. To study the sensitivity of our findings to τ values, a sensitivity analysis
is conducted for τ values of 1/

√
60, 0.25, 0.5 and 1.

The Values of τ τ = 1
60 τ = 1√

60
τ = 0.25 τ = 0.5 τ = 1

The Range of the
Optimal Number

of Stocks
14-16 14-16 14-16 16-18 18-20

5.2 An Empirical Application of the Unconstrained Black-Litterman Model to
the Stocks Included in the BIST-50 Index

In the previous section, how many stocks from Borsa Istanbul-50 (BIST-50) Index are
needed to form a well-diversified portfolio is determined for every year in the sam-
ple period analyzed. What portion of the portfolio should be invested in each stock is
another issue considered by investors. Markowitz Mean-Variance approach has been
used in determining optimal weights of each stock in the portfolio since the 1950’s.
Although it is a breakthrough theory in finance, it has some drawbacks such as the
requirement of estimating all stock returns in a portfolio and high level of sensitivity
of optimal portfolio weights to inputs. These problems result in extremely low or high
weights assigned to stocks included in the portfolio. In addition to this, investors can
not define their views about assets in a relative sense. After pointing out these prob-
lems, Black and Litterman (B-L) proposed a new model in the 1990’s. Investors can
specify their views on the stocks of their choice and also define the confidence level on
their views in this model.

In this section, B-L model is applied to the stocks included in the BIST-50 Index. The
data used, the parameters selected, and each step of the model are explained in detail in
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Subsection 4.2.2. Initial optimal weights for each stock in the portfolio is taken as mar-
ket capitalization weights according to the CAPM approach. The stock return based on
views is calculated by using the financial analysts’ average expected stock price which
can be accessed from the Bloomberg database. After combining prior information with
analysts’ views, the B-L model is estimated without imposing any constraints. It is ob-
served that view returns of some assets do not affect posterior weights of these assets
in an expected way. First, reason behind this observation is explained. Secondly, B-L
model is re-estimated once by imposing a budget constraint alone, and then a budget
and no short selling constraints simultaneously on the model. Lastly, performances of
portfolios generated by the B-L method and by the CAPM approach are analyzed in
terms of two criteria: Sharpe ratio and efficient frontier.

The prior information set based on the CAPM approach is collected and prepared as
described in Section 4.1. The risk aversion coefficient, which is one of the inputs of
the prior information set, is generally estimated from the historical data and calculated
as follows:

λ =
E(rM)− rf
σ2(rM)

,

where

E(rM)− rf is the estimated excess return of the market portfolio,

σ2(rM) is the variance of the market portfolio.

In our study, market portfolio is the portfolio consisting of all stocks whose codes are
presented in Table 4.1 for each estimation year. The excess return of this market port-
folio is calculated as the market value weighted average of excess returns on the stocks
included in the portfolio. The variance of the market portfolio is calculated by us-
ing matrix multiplication. The transpose of the market capitalization weight vector is
multiplied by the estimated variance-covariance matrix, and the market capitalization
weight vector. Finally, the risk aversion coefficient is found by dividing the calculated
excess return of the market portfolio by the calculated variance of the market portfolio.
The results are presented in Table 5.5.

Risk aversion coefficients estimated by this method are quite low and even negative
for most of the estimated years. For only the years 2008 and 2014, the estimated risk
aversion coefficients are consistent with expectations and the evidence from around the
world. However, risk aversion coefficients estimated for the remaining years are quite
low due to high variability of portfolio returns or negative average returns observed for
the majority of the stocks in some years. Since these negative or very low estimates
of risk aversion coefficients are not consistent with the expectations and the observed
investor behavior, the risk aversion coefficient is taken to be 2.5 which is estimated by
Black (1989, [3]) as the world average risk aversion coefficient.
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Table 5.5: Risk Aversion Coefficients

This table presents the average logarithmic excess return of the market portfolio, the
variance of the market portfolio and the risk aversion coefficient (λ) for each estimation
year during the sample period of this thesis. The market portfolio is constructed as the
market value weighted portfolio of all stocks shown in Table 4.1 for each estimation year
during the sample period. The average 5-year historical logarithmic excess return and the
variance of the market portfolio are calculated for each estimation year. The risk aversion
coefficient is defined as excess return of the market portfolio per unit of the market risk
(variance).

Average Logarithmic
Excess Return of The Portfolio (%)

Variance of
The Portfolio

Risk Aversion
Coefficient (λ)

2005 −2.58 % 291.00 −0.88
2006 −0.41 % 227.41 −0.18
2007 −0.23 % 127.07 −0.17
2008 1.47% 72.74 2.02
2009 −0.31 % 91.29 −0.33
2010 0.31% 108.85 0.28
2011 0.16% 111.03 0.14
2012 −0.12 % 98.77 −0.12
2013 0.1% 111.21 0.08
2014 1.45% 56.74 2.55
2015 0.66% 47.47 1.38

After the terms λ, Σ, and wMKT are estimated from market data, the implied logarith-
mic excess equilibrium returns are computed for each year using MATLAB.

For year 2015, Figure 5.2 illustrates the historical average logarithmic returns and the
implied equilibrium average logarithmic excess returns on all the stocks available for
investment over the 5-year period from January 2010 to December 2014. As can be
seen in this figure, the implied equilibrium excess returns are all positive. Furthermore,
they are more stable than historical returns. Therefore, they are more consistent with
the notion of expected excess returns. Hence, they can be good initial estimates of
expected returns before taking investors’ views into account.

The variance-covariance matrix of this implied logarithmic excess equilibrium re-
turns of the stocks is calculated as τΣ. τ is the scaling factor for historical variance-
covariance matrix. B-L (1992, [5]) state that because the uncertainty in the mean is less
than the uncertainty in the returns, τ is close to 0. In Figure 5.2, it is also observed that
the logarithmic excess equilibrium returns are less volatile than the historical average
logarithmic excess returns. Hence, in this thesis τ is defined as in Walters (2014, [29])
as follows:

τ =
1

T
.
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Figure 5.2: Comparison between Historical Average Returns and Equilibrium Returns.

This figure shows average 5-year historical and the implied equilibrium logarithmic ex-
cess returns of the stocks consistently included in the BIST-50 index for 2015. The green
line indicates the average historical returns, whereas the purple line indicates the implied
equilibrium returns of these stocks. The beginning and the end of the 5-year period are
shown above the graph.

Here, T is the total number of observations. Since 60 monthly historical returns are
used for each year analyzed, τ is constant and equals to 0.0167 in this thesis.

After determining the prior information set, it is time to gather the second information
set including Bloomberg analysts’ views. How these target stock prices are collected
and converted into stock returns are explained in Section 4.1. Formulation of the pick
matrix (P ), the view vector (q), and the covariance matrix of the views (Ω) and blend-
ing of this second information set with the first information set by using B-L formula
are explained step by step in Subsection 4.2.2. Finally, the posterior optimal weights
are found by using the calculated posterior expected return vector and the posterior
variance matrix as inputs in the Markowitz Mean-Variance Optimization.

Table 5.6 on the next page displays market capitalization (equilibrium) weights, the
computed posterior weights and the difference between equilibrium weights and new
weights resulting from the B-L method for the estimation year 2015. The results for
other estimation years are available in Table A.5 in the Appendix A. The stocks whose
codes are written in bold letters do not have a target stock price data available in the
Bloomberg database. All the others have the average target stock price information.

As seen in Table 5.6, the sum of the market capitalization weights of the stocks is equal
to 1 by definition. On the other hand, the sum of the new optimal posterior weights of
the stocks is equal to -0.3215 since the optimization problem does not have a budget
constraint. Minus sign indicates that an investor invest his own money and the money
obtained from shorting this portfolio of stocks in the risk-free asset.
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For GOLTS and VESTL Bloomberg analysts did not estimate a target stock price,
i.e. they did not express an opinion. These stocks’ optimal posterior weights slightly
different from their market capitalization weights, however differences are not even
noticeable. This is not surprising since the investor does not have any basis to change
the weights of these securities. On the other hand, optimal posterior weights of secu-
rities for which analysts estimate a target stock price are significantly different from
their market capitalization weights.

Table 5.6: Market Capitalization Weights, Optimal Posterior Weights and Differences
for the Estimation Year 2015

This table presents the market capitalization weights, the optimal posterior weights of the stocks that are consis-
tently included in the BIST-50 index in 2015 and the differences between them. First column shows the codes of
the stocks that are consistently included in BIST-50 index during the whole year and have monthly return data
from January 2010 to December 2014. In the second and third columns, the market capitalization and posterior
weights of these securities are reported. The stock codes written in bold letters indicate the stocks for which the
Bloomberg analysts did not give a price estimate. The difference between the market capitalization weights and
the optimal posterior weights of both stocks with views and no views are shown in the last column of this table.
Finally, in the last row of this table, the summation of both the market capitalization and the optimal posterior
weights are presented.

wMKT w? wMKT − w?

AEFES 0.0297 0.1840 −0.1544
AKBNK 0.0764 −0.1293 0.2058
ARCLK 0.0224 −0.1252 0.1475
ASELS 0.0132 −0.0529 0.0661
BAGFS 0.0014 −0.0748 0.0762
BIMAS 0.0335 −0.2791 0.3126
CCOLA 0.0283 0.1781 −0.1497
DOAS 0.0058 −0.1466 0.1524
DOHOL 0.0044 0.1329 −0.1286
ENKAI 0.0419 0.1274 −0.0855
EREGL 0.0344 −0.0658 0.1002
FROTO 0.0252 −0.2714 0.2966
GARAN 0.0873 −0.1276 0.2149
GOLTS 0.0010 0.0010 0.0000
GOZDE 0.0025 0.1229 −0.1205
GUBRF 0.0037 −0.2605 0.2642
HALKB 0.0383 0.4397 −0.4013
ISCTR 0.0669 −0.2730 0.3399
KCHOL 0.0694 −0.1678 0.2372
KOZAA 0.0014 0.3505 −0.3490
KRDMD 0.0035 0.3124 −0.3089
MGROS 0.0089 0.0934 −0.0845
OTKAR 0.0046 −0.3510 0.3556
PETKM 0.0087 −0.0978 0.1065
SAHOL 0.0457 0.4467 −0.4010
SISE 0.0137 −0.2372 0.2508
TAVHL 0.0153 0.0184 −0.0030
TCELL 0.0694 −0.3127 0.3821
THYAO 0.0293 −0.0475 0.0769
TKFEN 0.0047 0.4442 −0.4394
TOASO 0.0176 −0.0946 0.1122
TRKCM 0.0056 0.0100 −0.0044
TSKB 0.0067 0.4447 −0.4381
TTKOM 0.0561 −0.1686 0.2248
TUPRS 0.0305 −0.1821 0.2126
ULKER 0.0140 −0.1423 0.1563
VAKBN 0.0269 0.0388 −0.0119
VESTL 0.0047 0.0046 0.0001
YKBNK 0.0469 −0.0632 0.1101

SUM 1.000 −0.3215
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Table 5.7: View and Equilibrium Return Differences and Market versus Posterior
Weight Differences for the Estimation Year 2015

This table presents the implied equilibrium returns, the view returns of the stocks calculated from Bloomberg
analysts’ average target price and their difference for the year 2015. Also in this table the market capitalization
weights, the optimal posterior weights of these stocks and the difference between these two weights are reported
for the same year.

Π q Π − q wMKT w? wMKT − w?

AEFES 0.0059 0.0068 −0.0009 0.0297 0.1840 −0.1544

AKBNK 0.0139 −0.0052 0.0191 0.0764 −0.1293 0.2058

ARCLK 0.0141 −0.0051 0.0192 0.0224 −0.1252 0.1475

ASELS 0.0114 −0.0043 0.0158 0.0132 −0.0529 0.0661

BAGFS 0.0090 −0.0029 0.0120 0.0014 −0.0748 0.0762

BIMAS 0.0048 −0.0030 0.0077 0.0335 −0.2791 0.3126

CCOLA 0.0076 0.0050 0.0027 0.0283 0.1781 −0.1497

DOAS 0.0169 −0.0072 0.0241 0.0058 −0.1466 0.1524

DOHOL 0.0098 0.0053 0.0045 0.0044 0.1329 −0.1286

ENKAI 0.0116 0.0053 0.0063 0.0419 0.1274 −0.0855

EREGL 0.0073 −0.0020 0.0094 0.0344 −0.0658 0.1002

FROTO 0.0112 −0.0129 0.0241 0.0252 −0.2714 0.2966

GARAN 0.0148 −0.0075 0.0223 0.0873 −0.1276 0.2149

GOZDE 0.0119 0.0072 0.0047 0.0025 0.1229 −0.1205

GUBRF 0.0106 −0.0130 0.0236 0.0037 −0.2605 0.2642

HALKB 0.0154 0.0143 0.0011 0.0383 0.4397 −0.4013

ISCTR 0.0148 −0.0105 0.0253 0.0669 −0.2730 0.3399

KCHOL 0.0143 −0.0067 0.0210 0.0694 −0.1678 0.2372

KOZAA 0.0159 0.0271 −0.0112 0.0014 0.3505 −0.3490

KRDMD 0.0122 0.0133 −0.0011 0.0035 0.3124 −0.3089

MGROS 0.0123 0.0028 0.0095 0.0089 0.0934 −0.0845

OTKAR 0.0106 −0.0213 0.0319 0.0046 −0.3510 0.3556

PETKM 0.0096 −0.0042 0.0138 0.0087 −0.0978 0.1065

SAHOL 0.0117 0.0071 0.0046 0.0457 0.4467 −0.4010

SISE 0.0111 −0.0088 0.0199 0.0137 −0.2372 0.2508

TAVHL 0.0075 −0.0034 0.0108 0.0153 0.0184 −0.0030

TCELL 0.0080 −0.0078 0.0158 0.0694 −0.3127 0.3821

THYAO 0.0132 −0.0041 0.0173 0.0293 −0.0475 0.0769

TKFEN 0.0108 0.0099 0.0008 0.0047 0.4442 −0.4394

TOASO 0.0155 −0.0065 0.0220 0.0176 −0.0946 0.1122

TRKCM 0.0135 −0.0034 0.0169 0.0056 0.0100 −0.0044

TSKB 0.0105 0.0072 0.0033 0.0067 0.4447 −0.4381

TTKOM 0.0067 −0.0055 0.0121 0.0561 −0.1686 0.2248

TUPRS 0.0127 −0.0079 0.0206 0.0305 −0.1821 0.2126

ULKER 0.0089 −0.0076 0.0165 0.0140 −0.1423 0.1563

VAKBN 0.0160 0.0008 0.0152 0.0269 0.0388 −0.0119

YKBNK 0.0167 −0.0043 0.0210 0.0469 −0.0632 0.1101

The posterior weights of the stocks are expected to change in the direction of the views.
For example, if there is a positive view on a stock, its weight is expected to increase
or vice versa. Results of this investigation for 2015 are presented in Table 5.7. The
evidence is not consistent with this expectation for all the stock, however for about
68% it is consistent. Therefore, evidence is in general but not completely consistent
with this expectation.
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Bozdemir (2011, [7]) illustrates the nonexistence of a direct relationship between the
views on expected returns and corresponding posterior weights for the case of 2 assets.
In his example, the expected return on one of the assets is raised and everything else
is kept constant. It is shown that an increase in the expected return of the asset results
in a decrease in the posterior weight of the corresponding asset, a finding that is in-
consistent with the expectation based on views. He concludes that the reason for this
unexpected relationship between the view on expected return and the corresponding
posterior weight is the covariance structure.

To understand the relationship between specified views on returns and the B-L poste-
rior weights, first the relationship between the view return and the expected return of
that asset needs to be examined.

To see the effect of the relationship between the expected and the view returns of as-
sets on this unexpected relationship between specified views and the posterior weights,
let’s take a look at a simple example with 3 assets. Suppose that the equilibrium re-
turn on the first asset is equal to 1%, the second one is 2% and the third one is 0.5%.
Suppose the view 1 states that the return of first asset will be 2% and the view 2 states
that the return on the second asset will be 3%. Hence, view returns of these two assets
are greater than their implied equilibrium returns. Let the covariance matrix of these
assets be

Σ =

 1 −2 4
−2 3 1
4 1 5

.

Scaling factor τ and the uncertainty of view matrix Ω are taken as defined in this thesis
earlier.

τ =
1

T
=

1

60
, T : total number of observations,

Ω = diag(P (τΣ)P T ).

Expected posterior return that combines the equilibrium returns and investor views is
calculated by the following formula:

E(r) = Π + τΣP T [(PτΣP T ) + Ω]−1[q − PΠ],
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E(r) =

 1
2

0.5

+
1

60

 1 −2 4
−2 3 1
4 1 5

 1 0
0 1
0 0


×


[ 1 0 0

0 1 0

]
1

60

 1 −2 4
−2 3 1
4 1 5

 1 0
0 1
0 0

+

[
0.0167 0

0 0.05

]
−1

×

[ 2
3

]
−
[

1 0 0
0 1 0

] 1
2

0.5

 ,

E(r) =

 1
1.5
5

 .

The equilibrium return of the first asset is given as 1%, and the view return of the first
asset is stated as 2% which is greater than the equilibrium return of this asset. As
shown by the calculations above, the expected posterior return of this asset remains
at 1%. Actually, given the view on this asset, its posterior return is expected to be
greater than its equilibrium return. However, its posterior return is exactly equal to its
equilibrium return. When the second asset is concerned, its posterior return (1.5%) is
lower than its equilibrium (2%) and view (3%) returns. However, given the view on
this asset, its posterior return is also expected to be greater than its implied equilibrium
return. Contrary to the expectations, its posterior return is declined.

As it can be seen in this example, higher view return than the implied equilibrium re-
turn does not necessarily indicate higher posterior expected return than the equilibrium
return. In other words, there is not a direct relationship between the view return of an
asset and the posterior expected return of it. How the posterior expected return changes
is determined by the covariance structure of the securities. In this example, there are
only 3 assets, therefore it is a lot easier to see the effect of covariance structure on the
posterior expected return. In the case of this thesis, there are approximately 50 assets
with more than 30 views on these assets. Hence, analyzing the effect of covariance
structure of securities on the posterior return updating mechanism is a lot harder to
understand.

Let’s continue work with this 3 assets example with different views on the assets. Sup-
pose this time, there is only one relative view indicating that the return of the first asset
is 1% higher than the return on the second asset. The rest of the data on these 3 assets
are the same as before.

Then the posterior expected returns are calculated as follows:
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E(r) =

 1
2

0.5

+
1

60

 1 −2 4
−2 3 1
4 1 5

 1
−1
0


×


[ 1 −1 0

] 1

60

 1 −2 4
−2 3 1
4 1 5

 1
−1
0

+
[

0.1333
]
−1

×

[ 1
]
−
[

1 −1 0
]  1

2
0.5

 ,

E(r) =

 1.375
1.375
0.875

 .
Expected returns of the first two assets are changed in the direction of the view stated;
that is, while the first asset’s expected return increases the second asset’s expected re-
turn decreases. Thus, this example reveals that not only covariance structure but also
the way views are defined affects the relation between view return and the posterior
expected return of the corresponding asset.

Furthermore, confidence level of the view in addition to the covariance structure and
the way views are stated is another factor affecting the relationship between the view
returns and the posterior expected returns of an asset. Since there is no information on
the confidence level of the views in Bloomberg database, this uncertainty of the view
vector is defined in terms of the covariance matrix of security returns, and the view
matrix. Therefore, it is adequate to say that covariance structure of the securities and
the structure of the views defined might affect the relation between the view return and
the posterior expected return of an asset in our case too.

5.2.1 An Empirical Application of the Black-Litterman Model with a Budget
Constraint to the Stocks Included in the BIST-50 Index

In the empirical application of the unconstrained B-L Model, it is observed that the
budget required to create the optimal portfolios ranges from -1.8017 in the estimation
year of 2005 to 2.9325 in the estimation year of 2009 as reported in Table A.5 of the
Appendix A. Since these budgets are quite extreme, putting a budget constraint on the
B-L Model is considered. A budget constraint, which is a real world constraint, re-
quires the sum of portfolio weights to be one.

The same data is used as in the application of the unconstrained B-L model up to the
final Markowitz optimization step. In the final optimization model, the optimization
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problem is formulated with the budget constraint.

Results reported in Table 5.8 for 2015 show that posterior weights of stocks with no
assigned views differ much more from their equilibrium weights. However, the value
of the investor’s utility function is not affected that much from the addition of this
budget constraint to the optimization problem. If an investor desires to invest all of
his/her money into the optimal portfolio of all the stocks consistently included in the
BIST-50 index, his utility loss compared to the unconstrained B-L strategy is not that
much from following this budget constrained B-L strategy.

5.2.2 An Empirical Application of the Black-Litterman Model with a Budget
and a No Short Selling Constraints to the Stocks Included in the BIST-50
Index

In the application of both the unconstrained and the budget constrained B-L Models,
there are several stocks that are sold short. However, there are restrictions on short
selling in financial markets. In order to examine the effect of a short selling constraint
on the optimal portfolio of the investor, no short selling constraint is added to the op-
timization problem with the budget constraint. No short selling constraint requires the
weight of each security to be greater than or equal to 0.

The same data is used as in the application of both unconstrained and the budget con-
strained B-L model. This application only differs from previous applications of the
B-L model in the final Markowitz optimization step. In the optimization problem, the
utility function of the investor is maximized while satisfying the budget and the no
short selling constraints simultaneously.

In Table 5.8, the maximum utility of the investor is achieved by investing in a small
number of stocks. However, this utility is significantly lower than the utility investor
has with either the unconstrained or only the budget constrained optimization. This
finding is not surprising given the nature of the constrained optimization and it indi-
cates that the no short selling constraint is more binding that the budget constraint.
Note that in these optimizations, transaction costs associated with trading are not taken
into account. Therefore, even though utility of the investor declines significantly after
imposing the no short selling constraint, an investor might still be interested in apply-
ing this constrained optimization if the loss in utility because of short selling constraint
is less than the loss in utility because of increased transaction costs. Furthermore, as
in the case of budget constrained optimization, the optimal posterior weights of stocks
with no assigned views deviate significantly from their equilibrium weights.
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Table 5.8: Optimal Weights from only Budget constrained and Budget and No Short
Selling Constrained B-L Portfolio Optimizations for the Estimation Year 2015

This table presents the market capitalization weights, the optimal posterior weights of stocks obtained from
only budget constrained and both budget and short selling constrained portfolio optimizations. The stocks that
are consistently included in the BIST-50 index throughout 2015 and have monthly return data from January
2010 to December 2014 are shown in the first column of this table. The second, third and fourth columns of
this table show the market capitalization weights, posterior weights with budget constraint only and posterior
weights with both budget and short selling constraints respectively. The stock for which Bloomberg analyst
did not estimate a target price are shown in bold letters. Finally, the value of the utility function for both the
unconstrained and the budget constrained portfolio optimization are shown in the last row of this table.

wMKT w? wOPT(budget)wOPT(budget&no short selling)
AEFES 0.0297 0.1840 0.5497 0.6121
AKBNK 0.0764 −0.1293 −0.1588 0.0000
ARCLK 0.0224 −0.1252 −0.2357 0.0000
ASELS 0.0132 −0.0529 −0.1674 0.0000
BAGFS 0.0014 −0.0748 0.2495 0.0000
BIMAS 0.0335 −0.2791 0.1745 0.2303
CCOLA 0.0283 0.1781 0.2059 0.0070
DOAS 0.0058 −0.1466 −0.2888 0.0000
DOHOL 0.0044 0.1329 0.2865 0.0000
ENKAI 0.0419 0.1274 0.2485 0.0787
EREGL 0.0344 −0.0658 0.0589 0.0000
FROTO 0.0252 −0.2714 −0.4726 0.0000
GARAN 0.0873 −0.1276 0.1101 0.0000
GOLTS 0.0010 0.0010 -0.1795 0.0000
GOZDE 0.0025 0.1229 −0.0119 0.0000
GUBRF 0.0037 −0.2605 −0.2843 0.0000
HALKB 0.0383 0.4397 0.3426 0.0000
ISCTR 0.0669 −0.2730 −0.6788 0.0000
KCHOL 0.0694 −0.1678 −0.4000 0.0000
KOZAA 0.0014 0.3505 0.2606 0.0720
KRDMD 0.0035 0.3124 0.1798 0.0000
MGROS 0.0089 0.0934 0.1540 0.0000
OTKAR 0.0046 −0.3510 −0.1785 0.0000
PETKM 0.0087 −0.0978 0.2206 0.0000
SAHOL 0.0457 0.4467 0.6839 0.0000
SISE 0.0137 −0.2372 −0.1434 0.0000
TAVHL 0.0153 0.0184 −0.0588 0.0000
TCELL 0.0694 −0.3127 0.0866 0.0000
THYAO 0.0293 −0.0475 0.0067 0.0000
TKFEN 0.0047 0.4442 0.3046 0.0000
TOASO 0.0176 −0.0946 −0.2040 0.0000
TRKCM 0.0056 0.0100 −0.2022 0.0000
TSKB 0.0067 0.4447 0.5684 0.0000
TTKOM 0.0561 −0.1686 0.1308 0.0000
TUPRS 0.0305 −0.1821 −0.1081 0.0000
ULKER 0.0140 −0.1423 0.0561 0.0000
VAKBN 0.0269 0.0388 −0.1079 0.0000
VESTL 0.0047 0.0046 -0.0838 0.0000
YKBNK 0.0469 −0.0632 0.0859 0.0000

SUM −0.3215 1.0000 1.0000
UTILITY 0.0097 0.0088 0.0001
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5.2.3 Comparison of the CAPM and the Black-Litterman Models in terms of
Sharpe Ratios

As described in Subsection 2.2.2 of this thesis, according to Capital Asset Pricing
Model, every investor holds the market portfolio because everyone has access to the
same information and uses the same decision rule in making their investment decisions.
In other words, each investor holds a market value weighted portfolio of all the assets
in the market. Market value weight of each stock, i.e. weight vector of the assets, log-
arithmic excess equilibrium return vector and covariance matrix of logarithmic excess
returns are estimated for each year in the sample period from 2005 to 2015. Then,
by multiplying the weight vector of the assets with the logarithmic excess equilibrium
return vector, the excess return of the equilibrium portfolio is computed. Similarly,
by multiplying the transpose of weight vector of the assets and the covariance matrix
of logarithmic excess returns and the weight vector of the assets, the variance of the
equilibrium portfolio is determined.

As explained mathematically in Chapter 3 of this thesis, the B-L Model combines
the equilibrium expected returns for assets with investors’ views using a Bayesian ap-
proach. In this thesis, expected stock return calculated from the analysts’ average target
stock price in the Bloomberg database is taken as a proxy for investors’ views. The
vector of the optimal posterior weights, new combined logarithmic excess return vec-
tor and the posterior covariance matrix of logarithmic excess returns are computed in
MATLAB for each of the years in between 2005 and 2015. Therefore, by multiplying
the vector of the optimal posterior weights with the new combined logarithmic excess
return vector, the excess return on the B-L optimal portfolio is computed. Similarly, by
multiplying the transpose of the vector of the optimal posterior weights, the posterior
covariance matrix of logarithmic excess returns and the vector of the optimal posterior
weights the variance of the optimal portfolios is calculated.

Performances of these two portfolios constructed from the CAPM and the B-L Model
are compared by using a Sharpe ratio. Sharpe ratio is a measure of excess return of the
portfolio per unit of the total risk of the portfolio (standard deviation of the portfolio).
The portfolio with the higher Sharpe ratio has a better risk-adjusted performance. As
given in the Subsection 2.2.1 of this thesis, the formula of the Sharpe ratio is:

S =
E(rp)− rf

σp
.

Sharpe ratios of the portfolios based on the CAPM and the B-L model for the 11 es-
timated years from 2005 to 2015 are presented in Table 5.9 along with the portfolio
excess returns, the variance and the standard deviation of these returns.
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Table 5.9: Sharpe Ratios of CAPM and B-L Strategies for each Estimation Years

This table presents the excess expected return, the variance, and the standard deviation of the portfolios calcu-
lated with both the CAPM and the B-L methods for each estimation year between 2005 and 2015. Sharpe ratio
measures the excess return of the portfolio per unit of the portfolio risk. This table is constructed to illustrate
the portfolio which has better risk-adjusted performance.

2005 2006 2007 2008
CAPM B-L CAPM B-L CAPM B-L CAPM B-L

E(R) 0.0727 1.9209 0.0569 0.0340 0.0318 0.0622 0.0182 0.0823
Var 0.0291 0.7684 0.0228 0.0136 0.0127 0.0249 0.0073 0.0329

Std.Dev. 0.1706 0.8766 0.1510 0.1166 0.1127 0.1578 0.0854 0.1814
Sharpe Ratio 0.4262 2.1913 0.3768 0.2915 0.2822 0.3942 0.2130 0.4537

2009 2010 2011 2012
CAPM B-L CAPM B-L CAPM B-L CAPM B-L

E(R) 0.0228 0.1810 0.0272 0.0262 0.0278 0.0235 0.0247 0.0461
Var 0.0091 0.0724 0.0109 0.0105 0.0111 0.0094 0.0099 0.0184

Std.Dev. 0.0954 0.2691 0.1044 0.1025 0.1054 0.0970 0.0995 0.1356
Sharpe Ratio 0.2390 0.6727 0.2605 0.2557 0.2639 0.2424 0.2482 0.3399

2013 2014 2015
CAPM B-L CAPM B-L CAPM B-L

E(R) 0.0278 0.0116 0.0142 0.0354 0.0119 0.0194
Var 0.0111 0.0047 0.0057 0.0141 0.0047 0.0078

Std.Dev. 0.1054 0.0686 0.0755 0.1187 0.0686 0.0883
Sharpe Ratio 0.2639 0.1692 0.1881 0.2981 0.1736 0.2197

For years 2005, 2007, 2008, 2009, 2012, 2014 and 2015 the B-L strategy is slightly
superior to the CAPM strategy when the Sharpe ratios are used for comparison. How-
ever, for the remaining years, the CAPM strategy slightly outperforms the B-L strategy
according to this performance measure. Given these findings it is hard to conclude that
the B-L strategy is always better than the CAPM strategy using this criteria.

5.2.4 Comparison of the CAPM and the Black-Litterman Model Using Efficient
Frontier Technique

As presented in Subsection 2.2.1 of this thesis, the efficient frontier is a curve depicting
the portfolios that give investors the greatest possible rate of return for a given value
of risk they are willing to accept. The horizontal (X) axis of the efficient frontier
graph is usually the portfolio risk measured by the standard deviations of portfolios
and the vertical (Y) axis of this graph is the portfolio return. For the CAPM approach,
the average of historical rate of returns for each stock and variances and covariance
matrix of these average returns are calculated in MATLAB. For the B-L method, the
posterior returns of each stock and the posterior variance-covariance matrix of these
returns are calculated in MATLAB. By using plotEfficient function in MATLAB, the
efficient frontiers of the portfolios according to the CAPM and the B-L approaches are
estimated for each of the years in the sample period from 2005 to 2015 and displayed
in Figure 5.3.
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Figure 5.3: Efficient Frontiers for each Estimated Year.

This figure shows the efficient frontiers of the portfolios based on the CAPM and the B-L
methods for each estimation year from 2005 to 2015. The efficient frontier is plotted on
a graph with the standard deviation (risk) on the Y axis and the portfolio return on the X
axis. The red line indicates the set of portfolios derived from CAPM approach, whereas
the blue line indicates the set of portfolios derived from B-L approach.

When one of the efficient frontiers is above the other, that frontier has a higher expected
return for the portfolio with a given standard deviation. It is seen from the Figure 5.3
that the B-L strategy outperforms the CAPM strategy for the years 2008, 2009, 2012,
and 2014. On the other hand, the CAPM approach is better than the B-L approach for
the years 2005, 2006, 2010, 2011, 2013 and 2015. For 2007, for portfolio standard
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deviations between 0.085 and 0.13, the B-L strategy is superior to the CAPM strategy.
However, when the portfolio standard deviation is lower than 0.085 or higher than 0.13,
the CAPM strategy is superior to the B-L strategy.

To find a possible explanation for this domination by the CAPM or the B-L approach in
different years during our sample period, the average equilibrium return, average pos-
terior return and the difference between two is calculated and reported in Table 5.10.
An analysis of this table, reveals that when the average equilibrium return exceeds the
average posterior return by 1% or more in any estimation year, the efficient frontier
derived from the CAPM approach lies above the efficient frontier derived from the B-
L approach for that year. In other words, when stock returns estimated from analysts’
target stock price forecasts are underestimating the future stock returns by more than
1%, the efficient frontier of B-L is dominated by that of the CAPM. On the other hand,
when the average equilibrium return exceeds the average posterior return by 0.01% or
less, or the average posterior return exceeds the average equilibrium return regardless
of the size of the difference, the efficient frontier derived from the B-L strategy lies
above the efficient frontier derived from the CAPM strategy. In other words, when
analysts are forecasting the future stock prices with small error or when they are over-
estimating the future stock prices, the efficient frontier of B-L dominates that of the
CAPM. In the case that the average equilibrium return exceeds the average posterior
return by more than 0.01% but less than 1%, which efficient frontier lies above the
other is uncertain, because these two efficient frontiers intersect. For some levels of
the portfolio standard deviation, efficient frontier derived from the B-L strategy can lie
above the one from the CAPM strategy. However, for some other levels of the portfo-
lio standard deviation, the opposite is true. These findings can be observed from the
efficient frontiers depicted in Figure 5.3.

Table 5.10: Average Market Returns, Equilibrium Returns and Differences for each
Estimation Year

This table presents the average view returns, the average implied equilibrium returns and
the difference between these two values for all the stocks that are consistently included
in the BIST-50 index and have target price estimated by the Bloomberg analysts.

2005 2006 2007 2008 2009 2010
Avr. View Ret. −0.0168 0.0077 0.0249 0.0192 0.0429 0.0088

Equilibrium Ret. 0.0731 0.0562 0.0315 0.0180 0.0220 0.0274
Difference −0.0899 −0.0485 −0.0065 0.0011 0.0208 −0.0186

2011 2012 2013 2014 2015
Avr. View Ret. 0.0109 0.0242 0.0038 0.0132 −0.0014

Equilibrum Ret. 0.0251 0.0237 0.0263 0.0141 0.0116
Difference −0.0142 0.0004 −0.0225 −0.0009 −0.0130
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CHAPTER 6

CONCLUSION

The question of how many stocks are needed to effectively diversify a portfolio has
been burned in each investor’s mind for many years. While adding more stocks to a
portfolio is beneficial from the point of view of diversification, it results in higher trans-
action cost which is detrimental for an investor. This thesis reviews previous research
on this subject for both the U.S. Stock Exchanges and the Turkish Stock Exchange.
The mathematical aspect of the concept of diversification is discussed as well. An-
other question, an investor is concerned about is the allocation of his/her budget across
stocks in a portfolio in order to achieve the maximum gain since the 1950s. Black and
Litterman (B-L) (1990, [4]) brought a new perspective on Markowitz Mean-Variance
approach. In their model, the returns of the securities in a portfolio obtained from
CAPM approach provide a base case, and later these returns can be combined with an
analyst or an investor’s views. This thesis deals with the literature related to some fi-
nance theories starting from Markowitz Mean-Variance optimization to the B-L Model
and mathematics behind these theories as well as B-L Model.

The optimal number of stocks for a well-diversified portfolio of the Borsa Istanbul-50
(BIST-50) Index constituents for the period from 2005 to 2015 is determined. In de-
termining the optimal number of stocks, this thesis adopts the technique proposed by
Evans and Archer (1968, [12]). The number of portfolio replication and the range of
number of stocks in a portfolio to test whether statistically significant difference can
occur are specified according to the study of Beck, Perfect and Peterson (1996, [1]).
The optimal number of stocks is found to be as low as 8-10 for the years 2006 and 2012
and as high as 16-18 for the years 2011 and 2015. For the remaining years during the
sample, the optimal number of stocks is found to be in between these extreme values.
The average range of the optimal number of stocks over the sample period analyzed in
this thesis is approximately 11-13. This finding is consistent with previous studies of
the stocks included in the BIST-30 and the BIST-100. Moreover, for the year 2005, it
is noticed that only 17% of the risk of a single stock portfolio is diversified by holding
all the stocks included in the BIST-50 index in the portfolio, while 16% of the risk of
a single stock portfolio is already diversified by holding the optimal number of stocks
(10-12) for that year in the portfolio. In short, it can be concluded that a decrease of
1% in the portfolio risk may not be enough to compensate transaction costs due to
investing in additional stocks. Elton and Gruber (1977, [11]) document a decrease of
51% in portfolio risk as the number of securities included in the portfolio increases

81



from 1 to 10 securities for the New York and American Stock Exchanges. On the
other hand, for the Turkish Stock Market, the maximum decline in the portfolio risk is
found to be 31% in 2015. Comparison of these numbers might indicate the existence of
much higher nondiversifiable risk in the Turkish Stock Exchange compared to Amer-
ican Stock Exchanges. Furthermore, the optimal number of stock for each year from
2005 to 2015 is determined for both prior variance-covariance matrix and posterior
variance-covariance matrix derived from B-L method. Comparison of these values
show that the optimal number of stocks obtained from the prior variance-covariance
matrix does not differ significantly from the optimal number of stocks obtained from
the posterior variance-covariance matrix. Moreover, for many years during the sample
period, no difference in the optimal number of stocks obtained from these two different
methods is observed.

B-L portfolio optimization method is applied to the stocks included in the BIST-50 In-
dex for the estimation years from 2005 to 2015. The previous research on the Turkish
Stock Exchange use either subjective views of authors or returns estimated by using
an econometric model such as AR(1) and EGARCH as view returns due to the fact
that it is hard to reach subjective analyst views for Turkish stocks. However, in this
thesis, Bloomberg analysts’ average price estimates are used to construct view returns
which are hand collected from the Bloomberg database. In the unconstrained B-L
optimization method, the optimal posterior weights of the stocks on which no views
are expressed by a Bloomberg analyst are almost the same values as their equilibrium
market capitalization weights. Surprisingly, B-L posterior weight of a stock with a
view may not move in the same direction with the view expressed on it. In a simple
example with 3 asset, the way the views are expressed (either relative or absolute) and
the covariance structure of security returns are shown to be two of the reasons for the
view return of a stock not being directly related to its B-L expected return and thus
B-L posterior weight.

In addition to the unconstrained B-L portfolio optimization application mentioned in
the previous paragraph, a budget constrained and both a budget and a no short selling
constrained B-L models are implemented for the same set of stocks. Contrary to the
study of B-L (1991, [17]), more deviations from equilibrium weights for stocks with
no assigned view are observed in both the budget constrained, and the budget and short
selling constrained optimizations. However, the value of the investor’s utility function
remains almost the same in the application of the budget constrained B-L optimization,
whereas this value decreases significantly in the application of the budget and no short
selling constrained B-L optimization. It can be deduced from this that investors gain
more utility by short selling the stocks. Finally, whether the B-L strategy defeats the
CAPM strategy or not is checked by using the Sharpe ratio and efficient frontier anal-
ysis. The portfolios derived from the B-L strategy perform better than the portfolios
derived from the CAPM strategy based on the Sharpe ratio comparisons for most of the
years in the sample period but not for all the years. The B-L strategy may not always
be superior to the CAPM strategy because of the quality of analysts views on returns
of the stocks used in this thesis. In contrast to the Sharpe ratio, the efficient frontier
criteria show that the CAPM strategy beats the B-L strategy for most of years in the
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sample period analyzed in this thesis. According to the findings of this thesis, the ef-
ficient frontier derived from CAPM dominates the efficient frontier derived from B-L
model when the average market return is 1% higher than or equal to the average view
return. On the other hand, the efficient frontier derived from the CAPM is dominated
by the one derived from the B-L model when the average market return is 0.01% lower
than or equal to the average view return. However, it is impossible to determine which
frontier dominates the other when the difference between the average market return
and the view return is higher than 0.01% but lower than 1%. It can be concluded that
when the average market return is sufficiently higher than the view return, the efficient
frontier of CAPM dominates that of B-L model. On the other hand, when the average
view return is sufficiently higher than the average market return, the efficient frontier
of B-L Model dominates that of CAPM model.

This thesis can be extended in two different ways. First, the results of the optimal num-
ber of stocks obtained from the traditional models to form a well-diversified portfolio
can potentially be added to the B-L model as a cardinality constraint. Such optimiza-
tion problems can be solved by Heuristic methods as a future work. Second, the results
of traditional portfolio optimization in the last step of the B-L model can be compared
to the results of robust or resampled portfolio optimization.

This thesis also has some limitations. Some of the Bloomberg analyst’s views are not
available to users of this database. Therefore, it is impossible to calculate the variance
of analyst’s views. In this thesis, this variance is taken to be equal to the variance of
historical returns on the stock for which any Bloomberg analyst expresses a view. This
assumption is a limitation of this thesis and it definitely have an effect on the findings
of this thesis. Another limitation of this thesis is that there does not exist any relative
view on the Bloomberg database, therefore only the absolute views are taken into con-
sideration in this thesis.
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APPENDIX A

Tables

Table A.1: Estimated Average Standard Deviations of Monthly Logarithmic Excess
Portfolio Returns

This table presents the number of stocks in the portfolio, the mean standard deviation of these simulated port-
folios and the ratio of mean standard deviation of the portfolio to mean standard deviation of a single stock for
each estimation year during the sample period in this thesis. The prior variance-covariance matrix used is es-
timated from the prior 5-year historical return data. Initially, the replicated portfolios including stocks ranging
from 1 to total number of stocks in the year analyzed are generated and their mean standard deviations are kept
and shown in the second column of this table. In order to observe the percentage of risk which is distributed by
holding large number of stocks in the portfolio the ratio is shown in the last column of this table.

2005

Number Of Stocks
in the Portfoilo

Mean Standard
Deviation of Returns

Ratio of
Mean Standard Deviation

to Mean Standard Deviation
of a Single Stock

1 21.8390 1
2 19.9393 0.9130
3 19.3732 0.8870
4 19.0139 0.8706
5 18.7270 0.8575
6 18.6538 0.8541
7 18.5521 0.8494
8 18.4704 0.8457
9 18.4661 0.8455
10 18.3895 0.8420
11 18.3471 0.8401
12 18.2799 0.8370
13 18.3250 0.8390
14 18.2533 0.8358
15 18.2304 0.8347
16 18.2468 0.8355
17 18.1932 0.8330
18 18.1970 0.8332
19 18.1905 0.8329
20 18.1484 0.8310
21 18.1599 0.8315
22 18.1594 0.8315
23 18.1530 0.8312
24 18.1557 0.8313
25 18.1083 0.8291
26 18.0857 0.8281
27 18.1118 0.8293
28 18.1076 0.8291
29 18.0850 0.8281
30 18.0815 0.8279
31 18.0912 0.8283
32 18.0701 0.8274
33 18.0696 0.8274
34 18.0593 0.8269

2006

Number of Stocks
in the Portfolio

Mean Standard
Deviation of Returns

Ratio of
Mean Standard Deviation to

Mean Standard Deviation
of a Single Stock

1 18.7262 1
2 17.0503 0.9105
3 16.5168 0.8820
4 16.1095 0.8602
5 15.8705 0.8475
6 15.7247 0.8397
7 15.6763 0.8371
8 15.5994 0.8330
9 15.5181 0.8286
10 15.4456 0.8248
11 15.4571 0.8254
12 15.4256 0.8237
13 15.3428 0.8193
14 15.3444 0.8194
15 15.2912 0.8165
16 15.2833 0.8161
17 15.2580 0.8147
18 15.2431 0.8139
19 15.2333 0.8134
20 15.2366 0.8136
21 15.2580 0.8147
22 15.2152 0.8125
23 15.1994 0.8116
24 15.1945 0.8114
25 15.1932 0.8113
26 15.1847 0.8108
27 15.1857 0.8109
28 15.1729 0.8102
29 15.1793 0.8105
30 15.1707 0.8101
31 15.1663 0.8098
32 15.1683 0.8100
33 15.1369 0.8083
34 15.1404 0.8085
35 15.1298 0.8079
36 15.1142 0.8071
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2007

Number of Stocks
in the Portfolio

Mean Standard
Deviation of Returns

Ratio of
Mean Standard Deviation to

Mean Standard Deviation
of a Single Stock

1 15.0908 1
2 13.5741 0.8994
3 12.8681 0.8527
4 12.5656 0.8326
5 12.2877 0.8142
6 12.2064 0.8088
7 12.1337 0.8040
8 12.0179 0.7963
9 11.9767 0.7936

10 11.9282 0.7904
11 11.8766 0.7870
12 11.8011 0.7820
13 11.8412 0.7846
14 11.8349 0.7842
15 11.7787 0.7805
16 11.7823 0.7807
17 11.7444 0.7782
18 11.7434 0.7781
19 11.7308 0.7773
20 11.7103 0.7759
21 11.7185 0.7765
22 11.6965 0.7750
23 11.6973 0.7751
24 11.6951 0.7749
25 11.6781 0.7738
26 11.6642 0.7729
27 11.6510 0.7720
28 11.6597 0.7726
29 11.6452 0.7716
30 11.6495 0.7719
31 11.6278 0.7705
32 11.6329 0.7708
33 11.6218 0.7701
34 11.6093 0.7692
35 11.6169 0.7698
36 11.6038 0.7689
37 11.5930 0.7682
38 11.5785 0.7672

2008

Number of Stocks
in the Portfolio

Mean Standard
Deviation of Returns

Ratio of
Mean Standard Deviation to

Mean Standard Deviation
of a Single Stock

1 12.4628 1
2 10.8187 0.8680
3 10.0672 0.8077
4 9.7424 0.7817
5 9.5147 0.7634
6 9.4595 0.7590
7 9.3274 0.7484
8 9.2843 0.7449
9 9.2045 0.7385

10 9.2015 0.7383
11 9.1146 0.7313
12 9.1234 0.7320
13 9.0794 0.7285
14 9.0412 0.7254
15 9.0379 0.7251
16 9.0139 0.7232
17 8.9753 0.7201
18 8.9828 0.7207
19 8.9675 0.7195
20 8.9597 0.7189
21 8.9230 0.7159
22 8.9479 0.7179
23 8.9038 0.7144
24 8.9127 0.7151
25 8.8968 0.7138
26 8.8932 0.7135
27 8.8832 0.7127
28 8.8868 0.7130
29 8.8761 0.7122
30 8.8633 0.7111
31 8.8503 0.7101
32 8.8550 0.7105
33 8.8492 0.7100
34 8.8375 0.7091
35 8.8298 0.7084
36 8.8197 0.7076
37 8.8078 0.7067

2009

Number of Stocks
in the Portfolio

Mean Standard
Deviation of Returns

Ratio of
Mean Standard Deviation to

Mean Standard Deviation
of a Single Stock

1 13.8431 1
2 12.0105 0.8676
3 11.3038 0.8165
4 10.9585 0.7916
5 10.7038 0.7732
6 10.5449 0.7617
7 10.4677 0.7561
8 10.3529 0.7478
9 10.3162 0.7452

10 10.2043 0.7371
11 10.1771 0.7351
12 10.1396 0.7324
13 10.1097 0.7303
14 10.0860 0.7285
15 10.0594 0.7266
16 10.0576 0.7265
17 10.0299 0.7245
18 10.0017 0.7225
19 9.9973 0.7221
20 9.9757 0.7206
21 9.9647 0.7198
22 9.9605 0.7195
23 9.9523 0.7189
24 9.9586 0.7193
25 9.9012 0.7152
26 9.9026 0.7153
27 9.9005 0.7151
28 9.8986 0.7150
29 9.8916 0.7145
30 9.8741 0.7132
31 9.8705 0.7130
32 9.8595 0.7122
33 9.8374 0.7106
34 9.8159 0.7090

2010

Number of Stocks
in the Portfolio

Mean Standard
Deviation of Returns

Ratio of
Mean Standard Deviation to

Mean Standard Deviation
of a Single Stock

1 15.0133 1
2 13.1390 0.8751
3 12.2590 0.8165
4 11.8560 0.7897
5 11.6220 0.7741
6 11.4713 0.7640
7 11.3620 0.7567
8 11.3155 0.7536
9 11.1849 0.7450

10 11.1360 0.7417
11 11.0948 0.739
12 11.0511 0.7360
13 10.9921 0.7321
14 11.0145 0.7336
15 10.9515 0.7294
16 10.9386 0.7285
17 10.9109 0.7267
18 10.9150 0.7270
19 10.8802 0.7247
20 10.8920 0.7254
21 10.8506 0.7227
22 10.8523 0.7228
23 10.8633 0.7235
24 10.8402 0.7220
25 10.8180 0.7205
26 10.8086 0.7199
27 10.8028 0.7195
28 10.8063 0.7197
29 10.7886 0.7186
30 10.7793 0.7179
31 10.7795 0.7179
32 10.7584 0.7165
33 10.7531 0.7162
34 10.7428 0.7155
35 10.7331 0.7149
36 10.7180 0.7139
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2011

Number of Stocks
in the Portfolio

Mean Standard
Deviation of Returns

Ratio of
Mean Standard Deviation to

Mean Standard Deviation
of a Single Stock

1 14.3096 1
2 12.2796 0.8581
3 11.4936 0.8032
4 11.0981 0.7755
5 10.8186 0.7560
6 10.6691 0.7455
7 10.5049 0.7341
8 10.4417 0.7297
9 10.3564 0.7237
10 10.3291 0.7218
11 10.2602 0.7170
12 10.2104 0.7135
13 10.2169 0.7139
14 10.1405 0.7086
15 10.1182 0.7070
16 10.0870 0.7049
17 10.0817 0.7045
18 10.0537 0.7025
19 10.0497 0.7023
20 10.0288 0.7008
21 10.0193 0.7001
22 9.9916 0.6982
23 10.0097 0.6995
24 9.9785 0.6973
25 9.9906 0.6981
26 9.9753 0.6971
27 9.9716 0.6968
28 9.9564 0.6957
29 9.9503 0.6953
30 9.9441 0.6949

2012

Number of Stocks
in the Portfolio

Mean Standard
Deviation of Returns

Ratio of
Mean Standard Deviation to

Mean Standard Deviation
of a Single Stock

1 13.9394 1
2 11.8672 0.8513
3 11.0712 0.7942
4 10.6545 0.7643
5 10.5208 0.7547
6 10.3258 0.7407
7 10.2530 0.7355
8 10.1446 0.7277
9 10.0541 0.7212
10 9.9613 0.7146
11 10.0042 0.7176
12 9.9206 0.7117
13 9.9114 0.7110
14 9.8516 0.7067
15 9.8437 0.7061
16 9.8232 0.7047
17 9.8142 0.7040
18 9.7839 0.7018
19 9.7588 0.7000
20 9.7543 0.6997
21 9.7299 0.6980
22 9.7418 0.6988
23 9.6938 0.6954
24 9.7196 0.6972
25 9.6904 0.6951
26 9.6896 0.6951
27 9.6887 0.6950
28 9.6714 0.6938
29 9.6666 0.6934
30 9.6564 0.6927
31 9.6531 0.6925
32 9.6434 0.6918
33 9.6321 0.6910
34 9.6348 0.6911
35 9.6201 0.6901
36 9.6056 0.6890
37 9.5928 0.6881

2013

Number of Stocks
in the Portfolio

Mean Standard
Deviation of Returns

Ratio of
Mean Standard Deviation to

Mean Standard Deviation
of a Single Stock

1 13.8466 1
2 12.2056 0.8814
3 11.7484 0.8484
4 11.4172 0.8245
5 11.2043 0.8091
6 11.1106 0.8024
7 11.0072 0.7949
8 10.9142 0.7882
9 10.8142 0.7810
10 10.8563 0.7840
11 10.7797 0.7785
12 10.7551 0.7767
13 10.7204 0.7742
14 10.6720 0.7707
15 10.6632 0.7700
16 10.6454 0.7688
17 10.6550 0.7695
18 10.6457 0.7688
19 10.5917 0.7649
20 10.6054 0.7659
21 10.5763 0.7638
22 10.5631 0.7628
23 10.5667 0.7631
24 10.5618 0.7627
25 10.5376 0.7610
26 10.5343 0.7607
27 10.5437 0.7614
28 10.5140 0.7593
29 10.5333 0.7607
30 10.5191 0.7596
31 10.5126 0.7592
32 10.5007 0.7583
33 10.4890 0.7575
34 10.4866 0.7573
35 10.4818 0.7570
36 10.4670 0.7559
37 10.4497 0.7546

2014

Number of Stocks
in the Portfolio

Mean Standard
Deviation of Returns

Ratio of
Mean Standard Deviation to

Mean Standard Deviation
of a Single Stock

1 11.1659 1
2 9.5173 0.8523
3 8.9355 0.8002
4 8.5658 0.7671
5 8.4128 0.7534
6 8.2965 0.7430
7 8.1974 0.7341
8 8.1120 0.7265
9 8.0800 0.7236
10 8.0072 0.7171
11 7.9569 0.7126
12 7.9590 0.7127
13 7.9013 0.7076
14 7.8852 0.7061
15 7.8613 0.7040
16 7.8381 0.7019
17 7.8489 0.7029
18 7.8385 0.7020
19 7.8343 0.7016
20 7.7993 0.6984
21 7.7897 0.6976
22 7.8009 0.6986
23 7.7770 0.6964
24 7.7616 0.6951
25 7.7717 0.6960
26 7.7496 0.6940
27 7.7454 0.6936
28 7.7434 0.6934
29 7.7341 0.6926
30 7.7317 0.6924
31 7.7111 0.6905
32 7.7233 0.6916
33 7.7135 0.6908
34 7.7082 0.6903
35 7.7027 0.6898
36 7.7019 0.6897
37 7.6964 0.6892
38 7.6953 0.6891
39 7.6865 0.6883
40 7.6770 0.6875
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2015

Number of Stocks
in the Portfolio

Mean Standard
Deviation of Returns

Ratio of
Mean Standard Deviation to

Mean Standard Deviation
of a Single Stock

1 9.9162 1
2 8.6147 0.8688
3 8.0327 0.8101
4 7.7318 0.7797
5 7.5384 0.7602
6 7.4808 0.7544
7 7.3374 0.7399
8 7.3149 0.7377
9 7.2104 0.7271

10 7.1910 0.7252
11 7.1707 0.7231
12 7.1129 0.7173
13 7.0979 0.7158
14 7.0791 0.7139
15 7.0692 0.7129
16 7.0476 0.7107
17 7.0230 0.7082
18 7.0219 0.7081
19 7.0019 0.7061
20 7.0108 0.7070
21 6.9887 0.7048
22 6.9799 0.7039
23 6.9754 0.7034
24 6.9572 0.7016
25 6.9597 0.7018
26 6.9523 0.7011
27 6.9442 0.7003
28 6.9367 0.6995
29 6.9308 0.6989
30 6.9209 0.6979
31 6.9344 0.6993
32 6.9186 0.6977
33 6.9206 0.6979
34 6.9098 0.6968
35 6.9083 0.6967
36 6.9017 0.6960
37 6.9030 0.6961
38 6.8948 0.6953
39 6.8883 0.6947

Table A.2: The Results of T-test for each Year

This table presents the results of the t-test at 5% significance level for each estimation years during the sample period. T-test is performed to
determine whether any change in the mean standard deviation of two portfolios that have N and N + 2 stocks occurs or not. The prior variance-
covariance matrix used is estimated from the prior 5-year historical return data. Initially, the 1000 replicated portfolios including stocks ranging
from 1 to total number of stocks in the year analyzed are generated and their mean standard deviations are kept. The statistical decrease in the mean
standard deviation of the portfolios that haveN andN + 2 stocks are tested. T-test statistic and the critical t values are shown in this table.

Estimation year The period of historical monthly data used
2005 (Jan 2000-Dec 2004)
Portfolio size T-test statistic Critical t value
1 and 2 11.0577 1.6463
2 and 4 8.6463 1.6463
4 and 6 5.1252 1.6463
6 and 8 3.3184 1.6463
8 and 10 1.7105 1.6463
10 and 12 2.7862 1.6463
12 and 14 0.7410 1.6463
14 and 16 0.2088 1.6463
16 and 18 1.7218 1.6463
18 and 20 1.9371 1.6463
20 and 22 −0.5058 1.6463
22 and 24 0.1903 1.6463
24 and 26 4.1627 1.6463
26 and 28 −1.5591 1.6463
28 and 30 2.3176 1.6463
30 and 32 1.3302 1.6463
32 and 34 2.2397 1.6463
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Estimation year The period of historical monthly data used
2006 (Jan 2001-Dec 2005)
Portfolio size T-test statistic Critical t value
1 and 2 12.0661 1.6463
2 and 4 9.8776 1.6463
4 and 6 5.5598 1.6463
6 and 8 2.1795 1.6463
8 and 10 3.2723 1.6463
10 and 12 0.4854 1.6463
12 and 14 2.2558 1.6463
14 and 16 1.8541 1.6463
16 and 18 1.3587 1.6463
18 and 20 0.2438 1.6463
20 and 22 0.9029 1.6463
22 and 24 1.0231 1.6463
24 and 26 0.5334 1.6463
26 and 28 0.7244 1.6463
28 and 30 0.1560 1.6463
30 and 32 0.2151 1.6463
32 and 34 3.1963 1.6463
34 and 36 5.1311 1.6463

Estimation year The period of historical monthly data used
2007 (Jan 2002-Dec 2006)
Portfolio size T-test statistic Critical t value
1 and 2 15.2200 1.6463
2 and 4 16.1687 1.6463
4 and 6 8.6698 1.6463
6 and 8 5.2866 1.6463
8 and 10 3.0659 1.6463
10 and 12 4.9719 1.6463
12 and 14 −1.4646 1.6463
14 and 16 2.5568 1.6463
16 and 18 2.1382 1.6463
18 and 20 2.0254 1.6463
20 and 22 0.9338 1.6463
22 and 24 0.1027 1.6463
24 and 26 2.5837 1.6463
26 and 28 0.4112 1.6463
28 and 30 1.0657 1.6463
30 and 32 2.0154 1.6463
32 and 34 3.5295 1.6463
34 and 36 1.0231 1.6463
36 and 38 7.9131 1.6463
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Estimation year The period of historical monthly data used
2008 (Jan 2003-Dec 2007)
Portfolio size T-test statistic Critical t value
1 and 2 18.0575 1.6463
2 and 4 19.0737 1.6463
4 and 6 7.1007 1.6463
6 and 8 5.2715 1.6463
8 and 10 2.7442 1.6463
10 and 12 3.0498 1.6463
12 and 14 3.6629 1.6463
14 and 16 1.3226 1.6463
16 and 18 1.6928 1.6463
18 and 20 1.4093 1.6463
20 and 22 0.8462 1.6463
22 and 24 2.7722 1.6463
24 and 26 1.6521 1.6463
26 and 28 0.6280 1.6463
28 and 30 2.6025 1.6463
30 and 32 1.0601 1.6463
32 and 34 2.8545 1.6463
34 and 37 8.0434 1.6463

Estimation year The period of historical monthly data used
2009 (Jan 2004-Dec 2008)
Portfolio size T-test statistic Critical t value
1 and 2 21.3480 1.6463
2 and 4 17.7142 1.6463
4 and 6 9.0575 1.6463
6 and 8 5.0300 1.6463
8 and 10 4.4586 1.6463
10 and 12 2.1105 1.6463
12 and 14 1.9944 1.6463
14 and 16 1.2349 1.6463
16 and 18 2.7129 1.6463
18 and 20 1.3401 1.6463
20 and 22 0.9017 1.6463
22 and 24 0.1367 1.6463
24 and 26 4.3243 1.6463
26 and 28 0.3608 1.6463
28 and 30 2.7272 1.6463
30 and 32 2.1062 1.6463
32 and 34 10.9984 1.6463
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Estimation year The period of historical monthly data used
2010 (Jan 2005-Dec 2009)
Portfolio size T-test statistic Critical t value
1 and 2 18.0618 1.6463
2 and 4 17.4811 1.6463
4 and 6 6.9859 1.6463
6 and 8 3.4776 1.6463
8 and 10 4.4644 1.6463
10 and 12 2.4085 1.6463
12 and 14 1.1989 1.6463
14 and 16 2.7054 1.6463
16 and 18 0.9242 1.6463
18 and 20 1.0107 1.6463
20 and 22 2.0053 1.6463
22 and 24 0.6732 1.6463
24 and 26 1.9328 1.6463
26 and 28 0.1609 1.6463
28 and 30 2.3090 1.6463
30 and 32 2.1580 1.6463
32 and 34 2.1283 1.6463
34 and 36 5.6806 1.6463

Estimation year The period of historical monthly data used
2011 (Jan 2006-Dec 2010)
Portfolio size T-test statistic Critical t value
1 and 2 20.4009 1.6463
2 and 4 18.6419 1.6463
4 and 6 8.7208 1.6463
6 and 8 5.6582 1.6463
8 and 10 3.2880 1.6463
10 and 12 3.8262 1.6463
12 and 14 2.6203 1.6463
14 and 16 2.3945 1.6463
16 and 18 1.6982 1.6463
18 and 20 1.4363 1.6463
20 and 22 2.4698 1.6463
22 and 24 1.0700 1.6463
24 and 26 0.3247 1.6463
26 and 28 2.6029 1.6463
28 and 30 3.1401 1.6463
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Estimation year The period of historical monthly data used
2012 (Jan 2007-Dec 2011)
Portfolio size T-test statistic Critical t value
1 and 2 21.2283 1.6463
2 and 4 18.0050 1.6463
4 and 6 6.7391 1.6463
6 and 8 4.4399 1.6463
8 and 10 5.4880 1.6463
10 and 12 1.3433 1.6463
12 and 14 2.5108 1.6463
14 and 16 1.1535 1.6463
16 and 18 1.8040 1.6463
18 and 20 1.5017 1.6463
20 and 22 0.7144 1.6463
22 and 24 1.3788 1.6463
24 and 26 2.0490 1.6463
26 and 28 1.5168 1.6463
28 and 30 1.4462 1.6463
30 and 32 1.5392 1.6463
32 and 34 1.1771 1.6463
34 and 37 9.6869 1.6463

Estimation year The period of historical monthly data used
2013 (Jan 2008-Dec 2012)
Portfolio size T-test statistic Critical t value
1 and 2 17.5239 1.6463
2 and 4 12.0699 1.6463
4 and 6 6.1792 1.6463
6 and 8 4.9383 1.6463
8 and 10 1.7108 1.6463
10 and 12 3.4526 1.6463
12 and 14 3.0985 1.6463
14 and 16 1.1134 1.6463
16 and 18 −0.0164 1.6463
18 and 20 2.1828 1.6463
20 and 22 2.3893 1.6463
22 and 24 0.0814 1.6463
24 and 26 2.0245 1.6463
26 and 28 1.6947 1.6463
28 and 30 −0.4971 1.6463
30 and 32 2.0513 1.6463
32 and 34 1.9652 1.6463
34 and 37 8.5489 1.6463
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Estimation year The period of historical monthly data used
2014 (Jan 2009-Dec 2013)
Portfolio size T-test statistic Critical t value
1 and 2 18.3781 1.6463
2 and 4 16.8095 1.6463
4 and 6 6.8343 1.6463
6 and 8 5.7312 1.6463
8 and 10 4.0075 1.6463
10 and 12 2.0563 1.6463
12 and 14 3.5772 1.6463
14 and 16 2.5959 1.6463
16 and 18 −0.0276 1.6463
18 and 20 2.5679 1.6463
20 and 22 −0.1221 1.6463
22 and 24 3.2119 1.6463
24 and 26 1.0735 1.6463
26 and 28 0.6075 1.6463
28 and 30 1.3244 1.6463
30 and 32 1.0829 1.6463
32 and 34 2.2426 1.6463
34 and 36 1.1631 1.6463
36 and 38 1.5518 1.6463
38 and 40 7.2456 1.6463

Estimation year The period of historical monthly data used
2015 (Jan 2010-Dec 2014)
Portfolio size T-test statistic Critical t value
1 and 2 19.0225 1.6463
2 and 4 20.5641 1.6463
4 and 6 8.2171 1.6463
6 and 8 6.7042 1.6463
8 and 10 5.9132 1.6463
10 and 12 4.1572 1.6463
12 and 14 1.9810 1.6463
14 and 16 2.1472 1.6463
16 and 18 1.8848 1.6463
18 and 20 0.8912 1.6463
20 and 22 2.7124 1.6463
22 and 24 2.2426 1.6463
24 and 26 0.5296 1.6463
26 and 28 1.9615 1.6463
28 and 30 2.1840 1.6463
30 and 32 0.3574 1.6463
32 and 34 1.6224 1.6463
34 and 36 1.8291 1.6463
36 and 39 4.9319 1.6463
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Table A.3: Estimated Average Standard Deviations of the Combined Monthly Loga-
rithmic Excess Portfolio Returns with Investor Views

This table presents the number of stocks in the portfolio, the mean standard deviation of these simulated port-
folios and the ratio of mean standard deviation of the portfolio to mean standard deviation of a single stock for
each estimation year during the sample period in this thesis. The posterior variance-covariance matrix based on
B-L model is used. Initially, the replicated portfolios including stocks ranging from 1 to total number of stocks
in the year analyzed are generated and their mean standard deviations are kept and shown in the second column
of this table. In order to observe the percentage of risk which is diversified by holding large number of stocks
in the portfolio the ratio is shown in the last column of this table.

2005

Number of Stocks
in the Portfolio

Mean Standard
Deviation of Returns

Ratio of
Mean Standard Deviation to

Mean Standard Deviation
of a Single Stock

1 21.8241 1
2 19.9101 0.9122
3 19.2962 0.8841
4 18.9955 0.8703
5 18.8612 0.8642
6 18.6747 0.8556
7 18.5106 0.8481
8 18.5601 0.8504
9 18.4671 0.8461

10 18.3924 0.8427
11 18.4101 0.8435
12 18.3584 0.8412
13 18.3240 0.8396
14 18.2818 0.8376
15 18.2518 0.8363
16 18.1986 0.8338
17 18.2193 0.8348
18 18.2263 0.8351
19 18.1845 0.8332
20 18.1884 0.8334
21 18.1831 0.8331
22 18.1630 0.8322
23 18.1706 0.8325
24 18.1619 0.8321
25 18.1427 0.8313
26 18.1087 0.8297
27 18.1066 0.8296
28 18.1180 0.8301
29 18.0992 0.8293
30 18.1073 0.8296
31 18.0987 0.8292
32 18.0914 0.8289
33 18.0788 0.8283
34 18.0704 0.8280

2006

Number of Stocks
in the Portfolio

Mean Standard
Deviation of Returns

Ratio of
Mean Standard Deviation to

Mean Standard Deviation
of a Single Stock

1 18.8776 1
2 17.2443 0.9134
3 16.5571 0.8770
4 16.1145 0.8536
5 15.9064 0.8426
6 15.7585 0.8347
7 15.6588 0.8294
8 15.4794 0.8199
9 15.5674 0.8246

10 15.4501 0.8184
11 15.4565 0.8187
12 15.4030 0.8159
13 15.3791 0.8146
14 15.3335 0.8122
15 15.2936 0.8101
16 15.3023 0.8106
17 15.2882 0.8098
18 15.2762 0.8092
19 15.2660 0.8086
20 15.2603 0.8083
21 15.2192 0.8062
22 15.2383 0.8072
23 15.2397 0.8072
24 15.1810 0.8041
25 15.2153 0.8059
26 15.1842 0.8043
27 15.2051 0.8054
28 15.2026 0.8053
29 15.1601 0.8030
30 15.1521 0.8026
31 15.1505 0.8025
32 15.1646 0.8033
33 15.1553 0.8028
34 15.1455 0.8023
35 15.1367 0.8018
36 15.1227 0.8010
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2007

Number of Stocks
in the Portfolio

Mean Standard
Deviation of Returns

Ratio of
Mean Standard Deviation to

Mean Standard Deviation
of a Single Stock

1 15.2868 1
2 13.5435 0.8859
3 12.8829 0.8427
4 12.5909 0.8236
5 12.3405 0.8072
6 12.2381 0.8005
7 12.1299 0.7934
8 12.0621 0.7890
9 11.9835 0.7839
10 11.9345 0.7807
11 11.9314 0.7805
12 11.8477 0.7750
13 11.8652 0.7761
14 11.8159 0.7729
15 11.8031 0.7721
16 11.7861 0.7709
17 11.7809 0.7706
18 11.7646 0.7695
19 11.7483 0.7685
20 11.7378 0.7678
21 11.7170 0.7664
22 11.7068 0.7658
23 11.6935 0.7649
24 11.7026 0.7655
25 11.7016 0.7654
26 11.6713 0.7634
27 11.6750 0.7637
28 11.6651 0.7630
29 11.6470 0.7618
30 11.6583 0.7626
31 11.6408 0.7614
32 11.6288 0.7607
33 11.6262 0.7605
34 11.6192 0.7600
35 11.6048 0.7591
36 11.6075 0.7593
37 11.5967 0.7586
38 11.5841 0.7577

2008

Number of Stocks
in the Portfolio

Mean Standard
Deviation of Returns

Ratio of
Mean Standard Deviation to

Mean Standard Deviation
of a Single Stock

1 12.4085 1
2 10.8011 0.8704
3 10.1576 0.8186
4 9.8051 0.7902
5 9.6444 0.7772
6 9.4857 0.7644
7 9.3537 0.7538
8 9.2551 0.7458
9 9.2181 0.7428
10 9.1947 0.7410
11 9.1393 0.7365
12 9.1111 0.7342
13 9.0674 0.7307
14 9.0218 0.7270
15 9.0332 0.7279
16 9.0014 0.7254
17 8.9615 0.7222
18 8.9997 0.7252
19 8.9845 0.7240
20 8.9565 0.7218
21 8.9282 0.7195
22 8.9431 0.7207
23 8.9144 0.7184
24 8.9124 0.7182
25 8.9029 0.7174
26 8.8848 0.7160
27 8.8923 0.7166
28 8.8769 0.7153
29 8.8679 0.7146
30 8.8609 0.7141
31 8.8600 0.7140
32 8.8544 0.7135
33 8.8495 0.7131
34 8.8447 0.7127
35 8.8320 0.7117
36 8.8213 0.7109
37 8.8119 0.7101

2009

Number of Stocks
in the Portfolio

Mean Standard
Deviation of Returns

Ratio of
Mean Standard Deviation to

Mean Standard Deviation
of a Single Stock

1 13.8532 1
2 12.0511 0.8699
3 11.3838 0.8217
4 10.9302 0.7890
5 10.7103 0.7731
6 10.5566 0.7620
7 10.4356 0.7532
8 10.3582 0.7477
9 10.2980 0.7433
10 10.2699 0.7413
11 10.2206 0.7377
12 10.1796 0.7348
13 10.1342 0.7315
14 10.0777 0.7274
15 10.0359 0.7244
16 10.0832 0.7278
17 10.0355 0.7244
18 10.0082 0.7224
19 10.0027 0.7220
20 9.9792 0.7203
21 9.9976 0.7216
22 9.9599 0.7189
23 9.9468 0.7180
24 9.9288 0.7167
25 9.9369 0.7173
26 9.9245 0.7164
27 9.8996 0.7146
28 9.9011 0.7147
29 9.8889 0.7138
30 9.8784 0.7130
31 9.8677 0.7123
32 9.8659 0.7121
33 9.8474 0.7108
34 9.8203 0.7088

2010

Number of Stocks
in the Portfolio

Mean Standard
Deviation of Returns

Ratio of
Mean Standard Deviation to

Mean Standard Deviation
of a Single Stock

1 15.1070 1
2 13.0642 0.8647
3 12.2967 0.8139
4 11.9258 0.7894
5 11.6412 0.7705
6 11.4305 0.7566
7 11.3520 0.7514
8 11.2481 0.7445
9 11.1637 0.7389
10 11.1449 0.7377
11 11.0814 0.7335
12 11.0540 0.7317
13 11.0313 0.7302
14 11.0204 0.7294
15 10.9502 0.7248
16 10.9453 0.7245
17 10.9493 0.7247
18 10.9543 0.7251
19 10.8963 0.7212
20 10.8866 0.7206
21 10.8732 0.7197
22 10.8643 0.7191
23 10.8570 0.7186
24 10.8137 0.7158
25 10.8175 0.7160
26 10.7965 0.7146
27 10.8002 0.7149
28 10.8127 0.7157
29 10.7936 0.7144
30 10.7916 0.7143
31 10.7801 0.7135
32 10.7712 0.7129
33 10.7553 0.7119
34 10.7495 0.7115
35 10.7426 0.7111
36 10.7226 0.7097
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2011

Number of Stocks
in the Portfolio

Mean Standard
Deviation of Returns

Ratio of
Mean Standard Deviation to

Mean Standard Deviation
of a Single Stock

1 14.2133 1
2 12.2979 0.8652
3 11.5155 0.8101
4 11.0579 0.7780
5 10.8059 0.7602
6 10.6986 0.7527
7 10.5883 0.7449
8 10.4757 0.7370
9 10.3733 0.7298

10 10.3199 0.7260
11 10.2629 0.7220
12 10.2143 0.7186
13 10.1845 0.7165
14 10.1618 0.7149
15 10.1306 0.7127
16 10.1133 0.7115
17 10.1058 0.7110
18 10.0874 0.7097
19 10.0389 0.7063
20 10.0394 0.7063
21 10.0136 0.7045
22 10.0194 0.7049
23 10.0065 0.7040
24 10.0041 0.7038
25 9.9852 0.7025
26 9.9834 0.7024
27 9.9730 0.7016
28 9.9556 0.7004
29 9.9547 0.7003
30 9.9498 0.7000

2012

Number of Stocks
in the Portfolio

Mean Standard
Deviation of Returns

Ratio of Mean
Standard Deviation to

Mean Standard Deviation
of a Single Stock

1 13.9696 1
2 11.8206 0.8461
3 11.2194 0.8031
4 10.7136 0.7669
5 10.5055 0.7520
6 10.3382 0.7400
7 10.2150 0.7312
8 10.1452 0.7262
9 10.0565 0.7198

10 10.0136 0.7168
11 9.9674 0.7135
12 9.9732 0.7139
13 9.9017 0.7088
14 9.9186 0.7100
15 9.8662 0.7062
16 9.8593 0.7057
17 9.8034 0.7017
18 9.7963 0.7012
19 9.7789 0.7000
20 9.7622 0.6988
21 9.7610 0.6987
22 9.7396 0.6972
23 9.7451 0.6975
24 9.7105 0.6951
25 9.6895 0.6936
26 9.6891 0.6935
27 9.6782 0.6928
28 9.6681 0.6920
29 9.6627 0.6916
30 9.6611 0.6915
31 9.6730 0.6924
32 9.6490 0.6907
33 9.6417 0.6901
34 9.6271 0.6891
35 9.6221 0.6887
36 9.6138 0.6881
37 9.5978 0.6870

2013

Number of Stocks
in the Portfolio

Mean Standard
Deviation of Returns

Ratio of
Mean Standard Deviation to

Mean Standard Deviation
of a Single Stock

1 13.8413 1
2 12.2761 0.8869
3 11.7309 0.8475
4 11.4105 0.8243
5 11.1560 0.8059
6 11.0826 0.8006
7 10.9684 0.7924
8 10.8864 0.7865
9 10.8269 0.7822

10 10.8216 0.7818
11 10.7645 0.7777
12 10.7502 0.7766
13 10.7478 0.7765
14 10.7000 0.7730
15 10.6723 0.7710
16 10.6649 0.7705
17 10.6460 0.7691
18 10.6217 0.7673
19 10.6303 0.7680
20 10.6078 0.7663
21 10.6179 0.7671
22 10.5728 0.7638
23 10.5823 0.7645
24 10.5611 0.7630
25 10.5645 0.7632
26 10.5479 0.7620
27 10.5463 0.7619
28 10.5346 0.7611
29 10.5206 0.7600
30 10.5153 0.7597
31 10.5191 0.7599
32 10.5014 0.7586
33 10.5008 0.7586
34 10.4943 0.7581
35 10.4798 0.7571
36 10.4731 0.7566
37 10.4538 0.7552

2014

Number of Stocks
in the Portfolio

Mean Standard
Deviation of Returns

Ratio of
Mean Standard Deviation to

Mean Standard Deviation
of a Single Stock

1 11.1695 1
2 9.4589 0.8468
3 8.9748 0.8035
4 8.6047 0.7703
5 8.4523 0.7567
6 8.3341 0.7461
7 8.1892 0.7331
8 8.1223 0.7271
9 8.0881 0.7241

10 8.0432 0.7201
11 8.0118 0.7172
12 7.9586 0.7125
13 7.9505 0.7118
14 7.8892 0.7063
15 7.8842 0.7058
16 7.8396 0.7018
17 7.8718 0.7047
18 7.8518 0.7029
19 7.8109 0.6993
20 7.8213 0.7002
21 7.7951 0.6978
22 7.8015 0.6984
23 7.7720 0.6958
24 7.7793 0.6964
25 7.7553 0.6943
26 7.7574 0.6945
27 7.7537 0.6941
28 7.7450 0.6934
29 7.7375 0.6927
30 7.7243 0.6915
31 7.7273 0.6918
32 7.7164 0.6908
33 7.7142 0.6906
34 7.7129 0.6905
35 7.7119 0.6904
36 7.7014 0.6895
37 7.6994 0.6893
38 7.6898 0.6884
39 7.6854 0.6880
40 7.6804 0.6876
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2015

Number of Stocks
in the Portfolio

Mean Standard
Deviation of Returns

Ratio of
Mean Standard Deviation to

Mean Standard Deviation
of a Single Stock

1 9.9723 1
2 8.5912 0.8615
3 8.0280 0.8050
4 7.7517 0.7773
5 7.5704 0.7591
6 7.4175 0.7438
7 7.3534 0.7374
8 7.2752 0.7295
9 7.2267 0.7247

10 7.1873 0.7207
11 7.1704 0.7190
12 7.1321 0.7152
13 7.1209 0.7141
14 7.0779 0.7098
15 7.0665 0.7086
16 7.0308 0.7050
17 7.0473 0.7067
18 7.0285 0.7048
19 7.0050 0.7024
20 7.0054 0.7025
21 6.9913 0.7011
22 6.9937 0.7013
23 6.9792 0.6999
24 6.9760 0.6995
25 6.9568 0.6976
26 6.9519 0.6971
27 6.9526 0.6972
28 6.9403 0.6960
29 6.9363 0.6956
30 6.9292 0.6948
31 6.9194 0.6939
32 6.9298 0.6949
33 6.9173 0.6937
34 6.9160 0.6935
35 6.9118 0.6931
36 6.9073 0.6927
37 6.9042 0.6923
38 6.8980 0.6917
39 6.8915 0.6911
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Table A.4: The Results of T-test performed on Posterior Variance Matrices for each
Year

This table presents the results of the t-test at 5% significance level for each estimation years during the sample period. T-test is performed to
determine whether any change in the mean standard deviation of two portfolios that have N and N + 2 stocks occurs or not. The posterior
variance-covariance matrix based on B-L model is used. Initially, the 1000 replicated portfolios including stocks ranging from 1 to total number of
stocks in the year analyzed are generated and their mean standard deviations are kept. The statistical decrease in the mean standard deviation of the
portfolios that haveN andN + 2 stocks are tested. T-test statistic and the critical t values are shown in this table.

Estimation year The period of historical monthly data used
2005 (Jan 2000-Dec 2004)
Portfolio size T-test statistic Critical t value
1 and 2 11.7139 1.6463
2 and 4 8.8969 1.6463
4 and 6 4.5063 1.6463
6 and 8 2.0013 1.6463
8 and 10 3.5213 1.6463
10 and 12 0.8200 1.6463
12 and 14 2.2214 1.6463
14 and 16 2.6911 1.6463
16 and 18 −0.9894 1.6463
18 and 20 1.5667 1.6463
20 and 22 1.2002 1.6463
22 and 24 0.0568 1.6463
24 and 26 3.1969 1.6463
26 and 28 −0.6360 1.6463
28 and 30 0.9628 1.6463
30 and 32 1.8920 1.6463
32 and 34 4.4025 1.6463

Estimation year The period of historical monthly data used
2006 (Jan 2001-Dec 2005)
Portfolio size T-test statistic Critical t value
1 and 2 11.7939 1.6463
2 and 4 12.1232 1.6463
4 and 6 5.4236 1.6463
6 and 8 5.0317 1.6463
8 and 10 0.6267 1.6463
10 and 12 1.1444 1.6463
12 and 14 1.9486 1.6463
14 and 16 0.9385 1.6463
16 and 18 0.8757 1.6463
18 and 20 0.6210 1.6463
20 and 22 0.9601 1.6463
22 and 24 2.7895 1.6463
24 and 26 −0.1709 1.6463
26 and 28 −1.1383 1.6463
28 and 30 3.5915 1.6463
30 and 32 −1.1087 1.6463
32 and 34 2.2295 1.6463
34 and 36 4.6152 1.6463
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Estimation year The period of historical monthly data used
2007 (Jan 2002-Dec 2006)
Portfolio size T-test statistic Critical t value
1 and 2 17.4608 1.6463
2 and 4 15.1451 1.6463
4 and 6 8.5874 1.6463
6 and 8 5.1089 1.6463
8 and 10 4.4163 1.6463
10 and 12 3.4191 1.6463
12 and 14 1.4068 1.6463
14 and 16 1.4814 1.6463
16 and 18 1.1873 1.6463
18 and 20 1.6370 1.6463
20 and 22 2.1046 1.6463
22 and 24 0.3151 1.6463
24 and 26 2.6004 1.6463
26 and 28 0.5572 1.6463
28 and 30 0.7318 1.6463
30 and 32 3.5571 1.6463
32 and 34 1.3690 1.6463
34 and 36 2.0767 1.6463
36 and 38 7.4008 1.6463

Estimation year The period of historical monthly data used
2008 (Jan 2003-Dec 2007)
Portfolio size T-test statistic Critical t value
1 and 2 18.2338 1.6463
2 and 4 17.5559 1.6463
4 and 6 7.9068 1.6463
6 and 8 7.0662 1.6463
8 and 10 2.1009 1.6463
10 and 12 3.2173 1.6463
12 and 14 3.9064 1.6463
14 and 16 1.0271 1.6463
16 and 18 0.0923 1.6463
18 and 20 2.5932 1.6463
20 and 22 0.8920 1.6463
22 and 24 2.3048 1.6463
24 and 26 2.3264 1.6463
26 and 28 0.7461 1.6463
28 and 30 1.7730 1.6463
30 and 32 0.8626 1.6463
32 and 34 1.6035 1.6463
34 and 37 8.8228 1.6463
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Estimation year The period of historical monthly data used
2009 (Jan 2004-Dec 2008)
Portfolio size T-test statistic Critical t value
1 and 2 20.7922 1.6463
2 and 4 18.8026 1.6463
4 and 6 7.8394 1.6463
6 and 8 5.3122 1.6463
8 and 10 2.8109 1.6463
10 and 12 3.1407 1.6463
12 and 14 3.8802 1.6463
14 and 16 −0.2481 1.6463
16 and 18 3.6049 1.6463
18 and 20 1.5647 1.6463
20 and 22 1.1505 1.6463
22 and 24 2.1266 1.6463
24 and 26 0.3426 1.6463
26 and 28 2.0824 1.6463
28 and 30 2.4404 1.6463
30 and 32 1.8851 1.6463
32 and 34 11.413 1.6463

Estimation year The period of historical monthly data used
2010 (Jan 2005-Dec 2009)
Portfolio size T-test statistic Critical t value
1 and 2 20.0641 1.6463
2 and 4 16.6292 1.6463
4 and 6 9.3226 1.6463
6 and 8 4.1521 1.6463
8 and 10 2.6907 1.6463
10 and 12 2.7069 1.6463
12 and 14 1.0685 1.6463
14 and 16 2.7680 1.6463
16 and 18 −0.3540 1.6463
18 and 20 3.0043 1.6463
20 and 22 1.1014 1.6463
22 and 24 2.7844 1.6463
24 and 26 1.0758 1.6463
26 and 28 −1.1753 1.6463
28 and 30 1.7471 1.6463
30 and 32 2.0203 1.6463
32 and 34 2.8310 1.6463
34 and 36 6.1885 1.6463
34 and 36 6.1885 1.6463
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Estimation year The period of historical monthly data used
2011 (Jan 2006-Dec 2010)
Portfolio size T-test statistic Critical t value
1 and 2 19.1147 1.6463
2 and 4 19.0495 1.6463
4 and 6 7.4948 1.6463
6 and 8 5.4274 1.6463
8 and 10 4.4428 1.6463
10 and 12 3.6531 1.6463
12 and 14 2.0740 1.6463
14 and 16 2.1442 1.6463
16 and 18 1.3185 1.6463
18 and 20 2.8161 1.6463
20 and 22 1.3949 1.6463
22 and 24 1.2453 1.6463
24 and 26 2.0446 1.6463
26 and 28 3.8377 1.6463
28 and 30 1.4264 1.6463

Estimation year The period of historical monthly data used
2012 (Jan 2007-Dec 2011)
Portfolio size T-test statistic Critical t value
1 and 2 22.4464 1.6463
2 and 4 17.5932 1.6463
4 and 6 7.6384 1.6463
6 and 8 4.7627 1.6463
8 and 10 3.8114 1.6463
10 and 12 1.3113 1.6463
12 and 14 1.9904 1.6463
14 and 16 2.4319 1.6463
16 and 18 2.8451 1.6463
18 and 20 1.7335 1.6463
20 and 22 1.2942 1.6463
22 and 24 1.8766 1.6463
24 and 26 1.4966 1.6463
26 and 28 1.6840 1.6463
28 and 30 0.6649 1.6463
30 and 32 1.3053 1.6463
32 and 34 3.0338 1.6463
34 and 37 6.8273 1.6463

103



Estimation year The period of historical monthly data used
2013 (Jan 2008-Dec 2012)
Portfolio size T-test statistic Critical t value
1 and 2 16.1151 1.6463
2 and 4 12.9447 1.6463
4 and 6 6.6047 1.6463
6 and 8 4.8851 1.6463
8 and 10 1.8753 1.6463
10 and 12 2.3791 1.6463
12 and 14 1.9300 1.6463
14 and 16 1.4624 1.6463
16 and 18 2.0373 1.6463
18 and 20 0.7280 1.6463
20 and 22 2.0649 1.6463
22 and 24 0.7554 1.6463
24 and 26 0.9666 1.6463
26 and 28 1.0842 1.6463
28 and 30 1.8232 1.6463
30 and 32 1.5688 1.6463
32 and 34 1.0140 1.6463
34 and 37 9.5991 1.6463

Estimation year The period of historical monthly data used
2014 (Jan 2009-Dec 2013)
Portfolio size T-test statistic Critical t value
1 and 2 18.5598 1.6463
2 and 4 15.3562 1.6463
4 and 6 6.9359 1.6463
6 and 8 6.9304 1.6463
8 and 10 3.0242 1.6463
10 and 12 3.6215 1.6463
12 and 14 3.3675 1.6463
14 and 16 2.7684 1.6463
16 and 18 −0.7251 1.6463
18 and 20 2.0801 1.6463
20 and 22 1.5063 1.6463
22 and 24 1.8416 1.6463
24 and 26 1.9795 1.6463
26 and 28 1.2548 1.6463
28 and 30 2.2795 1.6463
30 and 32 1.0166 1.6463
32 and 34 0.5190 1.6463
34 and 36 2.0488 1.6463
36 and 38 2.6946 1.6463
38 and 40 3.6728 1.6463
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Estimation year The period of historical monthly data used
2015 (Jan 2010-Dec 2014)
Portfolio size T-test statistic Critical t value
1 and 2 19.4502 1.6463
2 and 4 19.3480 1.6463
4 and 6 10.6767 1.6463
6 and 8 5.6327 1.6463
8 and 10 3.9419 1.6463
10 and 12 2.9388 1.6463
12 and 14 3.2758 1.6463
14 and 16 3.1661 1.6463
16 and 18 0.1766 1.6463
18 and 20 1.8700 1.6463
20 and 22 1.0784 1.6463
22 and 24 1.7716 1.6463
24 and 26 2.6452 1.6463
26 and 28 1.4090 1.6463
28 and 30 1.5756 1.6463
30 and 32 −0.0958 1.6463
32 and 34 2.4989 1.6463
34 and 36 1.9604 1.6463
36 and 39 5.8677 1.6463
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Table A.5: Market Capitalization Weights, Optimal Posterior Weights and Differences
for the Estimation Years from 2005 to 2014

This table presents the market capitalization weights, the optimal posterior weights of the stocks that are consistently traded on BIST-50 index for
each year from 2005 to 2014 and the differences between them. First column shows the codes of the stocks that are consistently included in BIST-50
index during whole the year and in addition to this monthly return data for former 5-year is available. Second column shows the weights of these
stocks according to market capitalization. By following each step of the B-L model described in Figure 4.1 the expected posterior returns and the
posterior variances of these stocks can be calculated. The investor utility function is maximized by using these calculated values. By taking the
derivative of this function with respect to weight vector the optimal posterior weights of these stocks are obtained and shown in the third column of
this table. Bloomberg analysts did not estimate any target stock price for the stock codes written in bold letters. The difference between the market
capitalization weights and the optimal posterior weights of both stocks with views and no views are shown in the last column of this table. Finally,
the last row of this table shows the summation of both the market capitalization weights and the optimal posterior weights.

2005
wMKT w? wMKT − w?

AKBNK 0.1563 0.1537 0.0026
AKGRT 0.0103 0.5039 -0.4936
AKSA 0.0052 -0.1996 0.2048
ALARK 0.0080 0.3840 -0.3760
ARCLK 0.0412 0.6378 -0.5966
ASELS 0.0042 0.0041 0.0001
BEKO 0.0067 -4.4986 4.5053
DISBA 0.0115 0.0114 0.0001
DOHOL 0.0262 0.0258 0.0004
DYHOL 0.0228 -0.2696 0.2924
ECILC 0.0055 0.0055 0.0000
EFES 0.0024 0.0024 0.0000
EREGL 0.0371 0.5624 -0.5253
FINBN 0.0182 -0.2010 0.2192
FROTO 0.0390 1.0287 -0.9897
GARAN 0.0638 0.0627 0.0011
GLYHO 0.0010 0.0010 0.0000
HURGZ 0.0165 -0.2210 0.2375
ISCTR 0.1525 0.1056 0.0469
ISGYO 0.0079 0.0719 -0.0640
KCHOL 0.0867 0.1575 -0.0708
KRDMD 0.0028 0.0028 0.0000
MIGRS 0.0192 -7.6724 7.6916
NTHOL 0.0017 0.0016 0.0001
PETKM 0.0167 0.0165 0.0002
PRKTE 0.0040 0.0040 0.0000
PTOFS 0.0193 0.0190 0.0003
SAHOL 0.0786 0.8077 -0.7291
SISE 0.0197 0.2033 -0.1836
TNSAS 0.0064 0.1730 -0.1666
TOASO 0.0154 0.2947 -0.2793
TUPRS 0.0428 1.3425 -1.2997
VESTL 0.0103 4.7412 -4.7309
YKBNK 0.0398 -0.0642 0.1040

SUM 1.0000 -1.8017

2006
wMKT w? wMKT − w?

AEFES 0.0288 -0.2137 0.2425
AKBNK 0.1337 0.1584 -0.0247
AKGRT 0.0106 0.2602 -0.2496
ANSGR 0.0037 -0.1272 0.1309
ARCLK 0.0254 0.2324 -0.2070
DEVA 0.0030 0.0029 0.0001
DOHOL 0.0218 0.0296 -0.0078
DYHOL 0.0208 -0.1428 0.1636
ECILC 0.0054 0.0053 0.0001
EREGL 0.0295 -0.3625 0.3920
FINBN 0.0389 -0.0490 0.0879
FORTS 0.0173 -0.3416 0.3589
FROTO 0.0280 0.7547 -0.7267
GARAN 0.0695 0.0329 0.0366
GLYHO 0.0014 0.0013 0.0001
GSDHO 0.0018 0.0018 0.0000
HURGZ 0.0149 -0.1916 0.2065
ISCTR 0.1555 0.0014 0.1541
ISGYO 0.0066 0.0065 0.0001
KARTN 0.0025 0.0025 0.0000
KCHOL 0.0493 -0.0874 0.1367
KRDMD 0.0014 0.0014 0.0000
MIGRS 0.0122 0.0758 -0.0636
PETKM 0.0109 -0.4303 0.4412
PRKTE 0.0023 0.0023 0.0000
PTOFS 0.0176 -0.0795 0.0971
SAHOL 0.0620 0.0862 -0.0242
SISE 0.0134 -0.1268 0.1402
SKBNK 0.0042 0.0041 0.0001
TCELL 0.1027 0.1277 -0.0250
THYAO 0.0100 -0.1788 0.1888
TOASO 0.0096 0.1943 -0.1847
TSKB 0.0062 0.0061 0.0001
TUPRS 0.0419 0.9485 -0.9066
VESTL 0.0054 0.0053 0.0001
YKBNK 0.0320 -0.0428 0.0748

SUM 1.0000 0.5676
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2007
wMKT w? wMKT − w?

AEFES 0.0345 -0.2465 0.2810
AKBNK 0.1323 -0.0603 0.1926
AKCNS 0.0114 0.3299 -0.3185
AKGRT 0.0114 0.3726 -0.3612
ALARK 0.0044 -0.2422 0.2466
ANSGR 0.0033 0.0563 -0.0530
ARCLK 0.0234 0.0951 -0.0717
AYGAZ 0.0067 0.2604 -0.2537
DOHOL 0.0234 0.1129 -0.0895
DYHOL 0.0212 -0.3033 0.3245
ECILC 0.0070 0.2719 -0.2649
EREGL 0.0307 -0.1615 0.1922
FORTS 0.0144 0.0142 0.0002
FROTO 0.0280 0.9262 -0.8982
GARAN 0.0687 -0.1152 0.1839
GLYHO 0.0011 -0.1100 0.1111
GSDHO 0.0017 0.0016 0.0001
HURGZ 0.0109 -0.1193 0.1302
IHLAS 0.0014 0.0013 0.0001
ISCTR 0.1253 0.1708 -0.0455
ISGYO 0.0067 -0.0324 0.0391
KCHOL 0.0487 -0.0412 0.0899
KRDMD 0.0014 0.0013 0.0001
MIGRS 0.0226 -0.5916 0.6142
NTHOL 0.0015 0.0014 0.0001
PETKM 0.0073 -0.1618 0.1691
PTOFS 0.0134 -0.0235 0.0369
SAHOL 0.0699 -0.0844 0.1543
SISE 0.0148 -0.0917 0.1065
SKBNK 0.0042 0.0041 0.0001
TCELL 0.1100 -0.0203 0.1303
THYAO 0.0075 -0.0753 0.0828
TOASO 0.0171 0.1201 -0.1030
TRKCM 0.0080 0.4007 -0.3927
TSKB 0.0054 0.0381 -0.0327
TUPRS 0.0424 0.7822 -0.7398
VESTL 0.0041 -0.3522 0.3563
YKBNK 0.0541 -0.1097 0.1638

SUM 1.000 1.0187

2008
wMKT w? wMKT − w?

AEFES 0.0290 -0.6174 0.6464
AKBNK 0.1209 0.0621 0.0588
AKENR 0.0032 -0.2581 0.2613
AKGRT 0.0098 0.7944 -0.7846
ALARK 0.0037 -0.4089 0.4126
ANSGR 0.0025 0.3541 -0.3516
ARCLK 0.0151 0.2759 -0.2608
AYGAZ 0.0061 0.3142 -0.3081
DOHOL 0.0154 0.1491 -0.1337
DYHOL 0.0136 -0.1846 0.1982
ECILC 0.0044 0.6530 -0.6486
ENKAI 0.0854 -0.7513 0.8367
EREGL 0.0403 -0.0319 0.0722
GARAN 0.1021 -0.2344 0.3365
GLYHO 0.0019 -0.0619 0.0638
GSDHO 0.0014 0.0514 -0.0500
HURGZ 0.0071 -0.0883 0.0954
IHLAS 0.0019 0.0019 0.0000
ISCTR 0.0938 0.1750 -0.0812
ISGYO 0.0036 0.2944 -0.2908
KCHOL 0.0513 -0.1506 0.2019
KRDMD 0.0024 -0.1027 0.1051
MIGRS 0.0189 -0.5796 0.5985
NTHOL 0.0018 0.0775 -0.0757
PETKM 0.0082 -0.5130 0.5212
PTOFS 0.0138 0.1855 -0.1717
SAHOL 0.0538 0.0205 0.0333
SISE 0.0104 -0.0260 0.0364
SKBNK 0.0096 -0.2366 0.2462
TCELL 0.1304 0.1841 -0.0537
THYAO 0.0070 -0.0354 0.0424
TOASO 0.0142 0.2066 -0.1924
TRKCM 0.0062 0.1646 -0.1584
TSKB 0.0036 -0.0050 0.0086
TUPRS 0.0397 0.6776 -0.6379
VESTL 0.0021 0.0021 0.0000
YKBNK 0.0654 -0.1507 0.2161

SUM 1.000 0.2076
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2009
wMKT w? wMKT − w?

AEFES 0.0419 -0.0848 0.1267
AKBNK 0.1297 -0.2821 0.4118
AKENR 0.0036 0.1523 -0.1487
AKGRT 0.0079 0.1306 -0.1227
ANSGR 0.0029 0.0568 -0.0539
ARCLK 0.0075 -0.1203 0.1278
AYGAZ 0.0055 0.5542 -0.5487
BAGFS 0.0017 0.2750 -0.2733
DOHOL 0.0140 0.2698 -0.2558
DYHOL 0.0037 -0.1530 0.1567
ECILC 0.0044 0.6465 -0.6421
ENKAI 0.0570 -0.1540 0.2110
EREGL 0.0428 -0.3695 0.4123
GARAN 0.0988 -0.2436 0.3424
GUBRF 0.0046 0.3757 -0.3711
HURGZ 0.0027 -0.0493 0.0520
ISCTR 0.1022 -0.0059 0.1081
KCHOL 0.0477 0.1014 -0.0537
KRDMD 0.0017 0.2112 -0.2095
NTHOL 0.0009 -0.0056 0.0065
PETKM 0.0086 -0.5300 0.5386
PTOFS 0.0137 0.0354 -0.0217
SAHOL 0.0570 -0.1567 0.2137
SISE 0.0099 -0.1283 0.1382
SKBNK 0.0039 -0.1623 0.1662
TCELL 0.1741 0.6965 -0.5224
TEBNK 0.0082 -0.0856 0.0938
THYAO 0.0090 0.0310 -0.0220
TOASO 0.0052 0.5491 -0.5439
TRKCM 0.0045 0.3598 -0.3553
TSKB 0.0042 -0.1816 0.1858
TUPRS 0.0367 1.2377 -1.2010
VESTL 0.0013 0.2400 -0.2387
YKBNK 0.0826 -0.2779 0.3605

SUM 1.0000 2.9325

2010
wMKT w? wMKT − w?

AEFES 0.0370 -0.0143 0.0513
AKBNK 0.1386 -0.1206 0.2592
AKENR 0.0045 0.1567 -0.1522
AKGRT 0.0078 0.5608 -0.5530
ANSGR 0.0028 0.2348 -0.2320
ARCLK 0.0193 0.0498 -0.0305
AYGAZ 0.0083 0.3104 -0.3021
BAGFS 0.0014 -0.1374 0.1388
DOHOL 0.0123 0.0512 -0.0389
DYHOL 0.0055 -0.3319 0.3374
ECILC 0.0067 -0.1053 0.1120
ENKAI 0.0607 -0.1566 0.2173
EREGL 0.0352 0.0753 -0.0401
GARAN 0.1304 0.0076 0.1228
GSDHO 0.0012 0.0568 -0.0556
HURGZ 0.0050 -0.0612 0.0662
ISCTR 0.0949 0.2370 -0.1421
KCHOL 0.0522 0.0157 0.0365
KOZAA 0.0046 -0.1209 0.1255
KRDMD 0.0019 -0.1055 0.1074
NTHOL 0.0010 0.1087 -0.1077
PETKM 0.0073 -0.1361 0.1434
SAHOL 0.0534 -0.0262 0.0796
SISE 0.0101 -0.1185 0.1286
SKBNK 0.0063 -0.1485 0.1548
TCELL 0.1140 0.1023 0.0117
TEBNK 0.0151 -0.2602 0.2753
THYAO 0.0244 -0.2333 0.2577
TIRE 0.0021 0.0020 0.0001
TOASO 0.0115 0.1809 -0.1694
TSKB 0.0053 0.0991 -0.0938
TUPRS 0.0364 0.5353 -0.4989
ULKER 0.0046 0.1231 -0.1185
VESTL 0.0043 -0.1528 0.1571
YKBNK 0.0697 0.0422 0.0275
ZOREN 0.0043 -0.1165 0.1208

SUM 1.0000 0.6039
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2011
wMKT w? wMKT − w?

AKBNK 0.1345 -0.0444 0.1789
AKENR 0.0053 -0.0048 0.0101
ARCLK 0.0207 0.0537 -0.0330
ASELS 0.0076 -0.1287 0.1363
BAGFS 0.0019 -0.0025 0.0044
BIMAS 0.0312 -0.1683 0.1995
DOHOL 0.0108 0.0362 -0.0254
DYHOL 0.0077 -0.4614 0.4691
ECILC 0.0054 0.3738 -0.3684
ENKAI 0.0497 -0.0633 0.1130
EREGL 0.0320 0.1548 -0.1228
FENER 0.0052 0.0052 0.0000
GARAN 0.1287 0.1314 -0.0027
GUBRF 0.0056 0.0866 -0.0810
IHLAS 0.0028 0.0028 0.0000
IPEKE 0.0019 -0.0873 0.0892
ISCTR 0.0970 0.3160 -0.2190
KCHOL 0.0712 -0.0806 0.1518
KOZAA 0.0035 0.0271 -0.0236
KRDMD 0.0018 -0.1178 0.1196
PETKM 0.0093 -0.0504 0.0597
SAHOL 0.0576 0.0702 -0.0126
SISE 0.0122 0.0172 -0.0050
TCELL 0.0910 -0.0782 0.1692
TEBNK 0.0096 -0.1206 0.1302
THYAO 0.0212 0.1801 -0.1589
TOASO 0.0156 0.1856 -0.1700
TUPRS 0.0379 0.4009 -0.3630
VAKBN 0.0383 -0.0105 0.0488
YKBNK 0.0828 0.1740 -0.0912

SUM 1.0000 0.7968

2012
wMKT w? wMKT − w?

AEFES 0.0486 -0.1896 0.2382
AKBNK 0.1141 -0.1585 0.2726
AKENR 0.0033 0.1900 -0.1867
ARCLK 0.0196 -0.0172 0.0368
ASELS 0.0091 -0.1347 0.1438
ASYAB 0.0068 -0.2151 0.2219
BAGFS 0.0022 0.0977 -0.0955
BIMAS 0.0378 -0.2499 0.2877
DOHOL 0.0062 0.3511 -0.3449
DYHOL 0.0047 -0.1264 0.1311
ECILC 0.0047 0.4485 -0.4438
ENKAI 0.0486 -0.0965 0.1451
EREGL 0.0334 0.0284 0.0050
FENER 0.0047 0.0047 0.0000
FROTO 0.0254 -0.3096 0.3350
GARAN 0.1174 -0.0527 0.1701
GSRAY 0.0022 0.0021 0.0001
IHLAS 0.0029 0.0028 0.0001
ISCTR 0.0706 0.1829 -0.1123
IZMDC 0.0062 -0.2245 0.2307
KCHOL 0.0650 -0.0910 0.1560
KONYA 0.0071 0.0070 0.0001
KOZAA 0.0024 0.3251 -0.3227
KRDMD 0.0022 0.0315 -0.0293
MGROS 0.0107 0.1839 -0.1732
NETAS 0.0038 0.0037 0.0001
PETKM 0.0093 0.1229 -0.1136
PRKME 0.0024 0.2301 -0.2277
SAHOL 0.0522 0.1726 -0.1204
SISE 0.0176 -0.0717 0.0893
TCELL 0.0925 -0.1830 0.2755
THYAO 0.0121 0.2028 -0.1907
TOASO 0.0140 0.1593 -0.1453
TTRAK 0.0085 0.1111 -0.1026
TUPRS 0.0475 -0.0513 0.0988
VAKBN 0.0290 0.0048 0.0242
YKBNK 0.0554 0.1389 -0.0835

SUM 1.0000 0.8302
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2013
wMKT w? wMKT − w?

AEFES 0.0422 0.1404 -0.0982
AKBNK 0.0976 0.0040 0.0936
AKENR 0.0033 -0.0861 0.0894
ARCLK 0.0219 -0.0619 0.0838
ASELS 0.0117 -0.2557 0.2674
ASYAB 0.0055 -0.0850 0.0905
AYGAZ 0.0079 0.3713 -0.3634
BIMAS 0.0367 -0.3605 0.3972
DOHOL 0.0063 0.1336 -0.1273
DYHOL 0.0043 -0.0386 0.0429
ECILC 0.0030 0.3361 -0.3331
ENKAI 0.0412 -0.1644 0.2056
EREGL 0.0210 0.0982 -0.0772
FROTO 0.0208 -0.1878 0.2086
GARAN 0.1079 -0.0238 0.1317
GUBRF 0.0033 0.2167 -0.2134
HALKB 0.0607 0.1545 -0.0938
IHLAS 0.0027 0.0027 0.0000
IPEKE 0.0043 -0.1138 0.1181
ISCTR 0.0771 0.0590 0.0181
KCHOL 0.0651 -0.1641 0.2292
KOZAA 0.0061 0.1670 -0.1609
KRDMD 0.0021 0.0345 -0.0324
MGROS 0.0106 0.0655 -0.0549
PETKM 0.0077 -0.4984 0.5061
SAHOL 0.0555 0.0142 0.0413
SISE 0.0123 -0.0532 0.0655
SNGYO 0.0023 0.1301 -0.1278
TAVHL 0.0092 0.3108 -0.3016
TCELL 0.0705 0.1305 -0.0600
THYAO 0.0208 -0.0960 0.1168
TOASO 0.0145 0.0978 -0.0833
TRKCM 0.0047 0.1400 -0.1353
TTRAK 0.0086 -0.1064 0.1150
TUPRS 0.0358 -0.1084 0.1442
VAKBN 0.0320 -0.0481 0.0801
YKBNK 0.0627 0.0422 0.0205

SUM 1.0000 0.1969

2014
wMKT w? wMKT − w?

AEFES 0.0382 -0.4562 0.4944
AKBNK 0.0743 -0.1105 0.1848
ARCLK 0.0228 -0.1542 0.1770
ASELS 0.0120 -0.2078 0.2198
BIMAS 0.0365 -0.1808 0.2173
CCOLA 0.0365 -0.0737 0.1102
DOAS 0.0041 0.2944 -0.2903
DOHOL 0.0049 0.3448 -0.3399
ENKAI 0.0534 -0.3397 0.3931
EREGL 0.0250 0.2811 -0.2561
FROTO 0.0221 0.0720 -0.0499
GARAN 0.0811 -0.0249 0.1060
GOLTS 0.0010 0.0009 0.0001
GUBRF 0.0026 0.2390 -0.2364
HALKB 0.0421 0.4161 -0.3740
IHLAS 0.0009 0.0009 0.0000
IPEKE 0.0022 0.0294 -0.0272
ISCTR 0.0580 0.0436 0.0144
KCHOL 0.0619 -0.3068 0.3687
KOZAA 0.0026 0.3535 -0.3509
KRDMD 0.0021 0.3407 -0.3386
MGROS 0.0079 0.0888 -0.0809
OTKAR 0.0037 -0.5140 0.5177
PETKM 0.0076 -0.1247 0.1323
SAHOL 0.0489 0.1002 -0.0513
SISE 0.0119 -0.0340 0.0459
TAVHL 0.0156 -0.1704 0.1860
TCELL 0.0693 0.3161 -0.2468
THYAO 0.0247 0.1593 -0.1346
TKFEN 0.0051 0.0459 -0.0408
TOASO 0.0186 -0.2880 0.3066
TRKCM 0.0050 0.1400 -0.1350
TSKB 0.0066 0.1958 -0.1892
TTKOM 0.0579 0.3926 -0.3347
TTRAK 0.0091 0.0522 -0.0431
TUPRS 0.0298 -0.1250 0.1548
ULKER 0.0144 -0.1240 0.1384
VAKBN 0.0265 -0.0464 0.0729
YAZIC 0.0083 -0.2318 0.2401
YKBNK 0.0449 0.0570 -0.0121

SUM 1.0000 0.4514
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APPENDIX B

MATLAB Codes

• Diversification (ALL m.file)

% A= the matrix of monthly excess logarithmic returns
% of the stocks
% n= # of iterations
% filename= name of the excel file will be created
% (including average standard deviations
% of the portfolios consisting of ranging
% from 1 to maximum number of stocks
% available on BIST-50 in particular year
% for each iterations)
function [] = ALL(A,n,filename)

ExcelData=zeros(size(A,2),n+3);
% excel file includes first column consisting of
% number of stocks, second column consisting of
% average standard deviation of all iterative portolios,
% third column consisting of -1’s in order to
% distinguish between average standard deviation of
% all portfolios and standard deviations of
% each iterative portfolios
totalstdMatrix=zeros(size(A,2),n);
for selectedrandomnumber=1:size(A,2)

warehouse=size(A,2); % # of stocks used for
% particular period

selectedrandom=zeros(selectedrandomnumber,n);
eachcolumn=zeros(1,selectedrandomnumber);
rand1=0;
if(warehouse>=selectedrandomnumber)

for i=1:n
for j=1:selectedrandomnumber

selectedrandom(j,i)=1+round((warehouse-1)...

*rand(1,1));
rand1=selectedrandom(j,i);

% for without replacement ismember function is used
while (ismember(rand1, eachcolumn)...

== 1)
rand1=1+round((warehouse-1)...

*rand(1,1));
end

selectedrandom(j,i)=rand1;
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eachcolumn(j)=rand1;
end
eachcolumn=zeros(1,selectedrandomnumber);
rand1=0;

end
end

B= cov ( A );
totalstd=0;
innertotal=0; %covariance total
selectedwarehouses=size(selectedrandom,1);
% # of selected warehouse
selection=zeros(1,selectedwarehouses);

for i=1: n
for j=1: selectedwarehouses

selection(j)=selectedrandom(j,i);
% populate via random selected warehouses

end

allposibilities = combvec(selection,selection);
%find all combinations of stocks
allposibilitiesnumber =size(allposibilities,2);
% # of combination

for k=1:allposibilitiesnumber
% calculate variance of the portfolios for each
% combinations
innertotal=innertotal+ ...

((selectedwarehousesˆ2)ˆ-1) ...

*B(allposibilities(1,k),allposibilities(2,k));
end

totalstdMatrix(selectedrandomnumber,i)=sqrt(innertotal);
totalstd=totalstd+sqrt(innertotal);
innertotal=0;
selection=zeros(1,selectedwarehouses);
end
averagestd=totalstd/n;

ExcelData(selectedrandomnumber,:)=[selectedrandomnumber ...
[averagestd -1 totalstdMatrix(selectedrandomnumber,:)]];

end
xlswrite(strcat(filename,’.xlsx’),ExcelData);
% the excel file is created with the name specified before

end

• Ttest (hypothesisTtest m.file)

% filename= the name of the excel file
% which was created by previous program
% range= increase in the number of stocks
% in order to compare average standard deviation
% of the portfolios consisting these number of stocks
% side = tail of t-test (both,left or right)
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function [] = hyphothesisTtest(filename,range,side)
Test=xlsread(strcat(filename,’.xlsx’));
i=0;j=0;k=1;
b=zeros(floor(size(Test,1)/range),8);
while i<size(Test,1)

if(i==0)
Test2=Test(i+1,:);
Test3=Test(i+range,:);
[h,p,ci,stats] =ttest(Test2(4:size(Test,2)), ...
Test3(4:size(Test,2)),’Tail’,side);
% h= hypothesis test result
% p= p-value
% ci= confidence interval
% stats= test statistics containing the following
% tstat |> Value of the test statistic
% df |> Degrees of freedom of the test
% sd |> Estimated population standard deviation

else
Test2=Test(i,:);
Test3=Test(i+range,:);
j=i+range;
if (size(Test,1)-j)<range

Test3=Test(size(Test,1),:);
[h,p,ci,stats] =ttest(Test2(4:size(Test,2)),...
Test3(4:size(Test,2)),’Tail’,side);

else
[h,p,ci,stats] =ttest(Test2(4:size(Test,2)),...

Test3(4:size(Test,2)),’Tail’,side);
end

end
b(k,:)=[i,h,p,ci,stats.tstat,stats.df,stats.sd];

i=i+range;
k=k+1;
if (size(Test,1)-j)<range

break;
end

end
b
xlswrite(strcat(’Ttest-’,filename,’-’,side,’.xlsx’),b);

end

• Objective function (objfun2 m.file)

function f = objfun2(x)
global er1 %the posterior return vector
global ps1 %the posterior covariance matrix

for i=1:39 % number of stocks in the portfolio for 2015
c1(i)=x(i);
end

f=[c1*er1-0.5*(2.5)*c1*ps1*c1’]; %max utility
f=-f; %to find max
end
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• Unconstrained optimization (fminunc m.file)

options = optimoptions(@fminunc,’MaxFunEvals’,1000000, ...
’MaxIter’,1000000,’TolFun’,1e-10);
[x, fval] = fminunc(@objfun2,zeros(1,39),options)

• Budget constrained optimization (fminconmaxutility m.file)

function [] = fminconmaxutility(N,b)
x0=zeros(1,N); %starting point
Aeq=ones(1,N);
beq=b; %b=1 budget constraint
options = optimoptions(@fmincon,’MaxFunEvals’,1000000,...

’MaxIter’,1000000,’TolFun’,1e-10,’TolCon’,1e-10);
[x, fval] = fmincon(@objfun2, x0, [], [],Aeq , beq,...

[],[],[],options)
end

• Budget and no short selling constrained optimization (fminconmaxutility2 m.file)

function [] = fminconmaxutility2(N,b)

x0=zeros(1,N); %starting point
Aeq=ones(1,N);
beq=b; %b=1 budget constraint
lb=zeros(1,N); %lower bounds
options = optimoptions(@fmincon,’MaxFunEvals’,1000000,...

’MaxIter’,1000000,’TolFun’,1e-10,’TolCon’,1e-10);
[x, fval] = fmincon(@objfun2, x0, [], [],Aeq , beq, ...

lb,[],[],options)
end
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