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ABSTRACT

BIVARIATE HIDDEN MARKOV MODEL TO CAPTURE THE
DEPENDENCY IN CLAIM ESTIMATE

Oflaz, Zarina
M.S., Department of Statistics
Supervisor : Assoc. Prof. Dr. Ceylan Talu Yozgathgil
Co-Supervisor : Assoc. Prof. Dr. A. Sevtap Kestel

July 2016, 59| pages

Most actuarial models rely on an assumption that both claim counts and aggre-
gate claim amounts are serially independent, that simplifies the study of many
risk quantities. However, this hypothesis does not always reflect the reality and is
too restrictive in different frameworks. Some weather or economic conditions rea-
sonably affect the claim-causing events, as a result, it influences both the claim
number and the claim amount distributions. The unobservable background fac-
tor can be characterized by a hidden finite state Markov chain. In our study,
we propose a novel approach for modeling claim dependence, Bivariate Hidden
Markov Model (BHMM), which to our knowledge has not been studied before.
We assume that the claim counts and the aggregate claim amounts are mutually
dependent and serially dependent through an underlying hidden state. We con-
struct three different Bivariate Hidden Markov Models, namely Poisson-Normal
HMM, Poisson-Gamma HMM and Negative Binomial-Gamma HMM. To fit the

model EM algorithm is used. In order to maximize the state-dependent part of



complete-data log-likelihood of bivariate HMMs, we established and proved three
propositions. In application part of our thesis, we fit the Poisson-Normal HMM
with a different number of states to vehicle insurance observations for Istanbul
taken from Traffic Insurances Information and Monitoring Center (TRAMER)
for the years 2007-2009. In addition, we performed forecasting of distributions

and state prediction, obtained the most likely sequence of states.

Keywords: Claim modeling, Dependency, Bivariate Hidden Markov Model, EM
algorithm, Viterbi Algorithm
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0z

TALEP TAHMININDEKI BAGIMLILIGIN IKI DEGISKENLI SAKLI
MARKOV MODELI ILE COZUMLENMESI

Oflaz, Zarina
Yiiksek Lisans, Istatistik Boliimii
Tez Yoneticisi : Dog. Dr. Ceylan Talu Yozgathgil
Ortak Tez Yoneticisi : Dog. Dr. A. Sevtap Kestel

Temmuz 2016 , [f9 sayfa

Aktiierya biliminde, riskin genellikle bagimsiz oldugu varsayilir ancak bu varsa-
yim her zaman gercegi yansitmamaktadir ve farkli gergevelerde ¢ok kisitlayicidir.
Hava ya da ekonomik kogullara bagli olarak talep sayis1 ve miktari dagilimlari za-
mana bagli bir 6zellik gosterebilir. Gozlemlenemeyen bu tarz faktorler sakli sonlu
durumlu Markov zinciri ile karakterize edilebilir. Bu caligmada talepteki bagimli-
lig1 iki degiskenli sakln Markov Modeli (BHMM) ile modelleyecek yeni bir yakla-
sim Onerilmektedir. Toplam talep sayisi ve toplam talep miktarini sakli durumlar
araciligiyla karsilikli bagimli ve zamana bagh varsayarak ii¢ farkl saklu Markov
Modeli; Poisson Normal SMM, Poisson-Gama SMM ve Negatif Binom-Gama
SMM gelistirildi ve EM algoritmasi ile model parametreleri tahminlendi. Iki de-
giskenli SMMin log-olabilirlik fonksiyonunu maksimize etmek igin ii¢ 6nerme
kanitlanmigtir. Elde edilen sonuglar1 gergek veriye uygularken 2007-2009 yillari
arasinda Trafik Sigortalar: Bilgi ve Gozetim Merkezi'nden (TRAMER) alinan

vii



Istanbul icin arac sigorta talep miktar1 ve sayisi arasindaki bagimlilik Poisson-
Normal SMM ile farkli durum sayilar1 gézoniine alinarak modellemesi. Ayrica

ileriye doniik en olabilir durum zinciri olusturulmustur.

Anahtar Kelimeler: Talep modellemesi, Bagimlilik, Tki degiskenli sakli Markov
Modeli, EM algoritmasi, Viterbi algoritmasi
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CHAPTER 1

INTRODUCTION

The fundamental objectives for insurance companies include safeguard policy-
holders against potential losses by apportioning the risk with others and com-
pensate the loss, [I]. In order to be solvent over a certain time horizon, an
insurer must adequately price the premiums to be charged and have sufficient
amount of capital and reserves. Hence, predicting the distribution of the total
claims amount in a given time period is important as it directly related to the

equity and reserving requirements for an insurance company, [2].

The classical approach in modeling aggregate claims amount of the portfolio,
consisting of n insurance policies, is to sum all amounts payable during a cer-
tain time period. It is assumed that the number of claims follows a particular
discrete distribution and the monetary amount of each claim follows a continu-
ous distribution, [3] Generally, individual risks are assumed to be independent,
that simplifies the study of many risk quantities. Hence, the aggregate claims
distribution is assessed under the independence assumption, [4]. Despite its sim-
plicity and accessibility to actuaries, this assumption sometimes far from reality
and is too restrictive in different frameworks. Recently, the impact of depen-
dencies between risks have received increasing attention in the literature, see
[5] and [6]. For example, according to Dhaene and Goovaerts [7], some type of
dependency between individuals may produce the riskiest aggregate claims and

cause the largest stop-loss premiums.

Claim modeling with dependence has been mentioned by some authors. For

instance, Dhaene and Goovaerts [§] concern conditional independence of claim



amounts; generalized linear models assuming the dependence between the claim
counts and amounts have been constructed, [9]. Since dependence modeling
using copulae was introduced by Frees and Valdez [10], copulae have become
a very popular tool, e.g.various Levy copula models [II] have been applied.
Copulae have been used for the modeling bivariate loss distributions [12], a
joint copula-based model [I3] has been suggested to capture the dependence in

frequency and in severity.

Some researchers have been considered models allowing dependence among ag-

gregate claims, see [14], [15] and [16].

In order to relax the assumption of serial independence of observations, we
allow the parameter process to be serially dependent. An optimal way is to
assume that the parameter process must satisfy the Markov property. The
resulting model for the observations is a Hidden Markov Model. The main
reason for selecting an HMM for modeling claim dependence is that unobservable
background factors, which affect claim-causing events can be characterized by a
hidden parameter process. That seems both claim amounts and claim numbers
may behave similarly under some economic or weather conditions, consequently,
we suppose they might be dependent on each other. The [17] has also considered
the dependence of claim counts and the claim amounts on a common random
environment. The researcher gives an overview of models where unobservable
information was described by exogenous variables, using fixed and random effects

models.

HMDMs have been applied in various fields, namely speech recognition [1§], molec-
ular biology [21], analysis of DNA sequence [22], stock market forecasting [23].
In claim modeling, Hidden Markov model is considered to be a relatively new
tool. For instance, Poisson Hidden Markov Model has been used to model the
dynamics of claim counts in non-life insurance, [27], while [24] has generated
the intensity function of the claim arrival process by a hidden Markov model

(HMM) with Erlang state-dependent distributions.

The main work of our study involves introducing a novel approach for model-

ing claim dependence, Bivariate Hidden Markov Model (BHMM). We make two



conditional independence assumptions, namely contemporaneous and longitudi-
nal, i.e. we assume that the claim counts and the aggregate claim amounts are
dependent and both are serially dependent via an underlying hidden state, see
Figure Multivariate HMM with considered two assumptions have been con-
structed to fit the multisite precipitation by Zucchini and Guttorp (1991) [40].
Also, the model has been fitted to the bivariate series, where one component is
linear and other is circular [29]. Theory related to the proposed model structure

is discussed by Zucchini and MacDonald [29], [20].

In the thesis, we construct three different Bivariate Hidden Markov Models,
namely Poisson-Normal HMM, Poisson-Gamma HMM and Negative Binomial-
Gamma HMM. In order to estimate model parameters, EM algorithm is con-

ducted.

This thesis is organized as follows: in Chapter 2, an overview of the theoretical
framework of the claim modeling is given, Chapter 3 presents the Bivariate Hid-
den Markov Model and related definitions and propositions,the basic theory of
Hidden Markov models is considered in this chapter as well. Chapter 4 includes
an application of the Poisson-Normal HMM to the vehicle insurance data for

Istanbul, 2007-2009. Data description and results of analysis are considered.






CHAPTER 2

CLAIM MODELING

Insurance companies are primarily interested in assessing the likelihood of claim
occurrence, as well as the monetary loss of the claim. Evaluating total payments
in a given time period is pivotal for calculating premiums and reserves, pricing

of insurance contracts and preventing insolvency of the company [19].

An aggregate loss S is the sum of the monetary losses of all the claim in a
certain period of time (0,¢]. The number of claims, N, called the frequency
random variable and the monetary amount of each claim, X, called the severity
are combined to model the total loss, S. Obviously, NV is assumed to be a

nonnegative discrete random variable,while X is continuously distributed.

Aggregate loss distributions have been discussed in the most actuarial literature,

e.g. see [2] and [3].

There are two major approaches in modeling aggregate loss: the individual

risk model and the collective risk model.

The individual risk model specifies the aggregate loss as follows:

S=> "X, (2.1)
i=1
where n is a fived number of individual risks in the portfolio and the X;’s are
independent random variables for the individual losses [26].

The use of collective risk theory provides an alternative way to the above ap-

proach. The aggregate claim amount is assumed to be a random process. The



model is specified by
S=Y X, (2.2)

where X is the size of claim ¢ and N is the number of claims in a time period [3].
In contrast to the individual risk model, the number of claims N is a random

variable.

In the compound distribution, Xi, X5, ..., Xy are identically distributed, and

Ny, X1, Xo, ..., Xy are assumed to be mutually independent.

Now, we introduce the aggregate claim process S; which is widely used in actu-
arial modeling. It is defined by the summation of each policies’ claim amount

X,’s in a certain time period ¢ > 0:

Ny
=1

where the {N; : ¢ > 0} is called the claim number process. In contrast to the
collective risk model, which is interested in claim modeling for a single period,
here we are concerned in the number of claims and aggregate claims for a long

time period, i.e. we would like to obtain the distributions at all times ¢ > 0. [2]

Modeling the claim frequency distribution and the claim severity distribution

separately has been found advantegous in many aspects, see [19).

2.1 Claim frequency distribution

As the number of claims can only take nonnegative integer values, counting
distributions can be used for modeling the claim frequency distribution. In
practice, the most commonly used distributions are the Poisson, Binomial, and
Negative Binomial distributions. A classic choice for modeling claim counts is

the Poisson distribution, since

Nonnegative discrete variable N follows a Poisson distribution with parameter
A, if the pf of N is defined as follows
e AN

n!

Dn = , n=0,1,2,...



The Poisson distribution is characterized as equidispersed distribution since its
mean and variance are equal. In the following, we present two useful properties

of the Poisson distribution [3].

Theorem 2.1 If Ny, Ns, ..., N,, are independently distributed as a Poisson dis-
tribution with parameter \;, fori =1,...,n, then N = N1+...+N,, has a Poisson
distribution with parameter A\ + ... + \,,.

Theorem 2.2 Suppose that the number of events N distributed as a Poisson
distribution with mean \. Let each event be classified into one of m types with
probabilities py, ..., pm. Fvents are mutually independent. Then Ny,..., N,, are
mutually independent random variables distributed as a Poisson with parameters

AP1y ooy AP TESPECtIVElY.

The Negative Binomial distribution might be an optimal candidate for overdis-
persed data, since its variance exceeds its mean. Compare to the Poisson distri-
bution, the Negative Binomial distribution is more flexible in shape, because it

has two parameters.

The probability function of the Negative Binomial distribution with parameters
r>0,p € (0,1) is given by

Pn = (n i 1)19’”(1 —p)"

r—1

The Binomial distribution differs from other counting distributions, its variance
is smaller than its mean. N is said to have Binomial distribution with parameters
p, 0, if the pf of N, for n = 0,1, ..., p is given by

Pn = <p) 0"(1 — 0)r".

n

2.2 Claim severity distribution

The claim severity is usually distrbuted as a nonegative continuous random
variable. Here we present the common claim severity distributions, however,
it may also be modelled by a mixture of distributions or by a modification of

existing distributions.



The Gamma distribution is usually used if the cumulative distribution function
has not too heavy tail, for instance, in motor insurance, where a claim event
causes injury to an insured vehicle [2]. The p.d.f. of the Gamma distribution is

defined as follows
for B >0,a>0.

Fire insurance, where the claim event creates a severe loss, requires modeling
claim severity with heavy-tailed distributions. Generally, the Lognormal distri-

bution and the Pareto distribution are suggested to use in this type of insurance
2]

However, the choice of an adequate distribution depends on a given data and an

experience of a researcher.



CHAPTER 3

BIVARIATE HIDDEN MARKOV MODEL

The purpose of this chapter is to provide a short review of Hidden Markov mod-
els (HMMs) and then to introduce new models of our study, Bivariate Hidden
Markov models (BHMMSs). First, in Section [3.1) we give an account of Markov
chains because the unobserved ‘parameter process’ of hidden Markov model
satisfies the Markov property. Second, in Section an HMM and related def-
initions are introduced. In Section [3.3] we discuss Bivariate Hidden Markov
models; propositions necessary for parameter estimation and their proofs, EM
algorithm and forward-backward algorithms, lastly, Viterbi algorithm to decode
hidden states is presented. "Hidden Markov Models for Time Series” by Walter
Zucchini and Tain L. MacDonald [29] is taken as the main reference of our study.

Additionally, we modified the theory of classic HMM for bivariate case.

3.1 Markov chains

We will consider a stochastic process {C}} in discrete time ¢ = 1,2, ..., referring
to the value C; as the state of the process at time ¢, and C] indicates the initial

state.

Definition 3.1 (Markov chains) A sequence of random variables {Cy : t =

1,2,...} is called a Markov chain if for allt € N it follows a Markov property
P(Ci1|CY) = P(Ceia|Cy), (3.1)

where CY s defined as the history (Cy, Cs, ..., Cy).

9



Thus, the probability distribution of the next state depends only on the current

state and not on previous ones.

Definition 3.2 (Matrix of transition probabilities) The matriz I'(1) ,ab-

breviated as T, is a square matriz of probabilities with row summing up to one

Y1 - Yim

Tm1 -+ TYmm
where 7, (t) = P(Cyyt = j|Cr = 1) are transition probabilities and m denotes

the number of states of the Markov chain.

Transition probability v;;(t) can be expressed as the probability of moving from
state ¢ to state j at time t. If these probabilities do not depend on k, the
Markov chain is said to be homogeneous. Finite state-space homogeneous

Markov chains fulfill the Chapman-Kolmogorov equations [29] :
It +u) =T (u), (3.2)
which implies I'(¢) = T'(1)".

Probabilities of a Markov chain being in a given state at a given time ¢ can be

defined by unconditional probabilities
u(t) = (P(Cy=1),..., P(Cy =m)). (3.3)

u(1) is considered as initial distribution of the Markov chain, which specifies

the starting state.

In our study, we consider a homogeneous nonstationary Markov chain. However,
in order to define a starting value of initial distribution we use a stationary

distribution of a Markov chain.

Definition 3.3 A Markov chain with transition probability Gamma has a sta-

tionary probability § if 0T =6 and 61’ = 1.

A stationary distribution § can be found by the following expression,[29]
(L, —-T+U)=1, (3.4)

10
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Figure 3.1: Directed graph of basic HMM.

where ¢ is the stationary distribution, I,, is the m x m identity matrix, U is the

m X m matrix of ones and 1 is a row vector of ones.

3.2 Hidden Markov Model

A Hidden Markov Model (HMM) is a powerful statistical tool for modeling
time series data. Let us IN; denote as the observation at time ¢, ¢ € N. The
model assumes that process generating N; depends on the hidden state C; which

satisfies the Markov property.

Thus, an HMM can be determined by hidden ’parameter process’ {C; : t =
1,2,...} and the ’state-dependent process’ {NV; : t = 1,2, ...}, [29] satisfying

P(Ct+1|0t; Cl) == P(Ct+1|0t), t= 273,
P(N,JN®D 0y = P(N,|C,), t€N. (3.5)
The structure of HMM is displayed in the following Figure [3.1]

Defined above the initial distribution «(1) and matrix of transition probabilities
74;(t) are necessary to construct a probability distribution over sequences of ob-
servations. Additionally, we need to specify the state-dependent distribution
pi(n), that defines the relation between the observation and an unobserved state.

For discrete-valued observations p;(n) is defined as follows, for i = 1,2, ..., m:
pi(n) = P(N; = n|Cy = 1).

11



For continuous case p; is defined to be the probability density function of N, if

the Markov chain is in state ¢ at time ¢.

We indicate P(n) as the diagonal matrix of state-dependent distributions of

observation n
p1(n) 0
P(n) =

3.3 Bivariate Hidden Markov Models

3.3.1 Model specification

Let {N; : t = 1,2, ...} be the number of claims and {S; : t = 1,2, ...} be the aggre-
gate claim amount reported by policyholders during the time period t = 1,2, ....
Most actuarial models rely on the assumption that both N; and S; are serially
independent, that simplifies the study of many risk quantities. However, this
hypothesis does not always reflect the reality and is too restrictive in different
frameworks. The sample autocorrelation function of claim counts and aggregate
amounts, displayed in Figure [4.3] and Figure [4.4]respectively, indicates that the
values at different times have a dependency among each other. Moreover, it is
necessary to remark that according to Equation [2.3] from Chapter [2] N; and S;

are also dependent.

Some weather or economic conditions reasonably affect the claim-causing events,
as a result, it influences both the claim number and claim amount distributions
[27]. The unobservable background factor can be characterized by hidden finite
state Markov chain. In our study, we propose a new approach for modeling claim
dependence, Bivariate Hidden Markov Model, which to our knowledge has
not been studied in literature before. We assume that N; and S; are mutually
dependent and serially dependent through an underlying hidden state {C; : t =
1,2,...}. In our study, we consider that the Markov chain of the bivariate model

is homogeneous and non-stationary. The model’s structure is displayed in Figure

2.2l

12
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Figure 3.3: Contemporaneous conditional independence.

Obviously, claim numbers NV; and aggregate claim amounts S; are reported at

same time ¢, therefore in our study information given by bivariate observations

(S¢, Ni), t # k is insignificant.

We assume longitudinal conditional independence, i.e. conditional on the under-

lying hidden state {C} : t = 1,2, ...} the claim counts at time ¢ and the aggregate

amounts at time ¢ are assumed to be independent. In addition, we admit con-

temporaneous conditional independence, which is interpreted in Figure [3.3] the

scheme was taken from [29]. These two conditional independence assumptions

do not imply the serial independence of N; and S; or that the component series

are mutually independent, hence that N; and S; are dependent. [29]

13



To specify the bivariate model it is necessary to postulate a joint state-dependent

distribution for t = 1,2,...,7 7= 1,2,...,m and all relevant s,n
pi(se, 1) = P((Sy, Ni) = (s¢,n)|Cy = 7).

According to the contemporaneous conditional independence, the state-dependent
probabilities are given by a product of the corresponding marginal probabilities
[29]:
pi(se, ) = P((Sy, Ni) = (s¢,m)|Cy = i)
= P(St = 8t|0t = Z)P(Nt = nt|Ct = Z)

(3.6)

In our study we construct three different bivariate models. These are: the
Poisson-Normal Hidden Markov Model, the Poisson-Gamma Hidden Markov
Model and the Negative Binomial-Gamma Hidden Markov Model. The Poisson-
Normal Hidden Markov Model applied to the real insurance data.

We define a joint state-dependent distribution for the Poisson-Normal Hid-
den Markov Model, for n € N,s > 0,\ > 0,u > 0,02 > 0, as follows:

2 (si—pi)2 =g )\nt
pi(se,me) = (2m0?) 2e 27 (5t H4) '

(3.7)

nt! '
We consider that N; follows the Poisson distribution and S; the Normal distri-

butions with underlying unobservable stochastic process Cy.

Similarly, we present the Poisson-Gamma Hidden Markov Model with
marginal distributions, the Poisson distribution for N; and the Gamma distri-
bution for S;. The joint state-dependent distribution, for n € N,s > 0, A >
0,a> 0,8 >0, is given by

ﬁffisaifl)\?te—ﬂwt—&
pilseme) = =— I'(a)ny! ‘ (3-8)

For the Negative Binomial-Gamma Hidden Markov Model the state-

dependent distribution is of the form

(o) Brisg e Bl (1 — i)
I'(a;) '

pi(Se,me) = (3.9)
for ne N,s>0,r>0,pe (0,1),a>0,8>0.
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3.3.2 The likelihood and marginal distributions

The following definitions and propositions are modified for bivariate case, based
on the classic theory of HMM [29]. We suppose there is an observation sequence
S1, 82, ooy ST, M1, N2, ..., Ny . An m-state BHMM has an initial distribution u(1),
the transition probability matrix I' and matrix of joint state-dependent proba-

bilities P(s,n).

Proposition 3.1 The likelihood of bivariate Hidden markov model, for t =

1,2,...,T and all relative s,n, is given by

Ly = u(1)P(s1,n1)['P(s2,n2)'P(s3,n3)...I'P(s7,nr)1’.

We define the marginal distribution , for t = 1,2, ..., T as follows:

P((S;, N;) = ZP (C, =) P((Sy, Ny) = (5,n)|C, = 19)
m (3.10)
=3 wipils,n).
i=1
Also, it can be represented in a matrix form:
pi(s,m) 0 1
P((Se, Ni) = (s,n)) = (ua(t), ..um()) 2R
(3.11)
0 Pm(s,n) 1

=u(t)P(s,n)1".

It is of interest to obtain the marginal distribution separately for N; and S;.
Considering, that N, is a discrete variable, the marginal distribution P(N; = n)

is given as follows:

P(N;=n) =Y P(C, =4i)P(N, =n|C, = i)
- (3.12)
= Z ui(t)pi(n)



Likewise, in matrix form:
(3.13)

For continuous variable S;, which state-dependent distribution can be described
as a complete p.d.f. over the continuous observation space for each state, the

marginal distribution is given by

P($) = Y P(C = i)P(S,|C, =)

m (3.14)
= ui(t)pi(s).
i=1
The expression can be represented in matrix notation:

p1(s) 0 1

P(S; =n) = (ur(t), ...un(t)) :
(3.15)

0 Pm($) 1

= u(t)P(s)1'.

3.4 Parameter Estimation in Bivariate HMM

To construct the model it is necessary to estimate transition probabilities, ini-
tial probability, and parameters of the joint state-dependent probabilities. In
order to fit the Bivariate HMMs, the EM algorithm is used. In the context of
HMDMs, the algorithm is also known as the Baum-Welch algorithm. EM algo-
rithm performs maximum likelihood estimation of parameters having missing
value in the data [34]. We treat hidden states as missing data [33]. In addition,
the algorithm enables estimation of the parameters of an HMM whose Markov
chain is homogeneous but not necessarily stationary [29]. In order to maximize
the state-dependent part of complete-data log-likelihood of bivariate HMMs, we

establish and prove three propositions.
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3.4.1 Forward-Backward Probabilities

The tools we need to apply the EM algorithm are the forward and the backward
probabilities. In this section, we give definitions of the forward and the backward
probabilities and present propositions necessary for maximization part of EM

estimation [35].
Definition 3.4 (Forward probabilities) Fort = 1,2,....,T forward probabil-

ities, oy, are defined as follows:

t
ar = 0P (s1,n1)'P(s2,n9)..I'P(s¢,ny) = IP(s1,11) H I'P(sg, ng)-

k=2
Definition 3.5 (Backward probabilities) Backward probabilities, [3;, fort =
1,2,...,7T are defined by

T
Bl =T P(st41,1041) T P(8142, 042) .. TP (s, )1 = (] TP(sk, )1
k=t+1

Br=1.

The following proposition identifies oy (j) as the joint probability of the obser-

vations si, So, ..., S, N1, Na, ..., n; and hidden state j at time .
Proposition 3.2 Fort=1,2,...,T and j =1,2,....m

a,(j) = P((SW,ND) = (s, n"), C, = 5).

The following proposition defines (,(i) as the probability of the observations
being S;i1, S¢12, -+, ST, Nyt1, Nro, ..., Ny, given that the Markov chain is in state

1 at time .
Proposition 3.3 Fort=1,2,...T and j =1,2,...m
Bi(i) = P((StTH,Ngrl) = (StT+17”tT+1)>Ct = 1)

where Z° denotes the vector (Zy, Zas1, .., Zp).

We now establish the propositions concerning the forward and backward prob-

abilities useful in applying the EM algorithm to bivariate HMMs.
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Proposition 3.4 Firstly, fort =1,2,...,T
P(Cy = j|(sT,ND) = (s, n™)) = a,(7)8(5) / L.
and secondly, fort=2,3,....T
P(Ci1=3,Cr = k|(S(T)»N(T)) = (S(T)a”(T))) = Oét—l(j)%'kpk(stant)ﬁt(k)/LT-
Proposition 3.5 Fort=1,2,....,T andi=1,2,....,m
a(i)Bi(7) = P((ST, NT) = (s0),n™). €, = j),
and therefore

= P((SD, NDY) = (5D nDY)) = Ly, for each such t.

3.4.2 EM algorithm

The EM algorithm is an efficient iterative procedure to compute the maximum
likelihood estimation of the parameters of an underlying distribution from a
given dataset in the presence of missing or hidden data. The expectation max-
imization algorithm alternates between two phases. In the E-step conditional
expectations of the missing data given the observed data and a current estimate
of the model parameters are estimated. In the M-step, the complete-data log-
likelihood function is maximized under the assumption that the missing data

are known. Iterations are repeated until a convergence is satisfied [34].

The complete-data log-likelihood of a bivariate HMM, i.e. the log-likelihood of

observed variables and hidden states, is defined as follows [29]:
T T
log(P(s™) n™ ™)) =logé,, + Z log de, 1.0 + Z log pe, (st,ne).  (3.16)

t=2 t=1

Defining the zero-one random variables, we have

m m m T
log(P (s, n™) 1)) = Zuj(l) log d; + Z Z Zvﬂk ) log vk
J=1 J=1 k=1 t=2
2
7=1

T

u;(t) logpi(se, ne),
=1

18



where u;(t) = lifandonly if ¢, = j,(t = 1,2,...,T),vj, = lifand only if ¢, = j
and ¢, = 1k (t =2,3,....7T).

The EM algorithm for a bivariate HMM [29]:

In E part v;;(t) and u;(t) are replaced by the conditional expectations of being

(T) (1),

in a state j at time t given the observations s\’ n

i(t) = P(Cy = j|(ST, NT) = (5T, nT)) = a,(5)Bu(5) / L
and

bji(t) = P(Cyoy = §,Cy = k|(ST, ND) = (s n D)) = a1 (5)vjipr (51, ) Be (k) / L.

M part: Each term of the CDLL is maximized with respect to the related set
of parameters, i.e. the initial distribution u(1), the transition probability matrix
I', and the parameters of the joint state-dependent distributions. Observing the
CDLL of bivariate HMM, we indicate that three separate maximizations in the
M-step are required. Thus:

L. Setting u;(1) = a;(1)/ 3272, 4;(1) = 4;(1), maximize > 7" u;(1)log d; with

respect to initial distribution w(1);

2. Setting v = S, vir(t)/ o (01, vik(t)), maximize
m m T
22D vk(®)log v
j=1 k=1 t=2

with respect to I';
3. Depending on the nature of the joint state-distributions assumed, the maxi-
mization of the third term can be performed analytically,i.e. closed-form solu-

tions are available, or numerical estimation will be required.

In the next sections, we present propositions related to our new models in order

to maximize the third term of CDLL of bivariate HMM.

3.4.3 Poisson-Normal Hidden Markov Model

Proposition 3.6 Given two random variables, S and N having Normal (;, j)

and Poisson(\;) distributions,respectively, the EM estimate of joint state-dependent
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distribution are
i = ZtT—T1 a; (t)ne
Zt:l aj (t)
fi; = 2%1 ﬁf(t)st’ (3.18)
> i Uy(t)
o 2 (1) (s — i)
! Zthl ﬂj (t) .

Proof: The joint state-dependent probability for the Poisson-Normal HMM is

Y

l) S ) 1 _71(515—”‘.)2 )\)\’nt
j ( ! n ) (2 o-‘] ) 2e Uj J J j

nt! ’
M step of EM algorithm requires the maximization of the state-dependent part
of the CDLL .
ZZ 0;(t) log pj (¢, ne) (3.19)
j=1 t=1

with respect to the parameters of the joint state-dependent distribution. Defin-

ing =31, 4;(t)log pj(si, 1), we have

F =S a0)= 2 og2ro?) — B L oA — log(na)]. (320
= j 3 g(2mo;) — ———— j nlog A; —log(n)].  (3.20)

t=1 j
Maximizing values of the state-dependent parameters A;, ;1; and U? can be com-
puted by setting the derivative to zero with respect to corresponding parameters:
T
dF T
— = u;(t)-14+—]=0
d)\j Z J( )[ )\J]
t=1
and hence,that
T .
. (t
A = —Zt? i (t)ne. (3.21)
> e U(t)

Maximization of the state-dependent part of CDLL with respect to p; proceeds

as follows:
U, ] =0,
dﬂj ; ! j
then .
,&' o Zt:l /&/J (t)St
=
Zthl a;(t)
Analogically for 0]2:
T
dF X L (s —py)
w;(t)[=5—= 1=0,
do; = ! 207 2(0?)2



then,
2

>, g = S5

J
and hence,that
T . .
22 D i Ui () (s — f15)?
T )
’ > i—1 (1)

For confidence that the estimated parameters maximize the state-dependent

(3.22)

part of CDLL, we check second derivatives of F' with respect to parameters.
The second derivative of F' with respect to A; is

B2F o n
T Zuj (t) .
t=1

2 N2
dAF =5, A7 =4

< 0,

since n; > 0 and 4;(¢t) = {0,1} by definition. It is obvious, that the following

satisfies
d?F 1
Sl =-Sam— <o
dp; \ui=n; p— 05 =ity

Finally, we check the second derivative of F' with respect to O'j2-.

T
Z ( st — 1)
o —o 1 2(0']2)2 02=52
T 2
a —2(s ;
_ Zu L 2) | (3.23)
=1 (O'j)3 0'32-:6'2
T .
_ 9 D i U5(t) — 2Zt LU () (e — Uj)z
2(0]2)3 02=52
It is suffcicient to prove that
T T
07> ii(t) =2 (1) (s — ) <0
t=1 t=1 177

Transforming the above expression, we derive:

T s ) 23 (1) (s — )
75=] ZtT 1 1 (2) Zthl a;(t)
:_ZtTlﬁJ( ) (st Nj)2 <0

Y (1)

o2 — 2Ty b (O —py)?
J POHIEIO)

(3.24)

This finalizes the proof of the estimated parameters maximizing the state-dependent

part of CDLL introduced in this study. O

21



3.4.4 Poisson-Gamma Hidden Markov Model

Proposition 3.7 Given two random variables, S and N having Gamma(a;, ;)
and Poisson(\;) distributions,respectively, the EM estimate of joint state-dependent

distribution are
A — ZtT:I 2lj(t)”t
j = —A
ZtT L Uy(t)
B = Q5 )y (1) D Gyt )

j
Zt 15t

To estimate &v; numerical maximization is required.

I

(3.25)

Proof: The joint state-dependent probability for the Poisson-Gamma HMM is

given by
5?.7 S?j_l)\?tefﬂjstf)‘j
[(a;)n,!
M step of EM algorithm requires the maximization of the state-dependent part

of the CDLL

pj(stu nt) -

T
’LL] logp] xtant)
1

m
j=1

with respect to the parameters of the joint state-dependent distribution. Defin-

t=

ing F =31, @;(t)logp;(si,n:), we have

t)[a;log B+ (aj—1) log sy +n¢ log Aj—log I'(cr;) —log(ne!) — Bjs: — A .

I
TFM%
L

g3
o

Maximizing values of the state-dependent parameters \;, u; and JJZ can be com-
puted by setting the derivative to zero with respect to corresponding parameter:
T
dF Uz
— = E u;(t)—14+—] =0
d)\j — ]( )[ )\j]

and hence,that
A — Zthl a;(t)ny
;= - .
> (1)

Analogically for ;:

and hence that



Maximization of the state-dependent part of CDLL with respect to o proceeds

as follows
daj ;uj —— logF(aj) +log B;+:] = 0,

then replacing ﬁj by 5]-, we get

T .

Q5 2 =1 YU5\1) > i U4(t)
T -

Zt:l U ()5t

In order to estimate the above equation numerical maximization is required.

Z a,;(t log I'(aj) +log —==————= +1logs;] =0
da] —

For confidence that the estimated parameters maximize the state-dependent
part of CDLL, we check second derivatives of F' with respect to parameters.

The second derivative of F' with respect to \; is

d2
5 :_Zuj

d)\2
since n; > 0 and u,(t) = {O, 1} by deﬁn1t1on.

For the parameters of Gamma distribution, we have

d2
Z u,;(t log INGH)

da
since the trigamma function, deﬁned as the sum of the series, is positive

<0,

aj=0; Qaj=ay

d? > 1
— logI'(aj) = —— > 0.
dOéJQ- J kZ:O (Oéj -+ k>2

Finally, we check the second derivative of F' with respect to 5]2
d2

i —_zu] —<0

since a;; > 0. ]

Bi=B;

3.4.5 Negative Binomial-Gamma Hidden Markov Model

Proposition 3.8 Given two random variables, S and N having Gamma («;, 3;)
and Negative Binomial (rj,p;) distributions,respectively, the EM estimate of

joint state-dependent distribution are

~ T N

b= D=1 (1)
’ Zthl St
N T A~

- i e 45(0)

P = =7 = A ~ ~—~T -~ :
Doy Ui(t) (g — 75) + 75 >y Uy(t)

23
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To estimate &; and 7; numerical maximization is required.
Proof: The joint state-dependent probability for the Negative Binomial-Gamma
HMM is given by

() 1
I'(ay)

pj(sta nt) =

M step of EM algorithm requires the maximization of the state-dependent part
of the CDLL .

Z Z ] 1ng] ZL‘t,TLt)

j=1 t=1

with respect to the parameters of the joint state-dependent distribution. Defin-

ing F =31, ;(t)logp;(si, 1), we have

F =30 (1) log py(se,ne) = 3 (1) [log (777)) +y log §; +(a; — 1) log s,

— Bis¢ +rjlogp; + (ny — ;) log(1 — p;) —logI'(a;)].  (3.27)

By setting the derivative to zero with respect to 3; we derive

T

dF “ % .
a5, Z“j(t)[ﬁ — 5] =0,

t=1 J

and hence that .
g, — TZt:l a;(t)
Do Wi(t)se
Maximization of the state-dependent part of CDLL with respect to o; performs

as follows

T
Z - log I'(aj) + log 8; +log s, = 0,

da]

then replacing 3; by Bj, we derive

T T
ar d : (t
= 3 iy (8) =~ log T(a;) + log 2et=1 (D)
S doy Sy (1)

In order to estimate the above equation numerical maximization is required.

+log s¢| = 0.

Below, derivative of F' with respect to p; is obtained
T

Il F)

dp; = pi 1—p;
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and so

then

L—pj Yo 40 — 1))
p; i (t)
The parameter p;:
ﬁj _ — Ty Zle ﬁj (t) — .
Dy Ui () (e — 1) 475 D20y 15 (1)
Maximization of the state-dependent part of CDLL with respect to r; proceeds

(3.28)

as follows
n; —1
dr] Z’% —10g (Tj 1) + logp; —log(1 —p;)] =0
then replacing r; by 7;, we get

T

LA o PN -1\ 1y i 4 (1)

dr; t=1 & )[d o8 ( o 1> s Zthl i (t)(ny —rj) +r; Zthl a;(t)
— Ty Zthl a](t) — )] _ 0, (329)

Doim W) (e — 1)+ 32 (1)

which requires numerical tools to maximize the expression. For confidence that

— log(1 —

the estimated parameters maximize the state-dependent part of CDLL, we check
second derivatives of I’ with respect to parameters. The second derivative of F’
with respect to the parameters of Gamma distribution, we have

d*F

e <0,
dajz

;=64

> it
=—Y u(t)—log'(e;)
— J dOé? J

a;j=a;

since the trigamma function, defined as the sum of the series, is positive

d? el 1
log T -2
a2 %8 (ag) = kz;(aj+k)2>0

Then, we check the second derivative of ' with respect to 6]2

d*F
g

Next, the second derivative of F' with respect to parameters of Negative Binomial

T

N &% .
= —Zuj(t)—; <0, since a; > 0.
Bi=5; t=1 Bj

distribution is considered.

d*F
vy
dp i

=S (O[5 — 75 (3.30)

Pj=Pj;
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In order to maximize the state-dependent term with respect to p; it is necessary
to prove the following inequality

(1—p;)°
p;

() (g = 7y) |
T Zthl a;(t)
According to the Equation [3.28] we have
Do () (g = ) - S () (= )
r2[3 (1)) ri ey ()

>

Therefore,
T A~
i(t
Tz/\tZIUJ() +1>0
i1 Ui () (e — 75)
According to estimated pj;, it follows, that
D;
— +1>0,
ri(1 —pj)

dF?

2
drj

Tj=T4

The series sum is equal to

1 1 1
n—1 n—2 7 ny—r;—3

So the second derivative is equal to

and it is obvious that the expression is positive. ([l

3.5 Conditional distribution

In this section, we give an account of conditional distributions, that are conve-

nient for assessing outliers or forecasting.
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We refer to N9 and S(-% as the observations at all times other than ¢, defining
NCY = (Ny, ...y, Ni_1, Nist, oo, Np),
and similarly S n(=t s(=1)

Conditional distribution of (S, IVy) given all the other observations of bivariate

HMM can be computed as follows:

P((Si, Ni) = (s,n)[ (ST, NTY) = (579, n(7))
P((Si, No) = (s,m), (S0, NED) = (50, nC0)) - (331)
PSCI.NT) = (3(—t>, n(=0)) '
According to the likelihood of a bivariate HMM and the definition of the forward
and backward probabilities, for ¢t = 2,3, ..., T, it follows, that

P((S1 N0 = (5 mI(50, N-9) = (-0, =)
u(1)P(s1,n1)L'P(sg,ng) - T'P(s4_1,n4_1)'P(s,n) T P(S441,n441) - - TP (sp,np) 1

U(l)P(Sl, n1>FP<82, TLQ) s FP(Stfl, ntfl)FP(St+1’ nt+1> s FP(ST, nT)l’
a, 1IP(s, n)ﬂt

Ay 1615
(3.32)
For the case t =1,
P((S1,N1) = (s,n)|(SY, NOY) = (s0, nD))
u(1)P(s,n)I'P(sg,ng) -+ - T'P(sp,ny)l’

u(1)1rp(52,n2) TP (sr,ny)1’ (3.33)

_ u()P(s,n)f,

u(1)15,

The conditional distribution can be expressed as the mixture of the m joint

state-dependent distributions in the following form [29]

P((Si, Ne) = (5,n)|(879, NCY) = (s, Z S 1fz pz §,1),

where f;(t) is the product of the ith entry of the vector o, 11" and the ith entry
of the vector ;.

Additionaly, we are interested in conditional distributions of S; and N;. The
derivation is presented only for discrete variable, the continuous case can be

performed analogously.
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Conditional distribution of N, given N can be derived as:

P(N; =n, N“Y = p(=t)

P(Ne=nIN'™ = n™0) = P(NCO = p(-0)

and hence that, for t =2,3,....T

P(N; = n|NY = n(=0)
_ uw(1)P(ny)I'P(ng) - - - T'P(ni—1) I P(n)['P(nyt1) - - - TP(np)1l’
uw(1)P(n)I'P(ng) - - - TP(ny—1)L' P(nega) - - TP (nr)V (3.34)
_ o lP(n )52'

Oét—15£

For the case t =1,

u(1)P(n)T'P(ny)---T'P(ny)l’

Sy ey u(l)

P(N, =) = n(-1) = w(D)ITP ( S TPl
u(1)P(n)B;

(

W(DPYS, (3.35)
Cu()IB

u

3.6 Forecast distributions

Using a bivariate HMM it is possible to make forecasts. Applicable expression
for conditional distribution of (St, Nrys) with forecast horizon h given all ob-
servations of the model is available. It can be computed as a ratio of likelihoods

[29]:

P((Srn; Nrsn) = (5,m)[(ST, ND) = (50, n™))
(8D, NDY = (s nD)), P((Sgin, Nrys) = (5,1)
P((S@, N = (s@, n@))
u(1)P(s1,n1)L P(sg,n3) -+~ T P(sp,np) T P(s,n)1’
B w(1)P(s1,m1) T P(s9,12) - - - TP (s7, ng )1’
aTFhP(s, n)l’
B arl’ ’

(3.36)

Moreover, the forecast distribution can be determined as the mixture of the joint

state-dependent distributions:
P((Sr4n Nria) = (5,) (ST, ND) = (s 0Ty =3 “w(h)pi(s,m),

where the 1;(h) i
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3.7 Decoding

In this section we consider two types of the decoding problem: the local decoding
indicates the most probable state at a particular time, while the global decoding

determines the most likely sequence of states.

3.7.1 State probabilities and local decoding

Here we define the conditional distribution of C} given the observations, for

1=1,2,...,m, as

— i (ST NDY = (5T p(T)
P(Ctzz'y(sm,]v(ﬂ):(s<T>,n<T>>)=P(C ((SET()S ]\)[ )(<§ <’>)) )

_a +(1) Bt (7)
LT ’

(3.37)

For each ¢t = 1,2, ...T the most likely state i¢ given S) N) can be obtained

as

iy = argmax P(C; = |(S(T),N(T)) — (S(T)W(T)))_

i=1,....m

3.7.2 Global decoding

Global decoding is more applicable than local decoding. It detects the sequence

of hidden states ¢y, ¢, ..., ¢cr which maximizes the conditional probability
p(C(T) — c(T)\(S(T),N(T)) — (S(T)’n(T)));

or the joint probability:

T

P(C(T)7 (S 501 H ’th 1,Ct Hpct St nt)

t=1

Since the decoding is not executable for large T', the Viterbi algorithm [36],
[37] is used instead. First, we define

i = P(CL =i, (S1, M) = (s1,m1)) = dipi(s1,ma,)
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and, for t =2,3,...,T,
¢ti - c1 crzn.?)ét,l P<C(t_1) = C(t_l)a Ot = i? (S(T)a N(T)) = (S(T)> n(T)))

The recursion formula for vy, for t =2,3,...,T and 7 = 1, 2, ..., m is given below

Py = (m?X(wtq,i%j))pj(St,nt)-

Then, the most likely state sequence can be determined recursively from

7;T = argmax wTi
i=1,....m

and, fort =T —1,T —2,...,1, from

L = argmax(wtﬂi,i“rl),
i=1,....m

3.8 State prediction

The state prediction can be performed by the following expression [29],for i =

1,2,....m
P<CT+h - Zl(S(T)a N(T)) = (S(T)7n(T))) = aTrh(ai)/LTa

where I'(,i) denotes the ith column of the matrix I'" and the time horizon A is

equal tot —T.

3.9 Model selection

According to the likelihood of the bivariate HMM, the increasing number of
states m yields a better fit of the model, whereas it may cause a quadratic
increase in the number of parameters to be estimated. Consequently, a criterion
for model selection is necessary. In this section, we give a brief summary of

model selection and the use of pseudo-residuals.

3.9.1 AIC and BIC criterions

The Akaike Information Criterion (AIC) is a method of selecting an appropriate

model from a set of models. The model which minimizes the Kullback-Leibler
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distance between the model and the truth is assumed to be at some point the
superior model. However, AIC does not provide an information about the gen-
eral quality of selected model. The Akaike Information Criterion is defined as
[38]:

AIC = —2log L + 2p, (3.38)

where log L is the log-likelihood of the fitted model and p is the number of free
parameters in the model. The first term rewards goodness of fit of the model
and decreases with increasing m, while the second term, defined as the penalty
term, is an increasing function of the number of states m. The penalty prevents
overfitting of the model. The preferred model is the one with the minimum AIC

value.

The Bayesian Information Criterion (BIC) was developed by Gideon E. Schwarz
as the approach to model selection among a set of models. As the Akaike
Information Criterion BIC resolves the problem of overfitting. BIC differs from

AIC in the penalty term [39]:
BIC = —2log L + plog T, (3.39)

where log L is the log-likelihood of the fitted model, p and T" denotes the number

of parameters and the of observations in the model, respectively.

3.9.2 Pseudo-residuals

Despite the fact that the model opted by AIC or BIC criterion is supposed to be
the most appropriate model, the goodness of fit of the model in an absolute sense
is not assessed. An optimal way to do so is to obtain pseudo-residuals, which
are also able to identify outliers relative to the model. We consider ordinary

pseudo-residuals.

The ordinary pseudo-residuals are based on the conditional distribution given

all other observations [29]. The normal pseudo-residual is defined as

2t = @_1(P<St S 8t|S_t = S_t)).
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Normal pseudo-residuals are standard normally distributed if the related model
is correct. The conditional probabilities are given by Equations and in
Section 3.5l
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CHAPTER 4

APPLICATION OF THE BIVARIATE HMM:
AUTOMOBILE INSURANCE

Although the total claim amounts distribution in literature is not commonly
taken as normal, the theory developed on HMM concentrates on the Poisson-
normal case. For this reason, this assumption is taken as the first choice. How-
ever, surprisingly, the claim data analyses also supports the assumption on nor-
mality. Therefore, the case study is done on the Poisson-normal case at the first

sight.

The Poisson-Normal HMM described in the previous chapter can be applied
in many forms of insurance, where dependence among observations exists. For
example, in a private household or motor insurance. In our study, we compare
the Poisson-Normal HMMs with different state numbers and fit the most optimal
model to the vehicle insurance data. According to the selected model, we derive
forecast distributions, conduct local and global decoding and predict states. In

this chapter, statistical analysis on the dataset is provided as well.

4.1 Data description

The dataset, which is analyzed in this thesis, is provided by the Traffic Insur-
ances Information and Monitoring Center (TRAMER). The dataset contains
compulsory auto insurance recordings from all over Turkey. Every policy is
registered to the system with details: policy number (anonymous), insured id

number, start date of policy, end date of policy, vehicle tariff group code (car,
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minibus, taxi, etc.), country licence code, vehicle id number, vehicle age, usage
of vehicle (private, commercial), passenger capacity, nationality information of

insured, damage date, claim reason, claim amount.

As the number of policies is numerous and not easy to handle, Istanbul is taken
as the sample province to apply the analyses. The choice on Istanbul is due
to its highly populated, industrialized and high rate of insurance penetration

position compared to other cities in Turkey.

The dataset includes information about claims, which policies starts from 2006
to 2009, and accident year varies from 2005 to 2011. In order to examine the
dataset, we constructed two tables. Table provides a total number of claims
for each year and Table gives details about a total claim amount for each
year. Cells of the tables contain information about claims occurred in a certain
accident year, which policies start in a certain year, e.g. there were 210,612
accidents resulted in total loss of 337,879,194 TL, which policies started in 2008
and accidents occurred in 2009. The observations, which are significant to be

used in our study, are indicated in bold.

Table4.1: Claim numbers

Start date of a policy\ Accident year | 2005 2006 2007 2008 2009 2010 2011
2006 | NA 196,046 191,902 314 128 12 NA
2007 | NA NA 187,360 199,467 239 31 NA
2008 | NA NA NA 198,368 210,612 276 12
2009 | NA NA NA NA 204,166 196,746 59

As a result, the database used in the application provides information on au-
tomobile insurance portfolios from Istanbul over the period January 2007 to
December 2009. In our study, we consider only non-zero claims. We focus on
the monthly aggregate claim amounts, therefore, for each month ¢, we aggregate

all the claim amounts occurring at the same month. Likewise, we obtain the

Table4.2: Aggregate claim amounts

Start date of a policyyear | 2005 2006 2007 2008 2009 2010 2011
2006 | NA 290,861,223 257,040,552 444,279 132,221 9,098 NA
2007 | NA NA 290,537,933 291,431,736 505,044 51,846 NA
2008 | NA NA NA 320,698,956 337,879,194 543,344 21,553
2009 | NA NA NA NA 502,834,660 336,400,909 207,676
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total number of claims occurred in each month.

For convenience during this chapter, we refer to the ‘total number of claims’ and
the ‘monthly aggregate claim amounts’ as the ‘clatm numbers’ and the ‘claim

amounts’, respectively.

The individual claim amounts were adjusted for inflation. Annual inflation rates,
which are taken from [31], are 9,67% for 2008 and 6,21% for 2009. Having
adjusted the dataset for inflation, we truncated the individual claim amounts,

considering only variables greater than 250.

Having removed the duplicated observations, observations with same policy

numbers are not detected.

The individual claim amount valued at 99,000,500 extremely differs from the
other observations in the dataset and therefore, it was replaced by the mean of
individual claim amounts reported in June 2009. Additionally, on 8th and 9th
of September in 2009 Istanbul exposed to massive flooding, which caused the
enormous number of claims. According to the fact that such flooding occurs
only once a hundred years, [32], the observations at these days are recognized
as an outlier of the dataset. Thus, the number of claims occurred in these days
were decreased to the average number of claims occurred in September 2009 and
total monetary value of the claims was replaced by the average claim amounts
of the month. Also, in next three months, we notice an unusual pattern in claim
behaves. We suppose, that those have been affected by the flooding, therefore,

we modified these observations.
Having modified the dataset, as a result, 809,327 policies are used in our study.

In the following, we present some summary statistics, the distribution plots and
the scatter plots of the claim amounts and the claim numbers. Furthermore, the

corresponding autocorrelations are analyzed.

Figure displays a histogram of the claim amounts, variables are given in
thousands. We observe that the amounts are accumulated between above 44,000

and 52,000, the data has a roughly symmetric shape. Moreover, the Shapiro-
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Figure 4.1: Histogram of the claim amounts for Istanbul, 2007-2009 (in thou-
sands).

Wilk normality test indicates that the claim amounts are normally distributed

with p-value equal to 0.8414.

According to Figure the histogram of the claim numbers indicates a right-

skewed distribution.

In the Table we provide a descriptive statistics of the claim amounts and the
claim numbers aggregated monthly. Mean,mode and median values of the claim
amounts are almost equal, that is indicative for a symmetric distribution. The
summary statistics of the claim numbers infers that the data follows a right-
skewed distribution, since the mean value greater than the median value, and

the mode value less than the median value.

Table4.3: Descriptive statistics of the claim amounts and the claim numbers
aggregated monthly

Observations Mean Median | Minimum | Maximum StaIAIdB_JI.d Mode
deviation

Claim amounts | 46,957,468 | 47,367,916 | 38,844,907 | 55,226,741 | 3,811,343 | 46,957,470

Number of claims | 22,481.31 22,173 19,429 25,316 | 1,612.77 21,550

Autocorrelation functions detect the presence of serial dependence in claim

counts as well as in claim sizes. See Figure 4.3 and Figure [4.4]
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Figure 4.2: Histogram of the claim numbers for Istanbul, 2007-2009.

According to the fact that the ACFs of claim numbers and claim amounts drop
to zero relatively slowly, we infer that the observations are non-stationary. Ad-

ditionally, for the confidence of our conclusions Kwiatkowski-Phillips-Schmidt-

Shin (KPSS) test and Augmented Dickey-Fuller (ADF) test were performed.

The null-hypothesis for an ADF test is that the data are non-stationary. So
large p-value is indicative of non-stationarity, and small p-value suggests sta-
tionarity. Using the 5% threshold, we determine that time series of claim num-
bers (p-value=0.3986) and claim amounts (p-value=0.2081) are non-stationary.
The alternative hypothesis for KPSS test is that the data are non-stationary,
large p-value specifies stationarity, and conversely small p-value indicates non-
stationarity. Performing KPSS test we also reject stationarity since both p-

values for claim size and claim counts less than 0.01.

Figures [4.§] and depict plots of the claim amounts and the claim numbers,
respectively, having time points on horizontal axis. In both graphs we observe a
weak sinusoidal behaviour, which might indicate seasonality. Additionally, slight

increasing trend is indicated.

The Table provides an information about aggregated claim amounts and

claim numbers in each month, that we use as the observed variables in bivariate
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Table4.4: Claim amounts and claim numbers reported in Istanbul during 2007-

2009

Month-Year

Claim amounts

Number of claims

January, 2007
February, 2007
March, 2007
April, 2007
May, 2007
June, 2007
July, 2007
August, 2007
September, 2007
October, 2007
November, 2007
December, 2007
January, 2008
February, 2008
March, 2008
April, 2008
May, 2008
June, 2008
July, 2008
August, 2008
September, 2008
October, 2008
November, 2008
December, 2008
January, 2009
February, 2009
March, 2009
April, 2009
May, 2009
June, 2009
July, 2009
August, 2009
September, 2009
October, 2009
November, 2009
December, 2009

44771818
40610503
41727487
42391254
44716296
44892121
47209622
47575857
44063532
50647142
44193298
47526209
48004924
42781346
38844907
42448010
46063021
47667936
47053227
48005758
48554476
48219700
44724944
48162470
48399958
42908270
46708121
46014566
51292119
01553338
05226741
52834942
94577870
50835988
51645853
47615231

21213
19429
20940
21406
22712
22181
22300
21288
21336
22165
20895
20049
21400
20398
20686
21846
23291
23721
21934
22445
22160
23154
21810
20782
23982
20860
23158
23876
25231
25316
24403
24519
24615
25000
24926
23900
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Figure 4.3: Autocorrelation function of claim amounts for Istanbul, 2007-20009.
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Figure 4.4: Autocorrelation function of claim numbers for Istanbul, 2007-2009.
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Figure 4.5: The monthly aggregate claim amounts (in thousands).
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Figure 4.6: The monthly aggregate claim numbers.
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Table4.5: Descriptive statistics of individual claim amounts

Month-Year Mean Stal,qd?rd Variance | Minimum | Maximum | Median
deviation
January, 2007 | 2110.58 5509.23 | 30351602 250 421475 942
February, 2007 | 2090.20 4628.33 | 21421412 250 169535 952
March, 2007 | 1992.72 4597.80 | 21139733 250 301617 930
April, 2007 | 1980.34 4025.99 | 16208572 250 161406 906
May, 2007 | 1968.84 4464.77 | 19934202 250 234138 881
June, 2007 | 2023.90 4709.87 | 22182903 250 335764 896
July, 2007 | 2117.02 4906.99 | 24078527 250 215153 900
August, 2007 | 2234.87 4530.28 | 20523393 250 121457 973
September, 2007 | 2065.22 4155.56 | 17268664 250 92000 937
October, 2007 | 2285.01 5331.28 | 28422502 250 346430 1000
November, 2007 | 2115.02 4672.96 | 21836555 250 218079 994
December, 2007 | 2370.50 5907.35 | 34896730 250 295000 1020
January, 2008 | 2243.22 5153.35 | 26557032 250 168290 977
February, 2008 | 2097.33 4522.43 | 20452372 250 207727 949
March, 2008 | 1877.84 3876.24 | 15025267 250 100535 881
April, 2008 | 1943.06 4303.13 | 18516917 250 140429 899
May, 2008 | 1977.72 4462.17 | 19910916 250 180998 912
June, 2008 | 2009.53 4682.30 | 21923894 250 230133 912
July, 2008 | 2145.22 4917.63 | 24183069 250 194219 912
August, 2008 | 2138.82 4556.68 | 20763344 250 116340 920
September, 2008 | 2191.09 4662.06 | 21734826 250 159096 956
October, 2008 | 2082.57 4518.34 | 20415431 250 197866 941
November, 2008 | 2050.66 4135.15 | 17099428 250 135562 922
December, 2008 | 2317.51 5100.18 | 26011875 250 164314 1011
January, 2009 | 2018.18 4937.95 | 24383303 250 276148 910
February, 2009 | 2056.96 4899.80 | 24008046 250 163609 943
March, 2009 | 2016.93 4779.61 | 22844622 250 180908 892
April, 2009 | 1927.23 4253.52 | 18092444 250 194067 878
May, 2009 | 2032.90 5090.75 | 25915742 250 185538 870
June, 2009 | 2036.39 4952.04 | 24522647 250 202796 871
July, 2009 | 2263.11 6003.62 | 36043442 250 365024 905
August, 2009 | 2154.86 5199.91 | 27039104 250 206124 916
September, 2009 | 2206.72 5779.25 | 33399674 250 329809 934
October, 2009 | 2033.44 5198.26 | 27021897 250 273127 927
November, 2009 | 2071.97 4983.31 | 24833383 250 185294 936
December, 2009 | 1992.27 4188.98 | 17547541 250 170866 924
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HMM.

In the Table 4.5 we present summary statistics of the individual claim amounts
for each month, from January, 2007 to December, 2009. Monthly mean values
are higher than monthly median values, that indicate right-skewed monthly
distributions, even though total claim amounts are symmetric. As can be seen
in the table, standard deviation values are higher than mean values because of

the high variaton in data, the individual claim amounts rise from 250 to 421,475.

4.2 Analyses

In this section, we report the results of the application of the Poisson-Normal
hidden Markov model to the vehicle insurance data. The iterative procedure
of the algorithm is implemented in R code. For convenience, we altered the
observations of the data by dividing the claim amounts by 1000 and the claim
numbers by 100.

Table4.6: Comparison of the Poisson-Normal HMMs

Number | Number logl. AIC BIC

of states | of parameters
1 4 1 -656.00 | 1320.02 | 1326.35
2 10 | -b34.22 | 1088.44 | 1104.28
3 18 | -501.39 | 1038.77 | 1067.28
4 28 | -500.04 | 1056.07 | 1100.41
5 40 | -498.83 | 1077.67 | 1141.01
6 54 | -498.12 | 1104.24 | 1189.75

We present the Poisson-Normal HMMs with one to six states fitted by EM
algorithm and compare them on the basis of two criteria, namely AIC and BIC.

Also, the maximum log-likelihoods are provided. The detailed information is

presented in Table [4.6]

By a one-state Poisson-Normal HMM we mean a model with independence as-

sumption, i.e. the observations are realizations of the product of independent
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Figure 4.7: Comparison of AIC and BIC results for Poisson-Normal HMMs with
different state numbers.

Poisson random variables and Normal random variables with common parame-
ters for all time points. As regards the results in Table [4.6] the one-state model
shows the weakest goodness of fit to the insurance data. Despite an increasing
number of states gives a better result for log-likelihood, however, it demands
more parameters to estimate. Therefore both AIC and BIC indicate that the
model with three states is the most suitable, compared to other models, see

Figure 4.7

We present here a three-state Poisson-Normal HMM. For the model the station-
ary distribution is computed by expression [3.4] and used as the starting value of

initial distribution w(1).

The initial values of the off-diagonal transition probabilities are taken to be
0.1. As the starting values of the state-dependent means we use the lower
quartile, median and upper quartile of the observations, for claim counts is
(212.8,222,239) and claim amounts is (44590,47370,48440). However, it was
challenging to find an optimal initial value for o, we performed EM estimation
with several starting values and selected the ones that give the maximum log-

likelihood, as a result, (5000, 2000, 1300) has been used.
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3-state Poisson-Normal HMM
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Figure 4.8: Three-state Poisson-Normal HMM: the marginal distribution for the
claim amounts.
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Figure 4.9: Three-state Poisson-Normal HMM: the marginal distribution for the
claim numbers.
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The estimated three-state model is

0.7010 0.1961 0.1029
['=10.1213 0.8217 0.0570
0.2899 0.0000 0.7101

with initial probabilities u(1) = (0.8565,0.1405,0.0030), parameters of joint
state-dependent distribution A = (218.8,223,243.7), u = (45799.45,46991.43, 49617.07)
and o = (5020.22, 2022.55, 2092.90). The estimated log-likelihood is [ = —501.387.

The marginal distributions of the selected model, compared with histograms of

observations are displayed in Figure and [£.9

Although the 3-state model has been selected as the most appropriate model,

the goodness of fit of the model in an absolute sense is not assessed.

According to Figures and [.11] which depict the conditional distributions
for the claim numbers and the claim amounts, we observe that the shape of
the conditional distributions may change significantly from one time point to
another. Due to the fact that some of the observations are extreme relative to
their conditional distributions, we infer that using the conditional distributions

to check outliers is reasonable.

As it was mentioned in the previous chapter, we use conditional distributions to
compute ordinary normal pseudo-residuals, see Figure [4.12] and Regarding
the residual plots, it is obvious that the selected model provides an optimal fit to
the data. In addition, we apply Shapiro-Wilk normality test to pseudo-residuals,
which confirms that those are normally distributed, p-values are 0.6546 for claim
numbers and 0.4537 for claim amounts. Quantile-quantile plots of the normal
pseudo-residuals provide the same result as well, see Figure and Figure
fig:qq ps-resid number .

For fitted 3-state Poisson-Normal HMM we derive state probabilities, that are
necessary for performing local decoding, see Figure [4.20] Having applied 3-state
model we are interested in defining hidden states that are most probable to have
given rise to the sequence of observed values. We conducted local and global

decodings both for claim amounts and claim numbers, definitions of methods
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Claim amounts:normal pseudo-residuals
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Figure 4.12: Claim amounts: ordinary pseudo-residuals. Index plot of the nor-
mal pseudo-residuals,with horizontal lines at 0, £1.96, +2.58.
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Figure 4.13: Claim numbers: ordinary pseudo-residuals. Index plot of the nor-
mal pseudo-residuals,with horizontal lines at 0, £1.96, +2.58.
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QQplot of the normal pseudo-residuals

Figure 4.14: Claim amounts: QQplot of the ordinary normal pseudo-residuals.

QQplot of the normal pseudo-residuals

Figure 4.15: Claim numbers: QQplot of the ordinary normal pseudo-residuals.
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Figure 4.16: Claim amounts: local vs. global decoding according to three-state
Poisson-Normal HMM.
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Figure 4.17: Claim numbers: local vs. global decoding according to three-state
Poisson-Normal HMM.
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are given in Section [3.7} In order to derive the most likely sequence of states,
the Viterbi algorithm is applied. Observing Figure and we note that
decoding results are very similar but differ in January 2008, February 2009, and
April 2009.

Additionally, we obtained state probabilities for three years ahead, that can be
used for analysis of further claim behavior. We suppose, that in the beginning
of 2010 observations will be dependent on the third state, in the following few
months those will continue with the first state, and during two years the first
and second states have almost equal probabilities and are dominant compared

to the third state, see Figure [£.21]

Four of the forecast distributions for claim amounts and claim numbers are dis-
played in Figures and The distributions are compared with the lim-
iting distributions, i.e. the marginal distributions of the Poisson-Normal HMM.
It is clear that the forecast distributions approach the limiting distribution rel-

atively fast.
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Figure 4.20: State probabilities for fitted three-state Poisson-Normal HMM.
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Figure 4.21: State prediction for fitted three-state Poisson-Normal HMM.
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CHAPTER 5

CONCLUSION

We propose Bivariate Hidden Markov Model as a novel approach in model-
ing claim dependence. The model allows claim numbers and aggregate claim
amounts to be mutually and serially dependent through an underlying hidden
state. We modify the classical HMM definitions and propositions to bivariate
case. Three different BHHMs are presented, namely Poisson-Normal HMM,
Poisson-Gamma HMM and Negative Binomial-Gamma HMM. For parameter
estimation of the model, we conducted EM algorithm. To perform the al-
gorithm, we acknowledge and proved three propositions, which maximize the

state-dependent part of complete-data log-likelihood of proposed models.

To examine the performance of our model, we apply the Poisson-Normal HMM
with the different number of states to the vehicle insurance data for Istanbul
taken from Turkish Motor Insurance Center (TRAMER) for the years 2007-
20009.

Three-state Poisson-Normal HMM is selected as the most suitable model by
comparing Akaike and Bayesian information criterions. In order to determine
whether indeed the model performs adequate, we obtain and assess ordinary nor-
mal pseudo-residuals. Shapiro-Wilk normality test and quantile-quantile plots
confirm the goodness of fit of the model. According to the selected model we
conduct Viterbi algorithm to derive the most likely sequence of states which un-
derly and affect the observations. Using these results the specialists may specify
names of the states. Additionally, we derive forecast distributions both for claim

numbers and claim amounts and performed state prediction.
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The main advantage of the model is a flexibility in a sense of accommodating
different types of data. In our study, we modeled a bivariate series with one
discrete and one continuous variable. Moreover, proposed model is applicable
in various fields of life and non-life insurance, where the serial dependence and
mutual dependence among observations exist. Remarkably, that information
provided by the model, such as the most likely sequence of hidden states, can be
used for further analysis by the experts, like doctors, biologists or actuaries. It

allows determining the character of events or factors influencing the observations.

In future work, we plan to apply the Poisson-Gamma HMM and the Negative
Binomial-Gamma HMM to the motor insurance data. Additionally, some ex-

ploratory variables can be added to the model.
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