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ABSTRACT

BIVARIATE HIDDEN MARKOV MODEL TO CAPTURE THE
DEPENDENCY IN CLAIM ESTIMATE

Oflaz, Zarina

M.S., Department of Statistics

Supervisor : Assoc. Prof. Dr. Ceylan Talu Yozgatlıgil

Co-Supervisor : Assoc. Prof. Dr. A. Sevtap Kestel

July 2016, 59 pages

Most actuarial models rely on an assumption that both claim counts and aggre-

gate claim amounts are serially independent, that simplifies the study of many

risk quantities. However, this hypothesis does not always reflect the reality and is

too restrictive in different frameworks. Some weather or economic conditions rea-

sonably affect the claim-causing events, as a result, it influences both the claim

number and the claim amount distributions. The unobservable background fac-

tor can be characterized by a hidden finite state Markov chain. In our study,

we propose a novel approach for modeling claim dependence, Bivariate Hidden

Markov Model (BHMM), which to our knowledge has not been studied before.

We assume that the claim counts and the aggregate claim amounts are mutually

dependent and serially dependent through an underlying hidden state. We con-

struct three different Bivariate Hidden Markov Models, namely Poisson-Normal

HMM, Poisson-Gamma HMM and Negative Binomial-Gamma HMM. To fit the

model EM algorithm is used. In order to maximize the state-dependent part of
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complete-data log-likelihood of bivariate HMMs, we established and proved three

propositions. In application part of our thesis, we fit the Poisson-Normal HMM

with a different number of states to vehicle insurance observations for Istanbul

taken from Traffic Insurances Information and Monitoring Center (TRAMER)

for the years 2007-2009. In addition, we performed forecasting of distributions

and state prediction, obtained the most likely sequence of states.

Keywords: Claim modeling, Dependency, Bivariate Hidden Markov Model, EM

algorithm, Viterbi Algorithm
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ÖZ

TALEP TAHMİNİNDEKİ BAĞIMLILIĞIN İKİ DEĞİŞKENLİ SAKLI
MARKOV MODELİ İLE ÇÖZÜMLENMESİ

Oflaz, Zarina

Yüksek Lisans, İstatistik Bölümü

Tez Yöneticisi : Doç. Dr. Ceylan Talu Yozgatlıgil

Ortak Tez Yöneticisi : Doç. Dr. A. Sevtap Kestel

Temmuz 2016 , 59 sayfa

Aktüerya biliminde, riskin genellikle bağımsız olduğu varsayılır ancak bu varsa-

yım her zaman gerçeği yansıtmamaktadır ve farklı çerçevelerde çok kısıtlayıcıdır.

Hava ya da ekonomik koşullara bağlı olarak talep sayısı ve miktarı dağılımları za-

mana bağlı bir özellik gösterebilir. Gözlemlenemeyen bu tarz faktörler saklı sonlu

durumlu Markov zinciri ile karakterize edilebilir. Bu çalışmada talepteki bağımlı-

lığı iki değişkenli saklıı Markov Modeli (BHMM) ile modelleyecek yeni bir yakla-

şım önerilmektedir. Toplam talep sayısı ve toplam talep miktarını saklı durumlar

aracılığıyla karşılıklı bağımlı ve zamana bağlı varsayarak üç farklı saklıı Markov

Modeli; Poisson Normal SMM, Poisson-Gama SMM ve Negatif Binom-Gama

SMM geliştirildi ve EM algoritması ile model parametreleri tahminlendi. İki de-

ğişkenli SMMin log-olabilirlik fonksiyonunu maksimize etmek için üç önerme

kanıtlanmıştır. Elde edilen sonuçları gerçek veriye uygularken 2007-2009 yılları

arasında Trafik Sigortaları Bilgi ve Gözetim Merkezi’nden (TRAMER) alınan
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İstanbul için araç sigorta talep miktarı ve sayısı arasındaki bağımlılık Poisson-

Normal SMM ile farklı durum sayıları gözönüne alınarak modellemesi. Ayrıca

ileriye dönük en olabilir durum zinciri oluşturulmuştur.

Anahtar Kelimeler: Talep modellemesi, Bağımlılık, İki değişkenli saklı Markov

Modeli, EM algoritması, Viterbi algoritması
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CHAPTER 1

INTRODUCTION

The fundamental objectives for insurance companies include safeguard policy-

holders against potential losses by apportioning the risk with others and com-

pensate the loss, [1]. In order to be solvent over a certain time horizon, an

insurer must adequately price the premiums to be charged and have sufficient

amount of capital and reserves. Hence, predicting the distribution of the total

claims amount in a given time period is important as it directly related to the

equity and reserving requirements for an insurance company, [2].

The classical approach in modeling aggregate claims amount of the portfolio,

consisting of n insurance policies, is to sum all amounts payable during a cer-

tain time period. It is assumed that the number of claims follows a particular

discrete distribution and the monetary amount of each claim follows a continu-

ous distribution, [3] Generally, individual risks are assumed to be independent,

that simplifies the study of many risk quantities. Hence, the aggregate claims

distribution is assessed under the independence assumption, [4]. Despite its sim-

plicity and accessibility to actuaries, this assumption sometimes far from reality

and is too restrictive in different frameworks. Recently, the impact of depen-

dencies between risks have received increasing attention in the literature, see

[5] and [6]. For example, according to Dhaene and Goovaerts [7], some type of

dependency between individuals may produce the riskiest aggregate claims and

cause the largest stop-loss premiums.

Claim modeling with dependence has been mentioned by some authors. For

instance, Dhaene and Goovaerts [8] concern conditional independence of claim
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amounts; generalized linear models assuming the dependence between the claim

counts and amounts have been constructed, [9]. Since dependence modeling

using copulae was introduced by Frees and Valdez [10], copulae have become

a very popular tool, e.g.various Levy copula models [11] have been applied.

Copulae have been used for the modeling bivariate loss distributions [12], a

joint copula-based model [13] has been suggested to capture the dependence in

frequency and in severity.

Some researchers have been considered models allowing dependence among ag-

gregate claims, see [14], [15] and [16].

In order to relax the assumption of serial independence of observations, we

allow the parameter process to be serially dependent. An optimal way is to

assume that the parameter process must satisfy the Markov property. The

resulting model for the observations is a Hidden Markov Model. The main

reason for selecting an HMM for modeling claim dependence is that unobservable

background factors, which affect claim-causing events can be characterized by a

hidden parameter process. That seems both claim amounts and claim numbers

may behave similarly under some economic or weather conditions, consequently,

we suppose they might be dependent on each other. The [17] has also considered

the dependence of claim counts and the claim amounts on a common random

environment. The researcher gives an overview of models where unobservable

information was described by exogenous variables, using fixed and random effects

models.

HMMs have been applied in various fields, namely speech recognition [18], molec-

ular biology [21], analysis of DNA sequence [22], stock market forecasting [23].

In claim modeling, Hidden Markov model is considered to be a relatively new

tool. For instance, Poisson Hidden Markov Model has been used to model the

dynamics of claim counts in non-life insurance, [27], while [24] has generated

the intensity function of the claim arrival process by a hidden Markov model

(HMM) with Erlang state-dependent distributions.

The main work of our study involves introducing a novel approach for model-

ing claim dependence, Bivariate Hidden Markov Model (BHMM). We make two

2



conditional independence assumptions, namely contemporaneous and longitudi-

nal, i.e. we assume that the claim counts and the aggregate claim amounts are

dependent and both are serially dependent via an underlying hidden state, see

Figure 3.2. Multivariate HMM with considered two assumptions have been con-

structed to fit the multisite precipitation by Zucchini and Guttorp (1991) [40].

Also, the model has been fitted to the bivariate series, where one component is

linear and other is circular [29]. Theory related to the proposed model structure

is discussed by Zucchini and MacDonald [29], [20].

In the thesis, we construct three different Bivariate Hidden Markov Models,

namely Poisson-Normal HMM, Poisson-Gamma HMM and Negative Binomial-

Gamma HMM. In order to estimate model parameters, EM algorithm is con-

ducted.

This thesis is organized as follows: in Chapter 2, an overview of the theoretical

framework of the claim modeling is given, Chapter 3 presents the Bivariate Hid-

den Markov Model and related definitions and propositions,the basic theory of

Hidden Markov models is considered in this chapter as well. Chapter 4 includes

an application of the Poisson-Normal HMM to the vehicle insurance data for

Istanbul, 2007-2009. Data description and results of analysis are considered.
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CHAPTER 2

CLAIM MODELING

Insurance companies are primarily interested in assessing the likelihood of claim

occurrence, as well as the monetary loss of the claim. Evaluating total payments

in a given time period is pivotal for calculating premiums and reserves, pricing

of insurance contracts and preventing insolvency of the company [19].

An aggregate loss S is the sum of the monetary losses of all the claim in a

certain period of time (0, t]. The number of claims, N , called the frequency

random variable and the monetary amount of each claim, X, called the severity

are combined to model the total loss, S. Obviously, N is assumed to be a

nonnegative discrete random variable,while X is continuously distributed.

Aggregate loss distributions have been discussed in the most actuarial literature,

e.g. see [2] and [3].

There are two major approaches in modeling aggregate loss: the individual

risk model and the collective risk model.

The individual risk model specifies the aggregate loss as follows:

S =
n∑
i=1

Xi, (2.1)

where n is a fixed number of individual risks in the portfolio and the Xi’s are

independent random variables for the individual losses [26].

The use of collective risk theory provides an alternative way to the above ap-

proach. The aggregate claim amount is assumed to be a random process. The
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model is specified by

S =
N∑
i=1

Xi, (2.2)

where Xi is the size of claim i and N is the number of claims in a time period [3].

In contrast to the individual risk model, the number of claims N is a random

variable.

In the compound distribution, X1, X2, ..., XN are identically distributed, and

Nt, X1, X2, ..., XN are assumed to be mutually independent.

Now, we introduce the aggregate claim process St which is widely used in actu-

arial modeling. It is defined by the summation of each policies’ claim amount

Xi’s in a certain time period t ≥ 0:

St =
Nt∑
i=1

Xi, (2.3)

where the {Nt : t ≥ 0} is called the claim number process. In contrast to the

collective risk model, which is interested in claim modeling for a single period,

here we are concerned in the number of claims and aggregate claims for a long

time period, i.e. we would like to obtain the distributions at all times t ≥ 0. [2]

Modeling the claim frequency distribution and the claim severity distribution

separately has been found advantegous in many aspects, see [19].

2.1 Claim frequency distribution

As the number of claims can only take nonnegative integer values, counting

distributions can be used for modeling the claim frequency distribution. In

practice, the most commonly used distributions are the Poisson, Binomial, and

Negative Binomial distributions. A classic choice for modeling claim counts is

the Poisson distribution, since

Nonnegative discrete variable N follows a Poisson distribution with parameter

λ, if the pf of N is defined as follows

pn =
e−λλn

n!
, n = 0, 1, 2, ....

6



The Poisson distribution is characterized as equidispersed distribution since its

mean and variance are equal. In the following, we present two useful properties

of the Poisson distribution [3].

Theorem 2.1 If N1, N2, ..., Nn are independently distributed as a Poisson dis-

tribution with parameter λi, for i = 1, ..., n, then N = N1+...+Nn has a Poisson

distribution with parameter λ1 + ...+ λn.

Theorem 2.2 Suppose that the number of events N distributed as a Poisson

distribution with mean λ. Let each event be classified into one of m types with

probabilities p1, ..., pm. Events are mutually independent. Then N1, ..., Nm are

mutually independent random variables distributed as a Poisson with parameters

λp1, ..., λpm respectively.

The Negative Binomial distribution might be an optimal candidate for overdis-

persed data, since its variance exceeds its mean. Compare to the Poisson distri-

bution, the Negative Binomial distribution is more flexible in shape, because it

has two parameters.

The probability function of the Negative Binomial distribution with parameters

r > 0, p ∈ (0, 1) is given by

pn =

(
n− 1

r − 1

)
pr(1− p)n−r.

The Binomial distribution differs from other counting distributions, its variance

is smaller than its mean. N is said to have Binomial distribution with parameters

p, θ, if the pf of N , for n = 0, 1, ..., p is given by

pn =

(
p

n

)
θn(1− θ)p−n.

2.2 Claim severity distribution

The claim severity is usually distrbuted as a nonegative continuous random

variable. Here we present the common claim severity distributions, however,

it may also be modelled by a mixture of distributions or by a modification of

existing distributions.

7



The Gamma distribution is usually used if the cumulative distribution function

has not too heavy tail, for instance, in motor insurance, where a claim event

causes injury to an insured vehicle [2]. The p.d.f. of the Gamma distribution is

defined as follows

f(x) =
βαxα−1e−βx

Γ(α)
, for β > 0, α > 0.

Fire insurance, where the claim event creates a severe loss, requires modeling

claim severity with heavy-tailed distributions. Generally, the Lognormal distri-

bution and the Pareto distribution are suggested to use in this type of insurance

[2].

However, the choice of an adequate distribution depends on a given data and an

experience of a researcher.
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CHAPTER 3

BIVARIATE HIDDEN MARKOV MODEL

The purpose of this chapter is to provide a short review of Hidden Markov mod-

els (HMMs) and then to introduce new models of our study, Bivariate Hidden

Markov models (BHMMs). First, in Section 3.1 we give an account of Markov

chains because the unobserved ‘parameter process’ of hidden Markov model

satisfies the Markov property. Second, in Section 3.2 an HMM and related def-

initions are introduced. In Section 3.3, we discuss Bivariate Hidden Markov

models; propositions necessary for parameter estimation and their proofs, EM

algorithm and forward-backward algorithms, lastly, Viterbi algorithm to decode

hidden states is presented. ”Hidden Markov Models for Time Series” by Walter

Zucchini and Iain L. MacDonald [29] is taken as the main reference of our study.

Additionally, we modified the theory of classic HMM for bivariate case.

3.1 Markov chains

We will consider a stochastic process {Ct} in discrete time t = 1, 2, ..., referring

to the value Ct as the state of the process at time t, and C1 indicates the initial

state.

Definition 3.1 (Markov chains) A sequence of random variables {Ct : t =

1, 2, ...} is called a Markov chain if for all t ∈ N it follows a Markov property

P (Ct+1|C(t)) = P (Ct+1|Ct), (3.1)

where C(t) is defined as the history (C1, C2, ..., Ct).
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Thus, the probability distribution of the next state depends only on the current

state and not on previous ones.

Definition 3.2 (Matrix of transition probabilities) The matrix Γ(1) ,ab-

breviated as Γ, is a square matrix of probabilities with row summing up to one

Γ =


γ11 . . . γ1m

... . . . ...

γm1 . . . γmm

 ,

where γij(t) = P (Ck+t = j|Ck = i) are transition probabilities and m denotes

the number of states of the Markov chain.

Transition probability γij(t) can be expressed as the probability of moving from

state i to state j at time t. If these probabilities do not depend on k, the

Markov chain is said to be homogeneous. Finite state-space homogeneous

Markov chains fulfill the Chapman-Kolmogorov equations [29] :

Γ(t+ u) = Γ(t)Γ(u), (3.2)

which implies Γ(t) = Γ(1)t.

Probabilities of a Markov chain being in a given state at a given time t can be

defined by unconditional probabilities

u(t) = (P (Ct = 1), ..., P (Ct = m)). (3.3)

u(1) is considered as initial distribution of the Markov chain, which specifies

the starting state.

In our study, we consider a homogeneous nonstationary Markov chain. However,

in order to define a starting value of initial distribution we use a stationary

distribution of a Markov chain.

Definition 3.3 A Markov chain with transition probability Gamma has a sta-

tionary probability δ if δΓ = δ and δ1′ = 1.

A stationary distribution δ can be found by the following expression,[29]

δ(Im − Γ + U) = 1, (3.4)
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Figure 3.1: Directed graph of basic HMM.

where δ is the stationary distribution, Im is the m×m identity matrix, U is the

m×m matrix of ones and 1 is a row vector of ones.

3.2 Hidden Markov Model

A Hidden Markov Model (HMM) is a powerful statistical tool for modeling

time series data. Let us Nt denote as the observation at time t, t ∈ N. The

model assumes that process generating Nt depends on the hidden state Ct which

satisfies the Markov property.

Thus, an HMM can be determined by hidden ’parameter process’ {Ct : t =

1, 2, ...} and the ’state-dependent process’ {Nt : t = 1, 2, ...}, [29] satisfying

P (Ct+1|Ct, ...C1) = P (Ct+1|Ct), t = 2, 3, ...

P (Nt|N (t−1), C(t)) = P (Nt|Ct), t ∈ N. (3.5)

The structure of HMM is displayed in the following Figure 3.1.

Defined above the initial distribution u(1) and matrix of transition probabilities

γij(t) are necessary to construct a probability distribution over sequences of ob-

servations. Additionally, we need to specify the state-dependent distribution

pi(n), that defines the relation between the observation and an unobserved state.

For discrete-valued observations pi(n) is defined as follows, for i = 1, 2, ...,m:

pi(n) = P (Nt = n|Ct = i).

11



For continuous case pi is defined to be the probability density function of Nt if

the Markov chain is in state i at time t.

We indicate P (n) as the diagonal matrix of state-dependent distributions of

observation n

P (n) =


p1(n) 0

. . .

0 pm(n)

 .

3.3 Bivariate Hidden Markov Models

3.3.1 Model specification

Let {Nt : t = 1, 2, ...} be the number of claims and {St : t = 1, 2, ...} be the aggre-
gate claim amount reported by policyholders during the time period t = 1, 2, ....

Most actuarial models rely on the assumption that both Nt and St are serially

independent, that simplifies the study of many risk quantities. However, this

hypothesis does not always reflect the reality and is too restrictive in different

frameworks. The sample autocorrelation function of claim counts and aggregate

amounts, displayed in Figure 4.3 and Figure 4.4,respectively, indicates that the

values at different times have a dependency among each other. Moreover, it is

necessary to remark that according to Equation 2.3 from Chapter 2 Nt and St
are also dependent.

Some weather or economic conditions reasonably affect the claim-causing events,

as a result, it influences both the claim number and claim amount distributions

[27]. The unobservable background factor can be characterized by hidden finite

state Markov chain. In our study, we propose a new approach for modeling claim

dependence, Bivariate Hidden Markov Model , which to our knowledge has

not been studied in literature before. We assume that Nt and St are mutually

dependent and serially dependent through an underlying hidden state {Ct : t =

1, 2, ...}. In our study, we consider that the Markov chain of the bivariate model

is homogeneous and non-stationary. The model’s structure is displayed in Figure

3.2.

12



Figure 3.2: Directed graph of bivariate HMM.

Figure 3.3: Contemporaneous conditional independence.

Obviously, claim numbers Nt and aggregate claim amounts St are reported at

same time t, therefore in our study information given by bivariate observations

(St, Nk), t 6= k is insignificant.

We assume longitudinal conditional independence, i.e. conditional on the under-

lying hidden state {Ct : t = 1, 2, ...} the claim counts at time t and the aggregate

amounts at time t are assumed to be independent. In addition, we admit con-

temporaneous conditional independence, which is interpreted in Figure 3.3, the

scheme was taken from [29]. These two conditional independence assumptions

do not imply the serial independence of Nt and St or that the component series

are mutually independent, hence that Nt and St are dependent. [29]

13



To specify the bivariate model it is necessary to postulate a joint state-dependent

distribution for t = 1, 2, ..., T ,i = 1, 2, ...,m and all relevant s, n

pi(st, nt) = P ((St, Nt) = (st, nt)|Ct = i).

According to the contemporaneous conditional independence, the state-dependent

probabilities are given by a product of the corresponding marginal probabilities

[29]:

pi(st, nt) = P ((St, Nt) = (st, nt)|Ct = i)

= P (St = st|Ct = i)P (Nt = nt|Ct = i).
(3.6)

In our study we construct three different bivariate models. These are: the

Poisson-Normal Hidden Markov Model, the Poisson-Gamma Hidden Markov

Model and the Negative Binomial-Gamma Hidden Markov Model. The Poisson-

Normal Hidden Markov Model applied to the real insurance data.

We define a joint state-dependent distribution for the Poisson-Normal Hid-

den Markov Model , for n ∈ N, s > 0, λ > 0, µ > 0, σ2 > 0, as follows:

pi(st, nt) = (2πσ2
i )
− 1

2 e
− 1

2σ2
i

(st−µi)2−λi λnti
nt!

. (3.7)

We consider that Nt follows the Poisson distribution and St the Normal distri-

butions with underlying unobservable stochastic process Ct.

Similarly, we present the Poisson-Gamma Hidden Markov Model with

marginal distributions, the Poisson distribution for Nt and the Gamma distri-

bution for St. The joint state-dependent distribution, for n ∈ N, s > 0, λ >

0, α > 0, β > 0, is given by

pi(st, nt) =
βαii s

αi−1
t λnti e

−βist−λi

Γ(αi)nt!
. (3.8)

For the Negative Binomial-Gamma Hidden Markov Model the state-

dependent distribution is of the form

pi(st, nt) =

(
ni−1
ri−1

)
βαii s

αi−1
t e−βistprii (1− pi)nt−ri

Γ(αi)
. (3.9)

for n ∈ N, s > 0, r > 0, p ∈ (0, 1), α > 0, β > 0.
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3.3.2 The likelihood and marginal distributions

The following definitions and propositions are modified for bivariate case, based

on the classic theory of HMM [29]. We suppose there is an observation sequence

s1, s2, ..., sT , n1, n2, ..., nT . An m-state BHMM has an initial distribution u(1),

the transition probability matrix Γ and matrix of joint state-dependent proba-

bilities P (s, n).

Proposition 3.1 The likelihood of bivariate Hidden markov model, for t =

1, 2, ..., T and all relative s, n, is given by

LT = u(1)P (s1, n1)ΓP (s2, n2)ΓP (s3, n3)...ΓP (sT , nT )1′.

We define the marginal distribution , for t = 1, 2, ..., T as follows:

P ((St, Nt) = (s, n)) =
m∑
i=1

P (Ct = i)P ((St, Nt) = (s, n)|Ct = i)

=
m∑
i=1

ui(t)pi(s, n).

(3.10)

Also, it can be represented in a matrix form:

P ((St, Nt) = (s, n)) = (u1(t), ...um(t))


p1(s, n) 0

. . .

0 pm(s, n)




1
...

1

 .

= u(t)P (s, n)1′.

(3.11)

It is of interest to obtain the marginal distribution separately for Nt and St.

Considering, that Nt is a discrete variable, the marginal distribution P (Nt = n)

is given as follows:

P (Nt = n) =
m∑
i=1

P (Ct = i)P (Nt = n|Ct = i)

=
m∑
i=1

ui(t)pi(n).

(3.12)
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Likewise, in matrix form:

P (Nt = n) = (u1(t), ...um(t))


p1(n) 0

. . .

0 pm(n)




1
...

1

 .

= u(t)P (n)1′.

(3.13)

For continuous variable St, which state-dependent distribution can be described

as a complete p.d.f. over the continuous observation space for each state, the

marginal distribution is given by

P (St) =
m∑
i=1

P (Ct = i)P (St|Ct = i)

=
m∑
i=1

ui(t)pi(s).

(3.14)

The expression can be represented in matrix notation:

P (St = n) = (u1(t), ...um(t))


p1(s) 0

. . .

0 pm(s)




1
...

1

 .

= u(t)P (s)1′.

(3.15)

3.4 Parameter Estimation in Bivariate HMM

To construct the model it is necessary to estimate transition probabilities, ini-

tial probability, and parameters of the joint state-dependent probabilities. In

order to fit the Bivariate HMMs, the EM algorithm is used. In the context of

HMMs, the algorithm is also known as the Baum-Welch algorithm. EM algo-

rithm performs maximum likelihood estimation of parameters having missing

value in the data [34]. We treat hidden states as missing data [33]. In addition,

the algorithm enables estimation of the parameters of an HMM whose Markov

chain is homogeneous but not necessarily stationary [29]. In order to maximize

the state-dependent part of complete-data log-likelihood of bivariate HMMs, we

establish and prove three propositions.
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3.4.1 Forward-Backward Probabilities

The tools we need to apply the EM algorithm are the forward and the backward

probabilities. In this section, we give definitions of the forward and the backward

probabilities and present propositions necessary for maximization part of EM

estimation [35].

Definition 3.4 (Forward probabilities) For t = 1, 2, ..., T forward probabil-

ities, αt, are defined as follows:

αt = δP (s1, n1)ΓP (s2, n2)...ΓP (st, nt) = δP (s1, n1)
t∏

k=2

ΓP (sk, nk).

Definition 3.5 (Backward probabilities) Backward probabilities, β′t, for t =

1, 2, ..., T are defined by

β′t = ΓP (st+1, nt+1)ΓP (st+2, nt+2)...ΓP (sT , nT )1′ = (
T∏

k=t+1

ΓP (sk, nk))1
′.

βT = 1.

The following proposition identifies αt(j) as the joint probability of the obser-

vations s1, s2, ..., st, n1, n2, ..., nt and hidden state j at time t.

Proposition 3.2 For t = 1, 2, ..., T and j = 1, 2, ...,m

αt(j) = P ((S(t), N (t)) = (s(t), n(t)), Ct = j).

The following proposition defines βt(i) as the probability of the observations

being st+1, st+2, ..., sT , nt+1, nt+2, ..., nT , given that the Markov chain is in state

i at time t.

Proposition 3.3 For t = 1, 2, ..., T and j = 1, 2, ...,m

βt(i) = P ((STt+1, N
T
t+1) = (sTt+1, n

T
t+1), Ct = i)

where Zb
a denotes the vector (Za, Za+1, ..., Zb).

We now establish the propositions concerning the forward and backward prob-

abilities useful in applying the EM algorithm to bivariate HMMs.
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Proposition 3.4 Firstly, for t = 1, 2, ..., T

P (Ct = j|(S(T ), N (T )) = (s(T ), n(T ))) = αt(j)βt(j)/LT ,

and secondly, for t = 2, 3, ..., T

P (Ct−1 = j, Ct = k|(S(T ), N (T )) = (s(T ), n(T ))) = αt−1(j)γjkpk(st, nt)βt(k)/LT .

Proposition 3.5 For t = 1, 2, ..., T and i = 1, 2, ...,m

αt(i)βt(i) = P ((S(T ), N (T )) = (s(T ), n(T )), Ct = j),

and therefore

αtβ
′
t = P ((S(T ), N (T )) = (s(T ), n(T ))) = LT , for each such t.

3.4.2 EM algorithm

The EM algorithm is an efficient iterative procedure to compute the maximum

likelihood estimation of the parameters of an underlying distribution from a

given dataset in the presence of missing or hidden data. The expectation max-

imization algorithm alternates between two phases. In the E-step conditional

expectations of the missing data given the observed data and a current estimate

of the model parameters are estimated. In the M-step, the complete-data log-

likelihood function is maximized under the assumption that the missing data

are known. Iterations are repeated until a convergence is satisfied [34].

The complete-data log-likelihood of a bivariate HMM, i.e. the log-likelihood of

observed variables and hidden states, is defined as follows [29]:

log(P (s(T ), n(T ), c(T )) = log δc1 +
T∑
t=2

log δct−1,ct +
T∑
t=1

log pct(st, nt). (3.16)

Defining the zero-one random variables, we have

log(P (s(T ), n(T ), c(T )) =
m∑
j=1

uj(1) log δj +
m∑
j=1

m∑
k=1

(
T∑
t=2

vjk(t)) log γjk

+
m∑
j=1

T∑
t=1

uj(t) log pj(st, nt),

(3.17)
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where uj(t) = 1 if and only if ct = j,(t = 1, 2, ..., T ),vjk = 1 if and only if ct−1 = j

and ct = 1k (t = 2, 3, ..., T ).

The EM algorithm for a bivariate HMM [29]:

In E part vjk(t) and uj(t) are replaced by the conditional expectations of being

in a state j at time t given the observations s(T ), n(T ):

ûj(t) = P (Ct = j|(S(T ), N (T )) = (s(T ), n(T ))) = αt(j)βt(j)/LT ;

and

v̂jk(t) = P (Ct−1 = j, Ct = k|(S(T ), N (T )) = (s(T ), n(T ))) = αt−1(j)γjkpk(st, nt)βt(k)/LT .

M part: Each term of the CDLL is maximized with respect to the related set

of parameters, i.e. the initial distribution u(1), the transition probability matrix

Γ, and the parameters of the joint state-dependent distributions. Observing the

CDLL of bivariate HMM, we indicate that three separate maximizations in the

M-step are required. Thus:

1. Setting uj(1) = ûj(1)/
∑m

j=1 ûj(1) = ûj(1), maximize
∑m

j=1 uj(1) log δj with

respect to initial distribution u(1);

2. Setting γjk =
∑T

t=2 vjk(t)/
∑m

k=1(
∑T

t=2 vjk(t)), maximize

m∑
j=1

m∑
k=1

(
T∑
t=2

vjk(t)) log γjk

with respect to Γ;

3. Depending on the nature of the joint state-distributions assumed, the maxi-

mization of the third term can be performed analytically,i.e. closed-form solu-

tions are available, or numerical estimation will be required.

In the next sections, we present propositions related to our new models in order

to maximize the third term of CDLL of bivariate HMM.

3.4.3 Poisson-Normal Hidden Markov Model

Proposition 3.6 Given two random variables, S and N having Normal (µj, σ2
j )

and Poisson(λj) distributions,respectively, the EM estimate of joint state-dependent
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distribution are

λ̂j =

∑T
t=1 ûj(t)nt∑T
t=1 ûj(t)

,

µ̂j =

∑T
t=1 ûj(t)st∑T
t=1 ûj(t)

,

σ̂2
j =

∑T
t=1 ûj(t)(st − µ̂j)2∑T

t=1 ûj(t)
.

(3.18)

Proof: The joint state-dependent probability for the Poisson-Normal HMM is

given by

pj(st, nt) = (2πσ2
j )
− 1

2 e
− 1

2σ2
j

(st−µj)2−λj λntj
nt!

.

M step of EM algorithm requires the maximization of the state-dependent part

of the CDLL
m∑
j=1

T∑
t=1

ûj(t) log pj(xt, nt) (3.19)

with respect to the parameters of the joint state-dependent distribution. Defin-

ing F =
∑T

t=1 ûj(t) log pj(st, nt), we have

F =
T∑
t=1

ûj(t)[−
1

2
log(2πσ2

j )−
(st − µj)2

2σ2
j

− λj + nt log λj − log(nt!)]. (3.20)

Maximizing values of the state-dependent parameters λj, µj and σ2
j can be com-

puted by setting the derivative to zero with respect to corresponding parameters:

dF

dλj
=

T∑
t=1

ûj(t)[−1 +
nt
λj

] = 0

and hence,that

λ̂j =

∑T
t=1 ûj(t)nt∑T
t=1 ûj(t)

. (3.21)

Maximization of the state-dependent part of CDLL with respect to µj proceeds

as follows:
dF

dµj
=

T∑
t=1

ûj(t)[
st
σ2
j

− µj
σ2
j

] = 0,

then

µ̂j =

∑T
t=1 ûj(t)st∑T
t=1 ûj(t)

.

Analogically for σ2
j :

dF

dσ2
j

=
T∑
t=1

ûj(t)[−
1

2σ2
j

+
(st − µj)2

2(σ2
j )

2
] = 0,
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then,
T∑
t=1

ûj(t)
(st − µj)2

2(σ2
j )

2
=

T∑
t=1

ûj(t)
1

2σ2
j

,

and hence,that

σ̂2
j =

∑T
t=1 ûj(t)(st − µ̂j)2∑T

t=1 ûj(t)
. (3.22)

For confidence that the estimated parameters maximize the state-dependent

part of CDLL, we check second derivatives of F with respect to parameters.

The second derivative of F with respect to λj is

d2F

dλ2
j

∣∣∣
λj=λ̂j

= −
T∑
t=1

ûj(t)
nt
λ2
j

∣∣∣
λj=λ̂j

< 0,

since nt > 0 and ûj(t) = {0, 1} by definition. It is obvious, that the following

satisfies
d2F

dµ2
j

∣∣∣
µj=µ̂j

= −
T∑
t=1

ûj(t)
1

σ2
j

∣∣∣
µj=µ̂j

< 0.

Finally, we check the second derivative of F with respect to σ2
j .

d2F

dσ2
j

∣∣∣
σ2
j=σ̂2

j

=
T∑
t=1

ûj(t)[−
1

2σ2
j

+
(st − µj)2

2(σ2
j )

2
]
∣∣∣
σ2
j=σ̂2

j

=
T∑
t=1

ûj(t)[
σ2
j − 2(st − µj)2

2(σ2
j )

3
]
∣∣∣
σ2
j=σ̂2

j

=
σ2
j

∑T
t=1 ûj(t)− 2

∑T
t=1 ûj(t)(st − µj)2

2(σ2
j )

3

∣∣∣
σ2
j=σ̂2

j

(3.23)

It is suffcicient to prove that

σ2
j

T∑
t=1

ûj(t)− 2
T∑
t=1

ûj(t)(st − µj)2
∣∣∣
σ2
j=σ̂2

j

< 0.

Transforming the above expression, we derive:

σ2
j −

2
∑T
t=1 ûj(t)(st−µj)2∑T

t=1 ûj(t)

∣∣∣
σ2
j=σ̂2

j

=

∑T
t=1 ûj(t)(st − µj)2∑T

t=1 ûj(t)
− 2

∑T
t=1 ûj(t)(st − µj)2∑T

t=1 ûj(t)

= −
∑T

t=1 ûj(t)(st − µj)2∑T
t=1 ûj(t)

< 0.

(3.24)

This finalizes the proof of the estimated parameters maximizing the state-dependent

part of CDLL introduced in this study. �
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3.4.4 Poisson-Gamma Hidden Markov Model

Proposition 3.7 Given two random variables, S and N having Gamma(αj, βj)

and Poisson(λj) distributions,respectively, the EM estimate of joint state-dependent

distribution are

λ̂j =

∑T
t=1 ûj(t)nt∑T
t=1 ûj(t)

,

β̂j =
α̂j
∑T

t=1 ûj(t)∑T
t=1 st

.

(3.25)

To estimate α̂j numerical maximization is required.

Proof: The joint state-dependent probability for the Poisson-Gamma HMM is

given by

pj(st, nt) =
β
αj
i s

αj−1
t λntj e

−βjst−λj

Γ(αj)nt!
.

M step of EM algorithm requires the maximization of the state-dependent part

of the CDLL
m∑
j=1

T∑
t=1

ûj(t) log pj(xt, nt)

with respect to the parameters of the joint state-dependent distribution. Defin-

ing F =
∑T

t=1 ûj(t) log pj(st, nt), we have

F =
T∑
t=1

ûj(t)[αj log βj+(αj−1) log st+nt log λj−log Γ(αj)−log(nt!)−βjst−λj].

Maximizing values of the state-dependent parameters λj, µj and σ2
j can be com-

puted by setting the derivative to zero with respect to corresponding parameter:

dF

dλj
=

T∑
t=1

ûj(t)[−1 +
nt
λj

] = 0

and hence,that

λ̂j =

∑T
t=1 ûj(t)nt∑T
t=1 ûj(t)

.

Analogically for βj:
dF

dβj
=

T∑
t=1

ûj(t)[
αj
βj
− st] = 0,

and hence that

β̂j =
αj
∑T

t=1 ûj(t)∑T
t=1 ûj(t)st

.
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Maximization of the state-dependent part of CDLL with respect to αj proceeds

as follows
dF

dαj
=

T∑
t=1

ûj(t)[−
d

dαj
log Γ(αj) + log βj+t] = 0,

then replacing βj by β̂j, we get

dF

dαj
=

T∑
t=1

ûj(t)[−
d

dαj
log Γ(αj) + log

αj
∑T

t=1 ûj(t)∑T
t=1 ûj(t)st

+ log st] = 0

In order to estimate the above equation numerical maximization is required.

For confidence that the estimated parameters maximize the state-dependent

part of CDLL, we check second derivatives of F with respect to parameters.

The second derivative of F with respect to λj is

d2F

dλ2
j

∣∣∣
λj=λ̂j

= −
T∑
t=1

ûj(t)
nt
λ2
j

∣∣∣
λj=λ̂j

< 0,

since nt > 0 and ûj(t) = {0, 1} by definition.

For the parameters of Gamma distribution, we have

d2F

dα2
j

∣∣∣
αj=α̂j

= −
T∑
t=1

ûj(t)
d2

dα2
j

log Γ(αj)
∣∣∣
αj=α̂j

< 0,

since the trigamma function, defined as the sum of the series, is positive

d2

dα2
j

log Γ(αj) =
∞∑
k=0

1

(αj + k)2
> 0.

Finally, we check the second derivative of F with respect to β2
j

d2F

dβ2
j

∣∣∣
βj=β̂j

= −
T∑
t=1

ûj(t)
αj
β2
j

< 0,

since αj > 0. �

3.4.5 Negative Binomial-Gamma Hidden Markov Model

Proposition 3.8 Given two random variables, S and N having Gamma (αj, βj)

and Negative Binomial (rj, pj) distributions,respectively, the EM estimate of

joint state-dependent distribution are

β̂j =
α̂j
∑T

t=1 ûj(t)∑T
t=1 st

,

p̂j =
r̂j
∑T

t=1 ûj(t)∑T
t=1 ûj(t)(nt − r̂j) + r̂j

∑T
t=1 ûj(t)

.

(3.26)
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To estimate α̂j and r̂j numerical maximization is required.

Proof: The joint state-dependent probability for the Negative Binomial-Gamma

HMM is given by

pj(st, nt) =

(
nj−1
rj−1

)
β
αj
j s

αj−1
t e−βjstp

rj
j (1− pj)nt−rj

Γ(αj)

M step of EM algorithm requires the maximization of the state-dependent part

of the CDLL
m∑
j=1

T∑
t=1

ûj(t) log pj(xt, nt)

with respect to the parameters of the joint state-dependent distribution. Defin-

ing F =
∑T

t=1 ûj(t) log pj(st, nt), we have

F =
∑T

t=1 ûj(t) log pj(st, nt) =
∑T

t=1 ûj(t)[log
(
nj−1
rj−1

)
+αj log βj +(αj−1) log st

− βjst + rj log pj + (nt − rj) log(1− pj)− log Γ(αj)]. (3.27)

By setting the derivative to zero with respect to βj we derive

dF

dβj
=

T∑
t=1

ûj(t)[
αj
βj
− st] = 0,

and hence that

β̂j =
αj
∑T

t=1 ûj(t)∑T
t=1 ûj(t)st

.

Maximization of the state-dependent part of CDLL with respect to αj performs

as follows

dF

dαj
=

T∑
t=1

ûj(t)[−
d

dαj
log Γ(αj) + log βj + log st] = 0,

then replacing βj by β̂j, we derive

dF

dαj
=

T∑
t=1

ûj(t)[−
d

dαj
log Γ(αj) + log

αj
∑T

t=1 ûj(t)∑T
t=1 ûj(t)st

+ log st] = 0.

In order to estimate the above equation numerical maximization is required.

Below, derivative of F with respect to pj is obtained

dF

dpj
=

T∑
t=1

ûj(t)[
rj
pj
− nt − rj

1− pj
] = 0,
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and so
rj
pj

T∑
t=1

ûj(t) =
T∑
t=1

nt − rj
1− pj

ûj(t),

then
1− pj
pj

=

∑T
t=1 ûj(t)(nt − rj)
rj
∑T

t=1 ûj(t)
.

The parameter p̂j:

p̂j =
rj
∑T

t=1 ûj(t)∑T
t=1 ûj(t)(nt − rj) + rj

∑T
t=1 ûj(t)

. (3.28)

Maximization of the state-dependent part of CDLL with respect to rj proceeds

as follows

dF

drj
=

T∑
t=1

ûj(t)[
d

drj
log

(
nj − 1

rj − 1

)
+ log pj − log(1− pj)] = 0

then replacing rj by r̂j, we get

dF

drj
=

T∑
t=1

ûj(t)[
d

drj
log

(
nj − 1

rj − 1

)
+ log

rj
∑T

t=1 ûj(t)∑T
t=1 ûj(t)(nt − rj) + rj

∑T
t=1 ûj(t)

− log(1− rj
∑T

t=1 ûj(t)∑T
t=1 ûj(t)(nt − rj) + rj

∑T
t=1 ûj(t)

)] = 0, (3.29)

which requires numerical tools to maximize the expression. For confidence that

the estimated parameters maximize the state-dependent part of CDLL, we check

second derivatives of F with respect to parameters. The second derivative of F

with respect to the parameters of Gamma distribution, we have

d2F

dα2
j

∣∣∣
αj=α̂j

= −
T∑
t=1

ûj(t)
d2

dα2
j

log Γ(αj)
∣∣∣
αj=α̂j

< 0,

since the trigamma function, defined as the sum of the series, is positive

d2

dα2
j

log Γ(αj) =
∞∑
k=0

1

(αj + k)2
> 0.

Then, we check the second derivative of F with respect to β2
j

d2F

dβ2
j

∣∣∣
βj=β̂j

= −
T∑
t=1

ûj(t)
αj
β2
j

< 0, since αj > 0.

Next, the second derivative of F with respect to parameters of Negative Binomial

distribution is considered.

d2F
dp2j

∣∣∣
pj=p̂j

=
∑T

t=1 ûj(t)[−
rj
p2j
− nt−rj

(1−pj)2 ] (3.30)
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In order to maximize the state-dependent term with respect to pj it is necessary

to prove the following inequality

(1− pj)2

p2
j

> −
∑T

t=1 ûj(t)(nt − rj)
rj
∑T

t=1 ûj(t)
.

According to the Equation 3.28, we have

− [
∑T

t=1 ûj(t)(nt − rj)]2

r2
j [
∑T

t=1 ûj(t)]
2

<

∑T
t=1 ûj(t)(nt − rj)
rj
∑T

t=1 ûj(t)
.

Therefore, ∑T
t=1 ûj(t)∑T

t=1 ûj(t)(nt − rj)
+ 1 > 0

According to estimated p̂j, it follows, that

p̂j
rj(1− p̂j)

+ 1 > 0,

which is true, since rj > 0 and p̂j ∈ (0, 1). In the following, we examine rj

dF 2

dr2
j

∣∣∣
rj=r̂j

= −
T∑
t=1

ûj(t)
d2

dr2
j

log

(
nt − 1

rj − 1

)
Using the first derivative of log

(
nt−1
rj−1

)
, we have

d

drj
log

(
nt − 1

rj − 1

)
=

rj−2∑
i=0

1

nt − 1− i

The series sum is equal to

1

nt − 1
+

1

nt − 2
+ ...+

1

nt − rj − 3

So the second derivative is equal to

d2

dr2
j

log

(
nt − 1

rj − 1

)
= ...+

rj
(nt − 3− rj)2

,

and it is obvious that the expression is positive. �

3.5 Conditional distribution

In this section, we give an account of conditional distributions, that are conve-

nient for assessing outliers or forecasting.
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We refer to N (−t) and S(−t) as the observations at all times other than t, defining

N (−t) ≡ (N1, ..., Nt−1, Nt+1, ..., NT ),

and similarly S(−t), n(−t), s(−t).

Conditional distribution of (St, Nt) given all the other observations of bivariate

HMM can be computed as follows:

P ((St, Nt) = (s, n)|(S(−t), N (−t)) = (s(−t), n(−t)))

=
P ((St, Nt) = (s, n), (S(−t), N (−t)) = (s(−t), n(−t)))

P ((S(−t), N (−t)) = (s(−t), n(−t)))
.

(3.31)

According to the likelihood of a bivariate HMM and the definition of the forward

and backward probabilities, for t = 2, 3, ..., T , it follows, that

P ((St, Nt) = (s, n)|(S(−t), N (−t)) = (s(−t), n(−t)))

=
u(1)P (s1, n1)ΓP (s2, n2) · · ·ΓP (st−1, nt−1)ΓP (s, n)ΓP (st+1, nt+1) · · ·ΓP (sT , nT )1′

u(1)P (s1, n1)ΓP (s2, n2) · · ·ΓP (st−1, nt−1)ΓP (st+1, nt+1) · · ·ΓP (sT , nT )1′

=
αt−1ΓP (s, n)β

′
t

αt−1β
′
t

.

(3.32)

For the case t = 1,

P ((S1, N1) = (s, n)|(S(−1), N (−1)) = (s(−1), n(−1)))

=
u(1)P (s, n)ΓP (s2, n2) · · ·ΓP (sT , nT )1′

u(1)IΓP (s2, n2) · · ·ΓP (sT , nT )1′

=
u(1)P (s, n)β

′
1

u(1)Iβ
′
1

.

(3.33)

The conditional distribution can be expressed as the mixture of the m joint

state-dependent distributions in the following form [29]

P ((St, Nt) = (s, n)|(S(−t), N (−t)) = (s(−t), n(−t))) =
m∑
i=1

fi(t)∑m
j=1 fi(t)

pi(s, n),

where fi(t) is the product of the ith entry of the vector αt−1Γ and the ith entry

of the vector βt.

Additionaly, we are interested in conditional distributions of St and Nt. The

derivation is presented only for discrete variable, the continuous case can be

performed analogously.
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Conditional distribution of Nt given N (−t) can be derived as:

P (Nt = n|N (−t) = n(−t)) =
P (Nt = n,N (−t) = n(−t))

P (N (−t) = n(−t))
,

and hence that, for t = 2, 3, ..., T

P (Nt = n|N (−t) = n(−t))

=
u(1)P (n1)ΓP (n2) · · ·ΓP (nt−1)ΓP (n)ΓP (nt+1) · · ·ΓP (nT )1′

u(1)P (n1)ΓP (n2) · · ·ΓP (nt−1)ΓP (nt+1) · · ·ΓP (nT )1′

=
αt−1ΓP (n)β

′
t

αt−1β
′
t

.

(3.34)

For the case t = 1,

P (N1 = n(−1) = n(−1)) =
u(1)P (n)ΓP (n2) · · ·ΓP (nT )1′

u(1)IΓP (n2) · · ·ΓP (nT )1′

=
u(1)P (n)β

′
1

u(1)Iβ
′
1

.

(3.35)

3.6 Forecast distributions

Using a bivariate HMM it is possible to make forecasts. Applicable expression

for conditional distribution of (ST+h, NT+h) with forecast horizon h given all ob-

servations of the model is available. It can be computed as a ratio of likelihoods

[29]:

P ((ST+h, NT+h) = (s, n)|(S(T ), N (T )) = (s(T ), n(T )))

=
(S(T ), N (T )) = (s(T ), n(T ))), P ((ST+h, NT+h) = (s, n)

P ((S(T ), N (T )) = (s(T ), n(T )))

=
u(1)P (s1, n1)ΓP (s2, n2) · · ·ΓP (sT , nT )ΓhP (s, n)1′

u(1)P (s1, n1)ΓP (s2, n2) · · ·ΓP (sT , nT )1′

=
αTΓhP (s, n)1′

αT1′
.

(3.36)

Moreover, the forecast distribution can be determined as the mixture of the joint

state-dependent distributions:

P ((ST+h, NT+h) = (s, n)|(S(T ), N (T )) = (s(T ), n(T ))) =
m∑
i=1

ψi(h)pi(s, n),

where the ψi(h) is the ith entry of the vector αTΓh

αT 1′
.
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3.7 Decoding

In this section we consider two types of the decoding problem: the local decoding

indicates the most probable state at a particular time, while the global decoding

determines the most likely sequence of states.

3.7.1 State probabilities and local decoding

Here we define the conditional distribution of Ct given the observations, for

i = 1, 2, ...,m, as

P (Ct = i|(S(T ), N (T )) = (s(T ), n(T ))) =
P (Ct = i, (S(T ), N (T )) = (s(T ), n(T )))

P ((S(T ), N (T )) = (s(T ), n(T )))

=
αt(i)βt(i)

LT
.

(3.37)

For each t = 1, 2, ...T the most likely state i∗t given S(T ), N (T ) can be obtained

as

i∗t = argmax
i=1,...,m

P (Ct = i|(S(T ), N (T )) = (s(T ), n(T ))).

3.7.2 Global decoding

Global decoding is more applicable than local decoding. It detects the sequence

of hidden states c1, c2, ..., cT which maximizes the conditional probability

P (C(T ) = c(T )|(S(T ), N (T )) = (s(T ), n(T )));

or the joint probability:

P (C(T ), (S(T ), N (T ))) = δc1

T∏
t=2

γct−1,ct

T∏
t=1

pct(st, nt).

Since the decoding is not executable for large T , the Viterbi algorithm [36],

[37] is used instead. First, we define

ψ1i = P (C1 = i, (S1, N1) = (s1, n1)) = δipi(s1, n1, )
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and, for t = 2, 3, ..., T,

ψti = max
c1,c2,...,ct−1

P (C(t−1) = c(t−1), Ct = i, (S(T ), N (T )) = (s(T ), n(T ))).

The recursion formula for ψti, for t = 2, 3, ..., T and i = 1, 2, ...,m is given below

ψtj = (max
i

(ψt−1,iγij))pj(st, nt).

Then, the most likely state sequence can be determined recursively from

iT = argmax
i=1,...,m

ψT i

and, for t = T − 1, T − 2, ..., 1, from

it = argmax
i=1,...,m

(ψtiγi,it+1).

3.8 State prediction

The state prediction can be performed by the following expression [29],for i =

1, 2, ...,m

P (CT+h = i|(S(T ), N (T )) = (s(T ), n(T ))) = αTΓh(, i)/LT ,

where Γh(, i) denotes the ith column of the matrix Γh and the time horizon h is

equal to t− T .

3.9 Model selection

According to the likelihood of the bivariate HMM, the increasing number of

states m yields a better fit of the model, whereas it may cause a quadratic

increase in the number of parameters to be estimated. Consequently, a criterion

for model selection is necessary. In this section, we give a brief summary of

model selection and the use of pseudo-residuals.

3.9.1 AIC and BIC criterions

The Akaike Information Criterion (AIC) is a method of selecting an appropriate

model from a set of models. The model which minimizes the Kullback-Leibler
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distance between the model and the truth is assumed to be at some point the

superior model. However, AIC does not provide an information about the gen-

eral quality of selected model. The Akaike Information Criterion is defined as

[38]:

AIC = −2 logL+ 2p, (3.38)

where logL is the log-likelihood of the fitted model and p is the number of free

parameters in the model. The first term rewards goodness of fit of the model

and decreases with increasing m, while the second term, defined as the penalty

term, is an increasing function of the number of states m. The penalty prevents

overfitting of the model. The preferred model is the one with the minimum AIC

value.

The Bayesian Information Criterion (BIC) was developed by Gideon E. Schwarz

as the approach to model selection among a set of models. As the Akaike

Information Criterion BIC resolves the problem of overfitting. BIC differs from

AIC in the penalty term [39]:

BIC = −2 logL+ p log T, (3.39)

where logL is the log-likelihood of the fitted model, p and T denotes the number

of parameters and the of observations in the model, respectively.

3.9.2 Pseudo-residuals

Despite the fact that the model opted by AIC or BIC criterion is supposed to be

the most appropriate model, the goodness of fit of the model in an absolute sense

is not assessed. An optimal way to do so is to obtain pseudo-residuals, which

are also able to identify outliers relative to the model. We consider ordinary

pseudo-residuals .

The ordinary pseudo-residuals are based on the conditional distribution given

all other observations [29]. The normal pseudo-residual is defined as

zt = Φ−1(P (St ≤ st|S−t = s−t)).
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Normal pseudo-residuals are standard normally distributed if the related model

is correct. The conditional probabilities are given by Equations 3.31 and 3.32 in

Section 3.5.
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CHAPTER 4

APPLICATION OF THE BIVARIATE HMM:

AUTOMOBILE INSURANCE

Although the total claim amounts distribution in literature is not commonly

taken as normal, the theory developed on HMM concentrates on the Poisson-

normal case. For this reason, this assumption is taken as the first choice. How-

ever, surprisingly, the claim data analyses also supports the assumption on nor-

mality. Therefore, the case study is done on the Poisson-normal case at the first

sight.

The Poisson-Normal HMM described in the previous chapter can be applied

in many forms of insurance, where dependence among observations exists. For

example, in a private household or motor insurance. In our study, we compare

the Poisson-Normal HMMs with different state numbers and fit the most optimal

model to the vehicle insurance data. According to the selected model, we derive

forecast distributions, conduct local and global decoding and predict states. In

this chapter, statistical analysis on the dataset is provided as well.

4.1 Data description

The dataset, which is analyzed in this thesis, is provided by the Traffic Insur-

ances Information and Monitoring Center (TRAMER). The dataset contains

compulsory auto insurance recordings from all over Turkey. Every policy is

registered to the system with details: policy number (anonymous), insured id

number, start date of policy, end date of policy, vehicle tariff group code (car,
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minibus, taxi, etc.), country licence code, vehicle id number, vehicle age, usage

of vehicle (private, commercial), passenger capacity, nationality information of

insured, damage date, claim reason, claim amount.

As the number of policies is numerous and not easy to handle, Istanbul is taken

as the sample province to apply the analyses. The choice on Istanbul is due

to its highly populated, industrialized and high rate of insurance penetration

position compared to other cities in Turkey.

The dataset includes information about claims, which policies starts from 2006

to 2009, and accident year varies from 2005 to 2011. In order to examine the

dataset, we constructed two tables. Table 4.1 provides a total number of claims

for each year and Table 4.2 gives details about a total claim amount for each

year. Cells of the tables contain information about claims occurred in a certain

accident year, which policies start in a certain year, e.g. there were 210,612

accidents resulted in total loss of 337,879,194 TL, which policies started in 2008

and accidents occurred in 2009. The observations, which are significant to be

used in our study, are indicated in bold.

Table4.1: Claim numbers

Start date of a policy\Accident year 2005 2006 2007 2008 2009 2010 2011
2006 NA 196,046 191,902 314 128 12 NA
2007 NA NA 187,360 199,467 239 31 NA
2008 NA NA NA 198,368 210,612 276 12
2009 NA NA NA NA 204,166 196,746 59

As a result, the database used in the application provides information on au-

tomobile insurance portfolios from Istanbul over the period January 2007 to

December 2009. In our study, we consider only non-zero claims. We focus on

the monthly aggregate claim amounts, therefore, for each month t, we aggregate

all the claim amounts occurring at the same month. Likewise, we obtain the

Table4.2: Aggregate claim amounts

Start date of a policyyear 2005 2006 2007 2008 2009 2010 2011
2006 NA 290,861,223 257,040,552 444,279 132,221 9,098 NA
2007 NA NA 290,537,933 291,431,736 505,044 51,846 NA
2008 NA NA NA 320,698,956 337,879,194 543,344 21,553
2009 NA NA NA NA 502,834,660 336,400,909 207,676
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total number of claims occurred in each month.

For convenience during this chapter, we refer to the ‘total number of claims’ and

the ‘monthly aggregate claim amounts’ as the ‘claim numbers’ and the ‘claim

amounts’, respectively.

The individual claim amounts were adjusted for inflation. Annual inflation rates,

which are taken from [31], are 9,67% for 2008 and 6,21% for 2009. Having

adjusted the dataset for inflation, we truncated the individual claim amounts,

considering only variables greater than 250.

Having removed the duplicated observations, observations with same policy

numbers are not detected.

The individual claim amount valued at 99,000,500 extremely differs from the

other observations in the dataset and therefore, it was replaced by the mean of

individual claim amounts reported in June 2009. Additionally, on 8th and 9th

of September in 2009 Istanbul exposed to massive flooding, which caused the

enormous number of claims. According to the fact that such flooding occurs

only once a hundred years, [32], the observations at these days are recognized

as an outlier of the dataset. Thus, the number of claims occurred in these days

were decreased to the average number of claims occurred in September 2009 and

total monetary value of the claims was replaced by the average claim amounts

of the month. Also, in next three months, we notice an unusual pattern in claim

behaves. We suppose, that those have been affected by the flooding, therefore,

we modified these observations.

Having modified the dataset, as a result, 809,327 policies are used in our study.

In the following, we present some summary statistics, the distribution plots and

the scatter plots of the claim amounts and the claim numbers. Furthermore, the

corresponding autocorrelations are analyzed.

Figure 4.1 displays a histogram of the claim amounts, variables are given in

thousands. We observe that the amounts are accumulated between above 44,000

and 52,000, the data has a roughly symmetric shape. Moreover, the Shapiro-
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Figure 4.1: Histogram of the claim amounts for Istanbul, 2007-2009 (in thou-
sands).

Wilk normality test indicates that the claim amounts are normally distributed

with p-value equal to 0.8414.

According to Figure 4.2, the histogram of the claim numbers indicates a right-

skewed distribution.

In the Table 4.3 we provide a descriptive statistics of the claim amounts and the

claim numbers aggregated monthly. Mean,mode and median values of the claim

amounts are almost equal, that is indicative for a symmetric distribution. The

summary statistics of the claim numbers infers that the data follows a right-

skewed distribution, since the mean value greater than the median value, and

the mode value less than the median value.

Table4.3: Descriptive statistics of the claim amounts and the claim numbers
aggregated monthly

Observations Mean Median Minimum Maximum
Standard
deviation

Mode

Claim amounts 46,957,468 47,367,916 38,844,907 55,226,741 3,811,343 46,957,470
Number of claims 22,481.31 22,173 19,429 25,316 1,612.77 21,550

Autocorrelation functions detect the presence of serial dependence in claim

counts as well as in claim sizes. See Figure 4.3 and Figure 4.4.
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Figure 4.2: Histogram of the claim numbers for Istanbul, 2007-2009.

According to the fact that the ACFs of claim numbers and claim amounts drop

to zero relatively slowly, we infer that the observations are non-stationary. Ad-

ditionally, for the confidence of our conclusions Kwiatkowski-Phillips-Schmidt-

Shin (KPSS) test and Augmented Dickey-Fuller (ADF) test were performed.

The null-hypothesis for an ADF test is that the data are non-stationary. So

large p-value is indicative of non-stationarity, and small p-value suggests sta-

tionarity. Using the 5% threshold, we determine that time series of claim num-

bers (p-value=0.3986) and claim amounts (p-value=0.2081) are non-stationary.

The alternative hypothesis for KPSS test is that the data are non-stationary,

large p-value specifies stationarity, and conversely small p-value indicates non-

stationarity. Performing KPSS test we also reject stationarity since both p-

values for claim size and claim counts less than 0.01.

Figures 4.8 and 4.9 depict plots of the claim amounts and the claim numbers,

respectively, having time points on horizontal axis. In both graphs we observe a

weak sinusoidal behaviour, which might indicate seasonality. Additionally, slight

increasing trend is indicated.

The Table 4.4 provides an information about aggregated claim amounts and

claim numbers in each month, that we use as the observed variables in bivariate
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Table4.4: Claim amounts and claim numbers reported in Istanbul during 2007-
2009

Month-Year Claim amounts Number of claims
January, 2007 44771818 21213
February, 2007 40610503 19429

March, 2007 41727487 20940
April, 2007 42391254 21406
May, 2007 44716296 22712
June, 2007 44892121 22181
July, 2007 47209622 22300

August, 2007 47575857 21288
September, 2007 44063532 21336

October, 2007 50647142 22165
November, 2007 44193298 20895
December, 2007 47526209 20049
January, 2008 48004924 21400
February, 2008 42781346 20398

March, 2008 38844907 20686
April, 2008 42448010 21846
May, 2008 46063021 23291
June, 2008 47667936 23721
July, 2008 47053227 21934

August, 2008 48005758 22445
September, 2008 48554476 22160

October, 2008 48219700 23154
November, 2008 44724944 21810
December, 2008 48162470 20782
January, 2009 48399958 23982
February, 2009 42908270 20860

March, 2009 46708121 23158
April, 2009 46014566 23876
May, 2009 51292119 25231
June, 2009 51553338 25316
July, 2009 55226741 24403

August, 2009 52834942 24519
September, 2009 54577870 24615

October, 2009 50835988 25000
November, 2009 51645853 24926
December, 2009 47615231 23900

38



Figure 4.3: Autocorrelation function of claim amounts for Istanbul, 2007-2009.

Figure 4.4: Autocorrelation function of claim numbers for Istanbul, 2007-2009.
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Figure 4.5: The monthly aggregate claim amounts (in thousands).

Figure 4.6: The monthly aggregate claim numbers.
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Table4.5: Descriptive statistics of individual claim amounts

Month-Year Mean
Standard
deviation

Variance Minimum Maximum Median

January, 2007 2110.58 5509.23 30351602 250 421475 942
February, 2007 2090.20 4628.33 21421412 250 169535 952

March, 2007 1992.72 4597.80 21139733 250 301617 930
April, 2007 1980.34 4025.99 16208572 250 161406 906
May, 2007 1968.84 4464.77 19934202 250 234138 881
June, 2007 2023.90 4709.87 22182903 250 335764 896
July, 2007 2117.02 4906.99 24078527 250 215153 900

August, 2007 2234.87 4530.28 20523393 250 121457 973
September, 2007 2065.22 4155.56 17268664 250 92000 937

October, 2007 2285.01 5331.28 28422502 250 346430 1000
November, 2007 2115.02 4672.96 21836555 250 218079 994
December, 2007 2370.50 5907.35 34896730 250 295000 1020
January, 2008 2243.22 5153.35 26557032 250 168290 977
February, 2008 2097.33 4522.43 20452372 250 207727 949

March, 2008 1877.84 3876.24 15025267 250 100535 881
April, 2008 1943.06 4303.13 18516917 250 140429 899
May, 2008 1977.72 4462.17 19910916 250 180998 912
June, 2008 2009.53 4682.30 21923894 250 230133 912
July, 2008 2145.22 4917.63 24183069 250 194219 912

August, 2008 2138.82 4556.68 20763344 250 116340 920
September, 2008 2191.09 4662.06 21734826 250 159096 956

October, 2008 2082.57 4518.34 20415431 250 197866 941
November, 2008 2050.66 4135.15 17099428 250 135562 922
December, 2008 2317.51 5100.18 26011875 250 164314 1011
January, 2009 2018.18 4937.95 24383303 250 276148 910
February, 2009 2056.96 4899.80 24008046 250 163609 943

March, 2009 2016.93 4779.61 22844622 250 180908 892
April, 2009 1927.23 4253.52 18092444 250 194067 878
May, 2009 2032.90 5090.75 25915742 250 185538 870
June, 2009 2036.39 4952.04 24522647 250 202796 871
July, 2009 2263.11 6003.62 36043442 250 365024 905

August, 2009 2154.86 5199.91 27039104 250 206124 916
September, 2009 2206.72 5779.25 33399674 250 329809 934

October, 2009 2033.44 5198.26 27021897 250 273127 927
November, 2009 2071.97 4983.31 24833383 250 185294 936
December, 2009 1992.27 4188.98 17547541 250 170866 924
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HMM.

In the Table 4.5, we present summary statistics of the individual claim amounts

for each month, from January, 2007 to December, 2009. Monthly mean values

are higher than monthly median values, that indicate right-skewed monthly

distributions, even though total claim amounts are symmetric. As can be seen

in the table, standard deviation values are higher than mean values because of

the high variaton in data, the individual claim amounts rise from 250 to 421,475.

4.2 Analyses

In this section, we report the results of the application of the Poisson-Normal

hidden Markov model to the vehicle insurance data. The iterative procedure

of the algorithm is implemented in R code. For convenience, we altered the

observations of the data by dividing the claim amounts by 1000 and the claim

numbers by 100.

Table4.6: Comparison of the Poisson-Normal HMMs

Number
of states

Number
of parameters

logL AIC BIC

1 4 -656.00 1320.02 1326.35
2 10 -534.22 1088.44 1104.28
3 18 -501.39 1038.77 1067.28
4 28 -500.04 1056.07 1100.41
5 40 -498.83 1077.67 1141.01
6 54 -498.12 1104.24 1189.75

We present the Poisson-Normal HMMs with one to six states fitted by EM

algorithm and compare them on the basis of two criteria, namely AIC and BIC.

Also, the maximum log-likelihoods are provided. The detailed information is

presented in Table 4.6.

By a one-state Poisson-Normal HMM we mean a model with independence as-

sumption, i.e. the observations are realizations of the product of independent
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Figure 4.7: Comparison of AIC and BIC results for Poisson-Normal HMMs with
different state numbers.

Poisson random variables and Normal random variables with common parame-

ters for all time points. As regards the results in Table 4.6, the one-state model

shows the weakest goodness of fit to the insurance data. Despite an increasing

number of states gives a better result for log-likelihood, however, it demands

more parameters to estimate. Therefore both AIC and BIC indicate that the

model with three states is the most suitable, compared to other models, see

Figure 4.7.

We present here a three-state Poisson-Normal HMM. For the model the station-

ary distribution is computed by expression 3.4 and used as the starting value of

initial distribution u(1).

The initial values of the off-diagonal transition probabilities are taken to be

0.1. As the starting values of the state-dependent means we use the lower

quartile, median and upper quartile of the observations, for claim counts is

(212.8, 222, 239) and claim amounts is (44590, 47370, 48440). However, it was

challenging to find an optimal initial value for σ, we performed EM estimation

with several starting values and selected the ones that give the maximum log-

likelihood, as a result, (5000, 2000, 1300) has been used.
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Figure 4.8: Three-state Poisson-Normal HMM: the marginal distribution for the
claim amounts.

Figure 4.9: Three-state Poisson-Normal HMM: the marginal distribution for the
claim numbers.
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The estimated three-state model is

Γ =


0.7010 0.1961 0.1029

0.1213 0.8217 0.0570

0.2899 0.0000 0.7101



with initial probabilities u(1) = (0.8565, 0.1405, 0.0030), parameters of joint

state-dependent distribution λ = (218.8, 223, 243.7), µ = (45799.45, 46991.43, 49617.07)

and σ = (5020.22, 2022.55, 2092.90). The estimated log-likelihood is l = −501.387.

The marginal distributions of the selected model, compared with histograms of

observations are displayed in Figure 4.8 and 4.9.

Although the 3-state model has been selected as the most appropriate model,

the goodness of fit of the model in an absolute sense is not assessed.

According to Figures 4.10 and 4.11, which depict the conditional distributions

for the claim numbers and the claim amounts, we observe that the shape of

the conditional distributions may change significantly from one time point to

another. Due to the fact that some of the observations are extreme relative to

their conditional distributions, we infer that using the conditional distributions

to check outliers is reasonable.

As it was mentioned in the previous chapter, we use conditional distributions to

compute ordinary normal pseudo-residuals, see Figure 4.12 and 4.13. Regarding

the residual plots, it is obvious that the selected model provides an optimal fit to

the data. In addition, we apply Shapiro-Wilk normality test to pseudo-residuals,

which confirms that those are normally distributed, p-values are 0.6546 for claim

numbers and 0.4537 for claim amounts. Quantile-quantile plots of the normal

pseudo-residuals provide the same result as well, see Figure 4.14 and Figure

fig:qq ps-resid number .

For fitted 3-state Poisson-Normal HMM we derive state probabilities, that are

necessary for performing local decoding, see Figure 4.20. Having applied 3-state

model we are interested in defining hidden states that are most probable to have

given rise to the sequence of observed values. We conducted local and global

decodings both for claim amounts and claim numbers, definitions of methods
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Figure 4.12: Claim amounts: ordinary pseudo-residuals. Index plot of the nor-
mal pseudo-residuals,with horizontal lines at 0,±1.96,±2.58.

Figure 4.13: Claim numbers: ordinary pseudo-residuals. Index plot of the nor-
mal pseudo-residuals,with horizontal lines at 0,±1.96,±2.58.
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Figure 4.14: Claim amounts: QQplot of the ordinary normal pseudo-residuals.

Figure 4.15: Claim numbers: QQplot of the ordinary normal pseudo-residuals.
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Figure 4.16: Claim amounts: local vs. global decoding according to three-state
Poisson-Normal HMM.

Figure 4.17: Claim numbers: local vs. global decoding according to three-state
Poisson-Normal HMM.
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are given in Section 3.7. In order to derive the most likely sequence of states,

the Viterbi algorithm is applied. Observing Figure 4.16 and 4.17 we note that

decoding results are very similar but differ in January 2008, February 2009, and

April 2009.

Additionally, we obtained state probabilities for three years ahead, that can be

used for analysis of further claim behavior. We suppose, that in the beginning

of 2010 observations will be dependent on the third state, in the following few

months those will continue with the first state, and during two years the first

and second states have almost equal probabilities and are dominant compared

to the third state, see Figure 4.21.

Four of the forecast distributions for claim amounts and claim numbers are dis-

played in Figures 4.18 and 4.19. The distributions are compared with the lim-

iting distributions, i.e. the marginal distributions of the Poisson-Normal HMM.

It is clear that the forecast distributions approach the limiting distribution rel-

atively fast.
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Figure 4.20: State probabilities for fitted three-state Poisson-Normal HMM.

Figure 4.21: State prediction for fitted three-state Poisson-Normal HMM.
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CHAPTER 5

CONCLUSION

We propose Bivariate Hidden Markov Model as a novel approach in model-

ing claim dependence. The model allows claim numbers and aggregate claim

amounts to be mutually and serially dependent through an underlying hidden

state. We modify the classical HMM definitions and propositions to bivariate

case. Three different BHHMs are presented, namely Poisson-Normal HMM,

Poisson-Gamma HMM and Negative Binomial-Gamma HMM. For parameter

estimation of the model, we conducted EM algorithm. To perform the al-

gorithm, we acknowledge and proved three propositions, which maximize the

state-dependent part of complete-data log-likelihood of proposed models.

To examine the performance of our model, we apply the Poisson-Normal HMM

with the different number of states to the vehicle insurance data for Istanbul

taken from Turkish Motor Insurance Center (TRAMER) for the years 2007-

2009.

Three-state Poisson-Normal HMM is selected as the most suitable model by

comparing Akaike and Bayesian information criterions. In order to determine

whether indeed the model performs adequate, we obtain and assess ordinary nor-

mal pseudo-residuals. Shapiro-Wilk normality test and quantile-quantile plots

confirm the goodness of fit of the model. According to the selected model we

conduct Viterbi algorithm to derive the most likely sequence of states which un-

derly and affect the observations. Using these results the specialists may specify

names of the states. Additionally, we derive forecast distributions both for claim

numbers and claim amounts and performed state prediction.
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The main advantage of the model is a flexibility in a sense of accommodating

different types of data. In our study, we modeled a bivariate series with one

discrete and one continuous variable. Moreover, proposed model is applicable

in various fields of life and non-life insurance, where the serial dependence and

mutual dependence among observations exist. Remarkably, that information

provided by the model, such as the most likely sequence of hidden states, can be

used for further analysis by the experts, like doctors, biologists or actuaries. It

allows determining the character of events or factors influencing the observations.

In future work, we plan to apply the Poisson-Gamma HMM and the Negative

Binomial-Gamma HMM to the motor insurance data. Additionally, some ex-

ploratory variables can be added to the model.
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