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IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

AUGUST 2016





Approval of the thesis:

MULTI-SUBJECT BRAIN DECODING USING DEEP LEARNING
TECHNIQUES
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ABSTRACT

MULTI-SUBJECT BRAIN DECODING USING DEEP LEARNING
TECHNIQUES

Velioğlu, Burak

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Fatoş T. Yarman Vural

Co-Supervisor : Assist. Prof. Dr. Şeyda Ertekin Bolelli

August 2016, 87 pages

In this study, a new method is proposed for analyzing and classifying images obtained
by functional magnetic resonance imaging (fMRI) from multiple subjects. Consid-
ering the multi-level structure of the brain and success of deep learning architectures
on extracting hierarchical representations from raw data, these architectures are used
in this thesis. Initially, the S500 data set collected in the scope of Human Connec-
tome Project (HCP) is used to train formed deep neural networks in an unsupervised
fashion. Then, pre-trained networks are utilized for two different multi-subject brain
decoding tasks. Goal of these tasks is discriminating the cognitive state of a subject,
using the fMRI data of other subjects. In the first task, brain decoding is performed by
fine-tuning the pre-trained neural networks with the label information included in the
S500 data set. In the second task, pre-trained networks are used to obtain hierarchi-
cal representation for object recognition data set to transfer the information between
fMRI experiments. Obtained results show us that deep neural networks are more
successful than traditional machine learning algorithms on multi-subject brain de-
coding tasks and experiment-independent representations can be obtained with deep
neural networks better than factor models used in the literature. Besides, regions ac-
tivated for different cognitive states of S500 data set are visualized by implementing
a saliency analysis over trained deep neural networks.
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ÖZ

DERİN ÖĞRENME YÖNTEMLERİNİ KULLANARAK ÇOK DENEKLİ BEYİN
OKUMA

Velioğlu, Burak

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Fatoş T. Yarman Vural

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Şeyda Ertekin Bolelli

Ağustos 2016 , 87 sayfa

Bu çalışmada çok-denekli fonksiyonel manyetik rezonans görüntüleme (fMRG) yön-
temi ile elde edilen görüntüler için yeni bir analiz ve sınıflandırma metodu öneril-
miştir. Beynin çok katmanlı yapısı ve derin öğrenme mimarilerinin ham veriden çok
katmanlı gösterim çıkarma konusundaki başarısı göz önünde bulundurularak, tez da-
hilinde derin öğrenme mimarileri kullanılmıştır. İlk adım olarak Human Connectome
Project (HCP) projesi kapsamında toplanan S500 veri seti kullanılarak oluşturulan
derin sinir ağları gözetimsiz bir şekilde eğitilmiştir. Ön-eğitimden geçen bu ağlar tez
dahilinde iki farklı çok-denekli beyin okuma deneyinde kullanılmıştır. İki deneyin de
amacı kişilerin bilişsel durumlarını diğer deneklerin fMRG verilerini kullanarak sınıf-
landırmaktır. Birinci deneyde, ön eğitimden geçen derin sinir ağları S500 veri setinde
bulunan sınıf bilgileri kullanılarak gözetimli şekilde eğitilmiş ve çok denekli beyin
okuma tesi gerçekleştirilmiştir. İkinci deneyde, ön eğitimden geçen sinir ağlarından
elde edilen çok katmanlı yapı kullanılarak bir başka fMRG deneyi olan obje tanıma
deneyi için gösterimler elde edilmiştir. Elde edilen sonuçlar derin sinir ağlarının ge-
leneksel makine öğrenme yöntemlerine göre çok-denekli beyin okuma deneyinde ve
deneyden bağımsız gösterim elde etme konusunda daha başarılı olduğunu göstermek-
tedir. Elde edilen bu sonuçların yanısıra, S500 deneyindeki farklı bilişsel süreçler es-
nasında aktif olan beyin bölgeleri derin sinir ağları ile belirlenerek görselleştirilmiştir.
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I acknowledge the support of TÜBİTAK (The Scientific and Technological Research

x



Council of Turkey). This thesis is supported on the scope of the projects 112E315
and 114E045.

xi



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

LIST OF ALGORITHMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 MACHINE LEARNING FOR BRAIN DECODING BY FMRI DATA 5

2.1 fMRI Data and Brain Decoding . . . . . . . . . . . . . . . . 5

xii



2.2 fMRI Experiment Design and Pre-processing . . . . . . . . . 9

2.3 Machine Learning for Brain Decoding . . . . . . . . . . . . 10

2.3.1 Dimensionality Reduction Techniques for fMRI data 11

2.3.2 Feature Extraction for fMRI . . . . . . . . . . . . 13

2.3.3 Classifiers Applied on fMRI Data . . . . . . . . . 14

2.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . 16

3 BRAIN DECODING BY DEEP LEARNING . . . . . . . . . . . . . 19

3.1 Biological Basis of Neural Networks . . . . . . . . . . . . . 19

3.2 How Does Artificial Neural Network Work ? . . . . . . . . . 20

3.2.1 Forward Propagation . . . . . . . . . . . . . . . . 22

3.2.2 Backward Propagation . . . . . . . . . . . . . . . 23

3.3 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Why deep architectures ? . . . . . . . . . . . . . . 26

3.3.2 Unsupervised Networks . . . . . . . . . . . . . . 27

3.3.2.1 Restricted Boltzmann Machines . . . . 27

3.3.2.2 Single Layer Autoencoders . . . . . . 28

3.4 Deep Neural Decoding . . . . . . . . . . . . . . . . . . . . 28

3.4.1 Stacked Autoencoders : Layer-by-layer training
and fine-tuning . . . . . . . . . . . . . . . . . . . 29

3.4.2 Constraints applied over unsupervised networks . . 31

3.4.3 Details of Activation Functions . . . . . . . . . . . 32

3.4.4 Regularization Methods . . . . . . . . . . . . . . 33

xiii



3.4.4.1 Parameter Norm Penalties . . . . . . . 34

3.4.4.2 Dropout . . . . . . . . . . . . . . . . 35

3.4.4.3 Early Stopping . . . . . . . . . . . . . 36

3.4.4.4 Batch Normalization . . . . . . . . . 37

3.4.5 The Optimization Techniques for SDAE . . . . . . 38

3.4.6 Visualizing the obtained parameters . . . . . . . . 40

3.4.7 Input Representations for Deep Learning . . . . . 41

3.4.7.1 Average ROI Intensity Values . . . . . 41

3.4.7.2 Pearson Correlation Values . . . . . . 43

3.4.7.3 Temporal Mesh Model . . . . . . . . 44

3.4.8 Two Major Goals of the Thesis . . . . . . . . . . . 45

3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . 47

4 EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . . . . 49

4.1 Experiments and Data Sets . . . . . . . . . . . . . . . . . . 49

4.1.1 Object Recognition Data Set . . . . . . . . . . . . 50

4.1.2 Human Connectome Project HCP500 Data Set . . 50

4.2 Brain Decoding on HCP500 Data Set . . . . . . . . . . . . . 52

4.2.1 Decoding Raw Data . . . . . . . . . . . . . . . . . 52

4.3 Including Connectivity Information . . . . . . . . . . . . . . 53

4.3.1 Decoding Correlation Data . . . . . . . . . . . . . 53

4.3.2 Decoding the Mesh Model Weights . . . . . . . . 59

xiv



4.4 Transfer Learning with HCP500 and Object Recognition Data
Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.1 Chapter Summary . . . . . . . . . . . . . . . . . . 69

5 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . 77

5.1 A Brief Summary . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 79

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xv



LIST OF TABLES

TABLES

Table 4.1 Number of samples for each type of stimulus. . . . . . . . . . . . . 51

Table 4.2 Multi-Subject Brain Decoding Using 3D Images of HCP S500 data
set. [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Table 4.3 Decoding the Cognitive task of S500 Data Set by Using Correlation
Data With and Without Dropout. . . . . . . . . . . . . . . . . . . . . . . 57

Table 4.4 Decoding the Cognitive Tasks Using Pearson Correlation Input Vec-
tor With Varying Subject Counts and Window Sizes on HCP500 Data Set. 59

Table 4.5 Decoding Temporal Mesh Weights with number of architectures and
classifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Table 4.6 SVM classification results of Pearson correlation inputs with differ-
ent window sizes of object recognition data set. . . . . . . . . . . . . . . . 66

Table 4.7 SVM classification results using the hierarchical features for the
Pearson correlation inputs with U = 4 on object recognition data set. . . . 66

Table 4.8 SVM classification results using the hierarchical features for the
Pearson correlation inputs with U = 5 on object recognition data set. . . . 66

Table 4.9 SVM classification results using the hierarchical features for the
Pearson correlation inputs with U = 6 on object recognition data set. . . . 67

Table 4.10 SVM classification results using the representation obtained with
PCA when window size U = 4. . . . . . . . . . . . . . . . . . . . . . . . 67

Table 4.11 SVM classification results using the representation obtained with
PCA when window size U = 5. . . . . . . . . . . . . . . . . . . . . . . . 67

Table 4.12 SVM classification results using the representation obtained with
PCA when window size U = 6. . . . . . . . . . . . . . . . . . . . . . . . 68

Table 4.13 SVM classification results using the representation obtained with
ICA when window size U = 4. . . . . . . . . . . . . . . . . . . . . . . . . 68

xvi



Table 4.14 SVM classification results using the representation obtained with
ICA when window size U = 5. . . . . . . . . . . . . . . . . . . . . . . . . 68

Table 4.15 SVM classification results using the representation obtained with
ICA when window size U = 6. . . . . . . . . . . . . . . . . . . . . . . . . 68

Table 4.16 Name of Important ROIs for the emotion task . . . . . . . . . . . . 70

Table 4.17 Name of Important ROIs for the gambling task . . . . . . . . . . . . 71

Table 4.18 Name of Important ROIs for the language task . . . . . . . . . . . . 72

Table 4.19 Name of Important ROIs for the motor task . . . . . . . . . . . . . 73

Table 4.20 Name of Important ROIs for the relational task . . . . . . . . . . . . 74

Table 4.21 Name of Important ROIs for the social task . . . . . . . . . . . . . 75

Table 4.22 Name of Important ROIs for the working memory task . . . . . . . 76

xvii



LIST OF FIGURES

FIGURES

Figure 2.1 Sample BOLD contrast. 1 . . . . . . . . . . . . . . . . . . . . . . 6

Figure 2.2 Figure a and b represent block and event-related designs, respec-
tively. First signals of both a and b represent the stimuli function. As
explained in the Figure 2.1 signal represented with green color is HDR
function. Theoretical experiment signal is obtained by convolving HDR
function with stimuli function. 2 . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 2.3 Obtained signal of a single voxel, obtained signals of all voxels and
stimuli indices for each stimuli are given as a, b, and , respectively. . . . . 8

Figure 2.4 Swiss-roll data set. . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 2.5 LOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 3.1 First drawing of Purkinje Cell by Cajal in 1952. . . . . . . . . . . . 19

Figure 3.2 Perceptron classifier. . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 3.3 Two-layered neural network. . . . . . . . . . . . . . . . . . . . . . 22

Figure 3.4 Architecture of 3-layered autoencoder. . . . . . . . . . . . . . . . 29

Figure 3.5 Multi-layer neural network classifier. . . . . . . . . . . . . . . . . 30

Figure 3.6 Behavior of a sample unit exposed to dropout at training and testing
phase3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 3.7 Sliding window representation with window size U . . . . . . . . 43

xviii



Figure 3.8 Block Diagram of the overall brain decoding framework suggested
in this thesis. First, voxel intensity values are mapped into three different
representations. Then, by using these representations as an input to deep
neural networks, multi-subject brain decoding results are obtained. Be-
sides, pre-trained deep neural network with S500 data set is also used for
transfer learning. To implement this, pearson correlation values extracted
from object recognition data set fed into the pre-trained neural network.
Then cognitive states of object recognition task are classified using hier-
archical representations obtained from this network. Details of the S500
and object recognition data sets are explained in Chapter 4. . . . . . . . . 46

Figure 4.1 Histogram of activation function of 3rd layer hidden units with
sigmoid activation function. Input is the 4753 correlation values obtained
between the pairs of 98 ROIs of HCP S500 data set. . . . . . . . . . . . . 55

Figure 4.2 Histogram of activation function of 2nd layer hidden units with
PReLU activation function. Input is the 4753 correlation values obtained
between the pairs of 98 ROIs of HCP S500 data set. . . . . . . . . . . . . 56

Figure 4.3 Histogram of activation function of 2nd layer hidden units with
PReLU activation function and Batch Normalization. Input is the 4753
correlation values obtained between the pairs of 98 ROIs of HCP S500
data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 4.4 3-Layered Deep Neural Network Architecture. . . . . . . . . . . . 58

Figure 4.5 50 mesh arc weights with highest absolute values for WM stimulus.
Connections are obtained by applying temporal mesh model over S500
data. 50 connections for WM stimulus are found by doing a saliency
analysis over pre-trained neural network. . . . . . . . . . . . . . . . . . . 61

Figure 4.6 50 mesh arc weights with highest absolute values for GB stim-
ulus. Connections are obtained by applying temporal mesh model over
S500 data. 50 connections for GB stimulus are found by doing a saliency
analysis over pre-trained neural network. . . . . . . . . . . . . . . . . . . 61

Figure 4.7 50 mesh arc weights with highest absolute values for MT stim-
ulus. Connections are obtained by applying temporal mesh model over
S500 data. 50 connections for MT stimulus are found by doing a saliency
analysis over pre-trained neural network. . . . . . . . . . . . . . . . . . . 62

Figure 4.8 50 mesh arc weights with highest absolute values for LG stimulus.
Connections are obtained by applying temporal mesh model over S500
data. 50 connections for LG stimulus are found by doing a saliency anal-
ysis over pre-trained neural network. . . . . . . . . . . . . . . . . . . . . 62

xix



Figure 4.9 50 mesh arc weights with highest absolute values for SC stimulus.
Connections are obtained by applying temporal mesh model over S500
data. 50 connections for SC stimulus are found by doing a saliency anal-
ysis over pre-trained neural network. . . . . . . . . . . . . . . . . . . . . 63

Figure 4.10 50 mesh arc weights with highest absolute values for RP stimulus.
Connections are obtained by applying temporal mesh model over S500
data. 50 connections for RP stimulus are found by doing a saliency anal-
ysis over pre-trained neural network. . . . . . . . . . . . . . . . . . . . . 63

Figure 4.11 50 mesh arc weights with highest absolute values for EP stimulus.
Connections are obtained by applying temporal mesh model over S500
data. 50 connections for EP stimulus are found by doing a saliency anal-
ysis over pre-trained neural network. . . . . . . . . . . . . . . . . . . . . 64

Figure 4.12 The block diagram of the suggested deep architecture. Note that
this architecture is trained in an unsupervised fashion. . . . . . . . . . . . 64

xx



LIST OF ALGORITHMS

ALGORITHMS

Algorithm 1 Stochastic gradient descent applied on neural network . . . . . 25

xxi



LIST OF ABBREVIATIONS

fNIRS Functional Near-infrared Spectroscopy

EEG Electroencephalography

PET Positron Emission Tomography

fMRI Functional Magnetic Resonance Imaging

MR Magnetic Resonance

HDR Hemodynamic Response

BOLD Blood-oxygen-level Dependent

HCI Human-computer Interface

MNI Montreal Neurological Institute

MVPA Multi Voxel Pattern Analysis

PCA Principal Component Analysis

ICA Independent Component Analysis

MDS Multi Dimensional Scaling

LLE Local Linear Embedding

ROI Region of Interest

LDA Linear Discriminant Analysis

SVM Support Vector Machine

RBM Restricted Boltzmann Machine

MSE Minimum Squared Error

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent

GLM General Linear Model

AAL Automated Anatomical Labeling

FWHM Full Width at Half Maximum

HCP Human Connectome Project

DNN Deep Neural Network

SDAE Stacked Denoising Autoencoder

xxii



CHAPTER 1

INTRODUCTION

1.1 Problem Definition

Understanding the human brain has been one of the essential objectives of various

scientific fields. Although early cognitive scientists and neurologists employed diag-

nostics or invasive methods for the analysis, recently invented non-invasive imaging

technologies allow data-oriented researchers, such as computer scientists and statis-

ticians, to involve in brain studies. Decoding the mental states from the neural mea-

surements, which is known as brain decoding, is one of the important fields for un-

derstanding the brain in the neuroscience literature.

Many functional imaging technologies, such as functional near-infrared spectroscopy

(fNIRS), electroencephalography (EEG), positron emission tomography (PET) and

functional magnetic resonance imaging (fMRI) provide information about the work-

ing mechanism of the human brain with different characteristics. Because of it’s high

spatial and acceptable temporal resolutions, fMRI is the primary technique for brain

decoding studies [2, 3]. In this thesis all experiments are implemented using fMRI

images. Although, fMRI provides a detailed representation of the brain compared to

other functional imaging technologies, high-dimensional data obtained as the output

of fMRI machine makes these studies practically very difficult. Researches attempt to

overcome this problem by modifying the representation space using various heuristics

such as [4, 5, 6]. However, these approaches rely heavily upon the expert knowledge

from neuroscience community and can not be shared among a wide range of cognitive

tasks.

1



A major problem in brain decoding task is defining a valid representation which can

be used to discriminate the cognitive states. Common experimental data include ap-

proximately 300 samples for one subject and each of these samples consist of approx-

imately 40000 voxels. Practically, it is very difficult to design a machine learning

system with such a feature-sample ratio. To overcome this problem, variants of factor

models [7, 8] , non-linear dimensionality reduction techniques[9, 10, 11, 12] and fea-

ture extraction methods [13, 14, 15, 16] are proposed. Yet, none of them utilize the

common and discriminate patterns shared among subjects.

Recent studies show that shared representation exists in the fMRI images of different

subjects [17, 1]. In this study we take this proposal one step further and suggest that

common representation among both multi-subject and multi-experiment data set can

be detected by deep learning techniques. This representation is expected to overcome

curse of dimensionality problem. We suggest to transfer the hierarchical informa-

tion between different experiments we expected to make multi-subject brain decoding

better than state-of-the-art studies. Brain decoding performance of hand-crafted and

hierarchically learned representations are also compared to analyze whether involve-

ment of expert knowledge can be discarded from brain decoding systems using deep

learning techniques suggested in this thesis.

1.2 Proposed Method

Extracting relevant features is the problem of many domain enjoying learning sys-

tems. Deep learning architectures bring a state-of-the-art solutions for learning rep-

resentation in many fields such as computer vision and natural language processing

[18, 19, 20]. The essential reason for this success is the replacement of manual fea-

ture extraction processes by an automatic learning process. A great amount of data

fed into deep architectures and multiple non-linear processing layers exist in these

architectures, statistically common characteristics of samples can be hierarchically

learned through the raw data.

As it is known from neuroscience studies, hierarchical processing layers also exist

in the human brain [21]. To reveal this hierarchical and latent representation auto-

2



matically, multi-layer neural networks i.e. deep neural networks are employed in this

thesis. As a first step, multi-layer neural networks are trained in an unsupervised fash-

ion. fMRI data of 97 subjects of Human Connectome Project S500 data set are used

[22] to test the performance of the suggested model for brain decoding task. Then,

pre-trained networks are fine tuned with the labels of the same data set to imple-

ment multi-subject brain decoding. Besides, these networks are also used as a base

network to obtain experiment-independent hidden representation for another brain

decoding experiment. This approach makes it possible transferring the statistically

common information between different cognitive tasks. Both temporal and spatial

features extracted from the raw data are fed into deep neural networks, separately.

1.3 Contribution

Although few studies exist [17, 1, 23, 24] in the literature about applying deep archi-

tectures on fMRI data, these studies generally discriminate the healthy subjects from

patients using resting state fMRI data which includes much more samples than brain

decoding tasks. Besides, none of them transfer the learned representations among

different cognitive tasks. The following items are the main novelties of this thesis :

• We suggest a deep neural network architecture which is capable of multi subject

brain decoding.

• We provide a route map about applying deep neural networks on brain decoding

problem for neuroscience researchers comparing various deep architectures and

parameter values.

• We show that there is a common representation among different fMRI tasks and

common representations can be learned by deep neural networks.

• We show that the learned representations can reflect temporal and spatial prop-

erties of fMRI data and can be used to discriminate cognitive tasks across sub-

jects.
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1.4 Thesis Outline

Starting with the definition of the problem of brain decoding, proposed method and

contributions, thesis includes the following topics.

Chapter 2 will elaborates the details of fMRI data, experiment and pre-processing

techniques. Since it is the major motivation of this thesis, curse of dimensionality

problem for fMRI brain decoding will be elaborated. Then, a brief literature of data-

oriented fMRI analysis studies will be provided, emphasizing the details of brain

decoding studies.

Chapter 3 is devoted to the suggested deep brain decoding methods with the explana-

tion of neural networks and deep neural networks. Theoretical details of the suggested

deep architectures are also explained in that chapter. The characteristics of different

activation functions, regularization techniques and optimization methods are studied.

Results of experiments performed in two different fMRI data set are provided in

Chapter 4. This chapter is divided into two parts. Supervised mental state decoding

results are provided in the first part. Effect of different characteristic of deep neural

networks on brain decoding tasks are analyzed in this part. Second part of chapter 4

is devoted to examine whether or not it is possible to transfer statistical information

among different cognitive tasks and across the subjects.

In Chapter 5, the suggested deep brain decoder is discussed and possible future direc-

tions of this work are suggested.
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CHAPTER 2

MACHINE LEARNING FOR BRAIN DECODING BY FMRI

DATA

Recently, number of studies applying machine learning techniques on fMRI data

grows explosively [3, 5, 13, 25]. This chapter is devoted to overview how machine

learning techniques are applied for brain decoding task. First, the problem of brain

decoding considering the characteristics of fMRI data are explained. Then, experi-

mental design and pre-processing steps of fMRI data are elaborated. Note that, differ-

ent machine learning strategies are followed depending on the types of experiments

and the pre-processing techniques affect the results significantly. Feature selection

and extraction methods utilized in the fMRI literature are also elaborated to indicate

the importance of representation on brain decoding problems. Finally, traditional

machine learning approaches applied on fMRI data are discussed to analyze the ad-

vantages and drawbacks of these approaches, compared to the deep architectures.

2.1 fMRI Data and Brain Decoding

Magnetic resonance imaging (MR) is a non-invasive brain imaging technique in-

vented by Lauterbur in 1973 [26]. Subjects are placed into an electromagnetic field

to collect the MR data from them. Hydrogen atoms in the brain are aligned with the

effect of magnetization level inside the MR scanner. Then, radio frequency pulses

are used to transfer these atoms to higher magnetization level. Removal of this pulse

causes hydrogen atoms to return their original position back, by generating differ-

ent amount of currents in a receiver coil, which provides the MR signal. Gradient
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magnetic field is also used to locate the different nuclei.

Although the current changes among different locations provides the static image of

the brain, which is also known as the structural magnetic resonance image, tempo-

ral variations of the data is required to analyze the characteristics of the brain under

different cognitive states. Changes in brain hemodynamics, which means dynamics

affected by the blood, also change the intensity value of the MR signal locally. Func-

tional magnetic resonance imaging (fMRI) is a type of MRI. fMRI generates sequence

of brain images by collecting MR measurements quickly. The temporal resolution of

collected data is related to the time gap between consecutive images, which generally

changes between [1−2] seconds. Lately, developed fMRI machines decrease this gap

time to ∼ 0.7 seconds.

The change of magnetic field in consequence of neural activity is called hemodynamic

response (HDR). The essential form of fMRI uses blood-oxygenated-level-dependent

(BOLD) contrast to map the neural activity in the brain. It is discovered by Ogawa

et. al. [27] that deoxyhemoglobin concentration in the brain locally changes the

magnetic field. Since the activated regions in the brain needs oxygenated blood to

supply ample amount of energy to neurons, active and inactive regions of brain under

a cognitive state can be detected by the fMRI technique. Sample BOLD contrast can

be seen in Figure 2.1. Parametric definition of BOLD contrast can be found in [27].

Figure 2.1: Sample BOLD contrast. 1

1Image courtesy of [28]
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As it can be seen from the sample BOLD contrast, when the neuronal tissue is ac-

tivated, BOLD signal magnitude decreases in the first stage. Time gap between the

neuronal activation and blood flow mechanism is the cause of that drop. Afterwards

the BOLD signal reaches the maximum value in approximately 5 seconds, due to

oxygenated blood is flowed to this area. Because of the assumption that the activated

area is more likely to be activated again, just like the memory access assumptions

used by operating systems, more than sufficient amount of blood is pumped to the

activated area. When no more activation is occurred in this area, BOLD level falls

back to the homeostatic level after ∼ 15 seconds. In this thesis, approximate times of

reaching the maximum BOLD signal value and falling back to the homeostatic level

are used to determine the parameters of developed brain decoding models.

Figure 2.2: Figure a and b represent block and event-related designs, respectively.

First signals of both a and b represent the stimuli function. As explained in the Figure

2.1 signal represented with green color is HDR function. Theoretical experiment

signal is obtained by convolving HDR function with stimuli function. 3

The BOLD signal characteristics mentioned above explains the fMRI signal acquisi-

tion process for one voxel, which is the smallest addressable element in the volumet-

ric brain data. Depending on the spatial resolution of the experiment and the fMRI

machine, there may exist 40.000 to 200.000 voxels in a single scan.

3Image courtesy of [29]

7



Smallest time interval that can be successfully separated out by fMRI is the temporal

resolution. This period is determined by neuroscientists designing the experiment

by taking different cognitive functions needs different amount of times to be done

into consideration. Note that, BOLD signal is assumed to be a linear signal. In

other words, HDR of two overlapping cognitive stimuli can be calculated by adding

two singular HDRs. Linearity of HDR is first studied by Boynton [30] and it is the

fundamental assumption behind each experiments conducted in this thesis. In Figure

2.2 stimulus function of the experiment, HDR and the modeled response function is

given from left to right. The first row indicates an experiment where a stimulus of 20

seconds is shown to the subject, whereas second row shows a sample of event-related

stimuli function and theoretical response function.

Figure 2.3: Obtained signal of a single voxel, obtained signals of all voxels and stim-

uli indices for each stimuli are given as a, b, and , respectively.

Sample signal extracted from one voxel and an image obtained by putting each voxel’s
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signal per row can be observed from a,b and c of Figure 2.3. In the undermost figure,

red ones represents the time indexes of first class and blue ones represents the time

indexes of second class. Note that these signals are not hypothetical but the real

signals obtained from the conducted object detection experiment.

As shown in the Figure 2.3, different types of stimuli can be given to a subject inside

the fMRI machine. Brain decoding or neural decoding is a technique that try to

discriminate the type of stimulus using only functional images obtained from the

subject. It can be considered as reverse engineering. Brain decoding researchers

work on both single-subject and multi-subject brain decoding tasks. In this thesis,

fMRI images are used to decode cognitive states. In single-subject brain decoding

task cognitive state of the subject is estimated using the fMRI data of this subject.

Yet, in the multi-subject brain decoding task, fMRI data of other subjects are used to

estimate cognitive state of the selected subject.

2.2 fMRI Experiment Design and Pre-processing

Designing an fMRI experiment is a challenging process. Because it involves both

data acquisition and design of the cognitive experiment, necessity of neuroscience

expertize is inevitable. Both statistical power and neuroscientific validity must be

maximized in experimental design [29].

There are two types of experimental designs in the fMRI literature, namely block

design and event-related design. One can also use a mixed-design technique by com-

bining block and event-related designs to utilize advantages of both of them.

In a block design, subject is exposed to a stimulus within the whole time of condi-

tion as a block. Stimulus changes only when a different condition is presented. This

alternation of stimulus is known as "AB block design" [31]. That design approach

had dominated the former fMRI experiments due to its robustness, greater statisti-

cal power and high HDR change. Yet, block design approach does not utilize the

temporal resolution capabilities of fMRI over PET [32].

In an event-related design, subjects are exposed to a set of stimuli at discrete time
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instants. Flashing light or showing an image for few hundreds of milliseconds are

most commonly used events. Time gap between consecutive events are generally

randomized to minimize the effect of systematic patterns of thought unrelated to the

task. Event-related design provides researchers to discriminate different conditions

and leads to real-time human computer interaction (HCI) systems. Note that, detect-

ing an HDR activation pattern with event-related design is more difficult than block

design.

Due to the noise in data acquisition process and physiological artifacts, fMRI data

undergoes a number of pre-processing steps before the fMRI studies. Slice timing

correction, motion correction, co-registration & normalization and spatial smoothing

are the 4 major pre-processing steps. fMRI analyses assume that each voxel signal is

temporally aligned. In reality, voxels located in different slices are measured sequen-

tially. Slice time correction shifts each voxel’s signal to align with each other. Since

signal intensity values of the same voxel at different time points are used as the same

feature values for different samples, fMRI scans must be aligned spatially. Motion

correction pre-processing handle this alignment with transforming each fMRI image

to the first image using rigid body transformation. For transforming the fMRI scans of

each subject to more detailed and normalized space, co-registration and normalization

pre-processes are applied. In this thesis fMRI scans of each subject are transformed

to Montreal Neurological Institute (MNI) brain template. Although normalization

add more noise to fMRI data, it is inevitable for group fMRI studies. As a final pre-

process spatial smoothing is applied by convolving the fMRI images with a Gaussian

kernel to improve inter-subject registration and decrease the effect of normalization.

Detailed explanation of pre-processing steps can be found in [29].

2.3 Machine Learning for Brain Decoding

Initial fMRI studies concentrate on the analyses of raw fMRI signals. One of the im-

portant goals was detecting location and magnitude of experiment related HDR sig-

nals. These studies use single voxel analyses techniques. Seminal paper of Mitchell

et. al. [33] draws the attention of machine learning researchers to fMRI domain.

After this paper, researchers use multi-voxel pattern analysis (MVPA) approach to
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apply machine learning algorithms over fMRI data. This enables us to characterize

the fMRI signals better than the statistical approach and makes it possible to classify

them [3]. That is achieved by using the intensity values of voxels as features of a

learning systems. Yet, it is known that having about 40.000 features is problematic

for machine learning algorithms.

As it is explained above, brain decoding with fMRI data is a sample of p >> N

problem, where p represents the number of features and N represents the number

of samples. The curse of dimensionality phenomena arises for fMRI analysis which

causes both high variance and overfitting problems for the learning algorithms [34].

In an effort to handle high dimensional samples, various dimensionality reduction

techniques have been applied, which will be overviewed in the next subsection. Also,

note that curse of dimensionality is not only a problem of dimension of the data, but

also the algorithm being applied [35].

2.3.1 Dimensionality Reduction Techniques for fMRI data

As mentioned in the section 2.1, classifying the cognitive states from fMRI data is

known as brain decoding. A classifier in fMRI brain decoding task is a function

f(y;x, θ) where y represents the cognitive class label and x represents the high di-

mensional fMRI scan data and θ represents the parameters of the function f . The

goal of machine learning approaches is to find the optimal parameters for the cho-

sen function f . Yet, with the increasing number of feature dimension, the volume of

the space where the samples can reside exponentially growth. Therefore, finding the

optimal θ parameters become harder, which is known as "Hughes Effect" [36]. To

overcome this effect, three common types of dimensionality reduction techniques are

applied within fMRI analysis studies.

First type of dimensionality reduction technique applied on fMRI data is variants of

factor models. Well known examples of this type are Principal Component Analy-

sis (PCA) and Independent Component Analysis (ICA) [7, 8]. The purpose of both

approaches is to find a new set of basis vectors to project the sample vectors. Then,

projected samples x̃ can be represented with the number of basis vectors less than the

original dimension of the data. While PCA projects samples to lower dimensional
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space with linearly uncorrelated basis, ICA finds basis which are statistically inde-

pendent from each other. Since ICA works well when the raw signal have statistically

independent source signals, it is preferred over PCA for fMRI analysis studies. Al-

though both of these approaches are linear, by using kernel functions both of them

can gain the ability to reduce dimension non-linearly. Yet, determining the kernel

function requires domain knowledge.

Figure 2.4: Swiss-roll data set.

Global and local non-linear techniques [37] are the second type of approaches, which

maps the samples from high-dimensional space to low-dimensional space by preserv-

ing the global or local distances between samples as much as possible. These tech-

niques are based on the intuition that high-dimensional raw data lies on a manifold,

which is a complex low-dimensional space. Swiss roll data set is a famous example

of 2D manifold inside 3D coordinate systems, which can be seen in figure 2.4

Mapping from high-dimensional to low-dimensional space is achieved by minimizing

the stress function,

φ(X̃) =
∑
ij

(dist(xi, xj)− dist(x̃i, x̃j))2. (2.1)

Function defined above minimizes the total distance between each pair of samples,

which is known as the raw stress function of multidimensional scaling (MDS) [38]
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family. There are various modified version of raw stress functions, namely, Sammon

cost function [39] puts more emphasis on preserving the distance between samples

which are close to each other in the original space. Local Linear Embedding (LLE)

[40] calculates the stress function locally to preserve only local properties of the orig-

inal data. Various studies utilize these methods to overcome curse of dimensionality

problem by adding different regularities to stress function. Researches on non-linear

techniques and application on fMRI data can be found in [9, 10, 11, 12].

Third approach includes supervised approaches, that uses class labels explicitly to

find a transformation. Using the class labels provides these approaches to find new

set of features with high task relevance [41]. That type of dimensionality reduction

approach is generally used as a pre-process step to cognitive state decoding models.

2.3.2 Feature Extraction for fMRI

Although dimensionality reduction methods can eliminate the redundant voxels ob-

tained in fMRI recordings, many researchers prefer to obtain representations from

raw data using their domain knowledge. As in the field of computer vision, natural

language processing or speech recognition, researchers analyzing fMRI data also aim

to improve the discriminative quality of fMRI data using feature extraction techniques

particular to fMRI.

One of the earliest feature extraction techniques applied to fMRI analysis is the

Searchlight [42]. The basic assumption behind the Searchlight technique is that some

regions of the brain are not active for a specific cognitive task. Furthermore, acti-

vated regions affect their neighbors. In order to both detect the activate parts of the

brain and to gather the local effects from nearby voxels, 3D multivariate Searchlight

is moved through each voxel. Activation degree of a voxel is founded by calculating a

multivariate effect statistic between voxel intensity values inside that 3D Searchlight

and stimulus function. Note that, gathering the local effect from nearby voxels also

decrease the noise.

Representing the brain as a network is another feature extraction technique used in the

fMRI data analysis studies. Nodes of the network is identified as a set of functional
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nodes, which are generally spatial Region of Interests (ROI) defined biologically by

one of the anatomical atlases or ICA maps obtained with group-fMRI studies. Af-

ter the nodes of the network are determined, edges between these nodes are founded

by conducting multi-variate statistical analysis between fMRI time series associated

with them. There are many multi-variate statistical analysis applied in fMRI to obtain

edge weights. Calculating the zero order pearson correlation between two nodes is

the most commonly used technique [13, 14]. Graphical model based [15, 16] tech-

niques are also used to consider all nodes simultaneously. These feature extraction

techniques are used for group-fMRI studies, since stating each subject’s brain as a

network of common nodes handles the spatial differences among subjects fMRI data.

Disease detection studies also use network representation to discriminate healthy and

diseased subjects, since it is known that functional relation between anatomical ROIs

are degenerated with brain diseases [43, 44].

Another important feature extraction technique used in this thesis is the mesh model

[45]. As it can be seen from the figure 2.3 signal intensity value of particular voxel

does not change drastically to discriminate it between different stimuli types. Ozay

et. al. [45] proposed that representing the each voxel as a linear combination of it’s

neighbor voxels increases the discriminative power. Results of the mesh model can

also be interpreted as a network-based model, where the intensity values of voxels

represents the node labels and edges of the network are represented with the coeffi-

cients of the linear system.

One of the most important goal of this thesis is comparing the discriminative qual-

ities of hand-crafted and hierarchically learned features. Then, discussing whether

manual feature extraction processes can be replaced with deep hierarchical feature

representation models.

2.3.3 Classifiers Applied on fMRI Data

As it is explained in [35], regularizing classifiers gives better results for high-dimensional

classification tasks. Therefore, linear classifiers have convex cost function and less

number of parameters compared to nonlinear ones and heavily used in brain decoding

literature to discriminate samples obtained during into different cognitive states.
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The goal of a linear classifiers is to find an hyperplane wtx+b which ensures that y =

sgn(wtx+b) returns +1 for the positive samples and−1 for the negative samples. In

order to find optimal values for w and b, different approaches and cost functions are

utilized. Two most commonly used ones in the fMRI domain, are Linear Discriminant

Analysis (LDA) and Support Vector Machines which are explained below.

In LDA the samples from two classes are assumed to be conditionally normally dis-

tributed. The same full rank covariance matrix Σ and two different mean values

µ1 and µ2 are used to define these normal distributions. Assuming that all Σ, µ1

and µ2 are known, optimal normal vector of separating hyperplane can be found as

w = Σ−1(µ1 − µ2). The greatest problem of LDA on high-dimensional problem is

estimating the entries of Σ. Shrinking the full covariance matrix into a diagonal ma-

trix can solve this problem by assuming that features are independent from each other

[35]. Comparison of different LDA methods on decoding brain states with fMRI data

can be found in [46].

Support Vector Machine (SVM) is the another popular approach for fMRI studies.

Since it is robust to feature and sample size of the classification problem, it fits well

to fMRI studies. Although both LDA and SVM, without kernel trick, are linear clas-

sifiers, SVM classifier find the hyperplane which maximizes the margin between sep-

arating hyperplane and sample from both classes which are closest to hyperplane

among other samples from the same class. These samples are called as support vec-

tors. As it can be seen from 2.5, the total margin between separating hyperplane and

support vectors is 2
||w|| . Then computing the parameters of SVM becomes equivalent

to the problem of optimizing the following cost function

[
1

n

n∑
i=1

max (0, 1− yi(w · xi + b))

]
+ λ||w||2. (2.2)

By representing the cost function as a constrained optimization problem and solving

the Lagrangian dual of it, one can convert 2.2 to an optimization problem which can

be efficiently solved by a quadratic programming algorithm. Details of this optimiza-

tion can be found in [47].
5Image courtesy of https://en.wikipedia.org/wiki/Support_vector_machine
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Figure 2.5: Hyperplane and maximum margins obtained with SVM. Samples on the

margins are support vectors.5

Although these classifiers give better results on small datasets compared to the non-

linear ones such as neural networks, they are not capable to generate discriminative

features for the classification process. In order to handle both feature extraction and

classification tasks simultaneously, deep learning techniques are utilized in this the-

sis. Details of the deep learning algorithms suggested in this thesis are explained in

Chapter 4.

2.4 Chapter Summary

In this chapter constituent parts of the characteristics of the fMRI data, brain decoding

with fMRI data, designing an fMRI experiment and multivariate fMRI analysis are

explained. The most important ideas that should be summarized in this chapter can

be listed as follows;

• Temporal variations detected by fMRI makes brain decoding possible using

fMRI data.

• fMRI data obtained with event-related and block design can be theoretically
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estimated with linearity assumption of fMRI signal.

• Since there exist about 40.000 voxels per each time instant, dimensionality re-

duction and feature extraction methods are necessary for brain decoding tasks.

• Since they are affected less from high dimension compared to other classifiers,

LDA and SVM are most commonly used classifiers in the brain decoding liter-

ature.

Due to the curse of dimensionality problem, feature extraction or elimination step is

inevitable for brain decoding task. However, we believe that there exist a common

representation for different subjects and fMRI experiments. Utilizing this representa-

tion we can decode cognitive state of subject using others’ fMRI data, transfer com-

mon representation among different experiments and attack curse of dimensionality

problem at the same time. In order to obtain this common representation we use

deep learning techniques. Next chapter is devoted to the theoretical background and

implementation details of techniques applied in this thesis.
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CHAPTER 3

BRAIN DECODING BY DEEP LEARNING

Artificial neural network (ANN) is a non-parametric approach for classification and

regression problems inspired from human brain. The techniques applied in this the-

sis are developed from neural network family. Therefore, this chapter is devoted to

theoretical background and implementation details of neural networks. Chapter starts

with the biological basis of neural networks. Then, effect of depth, activation function

and regularization methods are explained. Optimization and visualization techniques

applied on the suggested neural networks are also described. Implementation details

of deep neural networks used in this thesis are also explained in this chapter.

Figure 3.1: First drawing of Purkinje Cell by Cajal in 1952.

3.1 Biological Basis of Neural Networks

The human brain is one of the most complex network observed in the nature purport-

edly containing 100 billion neurons [48]. Neuron is a cell that manage the informa-
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tion exist in the human brain. Electricity coding the information in the brain, just like

computer, can be transmitted over these neurons. Neuron cells also include chemicals

which can be released into the communication gap i.e. synapses between neurons by

the effect of electricity. Being an electrically excitable cell is the most important func-

tionality of neurons. They have the capability of generating and propagating action

potentials. The first schematic representation of neuron cells, located in the pigeon

cerebellum is depicted by Cajal in 1952, as it is shown in 3.1.

Although working mechanism of artificial neural networks and biological neural net-

works are completely different from each other, anatomical structure of biological

neuron cell is the source of inspiration for the units of the artificial neural network

utilized in the machine learning literature [49]. Each neuron cell consists of the cell

body, dendrites and an axon. There is only one axon and cell body exist for each

one of the neuron, but many dendrites can be stemmed from cell body of the neuron

to collect different inputs from many other neurons to the given one. Each biolog-

ical neuron propagates an action potential if the sum of input signals exceed some

pre-defined threshold [50]. Responsibility of axon is propagating the output action

potential to other neurons. Although only one axon stems from the neuron’s cell

body, it branches over the way to provide the same action potential to different neu-

rons by contacting with their dendrites. Note that, feedback mechanism, plasticity

and fuzzy nature of neurons are not explained here for clarity[51].

Representing the information through a hierarchical system is very effective in the

meaning of both cost and space. Yet, it is not feasible to mimic network of whole

brain with current computational resources. Therefore, artificial neural networks just

use the very basic input-output structure of biological neural networks.

3.2 How Does Artificial Neural Network Work ?

As it is mentioned above, neurons of neural networks propagates electricity to other

neurons according to the magnitude of input electricity. In [49] Frank Rosenblatt

developed an artificial neuron, namely perceptron inspired by biological neurons. Al-

though perceptron is rarely used in neural network literature, to understand the logic
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behind the modern neural networks it is important to understand perceptron.

Perceptron is a linear binary classifier. It makes a decision about the class of the

input x which is represented by a vector of features. A decision is taken according

to the parameters W, b. If the weighted sum of the input feature vector exceeds

the threshold b, perceptron fires i.e. returns an output of 1, otherwise it returns 0.

Mathematically,

f(X;W, b) =

0, if x ·W ≤ b

1, if x ·W > b
(3.1)

Structure of the perceptron with an input vector of size 3 can be seen from the figure

3.2. Outputs of other neurons, which is shown by x = {x1, x2, x3}, are connected to

the body of the neuron scaling with different weights W = {w1, w2, w3}. Note that,

by adjusting the weight vector W of the perceptron properly, one can implement a

NAND gate. Since NAND gates are known to be universal, any logical function can

be designed using perceptrons.

Figure 3.2: Perceptron classifier.

In order to learn a parametric function from the data, overall system must improve

it’s performance by deriving lessons from its mistakes. That can be implemented by

changing the weights W slightly to change the discrimination function slightly using

optimization techniques. Yet, all-or-nothing nature of the perceptron unit makes it

inconvenient for such kind of learning mechanism. Small changes in W either does

not change the output value of the perceptron or can fire it which is not fired before

the adjustment because of zero and infinite gradient at the non-zero and zero inputs,
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respectively. In order to assure that small change of weights results in small changes

in the discrimination function, at least within the range of the input domain, non-linear

activation functions are used. The details of how these neurons generate an output

function and how one can adjust the parameters W programmatically are elaborated

in the following subsections.

3.2.1 Forward Propagation

Artificial neural networks consist of a number of neurons organized in multiple layers,

including input, output and hidden units. The neurons are very similar to perceptron

consisting of multiple input units and single output unit. However, neurons of neural

networks have non-linear activation functions that have positive or negative derivation

in the input domain. In other words, to provide that small changes on parameters

results with small changes on the output, activation functions are changed from step

function to a continuous function.

Figure 3.3: Two-layered neural network.

Let us define the activation function of each neuron by σ, then a sample architecture

for 4 input units and 2 output units is shown in the figure 3.3. Note that, each level

of a neural network is named as layer. First layer of the architecture is known as

input layer and the last layer is known as the output layer. These two layers are given

in figure 3.3 as the set of green and red nodes, respectively. As the names imply,

goal of the input and output layer is to fed the architecture with the sensor data and

to generate the vector output of the architecture, respectively. In order to obtain a

hierarchical architecture, multiple hidden layers can also be used. These layers can

reside between input and output layers.
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Output y of the neural network with input x can be calculated layer-by-layer. In this

thesis, parameters of each layer are represented with Wl, where l is the index of the

layer. Input zli of the each neuron with l ≥ 1 is equal to

zli =
nl−1∑
j=1

al−1j wlij + bli, (3.2)

where al−1j is the output of the unit j at the layer l − 1 and bli is the bias for the unit i

at the layer l of which input is calculated. As it can be seen from the figure 3.3, output

of a unit is calculated by passing that value as an input to the non-linear σ function.

Therefore, the activation value for the unit i of layer l can be calculated as ali = σ(zli).

Note that a0 = x, because input of the initial layer are came from the sensors.

Utilizing the linear algebra and vector valued functions, output vector for each layer

can be calculated as

zl = Wlal−1 + bl,

al = σ(zl).
(3.3)

Output of the neural network without any loop can be calculated using equations 3.2

and 3.3. Yet, obtaining a desired output from neural networks requires the weight

parameters of the network to be adjusted. In the next subsection, we explain the

methods to adjust the parameters of a neural network automatically.

3.2.2 Backward Propagation

Using equation 3.3, output of the neural network with input x can be calculated.

However, in order to optimize W over all the levels one must define an error function

and train the network. Let us assume that the error function, or more commonly

known as cost function, is represented by C(W,b).

Then, the C(W,b) must be optimized with respect to W,b. Gradient based methods

are used for optimizing W,b. In order to apply gradient based optimization on the
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neural network, partial derivative ∂C
∂w

and ∂C
∂b

is calculated for each w and b. In order

to make this calculation efficient, a well-known algorithm known as backpropagation

is used [52]. The main idea behind this algorithm is propagating the error from upper

layers to lower layers and calculating ∂C
∂w

and ∂C
∂b

based on these errors.

Error for the unit i at layer l is represented as δli. It is used to obtain partial derivatives

for parameters. The error value represents the responsibility of given unit for the

overall error.The error at the output units can easily be calculated using the overall

error. Therefore, error value for the unit i at layer L, which is the penultimate layer,

can be found as

δLi =
∂C

∂aLi
σ′(zLi ). (3.4)

In order to find the responsibility for units of hidden layers, error value is back-

propagated. Because each unit at the layer l−1 affect the input of the layer l according

to the parameters Wl, error is also back-propagated in proportion to Wl. Therefore,

the error value δli can be calculated as

δli =
nl+1∑
j=1

wl+1
ji δ

l+1
j σ′(zli). (3.5)

After calculating the responsibility for each unit of the network, partial derivative

according to each parameter can be calculated using these errors. Desired partial

derivatives for W,b are computed as

∂C

∂wljk
= al−1k δlj,

∂C

∂blj
= δlj.

(3.6)

Note that, similar to forward propagation, partial derivatives for each parameter can

be obtained using linear algebra and vector valued functions. That makes it possible

to obtain them in parallel. Many epochs, which means passing through all samples,

are required for obtaining optimized values of parameters. Therefore, implement-
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ing parallel version of optimization has became necessary for multi-layered neural

networks.

Obtaining partial derivative for each parameter one can use any gradient based opti-

mization method to obtain the optimal parameters for the given neural network. In

subsections 3.4.4 and 3.4.5 several optimization and regularization method applied in

this thesis will be explained.

To provide a complete overview of backpropagation method, Algorithm 1 presents

an epoch of stochastic gradient descent algorithm for optimizing the neural network.

Note that λ is the learning rate.

Initialize W and b randomly.

while batchCounter < # of batches do
∆W = 0, ∆b = 0

while sampleCounter < # of samples per batch do
Find the output for the given input, (3.3)

Find ∂C
∂W

, ∂C
∂b

, (3.6)

∆W = ∆W + ∂C
∂W

∆b = ∆b + ∂C
∂b

end

W = W − 1
sampleCounter

λ∆W

b = b− 1
sampleCounter

λ∆b

end
Algorithm 1: Stochastic gradient descent applied on neural network

Using a set of training samples {(x1, y1), (x2, y2), ..., (xN , yN)} and defining a cost

function based on these values, neural network with arbitrary architecture can be

trained. Yet, training a neural network with more parameters, in our case it is about

1 million. With the increasing number of layers, neural networks not only gain more

capacity, but also, become more susceptible to overfitting problem. Due to this handi-

cap of multi-layer neural networks, they had omitted by machine learning researchers

until 2006. Recently, two different research groups [53, 54] show that training a deep

neural networks layer-wise improves the generalization performance of them by pro-

viding better representations from lower layer to upper layers. In section 3.3, details

of training a deep neural network is explained.
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3.3 Deep Learning

Starting with two seminal papers [53, 54], a new branch of machine learning studies

known as deep learning is emerged. Contrary to feature extraction studies in the litera-

ture of traditional machine learning, the goal of deep learning studies is understanding

the latent relations between features in high-dimensional space. Deep learning algo-

rithms require less engineering and utilize more from data compared to traditional

methods [19]. Beside, since hierarchical representations can be obtained with these

algorithms, transfer learning algorithms also can be implemented with them.

3.3.1 Why deep architectures ?

Success of machine learning algorithms is mostly based on the representation power

of samples. Because different kind of representations can hide or disclose different

factors behind the data, numerous methods are suggested to find an optimal represen-

tation for image recognition [55, 56], speech recognition [57] and also brain decoding

[6, 45]. Yet, relying heavily upon the feature extraction methods is the weakness of

traditional machine learning methods. Although knowledge of domain experts can

easily be injected into learning systems while generating these features, that extrac-

tion step becomes a bottleneck when the domain information is limited, as in the brain

decoding problem.

Representation learning methods have been used to automatically represent raw data

as a feature vector [58] utilizing the statistical regularity of the sensor data. Goal of

these methods are extracting information from raw data to provide discriminative fea-

tures for prediction tasks. In general, feature vectors which can be separated linearly

into different classes are admitted as more discriminative. There are many approaches

exist for the representation learning, yet taking the hierarchical nature of the brain into

consideration deep learning methods are used to learn complex feature vectors in this

thesis. These methods generate representations in multiple levels. High-level ones

are extracted from lower-level ones by non-linearly composing them.

Various architecture types, activation functions, regularization methods and optimiza-

tion techniques are utilized to form a deep learning method. The following subsec-
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tions are devoted to explain the details of components used in the experiments of this

thesis. Additionally, in order to observe what kind of representations are obtained

through the suggested deep learning methods, learned architectures are visualized.

Visualization procedure applied in this thesis is also explained.

3.3.2 Unsupervised Networks

As in the general machine learning literature, two main types of networks exist in

the deep learning literature, namely supervised and unsupervised networks. They can

also be used together to create a hybrid system.

Goal of unsupervised deep neural networks is to find a hierarchical representation

using input vectors D = {x1,x2, ...,x3}, where the samples do not have any label

information. There are two main approaches in the deep learning literature to find

hierarchical representations from unlabeled data set, namely Restricted Boltzmann

Machines and autoencoders. The following sections will briefly overview these ap-

proaches.

3.3.2.1 Restricted Boltzmann Machines

A very popular unsupervised deep learning approach is known as Restricted Boltz-

mann Machines (RBM) [59]. It is implemented as a graphical model [60]. By min-

imizing the energy of graphical model with input vectors and maximize it with non-

input vectors, RBM learns the optimal parameters for the input vectors. Formally, if

the energy function of the graphical model is defined as E(x) and likelihood of input

vector x is defined as p(x) = e−E(x)

Z
, where Z =

∑
∀x
e−E(x) goal of the RBM is maxi-

mizing the likelihood function p(x) for input vectors and minimizing it for non-input

values. Although the parameters of the system can be learned by stochastic gradient

descent with negative log-likelihood function, it requires to calculate the energy of

the model for each possible configuration.

In order to handle this optimization problem, in [61] contrastive divergence method is

proposed. This method computes both positive and negative gradient for the gradient
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based optimization method. In order to compute positive gradient, outer product of

given training input representation and sampled hidden activation representation is

used. Negative gradient is obtained with the outer product of reconstructed input

and re-sampled hidden activation representations. Then weight update is obtained by

adding the positive gradient and subtracting the negative gradient. To improve the

expressive power of the network hidden units are added over input units. [53] used

RBM to initialize the parameters of the deep neural network architecture.

3.3.2.2 Single Layer Autoencoders

Second approach for learning the discriminative representation from unlabeled data

is autoencoders. Although the main idea of autoencoder is similar to the RBM, it is a

discriminative model. Also it is easier to regularize the autoencoder by constraining

the activation values, parameters or the architecture of it. Therefore, autoencoders are

utilized in this study to both learn a hierarchical representation and initialize formed

deep neural network.

The goal of the autoencoder is to find a function Hwb(x) = y ≈ x. It is indeed

a neural network with the goal of mapping an input vector to itself. Because there

is no label information exist in the H function, unsupervised cost function must be

defined to implement backpropagation over the architecture. The most commonly

used cost function is the mean squared error function which is defined as J(W,b) =

1
N

N∑
i=1

(yi − xi)
2, where N is the number of samples. Trivially, identity function can

map the input x to the output y as they will be identical. However, finding such

mapping can not capture the statistical regulation within the data.

3.4 Deep Neural Decoding

As mentioned in the section 3.3, unsupervised deep neural networks are capable to

extract representations from the unlabeled data. It is known that brain works in a hier-

archical manner. We believe that these differences between different subjects emerge

at the upper layers of this hierarchy. In order to find the similarities in the lower layers

of this hierarchy we employed deep neural networks. Founding hierarchical similari-
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ties between different subjects let us represent them with the common patterns. In the

following subsections, we explain how we find these common patterns.

3.4.1 Stacked Autoencoders : Layer-by-layer training and fine-tuning

Figure 3.4: Architecture of 3-layered autoencoder.

In order to find hierarchically common patterns from the unlabeled fMRI data, num-

ber of autoencoders are stacked. While stacking autoencoders over each other, each

layer are trained separately. Goal of unsupervised learning in our approach is to find

experiment-independent common patterns from the fMRI recordings.

Although the goal of the unsupervised networks is specified above as forming a hi-

erarchical representation using unlabeled data set, neural networks with only single

hidden layer is explained up to now. In order to extend that explanation to networks

29



with more than one hidden layer, output vector of each hidden layer must be discrim-

inated from each other. Let the output vector of the first hidden layer for the input

vector xi is shown as ei
1. To obtain the representation from upper layers, greedy

layer-wise optimization is applied as it is shown in the figure 3.4. Grey nodes in the

figure represents the input vector given to the autoencoder. Nodes of the first hidden

layer are shown as red nodes in the lowermost network. Input and output nodes of

2nd layer are also pictured as red nodes, since the same vector obtained from the 1st

hidden layer is used there. Similarly, the output of 2nd hidden layer is used as an input

and output for the 3rd layer. Number of levels used to obtain hierarchical representa-

tion with autoencoder is also a hyper-parameter. Therefore, the hidden layer count of

neural network is also found with cross-validation technique in this thesis.

Figure 3.5: Multi-layer neural network classifier.

Let us describe the layer-wise training procedure. After the representation e1 is ob-

tained from the first hidden layer, 2nd hidden layer’s representation is computed by

using e1 as the input of the second layer. Then, e2 vector is used as an input to the

third layer to obtain 3rd layer representation. This process can be applied layer-wise

for each hidden layer of the network. Note that, the optimization process on layer lh

doesn’t affect the parameters of the layers different than lh.

Although unsupervised networks provide an abstract and hierarchical representation

of an unlabeled data set, they do not force the system to learn representations suitable
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for classification tasks. The learned parameters are further adjusted to get a suitable

representation after the unsupervised learning steps. Hidden layers trained with au-

toencoder are stacked over each other to form a new neural network as given in the

figure 3.5. Note that, learning the units of a hidden layer and learning the values of

parameters W,b connecting output vector of former layer to current layer is used

interchangeably in this thesis. In order to fine-tune the parameters favorable to classi-

fication task, they are optimized in supervised fashion using techniques explained in

the section 3.2.

3.4.2 Constraints applied over unsupervised networks

As mentioned above, deep neural networks are pre-trained in an unsupervised man-

ner to obtain a hierarchically common patterns embedded in fMRI data. Yet, to learn

abstract representations from the data itself some constraints must be applied. Oth-

erwise these networks can easily learn the identity function. In order to avoid this

degenerate solution, two different kind of constraints consistent with the nature of the

fMRI data is applied over unsupervised networks, which will be explained next.

It is known that different parts of the brain is responsible for different type of cognitive

tasks. Therefore, the first constraint applied on the hidden layer of the autoencoder

is to keep the number of units in hidden layer fewer than the input and the output

layer. This constraint forces architecture to reconstruct vector given in the input layer

using a compressed representation of itself. The basic idea behind this architecture is

similar to PCA [8] in the sense that both try to project data to the space with fewer di-

mensions, yet using a non-linear activation function on each unit of the hidden layer

makes this architecture non-linear extension of the PCA. The relationship between

PCA and compressed autoencoder is studied in the [58]. Although this constraint

approximately estimates the function of the manifold space where the samples lie

on, other constraints exist in the literature to improve discriminative power and noise

robustness of the autoencoder [58]. Since it generates both sparse and robust repre-

sentation, denoising autoencoder is also applied in this study.

The constraint applied in this study is adding noise to the input vector, and recon-

structing the raw version of the input vector using noisy version of it. It is known that

31



obtaining the HRF via fMRI is a noisy process. The noise embedded in fMRI signal

is tried to be handled by denoising the encoder function. Formally speaking, for a

given sample xi, output of the encoder function is calculated as,

o = Bernoulli(u),

xi = o · xi,

ki = Wxi + b,

ei = σ(ki),

(3.7)

where u represents the corruption level, · is the dot production operation and f is the

non-linear activation function of the hidden layer units. Then the decoder function

minimizes mean squared error (MSE) between ei and xi for each i.

Note that hyper-parameter u of the 3.7 must be found with cross-validation technique,

because it can not be optimized with gradient-based optimization techniques.

Theoretical explanations given above in this section do not include the effect of ac-

tivation function, regularization methods and optimization techniques on the perfor-

mance of the deep neural networks with fMRI data. Following subsections elaborate

these details.

3.4.3 Details of Activation Functions

As explained in section 3.2, it is necessary to map input of neurons to output with a

smooth function to avoid degenerate solutions. Because it closely mimics the char-

acteristics of the perceptron and can be interpreted as probability of neuron’s firing,

sigmoid function σ(x) = 1
1+e−x is used in the former studies [58]. Range values of it

changes between [0,1]. It saturates negatively at about -6 and positively at about +6.

In order to improve the generalization performance of neural networks, tanh func-

tion tanh(x) = ex−e−x

ex+e−x , which is the shifted version of the sigmoid function with

the relation tanh(x) = 2σ(2 · x) − 1, is favored over sigmoid. tanh results in more

generalized performances compared to σ function, because it has stronger gradients

than sigmoid function and removes a bias over gradient located beyond the first layer

32



of the network by returning an output values between [-1,1] [62].

Although tanh activation function solves two important problems of the sigmoid acti-

vation function, it can not handle the vanishing gradient problem. Basically vanishing

gradient problem is that gradient of activation function becomes increasingly small

with the increase of the absolute value of the input. To keep the gradient of the func-

tion constant for the varying inputs, rectified linear unit (ReLU ) activation function

is proposed as ReLU(x) = max(0, x). ReLU takes the value of zero for negative

inputs and it linearly increases with the increasing value of positive input. Beside de-

creasing the effect of the vanishing gradient problem, ReLU activation function also

provides sparser representation compared to σ and tanh activation functions. Since it

is known that neurons of the brain uses a sparse representation [63, 64], choosing the

ReLU as an activation is more proper to mimic the network of biological neurons.

As it is mentioned above, derivation of ReLU activation function for input values

smaller than zero is equal to zero. In order to avoid zero gradient, parametric version

of ReLU function (PReLU ) is proposed in the [65]. Formally, PReLU activation

function can be defined as

f(x) =

x, if x > 0

αx, if x ≤ 0
. (3.8)

α parameter controls the slope of the negative part of the activation function. Using

PReLU activation function introduces a new parameter to the system per each layer.

So, no extra risk of overfitting is expected. Furthermore, optimizing the value of α si-

multaneously with W,b values using backpropagation adds negligible computational

complexity to the system.

3.4.4 Regularization Methods

Up until this point, the methods are discussed to improve the classification or regres-

sion performance of the inputs given to deep neural network, which are known as

training data set. However, the main goal of the deep architectures is to perform

equally well on unseen inputs, which are known as test data set. In order to reduce
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the error on the test data set by possibly increasing the error on the training data set

various regularization techniques are applied within the experiments of this thesis.

3.4.4.1 Parameter Norm Penalties

Having a great complexity, deep neural networks can easily overfit to the training data

set. Overfitting occurs when the model has much more parameters than the number

of training samples [34]. In order to limit the capacity of the architecture, parameter

norm penalty can be applied over W parameters of the network. If parameter norm

penalty is shown with Ω(W), regularized objective function of the overall network

can be represented with

Jreg(W,b) = J(W,b) + γΩ(W), (3.9)

where γ weights the effect of regularization term for the overall cost Jreg(W,b) and

γ ∈ [0, inf). Setting γ to the 0 means there is no parameter norm penalty is applied

over cost function and larger γ values result with more regularized cost function. Note

that parameter norm penalty does not contain b values, because having higher values

of b only shifts the obtained function. Note that, b parameters can be optimized with

less amount of samples compared to W, because each W value deals with interaction

of two variables but each b variable controls only one variable [66].

Both L1 and L2 parameter norm penalties are applied over networks in this thesis.

The penalty term Ln is defined as Ln = 1
2
||w||nn. Therefore, L1 ∝ ||w||11 =

∑
∀wi

|wi|

and L2 = 1
2
||w||22. Adding L1 and L2 penalties over the cost function J affect the

characteristics of estimated W differently. While L2 penalty function diminishes the

large W values more, it doesn’t force the system to have a sparse representation as L1

penalty function does. On the other hand, L1 can select at most K variables before

the saturation on the problems having K samples with the dimension of I , where

I >> K [67]. It just omits the remaining features. Note that, brain decoding problem

is good example of high-dimensional samples with few examples case. Therefore L2

norm penalty is added over L1 norm penalty term to obtain a hybrid regularization

cost functions as follows.
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Jreg2(W,b) = J(W,b) +
γ

2
WTW,

∆wJreg2(W,b) = γw + ∆wJ(W,b),

w ← (1− λγ)w − λJ(W,b),

(3.10)

and

Jreg1(W,b) = J(W,b) + γ||W||11,

∆WJreg1(W,b) = γsign(W) + ∆WJ(W,b),

W←W − λ(γsign(W) + ∆WJ(W,b)).

(3.11)

Parameter updates with L1 and L2 norm penalties using gradient descent approach is

given in 3.10 and 3.11. As it can be seen from the update step, derivative of L1 term

penalty is stable for positive and negative values and equals to−1 and 1, respectively.

It forces parameters to become zero constantly at each input. On the other hand, L2

norm penalty diminishes the greater values of W more than smaller values of W.

Applying both L1 and L2 provide the system to force both greater and smaller values

of W to become 0. Effect of norm penalty regularization on the obtained results can

be observed in the experiment of chapter 4.

3.4.4.2 Dropout

Although L1 and L2 regularization methods increase the generalization performance

of the system, these penalties are not enough to make the system more robust against

the noisy inputs in the training data set. Since fMRI machine records the signals

from voxels according to indirect measurements of the blood flow, the data consists

of noise which is generated by multiple sources. Srivastava et. al. [68] proposed the

dropout method to overcome this problem.

Dropout method uses the bagging idea to increase the robustness of deep neural net-

work against noisy inputs [68]. Essence of the bagging idea is to train the model

by different subsets of the training data set. This approach enables to obtain a set of
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classification performances for the each data set. Then, the final result is obtained

by weighting the classification scores of these models. By adjusting the weights of

model scores, the overall system can maximally utilize the advantages of different

models. However, training deep neural network from scratch is tedious and expen-

sive process. Therefore, implementing the traditional bagging is not feasible. In the

dropout method, approximation of bagging is implemented by dropping out different

visible and hidden units for each step of the batch gradient descent. Units are dropped

randomly with the probability of p within the training phase. Within the test phase

each unit is always present, but each element of W is multiplied by p. Behavior of a

sample unit exposed to dropout at training and testing phases is shown in the figure

3.6.

Figure 3.6: Behavior of a sample unit exposed to dropout at training and testing

phase2.

Because activation or deactivation of a unit is independent from other units, different

p values can be used for different units. The effect of the amount of dropout will be

discussed in Chapter 4. As it can be seen from the results in chapter 4, deactivating

%90 of features gives the best results for brain decoding task, which shows us the

percentage of redundant features in the recorded fMRI data.

3.4.4.3 Early Stopping

As it is known generalization error is calculated by feeding the unseen data to the

model trained with training data set. Although forcing the system to learn parameters

for a general representation with norm penalties and dropout improves the general-

ization performance of the trained model, taking unseen data into consideration gives

2Image courtesy of [68]
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better results. In order to utilize unseen data for training the model without mixing

training data set and test data set, part of the data is reserved as validation data set.

After the part of the data set is reserved as validation data set, result of the trained

model on this data set is used to determine best hyper-parameters of the system which

are mentioned above. For assisting the optimization procedure by determining the

values of hyper-parameters, early stopping is also applied in this thesis. By assuming

that both validation data set and test data set are generated from the same distribution,

training procedure is terminated when the classification error on the validation data

set is started to increase while the classification error on the training data set still

decreases. By identifying the iteration when the overfitting starts in the optimization

process, more generalized model is obtained using early stopping in this thesis.

3.4.4.4 Batch Normalization

Up to this point each regularization method mentioned above assumes that all samples

in the training data set is generated from the same distribution. Although making

such an assumption is valid for single subject brain decoding task, fMRI data of

different subjects have varying statistical characteristics.

It is known that training phase of the deep neural network converges faster if its inputs

are whitened [69]. Although whitening the inputs to the deep neural network handles

the statistical variations to a certain extent for the input layer, small changes in lower

layers are amplified through the upper layers of the deep neural network . The net-

work model is partially suffered from the covariate shift [69]. Hidden layers of the

neural network suffers from this problem due to the change in the distributions of

these layers results in a continuous effort for adaptation to the new distribution. En-

suring the distribution of inputs of hidden layers remains more stable helps optimizer

to get stuck in the saturated regime [69]. As it will be represented in the experiments

chapter, intra-class distance between fMRI recordings of different subjects cause sub-

stantial changes in the distribution of internal input nodes. Adjusting the distribution

via fixing the mean and variance attacks this regularization problem.

In order to fix the distribution of inputs for internal layers, normalization is applied
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to each activation independently using the batch normalization. Let the kth particular

activation is represented as ak and we have m values of this activation in the mini-

batch. Note that, training of network models are implemented by separating training

samples into batches. Algorithm 1 is followed for each of them separately. Each

of these subsets of training samples are named as mini-batch. For each sample the

output yi is calculated as,

µβ ,
1

m

m∑
i=1

xi,

σ2
β ,

1

m

m∑
i=1

(xi − µβ)2,

x̂i ,
xi − µβ√
σ2
β + ε

,

yi , θx̂i + β , τγ,β(xi).

(3.12)

Because batch normalization is applied as a part of the training procedure of the deep

neural network, parameters θ and β are found with back-propagating the gradient of

loss through the transformation given in the 3.12. Details of the chain rule including

batch normalization layer can be found in the [69].

As it can be seen in the experiments chapter, applying regularization techniques on

the fMRI data improves the brain decoding performance. Without the regularization

technique mentioned above, classifier of multi-subject brain decoding task can easily

overfit to the training samples which are the fMRI data of the part of the subjects.

Effect of regularization techniques mentioned in the subsection 3.4.4 on multi-subject

brain decoding task can be observed in the experiments chapter.

3.4.5 The Optimization Techniques for SDAE

As mention in the section 3.2.1, Renaissance of the neural networks begins with the

invention of back-propagation technique [52]. This technique is built on the non-

convex optimization theory. The greatest hurdle the deep neural network and gen-

erally all machine learning researches is to find the global minimum of the given

38



non-convex function.

Optimization of a deep neural network is tedious process compared to that of tra-

ditional models such as SVM and LDA. Probability of getting stucked at a local

minimum increase with increasing number of parameters, which is unavoidable in

the fMRI literature. Although the widely-used convolution technique [66] decreases

the number of parameters drastically, the fMRI images are not equivariance, which

means that the location of activation is unimportant . Therefore, obtaining a repre-

sentation using convolutional neural networks decreases the brain decoding perfor-

mance. Therefore, fully connected deep neural networks are used as an architecture

in this thesis.

In the neural network literature many optimization techniques are developed. Most

important ones are stochastic gradient method (SGD), momentum-based methods,

second-order methods and first-order per-dimension methods [66]. Due to large

amount of parameters in our architectures, implementing second-order methods are

too expensive to implement. Therefore the first three optimization techniques mention

above is utilized in our experiments.

Although both SGD and momentum-based methods achieve good performances in

various domains [54, 58], adjusting the learning rate parameter is very difficult issue

and both techniques are very sensitive to initialization of the weights. The effect of

initialization and learning rate parameters are explained in chapter 4.

On the other hand, per-feature first-order methods introduce dynamic learning rate

parameter which is computed per-feature basis using only results of first derivation

[70]. Per-feature first-order methods don’t need manual setting of learning rate and

there are no robust methods in the deep neural network literature with great amount

of parameters for selecting a good learning rates. These techniques provide us to get

rid of learning rate selection problem.

Within our experiments ADADELTA optimization [71] technique results with best

results. As it can be seen from the results, ADADELTA converges in dramatically less

epochs when it is compared with other optimization techniques, SGD and momentum-

based methods. Therefore, the generalization performance of classifier increases and
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system overfit less on the samples of training subjects.

3.4.6 Visualizing the obtained parameters

In the above sections of this chapter we have approached the brain decoding prob-

lem from the perspective of the machine learning literature. Yet, the neuroscience

research is very much involved in identifying the responsible brain ROIs for the given

experiment.

There are variety of methods in the neuroscience literature to detect the active ROIs

of brain under a cognitive stimulus. There are two commonly used methods in the

neuroscience literature, one of these approaches is most commonly used for single

subject studies and the other is used generally for multi-subject studies.

Among many others, the single subject studies used the general linear model (GLM)

very frequently [29]. In the GLM, intensity signals of each voxel, or each ROI, is

reconstructed using the experimental signals. Generally, stimulus function convoluted

with HRF and random motion signals are used as a signal within the experimental

signals. Mathematically speaking, intensity signal yv of each voxel is obtained as

yv = β · xe + ηe where the β is the coefficients of experimental signals xe and ηe is

the error term. After obtaining different β parameters for each voxel, t-test or f-test is

used to detect regions activated more given the experimental stimulus.

For multi-subject brain decoding tasks, the fMRI signals obtained from each subject

is simultaneously used to obtain independent basis signals. Signal of a voxel ob-

tained from all subjects is used as a channel. Then, signal of each voxel is used as a

separate channel. Finally ICA is applied over these channels to obtain independent

components from these channels. Ranking the basis vectors according to significance

value, researchers obtain most important basis for the experiment. Commonly acti-

vated regions for each subject are observed by neuroscientists by visualizing these

ICA basis.

In this thesis, visualization of active brain regions is achieved by using the deep neu-

ral networks. Active regions of the brain given a type of stimulus is found by looking

for an input pattern that maximizes the activation of the output unit responsible for
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that type of stimulus. This pattern is identified by applying a simple gradient ascent

method in the input space. Mathematically, the goal of the gradient ascent optimiza-

tion is to find

xi
∗ = arg max

x s.t.||x||=1

fi(W,b,x), (3.13)

where fi(W,X) is ith element of the output vector, in other words the activation value

for the stimulus type i. In order to find the representation xi
∗, which is the optimal

input for the ith class in this case, gradient of the fi(W,x,b) is calculated for X and

moving direction within the optimization process is chosen according to this gradient.

Rather than gradient descent, gradient ascent is applied because it is an activation

maximization problem. In the experiments chapter, optimal brain representations for

each type of stimuli is represented.

3.4.7 Input Representations for Deep Learning

As mentioned in chapter 2, the goal of brain decoding with fMRI data is understand-

ing the mind of a subject using her/his fMRI recordings. The major assumption of

this thesis is that a common representation exists among the fMRI data of different

subjects and different experiments. In order to identify these common representations

across subjects, deep neural networks are used in this thesis. To analyze the effect of

initial representation over the brain decoding performance, three different input rep-

resentations are fed into the deep architectures. In this section, we will explain the

details of three different representations. Obtained results are shared in the chapter 4.

3.4.7.1 Average ROI Intensity Values

The first representation used at the input of deep architecture is the average voxel

intensity values over anatomical region of interests defined by Automated Anatomical

Labeling (AAL) segmentation. AAL is a digital atlas of human brain developed in

[72]. In order to train a deep neural networks over average intensity value of each

anatomical region, average intensity value of each region for each 3D image obtained
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with fMRI are concatenated and used as an input. Rather than voxel intensity values

average ROI intensity values are used to classify cognitive states, because of the high

feature-sample ratio of fMRI experiments. This ratio in the experiment used on the

scope of this thesis is ∼60.

Mathematically, suppose that we are given a large number of brain volumes of fMRI

data, recorded during a sequence of cognitive stimulus. Let us denote the inten-

sity values measured at each voxel i at a time instant t of stimulus type s as xis(t),

where i ∈ {1, 2, 3, ..., I} represents the voxel index and t ∈ {1, 2, 3, ..., Ts} rep-

resents the time index for the given stimulus s. Let us denote an atomic region as

rj ∈ {r1, r2, r3, ..., rJ} with a set of voxels spatially included in this region. Note

that, regions are mutually exclusive and collectively exhaustive sub-volumes of the

brain. Then, for the region rj and the stimulus s, average intensity value at time

t = tc is calculated as ,

mjs(tc) =

∑
i∈rj xis(tc)

|rj|
. (3.14)

As mentioned above, each region of AAL segmentation is used as an element of

region set rj ∈ {r1, r2, r3, ..., rJ} in this study. In order to form feature vector

Ms(tc)for the time point tc of the stimulus s, average intensity value mjs(tc) for

each region j is concatenated as [m1s(tc),m2s(tc),m3s(tc)...mJs(tc)]. The set of fea-

ture vectors Ms = {Ms(1),Ms(2),Ms(3), ...,Ms(Ts)} is calculated for each type of

stimulus, separately.

Although averaging voxel intensity values over AAL regions summarizes the spatial

information for each region, the lack of relational information among the regions is

the major handicap of this representation. In order to add the connectivity information

into deep neural networks, two types of connectivity features are extracted over the

raw data. The first type of connectivity feature is the zero lag Pearson correlations,

computed for each pair of anatomic regions. The second type is the mesh model

suggested in [73]. By obtaining zero-lag correlation and fully-connected mesh model

[73] and feeding them as input to the deep neural network, we aim to observe the

effect of pair-wise and global connectivity over deep neural networks, respectively.
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3.4.7.2 Pearson Correlation Values

Figure 3.7: Sliding window representation with window size U

Recently, it is shown that relations among voxels or voxel groups are more represen-

tative than the raw representation of voxel time series [74]. In order to experimen-

tally observe the effect of connectivity on the performance of deep neural networks,

Pearson correlation values among the selected AAL regions are employed. Pearson

correlation between each pair of regions ry and rz are calculated as

p(cybU , czbU) =
cov(cybU , czbU)

σcybUσczbU
, (3.15)

where b represents the initial time point of the correlation window and U is the width

of the correlation window. cybU represents the set of average intensity values of region

ry between time points b and b + U . As shown in the figure 3.7, correlation values

between each pair of regions are calculated by sliding a correlation window with size

U for data of each stimulus separately. By combining correlation values between each

pair of regions, functional connectivity matrix can be formed. Note that equation3.15

provide us a symmetric functional connectivity matrix, therefore only the elements

in the upper-triangle of the functional connectivity matrix are concatenated to form

a feature vector. These feature vectors are randomly separated into training, test and

validation data set and fed into deep neural networks to classify them. In order to
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decode the cognitive state of a subject using samples from other subjects, samples

from the same subject can only reside in one of the training, test and validation data

set.

3.4.7.3 Temporal Mesh Model

Taking the Pearson correlation between each ROI provide pairwise connectivity in-

formation to deep neural networks. To provide a connectivity information extracted

among all regions, temporal mesh model is used [73]. To represent each ROI as a

linear combination of other ROIs, a mesh connected to all other ROIs are formed for

each ROI separately. Center ROI of this mesh is named as the seed ROI. As it is

shown in the [45] voxel intensity values change slightly for the same time point tc.

Therefore the, arc weights connecting neighboring ROIs to each seed ROI, rs are es-

timated by a linear model formed among csbU and each cjbU where j 6= s. Note that,

these arc weights are found for each sliding time intervals [b, b + U) and for each

stimulus s separately. Linear model among the seed ROI and neighboring ROIs are

formed as,

csbU =
∑
j∈J

cjbU · asjb + εsb. (3.16)

The arc weights, asjb, are estimated by minimizing the expected square error

E((εsb)
2) = E((csbU −

∑
j∈J

cjbU · asjb)2). (3.17)

Note that, expectation is taken over the time interval [b, b + U) of the ROI intensity

values. The set of arc vectors for each neighboring regions which can be defined as

asb = [as1b, as2b, ...asJb] is computed using the following closed form ridge regression

equation

asb = (RT
sbRsb + λI)−1RT

sbcsbU , (3.18)

where λ is the regularization parameter and founded by cross validation in the training
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phase. Finding asb for each s and concatenating them, we obtain the feature vector

for the starting time point b to the input of the deep learning architecture. Getting

feature vectors for each b, we obtain the feature vectors for the related stimulus. Note

that, this procedure is followed for each stimulus separately. Details of temporal mesh

model can be found in [73].

3.4.8 Two Major Goals of the Thesis

After obtaining the above initial input representations, to learn a more compact and

general hierarchical representation the unsupervised deep neural network is used in

this thesis. Two main goals are reached by using deep neural networks.

The first goal is to achieve multi-subject brain decoding using deep neural networks.

It is well-known that, deep neural networks perform much better than the traditional

machine learning algorithms provided that there is statistically sufficient amount of

data which is received from multiple subjects [17]. This fact is empirically shown

in our experiments where we compare deep neural networks to the popular machine

learning algorithms in the neuroscience literature, such as, K-NN and SVM. In or-

der to perform multi-subject brain decoding, formed deep neural network is initially

trained without any label information in an unsupervised fashion. Then, pre-trained

deep neural networks are fine-tuned with the label information included in the fMRI

experiment. A variety of architectures are employed to classify cognitive states using

fMRI data. Results are compared in the Chapter 4.

Second goal of this thesis is to show that a common representations among differ-

ent fMRI experiments can be detected by deep neural networks. In order to transfer

hierarchical representation among fMRI experiments an unsupervised deep neural

network, called stacked denoising autoencoder is employed. Representations learned

from an fMRI experiment in an unsupervised fashion is used to obtain hierarchical

representations for another fMRI experiment. This goal is achieved by the features

extracted for the second fMRI experiment is fed into the deep neural network pre-

trained with the unlabeled samples of first fMRI experiment. Pearson correlation

input vectors are employed for this goal. Then, hierarchical representations are ob-

tained for the second fMRI experiment. Samples are represented with these features
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Figure 3.8: Block Diagram of the overall brain decoding framework suggested in

this thesis. First, voxel intensity values are mapped into three different represen-

tations. Then, by using these representations as an input to deep neural networks,

multi-subject brain decoding results are obtained. Besides, pre-trained deep neural

network with S500 data set is also used for transfer learning. To implement this,

pearson correlation values extracted from object recognition data set fed into the pre-

trained neural network. Then cognitive states of object recognition task are classified

using hierarchical representations obtained from this network. Details of the S500

and object recognition data sets are explained in Chapter 4.

to classify them. Results show us that, statistically common patterns can be trans-

ferred among different fMRI experiments. Results are given in the Chapter 4.

A block diagram of the overall brain decoding system, suggested in this thesis is given

in the Figure 3.8. As represented in this block diagram, multi-subject brain decoding

is implemented using two different data set. As a pre-processing step, three different

representations are extracted from the raw voxel intensity values of these two data set.

Then, multi-subject brain decoding results are obtained by using these features as an
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input for deep neural networks.

3.5 Chapter Summary

In this chapter, both biological and computational foundations of deep neural net-

works are studied in brief. We explain the essence of deep neural networks utilized

in this thesis and the implementation of them on brain decoding problem. Because

recent deep learning techniques are based on the forward propagation and backpropa-

gation techniques, we discussed about the basic formalism of these algorithms. Then

we discuss the initialization, regularization, optimization and visualization techniques

applied over deep neural networks for brain decoding. Finally input representations

and two major goal of the thesis are explained.
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CHAPTER 4

EXPERIMENTAL RESULTS

In this chapter, experimental results of brain decoding obtained by the deep learning

techniques suggested in the chapter 3 are provided. In order to examine the perfor-

mance of these techniques comprehensively, two different dataset are utilized. In this

chapter, first these data sets will be explained. In order to examine the effect of input

type over the performance of deep neural networks on brain decoding, three different

initial representation are employed. Therefore, comparison of different types of rep-

resentations given as an input to the formed deep neural networks are analyzed. Then,

performance of supervised networks on a single data set will be examined using dif-

ferent types of regularization and optimization techniques which were explained in

the chapter 3. Afterwards, effect of transfer learning approach is investigated on the

brain decoding domain by transferring information between two different data sets

using unsupervised deep learning techniques given in the section 3.3.2. Finally, the

deep neural networks are visualized for different types of stimuli to provide a proba-

bilistic activation map for human brain under different cognitive states.

4.1 Experiments and Data Sets

In the fMRI data collection phase, the experimental design performed by the neuro-

science community is the vital part of fMRI studies. Each stimulus must be chosen

carefully to observe its effect over the BOLD signal. In this thesis, we employed

two different fMRI data sets, namely the object recognition data set and Human Con-

nectome Project S500 data set [22]. In the following subsections, the experimental
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set-ups of these data sets will be provided.

4.1.1 Object Recognition Data Set

The first dataset used in this study is obtained by our study group 1working coop-

eratively with psychology researchers from Koç University. 6 different subjects are

exposed to a memory experiment inside the fMRI machine. While representing differ-

ent types of stimuli inside the fMRI machine, subject’s attention must be kept high. In

order to keep the attention, n-back paradigm is chosen as an experimental paradigm.

In this paradigm subjects are asked to remember each stimulus represented within

the last n stimuli and give a response, if the current stimulus is included among the

n stimuli. n can be adjusted to change the difficulty of the experiment.We need to

avoid a pure working memory experiment. Since our goal is to decode the stimulus

type according to the obtained fMRI data, n is chosen as 1. In the object recogni-

tion task, the stimuli consist of gray-scale images. Subjects are asked to discriminate

images from two different categories, namely flowers and birds. Subjects are shown

each stimulus for 4 seconds. Then, there is a fixation period of 8, 10 or 12 seconds

between each consecutive stimuli to minimize the effect of previous stimulus on the

BOLD signal of the represented stimulus. Experiment is performed in 6 runs. Total

of 36 measurements were recorded in each of 6 runs to obtain 216 fMRI images i.e.

samples. At each run, first 12 samples per each class are used for training and the 6

remaining samples are used for testing in the transfer learning experiments. SPM8

toolbox [75] is used for pre-processing recorded fMRI images. Realignment of im-

ages is followed by co-registration to an anatomical image which is also acquired as

a part of the experiment. Then, images are spatially smoothed with a 10-mm FWHM

isotropic Gaussian kernel.

4.1.2 Human Connectome Project HCP500 Data Set

It is known that increasing the layer count of deep neural network increases the num-

ber parameters exponentially. Because of the large amount of parameters in the deep

1http://neuro.ceng.metu.edu.tr
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Table 4.1: Number of samples for each type of stimulus.

Images per Run Run Duration (sec)
Working Memory 405 301
Gambling 253 192
Motor 284 214
Language 316 237
Social Cognition 274 207
Relational Processing 232 176
Emotion Processing 176 136

neural networks, ample amount of samples is necessary for training them. Otherwise

such a learning model can easily overfit to the training samples. HCP500 dataset gath-

ered as a part of the Human Connectome Project [22], is used to train the deep neural

networks formed in this thesis to overcome overfitting problem. Although structural

MRI and resting state fMRI data are also provided in the dataset, only task-evoked

fMRI (tfMRI) data is utilized. tfMRI data consists of 500 healthy adult subjects col-

lected in the scope of HCP. In this thesis, pre-processed images of 97 subjects are

used to train the suggested deep neural networks due to our limited computational

power. tfMRI images of each sample is passed over pre-processing steps explained in

the section 2.2. Each subject is exposed to seven different types of stimulus namely;

working memory (WM), gambling (GB), motor (MT), language (LG), social cogni-

tion (SC), relational processing (RP) and emotion processing (EP). 1940 fMRI im-

ages are employed from each subject under these 7 types of stimuli. For each type

of stimulus data is collected within only one run. In table 4.1, number of samples

for each type of stimulus is given. Note that, the data is collected from each of the

97 subjects. Therefore, totally 188180 fMRI images are enjoyed in classification ex-

periments. Although such amount of samples are collected within HCP500 data set,

having ∼ 150.000 voxel per sample forces research to make supervoxel-based anal-

ysis. Experimental paradigm of each experiment can be studied from [76]. In this

thesis super-voxels are selected as the ROIs of AAL regions.
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4.2 Brain Decoding on HCP500 Data Set

As mentioned in section 4.1.2, HCP500 data set consists of samples which belong to

seven different cognitive task categories. Goal of experiments applied on the HCP500

data set is decoding the cognitive state of test subjects using labeled tfMRI images of

training subjects. When the 3D sequential brain volumes of each subject is separated

into training and testing samples, a simple classifier, such as linear support vector

machine explained in section 2.3.3 gives classification result of 100%. However,

combining the subjects in both data sets decreases classification performance signif-

icantly as explained in section 4.2.1. These results show us that non-linear mapping

exist between the fMRI images of different subjects.

4.2.1 Decoding Raw Data

Classification performances results of [1] given in table 4.2 show that the samples

from different subjects do not share the same feature space with each other. As it can

be seen from table 4.2, training a linear classifier; logistic regression or support vector

machine with linear kernel over multi-subject fMRI samples results with the classifi-

cation performance of the chance level. Note that, samples from WM task comprise

∼ 20.87% of the data. Because of the failure of linear classifier on multi-subject brain

decoding, non-linear classifiers; radial basis function kernel - SVM (RBFSVM) and

deep neural network are applied over the same data. In order to apply these architec-

tures over the multi-subject data, average voxel time series of each region for each

subject are obtained with fMRI are used in a vector form as a feature vector. This

vector is given as the input to these classifiers as explained in subsection 3.4.1.

Table 4.2: Multi-Subject Brain Decoding Using 3D Images of HCP S500 data set. [1]

Type of Classifier Architecture Mean Accuracy
Logistic Regression 116-7 20.81
Support Vector Machine 116-7 20.87
RBF Kernel - Support Vector Machine 116-7 47.97
Deep Neural Network 116-500-7 48.94
Deep Neural Network 116-500-500-7 50.74
Deep Neural Network 116-500-500-500-7 50.57
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In the table, first parameter of each classifier’s architecture represents the number of

features included in the input. Since average voxel intensity value of each ROI is used

as a feature, first parameter of each architecture is 116. Last parameter represents the

number of output classes, which is 7 for HCP S500 data set. For deep neural networks,

numbers at the middle of these two numbers are the number of hidden units located

in the hidden layers. Architectural detail of classifiers are given in the [1]. Although

in reference [1] classification experiment is performed using all 116 AAL regions,

during our experiments J is taken as 98. In other words, 98 regions of 116 AAL

regions are used. Regions spatially included in the Cerebellum are omitted due to

their irrelevance in the brain decoding tasks.

4.3 Including Connectivity Information

As mentioned in subsection 3.4.1, decoding cognitive states using voxel intensity

values doesn’t provide connectivity information among the regions. Recall that in

Chapter 3, we form two connectivity features. First one was Pearson correlation

between the anatomic region pairs, and the second one was the mesh network in the

neighborhood of each anatomic region. Feature vectors are obtained as explained

in the subsection 3.4.7. Implementation details of brain decoding with connectivity

information is explained below.

4.3.1 Decoding Correlation Data

First, model selection process is explained in order to provide a complete analysis of

applying deep neural networks on brain decoding tasks with connectivity information.

As it is known from the chapter 3, vanishing gradient is one of the most important

problems of the deep neural networks. In order to solve this problem, empirical anal-

yses are performed with a variety of activation functions, optimization techniques and

regularization methods. As mentioned in section 3.2.2, unsupervised learning is also

used to initialize weights of deep neural networks.

In this thesis, each deep neural network is pre-trained with stacked denoising autoen-

coder before using it as a classifier. Because correlation values are real-valued, least
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squares method is used as a cost function of unsupervised neural networks. Training

a deep neural network refers to two stage process in this thesis. In the first stage,

weights between the layers are initialized using unsupervised learning. At the second

stage, weights are fine-tuned with a supervised cost function. Although pre-training

supervised deep neural network in an unsupervised fashion improves the generaliza-

tion performance, the type of activation functions, optimization methods and regular-

ization methods also play critical roles on the quality of obtained representations. In

this thesis, those hyper-parameters are analyzed and validated empirically.

Since the early deep neural network studies use sigmoid (or tanh) function as non-

linear activation function of hidden units [54], primarily tanh is used as an activation

function. Although various initialization and regularization methods are applied dur-

ing the training phase of deep neural networks, the high dimension of input feature

space causes hidden units of upper layers to saturate, which results in vanishing gra-

dient problem. Sample of the saturation on the 3rd layer of the deep neural network

is shown in the figure 4.1, which represents the histogram of activation values gener-

ated from a random batch at 6th epoch of training. As it is given in the figure, most

of the units are saturated in the 3rd layer. Since most units of the uppermost hidden

layer are saturated, they can not propagate the gradient back to lower layers. In this

figure, the architecture of the network consists of an input layer with 4753 inputs, 3

hidden layers with 3000,2000 and 1000 units, respectively. Finally, 3rd hidden layer

is connected to output layer with 7 category label units. Also note that, optimization

techniques with global learning rate always results with worse performances than

per-parameter learning rate techniques. Therefore, to avoid the learning rate selection

problem, ADADELTA is used as an optimization technique for the experiments.

In order to solve the saturation problem, rectified linear units explained in Chapter 3

are used as an activation function of hidden units of the network. PReLU function is

selected as the activation function. This function is parametric version of the ReLU

function as shown in the chapter 3. It adds the capability of having a gradient within

the domain smaller than zero and doesn’t break the rule of making the representation

sparse, which is a known characteristic of the brain. Although weights are initialized

to very small values by scaling the Glorot initialization [77] with 0.1 and 0.01, great

amount of parameters and varying characteristics of samples force the system to have
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Figure 4.1: Histogram of activation function of 3rd layer hidden units with sigmoid

activation function. Input is the 4753 correlation values obtained between the pairs of

98 ROIs of HCP S500 data set.

the representation non-sparse. As it can be seen from the figure 4.2, a large number

of activation units have greater or smaller values than zero, that causes the system to

overfit fast. As it is shown in the [17] extracting sparser representations increase the

brain decoding performance.

Although large output values at the hidden layer cause system to overfit to training

samples, histogram of output of activation function of 4.2 shows that PReLU activa-

tion function saturates less than tanh (or sigmoid) activation function with pairwise

pearson correlation values of 98 regions.

In order to solve the overfitting problem, a recently developed technique called Batch

Normalization [69] is used. As explained in chapter 3, the goal of batch normalization

is to decrease the internal covariate shift to improve the convergence speed. It also

prevents the architecture from overfitting when the learning rate is high. When the

same data set is trained by adding a batch normalization layer, representation becomes

more sparse. Histogram of the output of activation function of 2nd layer when the

batch normalization is applied is shown in the figure 4.3. Note that histograms given

in the both figure 4.2 and 4.3 are obtained from a random batch in the 6th epoch.
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Figure 4.2: Histogram of activation function of 2nd layer hidden units with PReLU

activation function. Input is the 4753 correlation values obtained between the pairs of

98 ROIs of HCP S500 data set.

Due to representations most consistent with neurological findings are obtained using

the latest network configuration, it is chosen as the architecture in the experiments

performed in this thesis. Deep neural network architecture used in this thesis is given

in the figure 4.4. As it can be seen from the figure, features pass through dropout unit,

linear unit, batch normalization unit and PReLU unit three times.

Although it is shown in [1] that deep neural networks can decode the cognitive stim-

ulus better than classifiers which do not create hierarchical representations between

output and input layers, we apply the same analysis to understand whether it is also

valid for the correlation data. Goal of this analysis is to show that both spatial and

temporal hierarchies exist in the fMRI data. To obtain results, 5 random sampling is

used to determine training, test and evaluate data sets. Note that, 80% of subjects

are used as training set for each experiment. Remaining samples are divided into two

subsets to form test and validation data sets.

Decoding performances given in table 4.3 is obtained by averaging the result of 5

different experiments. As shown in the table, decoding the stimulus with DNN ar-

chitecture results with much better performance than SVM classifier, which is the

most commonly applied classification algorithm in the neuroscience literature. Ex-
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Figure 4.3: Histogram of activation function of 2nd layer hidden units with PReLU

activation function and Batch Normalization. Input is the 4753 correlation values

obtained between the pairs of 98 ROIs of HCP S500 data set.

Table 4.3: Decoding the Cognitive task of S500 Data Set by Using Correlation Data
With and Without Dropout.

Correlation Data Window Size
60 90 120

Correlation + 2 Level DNN 87.2 89.2 90.4
Correlation + 3 Level DNN 88.9 91.1 91.6
Correlation + 4 Level DNN 86.6 88.3 89.1
Correlation + 2 Level DNN (without Dropout) 81.6 84.6 86.0
Correlation + 3 Level DNN (without Dropout) 84.4 88.5 90.4
Correlation + 4 Level DNN (without Dropout) 81.8 83.6 85.6
Correlation + SVM 76.5 81.3 83.6
Correlation + KNN 68.4 74.5 78.9

periments are applied with 2, 3 and 4 layered-DNNs. Architecture with 3 hidden

layers results with the best performance with Pearson correlation vector.

Although type of activation function and optimization technique is determined by in-

vestigating the characteristics of the activation histograms, it is unfeasible to select

regularization methods using only training data. In order to decide on whether to

use regularization methods over the network or not, validation data set is utilized.

Using the cross-validation technique coefficients γL1 and γL2 for L1 and L2 regu-
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Figure 4.4: 3-Layered Deep Neural Network Architecture.

larization methods are found as 0.1 and 0.1. Logarithmic search space is used for

cross-validation. The effect of Dropout on the performance of deep neural network

is investigated by training the deep neural networks with and without dropout mech-

anism. Again by cross-validation it is observed that 0.9 dropout ratio for input layer

and 0.1 dropout ratio for hidden layers provides best brain decoding results. That

result is consistent with the noisy nature of the fMRI data. Note that for both input

and hidden layers dropout ratio of {0.1, 0.3, 0.5, 0.7, 0.9} are tested. Classification

performances with and without dropout mechanism can be observed from the table

4.3. Samples from all of 97 subjects are used to obtain results given in table 4.3.

In order to analyze chosen deep neural network architecture over the correlation data

with different subject counts and different window sizes, 12 different experiments are

applied over the HCP500 data set. Results are shared in the 4.4.

As shown in the table 4.4, to be consistent with the literature on the correlation anal-

ysis of fMRI data [78], windows with 60, 90 and 120 samples are used to obtain

Pearson correlation values between each anatomical region. Since the correlation

values are calculated independently at each stimulus, increasing the window size U

can result with the shortage of samples from EP stimulus. In order to analyze the

effect of subject counts on the brain decoding performance, same experiments are

re-performed using 40, 60, 80 and 97 subjects.

As it can be seen from the results on the table 4.4, increasing both number of subjects
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Table 4.4: Decoding the Cognitive Tasks Using Pearson Correlation Input Vector
With Varying Subject Counts and Window Sizes on HCP500 Data Set.

SubjectCount/WindowSize 60 90 120
40 83.96 87.55 88.28
60 86.21 88.49 89.21
80 86.45 89.53 90.75
97 88.92 91.1 91.64

and length of correlation window monotonically increase the brain decoding perfor-

mance.

As it can be seen from the table 4.3, DNN classifies cognitive states much better than

SVM and KNN methods. Yet it is known that the connectivity among the brain re-

gions can be represented by a more general model compared to Pearson correlation.

As mentioned before, mesh networks model the connectivity among supervoxels con-

sidering both locality and distributivity properties of the brain. Note that, AAL re-

gions are used as a supervoxel in this thesis. To make our model benefit the mesh

network, the mesh arc weights among the anatomic regions are also fed as an input

to the deep neural networks. Since relation among each ROI is captured with mesh

arc weights, we called them as global connections. Note that, the architecture param-

eters which provides best results using the pearson correlation vectors are used as an

architecture for classifying global connections into cognitive states.

4.3.2 Decoding the Mesh Model Weights

Although classifying cognitive states employing zero-order correlation provides bet-

ter performance than single time point intensity values, it is known that using global

relations between supervoxels improves the brain decoding performance [73]. In or-

der to utilize global relations within formed architecture, mesh model [45] is used to

obtain linear relation among supervoxels as explained in the section 3.1. Note that

supervoxels are again chosen as 98 ROIs of AAL regions.

After obtaining the linear coefficients between each supervoxel, these are fed into

deep neural networks as an input. It is known that coefficients of linear relations
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Table 4.5: Decoding Temporal Mesh Weights with number of architectures and clas-
sifiers.

Classification Result
Mesh Weights + 2 Level DNN 94.4
Mesh Weights + 3 Level DNN 95.6
Mesh Weights + 4 Level DNN 96.5
Mesh Weights + 2 Level DNN (without Dropout) 92.6
Mesh Weights + 3 Level DNN (without Dropout) 94.8
Mesh Weights + 4 Level DNN (without Dropout) 95.3
Mesh Weights + SVM 90.9

carry more information than pearson correlation values [73]. This implies that less

number of units are used in hidden layers. The best classification performance is ob-

tained with four-hidden-layered deep neural network as it can be seen in the table 4.5.

400, 300, 200, 100 units are used in hidden layers, respectively. We observe that 4-

layered network provides better results than 3-layered network using mesh weights.

In our opinion global connections provides more complex hierarchy than Pearson

correlation. Note that, results are obtained by averaging 5 different experiments per-

formed with randomly sampled training, test and validation data sets. All of the

samples from 97 subjects are used in these experiments.

As it is observed from the experiments applied in section 4.2, dropout layers with high

ratio is added after the input layer. As in the experiments conducted using Pearson

correlation input vectors, the dropout ratio of 0.9 in mesh model input layer results

with the best performance. Remaining architecture options are same with options

given in the section 4.2.

In the neuroscience literature, it is very important to specify the region of interests

for performed cognitive task. As mentioned in the subsection 3.4.6, to identify these

regions probabilistic approach is chosen. In order to find the active regions for the par-

ticular cognitive state, global connections which are most important for pre-trained

network is found by saliency analysis. Because mesh weights provide us the global

connections among each ROI, saliency analysis is applied over mesh weights. In the

images from 4.5 to 4.11, linear relations that maximize the related cognitive state are

given. Name of anatomical regions that play important role to obtain high output
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values for different types of cognitive states are given at the end of this chapter. Rep-

resented 50 mesh arc weights are determined according to absolute values of weights.

Figure 4.5: 50 mesh arc weights with highest absolute values for WM stimulus. Con-

nections are obtained by applying temporal mesh model over S500 data. 50 connec-

tions for WM stimulus are found by doing a saliency analysis over pre-trained neural

network.

Figure 4.6: 50 mesh arc weights with highest absolute values for GB stimulus. Con-

nections are obtained by applying temporal mesh model over S500 data. 50 connec-

tions for GB stimulus are found by doing a saliency analysis over pre-trained neural

network.
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Figure 4.7: 50 mesh arc weights with highest absolute values for MT stimulus. Con-

nections are obtained by applying temporal mesh model over S500 data. 50 connec-

tions for MT stimulus are found by doing a saliency analysis over pre-trained neural

network.

Figure 4.8: 50 mesh arc weights with highest absolute values for LG stimulus. Con-

nections are obtained by applying temporal mesh model over S500 data. 50 connec-

tions for LG stimulus are found by doing a saliency analysis over pre-trained neural

network.
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Figure 4.9: 50 mesh arc weights with highest absolute values for SC stimulus. Con-

nections are obtained by applying temporal mesh model over S500 data. 50 connec-

tions for SC stimulus are found by doing a saliency analysis over pre-trained neural

network.

Figure 4.10: 50 mesh arc weights with highest absolute values for RP stimulus. Con-

nections are obtained by applying temporal mesh model over S500 data. 50 connec-

tions for RP stimulus are found by doing a saliency analysis over pre-trained neural

network.

4.4 Transfer Learning with HCP500 and Object Recognition Data Set

Beside multi-subject brain decoding, we also transfer common representations among

different experiments with deep neural networks.
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Figure 4.11: 50 mesh arc weights with highest absolute values for EP stimulus. Con-

nections are obtained by applying temporal mesh model over S500 data. 50 connec-

tions for EP stimulus are found by doing a saliency analysis over pre-trained neural

network.

Figure 4.12: The block diagram of the suggested deep architecture. Note that this

architecture is trained in an unsupervised fashion.

In order to obtain a hierarchical and abstract representation from HCP500 data set,

deep neural network with three layers is trained with the pearson correlation val-

ues obtained from HCP500 data set in an unsupervised fashion. In order to provide

1st, 2nd and 3rd layer representations of the output layer of each layer in figure 4.12,

unsupervised training approach is utilized layer-by-layer as explained in the Chapter

64



3. It is known that upper layers of the unsupervised deep neural network provide

more abstract representation compared to the lower layers.

One of the major problems in transfer learning is the variations between the learning

and recognition data sets. The experimental setup of HCP500 data set, where we use

to learn the representation and object recognition task data set where we recognize

the cognitive states, are quite different from each other as explained at the beginning

of this chapter. The learned representations must handle the variances between these

two data sets. In order to block the experimental co-adaptation of features within

the architecture, a denoising operation is applied on each layer. Setting a random

subset of each layer’s input to zero, denoising operation provides the system to learn

abstract representations, which are affected essentially from the factors common in

each fMRI experiments. Using the samples from 7 different tasks as the training set

in the experiments, enables us to find the representations independent from the task

type.

Although parameters of the unsupervised network can be optimized with ADADELTA,

the hyper-parameters of the architecture can not be optimized with gradient-based

methods. In order to find the best value for the hidden neuron counts and the denois-

ing level ui at each layer, a grid search is applied by implementing cross-validation.

For each layer, H = {750, 1500, 3000} hidden neuron counts and U = {0.1, 0.3, 0.5}
corruption levels are searched. The greedy search method yields, 3000, 1500, 750 and

0.3, 0.1, 0.1 for hidden neuron counts and corruption levels for each layer, respec-

tively. In this thesis all of the deep neural network learning algorithms are imple-

mented using the Torch 7 framework.

HRF signals obtained in two different fMRI data sets reach the baseline value at

different time intervals, depending the type of the stimuli and the nature of the ex-

periment. In order to capture the full range of HRFs, the unsupervised deep neural

network is implemented with three different window sizes, used in object recognition

task.

In object recognition task, each stimuli is shown to a subject for a time interval of 4

seconds. Then, rest period lasts for 8, 10 or 12 seconds, with TR = 2 seconds. Since

the average time of returning to the baseline value is approximately 10 seconds for
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Table 4.6: SVM classification results of Pearson correlation inputs with different
window sizes of object recognition data set.

Subject ID / n 4 5 6
Subject 1 55.5 57.5 60.5
Subject 2 56 60.5 60.5
Subject 3 61.5 65.5 62
Subject 4 55.5 57.5 58
Subject 5 58.1 54.4 55
Average 57.3 59.1 59.2

Table 4.7: SVM classification results using the hierarchical features for the Pearson
correlation inputs with U = 4 on object recognition data set.

e1 e2 e3

Subject 1 61.0 62.5 64.0
Subject 2 61.5 64.0 64.5
Subject 3 64.5 66.0 65
Subject 4 59 58 63.0
Subject 5 63.8 64.7 66.8
Average 62.0 63.0 64.6

Table 4.8: SVM classification results using the hierarchical features for the Pearson
correlation inputs with U = 5 on object recognition data set.

e1 e2 e3

Subject 1 64.0 62.5 63
Subject 2 64.5 61 65
Subject 3 65 68 67.5
Subject 4 63 61.5 67
Subject 5 66.7 60 62
Average 64.6 62.6 64.9

the HRF, correlation window sizes U are taken as 4,5 and 6 for this task. In order

to find Pearson correlation from the windows of same time length for unsupervised

representation learning and stimuli classifying processes, 5,7 and 8 are chosen as U

values for the HCP500 data set.

In Table 4.6, classification performance using the pearson correlation values with

5 different subjects and 3 different window sizes of 4, 5 and 6 are shown for object

recognition task. Linear SVM classifier is used for each classification task throughout
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Table 4.9: SVM classification results using the hierarchical features for the Pearson
correlation inputs with U = 6 on object recognition data set.

e1 e2 e3

Subject 1 63 64 64.5
Subject 2 59 60.5 63.5
Subject 3 65.5 66 67
Subject 4 58 63.5 60.5
Subject 5 61.3 63.2 64.4
Average 61.4 63.4 64.0

Table 4.10: SVM classification results using the representation obtained with PCA
when window size U = 4.

750 1500 3000
Subject 1 54.0 56.5 56.0
Subject 2 53.0 52.5 53.0
Subject 3 60.0 59.5 60.0
Subject 4 51.0 51.0 51.5
Subject 5 56.0 55.5 57.5
Average 54.8 55 55.6

the experiments. In Table 4.7, 4.8 and 4.9 classification results with learned represen-

tations are shown. Note that e1, e2 and e3 represent the 1st, 2nd and 3rd layer repre-

sentation of unsupervised deep neural network, respectively. As it can be seen from

these tables, approximately 5% increase is observed when the learned representations

are used to compared pearson correlation values obtained from object recognition

data set, for each subject. These results indicate that the information in the learned

representation is transferred to a different data set successfully. Note also that, the

Table 4.11: SVM classification results using the representation obtained with PCA
when window size U = 5.

750 1500 3000
Subject 1 56.0 57.5 57.0
Subject 2 54.0 52.5 54.0
Subject 3 63.5 64.5 60.5
Subject 4 56.0 55.0 54.5
Subject 5 55.5 56.0 55.0
Average 57 57.1 56.2
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Table 4.12: SVM classification results using the representation obtained with PCA
when window size U = 6.

750 1500 3000
Subject 1 60.5 60.5 61.0
Subject 2 56.5 54.0 55.0
Subject 3 64.0 63.5 62.5
Subject 4 55.0 52.5 53.0
Subject 5 51.5 49.0 53.0
Average 57.5 55.9 56.9

Table 4.13: SVM classification results using the representation obtained with ICA
when window size U = 4.

750 1500 3000
Subject 1 56.5 51.5 55.0
Subject 2 55.0 53.5 53.5
Subject 3 63.0 59.0 62.5
Subject 4 54.0 51.5 52.0
Subject 5 60.5 58.0 55
Average 57.8 54.7 55.6

Table 4.14: SVM classification results using the representation obtained with ICA
when window size U = 5.

750 1500 3000
Subject 1 52.0 55.5 54.5
Subject 2 54.0 53.0 53.0
Subject 3 64.0 63.0 64.0
Subject 4 57.0 54.5 57.0
Subject 5 55.5 58.0 56.0
Average 56.5 56.8 56.9

Table 4.15: SVM classification results using the representation obtained with ICA
when window size U = 6.

750 1500 3000
Subject 1 60.0 61.5 59.5
Subject 2 60.0 56.0 54.5
Subject 3 63.5 59.0 61.0
Subject 4 55.0 52.0 55.5
Subject 5 50.0 54.5 50.5
Average 57.5 57.7 56.2
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classification performance of 3rd layer representation is the best on the average for

each window size.

To compare the transfer learning results obtained using deep neural networks with

commonly used techniques, common representations are also obtained with PCA

and Group-ICA [79]. For a fair comparison In order to transfer information from

HCP500 experiment to object detection experiment, pearson correlation feature vec-

tors obtained from object detection experiment are projected into basis obtained from

HCP500 data set with PCA and Group-ICA. As it can be seen from the results given

in tables 4.10-4.15, transferring information from HCP500 experiment to object de-

tection experiment decreases the generalization performance. Performances obtained

with deep neural networks significantly better than these performances. These results

show us that deep neural networks are more successful than commonly used methods

to detect experiment-independent common representations.

4.4.1 Chapter Summary

Experimental results of brain decoding obtained by deep neural networks and the state

of the art machine learning methods such as SVM and K-NN are given and compared

in this chapter. To provide what kind of stimuli are decoded in the experiments, chap-

ter started with the explanation of data sets. Then, the suggested architecture is tested

by various hyper-parameters. After selecting the best set of architecture parameters,

brain decoding experiments are conducted with different types of inputs. As it can be

seen from the results deep neural networks are more successful than SVM and Logis-

tic Regression classifiers on brain decoding task. Besides providing a better classi-

fication performance on supervised classification tasks, transfer learning can also be

performed on fMRI data with deep neural networks, better than commonly used PCA

and Group-ICA methods. As shown in the section 4.3, reducing the dimension of

small fMRI data set with an unsupervised deep neural network trained using HCP500

data set improves the classification performance on small fMRI data set. As well as

providing good brain decoding performance, probabilistic activation map of different

kind of stimulus is also obtained. Using these activation maps, consistency between

probabilistic activation maps and neuro-scientific findings can be analyzed.

69



Table 4.16: Name of Important ROIs for the emotion task

ROI Name Count of Edges Connected
MNI_Parietal_Sup_L.mat 2
MNI_Occipital_Inf_R.mat 6

MNI_SupraMarginal_R.mat 1
MNI_Hippocampus_R.mat 1

MNI_Precentral_L.mat 1
MNI_Frontal_Inf_Tri_R.mat 1

MNI_Postcentral_L.mat 2
MNI_Supp_Motor_Area_L.mat 5

MNI_Amygdala_R.mat 2
MNI_Parietal_Inf_L.mat 1
MNI_Fusiform_R.mat 3
MNI_Amygdala_L.mat 3

MNI_Frontal_Med_Orb_L.mat 1
MNI_Occipital_Inf_L.mat 2

MNI_Cingulum_Ant_L.mat 1
MNI_Occipital_Sup_R.mat 2

MNI_Paracentral_Lobule_R.mat 2
MNI_Frontal_Mid_L.mat 2

MNI_Frontal_Inf_Tri_L.mat 1
MNI_Lingual_L.mat 1

MNI_Supp_Motor_Area_R.mat 1
MNI_Fusiform_L.mat 4
MNI_Calcarine_L.mat 2

MNI_Frontal_Inf_Orb_L.mat 1
MNI_Cingulum_Post_R.mat 1

MNI_Insula_L.mat 1
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Table 4.17: Name of Important ROIs for the gambling task

ROI Name Count of Edges Connected
MNI_Parietal_Inf_R.mat 3

MNI_Rolandic_Oper_R.mat 3
MNI_Calcarine_R.mat 3
MNI_Pallidum_L.mat 1

MNI_Precuneus_L.mat 1
MNI_Calcarine_L.mat 6
MNI_Angular_L.mat 2

MNI_Occipital_Mid_L.mat 1
MNI_Occipital_Sup_R.mat 3

MNI_Vermis_10.mat 1
MNI_Vermis_6.mat 1

MNI_Frontal_Mid_Orb_L.mat 2
MNI_Insula_R.mat 2

MNI_SupraMarginal_R.mat 2
MNI_Temporal_Sup_L.mat 1

MNI_Rectus_R.mat 1
MNI_Frontal_Inf_Tri_L.mat 2

MNI_Frontal_Inf_Oper_R.mat 1
MNI_Heschl_R.mat 2

MNI_SupraMarginal_L.mat 1
MNI_Temporal_Sup_R.mat 1
MNI_Occipital_Mid_R.mat 1
MNI_Occipital_Sup_L.mat 2
MNI_Cingulum_Mid_L.mat 4

MNI_Parietal_Sup_R.mat 1
MNI_Lingual_R.mat 1

MNI_Frontal_Sup_L.mat 1
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Table 4.18: Name of Important ROIs for the language task

ROI Name Count of Edges Connected
MNI_Fusiform_L.mat 1

MNI_Frontal_Inf_Oper_R.mat 2
MNI_Postcentral_L.mat 2

MNI_Heschl_R.mat 2
MNI_Temporal_Sup_R.mat 5

MNI_Cuneus_L.mat 4
MNI_Cuneus_R.mat 3

MNI_Parietal_Inf_R.mat 5
MNI_Precentral_L.mat 1

MNI_Temporal_Pole_Sup_L.mat 1
MNI_Parietal_Inf_L.mat 2

MNI_Cingulum_Ant_L.mat 2
MNI_Occipital_Mid_R.mat 3
MNI_Occipital_Inf_L.mat 2

MNI_Fusiform_R.mat 1
MNI_Angular_L.mat 1

MNI_Occipital_Sup_R.mat 1
MNI_Cingulum_Mid_L.mat 1
MNI_Temporal_Sup_L.mat 2

MNI_Frontal_Mid_Orb_R.mat 1
MNI_Occipital_Sup_L.mat 1
MNI_Parietal_Sup_L.mat 1

MNI_Temporal_Mid_L.mat 2
MNI_Angular_R.mat 2

MNI_Occipital_Mid_L.mat 1
MNI_Insula_R.mat 1

MNI_Frontal_Sup_L.mat 1
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Table 4.19: Name of Important ROIs for the motor task

ROI Name Count of Edges Connected
MNI_Occipital_Inf_R.mat 2

MNI_Cingulum_Mid_L.mat 2
MNI_ParaHippocampal_R.mat 1

MNI_Heschl_R.mat 4
MNI_Calcarine_L.mat 3

MNI_Parietal_Inf_R.mat 4
MNI_Rolandic_Oper_R.mat 4
MNI_SupraMarginal_L.mat 2

MNI_Precentral_L.mat 1
MNI_Calcarine_R.mat 3

MNI_Postcentral_R.mat 1
MNI_ParaHippocampal_L.mat 1

MNI_Precuneus_R.mat 1
MNI_SupraMarginal_R.mat 5

MNI_Frontal_Med_Orb_R.mat 1
MNI_Postcentral_L.mat 1
MNI_Parietal_Inf_L.mat 2

MNI_Rolandic_Oper_L.mat 1
MNI_Frontal_Mid_R.mat 1

MNI_Angular_R.mat 1
MNI_Fusiform_L.mat 2

MNI_Occipital_Inf_L.mat 1
MNI_Frontal_Mid_L.mat 1

MNI_Supp_Motor_Area_L.mat 1
MNI_Frontal_Inf_Oper_R.mat 1

MNI_Cingulum_Ant_R.mat 1
MNI_Frontal_Inf_Oper_L.mat 1

MNI_Occipital_Sup_R.mat 1
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Table 4.20: Name of Important ROIs for the relational task

asd Count of Edges Connected
MNI_Temporal_Sup_L.mat 3
MNI_Parietal_Sup_R.mat 6
MNI_Parietal_Sup_L.mat 6

MNI_Cingulum_Mid_L.mat 3
MNI_Frontal_Inf_Tri_L.mat 1
MNI_Temporal_Sup_R.mat 2

MNI_Calcarine_R.mat 2
MNI_Occipital_Mid_R.mat 1
MNI_Temporal_Mid_R.mat 2
MNI_Frontal_Mid_R.mat 1

MNI_SupraMarginal_R.mat 4
MNI_Parietal_Inf_L.mat 3

MNI_Temporal_Mid_L.mat 1
MNI_Cingulum_Mid_R.mat 2

MNI_Precuneus_R.mat 1
MNI_Frontal_Sup_Medial_R.mat 1

MNI_Cingulum_Ant_L.mat 3
MNI_Pallidum_R.mat 1

MNI_Rolandic_Oper_R.mat 1
MNI_Precentral_L.mat 2

MNI_ParaHippocampal_L.mat 1
MNI_Hippocampus_R.mat 1

MNI_Lingual_R.mat 1
MNI_Precuneus_L.mat 1
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Table 4.21: Name of Important ROIs for the social task

ROI Name Count of Edges Connected
MNI_Cuneus_L.mat 8

MNI_Parietal_Sup_R.mat 5
MNI_Occipital_Mid_R.mat 4
MNI_Parietal_Sup_L.mat 3

MNI_Temporal_Mid_R.mat 3
MNI_Occipital_Inf_R.mat 1

MNI_SupraMarginal_R.mat 4
MNI_Occipital_Inf_L.mat 2

MNI_Occipital_Mid_L.mat 5
MNI_SupraMarginal_L.mat 5
MNI_Cingulum_Mid_L.mat 3

MNI_Insula_R.mat 1
MNI_Cingulum_Mid_R.mat 1
MNI_Cingulum_Ant_L.mat 3
MNI_Cingulum_Ant_R.mat 1

MNI_Cuneus_R.mat 1
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Table 4.22: Name of Important ROIs for the working memory task

ROI Name Count of Edges Connected
MNI_Occipital_Inf_R.mat 5
MNI_Occipital_Inf_L.mat 4

MNI_Cuneus_L.mat 5
MNI_Precentral_L.mat 1
MNI_Fusiform_L.mat 5
MNI_Fusiform_R.mat 3

MNI_Temporal_Sup_R.mat 1
MNI_Precuneus_R.mat 2

MNI_Cingulum_Mid_L.mat 1
MNI_Cingulum_Post_L.mat 2

MNI_Precuneus_L.mat 3
MNI_Rolandic_Oper_R.mat 3

MNI_ParaHippocampal_R.mat 2
MNI_Lingual_L.mat 1

MNI_Occipital_Mid_L.mat 2
MNI_Occipital_Sup_R.mat 2

MNI_Frontal_Inf_Oper_R.mat 1
MNI_Cuneus_R.mat 1

MNI_Supp_Motor_Area_L.mat 3
MNI_Occipital_Sup_L.mat 1

MNI_Frontal_Sup_Orb_R.mat 1
MNI_Parietal_Inf_L.mat 1
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this chapter, the results obtained in this thesis will be discussed and analyzed.

Future directions will be followed are also presented.

5.1 A Brief Summary

The main goal of this thesis is obtaining a common representation between fMRI

data of different subjects and different fMRI experiments. It is known that brain

has a hierarchical nature. Inspiring by this fact, deep neural networks are chosen

as a model. State-of-the-art brain decoding performances are obtained by using the

hierarchical representations extracted with deep neural networks.

One of the major obstacles against the multi-subject brain decoding studies is that

different subjects give different responses to the same stimulus as emerging fMRI

signals. We believe that obtaining an abstract and hierarchical representations from

fMRI data, this obstacle can be overcome. Utilizing the subset of HCP500 data set

with 97 subjects, deep neural networks are trained. Using unsupervised learning ap-

proach "denoising autoencoders", formed deep neural networks are pre-trained with

three different initial representations. Note that, hyper-parameters of these deep neu-

ral networks are found by cross-validation technique.

Hierarchical representation obtained by using deep neural networks are used for two

major tasks. For the first task, multi-subject brain decoding on the HCP500 data set,

these pre-trained networks are fine-tuned with the labels of HCP500 data set. As an
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input representation three different representations are used, namely average ROI in-

tensity values, Pearson correlation values and mesh arc descriptors. Note that, brain

decoding results with average ROI intensity values are obtained by [1]. Acquired

results show us that, deep neural networks are more successful than linear classi-

fiers commonly used in the neuroscience literature for brain decoding task. To obtain

better results with deep neural networks for brain decoding problem, architectural

choices are very important. According to our experiences two important problems

must be solved to obtain these results. First one is using fMRI data on deep neural

networks make them very susceptible to vanishing-gradient. To solve this problem,

sparse representations must be acquired using ReLU-type activation functions, de-

noising operations and first-order per-dimension optimization methods. Second one

is the natural differences between fMRI signal intensity values obtained from differ-

ent subjects. To normalize these intensity values batch normalization method can be

used. Brain-decoding experiments also show us the importance of connectivity in the

brain. As it can be seen from the Chapter 4, utilizing the connections between each

ROI provides the best brain decoding performance. There exist a ∼40% performance

gap between the brain-decoding with and without connectivity information.

For the second task, learned representations are used to improve the generalization

performance of object recognition data set. Pre-trained weights are used to obtain

hierarchical representations from object recognition data set. Then, these represen-

tations are used as a feature vector to train linear SVM classifier. Classification is

implemented by linear SVM to be consistent with the neuroscience literature. Ob-

tained results show us that, projecting the raw feature vectors to hierarchical feature

vectors using deep neural networks improve the generalization performance of brain

decoding significantly. To understand whether linear projection is ample to obtain

these results or not, PCA and Group-ICA are also used. Performance gap between

results obtained by deep neural networks and factor models is also significant.

After obtaining the brain decoding performance, we also visualize the most important

relations between ROIs for different cognitive states. These relations are obtained

by implementing saliency analysis over the trained deep neural network. Although

these linear relations are not examined decently, obtaining probabilistic maps for each

different cognitive states provides connectivity information about the brain.
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5.2 Future Work

We believe that our approach provides a biologically consistent framework for multi-

subject brain decoding and transfer learning on fMRI data. Yet, there are possible

extensions exist to improve the performance of our framework.

As a first step, eliminating the unrelated voxels before obtaining the average ROI

intensity values can enhance the performance. Although averaging the voxel intensity

values of each ROI decrease the effect of these voxels on the overall performance,

especially small ROIs are affected from them considerably.

Clustering voxels prior to averaging voxel intensity values can also increase the brain

decoding performance. Although AAL indices provide a biological way to cluster

voxels, clustering functionally similar voxels can provide more representative ROIs

compared to AAL ROIs.

Finally, we believe that extracting connectivity information from voxel intensity val-

ues can automatically increase the performance of our framework. Although provid-

ing both Pearson correlation and mesh arc weights increase the classification perfor-

mance, we believe that automatic extraction approaches can provide more abstract

representations. Recurrent neural networks can be utilized to extract connectivity

information from voxel intensity values.
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