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ABSTRACT

CREDIT DEFAULT SWAP VALUATION: AN APPLICATION VIA STOCHASTIC
INTENSITY MODELS

Namuslu, Merve
M.S., Department of Financial Mathematics

Supervisor : Dr. Seza Danışoğlu

Co-Supervisor : Dr. Hande Ayaydın Hacıömeroğlu

August 2016, 81 pages

The objective of this thesis is to study the pricing of a single-name credit default swap
(CDS) contract via the discounted cash flow method with reduced-form survival prob-
ability functions depending on stochastic intensity. The ability of the model in predict-
ing the market-observed spreads is tested as well by using bond and CDS data from the
US market. In credit risk modeling, the CIR (Cox-Ingersoll-Ross) model is used. The
main reason for using a reduced-form model in pricing the CDS contracts is the advan-
tages of such models in terms of being more flexible, practical and tractable. In model
calibration, each sample firm’s bond price is used while determining the optimal set of
parameters for the CIR default intensity process. For this purpose, the firm’s stochastic
default probabilities are estimated within the least squares framework. Data on two of
the Dow Jones 30 Index constituents, the Coca-Cola Company and JPMorgan Chase,
are used in the analyses. The term structure of daily bond prices that are used to esti-
mate the hazard rate parameters and the daily prices of the firms’ CDS contracts that
are used to test the success of the model are obtained from Thomson Reuters. The
model’s success is tested over two distinct time periods. The first period is from July
2008 to September 2008 (pre-crisis) and the second period is from January 2016 to
March 2016 (post-crisis). The proxy for the risk-free interest rate is the federal funds
rates.
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ÖZ

KREDİ TEMERRÜT SWAP PRİMİNİN HESAPLANMASI: BİR STOKASTİK
YOĞUNLUK MODELİ UYGULAMASI

Namuslu, Merve
Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Dr. Seza Danışoğlu

Ortak Tez Yöneticisi : Dr. Hande Ayaydın Hacıömeroğlu

Ağustos 2016, 81 sayfa

Bu çalışmanın amacı indirgenmiş nakit akımı yöntemi kullanılarak kredi temerrüt swap
priminin hesaplanmasını stokastik yoğunluğa bağlı olan indirgenmiş formdaki temerrü-
te düşme olasılığı fonksiyonu ile incelemektir. Ayrıca kullanılan bu modelin piyasa
kredi temerrüt swap primlerini tahmin edebilme becerisi bono ve tahvil ve kredi temer-
rüt swap verileri kullanılarak test edilmiştir. Kredi riski modellemesinde CIR (Cox-
Ingersoll-Ross) modeli kullanılmıştır. Bu tezde kredi temerrüt swap priminin indirgen-
miş formdaki bir model ile hesaplanmasındaki temel neden bu modellerin daha pratik,
daha kolay uygulanabilir ve çözümlenebilir olmasıdır. Kalibrasyon aşamasında her-
bir firmanın bono ve tahvilleri, CIR temerrüt yoğunluğu hesaplama modelinin opti-
mal parametre grubunu belirlemek için kullanılmıştır. Bu amaçla, firmaların stokastik
temerrüt olasılıkları en küçük kareler yöntemi kullanılarak hesaplanmıştır. Analizde
Dow Jones 30 endeksinde bulunan firmalardan Coca-Cola Company ve JPMorgan
Chase kullanılmıştır. Stokastik yoğunluk fonksiyonlarını hesaplamak için kullanılan
günlük bono ve tahvil verileri ve modelin başarısını test etmek için kullanılan kredi
temerrüt swap kontratı verileri her firma için Thomson Reuters veri tabanından alınmış-
tır. Modelin başarısı iki farklı zaman aralığında test edilmiştir. Birinci zaman aralığı
Temmuz- Eylül 2008 (kriz öncesi) ve ikinci zaman aralığı Ocak-Mart 2016 (kriz son-
rası) şeklindedir. Risksiz faiz oranı olarak New York Merkez Bankası bankalararası
para piyasası faiz oranları kullanılmıştır.
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Anahtar Kelimeler : Kredi temerrüt swap primi, indirgenmiş formdaki modeller, CIR
modeli, yoğunluk değeri, batmama olasılığı, batma olasılığı

x



To My Family and
My Fiance

xi



xii



ACKNOWLEDGMENTS

I would like to express my very great appreciation to my thesis supervisor Assist. Prof.
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CHAPTER 1

INTRODUCTION

One of the fundamental risks that financial and non-financial institutions are exposed
to is the credit risk. Credit risk is the uncertainty in a counterparty’s ability to meet
its financial obligations. In the years leading to the Global Financial Crisis (GFC) of
2008, credit markets grew rapidly and several new financial instruments were designed
that allowed the market participants to trade credit risk around the world. As a matter
of fact, the fundamental nature of credit risk is not a new idea since it is the first and
foremost risk that is addressed by the Basel Committee regulations since the 1980s.
In spite of their popularity and very high volumes of trade, most credit-risk-based
financial instruments have quite complex cash flow and payment structures that are
difficult to understand. In fact, one of the main reasons of the credit crisis that started
in the US is argued to be this lack of understanding of the credit and liquidity risk
concepts in financial markets. According to the Basel Committee, today banks are still
exposed to credit risk as a leading threat to the viability of the banking sectors in the
long-run. As a result, it has become even more important for all participants of the
financial markets to develop a better understanding of the credit risk [89].

Since its emergence in the 1990’s, the credit derivatives market has experienced dra-
matic growth because it provides financial institutions and investors with adaptable
tools to create synthetic risk exposure, customized by focusing on their specific needs.
Before the increase in the volume of credit derivatives, risk management techniques
were limited to traditional financial analysis. The International Swaps and Deriva-
tives Association (ISDA) introduced credit derivatives in 1992 at their annual meeting.
Since the market’s inception in 1993, financial institutions have developed many new
and exotic credit risk related derivative products as major hedging instruments. Some
examples of such instruments are the credit default swap (CDS), collateralized debt
obligations (CDOs) and credit linked notes (CLN) [37, 55, 51].

The CDS contracts are one of the most commonly traded types of credit derivatives.
According to ISDA, the notional amount of credit default swaps, representing one of
the largest and fastest growing financial product markets globally, passed $2 trillion in
2002 [1]. Moreover, the notional amount outstanding of credit default swaps (CDS)
grew by 37 percent to $62.2 in the second half of 2007 from $45.5 trillion at mid-year.
The CDS market’s notional principal growth in 2007 was 81 percent from $34.5 trillion
at year-end 2006 [2].
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A credit default swap is a contract providing a protection to its buyer against the losses
caused by the occurrence of credit events like downgrades or defaults. The underlying
asset for a CDS contract is a debt instrument issued by a corporation or a government.
In exchange for the protection provided by the CDS contract, the buyer of the CDS
makes periodic fixed payments (CDS spreads/premiums) to the protection seller until
the contract’s maturity or until a credit event occurs, whichever comes first. The CDS
contracts can be written on single-name or a basket of reference entities (underlying
assets). The contracts are quoted with a CDS spread and a recovery rate on reference
entities in the market where bid quotes represent the price paid by the protection buyer
and offer quotes represent the price received by the protection seller [88].

The CDS contract has some advantages that made it one of the most popular credit
derivative instruments. For example, they are the most liquid hedging tools among
credit derivatives. As indicated by ISDA, CDSs strengthen the financial system. By
using CDSs to transfer credit risk to other investors, banks can provide more debt to
the market. Also, CDSs help reduce credit risk concentration since they distribute the
risk throughout the financial market. Moreover, credit default swaps provide informa-
tion about the credit quality of firms since they are important indicators of market’s
perception of the credit risk of firms. They have very high trading volume and they
respond to underlying asset’s price changes rapidly [7].

In fact, the importance of credit risk management has been well understood by financial
institutions during the GFC. Starting with the subprime mortgage problems in 2007,
GFC created a need for the better understanding of the credit derivative instruments
and their associated risks. As part of environment preceding the GFC, some financial
institutions took large positions in credit derivatives and loaned an excessive amount
of subprime mortgages. As a result of the complications that were created by these
positions, some of the famous and major players in the financial markets, such as Bear
Stearns, AIG, Lehman Brothers, Freddie Mac. and Fannie Mae needed government
assistance to cover their losses so that they could survive in the aftermath of the GFC.
Some of these firms even bankrupt as a result of their credit risk exposure [76].

Following the GFC, it was realized that although credit derivatives have a lot of ad-
vantages, they may also expose their holders to large amounts of risk. Credit deriva-
tives were blamed for being the main reason for the GFC because of their risks due
to their complex structures and large notional amounts arising from their speculative
use. Especially after the bankruptcy of the major derivatives dealers during the credit
crisis, the counterparty risk estimation and management has become an important is-
sue for the financial system as a whole. Not surprisingly, the modeling of credit risk
also gained more interest from financial institutions, regulators and academics [78, 43].
ISDA and Bank of International Settlements (BIS) imposed heavy regulatory measures
on CDS trading in order to strengthen the financial system. With the new guidelines,
financial institutions had to meet certain obligations such as providing detailed reports
about their projected risks to regulatory institutions after determining the mark-to-
market value of their portfolios accurately. From an academic perspective, a significant
amount of research has been conducted in order to improve the pricing methodology
of credit derivatives. Needless to say, developing effective financial regulations needs
a better understanding of the pricing practices for the related instruments. For that pur-
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pose, after the credit crisis, practitioners as well as academics searched for better and
effective models for estimating credit derivative prices and associated risks that might
be faced as a result of a position in these instruments [37].

In line with the increased interest in financial markets, this thesis puts forward a
methodology that first evaluates the credit risk of the underlying asset and then uses
this information to price the credit default swap contract written on that asset.

For the purpose of pricing the CDS spreads, two types of credit risk models have been
proposed in the literature since the 1970s: structural (firm value-based) and reduced
form (intensity-based) models. In the structural approach, the probability of default is
associated with the capital structure of a firm and default time is defined as the time
that firm’s asset value falls to a sufficiently low level compared to its liabilities. In the
reduced-form approach, default is modeled as a jump process with an intensity func-
tion and default time is defined as a non-negative random variable with a distribution
depending on economic factors. In reduced-form models, at any instant, there is a
possibility of default [49]. In this thesis, a reduced-form model is used to price a CDS
contract. The main reason for choosing a reduced-form model is its advantage of being
more flexible, practical and tractable.

The specific objective of this thesis is to study the pricing of a single-name CDS con-
tract via the discounted cash flow methodology. First, the survival probability for the
underlying asset is estimated by using a reduced-form approach that models the de-
fault intensity within a stochastic framework. The widely accepted Cox-Ingersoll-Ross
(CIR) model is used during this step of the study. Second, the estimated survival prob-
abilities are used to price the CDS contracts. Third, the ability of the pricing model is
tested by using market data.

This thesis makes several empirical contributions to the existing literature in exploring
the information content of CDS prices for credit risk. Differently from other studies on
pricing CDS contracts via the discounted cash flow methodology, this thesis utilizes a
stochastic calibration process to determine the optimal set of parameters for estimating
the survival probabilities for the issuer of the underlying asset of a CDS contract. In
addition,the ability of the model in predicting CDS prices is tested by using market
data that allows to perform the tests in two different industries (financial versus non-
financial) and two different time periods (pre-GFC and post-GFC). The remainder of
the thesis is structured as follows: Chapter 2 provides a detailed literature review of the
pricing methodologies of credit default swaps. Chapter 3 discusses the characteristics
of CDSs and provides background information on the credit derivatives market. This
chapter also discusses the role of the CDS contracts in the GFC. Chapter 4 introduces
a pricing methodology for valuation of CDS contracts, discusses the pros and cons
of different pricing models and justifies the selection of the model used in the thesis.
Chapter 5 provides information regarding the calibration methodology and presents
the data used in the empirical part of the study. Chapter 6 presents the results of model
estimation as well as performance tests regarding the ability of the model in predicting
CDS spreads. Finally, Chapter 7 concludes the thesis and provides recommendations
to further improve the selected model.
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CHAPTER 2

LITERATURE REVIEW

There is a large literature on credit risk modeling and the number of studies conducted
on the subject increased especially after the Global Financial Crisis of 2008 [42]. Since
credit risk is the risk of default on a debt due to the borrower’s failure to make pay-
ments, a credit risk model generates an estimate of the default risk of the debtor. The
spread paid on a CDS contract is paid as a compensation for bearing this credit risk
and its estimation has become a popular topic in the literature along with the expansion
of the credit risk studies. The rapid growth in the CDS market in the 2000s brought
about the development of several methods for pricing the CDS spreads. This chapter
of the thesis provides a detailed review of the existing literature on the methods of
determining the CDS spreads based on the default probability of the reference obligor.

When the literature on CDS contract pricing is examined, it is seen that there are two
major lines of research on the subject. The first line of research uses structural models
and the second one utilizes reduced form models in the process of CDS pricing. In
structural models, the idea is to describe the default as an event based on the internal
structure of the firm, so that default is driven by the value of firm’s assets and debts
[48]. In other words, structural default models associate creditworthiness of a firm with
its economic and financial status. These models depend on the assumption that asset
prices follow a geometric Brownian motion which is the simplest continuous stochastic
process. Further, these models assume that the default occurs endogenously when the
market value of the firm falls below either some predetermined default boundary or the
value of its debt [98]. These types of models are based on the option pricing model
of Black and Scholes(1973) and Merton (1973) [10, 83]. The literature of firm-value
based models on credit risk starts with the 1974 study of Merton in which he applies
the option pricing theory to the modeling of the debt of a firm [84, 44, 34].

Observing that both equity and debt can be seen as options on the value of a firm’s
assets, Merton (1974) proposes a simple firm-value-based model to price risky corpo-
rate debt. His model is typically accepted as the first modern model of default. The
intuition behind the Merton model is that default occurs at the time of debt maturity if
the value of a firm’s assets is lower than its outstanding debt maturing at a promised
time. In Merton’s model, the capital structure of the firm is assumed to be composed
of equity and debt which is represented by a zero-coupon bond with maturity T and
face value D. Following this assumption, the equity of the firm can be regarded as a
European call option written on the asset value with maturity T and strike price D.
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A default occurs at time T if the option is not exercised, since it means that the face
value of the bond is larger than the value of the firm at time T . This approach indicates
that default can only happen at the maturity of the zero-coupon bond. Following this
financial invention, Merton derived an explicit formula for the value of the risky bonds
which can be used to estimate both the credit spread between a risky and a default-free
bond and the default probability of a firm [34, 13, 56, 76].

Besides being simple and intuitive, Merton’s model is a major breakthrough in the field
of pricing defaultable debt [94, 7]. However, it contains some limitations because of
the assumptions made in order to set up the model and this makes the model unrealis-
tic, therefore, not applicable in practice. As Mason and Rosenfeld (1984) and Jarrow
and Van Deventer (1999) have shown, as a result of such limitations, Merton’s model
fails to predict the default probability properly, and when it is used as an input in CDS
pricing, it tends to underestimate the CDS spreads [65, 63, 45].The first limitation of
the Merton model is the assumption that the default or credit event can only happen
at maturity. However, in practice, default can take place at any time during the life
of a bond. Second, the assumption regarding the capital structure of the firm is not
realistic since most firms do not have debt that consists of only zero-coupon bonds. In
practice, most firms have more complex debt instruments [94]. Third, Merton assumes
that firms cannot issue additional debt until maturity. Therefore, the marginal default
probabilities decrease in the Merton model. In practice, as a result of firms issuing
additional debt while they have other debt already outstanding, the marginal default
probabilities may increase. Moreover, some restrictions arise from the constant inter-
est rate assumption and the omission of the correlation between credit risk and interest
rates [7]. An additional important problem about Merton’s model is the unobservabil-
ity of the firm’s asset value process which leads to some valuation errors in the pricing
process [37]. Over the years several structural models that extend and implement Mer-
ton’s model have been proposed in the literature in order to overcome these and some
other shortcomings of the Merton model [94, 45].

A pioneering first passage model was proposed by Black and Cox (1976) as an ex-
tention of the Merton model [9]. In their model, Black and Cox relax the assumption
that default can only happen at maturity [37]. This study is the first to introduce the so
called first-passage models in which a firm goes into default when its asset value falls
for the first time below a certain threshold [34]. On the one hand, similar to the Merton
model, Black and Cox also describe the asset value process as a geometric Brownian
motion [49]. On the other hand, unlike the Merton model, Black and Cox’s model
adjusts for more advanced debt structures and defines the default time as the first time
that a firm’s asset value hits an exogenously fixed, time-dependent exponential default
barrier. These default barriers represent safety covenants included in the debt inden-
ture. When the asset value of the firm hits the fixed covenant level, debtholders have
the right to force the firm into default and obtain control over the firm’s assets, while
the shareholders receive nothing. That is to say, the equityholders have a barrier option
on the firm’s assets getting knocked out if the firm’s asset value hits a fixed barrier.
In such a setting, it is possible to estimate the risk-neutral survival probabilities until
the time that the value of the firm’s assets stays above the fixed barrier. Since in the
first-passage models default is possible at any time, default probability, and as a re-
sult, credit spreads are larger in magnitude compared to those obtained by the Merton
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model. This result may imply a better approximation of market spreads by the Black
and Cox model [94, 7, 9].

Recall that in Merton model, the debt of the firm consists of a single zero coupon bond.
Geske (1977) extended the Merton model by adding more complex debt structures
like coupons and payment limitations [40]. He modeled the firm’s debt structure as a
collection of several coupon bonds and by taking the equity of the firm as a compound
option, Geske obtained a formula to price the firm’s coupon-paying debt [7, 43]. On
each payment date, the equityholders have the option to continue controlling the firm
until the next coupon date by paying the exercise price that is equal to the coupon
payment. The last option held by the equityholders becomes an option on the value of
the firm with an exercise price equal to the last coupon payment plus the bond’s face
value. The shareholders finance the coupon payments by issuing new equity. If the
equityholders are unable to refinance -in other words, when the value of the equity is
less than the coupon payment- the shareholders decide not to pay the coupon and the
firm defaults. In such case, the bondholders take control of the firm. Even though the
Geske model introduced some improvements over the Merton model, the assumption
that default can occur only on the debt payment dates makes his model unrealistic as
well [94, 7, 40].

There are additional models in the literature that, similar to Black and Cox, relax the
assumption that default can only occur at maturity, including the models proposed
by Kim, Ramaswamy and Sundaresan (1993), Hull and White (1995), Longstaff and
Schwartz (1995) and Bryis and de Varenne (1997) [67, 53, 80, 12, 76].One of the
common shortcomings of these models is the unrealistic assumption that the interest
rate is constant throughout the life of the bond. In order to relax the constant interest
rate assumption, stochastic interest rate processes are introduced and used in several
structural models [43]. For this purpose, Longstaff and Schwartz (1995) build on the
Black and Cox model in their study and use the model of Vasicek (1977) for the risk-
free interest rate process [37, 80, 96]. Longstaff and Schwartz model a stochastic
interest rate, assume the interest rate and the credit risk to be correlated, but the default
barrier in their model is constant. Bryis and de Varenne (1997) also use a generalized
Vasicek process for modelling the interest rate and adjust the Black and Cox model
with the aim of obtaining a stochastic default level equal to the principal debt payment
discounted at the risk-free interest rate [12]. Another model with a stochastic threshold
is proposed by Kim et al. (1993) [67]. In this model, Kim et al. assume the default
barrier to be a function of the coupon rate and model the risk-free interest rate process
by using the Cox-Ingersoll-Ross Model (CIR Model) described in Cox et al. (1985)
[18]. By replacing the Vasicek model with the CIR model, Kim et al. are able to avoid
generating negative interest rates as a result of parameter selection [7, 67].

The traditional structural models that are extensions of the Merton model use a diffu-
sion process where the firm’s asset value is assumed to follow a continuous path within
a stochastic process [49]. With the increased popularity of the CDS contracts in the
early 2000s, it became apparent that such structural models did not generate prices
that were consistent with the unusually high spreads that were observed on short-term
contracts [78]. In the structural models, the default of a firm is not an unexpected event
because under this process, a sudden drop in the firm value is impossible. However, in
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reality, the default probability of firms that are not in financial distress is not equal to
zero and downward jumps in the asset values may result in unexpected default events.
Zhou’s (1997) study is the first one to address such problems in stochastic models of
asset value and he proposed that it would be more reasonable to include random jumps
in the asset value process. In his model, the dynamics of the firm asset value consist of
two random components: a continuous diffusion component as in the classical struc-
tural models accounting for the marginal changes in the firm’s asset value and a dis-
continuous jump component accounting for the unexpected shocks in the firm’s value
process [94, 7, 99]1. In Zhou’s model, default may occur from either the diffusion or
the jump-diffusion process such that for the first, the asset value of the firm can hit the
default barrier for only one time whereas in the second one, it is possible for the asset
value to be below the default barrier [7]. The continuous changes in the value of the
firm assets are modeled as a geometric Brownian motion while the jumps are modeled
as Poisson-distributed events. Zhou (2001) argued that adding jumps into the diffusion
models is more convenient when modeling the default risk of a firm and he used a
geometric jump-diffusion process to explain the level of a credit spread [49, 8, 100].

Leland (1994) proposed to use endogenous default barriers in his study due to the
tendency of the stockholders to choose the default barrier level maximizing the firm
value [4, 8]. The extensions to Leland’s model were proposed by Hilberink and Rogers
(2002) who introduced a Lévy process with no positive jumps and by Lipton (2002)
who considered log-exponentially distributed jumps [50, 74, 7, 19, 77, 49, 13].

Traditionally, credit risk models have focused on the role of downward jumps for ex-
plaining negative surprises in credit quality. However, by allowing both upward and
downward exponentially distributed jumps, Kou (2002) modeled the asset value of the
firm as a double exponential jump diffusion (DEJD) process. Two-sided exponential
jumps allow for both the under- and overreaction of the market to the surprise arrival
of exogenous news or information. Kou’s model is a good representation of the lep-
tokurtic and highly skewed returns that often exist in financial markets. In fact, the
double exponential jump diffusion model initiated by Kou is a particular case of the
Lévy processes. The double exponential distribution has two empirical features. First,
it has the leptokurtic feature of the jump size that makes an important contribution to
the literature by providing more peaked and more fat-tailed return distributions com-
pared to those provided by the Merton model. Second, it has the memoryless feature
that provides an easier calculation of expected mean and variance terms and makes it
easier to solve the problem of overshoots due to the fact that the overshoot of a jump
through a strike is also exponential [68, 8, 19].

Some of the other studies on double exponential jump diffusion models of CDS spread
pricing are carried out by Ramezani and Zeng (1998) who assumed that good and bad
news are produced by two independent Poisson processes in their Pareto-Beta Jump-
Diffusion model in which jump magnitudes are drawn from the pareto and beta distri-
butions; Asmussen et al. (2004) who obtained an explicit formula for the first-passage
time problem; Kou and Wang (2004) who extended the analytical tractability of the
Black-Scholes-Merton model for path-dependent options with jump risk via Laplace

1 Jumps are rare events that are associated with the arrival of new information that has the potential of affecting
firm value, such as unexpected financial results, macroeconomic or company-specific announcements etc.
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transformation; Asmussen et al. (2008) computed the finite-time survival probabilities
exactly; Madan and Schoutens (2008) who applied a fast double Laplace transforma-
tion inversion in order to calculate survival probabilities; and, Chen and Kou (2009)
who studied credit spreads, jump risk, optimal capital structure and the implied volatil-
ity of equity options via a two-sided jump model extending the Leland–Toft endoge-
nous default model [91, 5, 69, 17, 49, 82, 81]. Ramezani and Zeng (2007) stated one
advantage of DEJD as the linearity of the process with independent increments and an
explicit transition density due to which they developed the econometric approach to
the DEJD process parameters estimation [92, 8].

The literature presents other reasonable alternatives for CDS pricing. For instance,
a pure- jump process with infinite activity can reflect both frequent small moves and
rare large moves. Carr et al. (2002) stated with some evidence from market prices of
equity and options that risk-neutral processes for equity prices appear to be pure-jump
processes of infinite activity and finite variation [15]. Hao, Li and Shimizu (2013)
addressed this important issue by studying the first passage time model over a fixed
default barrier for a pure-jump subordinator with a negative drift. They considered an
asset value process of infinite activity but finite variation in the model of Madan and
Schoutens (2008) [49].

Although the structural models have made important progress over the years in pricing
CDS spreads by making a strong reference to the financial characteristics of the firm,
in other words, by using a firm’s balance sheet and stock market information, they still
have some limitations which led to the introduction of reduced-form models with the
aim of overcoming such limitations [37, 76, 31]. In the traditional structural models,
the value of the firm follows a diffusion process so that default can be predicted just
before it happens since there is no sudden drop in the firm value; therefore, firms never
default by surprise [31, 100]. Reduced-form models do not relate the default with any
observable characteristic of the firm, and, in such models, the default is defined as a
stochastic variable i.e. an unexpected event whose likelihood is evaluated by a default
intensity process [76, 44]. Since in practice the default of a firm is often unexpected,
reduced-form models have a superior ability to capture such events, and, thus, outper-
form the traditional structural models [37]. Even though Zhou (1997) came up with
the idea to include random jumps in the asset value process in structural models, the
empirical performance of this improved version of the structural-form models is still
relatively poor [31, 48, 99].

The biggest challenge with the structural models is that they require very detailed
internal company information, such as the firm’s asset value, volatility of the asset
values, outstanding debt and its maturity, that may not be commonly observable in the
market if the firm is not a publicly held firm [58, 36]. Therefore, such models may
be hard to calibrate. Reduced-form models require less detailed information that is
typically available to the market participants so these models are easier to implement in
practice, allowing for the valuation of other securities and derivatives [76, 94]. In fact,
in reduced-form approaches, the probability of default can be obtained from market
prices [44]. Also, while structural approaches cannot incorporate credit rating changes
occuring quite frequently for risky corporate debt, reduced-form models are able to
catch such changes [31].
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The other disadvantage of structural models is that they cannot easily fit a given term
structure of spreads, specifically, they cannot easily match short term yield spreads
while reduced form models have the flexibility to refit the spreads of several credit in-
struments, also short term yields spreads, of different maturities [47]. In fact, different
parameters may be obtained when calibrating a reduced-form model to CDS market
quotes and this provides a good fit to the market [31]. Therefore, comparing with the
structural approach, the reduced-form approach is flexible and tractable [48]. More-
over, reduced-form models are computationally faster. In this thesis, a reduced-form
model is used due to the abovementioned advantages of such models.

In reduced-form models, default is described via an exogenous jump process. The
default time is the first jump time of a Poisson process with a stochastic or determin-
istic arrival intensity (hazard rate); in other words, it is a random stopping time of
a given hazard rate process [94, 48]. A Poisson process is a stochastic process and
usually used to model rare or discretely countable events. Since defaults are rare and
discretely countable, it fits for modeling defaults [94]. In such models, a firm’s de-
fault which does not depend on the value of the firm’s assets may occur with a positive
probability at each instance of time because firm defaults whenever the exogeneous
random variable shifts which is an unexpected event [90]. Reduced-form or intensity
based models aim to determine the statistical characteristics of the default time instead
of looking for the reasons of the default [45].

Jarrow and Turnbull (1995) are the first to suggest using the Poisson process for pric-
ing the derivative securities involving credit risk. They introduced the reduced-form
models in 1992 and then these models have been widely mentioned by later studies
[62, 90]. In their approach, they directly model the probability of default itself in order
to predict the default time instead of modeling the firm’s equity as in the structural
models. They achieved this by using a security pricing model when estimating the
probability of default [45]. Jarrow and Turnbull assumed that the stochastic process
of default-free term structure and the default process are independent; therefore, term
structure and default issues can be handled separately in their model. In reduced-form
models, the goal is to model the intensity, so that the probability of default which de-
pends on the intensity (hazard rate) process can be calculated. Jarrow and Turnbull
model has two case, namely homogeneous and inhomogeneous cases. As seen in Jar-
row and Turnbull (1995), the simplest version of the reduced-form models is the homo-
geneous Poisson process case where the intensity is taken as constant. However, with
constant intensity, the default time is exponentially distributed and only constant CDS
spreads can be obtained across maturities which is unrealistic since the CDS spreads
in reality are upwards and downwards sloping for a given maturity [94]. Therefore,
homogeneous intensity model fails when calibrating to the market data. The solution
for this problem is to define the intensity as a deterministic function of time which is
to get an inhomogeneous case for Jarrow and Turnbull’s model. By an inhomogeneous
Poisson process, a more realistic CDS spread curve can be obtained in the calibration
[94].

Jarrow, Lando and Turnbull (1997) proceeded with the studies on reduced-form mod-
els [61]. They extended the work of Litterman and Iben (1991) by studying the term
structure of credit risk spreads in a model in which the default process follows a dis-
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crete state space Markov chain in credit ratings [79]. They are the first to explicitly
incorporate credit rating information into the valuation method in their model and this
approach is practical when estimating the probability of being in a given credit class
for a certain time period starting from a specific credit class. They assumed that the
default-free term structure and the default process are statistically independent so that
it would be adequate to determine a distribution for the default time on the purpose of
uniquely determining the progress of the risky debt’s term structure with the martin-
gale probabilities. Therefore, they made contribution to the literature of reduced-form
models in the sense that they explicitly model this distribution as the first hitting time
of a Markov chain where the credit ratings and default are the relevant aspects. They
exemplified the fact that the default probability increases as the credit rating decreases
by showing that default probability for first class is lower than the second class and
default probability for second class is lower than the third class among three different
ratings [90].

Although inhomogeneous intensity model can reproduce the CDS term structure out-
standingly when calibrated to the market data, it misses out an important point. That
is, in a model with deterministic intensity, the obtained survival probabilities are also
deterministic and the only information related to default risk arriving over time is the
only fact of survival to date. However in reality, there may be new information asso-
ciated with the credit quality of the firm, beyond the survival, arriving as time passes.
Arrival of new information would change the intensity randomly. Therefore, it can be
assumed that the intensity varies with an underlying state variable such as credit rat-
ings, equity price of an issuer or distance to default. In this sense, modeling intensity
as a random process is reasonable. It was Lando (1998) who proposed the stochastic
intensity model [72]. Following Lando, default is modeled as the first jump of a dou-
bly stochastic Poisson process i.e. as a Cox process. This model is not different from
that of Jarrow and Turnbull, in fact, the only difference is that default follows a Cox
process instead of a Poisson process. A popular choice of this approach is modeling
intensity with CIR process named after Cox, Ingersoll and Ross (1985). In fact, they
suggested a single factor model for the term structure of interest rate; however, it can
be easily applied for intensity process by changing the interest rate for the intensity
[18, 94, 29, 73].

Similar approach was used by Duffie and Singleton (1999) as they assumed that the de-
fault is an unexpected event given by a hazard-rate process as in the other reduced-form
models. Their framework was different from the other reduced-form approaches in the
sense of parametrization of losses at default in terms of the fractional reduction in mar-
ket value with respect to risk neutral probability measure [27, 57, 90]. They focused on
applying the techniques which is originally developed for default-free term structure
modeling to the term structure of defaultable interest rates [51, 90]. They indicated that
when estimating default hazard rates, it is more tractable to use loss-of-market value
assumption rather than a loss-of-face value assumption. They showed that the present
value of the promised payoff which is discounted by the default adjusted short rate
would give the price of relevant defaultable claim. An important characteristic of their
valuation method is that the mean-loss rate is given exogenously meaning that default
rates and fractional recovery rates does not depend on the value of the contingent claim
and so the securities with default risk can be priced as in the standard valuation models
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by using a default adjusted short rate instead of default-free rate [90].

In their article, Madan and Unal (1998) presented one of the first intensity-based credit
risk models by assigning the intensity to be a function of the excess return on the firm’s
equity which implies that their model combines characteristics of both structural and
reduced-form models so that it is called a hyrid credit risk modeling [82]. When the
intensity is assumed to change with time and to be directly linked to the properties
of the loan, default intensities can be treated as they are dependent on some observ-
able variables affecting probability of default such as market equity price, GDP index,
duration of loan. In fact, Carling et al. (2007) showed that accounting variables and
macroeconomic variables are most powerful to explain the credit risk [14, 90].

Duffee (1999) used the framework of Duffie and Singleton (1999) with the aim of
pricing corporate bonds which are not callable. Duffee assumed that the instantaneous
default probability of a firm follows a translated single-factor square-root diffusion pro-
cess and default process is correlated with the default-free term structures that means
default is an unexpected event represented by a jump in a Poisson process and corre-
lated with the term structure. With the specifications in Duffee’s model, closed-form
solutions to risky zero-coupon bond prices can be obtained [23, 90].

One of the most famous reduced-form models of CDS valuation belongs to Hull and
White (2000). Their model starts out by calculating the risk-neutral probability of
default at different future times from the yields on bonds issued by the reference entity.
To do this, the model assumes the default probability of the risky bond’s issuer as
the only explanation of a price differential between a riskless and risky bond so that
this differential equals to the present value of the cost of reference entity’s default.
The model calculates the probability of default of the firm at different future times
by using expected recovery rate and bonds with different maturities [55]. Hull and
White (2001) extended their valuation method by incorporating the default correlations
between different entities so that their new model reflects counterparty default risk in
CDS valuations. As the default correlation between CDS buyer and seller increases,
the impact of the default correlation on the counterparty default risk also increases
[54, 56].

Some other researches on CDS contract valuation with reduced-form models are also
remarkable for the literature. Nielsen and Ronn (1998) utilized non-linear least squares
on cross-sectional data to calculate a log-normal spread model [87]. Duffee (1998)
and Keswani (2000) applied maximum likelihood method with Kalman filtering to get
parameter estimates of CIR process from time series data where Dülmann and Wind-
fuhr (2000) and Geyer, Kossmeier, and Pichler (2001) applied it to obtain parameter
estimates of CIR and Vasicek models for instantaneous credit spread [22, 66, 30, 41].
Janosi, Jarrow and Yildirim (2002) and Frühwirth and Sögner (2001) calculated the
hazard rate parameters from cross-sectional data on a day-to-day basis by using non-
linear squares [60, 39]. Duffie, Pedersen and Singleton (2003) estimated a multi factor
model with Vasicek and CIR processes by using an approximate maximum likelihood
method [51, 26]. Jarrow and Yu (2001) applied the primary-secondary framework in a
way that default process of secondary firms are dependent on macrovariables such as
interest rates and also on the default processes of primary firms whose default process
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is merely dependent on macrovariables [64, 31]. In a simple jump-diffusion setting for
correlated default intensities, Duffie and Garleanu (2001) showed the impact of cor-
relation for the market valuation by following a pre-intensity model in which default
time of each obligor has some pre-intensity process [25, 36]. Duffie and Singleton
(2003) showed that the relation between the intensity and the survival probabilities can
be seen as the relation between a zero coupon bond and the short rate [28, 94]. Leung
and Kwok (2005) introduced the concept of interdependent default correlations be-
tween the protection buyer, the protection seller and the reference entity [75, 31]. One
attempt to improve the reduced-form models by linking default intensities to the firm’s
fundamentals is Bakshi-Madan-Zhang (2006) (BMZ). They related default intensities
to several measures of default risk and found that the leverage gives the best model
in that sense. BMZ also showed that yield spreads of corporate bond are susceptible
of short term interest rate [6, 93]. By relaxing default intensity specifications and al-
lowing heterogeneous default probabilities, Mortensen (2006) extended the model of
Duffie and Garleanu (2001) and presented a semi-analytical valuation methodology
in a multi-variate intensity-based model in which default intensities are modeled as
correlated affine jump-diffusions [86, 36]. Dunbar (2007) introduced a three-factor
reduced-form model incorporating liquidity proxy of market conditions [32].

Literature on modeling CDS spreads is still growing. Some of the abovementioned
CDS pricing models will be investigated in detail in the following sections. In this
thesis, Cox model will be applied to model the default time, in other words, the inten-
sity function will be considered as a doubly stochastic Poisson process which provides
flexibility by letting the intensity not only depend on time but also allowing it to be a
stochastic process. In order to model the intensity function, CIR process will be used.
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CHAPTER 3

CDS CONTRACTS AND THEIR ROLE IN THE GLOBAL
FINANCIAL CRISIS OF 2008

3.1 Credit Default Swap Contracts

Credit risk is the probability assigned to the risk of a loss due to the inadequacy of
a counterparty in a financial contract to meet its obligations [7]. This risk can be
isolated and traded by credit derivatives through a partial or total risk transfer [21]. A
credit derivative for which the payoff depends on the occurrence of the credit event is
a financial instrument used to transfer credit risk from the investor exposed to the risk
to another investor willing to take that risk [70]. In fact, credit default swaps are the
simplest type of credit derivatives.

A credit default swap is a contract that provides the holder of an underlying asset
protection against the losses caused by the occurrence of a credit event that is defined
very clearly on the contract [51]. Being an agreement between the protection buyer and
the protection seller, the CDS contract acts as a form of insurance and offers investors
the opportunity to either buy or sell default protection on a reference entity [35]. The
main idea is to transfer the financial risk of a reference entity from the protection buyer
(risk seller) to the protection seller (risk buyer). The underlying asset to the credit
default swap is often a bond or a loan. A CDS written on the bond of a single firm is
called a single-name CDS whereas a CDS written on a portfolio of bonds is called a
multi-name or basket CDS [45]. The contracts are quoted on reference entities in the
market with a CDS spread and a recovery rate where bid quotes indicate the price to
be paid by the protection buyer and offer quotes indicate the price to be paid to the
protection seller [7]. Since CDS contracts are traded in the over-the-counter market,
the maturity of the CDS contract is negotiated between the counterparties; therefore,
CDS maturities vary. The most frequently observed maturity is five years [45].

The CDS transaction mechanism includes three parties: a credit protection buyer, a
reference entity (a company) and a credit protection seller [98]. The CDS contract
is entered between two parties, the buyer of protection and the seller of protection
that agree to a contract terminating at either maturity of the underlying asset or credit
event, whichever occurs earlier. In order to acquire insurance against a credit event by
a third party (i.e. the reference entity who could be a corporation or sovereign issuer),
the protection buyer makes a regular stream of payments (premium payments) to the
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protection seller until the earlier of maturity or a pre-specified credit event. These
payments are expressed in basis points per notional amount of the contract. In return,
the protection buyer receives a contingent payment from the protection seller in the
case of a credit event. In other words, if a credit event occurs before maturity, the
payments come to an end and the protection seller gets a physical or cash settlement
on the exposure in order to cover the losses by paying the par value to the protection
buyer [36, 76]. In short, the protection buyer takes a long position in a CDS to obtain
a protection in case of a credit event of the reference entity and pays a premium to
the seller for that purpose whereas the protection seller takes a short position in this
contract and agrees to compensate for the loss caused by the credit event in exchange
for the premium payments [7]. In this manner, a CDS is similar to an insurance contract
[24]. The basic structure of a CDS contract is depicted in Figure 3.1.

Figure 3.1: CDS Transaction Structure

The CDS contract is a form of an over the counter (OTC) credit derivative and is used
by investors for speculation, arbitrage and hedging purposes. If an investor thinks
that the CDS spread is higher or lower than its fair price, it may be possible to obtain
arbitrage profits by taking advantage of such a mispricing in the market. The accurate
pricing of CDS contracts is an important issue for identifying such profit opportunities
in the market [76].

3.2 Elements of CDS

CDS contracts are usually constructed in accordance with the standards of ISDA and
include information on several terms related to the execution of the contract. These
issues are described below.

Reference obligation (Reference asset): This is the underlying asset for the CDS con-
tract. The underlying asset can be any debt instrument issued by a company. In the
case of a credit event, the insurance buyers acquire the right to sell the underlying debt
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instrument at its par value to the insurance seller [55].

Reference entity: The reference entity is the issuer of a reference obligation upon which
protection is bought and sold via a CDS contract. In other words, CDS contracts pro-
vide insurance against losses caused by the occurrence of a credit event to the reference
entity [7]. The reference entity is generally a bank, a corporation or sovereign issuer.

Credit event: A credit event is any unexpected and tangible negative change in the
credit quality of a borrower. The CDS contract is initiated to provide the buyer of
the contract an insurance against a credit event related to the reference entity [7]. If
a pre-determined credit event occurs, then the protection buyer receives a contingent
payment from the protection seller in return [45]. A credit event often refers to the
default of an obligor. ISDA has made an important contribution to the growth of the
CDS market by enhancing the efficiency and safety through standardization of the
definition of a credit event. The standard definition of a credit event given by ISDA
(2003) includes the following events, one or more of which can be involved in the
settlement of a credit default swap: [94].

(i) failure of reference entity to meet any payments,

(ii) obligation acceleration,

(iii) obligation default (e.g. violations of bond covenants) ,

(iv) repudiation/moratorium (the situation where the reference entity disclaims or chal-
lenges the validity of the relevant obligation),

(v) bankruptcy, or

(vi) restructuring that makes any creditor worse-off (e.g. coupon reduction or maturity
extension) [44, 7, 45].

Notional principal: The CDS notional principal is the face value of the reference obli-
gation that is put under the protection by the CDS contract [44]. The face value of the
bond (the reference obligation) is usually the amount that the issuer promises to pay at
the maturity date of the bond [21].

CDS spread (premium): The CDS spread measured in basis points is the price paid for
default protection. In other words, it is a specified percentage of the notional amount
paid regularly for the insurance purchased against the credit event. Periodic premium
payment is equal to the multiplication of the CDS spread by the notional value. CDS
spreads are expressed in annual terms and the payments are adjusted for the actual
number of days included in the payment period (3 months, 6 months, etc.). The CDS
premium represents the credit risk of the issuer of the reference asset and is generally
quoted as a premium over a swap rate or reference rate such as LIBOR. The period
between successive spread payments is stated in the contract and the first payment is
made at the end of the first period. If any pre-determined credit event occurs between
two payment dates, the protection buyer is required to make a final accrual payment to
the protection seller for the protection between the last payment date and the default
date [7, 16].
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The starting date of the CDS: The starting date of the CDS refers to the date when the
default protection starts.

The maturity date: The maturity date of the CDS refers to the end date of the contract
provided that no credit event occurs.

Default payment: Default payment is the payment that would be paid to the protection
buyer by the protection seller in the case of a credit event in order to buy the defaulted
bond. The contingent payment can be settled either physically or in cash. In the
case of physical settlement, the protection buyer delivers the reference security to the
protection seller and receives cash payment in amount of the par value (notional value)
[21]. Alternatively, in a cash settlement procedure, the protection buyer keeps the
underlying asset, but receives a payment equal to the difference between the notional
value and post-default market value of the reference asset [16]. Some pre-specified
number of days after the credit event, or default, the mid-market price or the recovery
rate (R) of the underlying asset is determined by a dealer poll or from price quote
services [76]. The cash settlement is then equal to 100 minus R percent of the notional
principal [37].

CDS contracts are generally settled physically. This is because with physical settle-
ment, protection sellers take the advantage of any rebound in prices caused by the rush
of purchasing deliverable bonds by protection buyers after the credit event becomes
public information [16]. An example may help to illustrate the difference between
physical and cash settlement. Assume that two parties enter into a five-year credit de-
fault swap on March 1, 2005 with a notional principal of $100 million and the buyer
agrees to pay 90 basis points annually for insurance against a credit event or default
by the reference entity. If the reference entity does not default , the buyer of the pro-
tection receives no payoff and pays $900,000 on March 1 of each of the years 2006,
2007, 2008, 2009, and 2010. Assume a credit event occurs on September 1, 2008 (half
way through the fourth year). If the contract specifies physical settlement, the buyer
has the right to sell $100 million par value of the reference asset for $100 million. On
the other hand, if the contract specifies cash settlement, the calculation agent gathers
poll dealers to determine the mid-market value of the reference obligation on a pre-
specified date after the credit event. If the value of the reference obligation is $40 per
$100 of par value on this date, then the cash payoff would be $60 million. In both
settlement procedures, the buyer is required to pay to the seller the accrual amount for
the days between March 1, 2008 and September 1, 2008 (approximately $450,000),
but no further payments would be required [55].

3.3 The Role of CDS Contracts in the Global Financial Crisis of 2008

In the run-up to financial crisis of 2008, the rapid innovation and excess usage of
financial instruments are observed in financial markets. As stated before, the CDS
contracts were one of these popular instruments. It is now widely agreed that the
unregulated multi-trillion dollar over-the-counter CDS market played a significant role
in the housing price boom and the financial crisis. This section aims to explain how
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the CDS market played a role in the financial crisis.

In the days following September 11, 2011, the Federal Reserve dramatically lowered
interest rates to historically low levels, from about 6.5% to just 1% in order to keep the
economy strong. 1% is a very low return for investors who are looking for profitable
investment opprtunities. These low rates also made it very easy for banks to extend
loans since they were able to borrow at very low rates from the Fed. The mortgage
interest rates are good example of such a decline. As published by Freddie Mac., the
rate on 30-year fixed-rate mortgages fell from 8% to about 5.5% between 2000 and
2003. With the decrease in mortgage rates that reduced the cost of borrowing, housing
prices increased as a result of increased demand. It can be said that the low interest-rate
policies of the Fed unintentionally caused speculation in the housing market [46].

As the house prices were increasing, investors who were looking for good investments
wanted to profit from this raise. Mortgage loans taken out by homeowners were bun-
dled together by the originating banks and sold on Wall Street as CDO (collateralized
debt obligation) slices to the investors looking for a return higher than the 1% offered
by the Federal Reserve. As investors earned much higher returns compared to the 1%
on Treasury bills, they asked the investment banks for more CDO slices. At the same
time, since the house prices were in an increasing trend, people viewed on owning a
house as a good investment; therefore, everyone who was qualified and willing to take
out a mortgage loan already had taken out a loan. As a result, the lending standard
became lax since the originating banks thought that even if the homeowners default on
their mortgages, the lenders would get the houses whose prices were steadily increas-
ing. Conventionally, mortgage loans were only issued to good credit borrowers and
large down payments and a documentation of income were required. However, in the
2000s, loans were given to higher credit risk borrowers i.e. low-income families, called
subprime borrowers, with little or no down payments and often no documentation of
income was required [59].

Subprime mortgages, however, have significant default risk. Therefore, some investors
who held the top slice of CDOs that were triple A rated investments, wanted to insure
their investments via CDS contracts. Selling a CDS is analogous to selling insurance on
a debt issue. While insurance companies are required by regulations to hold a certain
amount of capital to operate in the industry, the similar cash reserve requirement for
CDS sellers is much smaller. In addition, during the housing bubble, the issuers of
CDS contracts had the idealistic view that housing prices would continue to go up.
Under this view, they sold CDS contracts without posting sufficient collateral or equity
capital. This inadequate posting of collateral and insufficient equity capital was partly
caused by the misrating of the credit risk of the financial institutions such as Lehman
Brothers, Merrill Lynch that held large positions in subprime mortgages. Credit rating
agencies used poor models to evaluate mortgage default risk and they underestimated
the default risk of the financial institutions who sold large amounts of CDS contracts
[59].

As the market experienced this expansion process, the notional amounts of outstanding
CDS contracts increased exponentially during period leading up to the financial crisis.
In fact, the overall notional amount for outstanding CDS contracts was larger than
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the sum of the face values of the underlying assets of the contracts. Being a part of
the largely unregulated over-the-counter (OTC) derivatives markets, the CDS market
was gradually changing from something of an insurance product to a gambling market
[85]. Financial institutions continued to sell CDS contracts because of the lack of
transparency in the OTC market and their high credit ratings. In fact, the amount of
CDS contracts a bank buys and sells is not reported on their balance sheet and this
makes it difficult for the counterparties to assess the riskiness of such positions. As a
result, financial institutions such as investment banks could never figure out the true
leverage amount in the market for CDS contracts written on mortgage loans.

Low interest rates and the lax lending standards created the excess demand for residen-
tial home ownership. After a while, and not surprisingly, the subprime homeowners
started to default on their mortgages. At first, this was not a problem for the invest-
ment banks who owned the mortgages since the houses that served as collateral for
the defaulting loans were put up for sale. However, when the number of the defaults
increased, there were so many houses for sale on the market. This created an excess
supply of houses compared to demand and house prices started to decline which further
means that the CDO slices sold to investors lost value. Then the financial institutions
insuring the CDO slices via CDS contracts faced high collateral requirements and be-
gan experiencing a significant deterioration in their financal positions. This caused the
rating agencies to lower the credit ratings of these institutions. The loss in aggregate
wealth and the correlated failures of financial institutions froze financial markets with
acute negative outcomes to the real economy, ultimately causing unemployment and a
deep recession [59].

In 2009, policymakers began to address the systemic vulnerabilities regarding the CDS
market. U.S. and European regulators developed ways to regulate the CDS contracts.
For example, in the United States, the Treasury proposed regulations for the CDS mar-
ket that would shift trading of standardized credit derivatives to exchanges and away
from the OTC market. The speculative use of CDS contracts is still regarded as a
factor that increases the risk in financial markets. In the paper “Has the CDS mar-
ket influenced the borrowing cost of European countries during the sovereign crisis?”
published in the Journal of International Money and Finance (April 2012), Delatte,
Gex and López-Villavicencio argue that credit default swaps have actually made the
European debt crisis worse, driving up interest rates for unsteady sovereign borrowers
such as Greece and Italy [20]. The speculative use of credit derivatives is in fact a con-
troversial issue. Most practitioners as well as academics agree that there is a need for
additional regulations to correct the debt misratings issued by the credit rating agen-
cies and to guarantee the execution of the CDS contracts by requiring better capitalized
participants.
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CHAPTER 4

CDS VALUATION

4.1 Risk Neutral Valuation and Assumptions

In this section, a single-name, cash-settled CDS contract is valued via the discounted
cash flow methodology. The discounted cash flow method uses the risk-neutral proba-
bility of default when determining the expected cash flows of the CDS and calculating
its value [7]. In fact, the fundamental theorem of asset pricing implies that in a com-
plete market, the price of a derivative is given by the discounted expected value of the
future payoffs under the unique risk-neutral measure that exists if and only if the mar-
ket is arbitrage-free. The risk-neutral valuation concept was first presented by Black
and Scholes (1973) and Merton (1973). Later, Harrison and Pliska (1981) showed that,
under some conditions with the absence of arbitrage opportunities, the real probability
measure can be replaced with an equivalent martingale measure (P) under which the
discounted price of an asset is a martingale. The discount factor is the risk-free rate,
the martingale probability measure (P) is referred to as the risk-neutral probability
measure and the present value of the CDS is equal to the expected value of its future
cash flows discounted at the risk-free rate [94, 7].

Before discussing the firm’s survival probability that determines the expected cash
flows and then presenting the formulas to price a CDS contract, the assumptions for
CDS pricing can be listed as follows. These assumptions are made in order to value
single-name, cash-settled CDS contracts:

Assumption 1. Financial markets are arbitrage-free.

Assumption 2. There is no correlation between the occurrence of the default, the
risk-free interest rate and the recovery rate.

Assumption 3. The CDS spread specified in the contract is constant and upfront spread
payments are not allowed.

Assumption 4. The recovery rate is the recovery rate on which the CDS is quoted.

Assumption 5. Only default of the reference entity is considered and the counterparty
credit risk is ignored. [7, 98].
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4.2 Survival Probability

The risk-neutral survival probability is defined as the probability under the risk-neutral
measure of the survival of an entity through time T , conditioned on its survival at time
t and all other market information at time t. This probability can be denoted as follows:

P(τ > T | τ > t) = P (t, T ) (4.1)

where τ is the time of default [94].

This survival probability can be used to define the following indicator function:

1{τ>T} =

{
1 if τ > T

0 if τ 6 T
(4.2)

The indicator function has a value of one with probability P (t, T ) conditional on no
default event up to time T . If a default event occurs at time τ , the indicator function
has a value of zero.

Using 4.1 and 4.2, the following expression is obtained.

EP
t [1{τ>T}] = P (t, T ) · 1 + (1− P (t, T )) · 0 = P (t, T ) (4.3)

4.3 Price of a CDS Contract

The protection seller of the contract receives periodic payments from the protection
buyer until maturity or credit event, whichever comes first; in other words, as long as
the reference entity survives. These payments stop if a default event occurs and then the
protection seller makes a default payment to the protection buyer. The value of a CDS
contract is the present value of the expected cash flows. Therefore, in order to construct
the pricing formula, the present value of the cash flows from the protection buyer (the
premium leg) and the seller (protection leg) are need to be determined. Consider a
CDS initiated at time t and maturing at time tn with payment dates t1, t2, ..., tn. First,
some notations that will be used from this point on are given below:
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N : notional amount

SCDS : spread of a single-name CDS

D(t, ti) : discount factor for time interval [t, ti]

P (t, ti) : survival probability at time ti

∆ti = ti − ti−1

τ : time of default

M : number of discrete time points each year at which default can happen

R : constant recovery rate

4.3.1 Premium Leg

The premium leg is the series of periodic payments of the CDS until maturity or de-
fault whichever occurs first. The premium leg also includes the payment of premium
accrued from the previous premium payment date until the time of the default.

• If a credit event occurs before time ti, then the ith and following payments are
not paid. Therefore, the premium payment at time ti is:

NSCDS∆ti1{τ>ti}

• The accrual payment is paid by protection buyer when a default event occurs
between two payment dates. One approach to simplify the calculations is to
assume that if a default occurs between two payment dates, it will on average
take place midway between them (O’Kane & Turnbull). Under this assumption,
the accrual payment would be calculated as follows:

NSCDS
∆ti
2
1{ti−1<τ<ti}

By using these two expressions, the expected present value of all possible premium
payments, also called the expected present value of the premium leg can be expressed
as [52]:

EP
t

[ n∑
i=1

(N SCDS ∆tiD(t, ti)1{τ>ti} +N SCDS
∆ti
2
D(t,∆ti)1{ti−1<τ<ti})

]

=
n∑
i=1

(
N SCDS ∆tiD(t, ti)EP

t [1{τ>ti}] +N SCDS
∆ti
2
D(t,∆ti)EP

t [1{ti−1<τ<ti}]

)
(4.4)
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The probability of defaulting between ti−1 and ti is equal to the probability of default-
ing before ti minus the probability of defaulting before ti−1. By using 4.1 and 4.3,
this probability can be written as:

EP
t [1{ti−1<τ<ti}] = P(ti−1 < τ < ti)

= P(τ < ti | τ > t)− P(τ < ti−1 | τ > t)

= 1− P (t, ti)− (1− P (t, ti−1))

= P (t, ti−1)− P (t, ti)

(4.5)

Therefore, by combining 4.4 and 4.5, an expression for the present value of the
premium leg can be given as:

N SCDS
n∑
i=1

∆ti

(
D(t, ti)P (t, ti) +

1

2
D(t,∆ti) [P (t, ti−1)− P (t, ti)]

)
(4.6)

A similar expression will be derived for the protection leg in the next subsection.

4.3.2 Protection Leg

The protection leg is the contingent payment that the protection seller makes to the
protection buyer following the default at time τ . The method of settlement of the CDS
contract in the case of default for the protection payment is specified when the two
parties enter the contract. In this thesis, the pricing formula is given for a cash-settled
CDS contract. Remember that R is the constant recovery rate. The protection payment
can be denoted as (1 − R) percent of the notional amount insured. Assuming that the
default can only happen on a finite number of discrete time points each year (M ), the
present value of the expected premium payments is [94, 88]:

EP
t

[M×(tn−t)∑
m=1

(
N (1−R)D(t, t+

m

M
)1{t+m−1

M
<τ<t+m

M
}
)]

(4.7)

Similar to the premium leg, the expression for the protection leg can be written as
follows:

N (1−R)

M×(tn−t)∑
m=1

(
D(t, t+

m

M
)
[
P (t, t+

m− 1

M
)− P (t, t+

m

M
)
])

(4.8)

4.3.3 The Value of a Credit Default Swap

The market value of a long position in a CDS is the present value of the protection leg
minus the present value of the premium leg. Let V (t, tn, S

CDS) denote the value of a
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CDS to the protection buyer at time t, maturing at time tnwith an annual spread SCDS .
Then, an expression of its value can be found by subtracting 4.6 from 4.8:

V (t, tn, S
CDS) = N (1−R)

M×(tn−t)∑
m=1

(
D(t, t+

m

M
)
[
P (t, t+

m− 1

M
)− P (t, t+

m

M
)
])

−N SCDS
n∑
i=1

∆ti

(
D(t, ti)P (t, ti) +

1

2
D(t,∆ti) [P (t, ti−1)− P (t, ti)]

)
(4.9)

In an arbitrage-free market, a CDS contract is constructed such that the value of the
contract is zero at initiation. This is done by equating the present value of the protection
and default payments. Therefore, setting Equation 4.9 equal to zero and solving for the
credit spread gives the fair spread, meaning the spread guaranteeing that the contract
is fairly priced [88]:

SCDS =

(1−R)
M×(tn−t)∑
m=1

(
D(t, t+ m

M
)
[
P (t, t+ m−1

M
)− P (t, t+ m

M
)
])

n∑
i=1

∆ti

(
D(t, ti)P (t, ti) + 1

2
D(t,∆ti) [P (t, ti−1)− P (t, ti)]

) (4.10)

As seen in the Equation 4.10, in order to value a CDS contract, two processes should
be modelled: the discount factor and the survival probability. Since the focus of this
thesis is on valuing the CDS contracts with a stochastic intensity model, a deterministic
risk-free rate will be used so that the intensity models can be employed easily. In fact,
if the short-term interest rate process is denoted by r = {rt, 0 6 t 6 T}, then discount
factor D(t, T ) is given by:

D(t, T ) = E
{

exp(−
∫ T

t

rs ds)

}
(4.11)

If r is deterministic, then

D(t, T ) = exp(−
∫ T

t

rs ds) (4.12)

Moreover, when r is assumed to be constant, the discount factor becomes:

D(t, T ) = exp(−r (T − t)) (4.13)

As the recovery rate is constant, only the survival probability needs to be modeled.
In the following subsections, the modeling of survival probabilities with the structural
and reduced form models is addressed.
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4.4 Structural Approach and the Merton Model

In the structural framework, a firm’s total value is modeled in order to develop an esti-
mate for the probability of default. Let’s review some basic features of Merton’s model.
In 1974, Merton presented an application of the Black-Scholes-Merton option pricing
model to the pricing of risky corporate debt. In order to do so, Merton modeled firm’s
equity as a European call option written on the firm’s assets so that the stock-holders
can be considered as European call option holders. The intuition behind the Merton
model is that default occurs at the time of debt maturity if the value of a firm’s assets
is lower than that of its outstanding debt. Figure 4.1 illustrates the default concept in
the Merton model. In this setting, total debt (D) is constant over time and the value
of equity fluctuates with the value of the firm’s assets. Default occurs when the firm
value drops below the default barrier at maturity.

Figure 4.1: Structural approach: default in the classical Merton model (1974).
Retrieved from http://www.slideshare.net/ujjmishra1/credit-risk-models.

Assuming that the company’s debt is entirely represented by a zero-coupon bond, if
the market value of the firm at maturity is greater than the face value of the bond, then
the bondholders get back the face value of the bond and the residual value flows to the
equityholders. On the other hand, if the market value of the firm is less than the face
value of bond, the bondholders take over the firm hence getting the market value of
the firm with the equityholders getting nothing. Therefore, the payoff at maturity to
the bondholders is equal to the face value of the bond minus the value of a put option
on the value of the firm, with a strike price equal to the face value of the bond and
a maturity equal to the maturity of the bond. In other words, the defaultable bond is
equivalent to holding a risk free bond with a short put position on the assets of the firm
from the bondholders’ point of view. Following this basic intuition, Merton derived
an explicit formula for the value of risky bonds. This formula can be used to estimate
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both the probability of default of a firm and the yield differential between a risky bond
and a default-free bond [37, 31].

Using the following notation, Table 4.1 is obtained:

Vt : firm value at time t for t ∈ [0, T ]
D : face value of the debt at maturity T
Zt : value of a single zero coupon bond at time t with maturity T and face value D
Et : value of equity at time t

Table 4.1: Payoffs to bondholders and equityholders.

Equity Holders receive Bond Holders receive
If VT > D VT −D D
If VT < D 0 VT

Net position Max(0, VT −D) Min(VT , D)

With this notation, the total asset value of the firm is equal to the following:

Vt = Zt + Et (4.14)

The payoff at maturity of bonds and firm’s equity can be written as follows:

ZT = min(VT , D) = −max(−VT ,−D) = D −max(D − VT , 0) = D − Put(VT , D)

ET = max(VT −D, 0) = Call(VT , D)
(4.15)

This means that by going long on bonds, the bondholders are long the face value of the
bond and short a put option on the assets of the firm with the strike price equal to the
face value of the bonds whereas shareholders have a long position in the call option
with a strike price equal to the face value of the bonds [37].

Now, applying Black-Scholes-Merton option pricing formula, the value of the firm’s
debt and equity at time t (0 6 t 6 T ) are determined as [37]:

Zt = Vt Φ(−d1) +D e−r (T−t) Φ(d2)

Et = Vt Φ(d1)−D e−r (T−t) Φ(d2)
(4.16)

where Φ(.) is the cumulative standard normal distribution function and d1 and d2 are
given by:

d1 =
log(Vt/D) + (r + 1

2
σ2)(T − t)

σ
√
T − t

and d2 = d1 −
√
T − t (4.17)
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where σ is the volatility of firm’s assets and r is risk-free interest rate.

In the Merton framework, the risk- neutral probability Q(t, T ) of default at time T can
be calculated as:

Q(t, T ) = Φ(−d2) (4.18)

[for the proof see Appendix A.]

That is to say
P (t, T ) = 1−Q(t− T ) = Φ(d2) (4.19)

Therefore, putting 4.19 into 4.10 will give the price of the CDS spread [84].

4.5 Reduced Form Approach

Unlike the structural approach, reduced form models do not connect the event of de-
fault to the capital structure of the firm, i.e. value of a firm’s assets or its debt. Instead,
the time of default is modeled as a jump process that is not directly linked to any
balance sheet information of the firm [11, 94]. The most widely used reduced form ap-
proach for calculating default probability is based on the work by Jarrow and Turnbull
(1995). They characterized default as the first jump of a Poisson counting process [45].
When the time of default is modeled as the first jump of a Poisson process, market data
can be used to determine the parameters associated with the default intensity.

Definition 4.1. A Poisson process Nt with intensity λ > 0 is a non-decreasing, integer
valued process satisfying the following conditions:[94, 44, 95].

• initial value N0 = 0,

• the process has independent and stationary increments,

• the density function of process has form P(Nt = n) = (λ t)n

n!
exp(−λ t),

• when 0 < s < t, then the random increment Nt − Ns has Poisson distribution
with parameter λ(t− s) and

P(Nt −Ns = n) =
λn (t− s)n

n!
exp(−λ (t− s)) (4.20)

The next subsections introduce the framework of the most common specifications of
the intensity of the Poisson process, namely homogeneous and inhomogeneus Poisson
process cases of the Jarrow-Turnbull model and the Cox process.
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4.5.1 Jarrow-Turnbull Model

Homogeneous Case:

The simplest specification for reduced-form models is to let the intensity to be constant.
The jump process with constant intensity is referred to as a homogeneous Poisson
process. As the default is the first jump of the jump process, the survival probability
within the time interval [t, T ] conditional on surviving until time t, is equal to the
probability that the process does not jump in this time period. From the Equation 4.20,
the survival probability be written as follows:

P (t, T ) = P(NT −Nt = 0)

=
λ0 (T − t)0

0!
exp(−λ (T − t))

= exp(−λ (T − t))

(4.21)

Inhomogeneous Case:

In this case, Jarrow and Turnbull modeled λ as a process of deterministic function of
time λ = {λt, 0 6 t 6 T}.

Definition 4.2. Let τ be the time of default which is the first jump of a Poisson process.
Then the intensity of default λ = {λt, 0 6 t 6 T} is defined as:

λt = lim
∆t→0

P(t < τ < t+ ∆t | τ > t)

∆t

or equivalently

P[τ 6 t+ ∆t | τ > t] = λt ∆t (4.22)

Definition 4.2 can be interpreted as that the probability of a default within the time in-
terval [t, t+∆t] conditional on surviving until time t, is proportional to time dependent
intensity function λt (hazard rate) and the length of the time interval ∆t.

Definition 4.3. Let F (t) denote the cumulative distribution function of default time τ .
Then F (t) := P(τ 6 t) where t > 0 and F (0) = 0 and if f represents the density
function of τ , then

F (t) =

∫ t

−∞
f(u) du (4.23)

By definition 4.3, the survival probability that is the probability that default does not
occur before time t can be written as follows:
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P (t, T ) = P(τ > t) =

∫ ∞
t

f(u) du = 1− F (t) (4.24)

Therefore, P (t+ ∆t, T ) = P(τ > t+ ∆t) = 1− F (t+ ∆t)

Now, using Equations 4.21 and 4.23 ,

λt ∆t = P(t < τ 6 t+ ∆t | τ > t)

=
P(t < τ 6 t+ ∆t)

P(τ > t)

=
P(τ 6 t+ ∆t)− P(τ 6 t)

P(τ > t)

=
1− P (t+ ∆t, T )− (1− P (t, T ))

P (t, T )

=
P (t, T )− P (t+ ∆t, T )

P (t, T )

(4.25)

Therefore,

− λt ∆t =
P (t+ ∆t, T )− P (t, T )

P (t, T )
(4.26)

Then leaving λt alone on the left side and taking the limit as ∆t→ 0,

− λt = lim
∆t→0

P (t+ ∆t, T )− P (t, T )

P (t, T ) ∆t
(4.27)

Since lim
∆t→0

P (t+ ∆t, T )− P (t, T )

∆t
= P ′(t, T ), the equation becomes

− λt =
P ′(t, T )

P (t, T )
(4.28)

Solving for P(t,T) by integrating both sides from t to T gives:

P (t, T ) = exp

(
−

T∫
t

λs ds

)
(4.29)

[44, 45]
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Here, if the intensity is taken as a constant, then

P (t, T ) = exp

(
−

T∫
t

λ ds

)
= exp(−λ(T − t)) (4.30)

as it is obtained in 4.21.

Jarrow and Turnbull assumed that the intensity is a piecewise flat function of maturity
time and extending this model to multiple time periods, they modeled default using a
binomial tree as shown in the Figure 4.2.

As an example, define λt as a step function where Ti−1 6 t 6 Ti, i = 1, 2, 3, 4, then

P (t, T ) =



exp(λ0,T1t) if 0 6 t < T1

exp(λ0,T1T1 − λT1,T2(t− T1)) if T1 6 t < T2

exp(λ0,T1T1 − λT1,T2(T2 − T1)− λT2,T3(t− T2)) if T2 6 t < T3

exp(λ0,T1T1 − λT1,T2(T2 − T1)− λT2,T3(T3 − T2)

−λT3,T4(t− T3)) if T3 6 t < T4

Figure 4.2: Default modelling by using a binomial tree that terminates and makes a
payment K at default.
O’Kane D. and Turnbull S.,Valuation of Credit Default Swaps, pp.1-19, Lehman Brothers International
Fixed Income Qantitative Credit Research, 2003.

This model can be calibrated to market data and replicate the CDS term perfectly.
However, since the intensity is deterministic, the survival probabilities also would have
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to be deterministic. This would mean that together with the constant risk-free interest
and recovery rates, the forward CDS spread would be deterministic as well but this
would not be a realistic model. Therefore, the models allowing stochastic intensity
should be used when pricing the CDS contracts so that the intensity can change ran-
domly as new additional information such as credit ratings or equity price arrive into
the market.

4.5.2 Cox Model

Different from the previous two processes, the Cox process assumes a time varying
and stochastic intensity. Following Lando(1998), default is modeled as the first jump
of a doubly stochastic Poisson process, or as a Cox process.

Definition 4.4. A Poisson process with stochastic intensity λt is called a Cox process.
The process is doubly stochastic due to the stochastic nature of the jump component
and the stochasticity in the probability of jumping (i.e. the intensity) [44].

Stochastic intensity λt is assumed to be positive, right continuous and at least Ft
adapted; in other words, given the default free market information Ft up to time t,
λ is known to time t.

The cumulated intensity is defined as:

Λ(t) :=

t∫
0

λs ds

Then, the survival probability is given as: [44, 71].

P(τ > t) = P
{

Λ(τ) > Λ(t)
}

= P
{

Λ(τ) >

t∫
0

λs ds
}

= E
[
P
{

Λ(τ) >

t∫
0

λs ds
} ∣∣∣ Ft]
(4.31)

Since the cumulated intensity at the first jump time, i.e. default time Λ(τ) = ξ is an
exponential random variable which is independent of the default free information Ft
where τ = Λ−1(ξ),

E
[
P
{

Λ(τ) >

t∫
0

λs ds
} ∣∣∣ Ft] = E

[
P
{
ξ >

t∫
0

λs ds
}]

= E
{

exp
(
−

t∫
0

λs ds
)}

(4.32)
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Moreover, given all current available information, the conditional survival probability
between time t and maturity T is given by the following expression: [44].

P (t, T ) = E
{

exp
(
−

T∫
t

λs ds
)}

(4.33)

In fact, letting the intensity be constant or deterministic generates the same expression
for the survival probability as in the previous subsection. In order to obtain closed form
expressions for survival probabilities, a suitable term structure of interest rate model
can be applied to the stochastic intensities. In this thesis, the CIR process is chosen in
order to model the intensity of a single-name CDS. This process is named after Cox,
Ingersoll and Ross (1985) who propose a single-factor model for the term structure
of interest rates. If the interest rate is replaced with the intensity, the dynamics of the
default probability process is given as follows:

dλt = κ (λ− λt) dt+ σ
√
λtWt (4.34)

where the long term mean λ, the mean reversion rate κ and the volatility of intensity σ
is positive and where Wt is a standard Brownian motion. It can be seen from the first
term of 4.34 that if the intensity at any point λt is below λ, the drift will be positive and
push the intensity towards its long term value. In the opposite case the drift will push
the intensity down. The parameter κ determines the speed of the adjustment towards
the long term value [94]. Positivity of intensity which is required for Cox process is
guaranteed by the Feller condition: 2κλ > σ2 [38]. Then, under a CIR process, the
expression for the survival probability in 4.34 has a closed form:

P(τ > t|Ft) = E
[
e
−
T∫
t
λs ds

]
= A(t, T )e−B(t,T )λt (4.35)

where

A(t, T ) =

(
2γ e(κ+γ)(T−t) 1

2

(κ+ γ)(eγ(T−t) − 1) + 2γ

) 2κλ
σ2

B(t, T ) =
2(eγ(T−t) − 1)

(κ+ γ)(eγ(T−t) − 1) + 2γ

γ =
√
κ2 + 2σ2

(4.36)

as given in Cox et al. (1985).
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4.6 Bond Pricing

Each firm’s bond prices are used to estimate the firm’s default probabilities by non-
linear least squares and then these probabilities are used obtain CDS prices. In order
to do so, first the formula for the price of a bond needs to be obtained.

As stated before, the value D(t, T ) at time t of a default-free zero coupon bond with
maturity T and face value 1 can be expressed as follows:

D(t, T ) = E

{
exp(−

∫ T

t

rs ds)

}
(4.37)

The price Z(t, T ) at time t < T of a defaultable zero coupon bond with maturity T
and face value 1 and generating a recovery payment of a fraction R of the face value
in case of default is given as:

Z(t, T ) = E[D(t, T )1{τ>T}] + E[D(t, τ)R] (4.38)

Since default-free interest rate and default time are independent, Equation 4.38 can be
expressed by:

Z(t, T ) = D(t, T )E[1{τ>T}] +R E[D(t, τ)]

= D(t, T )P (t, T ) +R

T∫
t

D(t, T ) f(s)ds
(4.39)

where f(t) is the probability density function associated with the intensity process λt:

f(t) = λt exp

(
−
∫ t

0

λsds

)
Then the price Z(t, tn, c) of a defaultable coupon bond with face value F , coupon
payment (expressed as a percentage of the face value) C and payment dates t1, ..., tn is
the sum of the expected discounted value of its coupons and face value, and a potential
recovery payment if default occurs. The ith coupon payment is made only if the bond
issuer has not yet gone bankrupt at time ti and the face value is paid only if the bond is
still alive at time tn. The recovery payment of RF is made if the bond defaults at time
τ before maturity. Therefore,

Z(t, tn, c) =
n∑
i=1

D(t, ti)E[1{τ>ti}]C F+D(t, tn)E[1{τ>tn}]F+E[D(t, τ)1{τ6tn}]RF

(4.40)
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Equivalently,

Z(t, tn, c) =
n∑
i=1

D(t, ti)P (t, ti)C F +D(t, tn)P (t, tn)F +RF

tn∫
t

D(t, s) f(s)ds

(4.41)

As Houweling and Vorst (2004), we use the following approximation:

tn∫
t

D(t, s) f(s)ds ≈
m∑
j=1

D(h, hj)(P (t, hj−1)− P (t, hj)) (4.42)

where (h0, ..., hm) is a monthly grid of maturities such that h0 = t0 and hm = tn

[33, 52]
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CHAPTER 5

METHODOLOGY AND DATA

In this thesis, a methodology based on the technique proposed by Cox et al. (1985) and
given in Equations 4.35 and 4.36 is employed in order to price a single-name credit
default swap (CDS) contract. The methodology uses a discounted cash flow approach
with reduced-form survival probability functions depending on stochastic intensity for
two time periods: pre-crisis and post-crisis. The CIR model is used for modeling the
default risk. For model calibration, each firm’s bond prices are used to determine the
optimal set of parameters of the CIR default intensity process. The calibration step
generates the firm’s stochastic default probabilities and then the parameters obtained
in the calibration step are used to obtain the CDS contract prices. In this chapter, the
calibration methodology and the data set are explained in detail.

5.1 Calibration

As the model for bond pricing is set up, the parameters (κ, λ, σ, λ0) of the CIR process
need to be calibrated. The availability of an analytic formula makes the calibration
of the parameters to the market-observed bond prices straightforward. The survival
probability given in the Equations 4.35 and 4.36 is plugged into the Equation 4.41
in order to get the analytical formula for bond pricing within the CIR process. Next,
the model can be directly calibrated to bond market prices by minimizing the Sum of
Squared Errors (SSE):

SSE =
K∑
q=1

(ZMarket
q (t)− ZModel

q (t, tn, c))
2 (5.1)

whereZMarket(t) denotes the bond price observed in the market at time t andZModel(t, tn, c)
denotes the bond price calculated by the model as given in Equation 4.41. K is the
number of bond prices retrieved from the market.

The parameters of the CIR process for a firm are obtained for each day during the sam-
ple period. These parameters also allow the determination of the survival probabilities
of that firm for each day. Once the survival probabilities are obtained, they are plugged
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into the Equation 4.10 in order to calculate the CDS premium for the firm for a given
day. This procedure is repeated for each day during the sample period.

5.2 Market Data

In order to estimate the hazard rate (intensity) parameters, the analyses are carried
out using daily bond and CDS data for two of the Dow Jones 30 Index constituents,
namely The Coca-Cola Co. (non-financial) and JPMorgan Chase and Co. (financial).
These firms are selected in order to test the model in two different industries which
are expected to be affected by the Global Financial Crisis in different ways. On the
one hand, since JP Morgan Chase is a financial institution, its assets and liabilities
are very sensitive to the changing conditions in markets. This type of sensitivity also
is expected to affect the default probability of a financial firm. On the other hand,
Coca-Cola is a soft drink producer whose main products have low price and income
elasticities even when the market conditions change in an extreme manner. As such, in
comparison to a financial institution, the Coca-Cola Company’s default probability is
expected to be affected with much less severity during a financial crisis. By using data
from these firms, it will be possible to demonstrate some of the potential differences
in the market’s pricing of the default risk in two different industries. Also, the model
is tested for two seperate 3-month periods. The first of these periods is between July
and September 2008 and accounts for a pre-crisis market environment. The second is
between January and March 2016 and accounts for a post-crisis market environment.
The reason for testing over two separate periods is to find out whether the model is
equally successful in estimating CDS prices after the CDS market has gone through
major regulatory changes following the Global Financial Crisis of 2008.

The bond data are collected for fixed-coupon, non-convertible and non-callable bonds
denominated in US dollars with an outstanding amount higher than $300 million and
with semiannual coupon payments. Bond prices represent mid quotes and are obtained
from Thomson Reuters database.

The model also requires the use of a risk-free rate. Among the available proxies for
default-free rates, daily federal funds rates that are downloaded from the website of the
New York Fed are used.

The recovery rate is assumed to be constant at 40%. This is a standard assumption
for pricing credit derivatives. Moreover, Houweling and Vorst (2005) show that the
pricing of credit default swaps is relatively insensitive to the assumed recovery rate
[52].

The CDS data also are obtained from Thomson Reuters and contain daily mid quote
prices. All CDS contracts have a notional amount of 10 million USD. Each quote is
given by a quarterly premium expressed in basis points on an annual basis. For each
reference entity whose reference obligation is the reference entity’s senior debt, CDS
quotes with maturities of 6 months and 1, 2, 3, 4, 5, 7, 10 years are obtained for each
day. Table 5.1 gives the beginning and ending dates for the final data set.
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Table 5.1: Final dataset given for both bond prices and CDS quotes for both firms.

3-month period Number of days
Year 2008 01.07.2008 - 30.09.2008 92
Year 2016 01.01.2016 - 31.03.2016 92

Average CDS premiums by firm and maturity for years 2008 and 2016 respectively
are given in Table 5.2. As can be seen from the table, for both the pre- and post-crisis
periods, the obtained average market quotes increase monotonically with maturity for
both firms. This is expected because as time passes, credit quality deterioration is more
likely than credit quality improvements [97]. The average CDS premium of Coca-Cola
is smaller than that of JPMorgan Chase for both periods. Since the CDS quotes are
indicators of credit risk, the perceived credit quality of Coca-Cola seems to be higher
compared to JPMorgan Chase. This is an expected situation since JPMorgan Chase
is a financial institution, it bears more credit risk, especially in times of crisis and
therefore, its CDS quotes are higher for both periods. In addition, for both companies,
most of the CDS spreads seem to decline from 2008 to 2016. This is to be expected
in retrospect since the first period includes approximately the first two weeks of the
Global Financial Crisis. The exceptions are the 7- and 10-year maturities for Coca-
Cola and the 10-year maturity for JPMorgan Chase. The observation that not all CDS
spreads decline between 2008 and 2010 imply that there has been a slight increase in
the slope of the term structure of CDS spreads.

Table 5.2: Average CDS premiums in basis point by firm and maturity for years 2008
and 2016

The Coca-Cola Co. JPMorgan Chase and Co.
Maturity Year 2008 Year 2016 Year 2008 Year 2016
6 months 24.8479 5.0659 77.7739 25.7925

1 year 25.8348 6.7145 80.1349 40.6424
2 years 27.3045 9.8043 90.0979 51.3246
3 years 30.3237 14.3509 98.2831 57.3334
4 years 33.1199 18.9338 108.1253 67.1541
5 years 37.1312 26.0743 115.4675 81.5528
7 years 40.5536 41.2815 116.4017 100.6767

10 years 48.2632 51.3760 117.8630 120.0797

Figures 5.1 to 5.4 present the CDS spreads for Coca Cola and JPMorgan Chase for the
two periods under analysis. When the 5-year CDS spreads of Coca-Cola in Figures
5.1 and 5.2 are examined, it is seen that in 2008, the quotes remain within a range
between 30 to 50 basis points and experience the biggest increase around the time of
the Lehman Brothers bankruptcy (September 15, 2008). For the post-crisis period,
the CDS spreads exhibit a flat pattern for Coca-Cola. Compared to the premiums of
Coca Cola, those of JPMorgan Chase are larger for both periods. In fact, although
these two companies have very similar bond ratings as can be seen in Table B.1 in
Appendix B, their CDS spreads are still different from each other by magnitude. When

39



the 5-year CDS spreads of JPMorgan Chase are examined in Figures 5.3 and 5.4, it is
seen that in 2008, the quotes remain within the range between 50 to 150 basis points
until September and there is a dramatic spike reaching levels of 200 basis points in
mid-September, again around the time of the Lehman Brothers bankruptcy. In late
September, the CDS spreads start to decline down to pre-September 15 levels. In 2016,
the JPMorgan Chase quotes fluctuate within a range of 20 and 150 basis points with the
lower boundary of the range being much smaller than the lower boundary in 2008. An
additional observation regarding the figures is that the JPMorgan Chase quotes always
fluctuate more compared to the Coca-Cola quotes. This is not surprising since, being
a financial institution, JPMorgan Chase has assets and liabilities that are a lot more
sensitive to changes in macroeconomic conditions. Also, in February 2016, a spike
is observed in the JP Morgan quotes. Examining the news related to the company
around that time reveals an announcement that JP Morgan is to set aside funds to
cover potential losses in the oil and gas sectors that are much larger than previously
anticipated. In fact, the price of JPMorgan shares fell 4.3% after the announcement
[3].

Additional descriptive statistics regarding the data are given in Appendix B.

In the next chapter, the emprical results are presented and the performance of the CIR
model in pricing the CDS premiums of chosen firms is tested.

Figure 5.1: CDS premiums of The Coca-Cola Co. for 3-months period in 2008 in basis
points by maturity.
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Figure 5.2: CDS premiums of The Coca-Cola Co. for 3-months period in 2016 in basis
points by maturity.

Figure 5.3: CDS premiums of JPMorgan Chase and Co. for 3-months period in 2008
in basis points by maturity.
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Figure 5.4: CDS premiums of JPMorgan Chase and Co. for 3-months period in 2016
in basis points by maturity
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CHAPTER 6

RESULTS

In this chapter, the results of model calibration and performance tests are presented.
For each day and firm, hazard rate parameters are obtained via the CIR stochastic
intensity model by minimizing the sum of the squared bond pricing errors between the
market and model spreads. In order to achieve this, the MATLAB code is run 10,000
times iteratively for each day and firm. These estimates are used in computing the CDS
spreads.

6.1 Comparing Model and Market Bond Prices

The ability of the model to fit bond prices is tested by computing the root mean squared
error (RMSE) of the deviations between the model and market prices of bonds. Table
6.1 displays RMSEs by firm and year. For both firms and periods, the RMSEs are
much smaller than 1 percent of the average bond prices. These RMSE estimates imply
that the model is successful in calibrating the parameters. The output of this step of the
calculations is the estimated survival probabilities for each firm and day in the sample
period.

Table 6.1: RMSE (%) by firm and year

Coca-Cola Co. JPMorgan Chase
Year 2008 Year 2016 Year 2008 Year 2016

RMSE 0.8095 0.4239 0.8058 0.8829
RMSE/Avr. Bond Price 0.0067 0.0032 0.0083 0.0087

The next step is to test the success of the CDS spread estimates obtained by using these
survival probabilities.

6.2 Comparing Model and Market CDS Spreads

In order to compare the model and market CDS spreads, Mean Absolute Pricing Errors
(MAPEs) are calculated as a representation of the pricing errors. The MAPEs are
expressed in basis points and calculated by using the following formula:
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MAPE =
1

92

92∑
t=1

8∑
T=1

∣∣CDSMarket(t, T )− CDSModel(t, T )
∣∣

8
(6.1)

whereCDSMarket(t, T ) denotes the CDS spread observed in the market andCDSModel(t, T )
denotes the CDS spread calculated by the model. For each firm, absolute pricing errors
are calculated for each of the 92 days and the 8 different maturities. The MAPE mea-
sure is the equally-weighted average of these pricing errors over days and maturities.

Table 6.2 presents MAPEs by firm and year, considering all CDS maturities. When
each firm’s MAPE figures are compared between 2008 and 2016, it is seen that the
pricing errors are much smaller for the 2016 sample. This result implies that the model
is more successful in predicting the CDS spreads in relatively more stable market envi-
ronments. This implication is verified by looking at Figures 5.1 through 5.4 above and
Tables B.2 through B.5 in Appendix B. The standard deviations of the CDS spreads
are much higher in 2008 compared to those in 2016. In addition, the pricing errors
for the financial firm (JPMorgan Chase) is larger than those of the non-financial firm
(Coca-Cola). Once again, this is not surprising since financial institutions like JPMor-
gan Chase suffered a lot more from the effects of the Global Financial Crisis compared
to some of the manufacturing industries.

Also, MAPEs for a naive model that uses the last observed CDS spread as a predictor of
the next day’s spread are given in Table 6.2. For the naive model, the absolute pricing
error is equal to the absolute difference between the market prices of two consecutive
days where the previous day’s price is the predictor for the next day’s price. As can be
seen in Table 6.2, the MAPEs for both firms and periods are smaller for the naive model
when compared to the MAPEs for the CIR model. This is not a surprising result for
two reasons. First, the raw CDS spread data for both firms include consecutive days
where the change in the spreads is equal to zero. The constant spreads over several
days imply that either the perceived default probabilities of the sample firms are not
changing or the CDS contracts are infrequently traded. The spreads staying constant
for several days at a time leads to small pricing errors in the naive model. Second, the
CIR model uses no historical CDS spread data in pricing the contracts. As a matter
of fact, it is possible to price a new CDS contract by using bond prices and the CIR
model. Obviously, such pricing would not be possible with the naive model.

Table 6.2: MAPE in basis point by firm and year considering all CDS maturities.

Year 2008 Year 2016
CIR MAPE for Coca-Cola Co. 9.6832 3.9530
CIR MAPE for JPMorgan Chase 15.0644 4.8591
Naive MAPE for Coca-Cola Co. 0.1958 0.0102
Naive MAPE for JPMorgan Chase 3.9047 1.4910

Table 6.3 presents MAPEs by CDS maturity and firm in years 2008 and 2016. In
addition, Figures 6.1 through 6.4 present the 5-year CDS spreads obtained from the
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market and the model for the two firms and periods.1 There are no obvious patterns in
the table or the figures that would suggest a relationship between maturities and pricing
errors. Generally, within each period, the pricing errors for JPMorgan Chase are larger
than those of Coca-Cola. This is an observation in line with the previous results.

Table 6.3: MAPE in basis point by maturity and firm.

Coca-Cola 2008 Coca-Cola 2016 JPMorgan 2008 JPMorgan 2016
6-months 8.2724 0.7839 8.3254 2.0927
1-year 5.1577 1.2701 8.5365 5.9462
2-years 1.3939 4.9689 9.4036 1.5828
3-years 5.4225 6.7681 11.8975 6.0388
4-years 9.2346 8.0382 17.4626 7.8895
5-years 11.1496 6.2263 22.5897 3.2802
7-years 17.4666 1.6687 21.1074 1.7360
10-years 19.3683 1.9000 21.1927 10.3069

Figure 6.1: Model and market CDS premiums of The Coca-Cola Co. for 5-years
maturity in 2008.

1 Similar graphs for other maturities are provided in Appendix C.
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Figure 6.2: Model and market CDS premiums of The Coca-Cola Co. for 5-years
maturity in 2016.

Figure 6.3: Model and market CDS premiums of JPMorgan Chaseand Co. for 5-years
maturity in 2008.
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Figure 6.4: Model and market CDS premiums of JPMorgan Chase and Co. for 5-years
maturity in 2016.

Examining Figures 6.1 through 6.4 it is seen that for both firms and periods, model
CDS spreads are more volatile than the market-observed spreads. This is because the
model generates new survival probabilities stochastically via a least square method
each day. Except for mid-Semtember in 2008, the model seems to estimate the 5-
year CDS premiums of both firms with relatively small pricing errors. For Coca-Cola
in both periods and for JPMorgan in 2016, the model seems to overstimate the 5-
year premiums whereas it underestimates the JPMorgan premiums in 2008 with small
errors. Unfortunately the model does not estimate the CDS premiums with the same
precision during the mid-September 2008 period. The reason might be the asymmetric
change between the bond prices and CDS premiums. For this period, the decrease in
the bond prices is smaller than the increase in the CDS premiums. This asymmetric
change may mean that the model cannot catch the premiums at their peak points by
using the survival probabilities obtained from the bond prices.

6.3 Regression Analysis

In order to understand the effect of different maturities and sample periods on the mag-
nitude of the absolute value of the pricing errors, MAPEs of each firm are regressed on
dummy variables that represent these potential effects. The model below is estimated
within a least squares framework:

MAPEt = c0 + c1(CC)t + c2(Y R08)t + c3(MAT1Y )t + c4(MAT2Y )t + c5(MAT3Y )t
+ c6(MAT4Y )t + c7(MAT5Y )t + c8(MAT7Y )t + c9(MAT10Y )t + εt

(6.2)

where dummy variables (CC)t representing The Coca-Cola Co., (Y R08)t representing
year 2008 and (MATiY )t representing the i-year(s) maturity for i = 1, 2, 3, 4, 5, 7 and

47



10.

Regression results are presented in the Table 6.4. In general, the results confirm earlier
observations. Maturity effects, with the exception of the 1-year and 2-year horizons
are statistically different from zero. Since the 6-month maturity is represented by the
intercept of the model, these significantly positive estimates imply that longer matu-
rities have larger pricing errors. Since the model parameters are calibrated based on
the bond data and used to estimate the CDS spreads, if the bond and CDS prices do
not move together in the market, this mismatch may be influencing the estimates at a
larger scale for longer maturities. When the parameter estimates for the year dummies
are examined, it is seen that pricing errors in 2008 are larger than those in 2016. This
is a result in line with the observations in Table 6.2 and Figures 6.1 through 6.4. Fi-
nally, the negative and significant coefficient for the Coca-Cola dummy indicates that
the pricing errors are smaller for Coca-Cola compared to JPMorgan Chase.

In order to observe the explanatory power of the maturities, firms and years seperately
in explaining the MAPEs, MAPEs are regressed on all dummy variables in separate
models. The results provided in Appendix D. The findings from Table 6.4 are con-
firmed with the separate regression model estimations.

Table 6.4: Regression Analysis.

The table documents the results of regressing MAPEs on the dummy variables for firm, CDS ma-
turity and year. The model given in the table contains dummy variables (CC)t representing The
Coca-Cola Co., (Y R08)t representing year 2008 and (MATiY )t representing the i-year(s) maturity
for i = 1, 2, 3, 4, 5, 7 and 10. Numbers in parantheses are t-statistics.

Model:
MAPEt = c0 + c1(CC)t + c2(Y R08)t + c3(MAT1Y )t + c4(MAT2Y )t + c5(MAT3Y )t

+ c6(MAT4Y )t + c7(MAT5Y )t + c8(MAT7Y )t + c9(MAT10Y )t + εt

c0 c1 c2 c3 c4 c5

2.4566 -3.1437 7.9677 .3590 -.5313 2.6631

(5.75) (-7.91) (20.04) (0.61) (-0.81) (3.94)

c6 c7 c8 c9 R2 observation

5.7876 5.9429 5.6260 8.3234 0.1951 2944

(8.19) (7.91) (7.09) (10.40)
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CHAPTER 7

CONCLUSION

In the months leading to the Global Financial Crisis of 2008, credit markets grew
rapidly and financial institutions developed many new derivative products to hedge
against credit risk. The most common type of such credit derivatives is the CDS con-
tracts, quoted with a CDS spread and a recovery rate on reference entities in the market.
Being an agreement between the protection buyer and the protection seller, the CDS
acts as a form of insurance and offers investors the opportunity to either buy or sell
default protection on a reference entity . These contracts transfer the financial risk of
a reference entity from the protection buyer to the protection seller in exchange for
periodic fixed payments, called the CDS spread or premium, paid until the contract
maturity or a default event, whichever comes first.

As these contracts became more popular, their speculative usage also increased and
around the time of the Global Financial Crisis, the notional amount of outstanding
CDS contracts exceeded the sum of the face values of their reference assets. Soon, it
was realized that in addition to their great advantages such as improving market depth
and reducing the information asymmetry of financial markets, credit derivatives such
as CDSs also carry high levels of risk due to their complex structures.

In such an enviroment, credit risk modeling gained more interest from financial in-
stitutions, regulators and academics and a large body of literature developed on the
subject. Since credit risk is the risk of default on a debt due to a failure of the borrower
to make payments, a credit risk model generates an estimate of the default risk of the
debtor. When it comes to the CDS contracts, the most critical element to be studied is
the spread that is paid by the buyer of the contract.

In this thesis, a reduced-form CDS pricing model with stochastic intensity is used.
Such a model has practical advantages over the structural-form models. Reduced-form
models do not relate the default event with any observable characteristics of the firm
and require less detailed information, making the calibration process easy. In fact,
with reduced-form approaches, the probability of default can be obtained directly from
the market-observed bond prices. Therefore, reduced-form models are more flexible,
practical and tractable. Also, while structural approaches cannot incorporate credit
rating changes occuring quite frequently for risky corporate debt, reduced-form models
are able to integrate such changes. Finally, in reduced-form models, the default is
defined as an unexpected event whose likelihood is evaluated by a default intensity
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process and this feature of the reduced-form model makes it appropriate for modeling
defaults as the default of a firm is often an unexpected event.

When using reduced-form models, the intensity needs to be modeled, so that the prob-
ability of default which depends on the intensity process can be calculated. Modeling
the intensity as a constant, the default time is exponentially distributed and only con-
stant CDS spreads can be obtained but such spreads would be unrealistic in light of the
volatility observed in market data. As a result, homogeneous intensity models that use
constant default intensities fail when calibrating to the market data. In order to over-
come this problem, the intensity can be defined as a deterministic function of time.
However, in a model with deterministic intensity, the obtained survival probabilities
also are deterministic and the only information related to default risk arriving over
time is the firm’s survival up to that point in time. However, in reality, in addition to a
firm’s survival, there may be new information associated with the credit quality of the
firm, arriving as time passes. Arrival of new information would change the intensity
randomly. Therefore, it can be assumed that the intensity varies with an underlying
state variable such as credit ratings, the equity price of an issuer or the firm’s distance
to default. In this sense, modeling the intensity as a random process is reasonable. A
popular choice is modeling intensity as a CIR process named after Cox, Ingersoll and
Ross (1985) [18].

In this thesis, a methodology to evaluate the price of a single-name credit default swap
(CDS) via the discounted cash flow method is studied. In this approach, the survival
probabilities depend on a stochastic intensity process and are estimated in a reduced-
form framework. This research exercise is chosen with the purpose of making a contri-
bution to the better understanding of credit risk since CDS contracts are very popular
and the CDS premiums are important indicators for the credit risk of an obligor. The
model used in this thesis uses the information obtained from the firm’s bond prices for
estimating the survival probabilities. Each firm’s bond price is used in calibration to
determine the optimal set of parameters for the CIR default intensity process by a least
squares method. Once the parameters are obtained, they are used to obtain CDS prices.
Data for two of the Dow Jones 30 Index constituents, namely the Coca Cola Company
(non-financial) and JPMorgan Chase (financial), are used for carrying out the analyses.
After obtaining the model CDS spreads, the model’s ability in predicting the market
spreads is tested. The model is tested for two separate 3-month periods. The first of
these periods is between July and September 2008 and accounts for a pre-crisis mar-
ket environment. The second is between January and March 2016 and accounts for a
post-crisis (stable) market environment.

In order to evaluate the performance of the model, first, the ability of the model to
fit bond prices is tested by looking at the Root Mean Squared Error (RMSE) of the
deviations between the model and market prices. The results show that the model is
quite successful in estimating the survival probabilities.

Second, the Mean Absolute Pricing Errors (MAPEs) are calculated in order to estimate
the pricing errors for the CDS premiums. Results show that the CDS premiums of
both firms are better priced for the 2016 period compared to the 2008 period. Such a
difference in the success of the model is attributed to the effect of the Global Financial
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Crisis that created a highly volatile market environment where the CDS prices also
fluctuated in large amounts, especially for the CDS contracts whose underlying assets
were mostly issued by financial institutions.

Finally, in order to understand the effect of different maturities and sample periods
on the magnitude of the absolute value of the pricing errors, MAPEs of each firm
are regressed on dummy variables that represent these potential effects.The parameter
estimates for the year dummies show that pricing errors in 2008 are higher than those
in 2016 due to the deviations in bond and CDS price changes during the crisis period.
Also, the parameter estimates for the firm dummies show that the Coca-Cola Co. CDS
contracts are priced with a smaller error compared to those of JPMorgan Chase.

Another observation from the comparison of market and model spreads is that the
model CDS spreads are more volatile compared to the market-observed spreads. This
is due to the scarcity of traded bonds that are used to obtain the parameters of the
survival probabilities. As stated by Elizalde (2005), small variations in the estimated
parameters affect the survival probabilities, and therefore, the model CDS spreads fluc-
tuate significantly [34].

For further research, in an attempt to improve the performance of the model, the as-
sumptions used when pricing the CDS contracts can be simplified. First, the protection
seller default risk and the default correlation can be taken into the consideration as ex-
plained by Hull and White (2001) [54]. Second, factors other than credit risk that
affect the spread between risk-free and corporate debt, such as liquidity risk, can be
taken into account. Finally, instead of a constant recovery rate, a stochastic recovery
rate model can be used in order to include the negative correlation between default
probabilities and recovery rates as shown in Altman et al. (2005) [4].
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Journal of Computational Finance, 10(4), p. 71, 2007.
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‘Proceedings of the 64th Scientific Conference of the Association of University
Professors of Management 2002, Citeseer, 2001.

[40] R. Geske, The valuation of corporate liabilities as compound options, Journal of
Financial and quantitative Analysis, 12(04), pp. 541–552, 1977.

[41] A. Geyer, S. Kossmeier, and S. Pichler, Empirical analysis of european govern-
ment yield spreads, Available at SSRN 267213, 2001.

[42] S. Giglio et al., Credit default swap spreads and systemic financial risk, Pro-
ceedings, Federal Reserve Bank of Chicago, pp. 104–141, 2011.

[43] I. Gökgöz, Ö. Uğur, and Y. Y. Okur, On the single name cds price under struc-
tural modeling, Journal of Computational and Applied Mathematics, 259, pp.
406–412, 2014.

[44] I. H. GOKGOZ, Stochastic credit default swap pricing, 2012.

[45] I. A. Gretarsson and N. Ennab, On the pricing of credit default swaps: A com-
parative study between the reduced-form model and the structural model, 2009.

[46] R. GUINA, The crisis of credit visualized by jonathan jarvis,
https://www.youtube.com/watch?v=N9YLta5Tr2A, 2012.

55



[47] Z. Haibin, B. Zhang, and H. Zhou, Explaining credit default swap spreads with
equity volatility and jump risks of individual firms, Technical report, Bank for
International Settlements, 2005.

[48] R. Hao and Z. Ye, Pricing cds with jump-diffusion risk in the intensity-based
model, in Nonlinear Mathematics for Uncertainty and its Applications, pp. 221–
229, Springer, 2011.

[49] X. Hao, X. Li, and Y. Shimizu, Finite-time survival probability and credit de-
fault swaps pricing under geometric lévy markets, Insurance: Mathematics and
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APPENDIX A

Merton’s Model

A.4.1: In the Merton framework, the risk- neutral probabilityQ(t, T ) of default at time
T can be calculated as:

Q(t, T ) = Φ(−d2)

Proof: Under Merton model, the asset values of a firm can be described by diffu-
sion type stochastic process following a geometric Brownian motion with stochastic
differential equation

dVt = µVt dt+ σ Vt dWt

where µ is the mean rate of return on the assets and σ is the asset volatility.
The solution of this stochastic equation is

Vt = V0 exp

{(
µ− 1

2
σ2
)
t+ σWt

}

Also,

VT = Vt exp((r − 1

2
σ2)(T − t) + σ(WT −Wt))
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In order to find the survival probability, Pt(VT ≥ D) should be calculated since V > D
implies that there is no default.

Pt(VT ≥ D) = Pt
(
Vt exp((r − 1

2
σ2) (T − t) + σ(WT −Wt)) ≥ D

)
= Pt

(
x exp((r − 1

2
σ2)(T − t) + σWT−t) ≥ D

)
= Pt

(
x exp((r − 1

2
σ2)(T − t) + σ y

√
T − t) ≥ D

)
= Pt

(
log(x) + (r − 1

2
σ2)(T − t) + σ y

√
T − t) ≥ log(D)

)
= Pt

(
y ≥

log(D
x

)− (r − 1
2
σ2)(T − t)

σ
√
T − t

)

= Pt

(
− y <

log( x
D

) + (r − 1
2
σ2)(T − t)

σ
√
T − t

)

= Pt

(
z <

log( x
D

) + (r − 1
2
σ2)(T − t)

σ
√
T − t

)

where Vt = x , y = WT−t√
T−t and z = −y

Therefore, the survival probability can be written as:

P (t, T ) = Pt(VT ≥ D) = Φ(d2)

since

d2 =
log( x

D
) + (r − 1

2
σ2)(T − t)

σ
√
T − t

Therefore, Q(t, T ) = 1− P (t, T ) = Φ(−d2) [84]
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APPENDIX B

Firms’ Characteristics and Descriptive Statistics

Table B.1 describes the sector and rating of the firms considered.

Table B.1: Firms’ characteristics

Firm Sector Year Rating Moody’s/S&P
The Coca-Cola Co. Consumer Goods 2008 /A+
The Coca-Cola Co. Consumer Goods 2016 /AA-

JPMorgan Chase and Co. Financial 2008 Aa2/AA-
JPMorgan Chase and Co. Financial 2016 A3/A-

The following Tables from B.2 to B.5give the descriptive statictics for the CDS spreads
of the firms depending on the CDS maturity. Table B.2 and table B.3 describe the
descriptive statictics for the CDS spreads of The Coca-Cola Co. for 2008 and 2016
respectively. Table B.4 and table B.5 describe the descriptive statictics for the CDS
spreads of JPMorgan Chase and Co. for 2008 and 2016 respectively.

Table B.2: Descriptive statistics for The Coca-Cola Co. for the time period July-
November 2008

63



Table B.3: Descriptive statistics for The Coca-Cola Co. for the time period January-
March 2016

Table B.4: Descriptive statistics for JPMorgan Chase and Co. for the time period July-
November 2008

Table B.5: Descriptive statistics for JPMorgan Chase and Co. for the time period
January-March 2016

Descriptive statistics are in agreement with Table 5.2. Mean of market quotes and
also maximum and minimum values of the market quotes grow monotonically with
the maturity for both firms. The average CDS premiums of The Coca-Cola Co. is less
than JPMorgan Chase and Co. for both periods. This is expected as JPMorgan Chase
and Co. is a financial institution, it bears more credit risk. If we compare the years
2008 and 2016, we conclude that in 2008, all of the CDS quotes on different maturities
are higher than the one with the same maturity in 2016, except the CDS quotes for The
Coca Cola Co. with a maturity of 7 and 10 years and for JPMorgan Chase and Co.
with a maturity of 10 years. This is because the stock market in U.S. is experiencing
Great Financial Crisis during 2008. Standard deviations and the sample variances are
both higher in 2008 for both firms. Especially for JPMorgan Chase and Co. in 2008,
both statictics are far greater than the others. This can be explained by the fact that
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being a financial institution, JPMorgan Chase and Co. is affected by the cirisis more
than The Coca-Cola Co. and, therefore, its CDS premiums are more volatile.
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APPENDIX C

CDS Premium Graphs for Different Maturities

C.1 Coca-Cola Co. 2008

Figure C.1: CDS premiums of The Coca-Cola Co. for 6-months maturity.

Figure C.2: CDS premiums of The Coca-Cola Co. for 1-year maturity.
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Figure C.3: CDS premiums of The Coca-Cola Co. for 2-years maturity.

Figure C.4: CDS premiums of The Coca-Cola Co. for 3-years maturity.
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Figure C.5: CDS premiums of The Coca-Cola Co. for 4-years maturity.

Figure C.6: CDS premiums of The Coca-Cola Co. for 7-years maturity.
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Figure C.7: CDS premiums of The Coca-Cola Co. for 10-years maturity.

C.2 Coca-Cola Co. 2016

Figure C.8: CDS premiums of The Coca-Cola Co. for 6-months maturity.
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Figure C.9: CDS premiums of The Coca-Cola Co. for 1-year maturity.

Figure C.10: CDS premiums of The Coca-Cola Co. for 2-years maturity.
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Figure C.11: CDS premiums of The Coca-Cola Co. for 3-years maturity.

Figure C.12: CDS premiums of The Coca-Cola Co. for 4-years maturity.
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Figure C.13: CDS premiums of The Coca-Cola Co. for 7-years maturity.

Figure C.14: CDS premiums of The Coca-Cola Co. for 10-years maturity.
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C.3 JPMorgan Chase and Co. 2008

Figure C.15: CDS premiums of JPMorgan Chase and Co. for 6-months by maturity.

Figure C.16: CDS premiums of JPMorgan Chase and Co. for 1-year maturity.

74



Figure C.17: CDS premiums of JPMorgan Chase and Co. for 2-years maturity.

Figure C.18: CDS premiums of JPMorgan Chase and Co. for 3-years maturity.
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Figure C.19: CDS premiums of JPMorgan Chase and Co. for 4-years maturity.

Figure C.20: CDS premiums of JPMorgan Chase and Co. for 7-years maturity.
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Figure C.21: CDS premiums of JPMorgan Chase and Co. for 10-years maturity.

C.4 JPMorgan Chase and Co. 2016

Figure C.22: CDS premiums of JPMorgan Chase and Co. for 6-months by maturity.
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Figure C.23: CDS premiums of JPMorgan Chase and Co. for 1-year maturity.

Figure C.24: CDS premiums of JPMorgan Chase and Co. for 2-years maturity.
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Figure C.25: CDS premiums of JPMorgan Chase and Co. for 3-years maturity.

Figure C.26: CDS premiums of JPMorgan Chase and Co. for 4-years maturity.
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Figure C.27: CDS premiums of JPMorgan Chase and Co. for 7-years maturity.

Figure C.28: CDS premiums of JPMorgan Chase and Co. for 10-years maturity.
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APPENDIX D

Regression Analysis

Table D.1: Regression analysis considering only maturity as dummy variable.

The table documents the results of regressing MAPEs on the dummy variable for CDS maturity. The
model given in the table contains dummy variable (MATiY )t representing the i-year(s) maturity for
i = 1, 2, 3, 4, 5, 7 and 10. Numbers in parantheses are t-statistics.

Model:
MAPEt = c0 + c1(MAT1Y )t + c2(MAT2Y )t + c3(MAT3Y )t + c4(MAT4Y )t

+ c5(MAT5Y )t + c6(MAT7Y )t + c7(MAT10Y )t + εt

c0 c1 c2 c3 c4

4.8686 .3590 -.5313 2.6631 5.7876

(10.87) (0.58) (-0.81) (3.88) (7.78)

c5 c6 c7 R2 observation

5.9429 5.6261 8.3234 0.0677 2944

(7.15) (6.27) (9.35)
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Table D.2: Regression analysis considering only firms as dummy variable.

The table documents the results of regressing MAPEs on the dummy variable for firm. The model given
in the table contains dummy variable (CC)t representing The Coca-Cola Co.. Numbers in parantheses
are t-statistics.

Model:

MAPEt = c0 + c1(CC)t + εt

c0 c1 R2 observation

9.9618 -3.1437 0.0172 2944

(24.06) (-7.17)

Table D.3: Regression analysis considering only years as dummy variable.

The table documents the results of regressing MAPEs on the dummy variable for year. The model
given in the table contains dummy variable (Y R08)t representing year 2008. Numbers in parantheses
are t-statistics.

Model:

MAPEt = c0 + c1(Y R08)t + εt

c0 c1 R2 observation

4.4068 7.9677 0.1102 2944

(53.03) (19.09)
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