
BB-GRAPH: A NEW SUBGRAPH ISOMORPHISM ALGORITHM FOR
QUERYING BIG GRAPH DATABASES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MERVE ASİLER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2016

Approval of the thesis:

BB-GRAPH: A NEW SUBGRAPH ISOMORPHISM ALGORITHM FOR
QUERYING BIG GRAPH DATABASES

submitted by MERVE ASİLER in partial fulfillment of the requirements for the de-
gree of Master of Science in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Prof. Dr. Adnan Yazıcı
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof. Dr. Ahmet Coşar
Computer Engineering Department, METU

Prof. Dr. Adnan Yazıcı
Computer Engineering Department, METU

Prof. Dr. Halit Oğuztüzün
Computer Engineering Department, METU

Prof. Dr. İbrahim Körpeoğlu
Computer Engineering Department, Bilkent University

Assoc. Prof. Dr. Murat Koyuncu
Computer Engineering Department, Atılım University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: MERVE ASİLER

Signature :

iv

ABSTRACT

BB-GRAPH: A NEW SUBGRAPH ISOMORPHISM ALGORITHM FOR
QUERYING BIG GRAPH DATABASES

Asiler, Merve
M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Adnan Yazıcı

September 2016, 61 pages

With the emergence of the big data concept, the big graph database model has be-
come very popular since it provides very flexible and quick querying for the cases
that require costly join operations in RDBMs. However, it is a big challenge to find
all exact matches of a query graph in a big database graph, which is known as the sub-
graph isomorphism problem. Although many related studies exist in literature, there
is not a perfect algorithm that works for all types of queries efficiently since it is an
NP-hard problem. The current subgraph isomorphism approaches built on Ullmann’s
idea focus on the strategy of pruning out the irrelevant candidates. Nevertheless, for
some databases and queries, their pruning techniques are inadequate. Therefore, they
result in poor performance. Moreover, some of those algorithms need large indices
that cause extra memory consumption. Motivated by these, we introduce a new sub-
graph isomorphism algorithm, namely BB-Graph, for querying big database graphs
in an efficient manner without requiring large data structures. We test and compare
our algorithm with the existing ones, GraphQL and Cypher of Neo4j, on some very
big graph database applications and show that our algorithm performs better for most
of the query types.

Keywords: graph isomorphism algorithm, pruning, graph database, Neo4j

v

ÖZ

BB-GRAPH: BÜYÜK ÇİZGE VERİTABANLARINI SORGULAMAK İÇİN YENİ
BİR ALTÇİZGE EŞYAPILILIK ALGORİTMASI

Asiler, Merve
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Adnan Yazıcı

Eylül 2016 , 61 sayfa

Büyük veri kavramının doğmasıyla, ilişkisel veritabanı yönetim sisteminde masraflı
birleştirme operasyonları gerektiren durumlarda daha esnek ve hızlı sorgulama sağ-
ladığı için büyük çizge veritabanı modeli çok popüler olmuştur. Ancak, altçizge eş-
yapılılık problemi olarak bilinen, bir çizgesel sorgunun bir veritabanı çizgesindeki
tüm tam eşleşmelerini bulmak oldukça zordur. Literatürde ilgili birçok çalışma ol-
masına rağmen, bu NP-hard bir problem olduğundan, tüm sorgu tipleri için verimli
çalışan kusursuz bir algoritma bulunmamaktadır. Ullmann’ın fikri üzerine kurulan şu
anki altçizge eşyapılılık yaklaşımları, ilgisiz adayları budama stratejisine odaklan-
maktadır. Yine de, bazı veritabanları ve sorgular için, bu algoritmaların kullandıkları
budama teknikleri yetersiz kalmaktadır. O yüzden, zayıf performansa yol açarlar. Ay-
rıca, bu algoritmalardan bazıları ek hafıza tüketimine sebep olan dizinlere gereksinim
duyar. Bunlardan motivasyon alarak, büyük veritabanı çizgelerini ek veri yapılarına
ihtiyaç olmadan verimlice sorgulamak için yeni bir altçizge eşyapılılık algoritması
BB-Graph’ı geliştirdik. Algoritmamızı çok büyük bazı çizge veritabanı uygulamala-
rında var olan algoritmalarla, GraphQL ve Neo4j’nin Cypher’ı ile, karşılaştırarak test
ettik ve BB-Graph’ın çoğu sorgu tipi için daha iyi performans sergilediğini gösterdik.

Anahtar Kelimeler: altçizge eşyapılılık algoritması, budamak, çizge veritabanı, Neo4j

vi

vii

To my beloved ones...

viii

ACKNOWLEDGMENTS

I want to acknowledge that I have written this thesis by granting so much things from
my own besides making hard efforts and spending long working hours. However, I
have always taken strength from the wonderful people around me, and I am not sure
that if I can find eneough words to express all my gratitude to them.

Initially, I want to express my gratitude towards my supervisor Prof. Dr. Adnan
YAZICI. Throughout the whole thesis work, I have always been more eager to study
with his motivation, high enery and favour. I am so much thankful for his patience
and understanding that he showed at every point that I feel myself in a bottleneck. He
always encouraged me for the better, and hence, I believe in that I have done a good
job under his guidance.

I would also like to thank the committee members of my M.Sc. thesis, Prof. Dr.
Ahmet COŞAR, Prof. Dr. Halit OĞUZTÜZÜN, Assoc. Prof. Dr. İbrahim KÖR-
PEOĞLU and Assoc. Prof. Dr. Murat KOYUNCU for their precious discussions and
suggestions about my thesis.

My very special thanks to KALE YAZILIM for sharing their resources, especially the
real-world databases, and giving the opportunity to work among them in their com-
pany. I would like to thank Ali İNCE and Volkan YIKILMAZ for their suggestions.
Also, I am so thankful to İrfan Nuri KARACA since he never hesitated to spare time
for helping me and searching for a solution.

I would also like to thank the people who are very speacial for me, my best friends
Adnan KILIÇ, Alperen EROĞLU, Hilal ARSLAN, Serdar ÇİFTÇİ and Okan Tarhan
TURSUN. Since the suffering years of double major education, Adnan has always
been a great friend. With his colorful personality, all difficulties has turned into an
amusement. Whenever I get upset, he cheered me up with his humors and he has been
the first person who I consult in any technical subject. Alperen was my best teacher
during the undergraduate years and my best workmate along my assistanship. At each
time I feel desperate, he showed me some way out. He has always listened to me
tirelessly. He is indeed one of the most helpful and bighearted people that I have ever
known. Hilal, my dear roommate, has been the one with whom I have established a
close friendship since the first day that we met. Her positive point of view has always
inspired me. With her warm personality, I could feel that I am not alone. Serdar has
also been the person who does not leave me alone in the department. I have learned
many things from him. When I need to decide about something, I have trusted in his

ix

experiences. His advices have really been very beneficial for me. Last, but not least,
Okan, my mentor, has been the one who has given the hope that beautiful things can
happen in life. From the beginning of my graduate study, he has been the person that
I have taken a leaf out of his book. He has always tried to give me a lead about how
I can improve my skills. Especially, he helped me very much for the final touches on
my thesis. With his own smile over the misfortunes of life, he could make me smile
too. In short, it has been a big fun to spend time with all of them and I am really lucky
to have friends like them. They are the best friends one can have.

There are more friends that I want to thank. Even though we can not have the oppor-
tunity of meeting frequently, my dear friends Gülay Özdemir, Eda Ceren GÜNGÖR
and Aslı PAKKAN have never refrained to support me. Gülay, my classmate in un-
dergraduate, has never stopped keeping in touch after graduating and continued her
friendship through the messages most of the time and almost every day in the last
term of my thesis. I really appreciate her being such a talented person in showing em-
pathy towards people, especially me. I could feel much better when she understands
me. Eda was my first friend that I made in the university and since that time she has
stayed as one of my most sincere friends. Her unusual way of thinking has passed to
me also, and this has brought me the skill of evaluating the things in life from very
different aspects. It has always been entertaining and worthful to spend time and an-
alyzing the life with her. Moreover, I want to thank Aslı for her precious friendship
and suggestions on life plans. Her nice thoughts about me have really motivated me
expecially in the last term of my thesis.

Lastly, I want to thank three wonderful people; my father Hasan ASİLER, my mother
Nazife ASİLER, and my brother Murat Çağrı ASİLER. When one gets old, s/he un-
derstands worth of the family is something immeasurable. I even can not imagine
that how I could overcome the difficulties in life without their understanding, atten-
tion and love. With the support of my father, I could always believe in the power
inside me. His intimate love and hugs could improve my mood immediately even
when I felt I was in the deepest. I have admired him since my childhood, and I have
tried to be hardworking, virtuous and friendly like him. In many times, my mother’s
sweet words inspired me to go on. I have learned from her that the things which seem
unfeasible can be achieved by believing and struggling in fact. Moreover, her affec-
tion has also made me behave polite to people and be understanding towards them.
Next, I want to thank my brother Çağrı for bringing joy to our lives with his funny
and humorous way of thinking. Listening to his daily life adventures have always
been the time of the day that I can not wait. His tact has also made my heart warm in
my difficult days. He is, in fact, the life and soul of our family.

I want to acknowledge that I have been supported by TUBITAK (The Scientific
and Technological Research Council of Turkey) within BIDEB 2210 graduate study
scholarship program along my studies for master degree.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vi

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xvi

LIST OF ALGORITHMS . xviii

LIST OF ABBREVIATIONS . xix

LIST OF SYMBOLS . xx

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation . 2

1.2 Contribution . 4

1.3 Outline . 5

2 BACKGROUND AND RELATED WORK 7

2.1 Problem Definition . 7

xi

2.2 BFS Coding . 7

2.3 Comparisons Between Graph Databases and Relational Databases
. 8

2.4 Ullmann Algorithm And The Methods Derived From It . . . 9

3 BB-GRAPH: BRANCH & BOUND ALGORITHM FOR GRAPH
ISOMORPHISM IN BIG GRAPH DATA MODEL 15

3.1 Algorithm Steps . 17

3.1.1 Filter For Start Node Of Query Graph And Filter-
ing Rules . 17

3.1.2 Branching Process of Node Match 22

3.1.3 Backtrack Mechanism 25

3.1.4 Transition State Operations And Stack Usage . . . 25

3.2 Algorithm Complexity . 32

3.2.1 Time Complexity 32

3.2.2 Space Complexity 34

4 EXPERIMENTAL WORK . 37

4.1 Database . 37

4.2 Queries . 38

4.3 Setup . 39

4.4 Experimental Evaluation . 39

4.4.1 WorldCup Database 39

4.4.2 Bank Database 43

4.4.3 Population Database 47

xii

5 CONCLUSION & FUTURE WORK 57

5.1 Conclusion . 57

5.2 Future Work . 58

REFERENCES . 59

xiii

LIST OF TABLES

TABLES

Table 3.1 Explanation of the parameters used in the complexity analyses of
BB-Graph . 33

Table 4.1 General Features of Population, Bank and WorldCup Databases . . . 38

Table 4.2 Relationship abbreviations for WorldCup Database 39

Table 4.3 Results for Query-1 in WorldCup Database 40

Table 4.4 Results for Query-2 in WorldCup Database 41

Table 4.5 Results for Query-3 in WorldCup Database 41

Table 4.6 Results for Query-4 in WorldCup Database 42

Table 4.7 Results for Query-5 in WorldCup Database 42

Table 4.8 Relationship abbreviations for Bank Database 43

Table 4.9 Results for Query-1 in Bank Database 44

Table 4.10 Results for Query-2 in Bank Database 45

Table 4.11 Results for Query-3 in Bank Database 45

Table 4.12 Results for Query-4 in Bank Database 46

Table 4.13 Results for Query-5 in Bank Database 46

Table 4.14 Relationship abbreviations for Population Database 47

Table 4.15 Results for Query-1 in Population Database 48

Table 4.16 Results for Query-2 in Population Database 48

Table 4.17 Results for Query-3 in Population Database 49

Table 4.18 Results for Query-4 in Population Database 50

xiv

Table 4.19 Results for Query-5 in Population Database 51

Table 4.20 Results for Query-6 in Population Database 52

Table 4.21 Results for Query-7 in Population Database 52

Table 4.22 Results for Query-8 in Population Database 53

Table 4.23 Results for Query-9 in Population Database 54

Table 4.24 Results for Query-10 in Population Database 54

xv

LIST OF FIGURES

FIGURES

Figure 1.1 An example query and a database graph with unlabeled relationships 2

Figure 2.1 Comparison results for running time performaces of searching a
recursive query with difference depths in RDBMs and Neo4j [1] 9

Figure 2.2 ISJOINABLE procedure of u3 and v3 while matching the graphs A
and B . 10

Figure 3.1 An Example query and database graph where P : Person, A: Ad-
dress, m: motherOf, f : fatherOf, s: spouse, li: livesIn 16

Figure 3.2 An example to candidate set construction procedure for the query
node u1 and the database node v6 given in Figure 3.1 24

Figure 3.3 A sample piece of execution for the query and database graph given
in Figure 3.1 . 27

Figure 3.3 A sample piece of execution for the query and database graph given
in Figure 3.1 (cont.) . 28

Figure 3.3 A sample piece of execution for the query and database graph given
in Figure 3.1 (cont.) . 29

Figure 3.3 A sample piece of execution for the query and database graph given
in Figure 3.1 (cont.) . 30

Figure 3.3 A sample piece of execution for the query and database graph given
in Figure 3.1 (cont.) . 31

Figure 3.3 A sample piece of execution for the query and database graph given
in Figure 3.1 (cont.) . 32

Figure 4.1 Graph of Query-1 in WorldCup Database 40

Figure 4.2 Graph of Query-2 in WorldCup Database 40

xvi

Figure 4.3 Graph of Query-3 in WorldCup Database 41

Figure 4.4 Graph of Query-4 in WorldCup Database 42

Figure 4.5 Graph of Query-5 in WorldCup Database 43

Figure 4.6 Graph of Query-1 in Bank Database 44

Figure 4.7 Graph of Query-2 in Bank Database 44

Figure 4.8 Graph of Query-3 in Bank Database 45

Figure 4.9 Graph of Query-4 in Bank Database 46

Figure 4.10 Graph of Query-5 in Bank Database 47

Figure 4.11 Graph of Query-1 in Population Database 47

Figure 4.12 Graph of Query-2 in Population Database 48

Figure 4.13 Graph of Query-3 in Population Database 49

Figure 4.14 Graph of Query-4 in Population Database 49

Figure 4.15 Graph of Query-5 in Population Database 50

Figure 4.16 Graph of Query-6 in Population Database 51

Figure 4.17 Graph of Query-7 in Population Database 52

Figure 4.18 Graph of Query-8 in Population Database 53

Figure 4.19 Graph of Query-9 in Population Database 53

Figure 4.20 Graph of Query-10 in Population Database 55

xvii

LIST OF ALGORITHMS

ALGORITHMS

Algorithm 1 BB-GRAPH SEARCH ALGORITHM 17

Algorithm 2 FILTERBYLABEL(u) . 18

Algorithm 3 FILTERBYRELATIONSHIPS(u, Cu) 18

Algorithm 4 FILTERBYPROPERTY(u, Cu) 19

Algorithm 5 TRANSITIONSTATE . 20

Algorithm 6 BRANCHANDMATCH . 21

Algorithm 7 FINDCANDIDATERELATIONSHIPS 23

Algorithm 8 ISMATCHVALID . 26

xviii

LIST OF ABBREVIATIONS

DB Database

w.l.o.g. Without Loss Of Generality

s.t. Such That

w.r.t. With Respect To

i.e. In Other Words

LIFO Last In First Out

query node Node In Query Graph

database node Node In Database Graph

query relationship Relationship In Query Graph

database relationship Relationship In Database Graph

DFS Depth First Search

BFS Breadth First Search

xix

LIST OF SYMBOLS

q, Q Query graph

g, G Database graph

M Set of exact matches of q in g

Mnode Set of current node matches

Mrel Set of current relationship matches

M<u,v> The match of query node u and database node v

< u, u′ > The relationship in OUTGOING direction from the node u to node
u′

S Stack

r.type The type of relationship r

r.diru The direction of relationship r w.r.t. node u

u.deg The degree (i.e. the number of relationships) of node u

xx

CHAPTER 1

INTRODUCTION

In the last decade, big graph database models have widespreaded in a large variety of

industry areas such as communications (Cisco.com, Cisco HMP, Deutsche Telecom,

Telenor), logistics (Accenture), online job search (GlassDoor), Web/ISV (Adobe),

Network Management (SFR, Hewlett Packard), social networks (Viadeo), mobile

communication applications (Maaii), data center management (Junisphere), educa-

tion (teachscape), bioinformatics (SevenBridges Genomics), etc. Graph database

modelling has recently been preferred to the others for database modelling because of

its flexibly better fitting into structure of data and providing higher performance than

RDBMs in many cases [9], [3], [17], [1].

The subgraph isomorphism problem has been one of the most frequently encoun-

tered challenges in big graph database applications. It can be defined as follows:

Given a query graph q and a database graph g, find all matching instances of q in g.

To illustrate, in Figure 1.1 there exist two instances of q in g, one is the subgraph con-

sisting of the nodes v0, v1, v2 and the relationships < v0, v1 >, < v2, v0 >, < v2, v1 >

and the other one is the subgraph consisting of the nodes v6, v7, v8 and the relation-

ships < v6, v7 >, < v8, v6 >, < v8, v7 >. The subgraph isomorphism problem is

known as NP-hard [2]. In almost all big database applications using graphs, there fre-

quently occur queries directly or indirectly related to subgraph isomorphism problem,

therefore it is definitely important to find an efficient solution to this problem.

1

B

u2
A

u0

B

u1

(a) query graph: q

B

v2
A

v0

B

v1

D

v3

A

v4
C

v5

A

v6

B

v7
B

v8

(b) database graph: g

Figure 1.1: An example query and a database graph with unlabeled relationships

1.1 Motivation

Most of the graph isomorphism algorithms in the literature are based on feature in-

dexing or based on the idea of checking candidates node-by-node developed from

Ullmann’s Algorithm [16]. The algorithms of the first type aims to decrase the num-

ber of candidate data sets by using the filtering-and-verification technique together

with an index. They first create an index of small graphs (features) and then elim-

inate irrelevant candidate data graphs with respect to indexed features. GraphGrep

[5], GIndex [21], Labeled Walk Index (LWI) [15], Closure-Tree [7], Graph Decom-

position Indexing [18], TreePi [22], TreeDelta [25] are examples to this type of algo-

rithms. The algorithms of the second type applies the branch-and-bound technique

on nodes and edges by following the backtracking strategy such that they first find

all candidates for each node of the query graph and then they check for the existence

of candidate edges between the matched database nodes for each relationship in the

query graph. At each step, they expand partially-matched graphs edge by edge. If

there doesn’t exist any candidate edge for some relationship in the query, then the

algorithm jumps one step back , i.e. backtracks, and replaces the previous match with

an other candidate edge or node. VF2 [4], QuickSI [14], GADDI [23], GraphQL [8],

SPath [24] belong to this type of algorithms.

Although both approaches are inspiring and well-considered, the existing studies

may perform poorly depending on the database size (number of nodes, relationships

and disconnected graph pieces), density, variety of labels, and query type. To the

2

best of our knowledge, the current indexing methods are not applicable to one-piece

graphs since their purpose is to prune out the irrelevant members from the database

consisting of many pieces where each piece is independent from the others. Also, they

are insufficient to deduce all of the exact matches, that is; they are designed to focus

on decreasing the size of solution set by eliminating pieces which are guarenteed not

having any instance of query, hence they don’t go further when a piece is proved to

include at least one exact match or not to contain any matches. On the other hand, the

algorithms which are derived from Ullmann’s idea have a very high computational

complexity due to a large number of recursive calls. Actually, the fact that there are

lots of candidates for each query node cause this circumstance. However, a great

majority of these candidate checks are redundant, since they are done for the nodes

which are not in close neighbourhood of each other. The existing algorithms try to

reduce the number of candidate nodes by applying their own pruning rules. Although

they become successful to throw out the ones which can never be the sought member

node of an exact match, there may still remains lots of candidates. The reason is

that; these algorithms extract the candidates for each query node from all accross the

database graph in beginning, and keeping members from every isomorphic instance

of a query in one set complicates the matching phase because the vertices which are

candidate for the same node but, in fact, belong to different isomophic patterns can

not be discriminated from each other. Hence, searching for a relationship between

two nodes which locate in distinct matches of query graph causes inefficiency. An

other disadvantage of these methods is that they generally need additional large data

structures or use their own indexes to keep some piece of cooked data on hand, but

bulding up those structures requires an extra amount of labor and memory. Also,

operations using such data may cause a time loss much more than the predicted while

the main purpose is to save time by pruning out irrelevant candidates. As a result of

all these, those algorithms do not have satisfying performance for querying big graph

databases.

Motivated by these, in this thesis, a new branch-and-bound algorithm blended

with backtracking strategy for graph isomorphism problem, called BB-Graph, is in-

troduced. BB-Graph searches for candidates of the first query node to be matched

(the start node) throughout the whole database, but unlike the other algorithms, for

3

each exact match it selects the candidates of other query nodes from the local area of

the one matched with start node. Hence, it follows a more efficient way of finding

and matching candidates through the substantial decrease in a number of redundant

checks by annihilating most of the impossible combinations. Moreover, BB-Graph

doesn’t use large data structures except the built-in information supplied by Neo4j.

Also, contrary to the experiments done with the other algorithms existing in literature,

BB-Graph is tested on a very big and real graph database with directed edges consist-

ing of nearly 70 millions of nodes by connecting to remote database instead of reading

data from a file (as in iGraph framework [6]). The experiments conducted with this

real database show that BB-Graph performs better than GraphQL and Neo4j’s graph

query language, Cypher, in many of the cases. Lastly, in this thesis the experimental

results obtained for different matching orders are presented.

1.2 Contribution

The main contributions of this thesis can be summarized as in the following:

1. A new subgraph isomorphism algorithm, BB-Graph, is introduced. Similar

to the other algorithms, BB-Graph also uses branch-and-bound tecnique while

expanding a partial match and pruning out the anomalious nodes and relation-

ships in order to reach an exact match of the query, and backtracks to handle

the other possible relationship and node combinations which was skipped in

previous checks. Nevertheless, BB-Graph has many advantages over existing

methods in the literature:

(a) Contrary to the others, BB-Graph follows a more efficient search strategy

while matching graph elements (nodes and relationships): It selects start

node candidates from all across the database graph and then, for each

candidate isomorphism region potentially created by the start node match,

it selects the other nodes’ candidates locally by traversing every neighbour

node and relationship.

(b) BB-Graph uses only the built-in data structures supplied by Neo4j. It

doesn’t consume extra memory for large indexing or data storing.

4

(c) Unlike some other algorithms’ experiments conducted on undirected graphs

by reading the input from a BLOB file, BB-Graph has been tested and

evaluated on a very big one-piece directed graph with almost 70 millions

of nodes through remote database connection.

(d) A number of experiments have been done for comparing our algorithm

(BB-Graph) with Cypher and GraphQL have showed that BB-Graph has

a better performance than those for many query types.

2. The effect of change in node matching order is given by analysing the experi-

mental results obtained by different matching orders.

1.3 Outline

Organization of the rest of this thesis is as in the following: Section 2 gives the back-

ground and related work. Section 3 presents our algorithm, BB-Graph, and we pro-

vide the pseudocodes of proposed solutions. Section 4 shows the experimental results

and comparison of BB-Graph with Cypher and GraphQL. Lastly, the conclusion and

feature work is given in Section 5.

5

6

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Problem Definition

In this thesis, the notation g : (V,E) means that there is a graph g with the vertex set

V and edge set E. For a vertex v; Lv and Pv denote the label set and property set of

v, respectively. Similarly, for an edge e =< u, v >; Le, Pe and dirue denote the label

set, property set and direction of e with respect to node u, respectively.

For two graphs g1 : (V1, E1) and g2 : (V2, E2), g2 is said to be the exact match of

g1, if there is a one-to-one and onto function f : V1 −→ V2 such that Lv ⊆ Lf(v),

Pv ⊆ Pf(v) ∀v ∈ V1 and s =< f(u), f(v) > ∈ E2 ∀r =< u, v > ∈ E1 where

Lr ⊆ Ls, Pr ⊆ Ps, dirur = dir
f(u)
s .

Definition: Given a query graph q and a data graph g, the problem of finding all

distinct exact matches of q in g is defined as Graph Isomorphism Problem.

From the definition, it is clearly understood that if a node u is matched with v then

Lu ⊆ Lv and u.deg ≤ v.deg. Thus, the tests to search for the existence of these two

conditions are called as label comparison test and degree comparison test, respec-

tively.

2.2 BFS Coding

To give the query graph as input to our code, there is a need for some representation

technique in lexicographic order. To achieve this, BFS Coding was preferred; that is

7

a transformation from DFS Coding introduced in [20]. BFS Coding is done as in the

following:

1. Enumerate the nodes starting from 0 like v0, v1, v2,, vn in the order of BFS

traversal.

2. Starting from v0 write all edges traversing the graph in BFS order with the

following rule: (i, j, li, pi, lr, pr, lj, pj) where i, li and pi are the id, label and

property set of vi, respectively, lr and pr are the label and property set of the

relation r with start node vi and end node vj , respectively, and j, lj and pj are

the id, label and property set of vj , respectively and i < j.

2.3 Comparisons Between Graph Databases and Relational Databases

Recently, graph databases have been more popular than relational databases because

they can efficiently handle some database operations which can be a challenge in

RDBMs. Many existing studies comparing the graph databases and relational databases

show that graph databases perform much better than RDBMs with respect to many

aspects [9], [3], [17], [1], [10], [19], [12], [13]. According to those studies, generally,

the join operations on relational tables cause high costs in querying RDBMs since

that kind of operations require pre-knowledge of how the tables are structured and

related to each other. On the other hand, according to their experimental results pre-

viously done in the literature, such a problem disappears in graph databases, mostly

by directly traversing the nodes and relationships. In Figure 2.1, the results of an

experiment done with recursive queries that require many join operations are given

[1]. Experimental results of the comparison between relational databases and graph

databases show that graph databases have quite higher performance than RDBMs for

such type of queries. Moreover, the previous studies also show that for insert-delete-

update operations graph databases provide more flexibilty than relational databases

do.

8

Figure 2.1: Comparison results for running time performaces of searching a recursive

query with difference depths in RDBMs and Neo4j [1]

2.4 Ullmann Algorithm And The Methods Derived From It

Ullmann Algorithm [16] is the first search method that is developed to find isomorphic

patterns of query graphs in large graphs. It basically consists of 4 main steps:

• Filtering candidates for each query graph node,

• Selecting a candidate for each query graph node, trying to match the node with

its candidate together by matching the corresponding relationships between the

currently processed node and previously matched nodes,

• Replacing the selected candidate with an another one if the current match doesn’t

work, and

• Backtracking in order to try other candidates and to find more isomorphisms.

To filter the candidates for each query node, Ullmann Algorithm applies the label

and vertex degree comparison tests (described in Section 2.1). After the filtering step,

it starts with matching the nodes in a recursive manner with the order of the nodes

given in the input. To match two nodes u and v, it checks for each relationship be-

tween u and some previously matched query graph node u′, if there is a corresponding

relationship between v and the database graph node matched with u′. In other words,

to be intermateable, u and v must satisfy that for each relationship r =< u, u′ > (or

r =< u′, u >) where M<u′,v′> ∈ Mnode for some v′ ∈ VG, there is a corresponding

9

relationship s =< v, v′ > (or s =< v′, v >, respectively) where r.type = s.type.

In the study of Lee et al.[11], the procedure to check the existence of this condition

is called as ISJOINABLE. In Figure 2.2, ISJOINABLE operation for the match of u3

and v3 in graphs A and B, respectively, is illustrated. Each ui has been matched with

vi where 0 ≤ i ≤ 2 and the corresponding relationships matched with each other

are showed in the same color. When the matching turn comes to u3 and v3, ISJOIN-

ABLE procedure searchs candidates for the relationships between u3 and previously

matched nodes u0 and u2 (the relationship between u3 and u4 isn’t considered since

u4 isn’t matched yet), so it checks if there is any relationship between v0 and v3 and

between v2 and v3 which has the same characteristics (direction, type) with the one

between u0 and u3 and the one between u2 and u3, respectively.

A

u0

B

u2

B u4

C

u3

D

u1

(a) graph A

A

v0

D

v1

B

v2

C

v3

?

?

(b) graph B

Figure 2.2: ISJOINABLE procedure of u3 and v3 while matching the graphs A and B

In the matching phase of query node u and database node v, if there isn’t any prob-

lem in the end of ISJOINABLE procedure, M<u,v> is added into the list of matched

nodes. Then, isomorphism search continues by picking the next not-yet-matched

query node in order to match that with one of its candidates. In the case that ISJOIN-

ABLE procedure returns false for a query node and its matching node, the current

match is cancelled and the next candidate is selected this time. In either case when

all the matched nodes result in an exact match of the query graph or one of the node

matches results in an failure, the algorithm backtracks to try other candidates.

Ullmann Algorithm is good in terms of finding all isomorphic patterns of the

query graph in the large database graph and working in backtracking manner so that

10

it can handle the evaluation of possible combinations of node matches in an efficient

way because of testing the common parts of different combinations at a time instead

of evaluating each combination one-by-one and wasting time with checks of the com-

mon matches repeatedly. Although it has a robust structure, Ullmann Algorithm is

in a raw state such that its performance can be increased with well-thought matching

order strategies and effective pruning rules and short cuts. Thereby, the following 5

methods are built on the skeleton of Ullmann Algorithm and enriched by their own

techniques over the aspects mentioned above.

VF2 [4] is one of those algorithms derived from Ullmann’s Algorithm. It matches

the nodes in an increasing order of number of labels regarding a specified query graph

by following their strategy. It selects the next query node from among the nodes

connected to at least one of the previously matched query nodes with a relationship.

In this way, it can eliminate more candidates during ISJOINABLE stage. Moreover,

VF2 algorithm refines the candidates before passing to ISJOINABLE step by applying

degree comparison test for already matched and not-yet-matched neighbour nodes.

It divides the not-yet-matched adjacent nodes into two as the ones in first-degree-

neighbourhood of the already matched nodes and the ones not in that area. Then it

makes degree comparison separately for both of two sets adjacent to query node u

with their correspondents that are adjacent to candidate of u.

Another algorithm derived from Ullmann’s is QuickSI [14]. The key aspect of

this method is that it defines a data structure named as QI-Sequence which provides

efficient pruning; and thus, resulting in low-cost processing. QI-Sequence is a mini-

mum spanning tree created based on edges weighted according to the number of each

node label and the number of each <start node label - relationship type - end node

label> triple in database graph. Starting to match from the relationships and nodes

with low frequency, there occurs less possibilities to test and in this way QuickSI is

able to decrease the number of recursive calls. Also, QuickSI uses QI-Sequence in

indexing of the features in database graphs and takes advantage of its tree structure to

prune candidate graphs. As its pruning strategy, QuickSI applies ISJOINABLE proce-

dure of a query node u by beginning the checks from the relationship between u and

its parent node in QI-Sequence (in case that u is not the root node).

11

The third algorithm is GADDI [23], introduced by Zhang et al.. Their solu-

tion is based on how to refine the candidate nodes by using a distance based in-

dexing. Their main purpose is to eliminate the cadidate nodes by examining their

k-neighbourhood in case there are not at least as many specific fragments as there

are in the k-neighbourhood of query node. Selecting the fragments that are used in

neighborhood comparison, the discriminative ones which occur with different fre-

quencies in common k-neighbourhood of sample pairs of database node are picked.

GADDI uses 3 different pruning rule to refine the candidates: For a query node u and

a candidate node v, firstly for each node u′ in k-neighborhood of u, it tries to find

a candidate v′ in k-neighbourhood of v by label comparison test. Secondly, for the

common k-neighbourhood of each (u, u′) pair, it counts the number of discriminative

fragments in this area and prunes out u if there are less number of occurences of a

specific fragment in the corresponding region obtained by (v, v′). Thirdly, for each u′

it compares the length of shortest path, l, between u and u′ with the one, l′, between v

and v′ and u is eliminated in the case l < l′ for at least one u′. Furthermore, GADDI

applies these pruning rules in reverse manner for each candidate v′ in neighbourhood

of v. Lastly, as matching order, GADDI selects the first node randomly, the rest are

selected by DFS.

GraphQL [8], is another algorithm for subgraph isomorphism problem, focuses

on neigbourhood relations to filter candidates for a query node. If a query node u can

be matched with a database node v, then for each query node u′ in k-neighbourhood

of u, there must be a candidate node v′ in k-neighbourhood of v. Thus, GraphQL

uses this fact to prune out false candidates of a query node, by scanning their k-

neighbourhood upto a refinement level r, incrementally for each k where 1 ≤ k ≤ r.

Also, GraphQL follows an optimized node matching strategy by selecting the query

node which is estimated to decrease the cost at each intermediate step and adjacent to

set of already matched nodes.

Lastly, as a candidate path matching version of Ullmann’s method, SPath algo-

rithm [24] handles candidate paths. It actually does nothing but matches more than

one node on a linear sequence at a recursive call by applying ISJOINABLE procedure

for each node on the path. SPath algorithm filters the candidate vertices by checking

the number of each node label in their k-neighbourhood, where k is a parameter for

12

the radius of neighbourhood. It applies a rule which is; for each node label L; total

number of occurences of L in the neighbourhood upto kth level of u must be less than

or equal to the total number of occurences of L in the neighbourhood upto the kth

level of v where v is candidate node for a query vertex u. While matching the paths,

the algorithm follows a decreasing order of path selectivity defined as a metric based

on size of candidate node sets.

The algorithms summarized above remain incapable of showing good perfor-

mance in some or many cases. Each algorithm has some drawbacks: The pruning

techniques of VF2 are not powerful enough, and the matching order it follows is ef-

fective only when database graph has similar node label statistics with query graph.

QuickSI has to go around the whole database to deduce the information about label

and <label-relationship type-label> triple count used in edge weighting; moreover,

it should keep up-to-date the data, therefore it additionally needs B+ -trees for this

purpose. GADDI creates a large index that keeps the number of discriminative frag-

ments in the intersected k-neighbourhood of each node pair in the whole database,

which requires a very exhaustive pre-computation. Futhermore, the pruning rules

of GADDI are not effective, and quite time-consuming. GraphQL compares neigh-

bourhoods of query nodes with their candidates’ neighbourhoods and tries to find a

semi-perfect bipartite matching between the nodes in corresponding neighbouhoods

but our experiments showed that this is already an exhaustive computation even when

the refinement level is set 1 and not very effective for reducing the candidate set size

of some query nodes. SPath needs a data structure including the number of each label

with shortest distance i from v for each database node v and for each i from 1 to

k; which requires a long pre-computation time and large storage. Also, the experi-

ments in [11] show that the ordering based on path selectivity does not provide a good

performance for searching the graph in database.

In their great study [11], Lee et al. compare these five algorithms VF2, QuickSI,

GADDI, GraphQL, and SPath on various type of real-world data sets by using their

own re-implementations on iGraph framework [6]. They work on small and large

undirected graphs consisting of one or many pieces by testing with subgraph, clique

and path queries. The experiments that they conduct show that there is not a perfect al-

gorithm which works for all types of database queries efficiently. For instance, while

13

QuickSI shows a good performance in many cases, it fails to return the answer in a

reasonable time for NASA dataset. According to the experimental results that they

have obtained, GraphQL is the only algorithm succeeding to respond in a reasonable

time for all tests. They state that these start-of-the-art algorithms may perform poorly

because of their ineffective matching order and the imbalance between efficiency and

overhead of their pruning methods.

Although each algorithm has its own defect, there is a common point that causes

all of these algorithms to perform poorly. All start to search by trying to find and filter

candidate nodes for each query vertex. The pruning rules that they use are generally

effective for eliminating the nodes that can never be a representative of the query node

for which it is selected as a candidate in a real exact match. However, since they don’t

apply the prunings by regarding each isomorphism as an independent one, the nodes

belonging to different isomorphisms cannot be discriminated until their relationships

are checked in matching phase. Therefore; the database nodes which are candidate

for different query vertices and members of distinct isomorphisms seem available

for being members of the same isomorphism at first sight. Hence, the main time loss

occurs at this point while searching for an actually non-existing reasonable connection

between those irrelevant nodes. In order to remove this kind of possible cases, after

the start node candidates are taken from all across the database, candidate nodes for

the rest of the query vertices should be selected depending on the start node match.

In other words, each start node candidate potentially creates a distinct isomorphism

region, and so the representatives for the other query vertices should be locally chosen

from the close neighbourhood of the start node for each distinct exact match.

14

CHAPTER 3

BB-GRAPH: BRANCH & BOUND ALGORITHM FOR GRAPH

ISOMORPHISM IN BIG GRAPH DATA MODEL

BB-Graph firstly finds the candidate database nodes for the start node us of query

graph. For each candidate node vs found, whether isomorphism(s) of the query graph

can or cannot be obtained by vs is checked. Checking is done by branching as follows:

Initially, BB-Graph examines the neighbourhood of vs. It detects relationships of vs

which can be candidate for those of us by using some filtering rules and tries to match

each relationship r of us with one of its candidates. During the match operations of

relationships, if the mandatory node matches appear (e.g. if r =< us, u
′
s > and

s =< vs, v
′
s >, then matching r and s brings the match of u′s and v′s), then those are

pushed into a stack so as to match their relationships later. If all the relationships of

us can be successfully matched, then an another node match, say M<u,v>, is popped

from the stack and the same branching procedure is applied for the non-matched

relationships of u this time. Recursively, the branching operations are done for each

node match until there occurs a contradiction with some match or each query graph

item (nodes and relationships) are successfully matched and an exact match of the

query is obtained. In both cases, a backtrace process is required to try the other

possible relationship, and therefore node matches since there can be more than one

choice for matching any relationship.

Section 3.1 gives all the details of algorithm steps which are filtering rules, branch-

ing and matching procedure, backtrack mechanism and usage of stack together with

examples in figures and pseudocodes.

15

A

u0

P

u1

P

u2

P

u3

P

u4

li

m m

li

s

f f

li li

(a) query graph: q

A

v0

P

v1

P

v2

P

v3

P

v4

P

v7

P v8

A

v9

A

v10

P

v6

P

v5

Pv12P

v11

P

v13

A

v14

li

m m

li

s

f f

s

f
f

li

m m

li

s

f
f f

li

m m m

lili
li

li

li

li

(b) database graph: g

Figure 3.1: An Example query and database graph where P : Person, A: Address, m:

motherOf, f : fatherOf, s: spouse, li: livesIn

16

3.1 Algorithm Steps

3.1.1 Filter For Start Node Of Query Graph And Filtering Rules

In the beginning, the start node of a query graph that is firstly matched during the

isomorphism search is determined. The first query node given in the input is selected

as the start node (Algorithm 1, line 3). After determining the start node, BB-Graph

tries to find candidates for the start node by filtering the entire database. If there is not

any node specified with some property, filtering is completed in 2 stages; otherwise,

the propertied nodes passed from the first two stages go through a third stage.

Algorithm 1: BB-GRAPH SEARCH ALGORITHM

Input: q : Query graph with n vertices

g : Database graph

Output: M : Set of all exact matches of q in g

1 begin

2 M ← ∅
3 us ← u0 where u0 is the first node given in the input

4 Cus ← FILTERBYLABEL(us)

5 Cus ← FILTERBYRELATIONSHIPS(us, Cus)

6 if us has property then

7 Cus ← FILTERBYPROPERTY(us, Cus)

8 end

9 forall vs ∈ Cus do

// Reset the temporary storage

10 Mnode ← ∅,Mrel ← ∅, S ← ∅
11 S.push(M<us,vs>)

12 Mnode.add(M<us,vs>)

13 TRANSITIONSTATE()

14 end

15 return M

16 end

17

The first stage is called as FilterByLabel, that is, database nodes are filtered

depending on their labels (Algorithm 1, line 4 & Algorithm 2). Since, the database

nodes which have a different label from query node u cannot be matched with u, BB-

Graph directly eliminates those. This operation doesn’t take any time since Neo4j has

already the data structure holding the nodes grouped by their labels so it returns the

result immediately (almost in 0 milisecond).

Algorithm 2: FILTERBYLABEL(u)

Input: u : Query node whose candidates will be found

Output: Cu : Set of candidate nodes for u

1 begin

2 Return the database nodes which includes all the labels of u

3 end

Algorithm 3: FILTERBYRELATIONSHIPS(u, Cu)

Input: u : Query node whose candidates will be filtered

Cu : Candidate set for u constructed by label

Output: C ∗u : Set of candidate nodes for u

1 begin

2 C∗u ← ∅
3 LG← List of groups G of the adjacent relationships of u based on

< type, direction >

4 forall v ∈ Cu do

5 for each G<type,direction> ∈ LG, if v has at least |G<type,direction>| many

number of adjacent relationships of type type and direction direction

w.r.t. v then add v into C∗u
6 end

7 return C∗u

8 end

The second stage is called as FilterByRelationships such that the number of

relationships of each candidate node are checked (Algorithm 1, line 5 & Algorithm

3). They are compared with the number of relationships of query node according

18

to their type and direction. Let cdt be the number of relationships of query node u

with type t and direction d with respect to u. Also, let {< ti, di >} be the set of

different <type, direction> tuples representing the type and direction of relationships

of u. Then, the database nodes which can be matched with u must have at least cditi
many relationships with type ti and direction di with respect to that node for each i.

If a node doesn’t satisfy this rule, then it is eliminated. This stage takes linear time

depending on the number of candidate nodes.

For the query nodes, which don’t have any property, filtering process ends up here.

However, for the nodes that have property, BB-Graph filters the nodes with respect to

their property values, which is called as FilterByProperty (Algorithm 1, line 6-8

&, Algorithm 4). The nodes that satisfy all the conditions specified in property values

of query node successfully pass this stage as well. Since Neo4j provides a schema

indexing feature for property-value indexing, this stage is dependent on the number

of candidate nodes only and can be completed in linear time.

Algorithm 4: FILTERBYPROPERTY(u, Cu)

Input: u : Query node whose candidates will be filtered

Cu : Candidate set for u constructed by label and relationships

Output: C ∗u : Set of candidate nodes for u

1 begin

2 C∗u ← ∅
3 forall v ∈ Cu do

4 for each different property p of u, if v satisfies the same value

conditions as u for p then add v into C∗u
5 end

6 return C∗u

7 end

In Figure 3.1, a sample query and a database graph are showed. Graph g is the

database of population and q is the query graph representing a family consisting of

mother (u1), father (u2), two children (u3 and u4) all living in the same address (u0).

To illustrate how filtering stage works, let’s assume that the start node is u1. Initially,

FilterByLabel stage eliminates all address nodes v0, v9, v10 and v14 because they

19

don’t have the label of u0 which is P . Next, the non-eliminated nodes are sent to

FilterByRelationships stage. In this phase, the nodes which have at least 2 outgo-

ing m relationships, at least 1 incoming s and at least 1 outgoing li relationships are

selected, and the rest is ruled out. Since only v0, v4, v6 satisfy this condition, those

are selected as candidate for u0. Here, the filtering process ends up since u0 doesn’t

have any property. However, to explain FilterByProperty stage, assume that u0 has

age ≥ 40 and v0, v4 and v6 has age = 65, age = 35, and age = 42, respectively.

Then, in this case BB-Graph would eliminate v4 since the value of node property age

is not ≥ 40, which is asked.

Three conditions used in the filtering stages mentioned above must actually be

satisfied by candidates of every query node. Thus, except the first, the other two rules

are used to eliminate some of candidates of query nodes matched in proceeding steps

of BB-Graph also (The first condition is directly satisfied by "relationship type-node

label uniqueness".).

Algorithm 5: TRANSITIONSTATE

/* global S, M, Mnode, Mrel */

1 begin

2 if S 6= ∅ then

3 M<u,v> ← S.pop()

4 BRANCHANDMATCH(M<u,v>)

5 S.push(M<u,v>) // Take back to backtrack

6 end

7 else

8 M .add((Mnode,Mrel)) // An exact match found

9 end

10 return // Backtracking

11 end

20

Algorithm 6: BRANCHANDMATCH

/* global S, Mnode, Mrel */

Input: M<u,v>: The node match to be branched

1 begin

2 Ru ← { relationship r of u | @rx ∈ Rg s.t. M<r,rx> ∈Mrel }
3 if Ru 6= ∅ then

4 forall ri ∈ Ru do

5 Cri ← FINDCANDIDATERELATIONSHIPS(M<u,v>, ri)

6 indi := 0, sizei := |Cri |

7 end

8 i := 0

9 while i ≥ 0 do

10 while indi < sizei do

11 if i == |Ru| then

12 TRANSITIONSTATE()

13 i - - // Backtracking

14 Take back Mrel, Mnode and S to the previous values

15 continue

16 end

17 si ← Cri .get(indi)

18 indi ++

19 if ISMATCHVALID(M<ri,si>,M<u,v>) then

20 i ++

21 end

22 end

23 indi := 0, i - - // Backtracking

24 Take back Mrel, Mnode and S to the previous values

25 end

26 end

27 return

28 end

21

3.1.2 Branching Process of Node Match

When a query node u is matched with one of its candidates v, the matchM<u,v> is put

into a stack, called "stack of not-branched nodes", in order to expand it later. When

it is popped from the stack, previously branched node and relationship matches are

assumed to be correct and the branching process starts for M<u,v>. In fact, this is a

long process which includes exploring and evaluating all possible ways of expanding

node match around its first-level-neighborhood. However, BB-Graph interrupts the

process after it finds out one valid expansion matching all the non-matched relation-

ships of u and then it proceeds to branching process of other node matches through

next recursive calls. The other options for expansion of M<u,v>, if exits, are handled

by backtracking mechanism later (see Section 3.1.3).

Algorithm 6 shows the steps of branching process. In the first step of branching

process of M<u,v>, initially, all non-matched relationships of u are detected (Algo-

rithm 6, line 2). Then for each relationship r with type r.type and direction r.dir,

the candidate relationship set Cr is constituted from v’s relationships with r.type and

r.dir (Algorithm 6, lines 4-6 & Algorithm 7). Now, for each non-matched relation-

ship r0, r1,, rk of u, there exists candidate sets Cr0 , Cr1 , ..., Crk , respectively, and

so there occur |Cr0| × |Cr1| × ... × |Crk | many combinations of matches. In Figure

3.2, an example of the candidate set constitution and the obtained combinations of re-

lationships are given. In the second step, each combination c ∈ Cr0 ×Cr1 × ...×Crk

is checked to see whether or not the relationship matches obtained from c cause a

conflict with the previous matches or between each other. In case of a conflict, that

combination is ignored.

Algorithm 8 shows the conflict control: Let c = (s0, s1, ..., sk) ∈ Cr0 × Cr1 ×
... × Crk be a combination of relationships which are candidate for r0, r1, ..., rk,

where ri =< u, ui > and si =< v, vi > (w.l.o.g. we assumed that they are out-

going relationships w.r.t. u and v, but it should be considered as ri =< ui, u > and

si =< vi, v > in case they are incoming relationships.). In c, there may have occurred

3 kinds of conflict due to any M<ri,si> match: Firstly, providing that ui has already

been matched before, BB-Graph checks if ui had been matched with vi. If not, then

this conflict invalidates the combination (Algorithm 8, line 4). Secondly, if ui is not

22

Algorithm 7: FINDCANDIDATERELATIONSHIPS

Input: M<u,v> : The node match that is branching

ri : The query relationship adjacent to u whose candidates are searched

Output: Cri : Set of candidate relationships for ri

1 begin

2 if ri.diru = OUTGOING then

3 Cri ← {si =< v, v′ > | si.type = ri.type, v
′ ∈ VG}

4 end

5 else

6 Cri ← {si =< v′, v > | si.type = ri.type, v
′ ∈ VG}

7 end

8 return Cri

9 end

yet matched but vi is already among the matched nodes, then it means vi was previ-

ously matched with some node other than ui, which makes the combination invalid

again (Algorithm 8, line 7). Lastly, in case that M<ui,vi> is a new match, the conve-

nience of two nodes is checked by FilterByRelationships and FilterByProperty

tests explained in Section 3.1.1 (Algorithm 8, line 11). At this point, FilterByLabel

test is not necessary baceuse "relationship type-node label uniqueness" already satis-

fies the label condition; in other words, ui and vi cannot have different labels since

they are end points of the same type of relationships ri and si. When all the checks

are completed, on the condition that there doesn’t exist any conflict with M<ri,si>

∀i = 0, ..., k; c is considered valid. Additionally, all new matches, M<ui,vi>s, ap-

peared with M<ri,si> are pushed into "stack of not-branched matches", S, so as to

branch in next recursive calls (Algorithm 8, line 13). Branching process of the match

M<u,v> is terminated after each combination in Cr0 × Cr1 × ...× Crk is evaluated as

valid or invalid (Algorithm 6, lines 8-24). Nevertheless, this is a discrete process such

that each combination is evaluated at distinct times for the reason that the process is

interrupted when a valid combination is explored, and extension of partial isomor-

phism is maintained from that point (Algorithm 6, line 11), later on the schedule is

returned back by backtracking (Algorithm 6, lines 12-14).

23

A

u0

P

u1

P

u2

P

u3

P

u4

li

m m

s

(a) neighborhood of u1 in

Figure 3.1

P

v6

P

v5

Pv12P

v11

P

v13

A

v14

s

m m m

li

(b) neighborhood of v6 in Figure 3.1

C<u1,u0> := {< v6, v14 >}

C<u2,u1> := {< v5, v6 >}

C<u1,u3> := {< v6, v11 >,< v6, v12 >,< v6, v13 >}

C<u1,u4> := {< v6, v11 >,< v6, v12 >,< v6, v13 >}

(c) candidate relationship sets for non-matched relationships of u1

(< v6, v14 >,< v5, v6 >,< v6, v11 >,< v6, v11 >)

(< v6, v14 >,< v5, v6 >,< v6, v11 >,< v6, v12 >)

(< v6, v14 >,< v5, v6 >,< v6, v11 >,< v6, v13 >)

(< v6, v14 >,< v5, v6 >,< v6, v12 >,< v6, v11 >)

(< v6, v14 >,< v5, v6 >,< v6, v12 >,< v6, v12 >)

(< v6, v14 >,< v5, v6 >,< v6, v12 >,< v6, v13 >)

(< v6, v14 >,< v5, v6 >,< v6, v13 >,< v6, v11 >)

(< v6, v14 >,< v5, v6 >,< v6, v13 >,< v6, v12 >)

(< v6, v14 >,< v5, v6 >,< v6, v13 >,< v6, v13 >)

(d) combinations of candidate relationships obtained from C<u1,u0> ×

C<u2,u1> × C<u1,u3> × C<u1,u4>

Figure 3.2: An example to candidate set construction procedure for the query node

u1 and the database node v6 given in Figure 3.1

24

3.1.3 Backtrack Mechanism

During the check of relationship combinations, some prunings are done in implemen-

tation phase. Each relationship ri (where i = 0, ..., k) is matched with a candidate

relationship si ∈ Cri in such an incremental way that if there arises a problem (be-

cause of the reasons mentioned in Section 3.1.2) with M<rj ,sj> at jth step where

0 < j ≤ k then rather than discarding the whole combination, only jth relationship

match, M<rj ,sj>, is discarded. Instead of discarded match, a new one is placed by

matching ri with the next candidate in Cri (Algorithm 6, lines 9, 16-21). If there can

not be found an unproblematic match even though all candidates are tested, then the

process is backtracked to (j−1)th step and M<rj−1,sj−1> is tried to be replaced with a

valid match, this time (Algorithm 6, lines 8, 22, 23). Similarly, if M<rj−1,sj−1> causes

a problem too, it is backtracked to (j − 2)th step and so on. If there is a problem

in the beginning step, in other words in case that each candidate for r0 constitutes

a match which conflicts with previous matches or leading to conflicting matches in

the next steps, then it means that it was a mistake to match u with v, so BB-Graph

backtracks to the former depth in chain of recursive calls. Furthermore, even if there

doesn’t occur any problem until the end of recursive calls and all the matches result in

an isomorphism of the query graph, backtracking is done in order to test other cases

if there exists any other isomorphism.

3.1.4 Transition State Operations And Stack Usage

For a node match M<u,v>, when a valid combination of relationship matches is

reached and each non-matched relationship of u is matched with an appropriate rela-

tionship of v, the branching process is interrupted and BB-Graph passes to a transition

state to start a new branching process of another node match (Algorithm 6, line 11).

Algorithm 5 gives the transition state operations. In this state, the node match that

is branched in the next call is popped from the stack (Algorithm 5, line 4). After

the pop operation, the algorithm recursively calls branching process for the popped

match this time (Algorithm 5, line 5). However, if the stack is already empty and

all of the query nodes and relationships are matched, then it means an exact match

I of the query graph has been found. In this case, I is saved (Algorithm 5, line 8)

25

Algorithm 8: ISMATCHVALID

/* global S, Mnode, Mrel */

Input: M<ri,si>: The relationship match to be checked

M<u,v>: The node match currently being branched

1 begin

2 ui := ri.getOtherNode(u)

3 vi := si.getOtherNode(v)

4 if ∃ux 6= ui s.t. M<ux,vi> ∈Mnode then

5 return false

6 end

7 if ∃vx 6= vi s.t. M<ui,vx> ∈Mnode then

8 return false

9 end

10 if M<ui,vi> /∈Mnode then

11 if FILTERBYRELATIONSHIPS(ui, {vi}) 6= ∅
and FILTERBYPROPERTY(ui, {vi}) 6= ∅ then

12 Mnode.add(M<ui,vi>)

13 Snode.add(M<ui,vi>)

14 end

15 else

16 return false

17 end

18 end

19 Mrel.add(M<ri,si>)

20 return true

21 end

26

and backtrack mechanism is activated with the aim of exploring other exact matches.

When backtracking is done in order to evaluate other possibilities, stack and the other

match records are turned back into the version before passing to the transition state

(Algorithm 5 line 5, Algorithm 6 line 13).

Here, stack is used, instead of queue, because of the strategy that BB-Graph uses

in backtracking. Since changes in matches are done by beginning from the last match

towards the back when backtracked, a LIFO-logic-data structure provides replacing

the old matches with the new ones in an easier and more efficient way. Thus, the

usage of stack, together with the backtrack mechanism, also affects the branching

order of node matches which plays an important role in algorithm performance (see

Section 4.4).

Finally, for the sample query and database graph shown in Figure 3.1, a sample

piece of execution of BB-Graph for the case u1 is the starting node and v6 is the

starting node candidate is described in Figure 3.3 .

P

v1

P

v4

P

v6

Stack S = ∅

Start Node u1

Candidate List Cu1 = {v6, v1, v4}

(a) Filtering for the start node

P

v6

Stack S = {M<u1,v6>}

Matched Nodes Mnode = {M<u1,v6>}

Candidate List Cu1 = {v1, v4}
(to be evaluated later

by backtracking)

(b) Choosing a candidate for the start node

Figure 3.3: A sample piece of execution for the query and database graph given in

Figure 3.1

27

P

v6

P

v5

P

v12

P

v11

P

v13
A

v14

s

m m

m

li

Popped Match M<u1,v6>

Stack S = ∅

Matched Nodes Mnode = {M<u1,v6>}

Candidate C<u1,u0> = {< v6, v14 >}
Lists C<u2,u1> = {< v5, v6 >}

C<u1,u3> = {< v6, v11 >,< v6, v12 >,

< v6, v13 >}
C<u1,u4> = {< v6, v11 >,< v6, v12 >,

< v6, v13 >}

(c) Branching of M<u1,v6>

P

v6

P

v5

P

v12

P

v11

A

v14

s

m m

li

Chosen Rel. (< v6, v14 >,< v6, v12 >,< v6, v11 >,

Combination < v5, v6 >)

(Other combinations are going to

be evaluated later by backtracking)

Matched Mrel = {M<r1,s1>,M<r2,s2>,M<r3,s3>,

Relationships M<r4,s4>} where

r1 :< u1, u0 >, s1 :< v6, v14 >

r2 :< u1, u4 >, s2 :< v6, v12 >

r3 :< u1, u3 >, s3 :< v6, v11 >

r4 :< u2, u1 >, s4 :< v5, v6 >

Matched Nodes Mnode = {M<u1,v6>,M<u0,v14>,

M<u4,v12>,M<u3,v11>,

M<u2,v5>}

Stack S = {M<u0,v14>,M<u4,v12>,M<u3,v11>,

M<u2,v5>}

(d) Choosing a relationship combination to be matched

Figure 3.3: A sample piece of execution for the query and database graph given in

Figure 3.1 (cont.)

28

P

v6

P

v5

Pv12P

v11

A

v14

s

f
f

li

m
m

li

Popped Match M<u2,v5>

Stack S = {M<u0,v14>,M<u4,v12>,M<u3,v11>}

Matched Nodes Mnode = {M<u1,v6>,M<u0,v14>,

M<u4,v12>,M<u3,v11>,

M<u2,v5>}

Candidate C<u2,u0> = {< v5, v14 >}
Lists C<u2,u3> = {< v5, v11 >, < v5, v12 > ,

< v5, v13 >}
C<u2,u4> = { < v5, v11 >,< v5, v12 >,

< v5, v13 >}
(The crossed candidates are going to

be eliminated by ISMATCHVALID()

function later by backtracking)

(e) Branching of M<u2,v5>

P

v6

P

v5

Pv12P

v11

A

v14

s

f
f

li

m
m

li

Chosen Rel. (< v5, v14 >,< v5, v12 >,< v5, v11 >)

Combination (Other combinations are going to

be evaluated later by backtracking)

Matched Mrel = {M<r1,s1>,M<r2,s2>,M<r3,s3>,

Relationships M<r4,s4>,M<r5,s5>,M<r6,s6>,

M<r7,s7>} where

ri and si are as stated in prev. steps

for 1 ≤ i ≤ 4,

r5 :< u2, u0 >, s5 :< v5, v14 >

r6 :< u2, u4 >, s6 :< v5, v12 >

r7 :< u2, u3 >, s7 :< v5, v11 >

Matched Nodes Mnode = {M<u1,v6>,M<u0,v14>,

M<u4,v12>,M<u3,v11>,

M<u2,v5>}

Stack S = {M<u0,v14>,M<u4,v12>,M<u3,v11>}

(f) Choosing a relationship combination to be matched

Figure 3.3: A sample piece of execution for the query and database graph given in

Figure 3.1 (cont.)

29

P

v6

P

v5

Pv12P

v11

A

v14

s

f
f

li

m m

li
li

Popped Match M<u3,v11>

Stack S = {M<u0,v14>,M<u4,v12>}

Matched Nodes Mnode = {M<u1,v6>,M<u0,v14>,

M<u4,v12>,M<u3,v11>,

M<u2,v5>}

Candidate C<u3,u0> = {< v11, v14 >}
Lists

(g) Branching of M<u3,v11>

P

v6

P

v5

Pv12P

v11

A

v14

s

f
f

li

m m

li
li

Chosen Rel. (< v11, v14 >)

Combination (Other combinations are going to

be evaluated later by backtracking)

Matched Mrel = {M<r1,s1>,M<r2,s2>,M<r3,s3>,

Relationships M<r4,s4>,M<r5,s5>,M<r6,s6>,

M<r7,s7>,M<r8,s8>} where

ri and si are as stated in prev. steps

for 1 ≤ i ≤ 7,

r8 :< u3, u0 >, s8 :< v11, v14 >

Matched Nodes Mnode = {M<u1,v6>,M<u0,v14>,

M<u4,v12>,M<u3,v11>,

M<u2,v5>}

Stack S = {M<u0,v14>,M<u4,v12>}

(h) Choosing a relationship combination to be matched

Figure 3.3: A sample piece of execution for the query and database graph given in

Figure 3.1 (cont.)

30

P

v6

P

v5

Pv12P

v11

A

v14

s

f
f

li

m m

li
li

li

Popped Match M<u4,v12>

Stack S = {M<u0,v14>}

Matched Nodes Mnode = {M<u1,v6>,M<u0,v14>,

M<u4,v12>,M<u3,v11>,

M<u2,v5>}

Candidate C<u4,u0> = {< v12, v14 >}
Lists

(i) Branching of M<u4,v12>

P

v6

P

v5

Pv12P

v11

A

v14

s

f
f

li

m m

li
li

li

Chosen Rel. (< v12, v14 >)

Combination (Other combinations are going to

be evaluated later by backtracking)

Matched Mrel = {M<r1,s1>,M<r2,s2>,M<r3,s3>,

Relationships M<r4,s4>,M<r5,s5>,M<r6,s6>,

M<r7,s7>,M<r8,s8>,M<r9,s9>}
where ri and si are as stated in prev.

steps for 1 ≤ i ≤ 8,

r9 :< u4, u0 >, s9 :< v12, v14 >

Matched Nodes Mnode = {M<u1,v6>,M<u0,v14>,

M<u4,v12>,M<u3,v11>,

M<u2,v5>}

Stack S = {M<u0,v14>}

(j) Choosing a relationship combination to be matched

Figure 3.3: A sample piece of execution for the query and database graph given in

Figure 3.1 (cont.)

31

P

v6

P

v5

Pv12P

v11

A

v14

s

f
f

li

m m

li
li

li

Popped Match M<u0,v14>

Stack S = ∅

Matched Nodes Mnode = {M<u1,v6>,M<u0,v14>,

M<u4,v12>,M<u3,v11>,

M<u2,v5>}

Candidate There does not exist any non-matched

Lists relationship.

(k) Branching of M<u0,v14>

P

v6

P

v5

Pv12P

v11

A

v14

s

f
f

li

m m

li
li

li

Matched Relationships Mrel = Eq

Matched Nodes Mnode = Vq

Exact Matches M = {(Mnode,Mrel)}

Stack S = ∅

Next Actions Backtrack,

Choose not-tried candidates,

Apply the same procedure.

(l) Saving the found exact match

Figure 3.3: A sample piece of execution for the query and database graph given in

Figure 3.1 (cont.)

3.2 Algorithm Complexity

In this section, running time complexity (computational complexity) analysis and

space complexity analysis of BB-Graph are explained. All the parameters used in the

analyses are given in Table 3.1.

3.2.1 Time Complexity

BB-Graph starts with the filtering part. It tries to find candidates for the start query

node by filtering the database nodes with respect to their labels, adjacent relation-

ships and property values (if exists). FilterByLabel stage (Algorithm 2) takes O(1)

32

Table 3.1: Explanation of the parameters used in the complexity analyses of BB-

Graph

|Vq| : number of nodes (vertices) in query graph q

|Vg| : number of nodes (vertices) in database graph g

|Eq| : number of relationships (edges) in query graph q

degmax
q : maximum of the node degrees in query graph q

degmax
g : maximum of the node degrees in database graph g

ρmax
q : maximum of the number of node properties in query graph q

since all nodes are kept with respect to their labels in Neo4j by dafault. In the

worst case, all database nodes may have the labels of the start node, which means

there exist |Vg| number of candidate nodes that are going to be filtered with respect

to their adjacent relationships. Therefore, FilterByRelationships (Algorithm 3)

stage takes O(|Vg| × degmax
q). Similarly, in the worst case, all database nodes sat-

isfy the adjacent relationship conditions and node property conditions. Therefore,

FilterByProperty stage (Algorithm 4) takes O(|Vg| × ρmax
q). Totally, filtering part

takes O(|Vg| × (degmax
q + ρmax

q)|). In the end of filtering part, there may be |Vg|
number of candidates for the start node in the worst case.

For each start node candidate the branching procedure is applied through Transi-

tion State. For that reason, the complexity of this part is going to be |Vg|×O(branching).
In the branching procedure (Algorithm 6), initially, all non-matched relationships of

the current query node are detected and for each of them candidate relationship sets

are constructed. If we assume that there are xi many number of non-matched rela-

tionships for the current node in the depth i of the recursive process, since FIND-

CANDIDATERELATIONSHIPS (Algorithm 7) takes O(1), complexity of candidate re-

lationship set construction becomes O(xi). For each non-matched relationship, there

can be at most degmax
g many number of candidate relationships (If there are more

than one different type of non-matched relationships of the current node, then it is

certain that the candidate set size is less than degmax
g . Nevertheless, we take degmax

g

as an upper bound for the candidate set size of each non-matched query relationship).

This means, there occurs (degmax
g)(xi) many number of different combinations of re-

33

lationship matching for a query node. Since a query node can have at most degmax
q

non-matched relationships, the upper bound for number of combinations of relation-

ship matching becomes (degmax
g)(deg

max
q). At each candidate relationship selection, it

is checked whether there occurs any conflict with the match through ISMATCHVALID

function (Algorithm 8). In ISMATCHVALID, end nodes of the selected candidate re-

lationship are compared with the already matched query and database nodes. After

that, the filtering procedure is applied to the end nodes. For that reason, complexity of

this function becomesO(|Vq|+degmax
q +ρmax

q). As a result, at each depth of branch-

ing procedure, the cost becomesO((degmax
g)(deg

max
q)× (|Vq|+ degmax

q + ρmax
q + xi)).

Since the maximum depth of the recursive branching can equal to the number of query

nodes, |Vq|, and the summation of xis is the number of query relationships, |Eq|, the

overall complexity of branching procedure becomesO((degmax
g)(deg

max
q)|Vq |× (|Vq|+

degmax
q + ρmax

q)) (Actually it is O((degmax
g)(deg

max
q)|Vq | × (|Vq|+ degmax

q + ρmax
q) +

(degmax
g)(deg

max
q)×|Eq|). However, the partO((degmax

g)(deg
max
q)×|Eq|) is negligible.).

To conclude, the computational cost of BB-Graph equals to the summation of cost

of filtering part and cost of branching part, which is, O(|Vg| × (degmax
q + ρmax

q)|) +
O(|Vg|×(degmax

g)(deg
max
q)|Vq |×(|Vq|+degmax

q +ρmax
q)). Since the cost of the filtering

part is negligible when it is compared to the cost of the branching part, the runnin

time complexity of BB-Graph becomesO(|Vg| × (degmax
g)(deg

max
q)|Vq|× (|Vq|+

degmax
q + ρmax

q)).

3.2.2 Space Complexity

For the filtering part, BB-Graph uses a list to hold the candidate database nodes for

the start node. Since there can be maximum |Vg| number of candidates for the start

node (in other words all the database nodes), there is a need for a list of size |Vg|
in the worst case. Also, for each query relationship, there is constructed a candi-

date relationship set. Since there can be maximum degmax
g number of candidates

for a query relationship, size of a constructed candidate set becomes degmax
g . The

case in which the recursive computation reaches to the deepest value is the worst

case requiring the largest storage for the sets of candidate relationships. Since in the

highest depth of the recursion, all of the query relationships are going to have been

34

put in the process, the candidate relationship sets consume |Eq| × degmax
g units of

space at most. When the algorithm backtracks, the space containing candidate re-

lationship sets constructed at that depth is released. Therefore |Eq| × degmax
g is

the maximum value of storage needed by them. Additionally, there exists the global

storages consuming some memory. There are used two global hashing maps to hold

the already matched query graph and database graph items; one map for already-

matched-nodes and one map for already-matched-relationships. These two maps in-

clude the information of the fact that which query node or relationship was matched

with which database node or relationship, respectively, that is, they can consume at

most 2 × |Vq| and 2 × |Eq| units of storage, respectiely. Lastly, the stack which is

used to hold not-yet-branched node matches needs 2 × |Vq| units of storage, that is

the space required in the case that start node is neighbour to all the remaining query

nodes, and as a result, all of the query nodes are matched at one time and pushed into

the stack. Throughout the whole execution of BB-Graph, all the other variables com-

sume quite a little space and can be neglected. Consequently, the space complexity

of BB-Graph equals to the summation of all the mentioned values in the worst case,

which isO(|Vg|+ |Vq|+ |Eq| × degmax
g).

35

36

CHAPTER 4

EXPERIMENTAL WORK

In this chapter, the performances of BB-Graph, Cypher and GraphQL are compared

on a big Neo4j directed graph database including 70 millions of nodes, and anothor

two databases including 100 thousands and 45 thousands of nodes. BB-Graph and

GraphQL were implemented in Java and Cypher queries were executed inside a Java

code.

4.1 Database

In this study, the Population Database supplied by Kale Yazılım was used. Popula-

tion Database consists of real logical data based on people and family relationships

among them (like mother, father, spouse, ... etc.). It also includes the personal infor-

mation of people like their address, birth date, state register, ... etc. If this kind of data

is kept on relational tables, while it is not a hard work to fetch the family relation-

ship information just for one person, it becomes a big problem to find connections

among many people or to deduce relations of so many nodes because of requiring

costly join operations on many tables or an extensive search needing a large amount

of labour and time. Also, for the detection of erroneous data, all the related registra-

tions should be checked and this may be impossible due to incapabilities of relational

databases. Therefore, to meet the needs of such a big data, a graph database system

is more compatible than RDBMS. Additionally, for the experimental purposes, Bank

Database supplied by Kale Yazılım and WorldCup Database, which is public , were

used so that measuring the performances of all three algorithms on a smaller sized

37

database. Bank Database consists of the branches of a bank and the relationships

between accounts or credits of customers and the branches. WorldCup database in-

cludes the player, match, squad relationships of countries that joined in the World

Cup Tournament in the past.

All of three databases are structured on Neo4j Database, consist of directed rela-

tionships and each node/relationship has exactly one label. In Table 4.1, features of

Population Database, Bank Database and WorldCup Database are given in a detailed

way. Population Database is actually a much bigger data set than the ones used in

[11].

Table 4.1: General Features of Population, Bank and WorldCup Databases

WorldCup Bank Population

Size 20 MiB 510.23 MiB 10.32 GiB

of graphs 1 1 1

of nodes 45348 105085 70422787

of relationships 86577 107898 77163109

of distinct node labels 12 15 14

of distinct relationship types 17 18 18

Avg. # of labels per node 1 1 1

4.2 Queries

For the experiments, there were used 10 real-world queries for Population Database

and 5 real-world queries for each of Bank and WorldCup Databases where each query

have different number of nodes and relationships and also have different types of node

labels and relationships. For BB-Graph and GraphQL, each query was given in BFS

code format explained in Section 2.2. For Cypher tests, each query were written as

a string and executed through Java. For each query, BB-Graph and Cypher experi-

ments were repeated 10 times, and the averages of the elapsed times were taken. For

GraphQL experiments, each query was executed once since it takes a long time. Also,

in GraphQL experiments, refinement-level was adjusted to 1 and refining process was

38

repeated as many times as the number of nodes in a query graph.

4.3 Setup

All the experiments were conducted on the same PC with Intel Octa Core 2.27GHz,

8 GB of main memory, and 100 GB hard disk, running Debian GNU, Linux 7.8

(wheezy). BB-Graph and GraphQL were implemented in Java on Eclipse. The Neo4j

version used is 2.3.1. In the experiments, all the exact matches were found in one

time without any break. To compare the algorithm performances, total elapsed time

were calculated.

4.4 Experimental Evaluation

In this section, the experimental results obtained by executing different types of

queries on WorldCup Database, Bank Database and Population Database are given.

4.4.1 WorldCup Database

Table 4.2: Relationship abbreviations for WorldCup Database

N_S NAMED_SQUAD P _A_T PLAYED_AT_TIME

I_S IN_SQUAD P _I PLAYED_IN

ST STARTED C_M CONTAINS_MATCH

SU SUBSTITUTE H_T HOME_TEAM

I_M IN_MATCH A_T AWAY_TEAM

S_G SCORED_GOAL

• Query-1 : Players who join squad of different countries

Figure 4.1 shows the graph of query-1 executed in WorldCup Database. It is a

path query consisting of 5 nodes and 4 relationships. The results obtained with

39

Country

u0

Squad

u1

Player

u2

Squad

u3

Country

u4

N_S

I_S

I_S

N_S

Figure 4.1: Graph of Query-1 in WorldCup Database

Cypher, GraphQL and BB-Graph are shown in Table 4.3. It is clearly seen that

BB-Graph has the best performance among all while GraphQL is the slowest.

Table 4.3: Results for Query-1 in WorldCup Database

Cypher GraphQL BB-Graph BB-Graph Matching Order

1629 ms 28538 ms 451 ms u0, u1, u2, u3, u4

• Query-2 : Players who take role as both substitute and active (STARTED) in

the same match

Playeru0

Performance

u1

Performance

u2

Match u3

ST

SU

I_M

I_M

Figure 4.2: Graph of Query-2 in WorldCup Database

Figure 4.2 shows the graph of query-2 executed in WorldCup Database. It is

a cyclic query consisting of 4 nodes and 4 relationships. In this query, the

computationally exhaustive part for BB-Graph occurs during the match of the

last node, which is u1. Since it is the connective node making u0 - u2 -

u3 path a cycle, the candidate node v1 for u1 must be adjacent to v0 where

M<u0,v0> ∈ Mnode in addition to its adjacency with v3 where M<u3,v3>.

The algorithm performances are given in Table 4.4. BB-Graph has performed

the best whereas GraphQL is the one performing the worst.

40

Table 4.4: Results for Query-2 in WorldCup Database

Cypher GraphQL BB-Graph BB-Graph Matching Order

10123 ms 1112510 ms 1949 ms u0, u2, u3, u1

• Query-3 : Matches between the same countries occured in different world cups

T ime

u0

Match

u1

Match

u2

Country

u3

Country

u4WorldCupu5 WorldCup u6

P _A_T P _A_T

P _I P _I

P _I P _I
C_M C_M

Figure 4.3: Graph of Query-3 in WorldCup Database

Figure 4.3 shows the graph of query-3 executed in WorldCup Database. It

consists of 7 nodes and 8 relationships. This query consists of 2 important

cycles which are (u0 - u1 - u3 - u2 - u0) and (u1 - u3 - u2 - u4 - u1). For this

type of query, BB-Graph has again the best performance among the others 4.5;

however it performs a bit worse than it did for query-2.

Table 4.5: Results for Query-3 in WorldCup Database

Cypher GraphQL BB-Graph BB-Graph Matching Order

7851 ms 17995 ms 3951 ms u0, u2, u6, u4, u3, u1, u5

• Query-4 : Cases at which two countries played at least 2 matches (as away

team in one and home team in the other) in the same world cup and the same

player scored at least 1 goal in both matches

41

WorldCup

u0

Match

u1

Match

u2

Performanceu3 Country u5Countryu4 Performance u6

Goalu7 Player

u8

Goal u9

C_M C_M

H_T
A_T A_T

H_TI_M

S_G

I_M

S_GST ST

Figure 4.4: Graph of Query-4 in WorldCup Database

Figure 4.4 shows the graph of query-4 executed in WorldCup Database. It has

10 nodes and 12 relationships. This query includes many important cycles like

(u0 - u1 - u4 - u2 - u0), (u0 - u1 - u5 - u2 - u0), (u1 - u3 - u8 - u6 - u2 - u4 -

u1) and (u1 - u3 - u8 - u6 - u2 - u5 - u1). The performance results are shown

in Table 4.6. This time, GraphQL shows very close performance to BB-Graph

and Cypher’s performance falls behind them.

Table 4.6: Results for Query-4 in WorldCup Database

Cypher GraphQL BB-Graph BB-Graph Matching Order

26711 ms 8194 ms 7954 ms u0, u2, u6, u8, u3, u7, u9, u5, u4, u1

• Query-5 : Players who take role in any match at least 3 world cups

Figure 4.5 shows the graph of query-5 executed in WorldCup Database. It is

tree-type of query such that the root mode u0 has 3 branches where each of

them is a path. This query consists of 10 nodes and 9 relationships. For this

query, GraphQL could not give all the matching results in a reasonable time. In

Table 4.7, it is seen that Cypher performs better than BB-Graph.

Table 4.7: Results for Query-5 in WorldCup Database

Cypher GraphQL BB-Graph BB-Graph Matching Order

26911 ms > 30 mins 35796 ms u0, u3, u6, u9, u2, u5, u8, u1, u4, u7

42

Player

u0

Performance

u1

Performance

u2

Performance

u3

Match

u4

Match u5

Match

u6

WorldCup

u7

WorldCup

u8 WorldCup

u9

ST
ST

ST

I_M

I_M

I_M

C_M
C_M

C_M

Figure 4.5: Graph of Query-5 in WorldCup Database

4.4.2 Bank Database

Table 4.8: Relationship abbreviations for Bank Database

L_I LIVES_IN H_C HAS_CREDIT

H_A HAS_ACCOUNT B_O_C BRANCH_OF_CREDIT

C_O_A COUNTY_OF_ADDRESS B_O_A BRANCH_OF_ACCOUNT

C_O_B COUNTY_OF_BRANCH H_C_C HAS_CREDIT_CARD

• Query-1 : Customers who have an account from a branch brank which locates

in the same county with the location of the customer address

Figure 4.6 shows the graph of query-1 executed in Bank Database. It is a cyclic

query consisting of 5 nodes and 5 relationships. In Table 4.9, it is seen that

although BB-Graph’s and Cypher’s performances are very close, BB-Graph

performs slightly better than Cypher. For this query, GraphQL’s performance

is quite lower than the other two.

43

Customer

u0

Address

u1

Account

u2

County

u3

Branch

u4

L_I H_A

C_O_A B_O_A

C_O_B

Figure 4.6: Graph of Query-1 in Bank Database

Table 4.9: Results for Query-1 in Bank Database

Cypher GraphQL BB-Graph BB-Graph Matching Order

2193 ms 339038 ms 2071 ms u0, u2, u4, u3, u1

• Query-2 : Customers who have at least 2 accounts from the same branch bank

and at least 1 account from a different branch bank

Customer

u0

Account

u1

Account

u2 Account

u3

Branch

u4

Branch

u5

H_A
H_A

H_A

B_O_A
B_O_A

B_O_A

Figure 4.7: Graph of Query-2 in Bank Database

Figure 4.7 shows the graph of query-2 executed in Bank Database. It consists

of 6 nodes and 6 relationships with 1 important cycle which is (u0 − u1 −
u4 − u2 − u0). Table 4.10 shows that BB-Graph performs the best whereas

GraphQL performs the worst.

44

Table 4.10: Results for Query-2 in Bank Database

Cypher GraphQL BB-Graph BB-Graph Matching Order

3692 ms 630825 ms 2784 ms u0, u3, u5, u2, u4, u1

• Query-3 : Customers who have an account and got credit from the same branch

bank

Customer

u0

Account

u1

Credit

u2

Branch

u3

H_A H_C

B_O_A B_O_C

Figure 4.8: Graph of Query-3 in Bank Database

Figure 4.8 shows the graph of query-3 executed in Bank Database. It is a cyclic

query consisting of 4 nodes and 4 relationships. Similar to query-1 results,

Cypher and BB-Graph shows very close performances for this query also 4.11.

Table 4.11: Results for Query-3 in Bank Database

Cypher GraphQL BB-Graph BB-Graph Matching Order

1593 ms 238963 ms 1435 ms u0, u2, u3, u1

• Query-4 : Cases consisting of 3 customers x,y,z who satisfy the followings:

– For the same branch bank A, x has an account and y got a credit

– For the same branch bank B, y has an account and z got a credit

– For the same branch bank C, z has an account and x got a credit

– A, B and C are all different branch banks

45

Customer

u0

Account

u1

Credit

u2

Branch

u3

Branch

u4Credit

u5

Account

u6

Customer

u7

Customer

u8

Account u9 Creditu10

Branch

u11

H_A H_C

B_O_A B_O_C

B_O_C B_O_A

H_C

H_A

H_A

H_CB_O_A B_O_C

Figure 4.9: Graph of Query-4 in Bank Database

Figure 4.9 shows the graph of query-4 executed in Bank Database. It is a big

cyclic query consisting of 12 nodes and 12 relationships. This time, contrary

to query-1 and query-3 which are cyclic also, BB-Graph shows quite better

results than Cypher as it is seen in Table 4.12. For this query, GraphQL cannot

complete its execution in a reasonable time.

Table 4.12: Results for Query-4 in Bank Database

Cypher GraphQL BB-Graph BB-Graph Matching Order

226830 ms > 30 mins 16025 ms u0, u2, u4, u6, u8, u10, u11, u9, u7, u5, u3, u1

• Query-5 : Customers who has account from the same branch bank and live in

the same county, and one of them has at least 1 credit card

Figure 4.10 shows the graph of query-5 executed in Bank Database. It is a

query including 9 nodes and 9 relationships with 1 cycle. Table 4.13 shows

that, BB-Graph performs better than Cypher for this query whereas GraphQL

cannot perform in an acceptable time.

Table 4.13: Results for Query-5 in Bank Database

Cypher GraphQL BB-Graph BB-Graph Matching Order

8966 ms > 30 mins 6093 ms u0, u3, u5, u7, u8, u6, u4, u2, u1

46

Customeru0 CreditCard u1

Address

u2

Accountu3

County

u4

Branch

u5

Address

u6

Account u7

Customer

u8

H_C_C

L_I

H_A

C_O_A

B_O_A

C_O_A

B_O_A

L_I

H_A

Figure 4.10: Graph of Query-5 in Bank Database

4.4.3 Population Database

Table 4.14: Relationship abbreviations for Population Database

M MOTHER L_I LIVES_IN

F FATHER M_O MEMBER_OF

S SPOUSE Of FLAT_OF_APARTMENT

O_S OLD_SPOUSE

• Query-1 : Families with at least 3 children and all (mother + father + 3 chil-

dren) living in the same address

Person

u0

Person

u1

Person

u2

Personu3

Person

u4

F lat

u5

S

L_I

L_I

F M
L_I

F M

L_I

F M

L_I

Figure 4.11: Graph of Query-1 in Population Database

47

Figure 4.11 shows the graph of query-1 executed in Population Database. It

is a highly connected query graph where degree of each node is at least 3. It

includes 6 nodes and 12 relationships with many cycles. Table 4.15 shows that

BB-Graph has a better performance than Cypher.

Table 4.15: Results for Query-1 in Population Database

Cypher GraphQL BB-Graph BB-Graph Matching Order

189940 ms > 30 mins 138193 ms u0, u4, u3, u2, u5, u1

• Query-2 : Extended families consisting of mother, father, son and son’s wife

and all living in the same address

Person

u0

Personu1 Person u2

F lat

u3

Person

u4

L_I

S

L_I
M

F

L_I

S

L_I

Figure 4.12: Graph of Query-2 in Population Database

Figure 4.12 shows the graph of query-2 executed in Population Database. It

contains 5 nodes and 7 relationships. Table 4.16 shows that Cypher and BB-

Graph have close performances; however, BB-Graph performs slightly better

than Cypher.

Table 4.16: Results for Query-2 in Population Database

Cypher GraphQL BB-Graph BB-Graph Matching Order

24289 ms > 30 mins 22354 ms u0, u2, u4, u1, u3

• Query-3 : Married couples whose mothers are sisters

48

Person

u0

Person

u1

Person

u2

Personu3 Person u4

F F

M

S

M

Figure 4.13: Graph of Query-3 in Population Database

Figure 4.13 shows the graph of query-3 executed in Population Database. It

is a cyclic query consisting of 5 nodes and 5 relationships. We have done

BB-Graph experiments with 2 different matching orders for this query. For

both matching orders, we have obtained very different results 4.17. Although

the performance is almost doubled in the second version of matching, Cypher

shows better performance than BB-Graph for this query.

Table 4.17: Results for Query-3 in Population Database

Cypher GraphQL BB-Graph BB-Graph Matching Order

14865 ms > 30 mins 33374 ms u0, u2, u4, u3, u1

17352 ms u3, u1, u0, u2, u4

• Query-4 : Housemates whose fathers are brothers

Person

u0

Person

u1

Person

u2

Personu3 Person u4

F lat

u5

M M

F

L_I

F

L_I

Figure 4.14: Graph of Query-4 in Population Database

49

Figure 4.14 shows the graph of query-4 executed in Population Database. It is

a cyclic query with 6 nodes and 6 relationships. Although it has very similar

structural features with query-4, performance results of both Cypher and BB-

Graph for this query quite differ than the results obtained in query-3. This is

just because in Population Database the number of nodes for each label changes

quitely. In Table 4.19, it is observed that for the first matching order, the per-

formance of BB-Graph is slightly worse than Cypher’s whereas for the second

matching order BB-Graph has performed twice as well the previous one and

thus, the results have become much better than Cypher’s results.

Table 4.18: Results for Query-4 in Population Database

Cypher GraphQL BB-Graph BB-Graph Matching Order

92444 ms > 30 mins 101401 ms u0, u2, u4, u5, u3, u1

54552 ms u1, u3, u5, u4, u2, u0

• Query-5 : Families in which a man, his wife, his at least 2 children; one from

his ex-wife and the other from his wife, are all living in the same address

Person

u0

Person

u1

Person

u2

Person

u3

Person u4

F lat u5

F lat

u6

S O_S

L_I

L_I

L_I
FM

L_I

F M

L_I

Figure 4.15: Graph of Query-5 in Population Database

Figure 4.15 shows the graph of query-5 executed in Population Database. It

has 7 nodes and 11 relationships. Table 4.19 shows that BB-Graph has a better

performance than Cypher.

50

Table 4.19: Results for Query-5 in Population Database

Cypher GraphQL BB-Graph BB-Graph Matching Order

14465 ms > 30 mins 8554 ms u0, u4, u2, u6, u3, u5, u2, u1

• Query-6 : Families in which a woman, her child from her ex-husband, her

mother and father are all living in the same address

Person

u0

Person

u1

Personu2

Person

u3

Person u4

F lat

u5

F lat

u6

M

F
L_I

O_S
L_I

M

F

L_I

L_I

S

L_I

Figure 4.16: Graph of Query-6 in Population Database

Figure 4.16 shows the graph of query-6 executed in Population Database. It

consists of 7 nodes and 11 relationships similar to query-5. However, this time,

although results obtained with both are close to eachother, Cypher performs

slightly better than BB-Graph 4.20. Here, the performance difference between

BB-Graph experiments with query-5 and query-6 is caused by the different

neighbourhoods of the same node labels. Since the neighbourhood of a node,

in other words types of adjacent relationship and degree, specializes it, how

much a node is well-described, the number of false candidates for that node

decreases in the same manner.

51

Table 4.20: Results for Query-6 in Population Database

Cypher GraphQL BB-Graph BB-Graph Matching Order

13713 ms > 30 mins 14036 ms u0, u2, u1, u6, u5, u4, u3

• Query-7 : Couples whose state registers are different

Person

u0

Person

u1

STATE_REGISTER

u2

STATE_REGISTER

u3

S

M_O M_O

Figure 4.17: Graph of Query-7 in Population Database

Figure 4.17 shows the graph of query-7 executed in Population Database. It

is a short path query including 4 nodes and 3 relationships. For such a query,

Table 4.21 shows that Cypher’s performance results are better than the both

performance results that BB-Graph produced with different matching orders.

Table 4.21: Results for Query-7 in Population Database

Cypher GraphQL BB-Graph BB-Graph Matching Order

12541 ms > 30 mins 24103 ms u0, u2, u1, u3

18984 ms u2, u0, u1, u0

• Query-8 : The families living in different flats; A, B, C, of the same apartment

such that:

– The grandmother x and grandfather y lives in flat A

– Son of x and y lives with his wife and his 2 children in flat B

– Daughter of x and y lives with her husband and her child in flat C

Figure 4.18 shows the graph of query-8 executed in Population Database. It is

a highly complex structured query consisting of 13 nodes and 25 relationships

52

Apartment

u0

F lat

u1
F lat

u2

F lat

u3

Personu4

Person u5

Person

u6

Person

u7

Person

u8

Person

u9

Person

u10

Person

u11

Person

u12

Of
Of Of

L_I

S
L_I

L_I

F

M

S

L_I

L_I

F

M

L_I

F
M

L_I

F

M

L_I

S

L_I
M

F

Figure 4.18: Graph of Query-8 in Population Database

with many cycles. As it is seen in Table 4.22, Cypher fails at returning all the

matches in a reasonable time whereas BB-Graph returns all of the results in

approximately 8 minutes.

Table 4.22: Results for Query-8 in Population Database

Cypher GraphQL BB-Graph BB-Graph Matching Order

> 30 mins > 30 mins 502721 ms u0, u3, u12, u11, u10, u5, u6, u9, u8, u7, u4, u2, u1

• Query-9 : Fathers and their sons along 8-degree-generation

Person

u0

Person

u1

Person

u2

Person

u3

Person

u4

Person

u5

Person

u6

Person

u7

F F F F F F F

Figure 4.19: Graph of Query-9 in Population Database

Figure 4.19 shows the graph of query-9 executed in Population Database. It is

53

a path query with 8 nodes and 7 relatinships. We have run BB-Graph with 2

different matching orders for this query. While BB-Graph performs worse than

Cypher with the first mathching order, it shows a much higher performance with

the second matching order and performs quite better than Cypher 4.23. This

is caused by the smaller number of candite nodes occuring with the second

matching order due to the semantic features of Population Database; that is,

almost every node with label Person has an outgoing relationship of type F ,

but does not have an incoming relationship of the same type.

Table 4.23: Results for Query-9 in Population Database

Cypher GraphQL BB-Graph BB-Graph Matching Order

26204 ms > 30 mins 41421 ms u0, u1, u2, u3, u4, u5, u6, u7

2204 ms u7, u6, u5, u4, u3, u2, u1, u0

• Query-10 : Twins who live in different flats of the same apartment which is

different from the apartment where their parents live

Figure 4.20 shows the graph of query-10 executed in Population Database. It

is a query containing 10 nodes and 14 relationships with many cycles.For this

query, it is seen in Table 4.23 that BB-Graph shows a better performance than

Cypher.

Table 4.24: Results for Query-10 in Population Database

Cypher GraphQL BB-Graph BB-Graph Matching Order

226770 ms > 30 mins 73435 ms u0, u3, u7, u9, u6, u5, u2, u4, u8, u1

54

Person

u0

Person

u1

Person

u2

Person

u3

F lat

u4

BirthDay

u5
F lat

u6

F lat

u7

Apartment

u8

Apartment u9

S

L_I L_I

F
M

Born
L_I

F
M

Born
L_I

Of

Of Of

Figure 4.20: Graph of Query-10 in Population Database

55

56

CHAPTER 5

CONCLUSION & FUTURE WORK

5.1 Conclusion

In this thesis, a new algorithm, BB-Graph, for Subgraph Isomorphism Problem is

introduced. Similar to existing approaches in literature, BB-Graph uses branch-and-

bound technique to match each query node and relationship with its candidate and

backtracks for trying the other possible candidates. However, contrary to the cur-

rent algorithms that try to find candidates of each query node all across the database

graph, after matching the first query node, BB-Graph searches candidates for other

query nodes and relationships in local regions of the first matched database node.

Our experiments conducted with different types of queries on 3 different real-world

databases, Population Database, Bank Database and WorldCup Datbase, show that

BB-Graph has the best performance among GraphQL and Cypher for most of the

cases. According to our experimental results, GraphQL is not capable of querying

in very large databases like Population Database since it couldn’t complete its exe-

cution in a reasonable time. Although GraphQL has showed very close performance

to BB-Graph for one of the queries in WorldCup Database, generally it performed

worse than Cypher and BB-Graph due to its matching strategy of the irrelevant candi-

dates from all over the whole database. When it comes to Cypher and BB-Graph, the

experimental results show that BB-Graph has much better performance than Cypher

for most of the time. Moreover, for the cases BB-Graph has performed worse than

Cypher, it could achieve completing its execution in very close length of duration

with Cypher. Therefore, we strongly suggest our algorithm, BB-Graph, for both large

and small databases and for different types of queries because of its high performance

57

compared to Cypher and GraphQL.

5.2 Future Work

According to our experimental results, we have seen the performance of the algo-

rithms that we implemented, especially our algorithm BB-Graph, does not depend

on just one factor like the number of nodes or relationships. Actually, many features

such as frequency of query node labels and query relationship types in the database

graph, number of cycles in query graph, structure of query graph (whether it is a path,

a tree or something more complex) and also the semantic design of relationships like

1 −N or N −N all affect the computation time of algorithms. Additionally, our

experiments show that the order in which query nodes are matched also highly affect

the algorithm performance since number of false cases can be eliminated earlier based

on the situation appeared after matching some query node. For that reason, we are

planning to improve the performance of our algorithm with some patches which de-

sign a query-dependent matching order by taking into consideration the query graph

specifications mentioned above.

58

REFERENCES

[1] Bitnine Company Website, Relational Database vs Graph Database. http:
//bitnine.net/rdbms-vs-graph-db/. Accessed: Oct. 2016.

[2] A. Abboud, A. Backurs, T. D. Hansen, V. V. Williams, and O. Zamir. Subtree
isomorphism revisited. arXiv preprint arXiv:1510.04622, 2015.

[3] S. Batra and C. Tyagi. Comparative analysis of relational and graph databases.
International Journal of Soft Computing and Engineering (IJSCE), 2(2):509–
512, 2012.

[4] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub) graph isomor-
phism algorithm for matching large graphs. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 26(10):1367–1372, 2004.

[5] R. Giugno and D. Shasha. Graphgrep: A fast and universal method for query-
ing graphs. In Pattern Recognition, 2002. Proceedings. 16th International
Conference on, volume 2, pages 112–115. IEEE, 2002.

[6] W.-S. Han, J. Lee, M.-D. Pham, and J. X. Yu. igraph: a framework for com-
parisons of disk-based graph indexing techniques. Proceedings of the VLDB
Endowment, 3(1-2):449–459, 2010.

[7] H. He and A. K. Singh. Closure-tree: An index structure for graph queries.
In Data Engineering, 2006. ICDE’06. Proceedings of the 22nd International
Conference on, pages 38–38. IEEE, 2006.

[8] H. He and A. K. Singh. Graphs-at-a-time: query language and access methods
for graph databases. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 405–418. ACM, 2008.

[9] V. Kolomičenko. Analysis and experimental comparison of graph databases.
Master thesis, Charles University Department of Software Engineering, Prague,
2013.

[10] C. Lange, H. M. Sneed, and A. Winter. Comparing graph-based program com-
prehension tools to relational database-based tools. In Program Comprehension,
2001. IWPC 2001. Proceedings. 9th International Workshop on, pages 209–218.
IEEE, 2001.

59

http://bitnine.net/rdbms-vs-graph-db/
http://bitnine.net/rdbms-vs-graph-db/

[11] J. Lee, W.-S. Han, R. Kasperovics, and J.-H. Lee. An in-depth comparison of
subgraph isomorphism algorithms in graph databases. In Proceedings of the
VLDB Endowment, volume 6, pages 133–144. VLDB Endowment, 2012.

[12] J. J. Miller. Graph database applications and concepts with neo4j. In
Proceedings of the Southern Association for Information Systems Conference,
Atlanta, GA, USA, volume 2324, 2013.

[13] A. Nayak, A. Poriya, and D. Poojary. Type of nosql databases and its com-
parison with relational databases. International Journal of Applied Information
Systems, 5(4):16–19, 2013.

[14] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming verification hardness: an
efficient algorithm for testing subgraph isomorphism. Proceedings of the VLDB
Endowment, 1(1):364–375, 2008.

[15] S. Srinivasa, M. Maier, M. R. Mutalikdesai, K. Gowrishankar, and P. Gopinath.
Lwi and safari: A new index structure and query model for graph databases. In
COMAD, pages 138–147, 2005.

[16] J. R. Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM
(JACM), 23(1):31–42, 1976.

[17] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins. A compar-
ison of a graph database and a relational database: a data provenance perspec-
tive. In Proceedings of the 48th annual Southeast regional conference, page 42.
ACM, 2010.

[18] D. W. Williams, J. Huan, and W. Wang. Graph database indexing using struc-
tured graph decomposition. In Data Engineering, 2007. ICDE 2007. IEEE 23rd
International Conference on, pages 976–985. IEEE, 2007.

[19] L. Wycislik and L. Warchal. A performance comparison of several common
computation tasks used in social network analysis performed on graph and re-
lational databases. In Man-Machine Interactions 3, pages 651–659. Springer,
2014.

[20] X. Yan and J. Han. Closegraph: mining closed frequent graph patterns. In
Proceedings of the ninth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 286–295. ACM, 2003.

[21] X. Yan, P. S. Yu, and J. Han. Graph indexing: a frequent structure-based ap-
proach. In Proceedings of the 2004 ACM SIGMOD international conference on
Management of data, pages 335–346. ACM, 2004.

[22] S. Zhang, M. Hu, and J. Yang. Treepi: A novel graph indexing method. In Data
Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on, pages
966–975. IEEE, 2007.

60

[23] S. Zhang, S. Li, and J. Yang. Gaddi: distance index based subgraph matching
in biological networks. In Proceedings of the 12th International Conference
on Extending Database Technology: Advances in Database Technology, pages
192–203. ACM, 2009.

[24] P. Zhao and J. Han. On graph query optimization in large networks.
Proceedings of the VLDB Endowment, 3(1-2):340–351, 2010.

[25] P. Zhao, J. X. Yu, and P. S. Yu. Graph indexing: tree+ delta<= graph. In
Proceedings of the 33rd international conference on Very large data bases, pages
938–949. VLDB Endowment, 2007.

61

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF ABBREVIATIONS
	LIST OF SYMBOLS
	INTRODUCTION
	Motivation
	Contribution
	Outline

	BACKGROUND AND RELATED WORK
	Problem Definition
	BFS Coding
	Comparisons Between Graph Databases and Relational Databases
	Ullmann Algorithm And The Methods Derived From It

	BB-Graph: BRANCH & BOUND ALGORITHM FOR GRAPH ISOMORPHISM IN BIG GRAPH DATA MODEL
	Algorithm Steps
	Filter For Start Node Of Query Graph And Filtering Rules
	Branching Process of Node Match
	Backtrack Mechanism
	Transition State Operations And Stack Usage

	Algorithm Complexity
	Time Complexity
	Space Complexity

	EXPERIMENTAL WORK
	Database
	Queries
	Setup
	Experimental Evaluation
	WorldCup Database
	Bank Database
	Population Database

	CONCLUSION & FUTURE WORK
	Conclusion
	Future Work

	REFERENCES

