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ABSTRACT

MODELLING, SIMULATION AND TESTING OF ARTIFICIAL NEURAL
NETWORK AUGMENTED KALMAN FILTER FOR INS/GPS AND

MAGNETOMETER INTEGRATION

Yıldız, Doğan

M.S., Department of Mechanical Engineering

Supervisor : Assoc. Prof. Dr. E. İlhan Konukseven

Co-Supervisor : Dr. Volkan Nalbantoğlu

September 2016, 197 pages

The objective of this thesis is to investigate a hybrid Artificial Intelligence/ Kalman
Filter (AI/KF) system to determine 3D attitude, velocity and position of a vehicle in
challenging GPS environment. In navigation problem, the aim is to determine the
position and velocity of the host vehicle from initial conditions. By using Inertial
Measurement Unit (IMU), it is possible to calculate position and velocity with an
error. In other words, during the integration stage of the IMU measurement, errors
will be accumulated throughout the time. In literature to eliminate the divergent
characteristic of integral calculation, other sensor measurements are combined with
navigation calculation process. The traditional complementary technique to calculate
the vehicle position, velocity and attitude is integrated Inertial Navigation System
(INS) and Global Positing System (GPS). The integrated INS/GPS shows greater
accuracy with respect to standalone INS. To achieve this accuracy it is common to
use Kalman Filter as an integration technique.

The Kalman Filter approach has been used widely as the standard optimal estimation
technique. However because of the acquiring an accurate stochastic model and prior
knowledge of the measurement error for the precision of the estimation KF has
several shortcomings. Based on these shortcomings Artificial Intelligence (AI) based
techniques are motivated.
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In this thesis, navigation mechanization algorithm and sensors mathematical models
were studied. Accelerometer, gyroscope, GPS and magnetometer were selected for
the sensor fusion integration. With the help of accelerometer and gyroscope, position
and velocity of the host vehicle were realized through integration process of
mechanization algorithm. Also GPS and magnetometer measurements were used for
position-velocity and heading determination independent from IMU respectively.

The design of sensor fusion algorithm is based on Extended Kalman Filter (EKF).
The EKF linearized mathematical model relies on the error propagation model of the
mechanization equations. As for the Neural Network structure Multilayer Perceptron
Neural Network (MLPNN) were used to improve the integration results during GPS
outages.

After modelling and simulating the results in simulation environment, real test data
were used in AI/KF based prediction algorithm. The measurement results were
logged in computer to be used in algorithm. The results show how AI/KF based
algorithm is more accurate during GPS outages with respect to standalone Kalman
Filter algorithm.

Keywords: Inertial Navigation System (INS), Global Positioning System (GPS),
Extended Kalman Filter (EKF), Magnetometer, Artificial Neural Network(ANN),
Multilayer Perceptron Neural Network (MLPNN)
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ÖZ

YAPAY SİNİR AĞLARI İLE GENİŞLETİLMİŞ KALMAN FİLTRESİNİN
BÜTÜNLEŞTİRİLMİŞ ANS/KKS VE MANYETOMETRE İLE

MODELLENMESİ, SİMÜLASYONU VE TEST EDİLMESİ

Yıldız, Doğan

Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. E. İlhan Konukseven

Ortak Tez Yöneticisi : Dr. Volkan Nalbantoğlu

Eylül 2016 , 197 sayfa

Bu tezde amaç küresel konumlama sisteminin devre dışı kaldığı durumlarda karma
yapay zeka ve Kalman filtresini kullanarak 3 boyutlu yönelme açıları, hız ve
pozisyon değerlerini belirlemektir. Seyrüsefer çözümlemelerinde amaç, aracın ilk
durum bilgilerini kullanarak konum ve hız belirlemektir. Ataletsel ölçüm birimini
kullanarak konum ve hız bilgisine hatalı olarak ulaşılabilir. Diğer bir söylemle,
ataletsel ölçüm birimini kullanarak integral alma işlemi sırsında, hata değerleri
zaman içerisinde artacaktır. Literatürde interal alma sırasında oluşan hata oranlarını
önlemek için, diğer sensör ölçümlerinden yararlanılır. Geleneksel olarak konum,hız
ve yönelim açılarını ölçmek için tümleştirilmiş ataletsel ölçüm birimi ve küresel
konumlama sistemi kullanılır. Tek başına kullanılan ataletsel ölçüm birimine kıyasla
tümleştirilmiş AÖB ve KKS daha doğru sonuçlar göstermektedir. Bu doğruluğu
yakalamak için ise Kalman filtresi kullanılmaktadır.

Kalman filtresi yaygın bir şekilde kullanılan standart optimum kestirim
tekniklerindendir. Fakat doğru bir stokastik modelin elde edilmesi ve ilk hata
değerlerinin bilinmesinin getirdiği zorluklar Kalmam filtesinin belli başlı
eksiklikleridir. Bu eksikliklere dayanarak yapay zeka tabanlı teknikler ön plana
çıkmaktadır.
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Bu tezde, seyrüsefer algoritması ve algılayıcı model algoritmaları gelistirildi.
Algılayıcı tümleştirmede ivme ölçer, açıölçer, KKS ve manyetik alan ölçer
kullanılmıştır. İvme ölçer ve açı ölçer yardımıyla pozisyon ve hız kestirimleri
seyrüsefer algoritmaları kullanılarak elde edilmektedir. Ayrıca KKS ve manyetik
alan ölçer kullanılarak bağımsız bir şekilde konum-hız ve yönelim açısı sırasıyla
elde edilmektedir.

Algılayıcı tümleştirme algoritması genişletilmiş Kalman filtresine dayanmaktadır.
Genişletilmiş Kalman filtresi doğrusallaştırılmış seyrüsefer hata modeline göre
formülize edilmiştir. Yapay sinir ağları yapısı için ise küresel konumlandırma
sisteminin devre dışı kalması durumunda çok katmanlı algılayıcı fonksiyon
kullanılmıştır.

Modelleme ve simülasyon sonuçlarının elde edilmesinden sonra, gerçel test verileri
tümleştirilmiş yapay sinir ağı ve Kalman filtresinde kullanılmıştır. Ölçüm verileri
bilgisayar ortamında kaydedilip tümleştirilmiş yapıya beslenmiştir. Sonuçlar
KKS’nin devre dışı kaldığı durumlarda, sadece Kalman filtresinin kullanıldığı
durumlara kıyasla tümleştirilmiş yapay sinir ağı ve Kalman filtesi yapısının
kullanılmasının nasıl daha iyi sonuç verdiğini göstermektedir.

Anahtar Kelimeler: Ataletsel Navigasyon Sistemi (ANS), Küresel Konumlama
Sistemi (KKS), Genişletilmiş Kalman Filtresi, Manyetometre, Yapay Sinir Sistemi,
Çok Katmanlı Algılayıcı Fonksiyon
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CHAPTER 1

INTRODUCTION

1.1 Background and Problem Statement

Through out the history, navigation is an essential part about travelling and finding

the way from one place to another. Especially in today’s modern world navigation

systems become more and more popular in everyday life including vehicle

navigation, smart phones location determination. With the enhancements about

navigation solution, more demands have been raised about the precision and

accuracy of the determination of position, velocity and orientation of vehicle. To

deal with this higher accuracy demand, people in this research area have developed

higher cost and relatively high precision inertial sensor systems. In this case however

higher cost has shown as an another problem. As a result, integrated navigation

systems have been started to use for diminishing the higher cost values.

Inertial navigation with Global positioning system (GPS) is the most common type

integrated system. The primary reasons for this integration are that INS/GPS system

has complementary characteristics and with the developing technology MEMS based

inertial measurement units (IMU) and GPS signals are affordable to all user. Whether

INS/GPS integration shows great accuracy, there are still limitations in these sensor

integration system.

GPS is the satellite based system that allows users with a GPS receiver to obtain

position and velocity information worldwide. For last two decade with developing

technology GPS system has been proven the effective tool to determine position and

velocity. Despite these advantages, GPS need a direct line of sight with at least four
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satellites. Especially in urban canyons, forests and highway tunnels/overpasses the

degradation of measurements show itself and the strength of estimation accuracy

diminishes severely.

Another important part of navigation is inertial measurement unit (IMU). Despite

GPS, IMU is autonomous system which measures acceleration and orientation rates in

6 DOF manner. An inertial navigation system (INS) containing IMU integrates these

rotation rates and accelerations in three orthogonal axis through navigation equations.

Therefore the position,velocity and orientation matrix can be found as a result of this

computation. As for the disadvantages of the IMU, sensor inherited noise values

such as bias error, scale factor, misalignment error, etc. cause the rapid divergent in

velocity and position calculation via integration. Because of this effect, to increase the

accuracy of calculations, incorporated navigation computations have been designed.

When the two systems INS and GPS are compared, it can be seen clearly that these

two systems reflect complementary characteristics.While INS is a self-contained

autonomous system with good short term accuracy, GPS has good long term

accuracy with limited errors. With the help of this complementary characteristic,

their integration process overcomes individual drawbacks and provides more

accurate and robust navigation solution. Of course to obtain this accuracy Kalman

Filter also affects the results of estimation procedure. The real challenge for the

sensor fusion of the INS/GPS system is the determination of accurate dynamic of

stochastic error model for KF. Moreover KF requires linearized dynamic error

model. However when the error model is linearized, the higher order terms are

neglected. In this case non-linear terms must be considered carefully, because they

directly influence the navigation solution.

1.2 Research Objectives

The objective of this thesis is that the development and testing of the artificial neural

network augmented Kalman filter simulation model which is aimed to be used for land

and air vehicles. Within the scope of thesis objective, Kalman filter behaviour during

GPS outages are observed. The same procedure is realized with ANN augmented
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system and the results are compared and the test results are presented. The aim is to

improve position and velocity estimation accuracy with neural network structure.

To reach the main objective, development process covers the following stages:

1. Understanding the mechanization equations and their implementation to

simulation model.

2. Design of the individual sensor models and observe their characteristics. Select

correct error parameters for sensor models.

3. Analysis of Kalman filter algorithm and implementation of Kalman filter into

sensor fusion structure.

4. Implement neural network module to Kalman filter sensor fusion structure.

5. Examine the simulation model with artificial and real test data. Validate the

applicability of neural network into Kalman filter model during GPS outages.

1.3 Thesis Outline

Chapter 1 presents the background information of the thesis study, explaining the

general concept of INS/GPS integration and neural network augmented Kalman filter.

Moreover, the thesis problem and objective are presented.

Chapter 2 introduces the basic concepts of navigation and attitude computation. Both

of these equations are the fundamental for strapdown inertial navigation systems.

Also reference frame concepts and transformation matrices will be discussed.

Chapter 3 covers the gyroscope and accelerometer technologies. The mathematical

model of inertial sensor system will be explained.

Chapter 4 explains the INS/GPS/Magnetometer integration with Kalman filter. Also

sensor fusion concept and basis knowledge of Kalman filter will be discussed. For

non-linear system Extended Kalman Filter will be explained.

Chapter 5 presents the development of the neural network augmented Kalman filter
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integration technique. The neural network basis, structure and parametrization will

be explained in detail.

Chapter 6 provides the simulation model and the test results of simulation. Also

simulation model will be tested with experimental test data and the results will be

discussed in this chapter.

Chapter 7 presents the conclusion and some recommendations for future works.
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CHAPTER 2

INERTIAL NAVIGATION EQUATION

2.1 Introduction

In inertial navigation system the basic calculation can be outlined as the double

integration of specific force measurements to determine position of the vehicle. The

first integration of the vehicle provides the velocity information, and the second

integration yields the vehicle position with respect to initial conditions. Also

projection of acceleration into desired reference frame can be achieved through

angular orientations. To provide this knowledge angular velocities are integrated

with respect to initial orientations. The fundamental concept is illustrated in Figure

2.1. An INS implements the concept of using a collection of accelerometer to sense

Figure 2.1: Fundamental Inertial Navigation Concept

specific force in each axis and gyroscope to sense angular velocity. The direction of

accelerometers is determined using the angle or angular rate sense measurements

instruments, gyroscopes. To apply the Figure 2.1 in the INS, the accelerometers

would be specified for determination of total acceleration. In general total

acceleration is composed of two fundamental parts: gravity acceleration created by

gravity field and specific force acceleration produced by forces acting on the vehicle.

Due to basic limitations of physics which are explained in chapter 3 accelerometers
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can only be designed to measure specific force. Hence to know total acceleration in

Figure 2.1, the gravity acceleration must be calculated. The gravity calculation is

performed within INS by computing position [4]. The inertial navigation system

concept is given in Figure 2.2

Figure 2.2: Inertial Navigation System Concept

Two types of INS mechanization implementations exist as shown in Figure 2.3.

These are Gimbaled Systems and Strapdown Systems. Principally both systems are

realized the same procedure. However the implementations are different. For

gimbaled approach the accelerometers are mounted to a rigid structure that is

mechanically coupled to user vehicle by set of concentric gimbals. The gimbals are

connected to accelerometer mount and to the user vehicle by bearing assemblies that

provide rotational freedom around bearing axes. Therefore sensors are isolated from

the rotations of the outer system. The sensor stabilization is sustained by using the

feedback from the gyroscopes. The advantage of this system is precise measurement.

However gimbal systems are expensive and complicated. Also one important

drawback is that when two rotations are aligned, gimbal lock phenomena occurs.

One rotations can not be distinguished from other rotation.

In strapdown approach, inertial sensor platform is mounted directly within the INS

chassis. That is so they are called "Strapdown" [4]. Therefore sensors follow the

motion of the system. Because of these higher rotations are experienced by the

sensors, high error results are observed. Nevertheless strapdown systems are

preferred because of their small size, lower cost and weight. In this thesis strapdown

system model is used. This chapter provides the background information about the

inertial navigation system equations based on Newton’s Second Law of motion,
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(a) Gimbaled System (b) Strapdown System

Figure 2.3: Gimbaled and strapdown inertial measurement units [3]

which is necessary to understand mechanization algorithm. Firstly reference

coordinate frame concept will be considered. After that reference frame

transformations and mechanization equations will be obtained. Finally Earth gravity

model and digital version of the mechanization algorithm will be explained.

2.2 Reference Coordinate Frames

The significant part of inertial navigation is the precise definition of Cartesian

co-ordinate reference frames which are used in navigation equations. According to

chosen reference frame, accelerometer and gyroscope readings must be converted.

Generally, each frame is an orthogonal, right-handed, co-ordinate frame.

For navigation purposes, frames have an important role to navigate in the vicinity of

the Earth. Inertial reference frame which is stationary according to fixed stars, Earth

reference frame and local geographic frames are defined for terrestrial navigation

purposes [1]. Some of these coordinate frames are shown in Figure 2.4 and the

following coordinate frames are used in this study.
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Figure 2.4: Frames of reference [1]

2.2.1 Inertial Frame

Earth centered inertial frame or inertial frame (i-frame) has its origin at the center of

the earth and axes are non-rotating with respect to fixed stars. In Figure 2.4,

Oxi, Oyi, Ozi are defined axes where Ozi is coincident with Earth’s polar axis. For

navigational purposes xi and yi lie in the equatorial plane.

2.2.2 Earth Frame

The Earth frame (e-frame) has its origin at the center of the Earth. Earth centered

frame is defined by Oxe, Oye, Oze. The axis Oxe lies along the intersection of plane

of Greenwich meridian with Earth’s equatorial frame and ye is 90°east of xe. The

Earth frame rotates with respect to inertial frame at rate of Ω = 7.292115 × 10−5

rad/s.

2.2.3 Navigation Frame

Navigation frame (n-frame) is a local geographic frame. The origin of the n-frame is

located on point P which is location of the navigation system (shown in Figure 2.4).
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The axes of the navigation frame are aligned with north, east and down (local vertical)

directions. The turn rate of the navigation frame with respect to Earth-fixed frame ωen

is determined by the motion of point P with respect to Earth. This situation is often

stated as transport rate.

2.2.4 Wander Azimuth Frame

Wander azimuth frame (w-frame) is used for special conditions. W-frame is mainly

selected for eliminating the singularities in navigation computation at the poles.

Similar to n-frame, it is locally level. The rotation takes place through wander angle

about local vertical in the vicinity of poles.

2.2.5 Body Frame

The body frame (b-frame) has its origin at the mass center of the host vehicle. The

body orthogonal axes are aligned with the roll, pitch and yaw axes of the vehicle.

The axes directions are figured in Figure 2.5. The axes directions are defined: roll

Figure 2.5: Body reference frame

axis along the longitudinal axis, pitch axis is directed 90°to the right and yaw axis is

directed downward.
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2.3 Basic Principles and Reference Frame Transformations

This section will review some of basic mathematical techniques which are

encountered in navigational computations and derivations. This section also gives

basic knowledge of various notations for vector transformations.

2.3.1 Vector Notation

In three-dimensional vector notation, a vector is represented with its three

parameters that are resolved in selected frames. In this study, a vector is showed in

bold lower-case letters with a superscript that indicates coordinate frame in which

the components of the vector are given. As an example,

rm =


xm

ym

zm

 (2.1)

the superscript m represents the m-frame and the elements (xm, ym, zm) symbolize

the coordinate components in m-frame.

2.3.2 Vector Coordinate Transformation

Vector transformation from one frame to another is encountered in navigation

computation. To realize this transformation transformation matrices are used. For

instance a transformation from m frame to n fame can be written as

rn = Cn
mrm (2.2)

where Cn
m represents the transformation matrix that transforms vector r from

m-frame to n-frame. For the notation usage, the superscript of the vector that is to be

transformed must match the subscript of the transformation matrix.

The inverse of the transformation matrix Cn
m is the inverse of the procedure from

m-frame to n-frame. Now the vector transformation from n-fame to m-frame is,

rm = (Cn
m)−1rn = Cm

n rn (2.3)
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Also for all navigation frames are orthogonal frames of references. Therefore the

inverse and the transpose of the transformation matrices are equal.

Cn
m = (Cm

n )t = (Cm
n )−1 (2.4)

The orthogonality property for transformation matrices can be checked by using its

vectors whether they are mutually orthogonal or not.

C =


c11 c12 c13

c21 c22 c23

c31 c32 c33

 (2.5)

where

c1 =


c11

c21

c31

 , c2 =


c12

c22

c32

 , c3 =


c13

c23

c33

 (2.6)

then for matrix C to be orthogonal the following must be true.

c1 · c2 = 0, c1 · c3 = 0, c2 · c3 = 0 (2.7)

2.3.3 Attitude Representation

In strapdown sensors, gyroscopes are used to measure attitude of vehicle according

to reference coordinate frame. By using the measurements of turn rate provided by

gyroscopes the attitude is updated through the time. As indicated before the

co-ordinate frames are orthogonal and right-handed axes. Thus positive rotations

about each axis are taken to be counter clockwise direction. This convention is also

used in this study. The rotation order and angle quantity determine the rotation

changes of body. To define the these rotations in other words the attitude of the body

with respect to a co-ordinate reference frame, some mathematical representations

can be used. Mostly three attitude representations are utilized, these are,

• Direction Cosine Matrix (DCM)

• Euler Angle

• Quaternion

In following pages these attitude representations are explained [1].
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2.3.3.1 Direction Cosine Matrix

Direction cosine matrix is represented by 3×3 matrix, the column represents the unit

vectors projected along the reference axes. As an example, the DCM matrix from b-

frame to n-frame is symbolized as Cn
b and the component form can be explained from

classical vector algebra, let’s say w and v are two vectors,

w · v = w v cos(φ)

where

w, v = Magnitude of w and v.

φ = Angle between w and v.

Now, let’s explain v in n-frame and b-frame, and expressions can be written as,

v = vnx u
n
x + vny u

n
y + vnz u

n
z

v = vbx u
b
x + vby u

b
y + vbz u

b
z (2.8)

An expression for vnx in terms of v components in b-frame is obtained by taking the

dot product of expression v in b-frame with unx, therefore

vnx = vbx u
b
x · unx + vby u

b
y · unx + vbz u

b
z · unx (2.9)

Similar procedure can be followed for other components.

vny = vbx u
b
x · uny + vby u

b
y · uny + vbz u

b
z · uny

vnz = vbx u
b
x · unz + vby u

b
y · unz + vbz u

b
z · unz (2.10)

In matrix form we can collect the terms in equations 2.9 and 2.10,
vnx

vny

vnz

 =


ubx · unx uby · unx ubz · unx
ubx · uny uby · uny ubz · uny
ubx · unz uby · unz ubz · unz


︸ ︷︷ ︸

Cn
b Direction Cosine Matrix


vbx

vby

vbz

 (2.11)

Replacing the elements of DCM we can simply write,

Cn
b =


c11 c12 c13

c21 c22 c23

c31 c32 c33

 (2.12)
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Detailed expressions can be found in reference [4]. With the help of equation 2.12 we

can easily convert a vector in b-frame to n-frame. By pre-multiplying the vector with

direction cosine matrix,

rn = Cn
b rb (2.13)

As for the rate of change of Cn
b with time during the motion of vehicle, it can be given

by following equation from Titterton and Weston [1],

Ċn
b = lim

δt→0

δCn
b

δt
= lim

δt→0

Cn
b (t+ δt)− Cn

b (t)

δt
(2.14)

In this equation, Cn
b (t) and Cn

b (t + δt) represent the DCM at times t and t + δt,

respectively. It can be shown that Cn
b (t + δt) can be written as the product of two

matrices.

Cn
b (t+ δt) = Cn

b (t) A(t) (2.15)

Here A(t) can be thought as a direction cosine matrix relating the b-frame at time t

to the b-frame at time t+ δt, for A(t)

A(t) = [I + δΨ] (2.16)

where I is identity and δΨ

δΨ =


0 −δψ δθ

δφ 0 −δφ
−δθ δφ 0

 (2.17)

Notice that δψ, δθ and δφ are the small rotations through which the b-frame has

rotated over time interval δt about its yaw, pitch and roll axis respectively. Substitute

Cn
b (t+ δt) in equation 2.14,

Ċn
b = Cn

b lim
δt→0

δΨ

δt
(2.18)

In equation 2.18, δΨ/δt is the skew symmetric matrix of the angular rate vector

ωbnb = [ωx ωy ωz]
t, which shows the turn rate of the b-frame with respect to n-frame

expressed in b-frame. Therefore instead of equation 2.18,

lim
δt→0

δΨ

δt
= Ωb

nb

Ċn
b = Cn

b Ωb
nb (2.19)
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where

Ωb
nb =


0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 (2.20)

2.3.3.2 Euler Angles

A classical method for attitude representation between two coordinate frames is

realized by using Euler angle rotation sequence. Transformation between coordinate

frames can be fulfilled with three successive rotations. Mostly used Euler

transformation sequence is ψθφ transformation. The rotation may be expressed as

follows,

• Rotation with ψ angle about reference z-axis

• Rotation with θ angle about reference y-axis

• Rotation with φ angle about reference x-axis

Here ψ, θ and φ are called as Euler Rotation Angles. The reason for choosing this type

of representation is that the physical correspondence directly related with strapdown

coordinate fame rotation in each axes.

The representation of the Euler angle can be stated as three different direction cosine

matrices.

Rotation about z-axis, C3 =


cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1

 (2.21)

Rotation about y-axis, C2 =


cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)

 (2.22)

Rotation about y-axis, C1 =


1 0 0

0 cos(φ) sin(φ)

0 − sin(φ) cos(φ)

 (2.23)
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Therefore a transformation from body to reference axes and the vice versa can be

expressed as follows,

Cn
b = C3 C2 C1 (2.24)

Cb
n = (Cn

b )t = Ct
1 C

t
2 C

t
3 (2.25)

Cn
b =


cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1




cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)




1 0 0

0 cos(φ) sin(φ)

0 − sin(φ) cos(φ)


By collecting the terms,

Cn
b =



cos(θ) cos(ψ)
− cos(φ) sin(ψ)+

sin(φ) sin(θ) cos(ψ)

sin(φ) sin(ψ)+

cos(φ) sin(θ) cos(ψ)

cos(θ) sin(ψ)
cos(φ) cos(ψ)+

sin(φ) sin(θ) sin(ψ)

− sin(φ) cos(ψ)+

cos(φ) sin(θ) sin(ψ)

− sin(θ) sin(φ) cos(θ) cos(φ) cos(θ)


(2.26)

The important part about the Euler angles is that how to propagate through time when

vehicle is in motion. The relation between body rates and the Euler angle rates can be

shown as in equation 2.27 and 2.28.
ωx

ωy

ωz

 =


φ̇

0

0

+ C1


0

θ̇

0

+ C1 C2


0

0

ψ̇

 (2.27)

This equation can be written to find Euler angle rates as in follows.

φ̇ = (ωy sin(φ) + ωz ∗ cos(φ)) tan(θ)

θ̇ = ωy cos(φ)− ωz sin(φ) (2.28)

ψ̇ = (ωy sin(φ) + ωz cos(φ)) sec(θ)

Notice that the equation in 2.28 have a limitation. The uncertainty of φ̇ and ψ̇

equations are observed when θ = ±90◦.

2.3.3.3 Quaternions

The four-parameter representation of rotation is called as quaternion. In this

representation, the transformation between two coordinate frames can be expressed
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by a single rotation about a vector µ defined with respect to selected frame. As an

example of quaternion

q =


a

b

c

d

 =


cos(|µ|/2)

(µx/|µ|) sin(µ/2)

(µy/|µ|) sin(µ/2)

(µz/|µ|) sin(µ/2)

 (2.29)

where q is quaternion and µx, µy, µz are the components ofµ and |µ| is the magnitude

of the µ.

In equation 2.29, quaternion is symbolized with four parameter a, b, c and d. A

quaternion is also expressed as a four parameter complex number with a real

component a and three imaginary parameter b, c, d.

q = a+ bi + cj + dk (2.30)

From this expression by using the product of complex number property, the product

of two quaternion can be expressed as,

i · i = −1 i · j = k j · i = −k

j · j = −1 j · k = i k · j = −i

k · k = −1 k · i = j i · k = −j

Therefore the two quaternion product such as q = a+ bi + cj + dk and p = e+ f i +

gj + hk can be formalized,

q · p = (a+ bi + cj + dk)(e+ f i + gj + hk)

= ea− bf − cg − dh+ (af + be+ ch− dg)i+

(ag + ce− bh+ df)j + (ah+ de+ bg − cf)k (2.31)

Equation 2.31 can also be represented as matrix equation.

q · p =


a −b −c −d
b a −d c

c d a −b
d −c b a




e

f

g

h

 (2.32)
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In the light of usage of quaternion main question is how quaternions are used in vector

transformation? To answer this question define a vector quantity in b-frame rb and in

n-frame rn. Firstly rb must be converted into quaternion equivalent.

rb =xi + yj + zk

rb
′
=0 + xi + yj + zk (2.33)

Then by using quaternion q, rn
′ can be computed.

rn
′
= qrb

′
q∗ (2.34)

where q∗ = a − bi − cj − dk, the complex conjugate of q. Finally if the terms are

collected

rn
′
=0 + [(a2 + b2 − c2 − d2)x+ 2(bc− ad)y + 2(bd+ ac)z]i

+ [2(bc+ ad)x+ (a2 − b2 + c2 − d2)y + 2(cd− ab)z]j

+ [2(bd− ac)x+ 2(cd+ ab)y + (a2 − b2 − c2 + d2)]k (2.35)

Alternatively, rn
′ may be expressed in matrix form,

rn
′
= C ′ rb

′
(2.36)

where

C ′ =

0 0

0 C

 (2.37)

C =


(a2 + b2 − c2 − d2) 2(bc− ad) 2(bd+ ac)

2(bc+ ad) (a2 − b2 + c2 − d2) 2(cd− ab)
2(bd− ac) 2(cd+ ab) (a2 − b2 − c2 + d2)

 (2.38)

Comparison with equation 2.13, equation 2.38 is equivalent to direction cosine

matrix.

The other important part for the quaternion is the propagation of the quaternion with

time. The following equation is used for this purposes,

q̇ = 0.5 q · pbnb (2.39)
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In this equation pbnb = [0 ωbnb
t
]t and in matrix form equation 2.39 can be written as

[5],

q̇ =


ȧ

ḃ

ċ

ḋ

 = 0.5


a −b −c −d
b a −d c

c d a −b
d −c b a




0

ωx

ωy

ωz

 (2.40)

Any equation form to determine the attitude of the strapdown navigation system can

be utilized. In this thesis direction cosine matrix and Euler angle formulation will be

used mainly.

2.4 Detailed INS Mechanization Equations

INS mechanization is the process of determining navigation states by using

differential equation of motion and the raw inertial measurement data from IMU

measurement.

Mechanization equations are usually expressed in local level frame, however different

mechanization techniques are also available for purpose of usage [6]. In this section

attention is focussed on local geographic navigation frame (n-frame) mechanisation.

In Figure 2.6, the illustration of local geographic navigation frame mechanization is

shown.

2.4.1 Velocity and Position Formulation

In strapdown navigation systems, it is required to calculate vehicle velocity with

respect to Earth which is the ground velocity in inertial axes. Inertial velocity can be

expressed in terms of ground velocity using Coriolis equation. Let r denotes the

position vector of vehicle with respect to inertial frame. Then inertial velocity and

ground velocity relation will be,

dr

dt

∣∣∣∣
i︸︷︷︸

Inertial Velocity

=
dr

dt

∣∣∣∣
e︸︷︷︸

Ground Velocity ve

+ωie × r (2.41)
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Figure 2.6: Local geographic navigation frame mechanization

Now differentiate this expression,

d2r

dt2

∣∣∣∣
i

=
dve
dt

∣∣∣∣
i

+
d

dt
[ωie × r]

∣∣∣∣
i

(2.42)

Applying the Coriolis equation to second term in equation 2.42

d2r

dt2

∣∣∣∣
i

=
dve
dt

∣∣∣∣
i

+ ωie × ve + ωie × [ωie × r] (2.43)

It is assumed that the turn rate of the Earth is constant. Let rewrite the equation 2.43

by adding the gravity term because of that accelerometers will provide a measure of

specific force only,

dve
dt

∣∣∣∣
i

= f − ωie × ve − ωie × [ωie × r] + g (2.44)

In this equation,

f : represents the specific force acceleration of navigation system

(ωie × ve): is the Coriolis acceleration of the navigation system on rotating

Earth system.

ωie × [ωie × r]: is the centripetal acceleration on navigation system because of

the Earth rotation.
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The centripetal acceleration is not distinguishable from the gravitational acceleration.

Therefore mostly the sum of centripetal acceleration and gravitational acceleration

is used in equations. The sum of acceleration is called as local gravity vector. The

local gravity vector is denoted as gl. In Figure 2.7, the local gravitational vector,

gravitational field intensity and centripetal acceleration are shown [1].

gl = g − ωie × [ωie × r] (2.45)

Combining the equations 2.44 and 2.45 gives the following expression,

Figure 2.7: Components of gravitational field [1]

dve
dt

∣∣∣∣
i

= f − ωei × ve + gl (2.46)

Now, so far the mechanization with respect to inertial frame is computed. However the

purpose is to express this mechanization in navigational frame. By using the inertial

mechanization, local level frame mechanization can be written easily as in equation

2.47. In this mechanization, ground velocity is expressed in navigation coordinates to

give vne . The rate of change of vne with respect to navigation axes can be expressed in

terms of rate of change in inertial axes,

dve
dt

∣∣∣∣
n

=
dve
dt

∣∣∣∣
i

− [ωie + ωen]× ve (2.47)

Substituting the equation 2.46,

dve
dt

∣∣∣∣
n

= f − [2ωie + ωen]× ve + gl (2.48)
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Finally if this equation is expressed in navigation frame,

v̇ne = Cn
b f

b − [2ωnie + ωnen]× vne + gnl (2.49)

The measurements of specific force provided by the accelerometers are in body axes,

as denoted by f b. To apply the equation 2.49 the accelerometer outputs must be

convert to navigation frame. Therefore Cn
b matrix is used. This matrix propagates as

indicated in equation 2.19. In equation 2.19 Ωb
nb is the skew symmetric matrix of

ωbnb, the body rate with respect to navigation frame. The derivation of ωbnb is,

ωbnb = ωbib − Cb
n[ωnie + ωnen] (2.50)

In this representation,

ωbib is the measured body rates in body frame ωbib = [p q r]t.

ωnie is the Earth rate with respect to inertial frame in navigation frame.

ωnen is the turn rate of navigation frame with respect to Earth frame in

navigational frame.

Now let expand the terms in equation 2.49. Firstly vne represents the velocity with

respect to Earth in local geographic frame. The components of vne are true north, east

and local vertical velocity components

vne =


vn

ve

vd

 (2.51)

fn = Cn
b f

b is the specific force vector measured by accelerometer and resolved in

local geographic frame

fn =


fn

fe

fd

 (2.52)

ωnie is the turn rate of the Earth in local geographic frame

ωnie =


ω cos(L)

0

−Ω sin(L)

 (2.53)
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ωnen symbolizes the turn rate of the local geographic frame with respect to the Earth-

fixed frame. This quantity is also called as transport rate and expressed as,

ωnen =


l̇ cos(L)

−L̇
−l̇ sin(L)

 (2.54)

In equation 2.53 and 2.54, L and l represent latitude and longitude respectively.

Moreover in equation 2.54 l̇ = ve/(R0 + h) cos(L) and L̇ = vn/(R0 + h) where h is

height above the surface of Earth and R0 is the mean radius of curvature of Earth.

With the given parameters, equation 2.54 will be,

ωnen =


ve

R0+h

− vn
R0+h

−ve tan(L)
R0+h

 (2.55)

As a final term, gnl is the local gravity vector,

gnl = g − ωie × (ωie ×R) = g − Ω2(R0 + h)

2


sin(2L)

0

1 + cos(2L)

 (2.56)

The position determination near the surface of the Earth can be determined by

calculating the latitude, longitude and height above the surface of the earth, and the

following equations can be used for that purpose.

L̇ =
vn

R0 + h
(2.57)

l̇ =
ve sec(L)

R0 + h
(2.58)

ḣ = −vd (2.59)

In velocity and position equations, it is assumed that Earth is perfectly spherical in

shape. Additional modifications must be applied to navigation equation. The

corrections over the surface of the Earth are referred at the following sections.
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2.5 Earth Reference Model

2.5.1 Gravity Model

As known from other sections accelerometers give only specific forces which are

caused by external forces. In order to get the precise estimates of true acceleration

values it is needed to model the gravitational field in the vicinity of the Earth.

Therefore precise positioning analysis can be sustained.

There are various models in literature to calculate gravity field variations [4]. In this

study, the following expression for the variation of gravitational field will be utilized

[1]. In this equation the variation is expressed with the latitude and height change

above ground.

g(0) = 9.780318(1 + 5.3024× 10−3 sin2(L)− 5.9× 10−6 sin2(2L)) m/s2 (2.60)

dg(0)

dh
= −0.0000030877(1− 1.39× 10−3 sin2(L)) m/s2/m (2.61)

In most of the equations, it is sufficient to assume that the variation of gravity with

altitude is as follows,

g(h) =
g(0)

(1 + h/R0)2
(2.62)

2.5.2 Earth Shape Approximation

In order to apply the navigation equations, Earth shape model is assumed to be

spherical. However for the accurate positioning spherical model is not sufficient to

represent the accurate navigation. Due to flattening of the Earth at the poles,

modelling the Earth as ellipsoid gives better result than spherical model. In ellipsoid

model some parameters must be defined. These parameters are given in Table 2.1

The rates of change of latitude and longitude in equations 2.57 and 2.58 the mean

radius of curvature of the Earth can be found as,

R0 = (RE RN)1/2 (2.63)
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Table 2.1: WGS-84 Earth model [1]

Semi-major axis R = 6378137.0 m

Semi-minor axis r = R(1− f) = 6356752.3142 m

Flattening f = (R− r)/R = 1/298.257223563

Major eccentricity e = [f(2− f)]1/2 = 0.0818191908426

Earth’s rate Ω = 7.292115e-5 rad/s

where

RN =
R(1− e2)

(1− e2 sin2(L))3/2
(2.64)

RE =
R

(1− e2 sin2(L))1/2
(2.65)

RN and RE are the meridian radius of curvature and a transverse radius of curvature,

respectively.

Moreover, the distinction between geocentric and geodetic latitude must be indicated

in here. Geocentric latitude is the angle between the equatorial plane and a line

passing through the center of the Earth and surface location point. Geodetic latitude

is the angle between equatorial plane and a line normal to the reference ellipsoid

surface at desired point. In the discussion of navigation solutions geodetic latitude

will be considered. In Figure 2.8, geocentric and geodetic latitude are shown.

Figure 2.8: Geocentric and geodetic latitude [1]
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2.6 Digital Integration Form of Navigation Equation

In other sections the analytic solutions of the navigation equations are solved. In this

section discrete time implementation of the navigation equations will be discussed.

The important processing tasks in real time implementations are the attitude

computations and specific force resolution. In high frequency motions, these

computations take essential computational part in modern processors.

In following sections these main processing parts attitude computation and specific

force resolution with navigation equations will be presented.

2.6.1 Attitude computation

The conventional approach to attitude determination is to compute direction cosine

matrix. With the help of direction cosine matrix, vehicle body reference frame can

be related to reference co-ordinate frame using numerical integration technique.

Theoretically it is possible to compute body attitude accurately in the presence of

high frequency motion provided that the computational frequency is sufficiently

high.

The implementation of attitude computation is based on the direction cosine

algorithm in this study. In order to update Cn
b from time tk to tk+1, the following

update algorithm form can be used [1]. Note that for the simplicity Cn
b is shown as C

only.

Ck+1 = Ck e
(
∫ tk+1
tk

Ω dt) (2.66)

As far as turn rate vector ω remains fixed over the update interval, the following

integration is true. ∫ tk+1

tk

Ω dt = [σ×] (2.67)

Where

σ× =


0 −σz σy

σz 0 −σx
−σy σx 0

 (2.68)

However calculating the updates of direction cosine matrix by using fixed ω vector
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over update interval is an accuracy limitation in orientation calculation. In general, ω

does not remain fixed in space, then following expression explains this situation.

σ̇ = ω +
1

2
σ × ω +

1

σ2

[
1− σ sin(σ)

2(1− cos(σ))

]
σ × σ × ω (2.69)

A simplified version of equation 2.69 can be written by expanding the cosine and sine

terms with their series expansion forms and removing higher order terms,

σ̇ = ω +
1

2
σ × ω +

1

12
σ × σ × ω (2.70)

Also following algorithm is a simpler version of equation 2.70. The rotation of turn

rate vector can be expressed in a much simpler form by calculation rotation difference

between time tk and tk+1. In reference [4] it is proposed as,

δαk+1 =

∫ tk+1

tk

α× ω dt (2.71)

Where turn rate vector integration and σ update terms can be written as,

α =

∫ tk+1

tk

ω dt (2.72)

σ = αk+1 + δαk+1 (2.73)

After calculation of σ, the propagation of transformation matrix which is equation

2.66 becomes,

Ck+1 = Ck e
[σ×]

= Ck Ak (2.74)

HereCk represents the direction cosine matrix at time k and the transformation matrix

Ak transforms a vector at body coordinates at time k to body coordinates at time

k+ 1. The variable σ is an angle vector with magnitude of σ and will rotate the body

orientation matrix at time k to k + 1. The components of σ are listed as σx, σy, σz

and the magnitude is

σ =
√

(σ2
x + σ2

y + σ2
z) (2.75)

In equation 2.74 if the exponential term is expanded, it can be used in numerical

calculations easily.

Ak = I + [σ×] +
[σ×]2

2!
+

[σ×]3

3!
+

[σ×]4

41
+ . . . (2.76)
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and if equation 2.68 is inserted in each [σ×] term,

[σ×]2 =


−(σ2

y + σ2
z) σxσy σxσz

σxσy −(σ2
x + σ2

z) σyσz

σxσz σyσz −(σ2
x + σ2

y)

 (2.77)

[σ×]3 = −(σ2
x + σ2

y + σ2
z) [σ×] (2.78)

[σ×]4 = −(σ2
x + σ2

y + σ2
z) [σ×]2 (2.79)

...

Therefore equations 2.76 can be simplified as in equation 2.80 by using series

expansion form,

Ak = I +

[
1− σ2

3!
+
σ4

5!
− . . .

]
[ω×] +

[
1

2!
− σ2

4!
+
σ4

6!
− . . .

]
[ω×]2 (2.80)

Which can be written as follows,

Ak = I +
sin(σ)

σ
[ω×] +

(1− cos(σ))

σ2
[ω×]2 (2.81)

Therefore direction cosine matrix can be updated to find body orientation by using

gyroscope readings. The recursive algorithms from equation 2.74 to 2.81 can be used

for that purpose. To find detailed equation about attitude update reference [7] can be

used.

2.6.2 Orthogonalization and Normalization

The rows of direction cosine matrix represent the projection of unit vectors which lie

along the reference coordinate axis. However during the computations of strapdown

attitude algorithm the orthogonality property may be corrupted. To eliminate this

deterioration self-consistency checks should be realized. This process can be applied

by two step, orthogonalization and normalization.[8]

Orthogonalization:

An orthogonal matrix can be described as the orthonormal behaviour between its

rows. That is their dot product must be equal to zero. To sustain this dot product

property, Gram-Schmidt algorithm can be applied to direction cosine matrix. Let the
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direction cosine matrix be ,

Ĉ =


r1

r2

r3

 (2.82)

where r1,r2, and r3 symbolize the rows of DCM. Then the orthogonalization of the

DCM matrix is,

Ĉort =


r1

r2 − r2rt1
‖r1‖2r1

r3 − r3rt1
‖r1‖2r1 −

r3rtort,2
‖rort,2‖2rort,2

 (2.83)

Normalization:

In normalization process, the aim is making the magnitude of the rows of direction

cosine matrix value unity. To realize the unity equation 2.84 can be used.

Ĉnor =


rort,1
‖rort,1‖
rort,2
‖rort,2‖
rort,3
‖rort,3‖

 (2.84)

With these corrections the deformations of the DCM as a result of discrete time

calculations are eliminated. Therefore accurate solutions for orientation matrix can

be obtained.

2.6.3 Acceleration transformation and Navigation Algorithm

The analytic solutions of the navigation equations are given in section 2.4.1.

Remember the velocity and position formulation in integral form,

vne =

∫ t

0

fn dt−
∫ t

0

[2ωnie + ωnen]× vne dt+

∫ t

0

gnl dt (2.85)

Position formulation,

xn =

∫ t

0

vn dt (2.86)

Numerically it is required to calculate the integral terms to find velocity and

position. The first integral term in velocity equation 2.85 represents the updated

velocity changes. Let represent the velocity increment in discrete form. Then first

integral will be,

un =

∫ tk+1

tk

fn dt (2.87)
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where un represents the change in velocity, resolved in navigation frame. In equation

2.87 the effect of changing the matrix Cn
b is also added. Because measurements of

acceleration in body axes, it must be transformed into navigation axes. In attitude

computation section, the variation of attitude has been explained. If attitude update

equations is used in equation 2.87,

un = Ck

∫ tk+1

tk

Akf
b dt (2.88)

Expression for Ak can be found in 2.80. The important point in here, attitude update

time must be high enough to take into account of vehicle dynamics. The velocity

update equations then,

vnk+1 = vnk + un − [2Ωie + Ωen]δt+ glδt (2.89)

Where

Ωie = [ωie×]

Ωen = [ωen×]

vnk = velocity at time tk

δt = tk+1 − tk

Finally the position vector can be integrated. The integration choice is dependent on

the application. Occasionally, rectangular or trapezoidal integration techniques are

sufficient for navigation integration algorithm.

Rectangular integration:

xnk+1 = xnk + vnk δt (2.90)

Trapezoidal integration:

xnk+1 = xnk + (
vnk + vnk+1

2
)δt (2.91)

For higher demands in accuracy in navigation computation, a higher order

integration techniques should be used. Such as Runge-Kutta method, Simpsons’s

rule,etc. For more comprehensive velocity and position update equations reference

[9] can be utilized.

In this thesis, to build navigation equation algorithm equations between 2.41 and

2.59 are used for integration of acceleration values to obtain nort-east-down velocity
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components and latitude, longitude an altitude position components. For discrete

integration of attitude computation equations between 2.66 and 2.81 are utilized.

And to sustain the orthogonalization property of transformation matrix equations

between 2.82 and 2.84 are used. The corresponding simulink model is given in

chapter 6.

30



CHAPTER 3

INERTIAL NAVIGATION AND AIDED SENSOR SYSTEMS

3.1 Introduction

This chapter provides the basis knowledge about the inertial navigation system

components and some aided navigation devices in literature. By learning the

structure of the navigation system, the nature and principle of navigation operation

can be understood easily. In this chapter, firstly the inertial measurement unit is

considered. Based on the inertial measurement unit structure, accelerometer and

gyroscope technology will be covered. As for the aided navigation devices, GPS and

magnetometer measurement devices will be discussed. Understanding of these

systems is an important step for the INS/GPS integration process.

3.2 Inertial Measurement Unit

Inertial measurement unit is used to determine the state of the system in three

dimensional space. IMU includes three axes gyroscope and three axes accelerometer

which are orthogonally mounted on the platform.

The accelerometers and gyroscopes are used to sense the linear acceleration and

angular rate change of the system, respectively. For the gyroscope, by integrating the

angular velocity with the given initial conditions, angular orientation of the system

can be obtained. For the accelerometer, by integrating the measurement once the

velocity and at the second integration the position of the system can be obtained. Of

course the initial values of the velocity and position values should be known.[2]
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Inertial measurement units can be classified into two groups. These are called as

gimbal systems and strapdown systems. These concepts are briefly explained in

chapter 2. Based on these systems, especially strapdown application the primary

concern is implementation of full inertial navigation system[1]. The relationship

between INS system blocks are shown in Figure 3.1.

Figure 3.1: Strapdown inertial navigation system blocks [1]

As shown in figure, the instrument cluster and electronic blocks are parts of IMU.

For attitude and heading information, IMU process is integrated with attitude

equations solvers. The resulting system is called as attitude and heading reference

system (AHRS). As a final computation process, if the navigation equations solvers

are added to system, a full navigational capacity can be achieved and INS system is

obtained.

3.3 Accelerometer and Gyroscope Technology

3.3.1 Accelerometer

Translational accelerations of a rigid body, resulting from the forces acting on

vehicle are described by the Newton’s second law of motion. However measuring

total force to determine acceleration is not practical. On the other hand, within

vehicle by using the small mass and measuring force on it, it is possible to determine

acceleration. This small mass forms the main part of an instrument called
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accelerometer. An accelerometer consists of a proof mass m, and a pair of springs as

shown in Figure 3.2. The total force on accelerometer can be represented as,

Figure 3.2: Accelerometer with proof mass [1]

F = ma = m(f + g) (3.1)

Here f is the acceleration from external force other then gravitational force and g

represents the gravitational acceleration. Under steady state conditions mass will be

balanced by the spring tension. When there is an acceleration along the sensitive

axis, proof mass displaces with respect to body. And the net extension will give a

measure of the applied force. An accelerometer is insensitive to the gravitational

acceleration. For example, an accelerometer which is falling freely within

gravitational field, shows no extension on spring and gives result as zero. If the

accelerometer stays as stationary, accelerometer will measure the force which stops

from falling down. Hence, a = 0 and f = −g in that case. It is obvious that the

gravitational field is essential to enable navigation computation correctly.[1]

Mechanical based accelerometers mainly measure specific force in a manner

analogous to the simple spring and mass system. Today various principles are

developed to measure acceleration. Especially MEMS based accelerometers are

commonly used in navigational technology.
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3.3.2 Accelerometer Error Model

Accelerometers are subjected to errors which play an important role in accuracy of

accelerometer. The major sources of error are listed in below [1].

Fixed Bias: It is defined as the output of the sensor when there is zero input. The

size of bias error or displacement error is independent from of any motion. The unit

of bias is usually expressed in milli-g or micro-g depending on the devices.

Scale-factor errors: Scale factor can be expressed as the deviation from least-squares

straight line. This line relates the output signal to applied acceleration. There is no

specific unit for scale factor error. Scale factor is stated as ratio parts per million or

percentages of measured full scale quantity.

Cross-Coupling Errors: This error is resulting from accelerometer sensitivity to

other normal axes. This kind of errors arise from manufacturing imperfections which

cause the non-orthogonality in sensor axes. Cross-coupling error is often expressed

as a percentage of applied acceleration.

Vibro-Pendulous Errors: When sensor is subjected to vibratory motion in

pendulous accelerometer, the phasing between vibration and pendulum movements

causes error in measurement. This error can be expressed in units of g/g2.Besides

this type of sensors, temperature dependent errors, in-run errors, and residual errors

can cause the divergence in the output of accelerometer.

Generalised accelerometer error model for simulation purposes can be expressed as

in below. It is assumed that the sensors are mounted with their sensitive axes aligned

with principal axis of host vehicle [1].
δfx

δfy

δfz

 = BA +BV


ayaz

azax

axay

+ SA


ax

ay

az

+MA


ax

ay

az

+ wA (3.2)

In this equation

BA is a three element fixed-bias

BV is a 3× 3 matrix for vibro-pendulous error
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SA is diagonal scale-factor matrix

MA is skew symmetric matrix for misalignment or cross coupling errors

wA is three-element vector white noise

The measurement of the specific force values can be written as follows,

f̃x =fx + δfx (3.3)

f̃y =fy + δfy (3.4)

f̃z =fz + δfz (3.5)

In thesis, after modelling these error, in simulation part these error values are sum

up with each individual body axes acceleration values which are obtained from TAI

helicopter simulator. Therefore the modelled raw accelerometer data can be obtained.

3.3.3 Gyroscope

To establish the motion of vehicle in three dimension, rotational motion and

translational motion should be measured. Gyroscopes are sensors that measure

angular rates with respect to inertial reference frame. If these angular rates are

integrated, sensor measurements will give change in angular orientation.

Gyroscopes use the inertial property of high speed rotor spinning. A spinning rotor

tends to maintain the direction of its axis by using its angular momentum. The

phenomenon is called as gyroscopic inertia. This fundamental operation defines the

direction of rotation which remains fixed in space. The fixed direction enables

rotation to be determined. [1].

By using different construction techniques, the classes of gyroscope sensors are

presented as below.

• Magneto-hydrodynamic rate sensor

• Vibratory gyroscopes
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• Optical rate sensors including ring laser gyroscopes (RLGs) and fibre optic

gyroscopes (FOGs)

• Micro-machined electromechanical systems (MEMS) gyroscopes

Because all such devices provide angular rotation, they are called as gyroscope.

However notice that these devices do not depend on rotation body motion.

3.3.4 Gyroscope Error Model

The accuracy of the gyroscopes are limited because of the sensor errors. Some

constructional imperfections cause the diverging the sensor outputs. The major

sources of the errors in gyroscopes are listed below [1].

Fixed Bias: As in accelerometer, fixed bias corresponds to fixed value even in the

absence of applied motion. Various effects cause this error, such as temperature

gradients, residual torques, etc. It is usually expressed in units of degrees per hour
◦/h.

g-Dependent Bias: This kind of bias is proportional to applied acceleration. Such

errors come with rotor unbalance in spinning. The relationship between accelerometer

and bias is expressed in units of ◦/h/g.

Anisoelastic Bias(g2-dependent bias): This is another bias type which is

proportional to the product of acceleration along orthogonal pair of axes. Such

biases are caused by gyroscope rotor suspension structure. The anisoelastic bias has

units of ◦/h/g2

Anisoinertia Errors: This kind of error is consequence of the inequalities in

gyroscope moments of inertia about different axes. The biases are proportional to the

product of angular rates applied to pairs of orthogonal axes. The unit is
◦/h/(rad/s)2

Scale-Factor Errors: This error is the ratio between the change in the output signal

to a change in the input rate. Scale factor is expressed as a ratio of output to input

rate in parts per million (ppm), or as percentage for some type of gyroscope models.
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Scale factor is also represented as the deviations from fitted non-linear function which

relates the output signal to applied angular rate.

Cross-Coupling Errors: This error results from gyroscope sensitivity to turn rates

about axes normal to the input axes. Such errors come with the non-orthogonality of

the sensor axes. The representation is parts per million or percentage in some

gyroscope models.

Angular Acceleration Sensitivity: This error is also known as the gyroscopic inertial

error. Due to inertia of the rotor, this kind of error is encountered. This error increases

with increasing frequency of the motion.

Some or all of the described errors generally are encountered in gyroscope sensors.

The generalized gyroscope sensor error model can be written as,
δωx

δωy

δωz

 = BG+Bg


ax

ay

az

+Bae


ayaz

azax

axay

+Bai


ωyωz

ωzωz

ωxωy

+SG


ωx

ωy

ωz

+MG


ωx

ωy

ωz

+wG

(3.6)

In this equation,

BG is a three element residual fixed-bias

Bg is a 3× 3 matrix for g-dependent bias

Bae is 3× 3 matrix for anisoelastic coefficients

Bai is 3× 3 matrix for anisoineria coefficients

SG is a diagonal matrix representing scale-factor

MG is a 3× 3 skew symmetric matrix represents cross-coupling errors

wA is three-element vector white noise

The measured rate of the gyroscope then can be written as,

ω̃x =ωx + δωx (3.7)

ω̃y =ωy + δωy (3.8)

ω̃z =ωz + δωz (3.9)
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In thesis, after modelling these error, in simulation part these error values are sum

up with each individual body axes angular rate values which are obtained from TAI

helicopter simulator. Therefore the modelled raw angular rate data can be obtained.

For accelerometer and gyroscope similar error model also can be found in reference

[10].

3.4 Global Positioning System (GPS)

The global positioning system (GPS) was developed by US Department of Defense in

1970s to serve military requirements. It is based on a satellite network which includes

at least 24 satellite. These satellites are orbiting around the world at the altitude of

26,560 km [2]. Global positioning system is a space-based radio navigation system.

And this system is developed by Navstar GPS Joint Program Office. GPS gives the

position and velocity values to user and all users around the world can access this

information with GPS receiver [11].

The operation principle of GPS is to determine velocity and position by using radio

signals which are broadcasting from satellites. These signals consist of both a pseudo-

random noise code (PRN) and a navigation message [12]. The PRN code is used

to calculate transmit time by the receiver. By using the transmit time and speed of

light, the range (pseudo-range) between satellites and receiver can be computed. Also

navigation message consists of the location of satellite. By using these knowledges

from at least four satellite the position of the receiver can be determined. [2]

A master station in Colorado Springs watches the health status of the system using

information from 12 monitoring stations around the globe. Therefore the accuracy of

the satellites signals is ensured.

3.4.1 GPS Architecture

GPS structure is composed of a space segment, a control segment and a user segment.

Space Segment: Space segment of GPS structure includes a constellation of 24

satellites minimum. Today this number reaches to 32 satellites. These satellites are
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orbiting the Earth nearly in circular orbits. GPS satellites occupy six orbits inclined

at 55°to the equator. Each orbit includes four primary satellites which are distributed

unevenly. The orbital period is about 12 hour [12]. The orbital design accommodate

more than 30 satellites to ensure at least four satellite visible to user. To estimate the

position and velocity of the user these satellites broadcast radio signals containing

coded information. Each satellite transmits two carrier frequencies in L band, known

as L1 (1575.42MHz) and L2 (1227.6MHz). Each of these signals is modulated by

precise positioning service (PPS or P) and/or standard positioning service (SPS) also

known as coarse/acquisition, C/A. The P-code and C/A are added to L1 signal

however only P-code is given in L2 signal. As the name suggests, the PPS code is

used for full precise navigation solution and it is only available for selected users.

SPS signal is available to all users [2].

In order to determine the position and velocity, accurate timing is important.

Because position is calculated by using the distance from each satellite and this

distance from each satellite is computed by measuring the passing time between

transmitting and receiving of the radio signal. The satellites have accurate atomic

clock, however receivers have less accurate clocks. The errors in calculation of

timing and distance are corrected by observing minimum of four satellites. Three for

spatial coordinates and one for time.

Control Segment: The control segment is composed of the master control station,

monitor station and ground antennas. The control segment maintains the orbital

configuration of satellites and signal broadcast. Especially the corrections for

ephemerides, almanac and other control parameters are sustained from control

section. These corrections are sent to satellite constellation once per day. Satellite

signals are tracked by six US Air Force and 11 national geospatial-intelligence

agency (NGA) monitoring stations around the globe [12]. These unmanned stations

are controlled by the master control station (MCS) and they observe the satellite

integrity. By giving this information to MCS, the ephemerides and clock parameters

are corrected [2].

User Segment: GPS receiver and receiver antenna are the user segment part of GPS.

The radio signals from satellites are received by antenna and converted to electric
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signals. Receivers process these signals to obtain position and velocity of the

vehicle. The receivers decode the satellites signals and measure the transit time

thereby determine the range between each satellite and the receiver. By using the

navigation data receivers also determine the position of each satellite at the time

signal were transmitted[13].

3.4.2 GPS Error Sources

The ranging measurement in GPS is affected by errors arising from variety of sources.

To obtain an accurate solution these errors must be eliminated or minimized. Some

of these GPS errors are given below [2],[14].

Satellite Clock Error

GPS system satellite clock drifts in time. The control segment of the GPS system adds

correction parameter to navigation signal and upload the satellites. Therefore receiver

can correct the clock error during position calculation.

Receiver Clock Error

As stated previously, receiver clocks are much less accurate than the satellite clocks

and contain a bias value. This clock bias data is eliminated by using at least four

satellite navigation signal. Thus the clock bias error can be estimated.

Ionosphere Delay

Ionosphere contains ionized gases and these ionized gas layer is changing the transit

time of GPS signal. Satellite elevation also affects ionosphere delay. Signals from low

elevation satellites pass a greater range distance through ionosphere those at higher

elevations. Dual frequency GPS receivers which obtain both L1 and L2 signals are

able to correct ionosphere delay more accurately. A single frequency receivers depend

on Klobuchar model to calculate ionospheric delay.

Tropospheric Delay

Unlike the ionosphere, troposphere is composed of N2 and O2 and water vapor.

Troposphere is electrically neutral but its reflective property causes a decreases in
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speed relative to free space. Tropospheric delay has a dry and wet components. The

wet components are difficult the model because of the water vapor content varies

locally in troposphere. Despite of wet model, dry model is easy to model. Several

models are used such as, Hopfield model and Chao model [2].

Multipath Errors

In urban environment the major source of error is multipath error. GPS signal follow

different path to reach the receiver. These paths include direct line of sight and

reflected signals from other objects. The indirectly arriving signals are delayed and

have lower signal to noise ratio. Multipath error causes the distortion in receiving

signal and position error can be 10 meters or more depends on the error value.

Satellite Orbital Errors

In ephemeris data the satellite position is send to receiver. However the actual

position of the satellite can be different from the ephemeris data. The orbital errors

are determined by the control segment and uploaded to the satellites for broadcast to

the users as ephemeris data.

Receiver Noise

This error is a random noise error because of the electronics of a GPS receiver. With

the effect of antenna circuitry, cables, thermal noises, signal quantization and

sampling these errors cumulatively affect the measurement. Since it is a function of

the signal to noise ratio, receiver noise varies with the elevation angle of a satellite.

3.4.3 GPS Satellite Orbits

The orbit of satellites is described with the Kepler’s laws. Before going into details,

it is important to have basic knowledge about Kepler’s planetary motion. According

The Kepler’s law,

• A planet travels along an elliptical orbit with the sun standing at one of the foci

of the ellipse.

• A line between the sun and a planet sweeps out equal areas in equal times.
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• The square of the period of revolution of a planet is proportional to the cube of

its mean distance from the sun.

Based on these laws, the satellite motion can be characterized by a fixed elliptical

orbit with the Earth being at one of the foci. The orbit is specified by six parameters.

These Keplerian parameters are listed below. And the illustration of these parameters

are given in Figure 3.3

Figure 3.3: Elements of Keplerian Parameters and orbital frames [2]

1. Eccentricity [e]: A measure of deviation from perfect circle.

2. Inclination [i]: The angle of orbital plane relative to Earth’s equatorial plane.

3. Semimajor axis [a]: It is one half of the longest diameter. Expressed as from

center to the edge of ellipse.

4. Right Ascension of the Ascending Node(RAAN) [Ω]: The ascending node is the

point where the orbit crosses the equatorial plane of Earth while the satellite is

moving in the positive z direction of the ECI and ECEF frames in other words

from south to north.

5. Argument of Perigee [ω]: The angle in the plane of the orbit between the

ascending node and the point on the orbit closest to the center of Earth

(perigee).
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6. True Anomaly [ν]: The angle between perigee and the satellite at a particular

time. The sum of true anomaly and the argument of perigee is equal to another

parameter called argument of latitude Φ.

Φ = ω + ν (3.10)

The true anomaly specifies the location of satellite in orbit. The true anomaly

does not vary at a constant rate over the orbit. Therefore instead of using true

anomaly, mean anomaly is used which varies with constant rate. To define

constant rate parameter, eccentric anomaly and the mean anomaly must be

defined first.

(a) Eccentric Anomaly: [E]

The angle between the perigee and the projection of the satellite onto the

circle of radius a. The relationship between true anomaly and the eccentric

anomaly can be written as,

E = 2 tan−1

[√
1− e
1 + e

tan(0.5ν)

]
(3.11)

(b) Mean Anomaly: [M]

The angle between the perigee and an imaginary satellite that travels in a

circular orbit with same focus and period as the actual satellite however

the rate of change of position is constant. The mean anomaly can be

calculated as,

M = E − e sin(E) (3.12)

In Figure 3.4 the symbolization of anomalies are shown.

3.4.4 Ephemeris Data Processing

In ideal conditions Keplerian motion describes the satellite position and velocity

information. However because of the Earth non-uniform gravitational field and the

perturbing forces such as, non-central gravitational force field, gravitational

attraction of sun, moon and other planets, solar radiation pressure and atmospheric

drag the GPS must be aware of these perturbations.
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Figure 3.4: The eccentric anomaly and true anomaly[2]

Likewise Keplerian parameters, to explain the these perturbations on satellite 12

parameter are specified relative to reference epoch time. These parameters are

known as ephemerides. The ephemerides data is broadcasting to the users. The

broadcast ephemerides data is typically uploaded to satellites once per day. Satellites

broadcast this message every 30s.

The ephemerides parameters are give in Table 3.1. The first six parameters describe

elliptical orbit with mean motion and the satellite’s motion as a function of time toe.

The other parameters describe the deviation of the satellite’s actual motion from the

smooth elliptical orbit [15]. To be able to correct the measurement by GPS receiver,

the position of the satellite must be known with the given corrections in Table 3.1.

The position of a satellite is determined based on the orbital parameters in ephemeris

data. These parameters are predicted by the master control station on the basis of

measurement by monitoring stations. More details of these parameters can be found

in IS-GPS-200H (2013).
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Table 3.1: Ephemeris parameters of GPS navigation [2]

toe Ephemeris reference time (sec)
√
a Square root of the semimajor axis (

√
m)

e Eccentricity

i0 Inclination angle at the reference time (semicircles)

Ω0 Longitude of the ascending node of the orbital plane (semicircles)

ω Argument of perigee (semicircles)

M0 Mean anomaly at the reference time (semicircles)

∆n Correction to the computed mean motion (semicircles/sec)

i̇ Rate of change of the inclination angle (semicircles/sec)

Ω̇ Rate of change of the RAAN with time (semicircles/sec)

Cuc,Cus Amplitudes of the cosine and sine harmonic correction for the

computation of latitude (radians)

Crc,Crs Amplitudes of the cosine and sine harmonic correction terms for orbit

radius (meters)

Cic,Cis Amplitudes of the cosine and sine harmonic correction terms for

inclination angles (radians)

Satellite Position Calculation:

By using the parameters in Table 3.1, the following method is used to calculate

position of satellite,

(a) Semi-major axes of the elliptical orbit from ephemeris data

a = (
√
a)2 (3.13)

(b) Calculate the mean motion of the satellite

n0 =

√
µ

a3
(3.14)

Where µ is Earth gravitational constant, the value is 3.986005× 1014 m3/s2

(c) Find time tk which is time since the reference epoch toe as specified in

ephemeris.

tk = t− toe (3.15)
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Where t is the GPS system time at the time of transmission. Time tk should be

corrected for the end of week crossover

if(tk > 302, 400)

tk = tk − 604, 800

elseif(tk < −302, 400)

tk = tk + 604, 800

end (3.16)

(d) Adjust the mean motion by the correction ∆n specified in ephemeris

n = n0 + ∆n (3.17)

(e) Compute the mean anomaly Mk at time tk

Mk = M0 + ntk (3.18)

Where M0 is the mean anomaly at the reference time.

(f) Calculate the eccentric anomaly Ek by solving Kepler’s law

Ek = Mk + e sin(Ek) (3.19)

where e is the eccentricity of orbit. Normally, the above equation is solved

iteratively by setting an initial Ek = Mk.

(g) Calculation of true anomaly νk

νk = tan−1

(√
1− e2 sin(Ek/(1− e cos(Ek)))

(cos(Ek − e)/(1− e cos(Ek)))

)
(3.20)

(h) Compute the argument of latitude Φk

Φk = νk + ω (3.21)

(i) Calculation of the three harmonic perturbations. The argument of latitude

correction is,

δuk = Cus sin(2Φk) + Cuc cos(2Φk) (3.22)
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The radius correction is,

δrk = Crs sin(2Φk) + Crc cos(2Φk) (3.23)

The inclination correction is,

δik = Cis sin(2Φk) + Cic cos(2Φk) (3.24)

(j) Compute the corrected argument of latitude

uk = Φk + δuk (3.25)

(k) Compute the corrected radius,

rk = a(1− e cos(Ek)) + δrk (3.26)

(l) Calculate the corrected inclination

ik = i0 + δik + i̇ tk (3.27)

(m) Calculate the position of satellite in orbital plane,

x′k = rk cos(uk) (3.28)

y′k = rk sin(uk) (3.29)

(n) Compute the corrected longitude of the ascending node,

Ωk = Ω0 + (Ω̇− Ω̇e)tk − Ω̇etoe (3.30)

where Ω̇e is the Earth rotation rate.

(o) Finally compute the position of satellite in e-frame

xk = x′k cos(Ωk)− y′k cos(ik) sin(ωk) (3.31)

yk = x′k sin(Ωk) + y′k cos(ik) cos(ωk) (3.32)

zk = y′k sin(ik) (3.33)

Now the velocity of the satellite can be computed by taking the time derivative of the

position. The steps are given below.
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(a) Calculate the rate of change of eccentric anomaly

Ėk =
n

1− e cos(Ek)
(3.34)

(b) Calculate the rate of change of argument of latitude

Φ̇k =

√
1− e2

1− e cos(Ek)
Ėk (3.35)

(c) Compute the rate of change of the corrected argument latitude

u̇k = (1 + 2Cus cos(2Φk)− 2Cuc sin(2Φk))Φ̇k (3.36)

(d) Find the rate of change of the corrected radius

ṙk = 2(Crs cos(2Φk)− Crc sin(2Φk))Φ̇k + Ae sin(Ek)Ėk (3.37)

(e) Calculate the rate of change of satellite’s position in its orbital plane

ẋ′k = ṙk cos(uk)− rk sin(uk)u̇k (3.38)

ẏ′k = ṙk sin(uk) + rk cos(uk)u̇k (3.39)

(f) Compute the rate of change of corrected inclination
dik
dt

= 2(Cis cos(2Φk)− Cic sin(2Φk))Φ̇k + i̇0 (3.40)

(g) Calculate the rate of change of the corrected longitude of the ascending node

Ω̇k = Ω̇− Ω̇e (3.41)

(h) Differentiate the equations 3.31-3.33 to obtain the velocity of the satellite in

ECEF frame.

ẋk = ẋ′k cos(Ωk)− ẏ′k cos(ik) sin(Ωk) + y′k sin(ik) sin(Ωk)
dik
dt
− ykΩ̇k

(3.42)

ẏk = ẋ′k sin(Ωk) + ẏ′k cos(ik) cos(Ωk)− y′k sin(ik) sin(Ωk)
dik
dt

+ xkΩ̇k

(3.43)

żk = y′k sin(ik) + yk cos(ik)
dik
dt

(3.44)

Foregoing equations need on-line ephemeris data to calculate satellite position

calculation. Therefore in this thesis, for the modelling of satellite orbits in

Matlab-simulink model reference [16] was used. The detailed explanation of satellite

constellation and their parameters can be found in reference [16].
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3.4.5 Receiver Position and Velocity Estimation

The main observables in GPS are pseudo-range and pseudo-range rates to estimate

navigation data.

Pseudo-range are obtained by measuring the time difference between the

propagation time of GPS signal and receiving time of receiver, then multiplying time

difference with speed of light. In calculation of distance the bias error from receiver

clock should be considered. This offset is a fourth unknown in addition to the

positional components of latitude, longitude and height. Therefore at least four

satellites measurements are required to determine these four unknowns [2].

Position Estimation:

To obtain de position information, firstly the satellite clock bias error, ionospheric

errors and tropospheric errors should be eliminated. Then the corrected pseudo-range

is,

ρmc = rm + cδtr (3.45)

Where

ρm is the measured pseudo-range between mth satellite and the receiver in

meters.

rm is the true range between receiver’s antenna at time tr (receive time) and the

satellites antenna at time tt (transmit time ) in meters.

δtr is the receiver’s clock offset in seconds.

The geometric interpretation between mth satellite and receiver is,

rm =
√

(x− xm)2 + (y − ym)2 + (z − zm)2 = ‖x− xm‖ (3.46)

Where

x = [x, y, z]t is the receiver position in ECEF

xm = [xm, ym, zm]t is the position of the mth satellite in ECEF frame

49



Then equation 3.45 in vector form,

ρmc = ‖x− xm‖+ br (3.47)

where br = cδtr is the error range from bias error of receiver in meters. By using

Taylor series expansion, equation 3.47 can be linearized. Discarding the higher terms,

linearized version of equation 3.47 can be written with best estimate of position.

xest = [xest, yest, zest]
t (3.48)

Then the linearization becomes,

ρmc =
√

(xest − xm)2 + (yest − ym)2 + (zest − zm)2+

(xest − xm)(x− xest) + (yest − ym)(y − yest) + (zest − zm)(z − zest)√
(xest − xm)2 + (yest − ym)2 + (zest − zm)2

+ br

(3.49)

Estimated range can be defined,

ρmc,est =
√

(xest − xm)2 + (yest − ym)2 + (zest − zm)2 (3.50)

Subtract the estimated equation 3.50 from 3.49,

ρmc −ρmc,est =
(xest − xm)(x− xest) + (yest − ym)(y − yest) + (zest − zm)(z − zest)√

(xest − xm)2 + (yest − ym)2 + (zest − zm)2
+br−br,est

(3.51)

Equation 3.51 can be written more compactly. In matrix form equation can be written

as in equation below.

δρmc = (Lmestδx) + δbr (3.52)

Where

δρmc = ρmc − ρmc,est
δbr = br − br,est

Lmest =
[(xest − xm), (yest − ym), (zest − zm)]t√

(xest − xm)2 + (yest − ym)2 + (zest − zm)2

Here, Lmest is the line of sight unit vector from the mth satellite to the receiver’s

position.
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In general, the linearized pseudo-range measurements equations can be written as M

satellites as below,

δρc =


δρ1

c

δρ2
c

...

δρMc


M×1

=


(L1

est)
t 1

(L2
est)

t 1
...

...

(LMest)
t 1


M×4

δx
δbr


4×1

(3.53)

Finally, the compact version is,

δρc = GM×4

δx
δbr


4×1

(3.54)

where G is the geometry matrix with M × 4 dimensions which characterizes the

relative geometry of the satellite and receiver. To solve for the unknownsδx
δbr

 = G−1δρc (3.55)

For the case of M > 4 the system is over-determined and the solution can be found

by using the least squares criterion. The least square solution can be given as,δx̂
δb̂r

 = (GtG)−1Gtδρc (3.56)

The improved states are,

x̂ = xest + δx̂ (3.57)

b̂r = br,est + δb̂r (3.58)

The process must be sustained until pseudo-range measurements are obtained in

desired error range.

Velocity Estimation

Pseudo-range rate can be written as,

ρ̇m = Lmx (νx − νmx ) + m
y (νy − νmy ) + lmz (νz − νmz ) + dr (3.59)

Where

Lm =
[(x− xm), (y − ym), (z − zm)]t√

(x− xm)2 + (y − ym)2 + (z − zm)2
= [Lmx , L

m
y , L

m
Z ]t True line of sight vector

dr = cδṫr Receiver clock drift in meters/sec
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Estimated pseudo-range rate will be,

ρ̇mest = Lmx,est(νx,est − νmx ) + m
y,est(νy,est − νmy ) + lmz,est(νz,est − νmz ) + dr,est (3.60)

In equation 3.60 νx,est, νy,est, νz,est are the estimated velocity components of the

receiver in ECEF frame. The error in the pseudo-range rate can be calculated as,

ρ̇m − ρ̇mest = Lmx,est(νx − νx,est) + Lmy,est(νy − νy,est) + Lmz,est(νz − νz,est) + dr − dr,est
(3.61)

In matrix form,

δρ̇m = (Lmest)
tδν + δdr (3.62)

For M satellite, the linearized pseudo-range rate measurement can be written as,

δρ̇ =


δρ̇1

δρ̇2

...

δρ̇M


M×1

=


(L1

est)
t 1

(L2
est)

t 1
...

...

(LMest)
t 1


M×4

 δν
δdr


4×1

(3.63)

Or in compact form the equation 3.64 can be written as,

δρ̇M×1 = GM×4

 δν
δdr


4×1

(3.64)

To solve both position and velocity equation simultaneously, equation 3.53 and 3.63

can be combined in one model.

δρ1
c

...

δρMc

δρ̇1

...

δρ̇M


′M×1

=



(L1
est)

t 1 03×1 0
...

...
...

...

(LMest)
t 1 03×1 0

03×1 0 (L1
est)

t1
...

...
...

...

03×1 0 (LMest)
t1


2M×8


δx

δbr

δv

δdr


8×1

(3.65)

In matrix form, rewrite the equation 3.65,

δz2M×1 = G̃2M×8δS8×1 (3.66)

By using least square techniques, in the case of more than 4 satellites equation 3.67

can be used.

δŜ = (G̃tG̃)−1G̃tδz (3.67)
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Finally the improved estimates of the receiver’s position and clock bias are,

x̂ = xest + δx̂ (3.68)

v̂ = vest + δv̂ (3.69)

b̂r = br,est + δb̂r (3.70)

d̂ = dr,est + δd̂r (3.71)

Also, if a priori estimates have large errors then the least squares solution will be

iterated until the change in the estimate is sufficiently small.

Satellite Geometry and Dilution of Precision:

Positions of the available satellites around the GPS receiver are important to

determine the position estimation accurately and this effect is called geometric

dilution of precision (GDOP) or simply dilution of precision (DOP) [2],[14]. The

illustration of the concept is given below figure. Ideally the signals from the

(a) The ideal position (b) Favorable geometry

(c) Poor geometry

Figure 3.5: The dilution of precision with range measurements in two dimensions.

[2]

satellites should form the circles. Therefore the circles intersect at a point. However,
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because of that there is always an error in range measurement, the uncertainty causes

two concentric circles as shown in Figure 3.5b. The area between circles is the

region of the uncertainty in the range. The area of this region depends on the relative

geometry of two satellites with respect to user. In Figure 3.5b the satellites are

located at right angles relative the user and the area of the intersection is smaller,

thus DOP is lower, in other words the error is smaller in position determination. In

Figure 3.5c, satellites are almost linear, so the area of intersection and the error are

large.

Dilution of precision can be computed by the geometry matrix G [2]. The error

covariance matrix can be written as,

E(δŷδŷt) = (GtG)−1GtRG(GtG)−1 (3.72)

R is the covariance matrix of the pseudo-range measurements. Assuming that the

measurement error is uncorrelated and has the same variance σ2. Then it can be

written,

R = σ2I (3.73)

Therefore equation 3.72 will be,

E(δŷδŷt) = σ2(GtG)−1 (3.74)

By defining the C = E(δŷδŷt) and H = (GtG)−1, we can write the elements of

C = σ2H as,

σ2
x = σ2H11

σ2
y = σ2H22

σ2
z = σ2H33

σ2
b = σ2H44 (3.75)

Various DOP parameters which show the role of user-satellite geometry can be

defined. Some of these parameters are given below.

Position dilution of precision (PDOP ) =
√
H11 +H22 +H33

Time dilution of precision (TDOP ) =
√
H44
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Geometric dilution of precision (GDOP ) =
√
H11 +H22 +H33 +H44

The satellite-user geometry improves with the increasing number of satellites.

Therefore the positional accuracy increases.

3.5 Magnetometer

Using the Earth magnetic field is one of the oldest navigation techniques to determine

the directional reference. Today by using magnetometers the direction of the path can

be measured directly. Also by using the Earth magnetic field the attitude of the vehicle

can be determined. In the absence of local magnetic interferences, magnetometer

senses the Earth magnetic field intensity acting along its sensitive axes in body frame.

Moreover in recent studies magnetometer was used to demonstrate the benefits of

using the magnetic data during GPS signal outages [17].

The Earth magnetic field direction lies close to true north and magnetic north.

However the angle between true north and magnetic north is not constant. It varies

with the position on Earth and time. The direction of the Earth magnetic field is

defined in terms of orientation with respect to true north. The orientation with

respect to true north is called magnetic declination (γ) and the its angle with

horizontal is called as angle of dip (δ) [1]. The measured values in magnetometer

can not be distinguished from that of Earth. Therefore this effect must be included in

calculation. The illustration of Earth magnetic field with Earth coordinate is given in

Figure 3.6.

3.5.1 Magnetic Measurements

Strapdown magnetometer can be used to measure heading of the vehicle. Three

magnetometers which are oriented in orthogonal direction is used to measure Hx, Hy

and Hz magnetic vector components. To obtain heading angle the compass

orientation needs to be mathematically transformed in the navigation frame. The
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Figure 3.6: Components of Earth magnetic field [1]

rotational transformation is achieved by applying the rotation equations [1].
Hx

Hy

Hz

 = Cb
n


H0 cos(δ) cos(γ)

H0 cos(δ) cos(γ)

H0 sin(δ)

 (3.76)

Where δ is the angle of dip and γ is the angle of declination. Then heading can be

found from equation 3.76.
cos(θ) 0 − sin(theta)

0 1 0

sin(theta) 0 cos(theta)


−1 

1 0 0

0 cos(φ) sin(φ)

0 − sin(phi) cos(θ)


−1 

Hx

Hy

Hz

 =


cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1



H0 cos(δ) cos(γ)

H0 cos(δ) cos(γ)

H0 sin(δ)


(3.77)

Rearranging the equation 3.77, the heading ψ can be found as,

ψ = tan−1(Hy/Hx)− γ (3.78)

3.5.2 Magnetometer Error Analysis

The main error of a magnetometer are the scale factor, sensor offsets, sensor non-

orthogonality, misalignment and magnetic deviation. The last one magnetic deviation
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depends on the surrounding magnetic field anomalies. These effects are called as soft

iron and hard iron effects [18].

Scale Factor: Instrumentation errors are due to fabrication processes. They

have a constant, specific parameters for each magnetometer. For each sensitivity

axis this parameter can be different. The scale factor is shown as

S =


sx 0 0

0 sy 0

0 0 sz

 (3.79)

Misalignment: Due to fabrication issues, the axis of triad is not mounted

perfectly aligned with the sensor axes. Non-orthogonal sensing elements and

misalignment can be modeled with a matrix M .

M =


mxx mxy mxz

myx myy myz

mzx mzy mzz

 (3.80)

Sensor Offset: The sensor offset introduces a bias. It is modelled as,

Bso =


bso,x

bso,y

bso,z

 (3.81)

Hard and Soft Iron: Due to the local deviations of the magnetic field which

are caused by on-board hardware and surrounding materials the error source of

soft iron and hard iron effect are observed.

The soft component of the magnetic deviation corresponds to induced

magnetization. The source of this error is permeability of ferromagnetic

compounds. This Error changes the intensity and the direction of magnetic

field. Soft iron can be modelled by 3× 3 matrix,

Asi =


a11 a12 a13

a12 a22 a23

a13 a32 a33

 (3.82)
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The hard component of magnetic deviation corresponds to a permanent

magnetic deviation. It results from permanent magnets and magnetic

hysteresis. Hard iron effect can be represented as,

Bhi =


bhi,x

bhi,y

bhi,z

 (3.83)

By using these parameters the complete error model for magnetometers can be written

as in the following equation [18].

Ĥ = SM(AsiH −Bhi)−Bso + n (3.84)

= SMAsiH − SMBhi −Bso + n (3.85)

= AH − b+ n (3.86)

where H is the error free magnetic field and Ĥ is the readings from magnetometer. n

is Gaussian white noise. A = SMAsi and b = SMBhi +Bso.

In this this thesis, to create accelerometer, gyroscope, GPS and magnetometer

models this chapter is utilized. For accelerometer and and gyroscope models

equations 3.2 and 3.6 are used respectively. The related error parameters are

obtained from reference [1]. For GPS to simulate satellite dynamics equations

between 3.13 and 3.44 are used. Also for position and velocity estimation of

receiver, equations between 3.45 and 3.67 are utilized. To measure the estimation

accuracy of receiver position and velocity estimation, satellite dilution of precision

parameters are calculated according to equations between 3.72 and 3.75. Finally

magnetometer errors are modelled according to equations between 3.76 and 3.84.
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CHAPTER 4

KALMAN FILTER AND INS/GPS/MAGNETOMETER

INTEGRATION

4.1 Kalman Filter Introduction

In previous chapter it is stated that the errors in INS are affected by inertial sensors.

Also the computational errors and initialization errors affect the results of INS

computation. In order to improve INS results, at regular time intervals the estimation

procedure should be applied to predict stochastic errors for compensation. If the

elimination of errors are not realized, the whole positioning accuracy will jeopardize.

To eliminate the error sources various methods are available. Kalman Filtering (KF)

and its variances, particle filter (PF) and artificial intelligence are some of them. In

traditional, Kalman filter procedure is the most preferred one among other techniques.

Especially the INS/GPS system integration via Kalman filter is the common sensor

fusion technique in navigation computation area.

Generally Kalman filter is an algorithm to estimate noise in the error states of system

optimally. Kalman filter is a recursive algorithm that provides an optimal least mean

variance estimation of error states. By selecting the weighing criteria of measurement,

KF estimates the current value of the state approximately. KF uses the following

informations to estimate states [2],

1. Model and measurement information

2. Stochastic error characteristic of system noise and measurement noise
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3. Initial condition values of the KF states.

In this section, Kalman filter for linear system will be considered. Before non-linear

system, the algorithm which is applicable for linear system is presented. Then for

non-linear system Extended Kalman filter will be discussed.

4.1.1 Discrete Time Kalman Filter

The dynamical behaviour of the linear system can be represented by first order

differential equations in the form of,

ẋ = Fx+Gu+w (4.1)

here, x is the states of the system, u is the deterministic input and w is the system

noise. F is the system matrix and G is the system input matrix. F and G can be

constant or time-varying matrices [1]. The noise vector w has zero mean and

Gaussian distribution with power spectral density (PSD) Q. If the measurement

matrix of the system is considered, this can be expressed as,

y = Hx+ η (4.2)

where y is the measurement vector and H is measurement matrix. For the noise

effect, η can be selected as measurement noise which has zero mean and normally

distributed, with PSD R. As for discrete linear system, the discrete KF models can

be described as follow [2],

xk = Φk,k−1xk−1 +Gk−1w
¯ k−1 (4.3)

where

xk is the state vector

Φk,k−1 is the state transition matrix

Gk−1 is the noise distribution vector

wk−1 is the process noise vector

Discrete time linear measurement equation of the system is,

zk = Hkxk + ηk (4.4)
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where

zk is the measurement vector of the system output

Hk is the observation matrix

ηk is the measurement noise vector

The state transition matrix Φ represents the dynamic behaviour of the system. For the

given dynamic coefficient matrix F in continuous time system, the state transition

matrix can be given as,

Φ = exp(F∆t) (4.5)

For the discrete time systems, by using Taylor series expansion Φ can be written as,

Φ = (I + F∆t) (4.6)

where I is the identity matrix and δt is sampling interval.

To apply Kalman filter the following assumptions must be considered.

1. Both system and measurement must be represented by linear models.

2. The system noise wk and measurement noise ηk must be uncorrelated, zero

mean, Gaussian noise with the given covariance matrices.

E[wk] = 0, E[ηk] = 0 (4.7)

E[wkη
t
j] = 0 (4.8)

E[wkw
t
j] =

Qk k = j

0 k 6= j
(4.9)

E[ηkη
t
j] =

Rk k = j

0 k 6= j
(4.10)

where Qk and Rk represent the covariance matrices of the system noise and

measurement noise respectively [2].

3. The initial system state vector x0 is uncorrelated to both process and

measurement noise vectors.

E[x0w
t
k] = 0, E[x0η

t
k] = 0 (4.11)
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4. The mean value of the initial state x̄0 and its covariance matrix P0 are known.

x̄0 = E[[
¯
x0] (4.12)

P0 = E[(x0 − x̄0)(x0 − x̄0)t] (4.13)

4.1.2 Kalman Filter Algorithm Procedure

Kalman filter estimates the states of the system by using a recursive algorithm. The

operation order of Kalman filter consists of two phase. The first phase is the prediction

or time update. In this phase the model propagates from current state the next state

with its covariance matrix between time interval k − 1 and k. The second phase is

correction or measurement update. In this phase measurements are used to update

previous estimate, therefore improving the last estimate [2].

Let discuss Kalman filter stages in detail.

Prediction Stage (Time Update)

The estimation of system state x at time k with the given information up to time k−1

is called prediction. The prediction states are shown as x̂k(−). Since system noise is

zero mean the best prediction will be,

x̂k(−) = Φk|k−1xk−1(+) (4.14)

where xk−1(+) is the best estimate during last epoch. Kalman Filter also propagates

the uncertainty which is called error covariance. It is represented by covariance matrix

Pk(−) and calculated by using following formula

Pk(−) = Φk|k−1Pk−1(+)Φt
k|k−1 +Gk−1Qk−1G

t
k−1 (4.15)

where Pk−1(+) represents the best estimate of covariance in last epoch.

Correction Stage (Measurement Update)

The correction of the Kalman filter comes with the measurement part. After Kalman

filter predicts its estimate, this value is corrected with measurement. Firstly the

Kalman gain K is computed based on measurement covariance Rk. The Kalman
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gain is determined such that it minimizes the mean square error of estimate.

Kk = Pk(−)H t
k[HkPk(−)H t

k +Rk]
−1 (4.16)

As seen from equation 4.15 K depends on both Pk(−) and Rk. If the measurements

are noisy (Rk increases) or process noise is lower (Pk(−) decreases) then K

becomes relatively smaller. Otherwise, when more noise in process (Pk(−)

increases) or measurement is less noisy (Rk decreases) K becomes relatively larger.

As a result, when K is large it assigns more weight to measurement and when it is

small it shows greater faith in prediction. For example, In the INS/GPS integration,

K takes relatively larger values when the GPS is more accurate and less noisy. In that

case the measurement covariance matrix becomes relatively small.

When new measurement arrives at time tk the difference between prediction and

measurement zk is weighted by Kalman gain.

x̂k(+) = x̂k(−) +Kk[zk −Hkx̂k(−)] (4.17)

where Hkx̂k(−) is the prediction observation and zk − Hkx̂k(−) is the innovation

sequence.

In measurement update stage Kalman filter also update the uncertainty of its new

prediction x̂k(+),

Pk(+) = [I −KkHk]Pk(−) (4.18)

The expanded form or Joseph form of the equation 4.17.

Pk(+) = [I −KkHk]Pk(−)[I −KkHk]
t +KkRkK

t
k (4.19)

which is numerically stable and gives correct answers even when the computation of

K has an error. Figure 4.1 shows the flow diagram of the Kalman filter algorithm.

In most Kalman Filter application update procedure is at lower rate than prediction

stage. For example in INS/GPS integration KF prediction is at 100 Hz whereas KF

update procedure may realize at 1 Hz.

4.1.3 Non-linear (Extended) Kalman Filter

Linear dynamic systems use standard Kalman filter to estimate the states. The same

procedure can be extended to estimation of non-linear systems. For the non-linear
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Figure 4.1: Kalman filter procedure

case, the Kalman filter is named as Extended Kalman Filter. For the non-linear

systems, it can be written as,

xk+1 = fk(xk) +wk (4.20)

yk = hk(xk) + ηk (4.21)

where xk is the state vector, fk(xk) is the non-linear state transition matrix and wk

is the process noise matrix. yk is the measurement vector, hk(xk) is the non-linear

measurement function and ηk is the measurement noise vector. Again wk and vk are

zero mean Gaussian noises.

To apply the Kalman Filter, the basic idea is the linearization of the non-linear

functions fk(xk) and hk(xk) around the recent estimate xk. Linearization of the
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non-linear functions can be determined by calculating the Jacobian matrices [1].

Fk =
∂fk(xk)

∂xk

∣∣∣∣
x=xk

Hk =
∂hk(xk)

∂xk

∣∣∣∣
x=xk

(4.22)

After obtaining the linearized system matrices, standard Kalman filter procedure can

be applied. The procedure is given in Table 4.1. In this study the extended Kalman

filter procedure will be followed. In following section the linearized system model

will be obtained.

4.1.4 Autocovariance Least-Squares Method

In Kalman filter procedure to find the optimal Kalman gain, system noise Q and

measurement noise R covariance matrices must be determined. However the

covariance matrices are not known in general. To estimate the covariance matrices

Autocovariance Least Square Method (ALS) is proposed by Brian J. Odelson et

al.[19]

According to Odelson [19], extracting the covariance information from collected data

is more preferable and systematic approach. For linear time varying systems Ming

Ge and Eric C. Kerrigan [20] offer ALS as in below. Before going into detail of the

approach, consider the following discrete state-space model:

xk+1 = Akxk +Gkwk (4.23)

yk = Ckxk + vk (4.24)

where Ak and Ck are state-space matrices with n×n and p×n dimensions. Gk noise

matrices with n×r dimension. The noise parameters wk and vk are random Gaussian

distributions with zero mean and unknown covariance matrices Q and R. Because Q

and R matrices are unknown, sub-optimal filter is used to estimate state sequence as

in 4.25

x̂k = x̂k|k−1 + Lk(yk − ŷk|k−1) k = 1, ...,M (4.25)
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Table 4.1: Extended Kalman Filter [2]

State Space Model

xk+1 = fk(xk) +wk

yk = hk(xk) + ηk

Initilization of Kalman Filter

x̂0 = E(x0))

P0 = E((x0 − x̂0)(x0 − x̂0)t)

Calculate Jacobians

Fk = ∂fk(xk)
∂xk

∣∣∣∣
x=xk

Hk = ∂hk(xk)
∂xk

∣∣∣∣
x=xk

Time Update

x̂k(−) = fk(xk−1(+))

Pk(−) = FkPk−1(+)F t
k +Qk−1

Kalman Gain

Kk = Pk(−)H t
k[HkPk(−)H t

k +Rk]
′−1

Measurement Update

x̂k(+) = x̂k(−) +Kk[yk −Hkx̂k(−)]

Pk(+) = [I −KkHk]Pk(−)[I −KkHk]
t +KkRkK

t
k
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By using the one-step ahead predicted state and output, the state error term is defined

as below:

x̂k+1|k = Akx̂k (4.26)

ŷk|k−1 = Ckx̂k|k−1 (4.27)

εk = xk − x̂k|k−1, k = 1, ...,M (4.28)

Therefore estimation error propagation form can be written by using equation 4.26,

4.27 and 4.28.

εk+1 = (Ak − AkLkCk)εk + [Gk − AkLk]

wk
vk

 (4.29)

where

Āk = Ak − AkLkCk

Ḡk = [Gk − AkLk]

w̄k = [wk vk]
T

Now the innovation sequence can be defined as,

zk = yk − ŷk|k−1 (4.30)

Therefore

zk = Ckεk + vk (4.31)

The suboptimal filter data is correlated with each other for k = 1, ...,M . The

similarity between collected data and its lagged version can be represented with

auto-covariance matrix. The auto-covariance matrix with time lag j = 0, 1, .., N − 1

can be written as,

ζj((zk)
k0+M+N
k=k0

) = E[zk0+jz
T
k0

... zk0+M−N+jz
T
k0+M−N ] (4.32)

where k0 > 1 to eliminate uncertainty of initial values. Based on equation 4.32, the

auto-covariance matrix can be defined as,

R =


ζ0((zk)

k0+M+N
k=k0

)
...

ζN−1((zk)
k0+M+N
k=k0

)

 (4.33)
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The calculation of auto-covariance matrix based on collected data,

R̄i =
1

M −N + 1


zk0+i · · · zk0+i+M−N

zk0+i+1 · · · zk0+i+M−N+1

... . . . ...

zk0+i+N−1 · · · zk0+i+M−1

×


zTk0+i

zTk0+i+1

...

zTk0+i+M−N

 (4.34)

and

R̄ =
[
R̄0 R̄1 · · · R̄M−N

]
i = 0, ...,M −N (4.35)

The detailed explanation of extracting auto-covariance matrix into least square

problem to find Q and R matrices given in reference [19] and [20]. Here, the least

square form of the equation will be given.

(Ri)s = (Γ̄i⊗Γi)I1,n(Pk0−1)s+(Ω̄i⊗Ωi)Ii+1,r(Q)s+((Φ̄i⊗Φ)Ii+1,p+Ip⊗Ψi)(R)s

(4.36)

In matrix form the equation 4.36 can be rewritten in least square form Ax = b
A0

A1

...

AM−N


︸ ︷︷ ︸

A


P̂k0−1

Q̂

R̂


︸ ︷︷ ︸

x

=


b̄0

b̄1

...

b̄M−N


︸ ︷︷ ︸

b

(4.37)

where

Ai =
[
(Γ̄i ⊗ Γi)I1,nDn (Ω̄i ⊗ Ωi)Ii+1,rDr ((Φ̄i ⊗ Φ)Ii+1,p + Ip ⊗Ψi)Dp

]
b̄i = (R̄i)s

Then ALS estimate values can be found by using the least square solution,

x = (AtA)−1Atb (4.38)

The detailed expansion of the ALS terms in equation 4.37 is given in appendix A.

4.2 INS/GPS and Magnetometer Integration with Kalman Filter

INS/GPS and magnetometer integration is based on error state system model.

Position, velocity and attitude errors are the states of linearized model. This means
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that the non-linear position, velocity and attitude equations must be linerized about

navigation solution. The derivation of linerized state space model is given in

following section.

4.2.1 Linearization of Dynamic Error Model

In this part the error state space matrix will be constructed for navigation operations.

The derivation of error equations are given as follows [13].

Attitude Errors:

The direction cosine matrix Cn
b propagates according to following formula,

Ċn
b = Cn

b Ωb
ib − Ωn

inC
n
b (4.39)

Where Ωb
ib and Ωn

in are the skew symmetric of absolute body rate and navigation

frame rate. For the attitude errors, small angle perturbation is used to linearize attitude

equations according to state space variables.

δΨ̇ = −ωnin × δΨ + δωnin − Cn
b δω

b
ib (4.40)

where δΨ is the attitude error states. Also δωbib is the gyroscope error and δωnin is

error in angular rate of n-frame and composed of,

δωnin = δωnie + δωnen (4.41)

Moreover the Earth rate error can be given as,

δωnie = (−Ω sin(L)δL 0 − Ω cos(L)δL)t (4.42)

As a final, transport rate δωnen can be obtained as,

δωnen =


δVe

(Re+h)
− Ve

(Re+h)2
δh

− δVn
(Rn+h)

+ Vn
(Rn+h)2

δh
− tan(L)
(Re+h)

δVe + Ve tan(L)
(Re+h)2

δh− Ve
(Re+h) cos2(L)

δL

 (4.43)

If the states are collected in matrix form, attitude error can be written as,

δΨ̇ = [F11 F12 F13]


δΨ

δV

δP

− Cn
b δω

b
ib (4.44)
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where P and V stand for position and velocity states respectively in equation 4.28.

Velocity Errors:

Velocity error model can be obtained from equation 2.49. By perturbing the velocity

equation, the error model is obtained as below.

δV̇ = −ΨCn
b f

b + Cn
b δf

b − (2ωnie + ωnen)× δV − (2δωnie + δωnen)− δg (4.45)

In state space form the equation 4.29 will be,

δV̇ = [F21 F22 F23]


δΨ

δV

δP

 (4.46)

Position Errors:

Similarly the position error model is obtained from equations 2.57 - 2.59 by

perturbing the states.

δL̇ =
1

(Rn + h)
δvn −

vn
(Rn + h)2

δh (4.47)

δl̇ =
1

(Re + h) cos(L)
δve +

ve tan(L)

(Re + h) cos(L)
δL− ve

(Re + h)2 cos(L)
δh (4.48)

δḣ = −δvd (4.49)

In matrix form, it can be written as follows,

δṖ = [F31 F32 F33]


δΨ

δV

δP

 (4.50)

Now the state space model can be construct by combining the matrix expressions in

equations 4.28, 4.30 and 4.34. The states of the model are,

δΨ = [δφ δθ δψ]t (4.51)

δV = [δvn δve δvd]
t (4.52)

δP = [δL δl δh]t (4.53)

In matrix form,
δΨ̇

δV̇

δṖ

 =


F11 F12 F13

F21 F22 F23

F31 F32 F33



δΨ

δV

δP

+


−Cn

b 03×3

03×3 Cn
b

03×3 03×3


δω
δf

 (4.54)
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where δω = [δωx δωy δωz] is the gyroscope noise parameters and

δf = [δfx δfy δfz] is the accelerometer noise parameters. Components of the

state matrix are given below.

F11 =


0 −(Ω sin(L) + ve

R
tan(L)) vn

R

Ω sin(L) + ve
R

tan(L) 0 Ω cos(L) + ve
R

−vn
R

−(Ω cos(L) + ve
R

) 0

 (4.55)

F12 =


0 1

R
0

− 1
R

0 0

0 − tan(L)
R

0

 (4.56)

F13 =


−Ω sin(L) 0 − ve

R2

0 0 vn
R2

−Ω cos(L)− ve
R cos2(L)

0 vetan(L)
R2

 (4.57)

F21 =


0 −fd fe

fd 0 −fn
−fe fn 0

 (4.58)

F22 =


vd
R

−2(Ω sin(L) + ve
R

tan(L)) vn
R

2Ω sin(L) + ve
R

tan(L) 1
R

(vn tan(L) + vd) 2Ω cos(L) + ve
R

−2vn
R

−2(Ω cos(L) + ve
R

) 0


(4.59)

F23 =


−ve(2Ω cos(L) + ve

R cos2(L)
) 0 1

R2 (v2
e tan(L)− vnvd)

2Ω(vn cos(L)− vd sin(L)) + vnve
R cos2(L)

0 − ve
R2 (vn tan(L) + vd)

2Ωve sin(L) 0 1
R2 (v2

n + v2
e)

 (4.60)

F31 =


0 0 0

0 0 0

0 0 0

 (4.61)

F32 =


1
R

0 0

0 1
R cos(L)

0

0 0 −1

 (4.62)

F33 =


0 0 − vn

R2

ve tan(L)
R cos(L)

0 − ve
R2 cos(L)

0 0 0

 (4.63)
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In derivation of error model higher order terms in linearization are neglected. If higher

terms are desired to be used in linearization process reference [21] can be used. In this

study the upper equation will be utilized.

4.2.2 Types of Integration

As indicated before, there are individually pros and cons of INS and GPS system.

Firstly, INS system is autonomous navigation system. It has good short term accuracy

and provides position, velocity and attitude information. In long term, INS errors

grow without bound. Secondly GPS has good long term accuracy with limited errors.

To get the position accurately GPS needs at least four satellites which is not always

possible.

The complementary characteristic of the two systems overcomes their individual

drawbacks and gives more accurate and robust solutions. The integration of these

two system is mostly based on Kalman filter technique. Therefore GPS prevents the

deviation from inertial measurement of the INS and INS provides navigation

solution during the GPS signal outages. To obtain maximum advantages, robustness

and accuracy from optimal filtering, there are different integration techniques for

Kalman filter [2],[14]. Specifically these are,

• Loosely coupled Kalman filter

• Tightly coupled Kalman Filter

• Ultra-tightly coupled Kalman Filter

4.2.2.1 Loosely Coupled INS/GPS integration

In loosely coupled integration GPS and INS work independently from each other.

The difference between INS solution and GPS measurement is sustained to Kalman

filter. Based on the error model, the INS error states are estimated. The INS solution

is corrected for the estimated error states and integrated to navigation equations for

the next epoch. The diagram for the loosely coupled system is shown in Figure 4.2.
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This system is also called as decentralized system because there is separate filter

used for GPS. The main problem in loosely coupled system is the instability of GPS.

Figure 4.2: Block diagram for loosely coupled integration

When there are not sufficient satellites in line of sight, the KF filter assumption of

uncorrelated measurement noise is put at risk. Therefore the system performance is

reduced.

4.2.2.2 Tightly Coupled INS/GPS integration

The difference of tightly coupled integration comes with pseudo-range and

pseudo-range rate measurement. Kalman filter takes the difference of pseudo-range

and pseudo-range rate measurement from GPS and the predicted values of them

from INS. Then by finding the error states the navigation solution is corrected. In

same cases pseudo-range is obtained GPS tracking code directly however

pseudo-range rate can be calculated from GPS tracking code. This solution will be

less robust [2]. The architecture is shown in Figure 4.3. This architecture is also

called centralized integration because of single master filter.

This integration can eliminate the need for at least four satellite visibility. However

tightly coupled system is more complex than loosely coupled system to implement.

When compared with loosely coupled system, tightly coupled system is more accurate

and robust but it comes with a extra states to Kalman filter to estimate and needs

computationally extra space [2].
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Figure 4.3: Block diagram for tightly coupled integration

4.2.2.3 Ultra-Tight INS/GPS integration

The differences in this architecture is caused by deep integration. Specifically, the

architecture of the GPS is different by means of integration of tracing loop. Also the

information from INS is used as an integral part of GPS. Therefore the two systems

are dependent on each other. This architecture directly affects the internal GPS

hardware and complex to implement. The advantage of this system is the resistance

of jamming. Moreover under lower signal to noise ratio and less than four GPS

satellites this system works. The architecture of ultra-tight integration is shown in

Figure 4.4.

Figure 4.4: Block diagram for ultra-tight coupled integration
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4.2.3 System and Measurement Model for Kalman Filter

In this thesis loosely coupled integration technique will be used. Therefore the system

and measurement matrix are given according to loosely coupled structure.

System Model

Loosely coupled integration system system matrix can be written as,

δẋ = Fδx+Gw (4.64)

Compare with equation 4.38, notice that the noise terms are replaced with unit

variance white Gaussian noise w. All bias and white noise terms together with other

source of error terms are included in mathematical model of Kalman filter in section

6. Now for the Kalman filter procedure, white noise terms are showed with states of

Kalman filter. The F state matrix is same with equation 4.38. The White noise term

includes the followings[2].

G =
[
σΨ,1×3 σV,1×3 σP,1×3

]t
(4.65)

The extended form of the general state space equation is,
δΨ̇

δV̇

δṖ

 =


F11 F12 F13

F21 F22 F23

F31 F32 F33



δΨ

δV

δP

+


σΨ,3×1

σV,3×1

σP,3×1

w (4.66)

where the white noise of attitude error is σΨ,3×1 = [σφ σθ σψ]t, the white noise of

velocity vector is σV,3×1 = [σvn σve σvd ]t and finally the white noise of position

vector is σP,3×1 = [σL σl σh]
t

Measurement Model

The measurement model for Kalman filter is shown below. Because the heading is

also measured by magnetometer, as an observed state the ψ value is also added. In

matrix form the equation is,

δz = Hδx+ ν (4.67)

The measurement vector δz consists the differences between INS measurements and
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GPS/magnetometer measurements [2].

δz =



ψINS − ψMAG

vn,INS − vn,GPS
ve,INS − ve,GPS
vd,INS − vd,GPS
LINS − LGPS
lINS − lGPS
hINS − hGPS


(4.68)

In equation 4.51, The termH is the measurement matrix which relates observed states

with the system matrix states. The term ν is the measurement noise vector with a

covariance matrix R. The measurement matrix and noise are simply written as,

δz = H =



0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1




δΨ

δV

δP

+



νψ

νvn

νve

νvd

νL

νl

νh


(4.69)

To be used in Kalman filter equation the remaining important elements are covariance

matrices. The initial values of these matrices can be obtained with auto-covariance

least square method (ALS). The ALS method is given in section 4.1.4. To obtain

best result for covariance matrices tuning strategy can also be used. Firstly, the state

covariance matrix P is a diagonal matrix and its elements are variances of states.

P =



σ2
φ

σ2
θ

σ2
ψ

. . .

σ2
vn

σ2
ve

σ2
vd

. . . σ2
L

σ2
l

σ2
h



(4.70)

76



As for the measurement covariance matrix R, it consists of the variances of observed

states.

R =



σ2
ψ,meas 0 0 0 0 0 0

0 σ2
vn,meas 0 0 0 0 0

0 0 σ2
ve,meas 0 0 0 0

0 0 0 σ2
vd,meas

0 0 0

0 0 0 0 σ2
L,meas 0 0

0 0 0 0 0 σ2
l,meas 0

0 0 0 0 0 0 σ2
h,meas


(4.71)

In this thesis, to build extended Kalman filter (EKF) general procedure which is given

between equations 4.14 and 4.19 is applied to simulink model. In Kalman filter design

the important parameters are system and measurement covariance matrices. To get

an initial covariance matrices, auto-covariance least square method (ALS) is applied

to simulink model. The ALS method procedure is used between equations 4.23 and

4.38. In EKF, another crucial elements is the linearized system model. In INS/GPS

integration the linearized navigation error model is used and the linearized model is

given in equations between 4.39 and 4.63.
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CHAPTER 5

DESIGN OF ARTIFICIAL NEURAL NETWORK (ANN)

AUGMENTED KALMAN FILTER

5.1 Introduction

In this chapter, the neural network structure and its application to navigation area

will be discussed. In last twenty years, neural network shows its significance in vast

majority of research areas. For example in robotics for artificial intelligence

purposes, in pattern recognition for images, voices, handwriting, in control area to

design controllers with neural network, etc. In this thesis neural network

implementation to navigation systems will be presented. In the first part of this

chapter, neural network basis, perceptron concept and learning types and procedure

will be handled. In second part, the generalized neural network class, Multilayer

Perceptron (MLP) will be studied to solve complex problems. Also famous error

back propagation algorithm will be applied to MLPs to learn non-linear patterns.

Finally, the union of Kalman filter navigation systems with artificial neural network

and researches in this concept will be shown.

5.2 Neural Network Architecture and Learning Procedure

The idea behind the neural network is based on the working principle of human brain.

Before going into detail of artificial neural network, it will be wise talking about the

structure of human brain. Human brain has extremely complex structure to do non-

linear parallel computing. To accomplish these computations, neurons are used by
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central nervous system.

As in Figure 5.1, a neuron has a cell body which is called as soma. The signal to be

transmitted to other neuron cell is generated in soma. The transmission is through

the axon. The receiving signal part of the neuron is dendrites.[22]. A neuron has

capability of making connections with large number of neurons by using its synaptic

connections. At synaptic connections through chemical transmitters signal is

transferred to other related neurons. Taking neuron as reference, for artificial neuron

Figure 5.1: Typical neuron

network a model is proposed. Generally a neural network is a design to model the

brain performance for particular task. In Simon Haykin’s textbook, a definition for

neural network is given as;

A neural network is highly parallel distributed processor which has a natural

tendency for storing experienced knowledge and making it available for use

Therefore neural network resembles the brain in two ways[22];

• Knowledge is obtained from environment through learning process.

• Neurons connection strengths (synaptic weights in neural applications) are used

to store the knowledge.

In following sections, neural network configuration is studied with details. For the

further knowledge about neural networks, the reader can use reference [22].
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5.2.1 Neuron Models and Network Structures

The artificial neuron model has four important parts. These are shown in Figure 5.2.

The definitions of these parts are,

Synapses: They are used to symbolize the strength of neuron link. It is shown as ωkj .

The meaning of first subscript is the neuron which gives output yk. The second

subscript is the input part neuron xj . The value for weights can be positive or

negative.

Summation Point It is used to sum weighted input values at junction point. The bias

value is also added if the activation function input is increased or decreased.

Bias: External applied bias value is shown as bk. Bias is used to increase or decrease

the input of the activation function vk.

Activation Function: To limit the amplitude of the output signal of neuron in desired

range activations functions are used. Typically the interval is [0,1] or [-1,1].

Figure 5.2: Nonlinear neuron model.

Mathematically, the neuron model can be formalized as in below. The input signals

are x1, x2, ..., xm and synaptic weight values are ωk1, ωk2, ..., ωkm of neuron k.

uk =
m∑
j=1

ωkjxj (5.1)
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Here uk is the linear combiner output of the neuron k. Then the output yk can be

written as,

yk = φ(uk + bk) (5.2)

where bk is the bias value and φ(.) is the activation function. Also the summation of

uk + bk is called as induced local field or activation potential. The induced local field

is shown as vk. For the convenience if the bias term is included into equation 5.1, it

can be rewritten as,

vk =
m∑
j=0

ωkjxj (5.3)

and

yk = φ(vk) (5.4)

It can be thought as a new synapses added to summation term and its input value is 1

with weight ωk0 = bk.

Activation Function Types

In equation 5.2 the activation function is shown. The activation function gives the

output of the neuron in terms of induced local field. The types of activation function

in neuron design are listed below [22].

• Threshold Function: In this type activation function, the output takes 1 if

induced local field value is greater than or equal to 0. Otherwise the output

value of neuron takes 0 value. This type of functions are also called as Heaviside

Function. Shown in Figure 5.3.

φ(v) =

1 if vk ≥ 0

0 if vk < 0
(5.5)

• Piecewise-Linear Function: Piecewise-linear function can be written as in

equation 5.6. This type of function gives linear output in its linear region. This

linear region can be modified with a constant to give amplification in its output.

φ(v) =


1 if vk ≥ 0.5

v if − 0.5 < vk < 0.5

0 if vk ≤ −0.5

(5.6)
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Figure 5.3: Threshold function.

• Sigmoid Function: In neural network design mostly the sigmoid functions are

used. The reason is that sigmoid functions are differentiable functions. As an

example a sigmoid function is given in 5.7.

φ(v) =
1

1 + e−av
(5.7)

Notice that by changing the a value the slope characteristic function can be

changed. If slope approaches its limits at infinity, the function will be

continuous threshold function. In Figure 5.3, sigmoid function characteristic

can be observed.

In activation functions the bounds are given as [0,1]. However for the desired range

in neural network operations these values can be changes to [-1,1] in a same manner.

For sigmoid functions, hyperbolic tangent function can be used.
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Figure 5.4: Piecewise-linear function.

Figure 5.5: Sigmoid function.
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φ(v) = tanh(av) (5.8)

Hyperbolic tangent function is also differentiable. By changing the a value the slope

characteristic can be changed.

Figure 5.6: Hyperbolic tangent function.

Network Structures

There are three different types of network architectures in literature.

• Single-Layer Neural Networks: The simplest form of the neural network

structure is single layer neural network. It consists of input layer and output

layer. A illustrated in Figure 5.7, single layer refers to output layer not input

layer. Because all computations are realized on output layer.

• Multi-Layer Neural Networks: By adding a hidden layer to single layer

neural network architecture, multilayer neural networks can be obtained. The

hidden neurons make possible to recognize higher order classification among

the given input. One hidden layer neural network is shown in Figure 5.8. The

neural network is fully connected, in other words all nodes in one layer are
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Figure 5.7: Single layer of network.

connected to another layer nodes. If some of connections are missing then

system is called as partially connected.

Figure 5.8: Multilayer neural network with one hidden layer.

• Recurrent Neural Networks: The important characteristic of recurrent neural

network is feedback of its output layer to input layer. The recurrent neural

network can be single layer or multilayer. The example of recurrent neural

network with hidden layer is shown in Figure 5.9. The feedback increases the
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learning capability of neural network. The unit delay elements sustain this

non-linear feedback mechanism.

Figure 5.9: Recurrent Network with one hidden neuron.

5.2.2 Learning Rules and Paradigms

The crucial feature of neural network is the learning process with the help of

learning algorithms. A neural network learns about its environment by changing free

parameters of neurons which are synaptic weights and bias values. At each iteration

process of learning algorithms neural network adapts its environment.

Learning procedure follows these three steps:

• Simulation of neural network in desired environment.

• Adapt the synaptic weights and biases through changing environments

conditions.

• By using steady state weight parameters respond the environment inputs.

There are several learning algorithms for different network structures. Five basic
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learning algorithms are: error-correction learning, memory based learning,

Boltzmann learning, competitive learning, and Hebbian learning. In this study

mainly error-correction learning will be discussed. For the details of other

algorithms reference [22] can be used.

Error-Correction Learning

Error correction learning can be explained by using Figure 5.10. At each time step

n synaptic weights ω are updated. The output signal yk(n) is compared with desired

output value dk(n). The produced error signal ek(n) is used to update weights.

ek(n) = dk(n)− yk(n) (5.9)

By using the error signal, output signal can get closer value to desired output. This

Figure 5.10: Error-correction learning.

objective is realized by minimizing the instantaneous error energy cost function at

each step of iteration. The error cost function can be expressed as,

E(n) =
1

2
e2
k(n) (5.10)

By step by step weight adjustment, error cost function reaches it steady state value

and synaptic weights are stabilized. At this stage learning process must be ended.

The important question is how ωkj is determined? By using delta-rule weights can be

updated. According to delta-rule at iteration step n,

δωkj(n) = ηek(n)xj(n) (5.11)
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Therefore the adjustment δωkj(n) is proportional to learning rate η, error signal ek(n),

input signal xj(n) at weight branch ωkj . Same procedure is applied to other weights

branch of neuron in same manner. Finally the adjustment value is added to current

weight value for next iteration.

ωkj(n+ 1) = ωkj(n) + δωkj(n) (5.12)

The important parameter in equation 5.11 is η, learning rate parameter. By selecting

proper learning rate parameter the performance of network can be increased.

Learning Paradigms

There are two learning paradigms. The first one is Supervised Learning and the

second one is Unsupervised Learning.

1. Supervised Learning: Supervised learning is also known as learning with

teacher. Because during the learning process input-output relation is

introduced to system.

The error-correction learning is a supervised learning example. During the

supervised learning the error function or sum of error during training is the

cost function of free parameters of the network system. In other words, the

error cost function is a multidimensional function of synaptic weights. To find

the solution on this error surface, the minimum points -local minimum or

global minimum- must be detected. Thus in supervised learning the gradient of

the error surface must be traced to find the minimum point in the direction of

steepest descent and cost function can be minimized in its minimum location.

2. Unsupervised learning: In unsupervised learning there is no teacher to learn

the environment contrary to supervised learning. By measuring the reaction of

environment the free parameters are tuned. Therefore there is no target outputs

to learn. As an example the competitive learning can be given. The input

patterns are categorized in classes during learning process[22].
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5.2.3 Perceptrons and Optimization with Least Mean Square (LMS) Algorithm

In other sections the neuron model was summarized and learning algorithms were

studied. Now the simplest form of neural network, perceptron and numerical

minimization tools for error cost function will be discussed. Therefore weights can

be tuned to minimize error function in multi dimensional weight space.

Perceptron:

Perceptron is a neuron model with a non-linear signum function to classify the

linearly separable parameters in hyperspace. By training the perceptron, learning

algorithm converges to a surface boundary which is also a hyperplane. Of course if

the perceptron is wanted to work properly the inputs must be linearly separable. For

a single perceptron it is sufficient to identify two classes. However to classify more

pattern, the neuron number must be increased. For the simplicity single neuron

structure will be shown here.

For a single perceptron, the weights ω1, ω2, ..., ωm, the inputs x1, x2, ..., xm and fixed

bias b are indicated below in Figure 5.11. Then the perceptron formula will be written

Figure 5.11: Single perceptron.
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as,

v =
m∑
j=1

ωjxj + b (5.13)

As indicated before single perceptron can be used separate only two class. Let’s say

these classes L1 and L2. If the perceptron output is 1 then pattern is in L1 class. If

the output is -1 then pattern is classified in L2 class. To examine the behaviour of

single perceptron with error cost function, optimizations methods must be known.

The optimization techniques in here can be applied to neural network to update the

neuron’s weights. Therefore error cost function can be minimized. For the simplicity

perceptron operates in linear mode. However same principle can be applied to non-

linear activation functions as well.

Optimization Techniques

Linear operation neuron model gives induced local field as output. Therefore at time

n,

y(n) = v(n) =
m∑
k=1

ωk(n)xk(n) (5.14)

For the computation convenience, the matrix form can be written as,

y(n) = xt(n)ω(n) (5.15)

where

ω(n) = [ω1(n) ω2(n) ... ωm(n)]t

Now the output must be compared with the desired output d(n) and the error e(n) can

be obtained at time n,

e(n) = d(n)− y(n) (5.16)

Now the error cost function in equation 5.10 is critical. Let’s think about the

continuously differentiable E(ω) function for the unknown weight parameters. For

the optimal solution, the equation in equation 5.15 must be satisfied.

∇E(ω∗) = 0 (5.17)

where ω∗ is optimal solution. And gradient operator is,

∇E(ω) =

[
∂E
∂ω1

∂E
∂ω2

...
∂E
∂ωm

]t
(5.18)
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Staring with an initial condition ω(0), at each iteration it is expected that weight

values converge the optimum solution ω∗.

Steepest Descent Method: On the error surface if the direction opposite the gradient

vector is selected, at every iteration weight values converge to optimum solution.

Mathematically,

g = ∇E(ω) (5.19)

At each step n,

ω(n+ 1) = ω(n)− ηg(n) (5.20)

where η is the learning rate parameter and g(n) is the gradient vector at point ω(n).

Then correction term will be,

∆ω(n) = w(n+ 1)− ω(n)

= −ηg(n) (5.21)

Notice that the process is actually error-correction learning rule as described in

equation 5.11. To apply steepest descent algorithm, first order Taylor series

expansion should be applied to error cost function around ω(n) to approximate the

E(ω(n+ 1)).

E(ω(n+ 1)) ≈ E(ω(n)) + gt(n)∆ω(n) (5.22)

Then substitute equation 5.21 into equation 5.22.

E(ω(n+ 1)) ≈ E(ω(n))− ηgt(n)g(n)

≈ E(ω(n))− η ‖ g(n) ‖2 (5.23)

From one iteration to another according to equation 5.23 the error cost function will

decrease if positive η is selected. Before selecting the η value, the followings should

be considered.

• For small η, learning procedure will be slow and searching path on error surface

will be smooth.

• For large η values, the trajectory on the error surface will be oscillatory path.

• When η gets larger values after certain point, minimization process diverges.
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Least Mean Square Algorithm (LMS): If error cost function is selected as

instantaneous error function, least mean square algorithm can be applied.

E(ω) =
1

2
e2(n) (5.24)

Differentiate error cost function E(ω) with respect to ω and by using the equation

5.16, it can be shown that,
∂E(ω)

∂ω
= e(n)

∂e(n)

∂ω
(5.25)

Remember that the neurons should be linear neuron type.

e(n) = d(n)− xt(n)ω(n) (5.26)

Differentiate equation 5.26 with respect to ω,

∂e(n)

∂ω(n)
= −x(n) (5.27)

Combining both equation 5.25 and 5.27.

∂E(ω)

∂ω
= −x(n)e(n)

g(n) = −x(n)e(n) (5.28)

Finally put this expression into 5.20, LMS algorithm is obtained.

ω(n+ 1) = ω(n) + ηx(n)e(n) (5.29)

Initialization of the LMS algorithm can be made by setting zero values into weight

vector. The expansion of LMS algorithm will be used in multilayer perceptron

section. During the back propagation algorithm of the multilayer neural system,

LMS algorithm will be useful.

5.3 Multilayer Perceptron (MLP)

In previous section the basics of perceptron have been studied. Classification of

linearly separable classes is made by using single layer perceptron. However in

complex non-linear cases single layer perceptron is not sufficient. Therefore

multilayer perceptron (MLP) concept has been developed to solve complex problem

by using error back propagation algorithm. Noticeable characteristic of multilayer
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perceptron is that it consists of hidden layers for computational nodes besides input

and output layers. The input signals flow from input layer to output layer through

one or more hidden layers.

Basically back propagation algorithm is a generalized version of LMS algorithm. In

back propagation algorithm two signal flows should be considered. First signal flow

is the forward pass. During forward pass, all weights between connection of neurons

are fixed and input signals affect layers through these weights layer by layer. At output

layer, an output signal is produced as the reaction of neural network. Second flow is

backward pass. In this time, the difference between actual output and observed output

is subtracted. The obtained error signal is feed to the system in backward direction.

In that way, the synaptic weight are updated to minimize the error difference. Hence

the process is called back propagation algorithm.

In following sections, the multilayer connections and mathematics behind back

propagation algorithm will be studied. And some useful techniques will be discussed

to design multilayer perceptron.

5.3.1 Multilayer Perceptron Concept and Notation

Multilayer architecture is shown in Figure 5.8. The network in here is fully

connected and has one hidden neuron layer. The hidden layer number might be

increased according to complexity of the problem. There are three important

characteristics of multilayer perceptron to distinguish from single layer perceptron.

• Nonlinear activation function.

• One or more hidden layers.

• High degree of connectivity.

Among these characteristics, to accomplish the learning and extracting meaningful

information from inputs hidden layers have a crucial role. During multilayer process,

two types of signals are emerged.
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1. Function Signals: Function signals come to input layer first and propagate in

forward direction until the end of output layer. The function signals are also

called input signals. However the reason why they are called as function signal

is that for each neuron which the signal passes the signal is calculated as a

function of synaptic weights and the input to the related neuron. In Figure 5.12a

shows function signals.

2. Error Signals: At the output layer of network error signal is produced by

extracting output from desired output value. And error signal is feed backwards

layer by layer through network. These backward signals are called error signals,

shown in 5.12b.

(a) Function signals. (b) Error signals.

Figure 5.12: The direction of two signals:forward and backward propagation.

Before getting into mathematical aspect of back propagation algorithm, to ease with

the mathematical burden, notations through mathematical equations are listed below,

• i,j,k indices show different neurons in network. Neuron j lies right of neuron

i layer and neuron k lies right of neuron j layer. It is assumed that neuron j is

hidden neuron.

• n represents time step for each iteration.

• E(n) refers to instantaneous error function which is sum of error squares at

iteration n.
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• ej(n) shows the error signal at the output of neurons j at iteration n.

• dj(n) shows desired response for neuron j.

• yj(n) shows the function signal at the output of neuron j at iteration n.

• ωji(n) refers to synaptic weight connection from output of neuron i to input of

neuron j at iteration n. The correction for synaptic weight is shown as ∆ωji(n).

• vj(n) is induced local field of neuron j at time step n.

• φj(n) is activation function of neuron j.

• bj is the bias value of neuron j. It is also taken into account by a synapse weight

ωj0 = bj and fixed input is 1.

• xi(n) is the ith element of input vector.

• ok(n) is the overall output vector.

• η is the learning rate parameter.

• ml is the size in layer l of multilayer perceptron network where l = 0, 1, .., L

and L is the depth of network. For example, m0 is the input layer and m1 is the

first hidden layer and mL is the output layer.

5.3.2 Back Propagation Algorithm

In previous sections instantaneous energy function has been presented. Briefly, the

instantaneous energy function E(n) is obtained by summing the 1
2
e2
j(n) over all output

neurons in output layer. Therefore it can be written,

ej(n) = dj(n)− yj(n) (5.30)

E(n) =
1

2

∑
j∈C

e2
j(n) (5.31)

where C symbolizes the entire output neuron. The objective of learning process is

minimizing the error function by changing the weight parameters. To accomplish the

minimization similar method to LMS algorithm will be used. The weights of neural

network will be updated pattern-by-pattern base for one epoch in other words at the
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end of presentation of all training data, weights will be updated to theirs new value

for minimization.

In calculation of weight update process, there are two cases. First case is that neuron

j is in output layer. This case is simple because of the known desired output value.

Second case is that neuron j is in hidden layer. This case is little complicated than

output neuron case. Even though there is no direct contribution to error in hidden

layer, they share the responsibility for error in output layer.

Case 1: Neuron j is output node

Consider the neuron j in output layer, then its induced local field will be expressed as

in below,

vj(n) =
m∑
i=0

ωji(n)yi(n) (5.32)

where m is the total number of inputs.Notice that bias also included with ωj0 and

y0 = 1. Therefore the output yj(n) is,

yj(n) = φj(vj(n)) (5.33)

In a similar way with LMS algorithm the synaptic weight correction ∆ωji(n) is

proportional to ∂E(n)/∂ωji(n). To find ∂E(n)/∂ωji(n), chain rule can be utilized.

∂E(n)

∂ωji(n)
=
∂E(n)

∂ej(n)

∂ej(n)

∂yj(n)

∂yj(n)

∂vj(n)

∂vj(n)

∂ωji(n)
(5.34)

To calculate the equation 5.34, all partial values must be calculated. From equation

5.31,
∂E(n)

∂ej(n)
= ej(n) (5.35)

From equation 5.30, differentiating both sides,

∂ej(n)

∂yj(n)
= −1 (5.36)

From equation 5.33,
∂yj(n)

∂vj(n)
= φ

′

j(vj(n)) (5.37)

Finally from equation 5.32,
∂vj(n)

∂ωji(n)
= yi(n) (5.38)
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Combine all expressions and put into equation 5.34.

∂E(n)

∂ωji(n)
= −ej(n) φ

′

j(vj(n)) yi(n) (5.39)

Now the correction ∆ωji(n) can be expressed as,

∆ωji(n) = −η ∂E(n)

∂ωji(n)
(5.40)

where η is learning parameter of the back propagation algorithm. If equation 5.40 can

be rewritten,

∆ωji(n) = η δj(n) yi(n) (5.41)

where δj(n) is local gradient and defined by,

δj(n) = − ∂E(n)

∂vj(n)

= − ∂E(n)

∂ej(n)

∂ej(n)

∂yj(n)

∂yj(n)

∂vj(n)
(5.42)

= ej(n)φ
′

j(vj(n))

Case 2: Neuron j is hidden node

As shown in Figure 5.13, the problem in hidden layer neuron is that there is no desired

output value to compare with output of related hidden neuron. However to apply

the back propagation algorithm to hidden layer, the error signal from all connected

neuron to hidden neurons are taken to compute weight correction. In output neuron

local gradient has been shown. To apply local gradient to hidden neuron, it should be

rewritten as,

δj(n) = − ∂E(n)

∂yj(n)

∂yj(n)

∂vj(n)

= − ∂E(n)

∂yj(n)
φ

′

j(vj(n)) (5.43)

To calculate partial derivative of the error ∂E(n)/∂yj(n) from Figure 5.13, it can be

written,

E(n) =
1

2

∑
k∈C

e2
k(n) (5.44)

Now, differentiate the equation 5.44 with respect to yj(n). One important notation

should be taken into consideration. Contrary to case 1, j neuron is hidden neuron in
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Figure 5.13: Hidden neuron j is connected to output neuron k.

case 2.
∂E(n)

∂yj(n)
=
∑
k

ek(n)
∂ek(n)

∂yj(n)
(5.45)

By using the chain rule,

∂E(n)

∂yj(n)
=
∑
k

ek(n)
∂ek(n)

∂vk(n)

∂vk(n)

∂yj(n)
(5.46)

From figure the difference between desired output and output of neuron k is,

ek(n) = dk(n)− yk(n)

= dk(n)− φk(vk(n)) (5.47)

Therefore the partial derivative in equation 5.46 will be,

∂ek(n)

∂vk(n)
= −φ′k ′(vk(n)) (5.48)

For the second partial derivative in equation 5.46, induced local field of neuron k can

be used.

vk(n) =
m∑
j=0

ωkj(n)yj(n) (5.49)

where m is the total number of input to neuron k. Differentiating equation 5.49 with

respect to yj(n) gives,
∂vk(n)

∂yj(n)
= ωkj(n) (5.50)
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Now equation 5.46 can be rewritten as below,

∂E(n)

∂yj(n)
= −

∑
k

ek(n) φ′k
′(vk(n)) ωkj(n)

= −
∑
k

δk(n) ωkj(n) (5.51)

Finally, local gradient δj(n) can be found by using equation 5.51 in 5.43.

δj(n) = φ
′

j(vj(n))
∑
k

δk(n) ωkj(n) (5.52)

The summation part of the equation 5.52 is an important quantity for back propagation

algorithm in hidden layer. The first term δk(n) in summation shows the contribution

of information ek(n) which belongs to next hidden layer or output layer error term.

The second term ωkj(n) shows the contribution level of error knowledge that comes

from next layer neurons.

Generally, back propagation algorithm can be summarized as below,

∆ωji(n) = η δj(n) yi(n) (5.53)

To apply equation 5.53 two scenarios should be considered:

1. If back propagation algorithm is applied to output neuron, local gradient δj(n)

equals to product of φ′
j(vj(n)) and ej(n).

2. If back propagation algorithm is applied to hidden neuron, δj(n) equals to

product of φ′
j(vj(n)) and weighted sum of δk(n) which is computed for next

hidden layer or output layer.

This back propagation of error is computed through each layer until all synaptic

weights are updated. Also input pattern is fixed during each forward and backward

pass operation.

In backward operation the computation of derivative of activation function is

required. For the derivative computation, activation function must be differentiable.

Therefore mostly sigmoidal functions are used as activation functions. Two types of

sigmoidal functions are given below. These are logistic functions and hyperbolic

tangent function.
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Logistic Functions:

The form of logistic functions is,

φj(vj(n)) =
1

1 + e−avj(n)
a > 0 and −∞ < vj(n) <∞ (5.54)

The range of output of logistic function is 0 ≤ yj ≤ 1. If logistic function is

differentiated,

φ
′

j(vj(n)) =
ae−avj(n)

(1 + e−avj(n))2
(5.55)

By manipulating equation 5.55, it can be written as

φ
′

j(vj(n)) = ayj(n)(1− yj(n)) (5.56)

If neuron j is located at the output layer, local gradient is

δj(n) = ej(n)φ
′

j(vj(n))

= a(dj(n)− yj(n))yj(n)(1− yj(n)) (5.57)

If neuron j is in hidden layer, then local gradient will be,

δj(n) = φ
′

j(vj(n))
∑
k

δk(n)ωkj(n)

= ayj(n)(1− yj(n))
∑
k

δk(n)ωkj(n) (5.58)

Hyperbolic Tangent Functions:

The form of hyperbolic tangent function is,

φj(vj(n)) = a tanh(bvj(n)) a, b > 0 (5.59)

The derivative of the hyperbolic tangent function with respect to vj(n) is,

φ
′

j(vj(n)) = ab sech2(bvj(n))

= ab(1− tanh2(bvj(n)))

=
b

a
(a− yj(n))(a+ yj(n)) (5.60)

If hyperbolic activation function is in output layer, local gradient is,

δj(n) = ej(n)φ
′

j(vj(n))

=
b

a
(dj(n)− yj(n))(a− yj(n))(a+ yj(n)) (5.61)
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If hyperbolic activation function is in hidden neuron, then local gradient is,

δj(n) = φ
′

j(vj(n))
∑
k

δk(n)ωkj(n)

=
b

a
(a− yj(n))(a+ yj(n))

∑
k

δk(n)ωkj(n) (5.62)

5.3.3 Sequential and Batch Learning

In learning process, training set presentation to multilayer perceptron is an important

feature to accomplish successful learning. The learning process is realized in each

epoch. Epoch is the one complete presentation of training set. Until all synaptic

weights reach a certain value and average error function takes its minimum value the

learning process continues epoch by epoch base. One good recommendation about

presentation of training set is randomized presentation of set. This randomization

makes the weight search stochastic and avoids the limit cycles during learning [22].

For a selected training set, there are two ways of back propagation algorithm to

progress.

1. Sequential Mode: This process also is called as online mode. After presenting

each training example, weights are updated. For example, among N training

examples for an epoch, first training example is given to back propagation

algorithm. After first forward and backward pass the synaptic weights are

updated. Then second training example given to system in a same manner.

Until last training example in epoch process is repeated.

2. Batch Mode: Different from sequential mode, weight update is fulfilled after

presentation of all training example in other word after one epoch. Also the cost

function is defined as,

Eav =
1

2N

N∑
n=1

∑
j∈C

ej(n)2 (5.63)

where inner summation is for all output layer error and outer summation is for

entire training set. According to Eav, the weight update will be

∆ωji = −η∂Eav
∂ωji

(5.64)
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∆ωji = − η

N

N∑
n=1

ej(n)
∂ej(n)

∂ωji
(5.65)

In batch mode, it should be taken into consideration that weight adjustment

∆ωji is applied after entire training set has been submitted.

Among these presentation methods, sequential method is preferred. Because

sequential mode is easy to implement and has effective solutions for complex

problems. Also sequential mode needs less local storage because of on-line

operation advantage. In case of data set including several copies of training example,

sequential mode provides good result with respect to batch learning. However for

accurate estimate of gradient vector batch mode learning can be used.

5.3.4 Stopping of Learning Process

In literature there is no special stopping criteria for back propagation algorithm.

However by using local minimum or global minimum of error surface, some clues

about stopping criteria can be used [22]. Firstly, gradient vector can be utilized to

stop the learning if gradient vector g(ω) of the error surface is zero with respect to

weight vector ω. However this criteria needs the computation of gradient vector

g(ω) of error surface. Second criteria is using the average error cost function Eav. In

this case back propagation algorithm is considered to have minimum value when

rate of change in average error function per epoch is sufficiently small. The

disadvantage of this criteria is that the termination of learning process may occur in

early stages such that learning may not accomplish properly.

Another useful performance criteria is generalization performance. The learning

process should be stopped after generalization criteria is reached. More detailed

explanation can be found in reference [22] for generalization performance.

5.3.5 Techniques for Performance of Back Propagation Algorithm

There are some methods to improve back propagation algorithm performance. In

following paragraphs these methods are listed.
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1. Sequential and bath mode: Compared with bath mode sequential mode is

much faster and sequential mode is easy to implement. Especially for complex,

large and redundant training samples sequential mode should be preferred.

2. Randomizing the information: To make learning process successful

information content should be larger for back propagation algorithm. If

training set has selected such that training error will be larger, back

propagation algorithm performance will be higher. In sequential mode the best

way to achieve this is randomization of training data set at each epoch.

3. Activation Function: When selected sigmoid activation function for neural

network is selected, mostly antisymmetric functions are preferred instead of

non-symmetric functions. The reason is that with antisymmetric activation

functions back propagation algorithm shows faster learning process.

The antisymmetric conditions is,

φ(−v) = −φ(v) (5.66)

As an example hyperbolic tangent function can be given.

φ(v) = a tanh(bv) (5.67)

4. Target Values: The target values dj should be chosen within the range of

activation function. Otherwise the weight tends to go infinity during back

propagation algorithm. Learning process will be slow and neurons will

saturate.

5. Normalizing input: Before training process is realized, training data set

should have a mean value which is close to zero. Also training examples

should be uncorrelated and their covariances should approximately equal.

Therefore synaptic weights in neural network learn training set at the same

speed.

6. Initialization: To initialize the synaptic weights both larger and small

initialization values should be avoided. For larger initial values, neurons will

be saturated and learning process will be slow because of that local gradient

takes small values to reach local minimum. For small values back propagation
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algorithm will operate around origin and because of that origin is a saddle

point on error surface learning process will be slow. Therefore the suitable

initialization values are between these two regions.

7. Learning rates: Smaller learning rate η makes smaller changes in searching

synaptic weights to minimize error cost function. Therefore slow learning will

occur during training. On the other hand, if learning rate is selected high,

searching of minimal weights values will be oscillatory and learning process

becomes unstable. Therefore large and small learning rate parameters should

be avoided.

Moreover in multilayer perceptron design, the last layer towards to output layer

should take smaller learning rate parameter than front neuron layers. The reason

for that at output layer local gradient takes larger values than front end of neural

network.

5.4 Artificial Neural Network Augmented Kalman Filter

As mentioned in previous sections, INS/GPS integration system with other sensors

such as barometers, magnetometers, etc. are highly popular in navigation systems.

To fuse these sensors mostly Kalman filter is utilized. However INS/GPS integration

systems show great error in determination of positions during GPS outages. Also

Kalman filter needs accurate stochastic model of navigation system and

measurement model of all sensors used in sensor fusion. Because of that

complications in navigation system, studies focus on Artificial Intelligence systems

to find feasible solution.[23]

There are several AI based navigation studies in literature which use artificial neural

networks. Kaygısız et al.[24] introduced a position estimation ANN based GPS/INS

systems. ANN estimates the position variables based on GPS/INS system behaviour.

However velocity and attitude variables was not included into ANN estimation

variables. Noureldin et al.[25] introduced radial basis function (RBF) based neural

network to estimate position in INS/GPS system during GPS signal lost. The method

also uses wavelet analysis to compare INS and GPS outputs at different resolution
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levels before ANN training. Naser El-Sheimy et al.[26] introduced two ANN based

INS/DGPS integration architectures by using multilayer perceptron with gradient

based learning algorithm. First architecture was used for position update (PUA) and

the second one is position and velocity update architecture (PVUA). Semeniuk et

al.[27] proposed RBF neural network to achieve position accuracy during GPS

outages. Position and velocity knowledge were used as input to neural network. At

the output the position accuracy was determined. The modelled navigation system

operates as a Kalman filter during GPS outages. Chiang et al.[28] introduced

cascade-correlation networks (CCN) for low-cost MEMS inertial sensor with GPS

navigation system. Also CCN system structure was compared with multilayer

perceptron neural network (MLPNN) as an alternative scheme. According to results

Kalman filter showed better positioning accuracy during 5 to 10 s of GPS signal

outage period. However because of the noisy measurement accuracy was lost in

time. By using the CCN system this accuracy lost was recovered. And both MLNN

and CCN system showed similar performance in same scenario. Chanthalansy [29]

showed 2D positioning solution for low-cost INS/GPS systems with hybrid AI/KF

tightly coupled architecture. The method proposed that augmented Kalman filter

with RBFNN to improve integration process of navigation algorithm when GPS

signal was lost. According to results the performance of hybrid system is proved to

be more effective in reducing position errors during 60 seconds GPS outages. A.

Noureldin, A. El-Shafie and M. Bayoumi [30] introduced new method for AI based

INS/GPS structure. According to this study, all ANN based navigation systems are

based on INS error at a certain time to train neural network and past values of INS

error values were not considered. Therefore in this study input-delay neural network

was proposed to model both INS position and velocity errors based on current and

some past values of INS position and velocity samples. This study showed that

proposed method is more efficient in long GPS outages. Malleswaran et al. [31]

compares higher order neural networks (HONNs) with feed forward neural networks

(FFNNs). The study showed that the performance of HONNs provides satisfactory

results during GPS signal lost with respect to FFNNs. Another interesting study in

this field is Zhang et al. [23]. In this research INS/GPS/magnetometer sensor fusion

was used. As for intelligence navigation neural network structure with wavelet

de-noising technology was utilized. To prevent INS system degradation during GPS
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outages feedforward neural network was used to sustain position and velocity errors

to Kalman filter. With wavelet multi resolution analysis noise was removed from

training signal and neural network approximation was improved. Chen et al. [32]

introduced strong tracking Kalman filter (STKF) with wavelet neural network

(WNN) for INS error compensation during GPS outages. When GPS signal is

blocked, WNN/STKF algorithm eliminates the INS error and position estimation

will be provided by using wavelet neural network.

These are some interesting and enlightening researches in intelligence navigation

area. Within the light of this perspective, in this thesis multilayer perceptron neural

network structure (MLPNN) with back propagation algorithm was used to improve

both position and velocity error estimation when GPS was blocked. The detailed

explanation of system structure was given in following section.

5.4.1 Multilayer Perceptron Neural Network with Kalman Filter in INS/GPS

Navigation

In this thesis to compensate the error growing during GPS outages of

INS/GPS/magnetometer sensor fusion system, multilayer perceptron neural network

(MLPNN) was chosen. The reason why MLPNN was used is that MLPNN is easy to

implement with back propagation algorithm. Also on-line learning procedure was

used in back propagation algorithm because of the computation speed and needing

less memory storage.

The INS/GPS/magnetometer navigation with MLPNN system structure is given in

Figure 5.14. The mathematical model of accelerometer, gyroscope, GPS and

magnetometer are based on the equations in chapter 3. INS system provides attitude,

velocity and position information. Also GPS provides velocity and positions

information and magnetometer provides heading angle. All collected informations

are given to Kalman filter. Finally obtained state errors from Kalman filter are feed

into INS system to correct heading, velocity and position values. When GPS is

functional, NN will be in training stage. All collected velocity and position data are

given as input to the NN system and corresponding velocity and position error

values are given as desired output to the NN system. NN is trained with collected
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data. The mathematical relation between each position and velocity and position and

velocity error can be shown as below.

δVn = fVn(Vn, ωji, ωkj) (5.68)

δVe = fVe(Ve, ωji, ωkj) (5.69)

δVd = fVd(Vd, ωji, ωkj) (5.70)

δL = fL(L, ωji, ωkj) (5.71)

δl = fl(l, ωji, ωkj) (5.72)

δh = fh(h, ωji, ωkj) (5.73)

Where ωji and ωkj symbolize that the input layer and hidden layer weights

respectively. Therefore totally six MLPNN structure are constructed to learn error

characteristics of INS/GPS navigation system and update the MLPNN weights

during GPS online.

As shown in Figure 5.15, when GPS signal is lost, NN is used instead of GPS model.

In this way velocity and position error parameters are given to Kalman filter to

generate state error values. Therefore the deviation of velocity and position

estimation is eliminated.

Figure 5.14: Neural network training when GPS signal is available
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Figure 5.15: Neural network during GPS outages

The Matlab simulink scheme of the system model is given in appendix C. For further

detailed explanation of the simulink structure and mathematical model parameters of

the system refer to chapter 6.

In this thesis, for artificial neural network application multilayer perceptron neural

network (MLPNN) is selected because of its esay of use and computationally its

convenience for online learning. For each north, east and down velocity and each

latitude, longitude and height position parameters MLPNN structure with one

hidden layer is constituted. The important algorithm in MLPNN is back propagation

algorithm and in simulink part the equations between 5.30 and 5.53 are used for back

propagation learning algorithm. As for the sigmoid function in both layer tangent

hyperbolic function given in 5.8 is selected because of its non-linear characteristic.

Also MLPNN is applied to simulink model with sequential mode because the

computational performance is high for online application in sequential learning.
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CHAPTER 6

SIMULINK MODEL AND TEST RESULTS

6.1 Introduction

In this chapter, the detailed explanation of simulink architecture which consists of

sensor models, mechanization algorithm, Kalman filter algorithm and neural

network model will be given. Firstly the role of each subsystems in simulink model

will be discussed. To analyse the Kalman filter performance two path results which

are obtained from TAI helicopter simulator will be shown. The first path is simple

circular path and the second path is relatively a complex one when compared the

former. Secondly, instead of the simulator flight data, land vehicle test data and

quadrocopter flight data are feed to the system separately. Both land path and flight

path data from its accelerometer, gyroscope, magnetometer and GPS were collected

and tested on simulink model. In this case in addition to navigation model neural

network structure is also added. For certain time intervals the GPS signal is jammed

and the neural network performance results are compared with the GPS signal lost

case without neural network.

6.2 Simulink Model Test with Helicopter Simulator Flight Data

The navigation model mainly consists of 6 subsystems. These are,

• Accelerometer model

• Gyroscope model
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• Magnetometer model

• GPS model

• Navigation mechanization algorithm

• Kalman filter algorithm

The brief explanation of these subsystems are given below.

Accelerometer Model:

The mathematical representation of an accelerometer error model was given in

equation 3.2 in chapter 3. Equation 3.2 is applied to accelerometer model which is

shown in Figure 6.1a. The input parameters of the accelerometer model are the

helicopter body axis acceleration values without noise. By adding the error sources,

acceleration values with noise are obtained in each body axis.Accelerometer error

values given in Table 6.1.[1].

(a) Accelerometer simulink model (b) Gyroscope simulink model
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Table 6.1: Accelerometer error sources

Error source 1σ values

Accelerometer fixed biases

Bax, Bay, Baz 10 milli-g

Accelerometer scale factors

Sax, Say, Saz 0.3 %

Accelerometer cross-coupling

MAxz, MAxy, MAyz 0.1 %

Accelerometer white noise

ωA 0.01 g

Gyroscope Model:

The mathematical error characteristic of gyroscope was given in equation 3.6 in

chapter 3. The equation 3.6 is applied to gyroscope model to obtain error values. The

input parameters of gyroscope are body angular rates and acceleration values of

helicopter simulator. Acceleration values are also included in gyroscope model to

simulate coupling effect. For output values body axis angular rates with noise are

extracted. The model figure is given in Figure 6.1b. Gyroscope error sources are

given in Table 6.2.[1].

Magnetometer Model:

Magnetometer model gives the magnetic vector components in each body axis

according to coordinate values on Earth. To obtain these magnetic vector values

magnetometer models needs World Magnetic Model(WMM). World magnetic model

gives the total magnetic intensity value of given location with inclination ad

declination values. By giving these values as input to magnetometer model with

transformation matrix, magnetometer model gives magnetic vector values in body

axis. The mathematical calculation of magnetic vector in body axis was given in

3.76. The magnetometer model representation is given in Figure 6.2. After obtaining

magnetic vector, by using equation 3.78 heading angle is obtained.
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Table 6.2: Gyroscope error sources

Error source 1σ values

Gyroscope fixed biases

Bgx, Bgy, Bgz 50 ◦/h

Gyroscope scale factors

Sgx, Sgy, Sgz 0.05 %

Gyroscope cross-coupling

Mgxz, Mgxy, Mgyz 0.1 %

Gyroscope g-dependent bias

Bgxx, Bgxz, Bgyx, Bgyz, Bgzx, Bgzz 5 ◦/h/g

Gyroscope anisoelastic bias

Baxx, Bayx, Bazx 0.5 ◦/h/g2

Gyroscope white noise

ωG 0.004 ◦/s

Figure 6.2: World magnetic model and magnetometer simulink model
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GPS Model:

GPS model simulates the GPS satellite dynamics. Based on satellite pseudorange

and pseudorange rate calculation receiver position and velocity values in NED frame

are computed by using least square estimation technique. GPS model includes the

following subsystems,

1. Satellite dynamics block:

In this block the equations are obtained from section 3.4.4. Equations between

3.31 and 3.33 are for position of satellite and equations between 3.42 and 3.44

are for satellite velocity calculations.

2. Satellite true range computation block:

To determine range between receiver and each satellite, equation 3.46 is used.

3. Satellite visibility calculation block:

The visibility calculation is based on given direct line of sight angle. Within

this angle satellite is counted as visible.

4. Pseudorange and pseudorange rate calculation block:

Pseudorange and pseudorange rate calculations are given in section 3.4.5.

Pseudo range and range rate are given in equation 3.53 and 3.63 respectively.

5. Receiver position and velocity computation block:

For receiver position and velocity estimation, equation 3.65 is used.

6. Dilution of precision computation block (GDOP,HDOP,VDOP and TDOP):

The dilution of precision parameters calculation is given in equation 3.75 for

this block.

GPS model receives latitude, longitude, altitude and NED velocity values as input

from simulator. By converting input values into ECEF coordinates and adding the

satellite dynamics and white noise, receiver positions (Latitude,longitude,altitude)

and velocities (NED velocity components) are calculated as output. The simulink

model figure of GPS is given in Figure 6.3.
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Figure 6.3: GPS simulink model

Navigation Mechanization Algorithm:

Navigation block computes NED velocities, latitude, longitude and altitude

positions, attitude parameters and transformation matrix from body frame to NED

frame by using accelerometer and gyroscope output values. Navigation block

includes following subsystem,

1. WGS-84 Earth model block:

For this block Earth error shape model given in Table 2.1. Equations between

2.63 and 2.65 are used.

2. Gravity model block:

For gravity model section 2.5.1 can be used. The equations 2.60 and 2.61 are

utilized.

3. Attitude computation block:

Attitude computation equations for this block are given in section 2.6.1.

Equations between 2.66 and 2.81 are applied to this block. This equation set is

a recursive algorithm. Therefore it must be updated with each gyroscope

readings in time.
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4. Orthogonalization and normalization block:

To preserve the orthogonality property the equations between 2.82 and 2.84 are

used in this block.

5. Velocity computation block:

This block consists of the acceleration terms. The equation 2.49 is used for this

block.

6. Position computation block:

Position calculation in latitude, longitude and height is given between equation

2.57 and 2.59 for this block.

Model representation is given in Figure 6.4.

Figure 6.4: Navigation mechanization algorithm simulink subsystem block

Kalman Filter Algorithm:

Kalman filter is used to estimate error values of observed error states. In Kalman

filter algorithm there are two important steps, prediction and update. In prediction

linearized matrix model of non-linear navigation equations is used to predict error
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values in time. When observed error state vector is come to Kalman filter, update

procedure estimates the error values based on observation. The detailed explanation

of Kalman procedure was given in chapter 4. After estimated error states are found,

Figure 6.5: Kalman filter algorithm simulink subsystem block

heading, NED velocity and position values are corrected with this error vector.

Kalman filter simulink subsytem model is represented in Figure 6.5.

Total simulink model figure with all subsystems (with sensor models and Kalman

filter) is given in Figure C.2 in appendix C.

Now as indicated before two helicopter simulator test have been realized to verify

the navigation and the Kalman filter algorithm. During these helicopter simulation

test TAI designed utility type helicopter mathematical model is used. In simulator

environment two different paths were obtained.These two test results are given under

two parts,

• First one of these paths is called as Pirouette Manoeuvre according to ADS-

33E-PRF helicopter handling qualities specifications. This path is obtained by

rotating helicopter around a circle path keeping the nose of the helicopter at the

center of the circle. In Figure 6.6 the pirouette manoeuvre can be seen. After

118



that simulator test results and simulink navigation model test results have been

compared.

Figure 6.6: Course for pirouette manoeuvre

• As in first test the similar procedure has been followed. However different from

the first test free flight has been chosen for test. At the end of test when it is

compared to former a more complex trajectory was obtained. The simulator

and simulink test results have been compared.

6.2.1 Simulator Circular Flight Path Test Results

In following figures, the circular path results are given. These figures are covered the

srandalone INS solution and EKF solutions on circular trajectory. for simulation

purposes the accelerometer and gyroscope true values are sum up with error models

results coming from accelerometer and gyroscope error models. Therefore the raw

sensor readings are obtained. As for the results figures 6.7 and 6.8 show the

accelerations and body angular rates in body frame. Figures between 6.9 and 6.13

show the standalone INS solutions. Figures between 6.14 and 6.18 show the INS

solution with EKF. These figures include velocity, position, attitude and

latitude-longitude and three dimensional trajectory observations respectively.
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Figure 6.7: Three axis acceleration results for circle trajectory

Figure 6.8: Three axis body angular rate results for circle trajectory
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Figure 6.9: Standalone INS velocity results for circle trajectory

Figure 6.10: Standalone INS position results for circle trajectory
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Figure 6.11: Standalone INS attitude results for circle trajectory

Figure 6.12: Standalone INS latitude and longitude for circle trajectory
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Figure 6.13: Standalone INS 3D flight for circle trajectory

Figure 6.14: EKF velocity results for circle trajectory
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Figure 6.15: EKF position results for circle trajectory

Figure 6.16: EKF attitude results for circle trajectory
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Figure 6.17: EKF latitude and longitude for circle trajectory

Figure 6.18: EKF 3D flight for circle trajectory
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As it can be seen from the figures between 6.9 and 6.13, without EKF the INS

solutions diverge because of the accumulation of the errors. Especially in altitude the

divergence characteristic can be seen clearly. And in Figure 6.12 latitude and

longitude are moving away from the reference solution. Therefore integration of

Kalman filter is necessary with GPS velocity and position information. When EKF

solutions are examined,it can be seen that position values are close to reference. The

figures between 6.14 and 6.18 shows EKF estimation performance.

Moreover the estimation error values of EKF for velocities, positions and attitudes

are given between figure 6.19 and 6.21.

Figure 6.19: EKF velocity estimation error between ±1σ bound for circle trajectory
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Figure 6.20: EKF position estimation error between ±1σ bound for circle trajectory

Figure 6.21: EKF attitude estimation error between ±1σ bound for circle trajectory
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Table 6.3: INS/GPS model RMSE results for circular trajectory

Positions Latitude [deg] Longitude [deg] Altitude [m]

RMSE values 1.2493e-05 6.5388e-06 0.6992

In Table 6.3, RMSE result between INS/GPS simulink model and reference data from

TAI helicopter simulator is given for latitude, longitude and height. As it can be

shown in table, the results are almost same. Therefore it can be said that Kalman

filter correctly estimates the trajectory.

6.2.2 Simulator Complex Flight Path Test Results

In this analysis the same navigation structure is tested with different and more

complex trajectory data than previous section. Figures 6.22 and 6.23 show the

accelerations and body angular rates in body frame. Figures between 6.24 and 6.28

show the standalone INS solutions. Figures between 6.29 and 6.33 show the INS

solution with EKF. These figures include velocity, position, attitude and

latitude-longitude and three dimensional trajectory observations respectively.

Figure 6.22: Three axis acceleration results for complex trajectory
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Figure 6.23: Three axis body angular rate results for complex trajectory

Figure 6.24: Standalone INS velocity results for complex trajectory
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Figure 6.25: Standalone INS position results for complex trajectory

Figure 6.26: Standalone INS attitude results for complex trajectory
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Figure 6.27: Standalone INS latitude and longitude for complex trajectory

Figure 6.28: Standalone INS 3D flight for complex trajectory
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Figure 6.29: EKF velocity results for complex trajectory

Figure 6.30: EKF position results for complex trajectory
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Figure 6.31: EKF attitude results for complex trajectory

Figure 6.32: EKF latitude and longitude for complex trajectory
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Figure 6.33: EKF 3D flight for complex trajectory

Again EKF results are clearly better than standalone INS solution. When the Figure

6.28 and 6.33 are compared, EKF performance can be seen easily. Especially the

improvement in north, east, down velocities and latitude, longitude and height values

are sustained with EKF integration. Without EKF accumulation of inserted error

values causes low performance in navigation solutions. According to these results

integration of INS and GPS with EKF is essential to obtain better navigation

solutions. To get more insight about the error estimation, the estimation results are

shared between figures 6.34 and 6.36.

Table 6.4: INS/GPS model RMSE results for complex trajectory

Positions Latitude [deg] Longitude [deg] Altitude [m]

RMSE values 2.3060e-05 2.7733e-05 1.0951

In Table 6.4, RMSE results for complex trajectory is given. As in circular trajectory

case, the INS/GPS models gives similar results with TAI helicopter simulator data.
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Figure 6.34: EKF velocity estimation error between ±1σ bound for complex trajectory

Figure 6.35: EKF position estimation error between ±1σ bound for complex trajectory
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Figure 6.36: EKF attitude estimation error between ±1σ bound for complex trajectory

6.3 Simulink Model Test with Experimental Land Vehicle Data and

Quadrocopter Flight Data

In this section, the simulink navigation model will be tested with experimental field

data. All navigation and Kalman filter structures are used as in previous chapter.

However in this time the sensor values come from the sensor modules on land

vehicle and quadcopter. In following sections, firstly hardware structure and the

quadcopter model will be presented. After that Multilayer perceptron neural network

(MLPNN) model and its usage in navigation model will be given. Finally the

MLPNN performance results will be shown by comparing without MLPNN cases

for both land test and quadcopter test respectively.

6.3.1 Hardware Structure

In simulator tests the INS model has been tested with sensor models. To simulate

the INS system with real sensor data, quadcopter platform has been utilized. The
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quadcopter platform can be seen in Figure 6.85. In this figure quadcopter plotform,

quadcopter controller and the interface program Mission Planner on PC can be seen.

Figure 6.37: Quadcopter, controller and mission planner program

The hardware on quadcopter can be listed as below. The detailed information about

autopilot and GPS are given in appendix B.

1. RCtimer 360KV brushless motor

2. Pixhawk autopilot with custom software

3. Neo M8N gps receiver with 3 axis compass

4. Laserlight2 Laser range finder (40m)

5. Raspberry Pi2 with camera module

6. Wireless ethernet module

7. 3 axis gimbal with GoPro4

8. 2x 4S5500mAh batteries

9. 600mW 5.8Ghz video transmitter

10. 500mW 2.4Ghz Rf Transceiver

The hardware structure on quadcopter platform can be seen in Figure 6.38.

Accelerometer, gyroscope and magnetometer are included in Pixhawk autopilot

module. Detailed information about sensors can be seen in appendix B.
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Figure 6.38: Quadcopter hardware stucture

6.3.2 Simulink Model Structure with ANN

In circular and complicated trajectory results the navigation algorithm performance

with Kalman filter implementation has been tested. In this section in addition to

navigation and Kalman algorithm, artificial neural network implementation is also

tested with experimental data. The simulink model with multi layer perceptron

neural network (MLPNN) can be seen in appendix C in Figure C.3.

As indicated before for neural network structure multi layer perceptron (MLPNN)

has been chosen. The MLPNN includes two section. These are learning section and

prediction section. In learning section 25 second non-sliding window data is

buffered. The data includes V − δV and P − δP navigation solutions during GPS

online. For each V − δV and P − δP section approximately 30 neurons are used in

every hidden layer. As for learning rate, small and large learning rate parameters are

avoided. Because small learning rates make learning process slow and large learning
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rates make the convergence harder even impossible during learning session. When

GPS signal is interrupted prediction section comes online and predicts the error

states of Kalman filter for the given velocity and altitude values. The MLPNN

simulink model is given in appendix C in Figure C.3. Also training and prediction

sections of neural network in time line are shown in Figure 6.39.

Figure 6.39: MLPNN training and prediction sequences in time line

6.3.3 Experimental Land Vehicle Test Results

Experimental land vehicle test is realized to test Pixhawk and GPS receiver

performance on road test. To realize this experiment Pixhawk and GPS receiver are

fixed to car as seen form Figure 6.40.

Figure 6.40: Land vehicle test setup
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Two important test are covered in road test. Firstly the simulink EKF model is

compared with Pixhawk reference data. The results are given in following sections.

Secondly, MLPNN performance is tested for GPS signal lost. The road test was

fulfilled in Middle East Technical University.

Experimental Road Test Results with EKF

The experimental data set results are compared with the simulink navigation

mechanization and extended Kalman filter algorithm. The figures include

acceleration, angular rates, velocity, position and attitude results respectively. Also

2D latitude and longitude trajectory is shown on Google map. Figures 6.41 and 6.42

show the raw acceleration and body rates from accelerometer and gyroscope.

Figures between 6.43 and 6.47 show the velocity, position and attitude EKF results.

Latitude and longitude trajectory result and 3D trajectory solution are given in

Figure 6.48 and 6.50. Also latitude and longitude trajectory on Google map can be

shown in Figure 6.49. Estimation error results for velocity, position and attitude

estimation are given in figures between 6.51 and 6.53. The RMSE results for road

test is given in Table 6.5.

Figure 6.41: Three axis acceleration results for road test data
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Figure 6.42: Three axis body angular rate results for road test data

Figure 6.43: EKF velocity results for road test data
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Figure 6.44: EKF position results for road test data

Figure 6.45: Reference, simulink EKF model and GPS latitude data
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Figure 6.46: Reference, simulink EKF model and GPS longitude data

Figure 6.47: EKF attitude results for road test data
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Figure 6.48: EKF latitude and longitude for road test data

Figure 6.49: EKF latitude and longitude for road test data on google map
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Figure 6.50: EKF 3D flight for road test data

Figure 6.51: EKF velocity estimation error between ±1σ bound for road test data
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Figure 6.52: EKF position estimation error between ±1σ bound for road test data

Figure 6.53: EKF attitude estimation error between ±1σ bound for road test data
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Table 6.5: INS/GPS model RMSE results for road test data

Positions Latitude [deg] Longitude [deg] Altitude [m]

RMSE values 1.0988e-04 1.0227e-04 1.1006

Experimental Road Test Results with MLPNN

Now the MLPNN performance will be shown. For MLPNN test, artificially the GPS

signal is blocked between 150-200 seconds of road test. During this time interval

EKF performance without MLPNN is compared with EKF/MLPNN model when

GPS signal is lost. Moreover, the root mean square errors are compared for latitude,

longitude and altitude to show the improvement in case of MLPNN. Figures between

6.54 and 6.56 show the velocity, position and attitude EKF results without MLPNN

when GPS signal is lost. Also 2D and 3D trajectory results of EKF without MLPNN

are given in figures 6.57 and 6.58. The results with MLPNN are given between

figures 6.59 and 6.61. 2D and 3D trajectory results of EKF with MLPNN are given

in figures 6.62 and 6.63.

Figure 6.54: EKF velocity results for GPS outage between 150-200
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Figure 6.55: EKF position results for GPS outage between 150-200

Figure 6.56: EKF attitude results for GPS outage between 150-200
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Figure 6.57: EKF latitude and longitude for GPS outage between 150-200

Figure 6.58: EKF 3D flight for GPS outage between 150-200

149



Figure 6.59: EKF velocity results for MLPNN between 150-200

Figure 6.60: EKF position results for MLPNN between 150-200

150



Figure 6.61: EKF attitude results for MLPNN between 150-200

Figure 6.62: EKF latitude and longitude for MLPNN between 150-200
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Figure 6.63: EKF 3D flight for MLPNN between 150-200

Figure 6.64: EKF velocity estimation error between ±1σ bound for MLPNN between 150-200
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Figure 6.65: EKF position estimation error between ±1σ bound for MLPNN between 150-200

Figure 6.66: EKF attitude estimation error between ±1σ bound for MLPNN between 150-200

153



The RMSE results between EKF/MLPNN and EKF without MLPNN are given in

Table 6.7.

Table 6.6: Road test RMSE results only for GPS outage between 150-200 s

Positions RMSE for NN RMSE w/o NN Percentage Improvement

Latitude [deg] 4.7550e-04 0.0014 66.8504%

Longitude [deg] 2.4119e-04 0.0017 85.9383%

Altitude [m] 6.1280 11.9866 48.8762%

Table 6.7: Road test RMSE results GPS outage between 150-200 s for all trajectory

Positions RMSE for NN RMSE w/o NN Percentage Improvement

Latitude [deg] 1.5466e-04 3.9548e-04 60.8934%

Longitude [deg] 1.0962e-04 4.4857e-04 75.5633%

Altitude [m] 1.9517 3.3578 41.8769%

As it can be seen from the Table 6.6and Table 6.7,the improvement in latitude is

almost 66%, in latitude 85% and in height 48% for GPS outage section and the

improvement in latitude is almost 60%, in latitude 75% and in height 40% for all

trajectory, respectively. Both GPS outage section RMSE and total trajectory RMSE

gives consistent results. Of course these values are depend on the learning

capabilities of neural network and the variety of data that is given to MLPNN to

learn before GPS outage.

6.3.4 Experimental Flight Path Test Results

The experimental test results will be given under two section. In first section

comparison between EKF solution and reference experimental data will be shared.

In second section, MLPNN performance will be given by comparing MLPNN-EKF

model with a second model which does not include MLPNN implementation. The

artificial GPS signal outages cases are given in Table 6.8.
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Table 6.8: The duration of GPS outages

Outage Cases Case 1 Case 2 Case 3

Time Interval (s) 55-85 80-120 180-200

Experimental Flight Test Results with EKF

In following figures the experimental data set results are compared with the simulink

navigation mechanization and Kalman filter algorithm. The figures include

acceleration, angular rates, velocity, position and attitude results respectively.

Figure 6.67: Three axis acceleration results for field test data
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Figure 6.68: Three axis body angular rate results for field test data

Figure 6.69: EKF velocity results for field test data
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Figure 6.70: EKF position results for field test data

Figure 6.71: EKF attitude results for field test data
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Figure 6.72: EKF latitude and longitude for field test data

Figure 6.73: EKF 3D flight for field test data
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Figure 6.74: EKF velocity estimation error between ±1σ bound for field test data

Figure 6.75: EKF position estimation error between ±1σ bound for field test data
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Figure 6.76: EKF attitude estimation error between ±1σ bound for field test data

When figures 6.72, 6.73 are examined, it can be seen that EKF results are almost

similar with reference field data which is obtained from sensor systems on

quadrocopter. The error estimation performance of Kalman filter can be seen from

figures 6.74, 6.75 and 6.76. The RMSE result of INS/GPS simulink model with

respect to reference flight trajectory data is given in Table 6.9.

Table 6.9: INS/GPS model RMSE results for flight test data

Positions Latitude [deg] Longitude [deg] Altitude [m]

RMSE values 1.0074e-05 1.6494e-05 0.9253

Experimental Flight Test with MLPNN

MLPNN performance results will be given for three gps outage cases which are

shown in Table 6.8. The figures are shown in below. Respectively,for case 1 the

figures between 6.77 and 6.81 show without MLPNN implementation and the figures

between 6.82 and 6.86 show the MLPNN implementation case. Error estimation
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results for MLPNN are given in figures 6.87,6.88 and 6.88. For case 2,the figures

between 6.90 and 6.94 show without MLPNN implementation and the figures

between 6.95 and 6.99 show the MLPNN implementation case. Error estimation

results for MLPNN are given in figures 6.100, 6.101 and 6.101. And for the final

case, the figures between 6.103 and 6.107 show without MLPNN implementation

and the figures between 6.108 and 6.112 show the MLPNN implementation case.

Error estimation results for MLPNN are given in figures 6.113, 6.114 and 6.114.

GPS outages between 55-85

Figure 6.77: EKF velocity results for GPS outage between 55-85
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Figure 6.78: EKF position results for GPS outage between 55-85

Figure 6.79: EKF attitude results for GPS outage between 55-85
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Figure 6.80: EKF latitude and longitude for GPS outage between 55-85

Figure 6.81: EKF 3D flight for GPS outage between 55-85
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Figure 6.82: EKF velocity results for MLPNN between 55-85

Figure 6.83: EKF position results for MLPNN between 55-85
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Figure 6.84: EKF attitude results for MLPNN between 55-85

Figure 6.85: EKF latitude and longitude for MLPNN between 55-85
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Figure 6.86: EKF 3D flight for MLPNN between 55-85

Figure 6.87: EKF velocity estimation error between ±1σ bound for MLPNN between 55-85
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Figure 6.88: EKF position estimation error between ±1σ bound for MLPNN between 55-85

Figure 6.89: EKF attitude estimation error between ±1σ bound for MLPNN between 55-85
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GPS outages between 80-120

Figure 6.90: EKF velocity results for GPS outage between 80-120

Figure 6.91: EKF position results for GPS outage between 80-120
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Figure 6.92: EKF attitude results for GPS outage between 80-120

Figure 6.93: EKF latitude and longitude for GPS outage between 80-120
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Figure 6.94: EKF 3D flight for GPS outage between 80-120

Figure 6.95: EKF velocity results for MLPNN between 80-120
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Figure 6.96: EKF position results for MLPNN between 80-120

Figure 6.97: EKF attitude results for MLPNN between 80-120
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Figure 6.98: EKF latitude and longitude for MLPNN between 80-120

Figure 6.99: EKF 3D flight for MLPNN between 80-120
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Figure 6.100: EKF velocity estimation error between ±1σ bound for MLPNN between 80-120

Figure 6.101: EKF position estimation error between ±1σ bound for MLPNN between 80-120
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Figure 6.102: EKF attitude estimation error between ±1σ bound for MLPNN between 80-120

GPS outages between 180-200

Figure 6.103: EKF velocity results for GPS outage between 180-200
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Figure 6.104: EKF position results for GPS outage between 180-200

Figure 6.105: EKF attitude results for GPS outage between 180-200
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Figure 6.106: EKF latitude and longitude for GPS outage between 180-200

Figure 6.107: EKF 3D flight for GPS outage between 180-200
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Figure 6.108: EKF velocity results for MLPNN between 180-200

Figure 6.109: EKF position results for MLPNN between 180-200
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Figure 6.110: EKF attitude results for MLPNN between 180-200

Figure 6.111: EKF latitude and longitude for MLPNN between 180-200
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Figure 6.112: EKF 3D flight for MLPNN between 180-200

Figure 6.113: EKF velocity estimation error between ±1σ bound for MLPNN between 180-200
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Figure 6.114: EKF position estimation error between ±1σ bound for MLPNN between 180-200

Figure 6.115: EKF attitude estimation error between ±1σ bound for MLPNN between 180-200
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According to NN test results, the root mean square errors (RMSE) for the each GPS

outages are given in Tables 6.10, 6.12 and 6.14 for GPS outage section only on

trajectory and in Tables 6.11, 6.13 and 6.15 for all trajectory.

Table 6.10: Case 1 RMSE results only for GPS outage between 55-85 s

Positions RMSE for NN RMSE w/o NN Percentage Improvement

Latitude [deg] 1.1070e-05 1.1897e-04 90.6948%

Longitude [deg] 4.9036e-05 7.2791e-05 32.6347%

Altitude [m] 0.7815 14.0023 94.4190%

Table 6.11: Case 1 RMSE results GPS outage between 55-85 s for all trajectory

Positions RMSE for NN RMSE w/o NN Percentage Improvement

Latitude [deg] 1.2156e-05 4.7134e-05 74.2089%

Longitude [deg] 2.3015e-05 2.8645e-05 19.6531%

Altitude [m] 0.9441 7.1628 86.8201%

Table 6.12: Case 2 RMSE results only for GPS outage between 80-120 s

Positions RMSE for NN RMSE w/o NN Percentage Improvement

Latitude [deg] 2.9341e-05 1.5167e-04 80.6552%

Longitude [deg] 3.7891e-05 9.0199e-05 57.9919%

Altitude [m] 0.9782 17.6107 94.4454%

Table 6.13: Case 2 RMSE results GPS outage between 80-120 s for all trajectory

Positions RMSE for NN RMSE w/o NN Percentage Improvement

Latitude [deg] 1.9749e-05 6.7384e-05 70.6919%

Longitude [deg] 2.4430e-05 3.6022e-05 32.1794%

Altitude [m] 0.9671 9.7688 90.1001%
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Table 6.14: Case 3 RMSE results only for GPS outage between 180-200 s

Positions RMSE for NN RMSE w/o NN Percentage Improvement

Latitude [deg] 1.8193e-05 5.1139e-05 64.4254%

Longitude [deg] 3.9581e-06 3.7987e-04 98.9580%

Altitude [m] 0.5269 4.4415 88.1380%

Table 6.15: Case 3 RMSE results GPS outage between 180-200 s for all trajectory

Positions RMSE for NN RMSE w/o NN Percentage Improvement

Latitude [deg] 1.2839e-05 1.6969e-05 24.3353%

Longitude [deg] 1.6756e-05 1.2599e-04 86.7004%

Altitude [m] 1.0925 2.8206 61.2683%

According to RMSE results, latitude, longitude and altitude deviation in case of GPS

outages are decreased significantly by using MLPNN. As it can be seen from the

results, generally altitude improvement is better than latitude and longitude

improvement. This result basically depends on random initial weight assignment,

learning rate parameter, number of neurons and the characteristic of altitude data to

be learned from MLPNN. The differences between percentage achievements are

caused by the past experiences and learned data by MLPNN. The prediction

performance of MLPNN directly related to past data that is given to MLPNN to

determine weight values in back propagation algorithm.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORKS

In this thesis, INS/GPS and magnetometer integration and estimation technique have

been studied. For the estimation procedure Extended Kalman Filter (EKF) has been

used. To improve the estimation of EKF during GPS outage case Artificial Neural

Network has been utilized. By using Multilayer Perceptron Neural Network

(MLPNN) model the estimation performance of velocity and position states in EKF

have been improved. The test case for the simulink model of EKF and MLPNN are

based on two procedure. Firstly designed EKF algorithm is verified and validated by

using TAI helicopter simulator. Secondly both EKF and MLPNN performance are

proven by using road test and quadcopter field test data.

In first, the inertial navigation algorithm and sensor model are presented. The detailed

explanation of navigation mechanization algorithm and its applications to navigation

systems are given. Also modelling of sensor systems which include accelerometer,

gyroscope, GPS and magnetometer are mentioned. The modelling procedure of these

sensors are discussed in detail.

After given sensor models and navigation equations, the estimation techniques and

neural network design are discussed. For the estimation technique Kalman filter

algorithm is presented. The dynamic error model of navigation equations is obtained

and the integration types of Kalman filter are given for INS/GPS and magnetometer

sensor fusion system. After that an introduction to neural network modelling is

given. In the scope of neural network the learning algorithms, network modelling

and optimization with Least Mean Square techniques are examined. Multilayer

perceptron concept in neural network modelling is discussed and the application of
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MLPNN into INS/GPS navigation system is given in detail.

Lastly, the designed simulink model which includes INS/GPS integration with EKF

and MLPNN is tested both in simulator and field test data. For the simulator

environment TAI helicopter simulator is used. In field test land vehicle and

quadcopter are utilized separately to collect sensor data. Also the estimation

performance of EKF and the performance of MLPNN are observed during GPS

outages.

At the end of road test and quadcopter test it is concluded that MLPNN is increased

the navigation performance over EKF during GPS outage times. When GPS is online

the covariance matrix are stable between sigma bound results and EKF gives

bounded results in state estimation. However, when GPS aiding is not obtained the

state estimation errors between sigma bounds are increasing.

During GPS outage periods, it is observed that the standalone navigation is not

sufficient to eliminate propagated errors. Especially during large GPS outage

periods, the position and velocity precisions are lost. Because of that the first order

linearized system is not sufficient to prevent error accumulation navigation accuracy

and performance are reduced.

One of the most important observation is the process, system and measurement noise

matrix selection in EKF design procedure. To reach steady state solution quickly the

process noise matrix is selected as zero matrix. As for the system and measurement

noise matrix selection, auto-covariance least square technique is used. Initial diagonal

noise matrix elements are selected by using ALS method. However some of the state

estimation performance is not obtained in a desired way. Therefore by tuning the

diagonal elements of system and measurement matrix desired performance form EKF

estimation is achieved.

In design of artificial neural network, it is experienced that the performance of

MLPNN is directly affected by learning rate parameter, initial weight selection and

the learning characteristic of desired data to be learned. By selecting different

learning rate parameter, the convergence performance of back propagation algorithm

is observed. To small and large learning rates are avoided. If small learning rate
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selected, learning process will be slow. If large learning rate is selected learning

process is failed. Also initial weights are selected in a same way because in

calculation of sigmoidal function saturated region and origin should not be selected

as starting point on learning surface. Therefore by considering proper learning rate

and weight selection, with well-designed MLPNN, the learning performance

increases greatly.

Another observation during GPS absence, the velocity and position predictions are

achieved between 20-50 seconds GPS outages. For different scenarios and different

path sections the performance of MLPNN is observed. At the end the MLPNN

shows great improvement over standalone EKF during GPS absence. RMSE results

of velocity and position solutions also support this observation.

Finally, in future works adaptive methods can be added to model to estimate the

initial weights for MLPNN and Kalman Filter system and measurement covariance

matrices. For example, Bayesian, Maximum likelihood, correlation and covariance

matching methods or adaptive Kalman filter can be used. Also by adding different

neural network structure such as RBFNN, recurrent neural network, deep neural

network, etc. into model the performance results can be observed and compared

during GPS outage.
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APPENDIX A

AUTOCOVARIANCE LEAST-SQUARES METHOD

In chapter 4in equation 4.37 the auto-covariance least square method general formula

is given. The detailed explanation of symbols and terms is given below. For more

information the references [19] and [20] can be used.

The symbols which are used in ALS method are listed below.

• The Kronecker product is symbolized with ⊗.

• The symbol ⊕ symbolizes matrix direct sum.

M⊕
j=1

Hj =


H1 · · · 0

... . . . ...

0 · · · HM

 (A.1)

• (.)s symbol stands for vectorization operation. If ai is the ith column of matrix

A,

vec(A) = As =
[
aT1 · · · aTn

]
(A.2)

• IN,p with dimension (pN)2 × p2 denotes the permutation matrix.

• Dn with dimension n2 × n(n+1)
2

denotes duplication matrix.

• Mm,n
l is an auxiliary matrix,

Mm,n
l =

[
0m×(l−1) Im 0m×(n−m−l+1)

]
(A.3)

The calculation of parameters Γi, Ωi, Φi, Ψi in equation 4.37 are given below.
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F̃s =

(
k0+M−1⊕
k=k0

Ck

)InM −
 0 0⊕k0+M−2

k=k0
0

−1 Āk0−1

0

 (A.4)

H̃ =Mp,pN
1 (A.5)

B̃ =

(
k0+M−1⊕
k=k0

Ck

)InM −
 0 0⊕k0+M−2

k=k0
0

−1
k0+M−2⊕
k=k0−1

Gk (A.6)

D̃ = −

(
k0+M−1⊕
k=k0

Ck

)InM −
 0 0⊕k0+M−2

k=k0
0

−1
k0+M−2⊕
k=k0−1

AkLk (A.7)

S̃i =MpN,pM
pi+1 (A.8)

J̃i = (Mr(i+1),rM
1 )T (A.9)

Ũi = (Mp(i+1),pM
1 )T (A.10)

Õi = (Mp,pM
p+1 )T (A.11)

P̃i = (Mp(N−1),pM
p(i+1)+1 )T (A.12)

Γi = S̃iF̃s Γ̄i = H̃Γi Ωi = S̃iB̃J̃i Ω̄i = H̃Ωi Φi = S̃iD̃Ũi Φ̄i = H̃Φi

Ψi =

 Ip

P̃iD̃Õi

 (A.13)
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APPENDIX B

SENSORS DATASHEETS

U-blox M8N GPS Receiver

Figure B.1: U-blox M8N GPS receiver and compass
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Pixhawk Autopilot

Figure B.2: Pixhawk autopilot and sensor module
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APPENDIX C

SIMULINK MODELS

Figure C.1: Artificial neural network (ANN) training and prediction parts
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Figure C.2: Simulink model for navigation computation with sensor models and

Kalman filter
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Figure C.3: Simulink navigation model with artificial neural network (ANN) structure
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