
TIME SERIES CLASSIFICATION USING DEEP LEARNING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

POYRAZ UMUT HATIPOĞLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

INDUSTRIAL ENGINEERING

AUGUST 2016

Approval of the thesis:

TIME SERIES CLASSIFICATION USING DEEP LEARNING

submitted by POYRAZ UMUT HATIPOĞLU in partial fulfillment of the require-
ments for the degree of Master of Science in Industrial Engineering Department,
Middle East Technical University by,

Prof. Dr. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Murat Köksalan
Head of Department, Industrial Engineering

Assoc. Prof. Dr. Cem İyigün
Supervisor, Industrial Engineering Department, METU

Examining Committee Members:

Assoc. Prof. Dr. Tolga Can
Computer Engineering Department, METU

Assoc. Prof. Dr. Cem İyigün
Industrial Engineering Department, METU

Assoc. Prof. Dr. Serhan Duran
Industrial Engineering Department, METU

Assist. Prof. Dr. Bahar Çavdar
Industrial Engineering Department, METU

Assist. Prof. Dr. Öznur Taştan Okan
Computer Engineering Department, Bilkent University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: POYRAZ UMUT HATIPOĞLU

Signature :

iv

ABSTRACT

TIME SERIES CLASSIFICATION USING DEEP LEARNING

Hatipoğlu, Poyraz Umut

M.S., Department of Industrial Engineering

Supervisor : Assoc. Prof. Dr. Cem İyigün

August 2016, 115 pages

Deep learning is a fast-growing and interesting field due to the need to represent
statistical data in a more complex and abstract way. Development in the processors
and graphics processing unit technology effects undeniably that the deep networks
get that popularity.

The main purpose of this work is to develop robust and full functional time series
classification method. To achieve this intent a deep learning based novel methods
are proposed. Because time series data can have complex and variable structure, it
may be more suitable to use algorithms that can handle the nonlinear sophisticated
operations rather than shallow-structured methods. While shallow structured meth-
ods need handcrafted features and expert knowledge about data, deep learning based
algorithms are capable of working with raw features. Both deep belief network and
stacked autoencoders based architectures are constructed and trained for the dataset
gathered from different researches areas. In time series classification, even though
dynamic time warping and nearest neighbor based methods are hard to beat, many
classification methods have been studied recently. To examine the performance of
proposed method comparative analysis is conducted with popular benchmark meth-
ods. Despite higher accuracy in the results, the deep learning based methods cannot
outperform superiorly.

v

Keywords: Deep Learning, Time Series, Deep Belief Networks, Stacked Autoen-
coders

vi

ÖZ

ZAMAN SERİLERİNİN DERİN ÖĞRENME İLE SINIFLANDIRILMASI

Hatipoğlu, Poyraz Umut

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Cem İyigün

Ağustos 2016 , 115 sayfa

İstatistiksel verilerin daha karmaşık ve soyut bir şekilde temsil edilme ihtiyacıyla bir-
likte derin öğrenme tekniği hızla gelişen ve ilgilenilen bir alan konumuna gelmiştir.
İşlemci ve grafik işleme ünitesi alanlarındaki gelişmelerin derin öğrenmenin rağbet
kazanmasına katkısı yadsınamaz. Bu çalışmanın asıl amacı gürbüz ve tam işlevsel
zaman serileri sınıflandırma metodu geliştirmektir. Bu amaca ulaşmak için derin öğ-
renme tabanlı özgün metotlar önerilmiştir. Zaman serisi verileri karışık ve değişken
yapıya sahip olduğundan basit yapıya sahip olan yöntemlerden ziyade doğrusal ol-
mayan karışık işlem yeteneklerine sahip metotlar ile çalışmak daha anlamlı ve uygun
olabilmektedir. Basit yapıya sahip yöntemler el ile ayarlanmış özniteliklere ve uzman
bilgi birikimine ihtiyaç duyarken derin öğrenme tabanlı algoritmalar ham öznitelikler
ile çalışabilme yeteneğine sahiptir. Çalışma kapsamında birçok araştırma alanından
elde edilmiş veriler için hem derin anlama ağları hem de yığılı oto-kodlayıcı tabanlı
mimariler kurulup eğitildi. Zaman serileri sınıflandırma çalışmalarında dinamik za-
man bükme ve en yakın komşu temelli yöntemleri performans açısından yenmek zor
olmasına rağmen farklı sınıflandırma yöntemleri ile yakın geçmişte çalışmalar ya-
pılmıştır. Önerilen yöntemin performansını ölçümlemek için rağbet gören kıyaslama
yöntemleri ile karşılaştırmalı analizler yapıldı. Daha yüksek başarım oranı elde edil-
mesine rağmen derin öğrenme tabanlı metot sonuçlarında çok üstün bir performans
aşımı gözlemlenememiştir.

vii

Anahtar Kelimeler: Derin Öğrenme, Zaman Serileri, Derin Anlama Ağları, Yığılı
Oto-Kodlayıcı

viii

To my family...

ix

ACKNOWLEDGMENTS

Firstly, I wish to express my sincere gratitude to my thesis advisor Assoc. Dr. Cem
İyigün for his consistent and kind support, guidance and encouragement. I am ab-
solutely sure that without his guidance, continued help, and insights this this thesis
couldn’t have been completed.

I would also like to extend my appreciation to members of METU Industrial En-
gineering Department for all of their support and endless trust within the last three
years.

My special thanks are extended to my mentors and colleagues in my professional life
in both METU Electrical and Electronics Engineering Department and HAVELSAN
INC for their guidance and accompaniment.

Last but not least, I would like to thank my dear friends for their social accompani-
ment, and for supporting me in every aspect on my life.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xv

LIST OF FIGURES . xviii

LIST OF ABBREVIATIONS . xxiii

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation, Scope and Goal 1

1.2 Contribution . 2

1.3 Outline . 3

2 TIME SERIES AND LEARNING 5

2.1 Time Series . 5

2.2 Learning . 7

2.2.1 Supervised Learning 7

xi

2.2.2 Unsupervised Learning 7

2.2.3 Type of Variables and Data Preparation 8

2.2.4 Training-Validation-Test Set Separation 9

2.2.5 Curse of Dimensionality 9

2.2.6 Generalization and Overfitting 10

2.2.7 Dimension Reduction 10

3 BENCHMARK METHODS USED IN TIME SERIES CLASSIFI-
CATION . 11

3.1 Dynamic Time Warping with Nearest Neighbor Classifier . . 11

3.1.1 Dynamic Time Warping 11

3.1.2 K-Nearest Neighbor Classifier 15

3.1.3 DTW with KNN Classification Method 15

3.2 Multi-Class Support Vector Machines 16

3.2.1 Support Vector Classifier 16

4 NEURAL NETWORKS, DEEP LEARNING & FRAMEWORK . . . 23

4.1 Neural Networks . 23

4.1.1 Artificial Neurons 23

4.1.2 Models of Articially Neural Networks 26

4.1.3 Feedforward Networks 27

4.1.4 Backpropagation 29

4.1.5 Recurrent Artificial Neural Networks 32

4.1.5.1 Hopfield Artificial Neural Network . . 33

xii

4.1.5.2 Elman and Jordan Artificial Neural Net-
works 33

4.1.5.3 Long Short Term Memory 34

4.1.5.4 Bi-directional Artificial Neural Net-
works 35

4.1.5.5 Stochastic Artificial Neural Network . 36

4.2 Deep Learning . 36

4.2.1 Applications of Deep Learning 39

4.3 Autoencoders . 40

4.4 Stacked Autoencoders . 42

4.4.1 Restricted Boltzmann Machines 43

4.4.2 Contrastive Divergence 45

4.4.3 Deep Belief Networks 45

4.4.4 Deep Kernel Machines and Deep Convolutional
Networks . 46

4.5 Proposed Framework . 46

5 EXPERIMENTS AND RESULTS 51

5.1 Datasets and The System Used in Experiments 51

5.2 Data Preparation . 52

5.3 Measurements and Performance Metrics 52

5.4 Experimental Procedures and Performances of Benchmark
Methods . 53

5.5 Experimental Procedures and Performances of Deep Learn-
ing Approaches . 57

xiii

5.6 Discussions . 66

6 CONCLUSION AND FUTURE WORK 71

6.1 Summary . 71

6.2 Future Work . 72

REFERENCES . 75

APPENDICES

A CONFUSION MATRICES AND DETAILED PERFORMANCES . . 81

A.1 Confusion Matrices & Precision and Recall Values for ED
with 1NN Classifier . 81

A.2 Confusion Matrices & Precision and Recall Values for DTW
with 1NN Classifier . 82

A.3 Confusion Matrices & Precision and Recall Values for Multi-
Class SVM Classifier . 84

A.4 Confusion Matrices & Precision and Recall Values for SAE
Based Classifier . 85

A.5 Confusion Matrices & Precision and Recall Values for DBN
Based Classifier . 86

B TRAINING SET ERROR AND VALIDATION SET ERROR DIA-
GRAMS . 89

B.1 Training Set Error and Validation Set Error Diagrams for
SAE Based Classifier . 89

B.2 Training Set Error and Validation Set Error Diagrams for
DBN Based Classifier . 101

xiv

LIST OF TABLES

TABLES

Table 5.1 Properties of Datasets Used in Experiments 52

Table 5.2 Best Classification Results and Warping Window Parameters of DTW 56

Table 5.3 Parameters, Properties and Results of SVM Classifier Model 58

Table 5.4 Number of Nodes in Each Layer and Elapsed Time at the DBN
Based Unsupervised Learning Phase /for ElectricDevices dataset/ 59

Table 5.5 Number of Nodes in Each Layer and Elapsed Time at the DBN
Based Unsupervised Learning Phase /for Wafer dataset/ 60

Table 5.6 Number of Nodes in Each Layer and Elapsed Time at the DBN
Based Unsupervised Learning Phase /for Two Patterns dataset/ 60

Table 5.7 Number of Nodes in Each Layer and Elapsed Time at the DBN
Based Unsupervised Learning Phase /for ProximalPhalanxOutlineCorrect
dataset/ . 60

Table 5.8 Number of Nodes in Each Layer and Elapsed Time at the SAE
Based Unsupervised Learning Phase /for ElectricDevices dataset/ 61

Table 5.9 Number of Nodes in Each Layer and Elapsed Time at the SAE
Based Unsupervised Learning Phase /for Wafer dataset/ 61

Table 5.10 Number of Nodes in Each Layer and Elapsed Time at the SAE
Based Unsupervised Learning Phase /for Two Patterns dataset/ 61

Table 5.11 Number of Nodes in Each Layer and Elapsed Time at the SAE
Based Unsupervised Learning Phase /for ProximalPhalanxOutlineCorrect
dataset/ . 62

Table 5.12 Parameters and Properties of SAE Based Networks at Fine Tuning
Phase . 63

Table 5.13 Parameters and Properties of DBN Based Networks at Fine Tuning
Phase . 64

xv

Table 5.14 Classification Performances of Proposed and Benchmark Methods . 67

Table 5.15 Total Time Comparison of DTW 1-NN and Proposed Methods . . . 68

Table A.1 Confusion Matrix of ElectricDevices Dataset 81

Table A.2 Precision and Recall Values of ElectricDevices Dataset 81

Table A.3 Confusion Matrix of Wafer Dataset 81

Table A.4 Precision and Recall Values of Wafer Dataset 81

Table A.5 Confusion Matrix of Two Patterns Dataset 82

Table A.6 Precision and Recall Values of Two Patterns Dataset 82

Table A.7 Confusion Matrix of ProximalPhalanxOutlineCorrect 82

Table A.8 Precision and Recall Values of ProximalPhalanxOutlineCorrect . . . 82

Table A.9 Confusion Matrix of ElectricDevices Dataset 82

Table A.10Precision and Recall Values of ElectricDevices Dataset 82

Table A.11Confusion Matrix of Wafer Dataset 83

Table A.12Precision and Recall Values of Wafer Dataset 83

Table A.13Confusion Matrix of Two Patterns Dataset 83

Table A.14Precision and Recall Values of Two Patterns Dataset 83

Table A.15Confusion Matrix of ProximalPhalanxOutlineCorrect 83

Table A.16Precision and Recall Values of ProximalPhalanxOutlineCorrect . . . 83

Table A.17Confusion Matrix of ElectricDevices Dataset 84

Table A.18Precision and Recall Values of ElectricDevices Dataset 84

Table A.19Confusion Matrix of Wafer Dataset 84

Table A.20Precision and Recall Values of Wafer Dataset 84

Table A.21Confusion Matrix of Two Patterns Dataset 84

Table A.22Precision and Recall Values of Two Patterns Dataset 84

Table A.23Confusion Matrix of ProximalPhalanxOutlineCorrect 84

Table A.24Precision and Recall Values of ProximalPhalanxOutlineCorrect . . . 85

xvi

Table A.25Confusion Matrix of ElectricDevices Dataset 85

Table A.26Precision and Recall Values of ElectricDevices Dataset 85

Table A.27Confusion Matrix of Wafer Dataset 85

Table A.28Precision and Recall Values of Wafer Dataset 85

Table A.29Confusion Matrix of Two Patterns Dataset 85

Table A.30Precision and Recall Values of Two Patterns Dataset 85

Table A.31Confusion Matrix of ProximalPhalanxOutlineCorrect 86

Table A.32Precision and Recall Values of ProximalPhalanxOutlineCorrect . . . 86

Table A.33Confusion Matrix of ElectricDevices Dataset 86

Table A.34Precision and Recall Values of ElectricDevices Dataset 86

Table A.35Confusion Matrix of Wafer Dataset 86

Table A.36Precision and Recall Values of Wafer Dataset 86

Table A.37Confusion Matrix of Two Patterns Dataset 87

Table A.38Precision and Recall Values of Two Patterns Dataset 87

Table A.39Confusion Matrix of ProximalPhalanxOutlineCorrect 87

Table A.40Precision and Recall Values of ProximalPhalanxOutlineCorrect . . . 87

xvii

LIST OF FIGURES

FIGURES

Figure 2.1 Sample time series observations taken from different datasets . . . 6

Figure 3.1 Distance measures type illustration 12

Figure 3.2 DTW warping path illustration . 14

Figure 3.3 Hyperplane with margin length of two-class SVM 17

Figure 3.4 General non-separable hyperplane illustration 19

Figure 3.5 Basic non-linear kernel SVM operation 21

Figure 4.1 McCulloch and Pitts model: weights are represented as wi, input
are xi ,output is o and the transfer function is τ 24

Figure 4.2 Continuous Sigmoid Activation Functions 25

Figure 4.3 Feed-forward (FNN) and recurrent (RNN) topology 27

Figure 4.4 Feed-forward artificial neural network 28

Figure 4.5 Backpropagation diagram . 30

Figure 4.6 Hidden units and output units sensitivity relation (reproduced from
[20]) . 32

Figure 4.7 Fully recurrent artificial neural network 33

Figure 4.8 Elman artificial neural network (reproduced from [28]) 34

Figure 4.9 Simple Long Short Term Memory artificial neural network 34

Figure 4.10 Bi-directional Artificial Neural Network (reproduced from [39]) . . 35

Figure 4.11 A greedy unsupervised layer-wise pretraining stage followed by a
supervised fine-tuning stage affecting all layers (reproduced from [4]) . . . 39

Figure 4.12 Basic Autoencoder architecture 40

xviii

Figure 4.13 Stack autoencoder network diagram 43

Figure 4.14 Restricted Boltzmann network diagram 43

Figure 4.15 Joint probability on visibile and hidden units 44

Figure 4.16 Deep Belief Network diagram (reproduced from [56]) 45

Figure 4.17 Illustrative diagram of proposed methods for the first two networks 48

Figure 5.1 A dynamic programming solution (p=720 & Darker regions imply
bigger distances) . 54

Figure 5.2 A dynamic programming solution (p=720 & Warping Window Pa-
rameter 15%) . 54

Figure 5.3 Some of the correctly-classified samples of Wafer dataset 65

Figure 5.4 Misclassified samples of Wafer dataset 65

Figure B.1 Training and Validation Set Errors of ElectricalDevices Dataset for
1-Hidden-Layer-SAE architecture . 89

Figure B.2 Training and Validation Set Errors of ElectricalDevices Dataset for
2-Hidden-Layers-SAE architecture . 90

Figure B.3 Training and Validation Set Errors of ElectricalDevices Dataset for
3-Hidden-Layers-SAE architecture . 90

Figure B.4 Training and Validation Set Errors of ElectricalDevices Dataset for
4-Hidden-Layers-SAE architecture . 91

Figure B.5 Training and Validation Set Errors of ElectricalDevices Dataset for
5-Hidden-Layers-SAE architecture . 91

Figure B.6 Training and Validation Set Errors of ElectricalDevices Dataset for
6-Hidden-Layers-SAE architecture . 92

Figure B.7 Training and Validation Set Errors of ElectricalDevices Dataset for
7-Hidden-Layers-SAE architecture . 92

Figure B.8 Training and Validation Set Errors of Wafer Dataset for 1-Hidden-
Layer-SAE architecture . 93

Figure B.9 Training and Validation Set Errors of Wafer Dataset for 2-Hidden-
Layers-SAE architecture . 93

xix

Figure B.10Training and Validation Set Errors of Wafer Dataset for 3-Hidden-
Layers-SAE architecture . 94

Figure B.11Training and Validation Set Errors of Wafer Dataset for 4-Hidden-
Layers-SAE architecture . 94

Figure B.12Training and Validation Set Errors of Wafer Dataset for 5-Hidden-
Layers-SAE architecture . 95

Figure B.13Training and Validation Set Errors of Wafer Dataset for 6-Hidden-
Layers-SAE architecture . 95

Figure B.14Training and Validation Set Errors of Wafer Dataset for 7-Hidden-
Layers-SAE architecture . 96

Figure B.15Training and Validation Set Errors of Two Patterns Dataset for 1-
Hidden-Layer-SAE architecture . 96

Figure B.16Training and Validation Set Errors of Two Patterns Dataset for 2-
Hidden-Layers-SAE architecture . 97

Figure B.17Training and Validation Set Errors of Two Patterns Dataset for 3-
Hidden-Layers-SAE architecture . 97

Figure B.18Training and Validation Set Errors of Two Patterns Dataset for 4-
Hidden-Layers-SAE architecture . 98

Figure B.19Training and Validation Set Errors of Two Patterns Dataset for 5-
Hidden-Layers-SAE architecture . 98

Figure B.20Training and Validation Set Errors of Two Patterns Dataset for 6-
Hidden-Layers-SAE architecture . 99

Figure B.21Training and Validation Set Errors of Two Patterns Dataset for 7-
Hidden-Layers-SAE architecture . 99

Figure B.22Training and Validation Set Errors of ProximalPhalanxOutlineCor-
rect Dataset for 1-Hidden-Layer-SAE architecture 100

Figure B.23Training and Validation Set Errors of ProximalPhalanxOutlineCor-
rect Dataset for 2-Hidden-Layers-SAE architecture 100

Figure B.24Training and Validation Set Errors of ProximalPhalanxOutlineCor-
rect Dataset for 3-Hidden-Layers-SAE architecture 101

Figure B.25Training and Validation Set Errors of ElectricalDevices Dataset for
1-Hidden-Layer-DBN architecture . 101

xx

Figure B.26Training and Validation Set Errors of ElectricalDevices Dataset for
2-Hidden-Layers-DBN architecture . 102

Figure B.27Training and Validation Set Errors of ElectricalDevices Dataset for
3-Hidden-Layers-DBN architecture . 102

Figure B.28Training and Validation Set Errors of ElectricalDevices Dataset for
4-Hidden-Layers-DBN architecture . 103

Figure B.29Training and Validation Set Errors of ElectricalDevices Dataset for
5-Hidden-Layers-DBN architecture . 103

Figure B.30Training and Validation Set Errors of ElectricalDevices Dataset for
6-Hidden-Layers-DBN architecture . 104

Figure B.31Training and Validation Set Errors of ElectricalDevices Dataset for
7-Hidden-Layers-DBN architecture . 104

Figure B.32Training and Validation Set Errors of ElectricalDevices Dataset for
8-Hidden-Layers-DBN architecture . 105

Figure B.33Training and Validation Set Errors of ElectricalDevices Dataset for
9-Hidden-Layers-DBN architecture . 105

Figure B.34Training and Validation Set Errors of ElectricalDevices Dataset for
10-Hidden-Layers-DBN architecture . 106

Figure B.35Training and Validation Set Errors of ElectricalDevices Dataset for
11-Hidden-Layers-DBN architecture . 106

Figure B.36Training and Validation Set Errors of Wafer Dataset for 1-Hidden-
Layer-DBN architecture . 107

Figure B.37Training and Validation Set Errors of Wafer Dataset for 2-Hidden-
Layers-DBN architecture . 107

Figure B.38Training and Validation Set Errors of Wafer Dataset for 3-Hidden-
Layers-DBN architecture . 108

Figure B.39Training and Validation Set Errors of Wafer Dataset for 4-Hidden-
Layers-DBN architecture . 108

Figure B.40Training and Validation Set Errors of Wafer Dataset for 5-Hidden-
Layers-DBN architecture . 109

Figure B.41Training and Validation Set Errors of Wafer Dataset for 6-Hidden-
Layers-DBN architecture . 109

xxi

Figure B.42Training and Validation Set Errors of Wafer Dataset for 7-Hidden-
Layers-DBN architecture . 110

Figure B.43Training and Validation Set Errors of Two Patterns Dataset for 1-
Hidden-Layer-DBN architecture . 110

Figure B.44Training and Validation Set Errors of Two Patterns Dataset for 2-
Hidden-Layers-DBN architecture . 111

Figure B.45Training and Validation Set Errors of Two Patterns Dataset for 3-
Hidden-Layers-DBN architecture . 111

Figure B.46Training and Validation Set Errors of Two Patterns Dataset for 4-
Hidden-Layers-DBN architecture . 112

Figure B.47Training and Validation Set Errors of Two Patterns Dataset for 5-
Hidden-Layers-DBN architecture . 112

Figure B.48Training and Validation Set Errors of Two Patterns Dataset for 6-
Hidden-Layers-DBN architecture . 113

Figure B.49Training and Validation Set Errors of Two Patterns Dataset for 7-
Hidden-Layers-DBN architecture . 113

Figure B.50Training and Validation Set Errors of Two Patterns Dataset for 8-
Hidden-Layers-DBN architecture . 114

Figure B.51Training and Validation Set Errors of ProximalPhalanxOutlineCor-
rect Dataset for 1-Hidden-Layer-DBN architecture 114

Figure B.52Training and Validation Set Errors of ProximalPhalanxOutlineCor-
rect Dataset for 2-Hidden-Layers-DBN architecture 115

Figure B.53Training and Validation Set Errors of ProximalPhalanxOutlineCor-
rect Dataset for 3-Hidden-Layers-DBN architecture 115

xxii

LIST OF ABBREVIATIONS

SVM Support Vector Machine

PCA Principal Component Analysis

NN Neural Networks

AI Artificial Intelligence

GMM Gaussian Mixture Model

MLP Multi-Layer Perceptron

DL Deep Learning

DNN Deep Neural Networks

GPU Graphical Processing Units

ANN Artificial Neural Networks

DBN Deep Belief Networks

DBM Deep Boltzmann Machines

LSTM Long Short Time Memory

AE Autoencoder

SAE Stacked Autoencoder

RBM Restricted Boltzmann Machines

KPCA Kernel Principal Component Analysis

DTW Dynamic Time Warping

DDTW Derivative Dynamic Time Warping

WDTW Weighted Dynamic Time Warping

KNN k-Nearest Neighbors

ED Euclidean Distance

FNN Feed-Forward Neural Networks

RNN Recurrent Neural Networks

LMS Least Mean Square

SRN Simple Recurrent Network

MKM Multilayer Kernel Machines

KKT Karush Kuhn Tucker

xxiii

PSD Positive Semi-Definite

RBF Radial Basis Function

SDK Software Development Kit

MEX MATLAB Executable

LIBSVM Library for Support Vector Machines

xxiv

CHAPTER 1

INTRODUCTION

1.1 Motivation, Scope and Goal

Statistical data analysis and machine learning are popularly studied topics in the lit-

erature and have strong connections with many fields. The main goal of machine

learning is detecting, sensing and learning phenomena as human do or better than

the human in some aspects. While scientist and researchers have been trying to ac-

complish to this purpose, they have used simple and complex decision models. Less

human interaction and higher performance are the key points in machine learning

studies. For basic and simpler algorithms (or models), a good and simpler represen-

tation of data can be a necessity. Unfortunately without the expert knowledge of data

and the model this simplified representation can be turned into a bigger and challeng-

ing problem. In such cases, it is more appropriate to design a model which is able

to learn the characteristics of data either by extracting abstract features (or attributes)

or transforming the data to more compact form. First, the neural networks (NN) then

the deep learning have been trying to respond to that need. The simplest form of

deep architecture, perceptron, was defined in 1950s. Then the multilayer structures

with limited learning capabilities ware proposed. For over 40 years, these architec-

tures have attempted to be evolved on specific demands. Not only the need for the

representation of data in more abstract and complex way, but also the advances in

information technology, machine learning and signal processing increased the impor-

tance of deep networks.

Time series having unique properties that have been studied for a long time. The

1

time interval of point of a time series should be continuous and have at most one

observation in time. During the data gathering procedure time intervals between the

observations should be fixed and constant. These special properties and time depen-

dency issues specialize the scope of the classifications problem. Our aim in this study

to classify the datasets with higher performance than the benchmark methods. More-

over, for possible future reverse engineering works, the observed weight will be an

opportunity.

1.2 Contribution

In this study, novel time series classification methods (or classifiers) are proposed

and analyzed in a detailed way. Except for a few studies, time series classification

using deep architectures has not been the area of focus in the statistical data analysis.

Instead of extracting hand-crafted features, deep learning models are designed to be

capable of working with raw representation of time series. Training and test proce-

dures of the proposed method are completed without making any prior assumptions.

While conducting our analysis for four different dataset gathered from different do-

mains are examined. These publicly available datasets have been selected in the

UCR database [16]. To complete Dynamic Time Warping (DTW) tests, we need

pre-calculated parameters due to time and resource constraints. While selecting the

datasets, we should also be careful whether the datasets have sufficient data points to

be trained by deep learning algorithms. With respect to our criteria we have narrowed

our search down and got these four datasets.

In our study we investigated different aspects of this problem, including the dimen-

sionality and the size of the data and the limitations introduced by these aspects. By

monitoring and visualizing the weights between the layers of deep learning meth-

ods compact representation of unsupervised learning stage can be apprehended. Un-

like most of the previous classification applications using same datasets, imbalanced

dataset effects are also examined which is another contribution of our work.

2

1.3 Outline

This thesis document, which focuses on the time series classification using deep learn-

ing, is divided into 6 main chapters:

• Introduction

• Time Series and Learning

• Benchmark Methods Used in Time Series Classification

• Proposed Method

• Experimental Analysis and Results of the Proposed Method

• Conclusion

The first chapter is designed to reveal the dissertation topic and purpose of the spec-

ified study. In Chapter 2 time series data and learning methods in the literature are

conferred. Theoretical explanations and mathematical derivations of the commonly

used benchmark methods for time series classification are presented in chapter 3.

Fourth chapter explains the proposed method from the very basic introduction to the

final complex structure. This chapter includes also the literature survey for proposed

method in a detailed way. In chapter 5, experimental procedures and comparative

results of proposed method and benchmark methods are presented. Detailed discus-

sions about the study can also be monitored in this part of thesis. Lastly, in chapter

6 works conducted during the dissertation research is concluded and feature research

directions are presented.

3

4

CHAPTER 2

TIME SERIES AND LEARNING

2.1 Time Series

Time series is a special kind of data which has ordered sequence. Ordering property

is crucial since it effects dependency of data points and meaning of data. Data points

forming the time series have some more pre-defined properties. One of the properties

is that data points need to be obtained through repeated measurements over time at

equally spaced intervals. The time interval of data points should be continuous and

each time unit observations should have at most one data point.

Time series are used in various areas, such as statistics, economics, pattern recogni-

tion, control engineering, signal processing, astronomy, meteorology, entertainment

and so on. Time series analysis has been developing and trending research areas for

decades. Despite the progress, there are a lot of open topics about time series.

Noise in time series is one of the main challenging problems and causes inaccurate

prediction [64]. Noisy, high dimensional and complex time series data cannot be

modelled with traditional shallow methods which have limited non-linear operation

ability. So as to reduce the dimension of data and remove the noise, various dimen-

sionality reduction techniques (i.e. principle component analysis (PCA), independent

component analysis) can be applied to data. However, these procedures often require

expert knowledge and can lose the informative parts of the data.

Another difficulty or tradeoff is related to the number of data points in the time series.

More data from the past increase the precision and the chance of detailed analysis.

5

However while increasing the precision property of the data, we also increase the risk

that the model cannot handle the data processing.

When analyzing the time series previously mentioned unique properties should be

taken in consideration. In order to reduce challenge in analyzing data, features may

need to be transformed into invariant feature space. [41]

Finally, obtaining large amounts of labelled time series training data may be expen-

sive, resourceful and difficult. Whereas, huge amount of unlabelled data can be easily

obtained in various areas. Hence, current shallow-structured methods needing large

amount of labelled training data cannot be used for most of the time series data. Deep

learning networks using unsupervised learning have gotten highly successful results.

However, so as to get more accurate results the architecture of the model should be

adjusted or modified respecting the characteristics of time-series. Sample time series

observations taken from different datasets are shown in Figure 2.1 .

Figure 2.1: Sample time series observations taken from different datasets

6

2.2 Learning

Any approaches or methods that take information from training samples to design a

classifier can be called learning. Supervised, unsupervised and reinforced learning

are the general forms of machine learning. Before explaining the learning types, the

data types should be first distinguished clearly. Learning can be seen as a special

technique to reduce the error on a training set.

Labelled and unlabelled data are treated differently with respect to the scope of ap-

plications. While labelled data are commonly used to predict or estimate the target

attributes (or class labels) of new observations (or samples, or data points), unlabelled

data are useful for the clustering or investigating associations in data. Attributes of

the data excluding the label information are often called features (or attributes) in

machine learning.

2.2.1 Supervised Learning

In supervised learning, data with prior target information are provided for training,

and there is an effort to reduce the sum of cost of prediction or the number of errors.

Supervised learning algorithms evaluate the training data for developing a rule, pro-

duce a model to map new data samples. Once the learning model is trained, it can

then classify or estimate the target attribute (or class label) of test data (or samples).

If the estimated target attributes are labels, the supervised learning task is called clas-

sification. However, if the predicted attribute is a continuous numerical value, the

algorithm is named as regression or prediction. In both classification and regression

problems, the algorithms search an appropriate function to minimize cost of predic-

tion.

2.2.2 Unsupervised Learning

If class labels of training data are not available, the learning process is called unsuper-

vised learning. Main purpose of unsupervised learning is finding out or underlying

similarities, grouping the training samples or detecting the association rules between

7

data points. The grouping procedure is often known as clustering task.

In the clustering task, one of the critical issues is to define similarities between two

data points. The other one is defining distance measures. Last but not least important

one is finding the number of clusters and/or determining boundaries of clusters.

2.2.3 Type of Variables and Data Preparation

Input variables define the measurement types used in the learning methods; some of

the measurement types are suitable for qualitative input variables whereas some of

them are favorable for quantitative inputs. Not only the measurement types but also

the model itself is defined for the type of the input attributes. In order to use models

that are invented for qualitative variables, grouping or binning the quantitative inputs

is mandatory.

Variables, which are also known as features or attributes, are categorized into four

main types as nominal, ordinal, interval, and ratio variables.

Nominal variables and ordinal variables are called categorical variables. Nominal

variables provide descriptive information labels to distinguish one object from an-

other, e.g. red, green, blue. Ordinal variables are similar to the nominal variables,

however ordinal variables have a meaningful order and can be arranged in that order,

e.g. low, medium, high. Ranges between the ordinal variables may not be equally

spaced in ordinal variables.

Interval variables take numerical values which are equally spaced, such as tempera-

tures scale or calendar dates. But the interval variables are not suitable for the pro-

portional calculation. The ratios between the interval variables are not meaningful.

Ratio variables are similar to interval variables except that the ratio calculations are

meaningful and the origin or zero value represents the absence of measured charac-

teristic.

During the data gathering process some faults can be observed and this failure can

negatively affect the learning process. Hence obvious outlier or missing values should

be discarded or readjusted before the learning operations to increase performance

8

or reduce the effort. In addition to that, features within different dynamic ranges

should be normalized or standardized on demand to equalize the influences in the

cost function.

2.2.4 Training-Validation-Test Set Separation

Random division the whole dataset into training, validation and testing set is very

common in statistically data analysis. First, the training data is used to fit the super-

vised learning model. Then prediction errors are estimated by using the validation set

to choose the convenient model. After that, the test set is used to check the general-

ization of error for the selected and tuned final model.

There is no predefined and general rule for the way of partitioning the dataset into

training, validation and test parts, but training sample size is the most determining

factor for supervised learning.

2.2.5 Curse of Dimensionality

In machine learning, we have to deal with high dimensional feature space which

means many input attributes for each observation (or sample). This phenomenon can

reveal some serious complications and affect negatively the design of the learning

task.

Little or nothing in the way of data reduction is provided, which leads to severe re-

quirements for computation time and storage. With sufficient observation samples,

some of the dimensionality problems can be overcome, but not all of them. Besides,

the number of samples required may be very large. The demand for samples can in-

crease exponentially or power law growth with the high-dimensional feature space.

This serious difficulty is often called the curse of dimensionality [6].

One of the key reasons for the curse of dimensionality is that high-dimensional cal-

culations have more tendency to the potential computational and storage problems

than low-dimensional ones. The other one is that it creates noise and hides the real

patterns and makes the classification problem more intractable.

9

2.2.6 Generalization and Overfitting

The ability of classification of test data, which have not been seen by the model yet,

is called generalization. Generalization with small error rate is a main aim of all kind

of learning methods. Generalization property of a learning method can be checked

by validating the model with different and separate test sets.

While trying to reduce training set classification/regression errors, complexity of the

classifier should be adjusted by taking generalization issue into consideration.

Over trained complex models may perform perfect classification on the training set

during learning process, but not on the new data. This phenomenon is known as over-

fitting. There is quite important tradeoff between highly complex structure that tends

to overfitting and simple structure producing poor classification result on novel ob-

servation samples. Therefore this problem is one of the important research challenge

in machine learning and pattern recognition.

2.2.7 Dimension Reduction

As mentioned earlier, one of the major problem is curse of dimensionality in machine

learning and pattern recognition. Moreover, limited resource and computational com-

plexity are the major concern in these areas. Hence, dimensionality reduction also

known as feature reduction methods are proposed. To design and tune a success-

ful classifier with better generalization ability, reducing the number of dimensions is

also critical, especially when limited number of samples (or observation, data points)

exist for training process. Besides, noise elimination and outlier detection are other

positive capabilities of the feature reduction methods.

Most of the dimensionality reduction techniques provide a functional mapping. For

example principle component analysis, which is a popular dimensionality reduction

method, is used due to linear mapping ability. Principle component analysis tries to

find a lower independent dimensional representation of original data with respect to

the variance values of the feature space.

10

CHAPTER 3

BENCHMARK METHODS USED IN TIME SERIES

CLASSIFICATION

In this chapter, theoretical explanations and mathematical derivations of the com-

monly used benchmark methods for time series classification are presented. Nearest

Neighbor algorithm using Dynamic Time Warping distance measures and Multi-Class

Support Vector Machines are examined in the following sections.

3.1 Dynamic Time Warping with Nearest Neighbor Classifier

3.1.1 Dynamic Time Warping

Dynamic Time Warping (DTW) [49] is a commonly used distance measure for time

series clustering and classification applications. The working principle of this method

is finding the minimum cost path between two time series by providing nonlinear

alignments using dynamic programming. In other words, DTW tries to align time

series by warping them in a non-linear way so that pairwise distance is minimized.

Lock-step distance measures like Euclidean distance compare same sequenced points

of time series. However elastic distance measures like DTW allow comparison of

one data point of a time series to many data points of the other time series. Lock-step

distance measure and elastic distance measure illustrations can be seen from Figure

3.1 .

DTW was invented to increase the performance of automatic speech recognition orig-

inally but researchers developed and adapted the technique and its variants to their

11

research areas such as manufacturing, medicine, robotics and gesture recognition, see

[26, 14, 51, 25], for more details.

(a) Lock-step distance measure (b) Elastic distance measure

Figure 3.1: Distance measures type illustration

Warping window is a parameter used to optimize the dynamic time warping classi-

fier. Warping window, shown as the percentage of the time series length, defines the

maximum allowable phase difference between a reference point and a testing point.

While restricting the path, it also helps to reduce the computational load of DTW. Dy-

namic Time Warping with warping window size, Derivative Dynamic Time Warping

(DDTW) [38] and weighted dynamic time warping (WDTW) [34] are some of the

popular modified versions of DTW.

More complex DTW-based similarity measures like LCSS [58], Swale [44], SpADe

[17] have been developed by research groups for specific purposes. However [60]

demonstrates that these complex similarity measures can not show any significant

improvement in datasets collected from various application domains.

DTW is an optimization problem with several constraints. Let’s say we have two time

series Q and C whose lengths are m and n.

Q = q1, q2, ..., qi, ..., qn (3.1)

C = c1, c2, ..., cj, ..., cm (3.2)

m-by-n matrix is constructed so as to align the Q and C in DTW and (ith, jth) element

of the matrix defines the distance between qi and cj , d(qi, cj),. The warping path of the

series can be represented as W and an element of W can be shown as Wk = (i, j)k.

W = w1, w2, ..., wk, ..., wK (3.3)

12

where max(m,n) ≤ K < m+ n− 1

Warping path constraints can be analyzed in there main categories which are namely,

boundary conditions, continuity and monotonicity.

With respect to the boundary conditions warping path should start with point w1 =

(1, 1) and finish at point wK = (m,n).

In consecutive adjacent path cells, wk = (a, b) wk−1 = (ā, b̄), a− ā and b− b̄ should

be less than or equal to 1. These rules reflect the continuity property of DTW.

Monotonicity constraint forces the points in the path to be monotonically spaced.

wk = (a, b), wk−1 = (ā, b̄), a− ā and b− b̄ should be bigger or equal to 0. The path

minimizing the warping cost is

DTW (Q,C) = min

{√∑K
k=1wk

K

}
. (3.4)

Equation (3.4) can also be expressed as a recursive cumulative formula. This repre-

sentation is suitable to solve the problem using dynamic programming,

γ(i, j) = d(qi, cj) +min{γ(i− 1, j − 1), γ(i− 1, j), γ(i, j − 1)}, (3.5)

where γ(i, j) represents the minimum cumulative distance at arbitrary alignment

point (i,j).

If Lp distance is used in DTW calculations. For a real number p ≥ 1, the Lp-distance

or Lp-norm of x is defined as

|| x ||p= (| x1 |p + | x2 |p +. . .+ | xn |p)
1
p . (3.6)

Therefore Equation (3.5) turns into

γ(i, j) =| qi, cj |p +min{γ(i− 1, j − 1), γ(i− 1, j), γ(i, j − 1)}. (3.7)

Minimum of the cumulative distance shown in Equation (3.7) can be evaluated

effectively by using dynamic programming.Trajectory demonstrates the warping path

as w1, w2, . . . , wk , and the dashed lines define an envelope which the trajectory must

lie in for an arbitrary warping parameter in Figure 3.2 .

13

Figure 3.2: DTW warping path illustration

WDTW and DTW with limited warping window algorithms try to reduce the warping

ratio between two time series.

If the series have fluctuations not only in X-axis, but also in Y-axis, it is possible

that DTW cannot be successful. DTW is sensible to global differences such as offset

translation or amplitude scaling effects [38]. To avoid the negative effects of these

cases DDTW algorithm has been devised. The main difference between DTW and

DDTW is that we should take discrete derivatives of data points in DDTW. In DDTW

time sequences transformed with respect to the following formula,

D[Q] =
(qi − qi−1) + ((qi+1 − qi− 1)/2)

2
, 1 < i < m

D[Q1] = D[Q2],

D[Qm] = D[Qm−1],

(3.8)

14

where D[Q] refers to the data points of series Q and

D[C] =
(ci − ci−1) + ((ci+1 − ci− 1)/2)

2
, 1 < i < n

D[C1] = D[C2],

D[Cn] = D[Cn−1],

(3.9)

where D[C] refers to the data points of series C.

3.1.2 K-Nearest Neighbor Classifier

Nearest neighbor classification is one of the most basic and nonparametric classifi-

cation methods in statistical data analysis. The main idea is finding the instances in

the training set that are the closest to new instance to be labelled. Then taking the

most commonly seen target class label as a classification result. k value defined in k-

Nearest Neighbour (KNN) algorithm [23] stands for the number of closest instances

that should be examined before deciding the class label.

The basic and classical k-Nearest Neighbor classifier uses Lp norm distance as a

distance measures. Euclidean distance with nearest neighbor classifier model is one

of the most common classification methods in literature. However it is not specialized

for a time series classification purposes.

3.1.3 DTW with KNN Classification Method

Due to unsuitability of the classical KNN approach to the time series data, DTW with

KNN classifier has been developed in this study. Actually nearest neighbor classifier

with DTW is very common and a state-of-art method in time series classification

and clustering due to non-linear mapping capability [37, 11]. DTW is the distance

measure of k-nearest neighbor classifier instead of Lp norm distances. Researches

demonstrate that 1-NN with DTW has been found very effective and successful on

classification of time series [63]. The number used as k value (e.g. 1-NN, 4-NN)

indicates how many closest neighbor need to be checked before deciding the target

value.

15

3.2 Multi-Class Support Vector Machines

3.2.1 Support Vector Classifier

Although simple K-NN with DTW distance classifier has produced better results than

the other classification methods, many studies have worked on other well-known

models tried to adopt them for time series analysis [63]. Support vector classifiers is

one of the most trending topics in last decades and often surpasses the K-NN method

on classification problems. Therefore to classify time series, Support Vector Ma-

chines (SVM)-based algorithms have been studied intensively in diverse application

domains, see [62, 21, 5, 66, 48, 45, 46] for more details.

In this section, firstly two class linearly separable SVM [19] method, then the general

version, multi class version and kernel version of SVM will be briefly explained. In

SVM, the main goal is to find a hyperplane that divides the training set into the classes

with the largest margin, distance from the decision line to closest data points of each

class, and classify them with minimum error.

w.xi + b ≥ 1, yi = 1. (3.10)

w.xi + b ≤ −1, yi = −1. (3.11)

where yi is the class indicator, xi is the features of each observation and w describes

the normal vector to the hyperplane that separates the data points.

The hyperplane described in Equations (3.10), (3.11) can be combined as (3.12).

yi(w.xi + b) ≥ 1,∀x. (3.12)

Since we know that generalization issue has crucial importance in designing stage

of the classifiers, we should choose the hyperplane classifier having the maximum

margin space separating the classes. The hyperplane which provides the same amount

margin space to the closest samples of each class should be defined. To find the best

direction giving the maximum margin space mathematically we should use Equation

(3.13) that gives the distance of hyperplane to the nearest points of each class.

b

|| w ||
(3.13)

16

where || w || is L2 norm of w. Figure 3.3 illustrates this phenomenon clearly.

Figure 3.3: Hyperplane with margin length of two-class SVM

Let’s scale the distance b to 1 for y1 and to -1 for y2. Then try to search the direction

giving the maximum margin length.

Then margin length
1

|| w ||
+

1

|| w ||
=

2

|| w ||
(3.14)

requiring that

w.xi + b ≥ 1, ∀x ∈ y1

w.xi + b ≤ −1, ∀x ∈ y2
(3.15)

If class indicator yi takes +1 for w1 and -1 for w2, the problem can be transformed to

the minimization problem such that

minimize J(w) =
1

2
|| w ||2 (3.16)

subject to yi(xiw + b) ≥ 1 i = 1, 2, ..., N (3.17)

17

where N is the number of samples.

By applying the Karush Kuhn Tucker (KKT) conditions to Equation(3.16)-(3.17)

∂

∂w
L(w, b, λ) = 0, (3.18)

∂

∂w0

L(w, b, λ) = 0, (3.19)

λi ≥ 0 i = 1, 2, ..., N, (3.20)

λi[yi(xiw + b)− 1] = 0, i = 1, 2, ..., N. (3.21)

where λi is Lagrangian multiplier. Then the Lagrangian function is

L(w, b, λ) =
1

2
wTw −

N∑
i=1

λi[yi(xiw + b)− 1]. (3.22)

Using Equation (3.18), (3.19) and (3.22) we can get the hyperplane which divides

the classes optimally

w =
N∑
i=1

λiyixi, (3.23)

N∑
i=1

λiyi = 0. (3.24)

So as to compute Lagrangian multipliers we can use Lagrangian duality as

maximize L(w, b, λ) (3.25)

subject to w =
N∑
i=1

λiyixi (3.26)

N∑
i=1

λiyi = 0 (3.27)

λ ≥ 0. (3.28)

Substituting Equation (3.26) and (3.27) into (3.25) we get

max
λ

(N∑
i=1

λi −
1

2

∑
i,j

λiλjyiyjx
T
i xj

)
(3.29)

18

subject to w =
N∑
i=1

λiyixi (3.30)

λ ≥ 0. (3.31)

After finding the optimum Lagrangian multipliers (λi) from Equation (3.29), by

substituting Lagrangian multipliers into Equation (3.26) optimal hyperplane can be

calculated.

In general nonseparable cases the hyperplanes cannot separate the classes without

false classification. There are three kinds of data points in nonseperable case as shown

in Figure 3.4 .

Figure 3.4: General non-separable hyperplane illustration

In first category data points are located outside of the hyperplane channel with correct

labels. In second category, data points fall inside hyperplane channel, are correctly

classified and marked with rectangle. In the last category circle-marked data points

are classified falsely.

19

In nonseparable case Objective Function (3.16) and Inequality (3.17) should be

replaced with

minimize J(w, b, ξ) =
1

2
|| w ||2 +C

N∑
i=1

ξi (3.32)

subject to yi(xiw + b) ≥ 1− ξi, i = 1, 2, ..., N (3.33)

ξi ≥ 0 i = 1, 2, ..., N. (3.34)

where xii is the positive slack variable

For the first category of data points ξ = 0 as explained in separable case, for the

second category 0 > ξ ≥ 1 and for the last category ξ > 1. C is a positive constant

parameter and balances the sub-cost functions in Equation (3.32).The cost parameter,

C, must be determined by the user. The best cost parameter can be obtained using

parameter search algorithms such as grid search. C
∑N

i=1 ξi is the penalized part

of the objective function. The solution and further derivation of Objective Function

(3.32) with Inequalities (3.33),(3.34) can be examined from [20, 55, 24].

The kernel function has essential importance in SVM. In fact the kernel function is a

similarity measure for the data points. Non-linear transformation (or mapping) of the

inputs to the high-dimensional feature space helps us work in non-separable cases.

After the operation by a function, Φ, the linear separation problem of the inputs can

be solved in the high-dimensional space. The duty of kernel functions is to take inner

product of mapped data points.

k(x, y) = Φ(x) · Φ(y). (3.35)

There is no need to transform all the data points with Φ due to computational load

and unnecessity. Using the kernel function corresponding to the Equation (3.35),

dot product, we can reduce the computational time.

High dimensional transformation, the linear separation process and its reflection to

the low dimensional space example can be monitored in Figure 3.5 .

20

Figure 3.5: Basic non-linear kernel SVM operation

We should be careful about not violating the convexity properties of the SVM when

using kernels. Hence, to achieve proper transformation, we should use positive semi-

definite (PSD) definite kernel functions [27, 53]. As mentioned before, kernel func-

tions increases the chances of more accurate separation of classes. However choosing

the proper kernel function requires expert knowledge about data and kernel model. In

our study we have used trial and error method while selecting the kernel function. All

of the parameters used in kernel functions are searched by grid search technique.Some

of the most common kernels used in non-linear SVM operations are presented below.

Polynomial kernel classifiers

k(x, xi) =
〈
x, xi

〉d
, (3.36)

where d is degree of polynomial.

Radial Basis Function(RBF) classifiers

k(x, xi) = exp(− || x− xi ||2 /c) where c > 0. (3.37)

Sigmoid Function classifiers

k(x, xi) = tanh
(
κ〈x, xi〉+ Θ

)
, (3.38)

21

where κ > 0, Θ ∈ R, 〈x, xi〉 denotes inner product.

In the literature, there are different kinds of approach for multi-class SVM classifi-

cation. One of these approaches is classifying one class in each iteration. The name

of this procedure is one-against-rest method and this approach has been used widely

in SVM researches [12, 50]. Another approach is called the one-against-one method.

This method defining
(k(k−1)

2

)
hyperplanes where each one is trained to separate two

classes (k is the number of class). The other and the most systematic approach is di-

rect multi-classification by modifying the objective function. By applying this direct

method to the classification tasks all classes can be separated at once in a simultane-

ous way [53]. Related derivations and explanations can be examined from [61] and

[53].

22

CHAPTER 4

NEURAL NETWORKS, DEEP LEARNING & FRAMEWORK

In this section firstly the neural network architectures and working principles have

been introduced for the background information. Then the training mechanism and

specialized versions of artificial neural networks have been demonstrated. Afterwards

the deep learning concepts derived from neural network has been presented in a de-

tailed way. We have proposed two deep learning based classifiers which were con-

structed using Stacked-Autoencoder (SAE) and Deep Belief Networks (DBN).

4.1 Neural Networks

Neural networks are seen as a class of mathematically structured models inspired by

biological neural networks in living complex organisms. Although relation between

artificial neural network and real neural system is weak, the working principles of real

neural system are tried to be emulated by artificial neural networks in simple way.

The artificial neural networks have been widely used to solve problems such as time

series prediction, image processing, classification, regression analysis, data process-

ing, pattern recognition, decision making, clustering in areas like fraud detection,

astronomy, process control, cognitive sciences etc. See [29, 3, 42, 2] for more details.

4.1.1 Artificial Neurons

Basic block of artificial neural network is an artificial neuron that shows some similar-

ities with a biological neuron. A biological neuron collects signals from other neurons

23

via their dendrites; then these signals are collected and the response is generated by a

cell. Afterwards the response is distributed by axons to the other neurons.

Similarly, in artificial neuron case, the individually weighted inputs are transmitted to

the body of artificial neurons. The body sums the weighted inputs and bias. Then the

summation is processed with respect to the defined transfer function.

First formal definition of a basic computing neuron model is made and formulated

by McCulloch and Pitts [43] in 1943. In these definitions the output function was a

step function. It means when the specific threshold value is met, the output takes a

value; in the other case output result value is zero. McCulloch and Pitts model can be

examined in Figure 4.1 .

Figure 4.1: McCulloch and Pitts model: weights are represented as wi, input are xi

,output is o and the transfer function is τ .

Formulation of McCulloch and Pitts model:

ok+1 =

 1 if
∑n

i=1wix
k
i ≥ T

0 if
∑n

i=1wix
k
i < T

 . (4.1)

The positive weight values reflect inhibitory connections while the negative ones des-

ignate excitatory. The developed version of the general model is not using a basic

thresholding stage but a transfer function block instead. Common expression used

for output is y, o or f(net) in the literature. Also a bias can be added to the input of

transfer functions in the general model.

Transfer function processes the weighted input signals and biases. Hence the general

24

mathematical model is descried as

y(k) = F
(n∑
i=1

wi(k)xi(k) + b
)
. (4.2)

A linear combination of multiple linear functions is still a linear functions. Therefore,

if each of the neurons in a network uses a linear function, then the final output of the

neural network will be the linear function combinations of inputs. Hence, generally

the neurons perform the nonlinear operation in their activation functions.

Typically used application functions are either bipolar continuous / binary functions

or unipolar continuous / binary functions. The difference between unipolar and bipo-

lar functions are that bipolar functions can produce both negative and positive re-

sponses while unipolar ones produce only non-negative responses.

(a) Bipolar continuous function (b) Unipolar continuous function

Figure 4.2: Continuous Sigmoid Activation Functions

Bipolar continuous activation function is

f(net) =
2

1 + exp(−λnet)
− 1. (4.3)

Unipolar continuous activation function is

f(net) =
1

1 + exp(−λnet)
. (4.4)

Unipolar and bipolar continuous functions shown in Figure 4.2 are often called sig-

moidal characteristics or sigmoid functions. Bipolar structures are more common

than the unipolar functions in artificial networks and the bipolar sigmoid functions

25

are the most common ones. Moreover, artificial neurons that have binary and contin-

uous transfer function are called binary and continuous artificial neuron perceptron

respectively. Binary perceptron can be most commonly used in the output layer of the

artificial neural networks for classification problems.

Bipolar binary activation function can be given as

f(net) = sgn(net) =

 1 if net > 0

−1 if net < 0

 . (4.5)

Unipolar binary activation function is

f(net) = sgn(net) =

 1 if net > 0

0 if net < 0

 . (4.6)

4.1.2 Models of Articially Neural Networks

Single artificial neuron cannot solve real life problems at all, however combining two

or more artificial neurons are capable of solving complex real life problems.

The neural network can be defined as an interconnection of neurons. Related neu-

ron outputs and inputs are connected, through weights. Delay block can be placed

between neurons if needed.

Neurons of an artificial neural network are not randomly interconnected. There are

standardized topologies of neural networks. These topologies are fixed and predefined

so as to solve the problems in an efficient and easy way. These topologies can be

examined in two basic classes which are feed-forward and recurrent topologies. In

feed-forward case information flows in only one direction from the input to the output.

Therefore feed-forward neural network (FNN) topology is also called acyclic graph.

On the contrary, in simple recurrent neural network (RNN) topology the information

does not flow only from input to the output direction, but also flows from output to

the input direction. Hence these kind of topologies can be referred to as semi-cyclic

graphs [39].

26

(a) FNN topology (b) RNN topology

Figure 4.3: Feed-forward (FNN) and recurrent (RNN) topology

Neural networks can be described layer by layer which refers to a group of neurons

in same level as shown on Figure 4.3 . From input to the output direction, the first

layer is called input layer and the last one is named output layer. All remaining layers

placed between the input and output layer are labeled as hidden layers.

Hidden layers are where neural networks stores abstract and internal representation

of the training samples.

A single hidden layer network which has a finite number of units can be trained

to express any random function with an acceptable error ratio with respect to the

universal approximation theorem. Although single hidden layer network is sufficient

to learn any function, multi hidden layer networks can give better results.

4.1.3 Feedforward Networks

Feed-forward artificial network is basically artificial neural network with feed-forward

topology. This topology has one main condition that the information should flow only

from the input to the output direction. There is no limitation or restriction on type of

transfer functions, number of connections between neurons or number of layers such

as deep networks.

Simple feed-forward artificial network with one hidden layer is shown on Figure 4.4 .

27

Figure 4.4: Feed-forward artificial neural network

Detailed mathematical representation of feed-forward NN can be given as follows in

below. In the Equations (4.7) to (4.14) the transfer functions are represented as Fi.

In fact F1, F2, F3 are input layer transfer functions fed by input signals(xi). wi, qi

and ri are weights of input hidden and output layers respectively. The output of input

layers that feeds the hidden layers are ni. The output signals produced by hidden

layer transfer functions(F3,F4) are shown as mi in the Equations (4.11) ,(4.12) and

(4.13). The biases are represented as bi in all of the following equations. Lastly the

output of feedforward network that assigns the class labels is y.

n1 = F1(w1x1 + b1). (4.7)

n2 = F2(w2x2 + b2). (4.8)

n3 = F2(w2x2 + b2). (4.9)

n4 = F3(w3x3 + b3). (4.10)

m1 = F4(q1n1 + q2n2 + b4). (4.11)

28

m2 = F5(q3n3 + q4n4 + b5). (4.12)

y = F6(r1m1 + r2m2 + b6). (4.13)

y = F6

[
r1(F4[q1F1[w1x1 + b1] + q2F2[w2x2 + b2]] + b4) + ...

...+ r2(F5[q3F2[w2x2 + b2] + q4F3[w3x3 + b3] + b5]) + b6

]
.

(4.14)

Hand calculation of the parameters of artificial neural network is impractical hence

computers and specialized software are used to build and optimize the neural network

for all type topologies.

4.1.4 Backpropagation

The most common training method for neural network is backpropagation algorithm.

Gradient descent method is used in least mean square error of target value to feed

the network and updating the parameters. Backpropagation is a very popular method

because it is useful, powerful and simple.

Setting the weights and biases of neural networks is one of the essential problems.

Backpropagation method tries to find optimal weights based on training samples and

desired target values. Difference between the desired and actual output values is used

in least mean square (LMS) error calculation that is the main input of backpropagation

algorithm. This LMS training error on a training set is the sum over output units of

the squared difference between the actual and the desired output. [20]

LMS Training error is formulated as:

J(w) =
1

2

c∑
k=1

(tk − zk)2, (4.15)

where t is desired and z is actual output vectors of length c, and w is weights of the

network.

29

Figure 4.5: Backpropagation diagram

Randomly initialized weight values are changed with respect to the gradient descent

method to reduce the error. Learning rate defines the amount of the change in weights.

Learning rate is represented as η.

∆wmn = −η ∂J

∂wmn
. (4.16)

While updating the weights of hidden layers and input layers the dependency of

weights should be taken in consideration. If the error is not explicitly dependent on a

hidden-output weight, chain rule differentiation expansion should be used.[20] Such

as for a one-input-layer, one-hidden-layer network the learning rule for the hidden-

to-output weights as follows. By applying the chain rule to find partial derivatives of

the LMS error(J(w))

∂J

∂wkj
=

∂J

∂netk

∂netk
∂wkj

, (4.17)

where wjk represents the hidden to output layer weights and δk is sensitivity value of

outputs.

δk = − ∂J

∂netk
, (4.18)

where netk represents the input of output layer. Then we differentiate Equation

30

(4.16) we get

− ∂J

∂netk
= − ∂J

∂zk

∂zk
∂netk

= (tk − zk)f ′(netk). (4.19)

∂netk
∂wkj

= yj. (4.20)

After taken the derivative in Equation (4.20), we get the weight update (∆wkj)

∆wkj = ηδkyj = η(tk − zk)f ′(netk)yj. (4.21)

For the input-to-hidden weights we applied similar derivations. By applying chain

rule one more time we obtain

∂J

∂wji
=
∂J

∂yj

∂yj
∂netj

∂netj
∂wji

. (4.22)

∂J

∂yj
=

∂

∂yj

[
1

2

c∑
k=1

(tk − zk)2
]

=−
c∑

k=1

(tk − zk)
∂zk
∂yj

=−
c∑

k=1

(tk − zk)
∂zk
∂netk

∂netk
∂yj

=−
c∑

k=1

(tk − zk)f ′(netk)wjk.

(4.23)

The Equation (4.23) expresses the effect of output signal to the LMS error value.

δj = f ′(netj)
c∑

k=1

wkjδk. (4.24)

Finally the weight update value between the hidden and input nodes can be calculated

as

∆wji = ηxiδj = ηxif
′(netj)

c∑
k=1

wkjδk,

where δj and δk are hidden layer and output layer sensitivity values.

(4.25)

Hidden unit sensitivities are proportional to the sensitivities at the output units as

shown in Equation 4.25 and Figure 4.6 .

31

Figure 4.6: Hidden units and output units sensitivity relation (reproduced from [20])

The most common and useful neural network training optimization methods are batch

training and stochastic training. In stochastic training patterns are selected from train-

ing samples randomly. Then with the help of gradient descent algorithm weights are

updated gradually. However, in batch training all of the training samples are used in

learning process. Epoch can be defined as the number of training set presentation to

the network. Lastly, to stop the training process automatically, the stopping criterion

should be defined.

4.1.5 Recurrent Artificial Neural Networks

Recurrent artificial network is basically artificial neural network with recurrent topol-

ogy. In this topology there is no restriction on information flow direction. The in-

formation can flow in backward direction and also in between same level neurons.

Backward flow ability enables recurrent networks to use their internal memory to

examine sequences of inputs.

The most general topology of recurrent network is fully recurrent one where each ba-

sic network block is connected to the other ones directly in all direction. For different

applications, recurrent networks are specialized such as Hopfield [33], Elman [22],

Jordan [35] recurrent networks etc. Fully recurrent artificial neural network can be

32

seen in Figure 4.7 .

Figure 4.7: Fully recurrent artificial neural network

4.1.5.1 Hopfield Artificial Neural Network

Hopfield artificial neural network is a specialized recurrent artificial neural network

used to get stable target information. Hopfield network is an asynchronous and fully

connected graph. These recurrent architectures take two different values either -1,+1

or 0,+1 for it states. Hopfield artificial neural networks have two critical restrictions.

One of them is that there should not be self-loops in network. The other one is that

weights between nodes connections should be symmetric. Symmetric weights assure

that the energy decreases monotonically while following the activation rules. Non-

symmetric weights can cause some chaotic or periodic behaviour. [39, 67]

4.1.5.2 Elman and Jordan Artificial Neural Networks

Elman artificial neural network, also called simple recurrent network (SRN), is a

special recurrent network with tree layer. In these topologies there is a back loop

from hidden layer to input layer consisting of unit time delays. Hidden layer transfer

functions of this topology are sigmoid and it has linear output layer. Elman artificial

neural network has a memory allowing to detect time-varying pattern information and

generate that pattern. Spatial and temporal pattern can be detected by Elman artificial

neural network. [28]

33

Figure 4.8: Elman artificial neural network (reproduced from [28])

The only difference between Jordan and Elman neural network is that Jordan network

context unit is connected to the output layer, not to the hidden layer.

4.1.5.3 Long Short Term Memory

Long Short Term Memory is another topology of recurrent artificial neural nets. It can

classify and predict time series with both short and long lag times between important

events. Long Short Term Memory is much more capable of remembering information

than the basic recurrent artificial networks. Transfer function of input layer of Long

Short Term Memory is sigmoid.

Architecture of Long Short Term Memory can be seen in Figure 4.9 .

Figure 4.9: Simple Long Short Term Memory artificial neural network

34

The most critical neurons in the input layer are third and fourth neurons. Third neuron

determines how long the memory unit will remember the information and bottom

neuron decides when value from memory should be passed to output [39].

4.1.5.4 Bi-directional Artificial Neural Networks

Bi-directional Artificial Neural Networks are specialized to predict complex time se-

ries like Long Short Term Memory. Bi-directional Artificial Neural Networks can

give better results than Long Short Term Memory in time series prediction problems

[59].

Bi-directional are named direct and inverse directional neural networks. These two

individual artificial sub-networks are interconnected through two dynamic artificial

neurons. These neurons can remember their internal states. This structure also allows

artificial network to predict not only future but also past values. After one of the

artificial neural sub-network learns how to predict future values in first phase, the

second sub-network learns predicting past values in the second phase.

Architecture of Bi-directional Artificial Neural Networks can be monitored in Figure

4.10 .

Figure 4.10: Bi-directional Artificial Neural Network (reproduced from [39])

35

4.1.5.5 Stochastic Artificial Neural Network

Stochastic artificial neural network can be constructed either by giving stochastic

weight to the artificial network inputs or by arranging the transfer functions of net-

work as a stochastic transfer function. Random fluctuation can help us to avoid local

optimal solutions, so stochastic artificial neural network is useful for optimization

areas.

A special form of stochastic recurrent artificial neural network is Boltzmann ma-

chines whose transfer functions are stochastic. Boltzmann machines can be seen as

the stochastic, generative counterpart of Hopfield nets [1].

4.2 Deep Learning

Deep learning concept have been inspired by artificial neural network and uses the

structures of neural networks. We have proposed two methods in this study which are

Autoencoder (AE) and Restricted Boltzmann Machine (RBM) based models using the

NN training principles. Such as the Autoencoder is a special type of feedforward and

the Restricted Boltzmann Machine is a generative stochastic neural network model.

In the last decade, deep learning has been seen as an emerging branch of machine

learning research [7, 32]. It takes the name of deep due to its deep and hierarchi-

cal structures. Until recently, shallow structured architectures such as Gaussian mix-

ture models (GMM), support vector machines (SVM), multi-layer perceptrons (MLP)

which has a single hidden layer (including extreme learning machines) were used in

signal processing and machine learning areas. Some real world applications except

for well-constrained and simple problems cannot be solved with shallow architec-

tures.

Deep learning studies have been impacting lately a wide range of signal and informa-

tion processes. It has also developed the scope of problem definitions and solutions

especially in machine learning areas.

Deep learning (DL) can be described in many ways depending on the purpose of

36

using it. Basically deep learning is an improving branch in machine learning that

has many complicated layers to process information in nonlinear way. Main intended

purposes of deep learning are both supervised and unsupervised feature selection,

data transformation and classification. Higher level and more complex features can be

extracted with this hierarchical technique. Developing deep learning concepts move

machine learning areas closer to the AI (artificial intelligence) which is primarily

purpose of machine learning.

There is a growing interest in deep learning in the past couple of years. Also there

are some reasons for the popularity of deep learning in recent years. First of all, de-

velopments in the processing chip technology, especially in the graphical processing

units (GPU) area, allow us inspect the bigger amount of data and parallel processing

in very limited time. GPUs are highly suited for the matrix/vector math operations

involved in machine learning. GPUs have been shown to speed up training algorithms

significantly. Hence increased size of training data demand would not be a problem

anymore. The advances in information technology, machine learning and signal pro-

cessing research also increases the importance of complex and non-linear approaches

to learn feature spaces. Besides it has one more positive aspect which is deep learning

can be used for both unlabeled and labeled data.

One of the main advantage of deep learning is that it replaces handcrafted features

with effective methods for semi-supervised and unsupervised feature learning and hi-

erarchical feature extraction. [54] Also one essential principle of deep learning is that

it uses raw features for classification problems. By way of explanation, deep learning

transfers the data to more compact level in each consecutive layer, and eliminates the

redundancies and outliers, and does not try to learn manually extracted and specially

designed features [65]. Deep learning helps to disentangle abstract concepts being

learned from the lower level ones and pick out which features are useful for learn-

ing [8]. However when shallow structured learning method is applied to the linearly

non-separable data, highly expert knowledge and huge computational analysis are es-

sential to define the kernel functions and cost variables. Moreover, selecting domain

specific features is also time-consuming.

The deep learning also overcomes the curse of dimensionality [9] issue also men-

37

tioned in chapter 2.2.5 which is one of the major problems in machine learning and

pattern recognition while the shallow-structured learning method does not. Learn-

ing methods based on local generalization can suffer from highly varying functions.

Deep learning can overcome this curse of dimensionality problem with the use of

distributed representations and different training protocols.

Deep learning concept is inspired by artificial neural network (ANN) research (new

generation NN). Layers that have been used in deep learning include hidden layers

of an artificial neural network and sets of complicated propositional formulas [7]. In

deep generative models, layer wise organized latent variables may also be included.

Deep Belief Networks (DBN) and Deep Boltzmann Machines (DBM) can be given

as successful examples of these deep generative models.

More hidden layers with many neurons in a DNN can improve the power of models

and get closer to the optimal scenario. However using more deep and wide networks

increase the computational time in training process. Resource requirement also in-

creases with complexity.

Although the larger deep networks learn better and improve the power of models,

adding more hidden layers does not always give better results. More hidden layers

makes the backpropagation less effective for the first layers. Hence the gradient de-

scent algorithm may fail to find optimal global solution. This phenomenon is named

as vanishing gradient problem in machine learning. The other negative aspect of

larger networks is overfitting problem.

So as to solve the vanishing gradient and overfitting problems some unsupervised

pre-training methods were introduced and have been being developed. [32, 10] Un-

supervised greedy layers-wise training should be done separately and successively.

Training begins from the first hidden layer and continues to the last layer of deep

network. After that, fine tuning-process to whole network should be performed in

supervised way. Training procedure are shown on Figure 4.11 in simple way.

38

Figure 4.11: A greedy unsupervised layer-wise pretraining stage followed by a super-

vised fine-tuning stage affecting all layers (reproduced from [4])

Deep learning is much related to, signal processing, artificial intelligence, pattern

recognitions, optimization and graphically-represented modelling main fields.

Various deep learning architectures have been implemented to fields such as com-

puter vision, automatic speech recognition, image and speech feature coding, natural

language understanding, audio processing and recognition, hand-writing recognition,

bioinformatics, medical areas. The real impact of deep learning in industry started in

large-scale speech recognition around 2010.

4.2.1 Applications of Deep Learning

Recognition of speech signals automatically is the most widely used and successful

case among the all deep learning applications. Almost all of the currently used big

commercial speech signal recognitions system uses deep learning based algorithms.

(Apple Siri, Skype Translator, Microsoft Cortana . . .)[65].

Sequence division and discrimination, feature processing, multi-tasking, convolu-

tional neural nets and complex version of LSTM recurrent networks processes are

conducted by deep learning based models in automatic speech recognition.

Very recently, deep learning methods outperformed the shallow-structured state of art

methods in computer vision area especially in image and object recognition branch of

39

computer vision. Nowadays major image processing and object recognitions projects

based on deep learning uses pre-trained ImageNet database[40]. With the pre-trained

model and successful fine tuning stage, challenging tasks of automatic object detec-

tion problems can be solved and performances are improved.[57]

Deep learning techniques are currently used for inventing or developing drugs and

toxicology experiments lately. CRM automation system also prefers deep reinforce-

ment learning in direct marketing settings. In linguistics, especially in sentiment

studies, word embedding and machine translation areas deep learning gives promis-

ing results. Deep learning based approaches are getting more and more common in

Bioinformatics.

4.3 Autoencoders

An autoencoder is a special type of feedforward neural network model designed to

learn compressed representation of given dataset. Actually, the autoencoder was first

proposed as a feature reduction model. The linear autoencoder can give same inde-

pendent representation of dataset as Principle Component Analysis. An autoencoder

has two layers the first of which is compression layer commonly named as encoding

layer, the other one is decoding layer. The number of decoding layer units is equal to

the number of input variables tried to be compressed. Autoencoders are trained so as

to recover an input sample as much as possible i.e., the output and the input data are

nearly the same.

Figure 4.12: Basic Autoencoder architecture

40

In Figure 4.12 , hidden layer encodes the inputs, and the outputs layer tries to decode

the encoded input. The basic formulation of this process is

fdec(fenc(x)) = x̂ ' x. (4.26)

The number of hidden units should be smaller than the number of output layer units

to force the network to learn compressed, compact and important features. Both

dimensionality reduction and outlier detection operations would be achieved in en-

coding procedure. Therefore by favoring simpler representations, overfitting related

problems would be avoided during feature detection procedure.

The training of autoencoders can be achieved by applying back-propagation of output

layer error. Cross-entropy and LMS errors are two commonly used error types for

backpropagation.

LLMS(x, x̂) =
1

2

c∑
i=1

(x̂i − xi)2. (4.27)

LCE(x, x̂) =
c∑
i=1

[(xilogx̂i + (1− xi)log(1− x̂i)]. (4.28)

To avoid unwanted negative effects of training process like encoding identity function,

fenc(x) = x, tied weights constraint can be added.

Working principle of an autoencoder based deep learning algorithm can be demon-

strated with a basic running example. In the illustration, the main objective is to detect

sick patients who have flu symptoms. Let’s suppose

• There are six binary criteria (features) for all of the patients.

• The first three criteria are symptoms related to flu illness. For instance, 1 0 0 | 0

0 0 reveals that the patient is coughing, and 0 1 0 | 0 0 0 reveals that the patient

has a high temperature. The combination of high temperature and coughing is

shown as 1 1 0 | 0 0 0, so on

• The last three binary attributes (criteria) are counter symptoms. If the patients

have one or more than one "1" values at these features, it’s more likely that

they are healthy. For example, 0 0 0 | 0 1 0 indicates that the patient has a flu

vaccine. Hence, 0 1 0 | 0 1 0 indicates that the patient has a flu vaccine but also

he has a high temperature, and so forth.

41

In this illustration we will consider the patient to be sick when the sum of the last

three attributes are less than the sum of the first three. Ties breaking in favor of the

healthy patients. e.g.:

110 | 010, 111 | 001, 101 | 100, 011 | 010, 001 | 000, . . . = sick patients

111 | 111, 010 | 011, 100 | 110, 000 | 111, 011 | 101, . . . = healthy patients

We can construct and train an autoencoder with six input, two hidden and six output

units. After hundreds iterations, we can observe that when any of the sick patients

is presented to the AE based network, one of the two the hidden units always ex-

hibits a higher activation value than the other one. On the contrary, when the data of

the healthy patient is presented, the other hidden unit has a higher activation value.

Hence we have a model to classify status of new patients. Also the more compact

representation of inputs is obtained in the hidden layer of the network.

4.4 Stacked Autoencoders

Stacked autoencoders (SAE) is a deep network which is composed of consecutive

autoencoders. A greedy unsupervised learning method is proposed for stacked au-

toencoders in [13, 30]. The hidden layer of the first autoencoder acts as an input of

the second encoder. The hidden layer of the second autoencoder also cats as an input

of a third autoencoder, and so on.

During the training process of first autoencoder, we are interested in only the first

hidden layer and network inputs. Weights of the first autoencoders are updated by

using backpropagation algorithm. After updating the weights, the temporary output

layer, essential for the training stage of the autoencoder, is removed from the network.

For the second autoencoder, the outputs of the first hidden layer are the inputs of the

second hidden layer. Hence after the training procedure of the first autoencoder, we

are no longer interested in the network raw inputs.

This procedure is repeated for all hidden layers. After the pre-training of the hidden

layers, the network is trained in a supervised way which is called fine-tuning stage.

42

In fine-tuning stage the output layer is also needed.

Figure 4.13: Stack autoencoder network diagram

4.4.1 Restricted Boltzmann Machines

The Restricted Boltzmann Machine (RBM) is a generative stochastic neural network

model between input units (visible units) and hidden units (latent units). The connec-

tion between the hidden units and input units are undirected and there is no connection

among the visible units and hidden units.

Figure 4.14: Restricted Boltzmann network diagram

A Restricted Boltzmann Machine probability distribution for input vector is

p(v) =
∑
h

e−E(v,h)∑
u,g e

−E(u,g)
. (4.29)

An RBM defines a joint probability on visible and hidden units as shown in Figure

4.15.

43

Figure 4.15: Joint probability on visibile and hidden units

Then the energy function defined over visible and hidden vectors are

E(v, h) = −
∑
i

aivi −
∑
j

bjhj −
∑
i,j

wijvihj

where ai and bj are visible and hidden unit biases.

(4.30)

According to the neural network propagation rule the conditional probabilities are

p(v | h) =
∏
i

p(vi | h) and p(vi = 1 | h) = sigm
(
aj +

∑
j

hjwij

)
,

p(h | v) =
∏
j

p(hj | v) and p(hj = 1 | v) = sigm
(
bj +

∑
i

viwij

)
.

(4.31)

To define the Gaussian-Bernoulli RBM energy function can be approximately modi-

fied as

E(v, h) =
∑
i

(vi − ai)2

2σ2
i

−
∑
j

bjhj −
∑
i,j

wij
vi
σi
hj. (4.32)

Then the conditional probability p(h | v) is unchanged while p(v | h) becomes

Gaussian function whose mean is

ai + σi
∑
j

wijhj. (4.33)

and diagonal covariance matrix is

p(vi = x | h) =
1

σi
√

2π
.e
−

(
x−ai−σi

∑
j wijhj

)2

2σ2
i ,

p(hj = 1 | v) = sigm
(
bj +

∑
i

vi
σi
wij

)
.

(4.34)

44

4.4.2 Contrastive Divergence

In order to train RBMs as a probabilistic model, contrastive divergence algorithms

is proposed [31]. Contrastive divergence has two phases which are the positive and

negative phase. In positive phase the input vector is propagated from visible layer to

the hidden layer. On the contrary in the negative stage the hidden vector is propagated

back to the visible unit. Then the weights are updated

w(t+ 1) = w(t) + a(vhT − v́h́T) where a is the learning rate. (4.35)

The purpose of using contrastive divergence is reducing the reconstruction error while

trying to recreate the input data by using internal generated data. If reproduction of

model is not close enough to the input data, model makes an adjustment and tries to

recreate it with less error.

4.4.3 Deep Belief Networks

Like the stacked autoencoders, in the deep belief network layers are trained unsuper-

visedly. Deep belief networks need to be trained greedily, just one layer at a time.

This structure helps to overcome the overfitting and vanishing gradient problems as

we mentioned in the stacked autoencoders. The visible layer of each Restricted Boltz-

mann Machine is set to the hidden layer of the previous one. Contrastive divergence

training is repeated for all the layers. Then similar to the stacked autoencoders, after

the pre-training process, the model should be trained a supervised manner by using

backpropagation algorithm. During fine tuning stage the connection between the lay-

ers should be arranged depending on the application.

Figure 4.16: Deep Belief Network diagram (reproduced from [56])

45

If we want to summarize the training procedure:

• Construct an RBM with one input and one hidden layer.

• Train the constructed RBM in an unsupervised way.

• Add another hidden layer on top of the current RBM and construct a new RBM

• Fix the weights of the first RBM, take a sample from the hidden layer of the

first RBM using the probability distribution and use this sample as an input to

the new RBM

• Continue to adding new hidden layers on top of the network and train

• Lastly, perform the supervised fine-tuning to the formed neural network.

4.4.4 Deep Kernel Machines and Deep Convolutional Networks

Multilayer Kernel Machines (MKM) [18] can model non-linear function with the

iterative procedure of basic kernel methods. Greedily unsupervised pre-training per-

formed with Kernel Principle Component Analysis (KPCA) [52]. For supervised fine

tuning stage it is common to use Kernel Partial Least Squares method to simplify or

eliminate the cross validation stage.

Deep convolution network is a special kind of deep network designed for image pro-

cessing tasks especially for visual detection and object recognition applications. Main

idea of this network is combining local computations and pooling. Performing unsu-

pervised pre-training can reduce the number of labelled samples needed in supervised

stage. [36]

4.5 Proposed Framework

In Deep Network based algorithms we should first determine the feature length size

because the number of nodes in the input layer should be equal to the attribute size

of dataset. Then we have tried to construct the first network which have one hidden

layer. To find optimal amount of nodes for the first network we have checked average

46

reconstruction errors for different number of nodes in the first hidden layer. The

loss function used for the average reconstruction error in the unsupervised training

procedure of both RBMs and Autoencoders was decided as LMS error defined in

Equation 4.15. This equation is one of the common loss functions used in back-

propagation and contrastive divergence. 1
2

is included to the equation so as to simplify

the gradient value. Reconstruction error checks the ability of reconstruction of input

values of the previous layer after transforming in a compact form in the latter hidden

layer.

While searching the optimal amount of nodes we had a limitation. The number of

nodes in hidden layer should be equal or less than the number of nodes in input layer,

because we have tried to represent inputs in more compact way at the first hidden

layer. After finding the optimal number of nodes in the hidden layer and training the

first network, the first network was ready to supervised fine tuning stage.

The second network has two hidden layers, the third one has three and so on. For

the second network we should find the optimal number of nodes in the second hidden

layer. The amount of nodes in the first hidden layer of the second network and the

weights were already fixed in the unsupervised stage of the first network. The number

of nodes in the second hidden layer should be less than or equal to the number of

nodes in the first hidden layer, due to the same compactness reason. After fixing

and training the second network using backpropagation or contrastive divergence, the

second network was also ready to fine tuning stage. Illustrative diagram of proposed

methods for the first two networks can be seen in Figure 4.17.

For each dataset we have different network options which have different depth. The

number of nodes has decreased gradually in subsequent hidden layers of later net-

works as we can figure out. Since the number of nodes decreases through successive

hidden layers gradually, we can get finite number of different architectures for each

datasets.

The network that has the minimum validation error value was selected as the best

winner architecture and the number of epochs giving the best validation error was

decided as a stopping criterion parameter for fine tuning stage of testing set. Finally,

the final tests with testing set were conducted by the model fixed on.

47

Fi
gu

re
4.

17
:I

llu
st

ra
tiv

e
di

ag
ra

m
of

pr
op

os
ed

m
et

ho
ds

fo
rt

he
fir

st
tw

o
ne

tw
or

ks

48

If we want to summarize the unsupervised training procedure:

• Step 1-> Construct an RBM/AE with one input and one hidden layer.

• Step 2-> Add nodes to the hidden layer and train the constructed RBM/AE (up

to the number of nodes in the previous layer).

• Step 3-> Measure reconstruction errors for each number of nodes in the hidden

layer of RBM/AE.

• Step 4-> Find the network with minimum reconstruction error and fix the weights

of the network.

• Step 5-> For the next network add another hidden layer on top of the current

RBM/AE and construct a new RBM/AE. Then continue from Step 2.

If we want to summarize the unsupervised training procedure:

• After constructing and fixing the weights of networks with different depth, per-

form the supervised fine-tuning to formed neural networks.

• Lastly, pick the network with minimum validation set error as the best network.

49

50

CHAPTER 5

EXPERIMENTS AND RESULTS

5.1 Datasets and The System Used in Experiments

We have performed the comparative experiments on 4 different time series datasets

taken from the UCR Time Series [16] dataset collection. All of the datasets in UCR

Time Series repository are publicly available and labelled. From over 80 datasets

we chose 4 different dataset gathered from various study fields. These datasets have

different attribute length and different number of class quantities. Predefined sizes

of both training and testing sets are also different. Selected datasets are commonly

used to evaluate methods which are developed by researchers. As mentioned in the

introduction chapter, while selecting these datasets, we have filtered the whole dataset

list with respect to their warping window ratio and samples sizes. One of our filtering

criteria is that sample size of datasets should be adequate for training stages of deep

learning. Moreover warping window parameter has direct relevancy with the process

time of DTW during constructing the pairwise distance matrix.

The proposed method and the benchmark methods are coded and implemented in

Intel (R) Core TM i7 3.60 GHz PC with 16.00 GB RAM using MATLAB R2014b

64-bit. For multi-class SVM algorithm Library for Support Vector Machines (LIB-

SVM) [15], which is C++ based software library, is used. To use this package in

MATLAB, MATLAB executable (MEX) files are generated using MATLAB soft-

ware development kit (SDK) compilers. During implementation of the deep learning

based algorithms some source codes used in [47] are utilized.

The properties of datasets used in the experimental study are listed in Table 5.1

51

Table 5.1: Properties of Datasets Used in Experiments

Name Number of classes Size of training set Size of testing set Time series length

ElectricDevices 7 8926 7711 96

Wafer 2 1000 6174 152

Two Patterns 4 1000 4000 128

ProximalPhalanxOutlineCorrect 2 600 291 80

5.2 Data Preparation

Before starting the experimental study of the algorithms, the data in four different

dataset must be prepared for the tests. All of the datasets consist of training and

testing parts.

DTW with 1-NN classifier does not need validation set to optimize parameters. On the

other hand multi-class SVM based and deep learning based algorithms have various

parameters that needs to be tuned. In order to make use of the computed and reported

results of datasets in [16], the training sets are left as they are, however the testing

set is divided into two parts which are namely validation set and testing set. While

dividing the testing sets into two parts we should be careful about some properties

of the datasets. Firstly, the proportions of each class observations must be the same

as much as possible in testing and validation sets after the division operation. The

second key point is that the selection of samples for separation operation should be

decided randomly. To produce comparative results datasets separated into validation

and testing parts are used in all classification algorithms.

5.3 Measurements and Performance Metrics

The total classification performance can be calculated by comparing expected target

labels with predicted target class labels. The detailed results can be observed from

the confusion matrices whose each row represents the samples in an expected class

and each column represents the samples in predicted classes. To express classification

performances of each class in dataset, the precision and recall criteria will be exam-

ined for proposed methods. Precision can be defined as the fraction of positive results

52

that are correctly identified among the positive predictions while recall is fraction of

positive results that are correctly identified among the real positive values.

Precision =
TP

TP + FP
(5.1)

Recall =
TP

TP + FN
(5.2)

where TP and FP stand for correctly labelled positive samples, and wrongly labelled

positive samples respectively. FN symbolizes wrongly labelled negative observa-

tions.

Besides the classification performances of the proposed and benchmark methods, the

computational time costs will be analyzed in this thesis.

5.4 Experimental Procedures and Performances of Benchmark Methods

Let’s say we have m observations in a training set, n observations in testing set and

the number of attributes equals to p. In that case we should solve the shortest path

dynamic programming problems (m ∗ n) times for DTW with 1-NN classifier. We

know that the number of attributes are the same in both training and testing sets, there-

fore the pxp sized square dynamic programming matrix is constructed for each of the

(m ∗n) distance comparison. By solving the shortest-pairwise distance problem with

dynamic time warping, the distance map whose dimension is mxn is constructed.

1-NN classifier is the decision maker for assigning target values to every n test obser-

vations. Each testing sample gets the class label of a training sample whose pairwise

distance is the smallest. Illustrative example can be seen in Figure 5.1 .

As mentioned in Chapter 3.1.1 , limited warping window parameters can be used to

reduce the phase difference between the samples. While reducing the phase difference

the total time consumption of DTW algorithm is also decreased, because there is no

need to construct full pxp matrix any more. In limited warping window case, the

minimum cost path and minimum distance may change. Therefore, the input of 1-

NN classifier which is mxn distance matrix may change accordingly.

53

Figure 5.1: A dynamic programming solution (p=720 & Darker regions imply bigger

distances)

Figure 5.2: A dynamic programming solution (p=720 & Warping Window Parameter

15%)

54

In [16] warping window parameters were studied, from 0% to 100% , in 1% in-

crements, searching for the warping window sizes giving the highest training per-

formances. Then the warping window parameters which give the best classification

performances were reported. In order to be able to compare computational times

and classification performances we produced DTW with 1-NN and Euclidean Dis-

tance(ED) with 1-NN results of datasets. Due to time constraints and limited re-

sources, we did not search the warping window parameters, but used the reported

ones [16]. ED with 1-NN is one of the most basic and widely used classification

methods, not just for time series but all kinds of data. While demonstrating the DTW

with 1-NN classification accuracies, we also demonstrated the ED with 1-NN perfor-

mances to see the effect of elastic distance measurement operation.

The warping window parameters, classification errors and time spent at the the DTW-

1NN and ED-1NN methods are listed in Table 5.2 . Moreover, confusion matrices

and individual class performances are given in Appendix A.2 and A.1 respectively.

SVM functions are supplied by well-designed LIBSVM library as black-box func-

tions. For given datasets, and input parameters MEX files produce a multi-class SVM

classifier model and optimizes the model parameters. Surprisingly, independent from

the variations of the input parameters, very similar models were produced by the

LIBSVM files. Hence the classification accuracies of the models on validation sets

remain steady in spite of the change in the input parameters.

During the training of SVM classifier, the model is optimized internally without any

external interaction. Due to proprietary properties of LIBSVM, workspace variables

and intermediate level outputs cannot be analyzed.

Because we could not tune the parameters with respect to the change in validation set

error, it is unnecessary and pointless to give the elapsed duration at parameter tuning

phase.

Optimum model training time and elapsed time at final classification testing were

reported with the validation set and error set classification errors for each dataset in

Table 5.3 . Moreover the number of support vectors was specified for all datasets in

the same table. Detailed confusion matrices, precision and recall values of each target

55

Ta
bl

e
5.

2:
B

es
tC

la
ss

ifi
ca

tio
n

R
es

ul
ts

an
d

W
ar

pi
ng

W
in

do
w

Pa
ra

m
et

er
s

of
D

T
W

E
le

ct
ri

cD
ev

ic
es

W
af

er
Tw

o
Pa

tte
rn

s
Pr

ox
im

al
Ph

al
an

xO
ut

lin
eC

or
re

ct

W
ar

pi
ng

W
in

do
w

Pa
ra

m
et

er
s

14
%

1%
4%

1%

D
T

W
w

ith
1-

N
N

er
ro

r
37

.6
%

0.
5%

2.
5%

20
.0

%

Ti
m

e
Sp

en
t(

se
c)

1.
38

7x
10

6
3.

57
1x

10
4

1.
72

8x
10

4
17

6.
01

2

E
D

w
ith

1-
N

N
er

ro
r

45
.8

%
2.

6%
6.

9%
18

.6
%

Ti
m

e
Sp

en
t(

se
c)

3.
72

0.
46

5
0.

23
6

0.
01

1

56

class of dataset are provided in Appendix A.4

5.5 Experimental Procedures and Performances of Deep Learning Approaches

Before trying to train the first RBM of Deep Belief Network and the first Autoencoder

of SAE, the batch sizes for training process should be decided. Batch training concept

makes it possible to obtain more robust models since it allows training with a bunch

of samples in each iteration. In batch training with respect to the average batch error

the weights and bias values are adjusted. The effect of the batch size which is one

of the hyper-parameters on the training performance is not a focus of this work, thus

not extensively studied. The batch sizes for each dataset were chosen intuitively by

examining the training set size of the datasets. We know that the training size of the

dataset should be a multiple of the mini-batch size, a few training observations were

discarded from the set randomly.

In supervised learning the number of epochs is determined with respect to the point

which the validation error starts to increase firmly. Thus we can prevent the over-

fitting and over usage of resources. Although in unsupervised training process the

target values are not defined and the classification error does not exist, we have the

average reconstruction error. As mentioned in Chapter 4.2 , we have tried to represent

the input weights in a more compact way in the hidden layers. Hence the minimum

reconstruction error is the only criteria for the stopping criteria of epochs during un-

supervised learning. When the average reconstruction error of an iteration reaches to

saturated limit values, the stopping criteria for the number of iterations is obtained.

The remaining hyper-parameters used in unsupervised learning which are the learning

rate and momentum were found by grid search method. Grid search tries every single

value can be taken by the hyper-parameter over a specified range. The search was

applied to each of the remaining parameters individually.

While sampling and assigning observations to the mini-batches and updating some

weighs and biases of networks random number generator is used. Therefore the ran-

dom seeds have slight effect on the classification results. To compare performances

of different network architectures, we initialize the random seed in training processes.

57

Ta
bl

e
5.

3:
Pa

ra
m

et
er

s,
Pr

op
er

tie
s

an
d

R
es

ul
ts

of
SV

M
C

la
ss

ifi
er

M
od

el

E
le

ct
ri

cD
ev

ic
es

W
af

er
Tw

o
Pa

tte
rn

s
Pr

ox
im

al
Ph

al
an

xO
ut

lin
eC

or
re

ct

T
he

nu
m

be
ro

fs
up

po
rt

ve
ct

or
s

65
93

96
92

1
39

4

Ti
m

e
el

ap
se

d
at

tr
ai

ni
ng

of
th

e
SV

M
cl

as
si

fie
r(

se
c)

53
.0

20
0.

15
5

1.
14

3
0.

15
3

Ti
m

e
el

ap
se

d
at

te
st

in
g

st
ag

e(
se

c)
3.

67
9

0.
05

3
0.

25
6

0.
00

1

V
al

id
at

io
n

se
te

rr
or

0.
39

3
0.

01
0

0.
14

8
0.

19
2

Te
st

in
g

se
tc

la
ss

ifi
ca

tio
n

er
ro

r
0.

40
4

0.
00

4
0.

06
0

0.
15

2

58

As mentioned in Sections 4.4 and 4.4.3, both deep belief networks and stack auto-

encoders need to be trained greedily with just one layer at a time. The hidden layer of

an autoencoder or a RBM acts as an input layer of the later autoencoder or RBM. To

overcome the overfitting phenomena and represent the inputs in more compact way,

the number of nodes in each hidden layer should be less than or equal to the number

of nodes in input layer. As a matter of fact, if the number of nodes equals in hidden

and input layer, we should be careful that the transfer function does not become an

identity function.

The number of nodes in hidden layers is found by inspecting the minimum recon-

struction errors in unsupervised training stage. During the training of the first RBM,

we construct networks so that the number of nodes in the hidden layer varies from

1 to the number of nodes in input layer of the first RBM. Then these networks are

trained in an unsupervised way and the one that has minimum average reconstruction

error was chosen as a candidate for the best network for fine tuning stage. After fixing

the number of nodes in the first RBM, we tried to get the second candidate network

that has two hidden layers with same procedure. The quantities of nodes in the in-

put and hidden layers are shown in Tables 5.4 to 5.11 . The first network has one

hidden layer to be trained in supervised tuning phase, the second network has two

hidden layers to be trained, and so on. The times elapsed at the unsupervised learning

procedure is also demonstrated in Tables 5.4 to 5.11 .

Table 5.4: Number of Nodes in Each Layer and Elapsed Time at the DBN Based
Unsupervised Learning Phase /for ElectricDevices dataset/

Input Layer Hidden Layers Elapsed Time(sec)

1stNetwork 96 80 0.110x105

2ndNetwork 96 80 42 0.302x105

3rdNetwork 96 80 42 35 0.436x105

4thNetwork 96 80 42 35 35 0.576x105

5thNetwork 96 80 42 35 35 18 0.744x105

6thNetwork 96 80 42 35 35 18 16 0.840x105

7thNetwork 96 80 42 35 35 18 16 8 0.929x105

8thNetwork 96 80 42 35 35 18 16 8 8 0.978x105

9thNetwork 96 80 42 35 35 18 16 8 8 3 1.028x105

10thNetwork 96 80 42 35 35 18 16 8 8 3 2 1.051x105

11thNetwork 96 80 42 35 35 18 16 8 8 3 2 1 1.069x105

59

Table 5.5: Number of Nodes in Each Layer and Elapsed Time at the DBN Based
Unsupervised Learning Phase /for Wafer dataset/

Input Layer Hidden Layers Elapsed Time(sec)

1stNetwork 150 120 0.349x103

2ndNetwork 150 120 31 0.908x103

3rdNetwork 150 120 31 23 1.077x103

4thNetwork 150 120 31 23 22 1.224x103

5thNetwork 150 120 31 23 22 19 1.378x103

6thNetwork 150 120 31 23 22 19 16 1.528x103

7thNetwork 150 120 31 23 22 19 16 7 1.662x103

Table 5.6: Number of Nodes in Each Layer and Elapsed Time at the DBN Based
Unsupervised Learning Phase /for Two Patterns dataset/

Input Layer Hidden Layers Elapsed Time(sec)

1stNetwork 128 98 0.642x103

2ndNetwork 128 98 86 1.622x103

3rdNetwork 128 98 86 75 2.839x103

4thNetwork 128 98 86 75 53 4.213x103

5thNetwork 128 98 86 75 53 44 5.359x103

6thNetwork 128 98 86 75 53 44 13 6.433x103

7thNetwork 128 98 86 75 53 44 13 8 6.789x103

8thNetwork 128 98 86 75 53 44 13 8 1 7.091x103

Table 5.7: Number of Nodes in Each Layer and Elapsed Time at the DBN Based
Unsupervised Learning Phase /for ProximalPhalanxOutlineCorrect dataset/

Input Layer Hidden Layers Elapsed Time(sec)

1stNetwork 80 16 0.210x103

2ndNetwork 80 16 9 0.26x103

3rdNetwork 80 16 9 1 0.298x103

60

Table 5.8: Number of Nodes in Each Layer and Elapsed Time at the SAE Based
Unsupervised Learning Phase /for ElectricDevices dataset/

Input Layer Hidden Layers Elapsed Time(sec)

1stNetwork 96 96 0.101x103

2ndNetwork 96 96 92 0.317x103

3rdNetwork 96 96 92 80 0.623x103

4thNetwork 96 96 92 80 65 0.962x103

5thNetwork 96 96 92 80 65 60 1.293x103

6thNetwork 96 96 92 80 65 60 60 1.644x103

7thNetwork 96 96 92 80 65 60 60 59 2.045x103

Table 5.9: Number of Nodes in Each Layer and Elapsed Time at the SAE Based
Unsupervised Learning Phase /for Wafer dataset/

Input Layer Hidden Layers Elapsed Time(sec)

1stNetwork 152 44 0.480x104

2ndNetwork 152 44 39 0.656x104

3rdNetwork 152 44 39 11 0.864x104

4thNetwork 152 44 39 11 9 0.932x104

5thNetwork 152 44 39 11 9 8 0.996x104

6thNetwork 152 44 39 11 9 8 5 1.059x104

7thNetwork 152 44 39 11 9 8 5 2 1.104x104

Table 5.10: Number of Nodes in Each Layer and Elapsed Time at the SAE Based
Unsupervised Learning Phase /for Two Patterns dataset/

Input Layer Hidden Layers Elapsed Time(sec)

1stNetwork 128 128 0.320x104

2ndNetwork 128 128 39 1.037x104

3rdNetwork 128 128 39 34 1.493x104

4thNetwork 128 128 39 34 32 1.948x104

5thNetwork 128 128 39 34 32 21 2.067x104

6thNetwork 128 128 39 34 32 21 21 2.148x104

7thNetwork 128 128 39 34 32 21 21 21 2.196x104

61

Table 5.11: Number of Nodes in Each Layer and Elapsed Time at the SAE Based
Unsupervised Learning Phase /for ProximalPhalanxOutlineCorrect dataset/

Input Layer Hidden Layers Elapsed Time(sec)

1stNetwork 80 73 9 1.095x103

2ndNetwork 80 73 9 3.092x103

3rdNetwork 80 73 9 4 3.372x103

Even though larger networks can learn and model the data better, the larger networks

do not always give better results due to vanishing gradient problem. In those cases the

supervised training procedures of the deeper networks were cancelled due to resource

and time limitations. Therefore the properties of untrainable networks have not been

demonstrated after a certain level in the Tables 5.4 to 5.11 .

Among all valid unsupervisedly-trained networks with different depths the best net-

works were chosen by using validation set. After the initialization step of the weights

and biases the supervised fine tuning process was applied via the back-propagation

algorithm. During the fine tuning phase, the number of epochs was determined by

monitoring the validation set error instead of training set error. Related error vs the

number of epochs diagrams can be examined in Appendix A . The best networks for

both DBN and SAE based classifiers for all datasets were marked in Tables 5.4 to

5.11 with darker color.

The network that has the minimum validation error value was selected as the best

winner architecture and the number of epochs giving the best validation error was

decided as a stopping criterion parameter for fine tuning stage of testing set. Finally,

the final tests with testing set were conducted by the model fixed on.

The properties of winner networks and supervised tuned parameters were listed below

in Table 5.13 and Table 5.12 . Cumulative times required to specify the best model

and parameters at supervised stage and the elapsed time during the final tests with

fixed models are listed in Table 5.13 and Table 5.12 .

Visual illustration of some of the correctly-classified and all misclassified samples of

Wafer dataset are shown in Figure 5.3 and Figure 5.4 respectively. We observed

that misclassified samples of the 2nd class of the Wafer dataset have nearly same

62

Ta
bl

e
5.

12
:P

ar
am

et
er

s
an

d
Pr

op
er

tie
s

of
SA

E
B

as
ed

N
et

w
or

ks
at

Fi
ne

Tu
ni

ng
Ph

as
e

E
le

ct
ri

cD
ev

ic
es

W
af

er
Tw

o
Pa

tte
rn

s
Pr

ox
im

al
Ph

al
an

xO
ut

lin
eC

or
re

ct

N
et

w
or

k
O

rd
er

2n
d

3r
d

6t
h

1s
t

M
in

im
um

va
lid

at
io

n
se

te
rr

or
0.

33
9

0.
01

4
0.

14
9

0.
13

0

E
po

ch
s

w
he

n
va

lid
at

io
n

er
ro

rr
ea

ch
es

m
in

im
um

va
lu

e
39

19
6

58
5

96
3

Ti
m

e
el

ap
se

d
at

m
od

el
an

d
pa

ra
m

et
er

se
ar

ch
(s

ec
)

1.
14

4x
10

5
1.

55
5x

10
3

3.
56

6x
10

4
2.

68
0x

10
4

Ti
m

e
el

ap
se

d
at

fin
e

tu
ni

ng
of

th
e

w
in

ne
rn

et
w

or
k(

se
c)

4.
96

0
2.

19
6

12
.1

42
5.

08
6

Ti
m

e
el

ap
se

d
at

fin
al

te
st

in
g

st
ag

e(
se

c)
0.

01
9

0.
01

1
0.

01
9

0.
00

6

63

Ta
bl

e
5.

13
:P

ar
am

et
er

s
an

d
Pr

op
er

tie
s

of
D

B
N

B
as

ed
N

et
w

or
ks

at
Fi

ne
Tu

ni
ng

Ph
as

e

E
le

ct
ri

cD
ev

ic
es

W
af

er
Tw

o
Pa

tte
rn

s
Pr

ox
im

al
Ph

al
an

xO
ut

lin
eC

or
re

ct

N
et

w
or

k
O

rd
er

3r
d

1s
t

2n
d

1s
t

M
in

im
um

va
lid

at
io

n
se

te
rr

or
0.

32
4

0.
02

6
0.

19
4

0.
16

4

E
po

ch
s

w
he

n
va

lid
at

io
n

er
ro

rr
ea

ch
es

m
in

im
um

va
lu

e
47

20
5

31
6

59
7

Ti
m

e
el

ap
se

d
at

m
od

el
an

d
pa

ra
m

et
er

se
ar

ch
(s

ec
)

1.
47

6x
10

5
3.

45
1x

10
3

4.
53

2x
10

3
6.

31
3x

10
3

Ti
m

e
el

ap
se

d
at

fin
e

tu
ni

ng
of

th
e

w
in

ne
rn

et
w

or
k(

se
c)

6.
01

1
2.

13
4

4.
30

1
2.

23
8

Ti
m

e
el

ap
se

d
at

fin
al

te
st

in
g

st
ag

e(
se

c)
0.

01
5

0.
01

2
0.

01
2

0.
00

8

64

characteristics.

Figure 5.3: Some of the correctly-classified samples of Wafer dataset

Figure 5.4: Misclassified samples of Wafer dataset

We constructed the table which shows the comparative classification performances of

proposed and benchmark methods. The minimum error values in Table 5.14 have

been marked as bold for all the datasets. Confusion matrices and individual class

65

performances can be seen from Appendix A.4 and A.5 for SAE based proposed

method and DBN based proposed method respectively.

Lastly we constructed the table that demonstrates total computational times of pro-

posed deep learning methods and DTW with 1-NN in Table 5.15 .

While analyzing the Table 5.15 a critical issue we should be aware of that we have

used pre-measured parameters for DTW- with 1-NN algorithm. If we tried to measure

optimal warping window parameters of DTW, the durations would increase up to

hundreds of times of the current durations.

5.6 Discussions

SAE or DBN based deep learning methods have given the best performances among

all five classification methods. SAE based proposed method outperformed the other

algorithms in ElectricDevices and ProximalPhalanxOutlineCorrect dataset and DBN

based algorithm surpassed the rest of the methods in Wafer and Two Pattern datasets.

In the classification task of Wafer dataset, the proposed models have shown drastic

improvement but for the rest of datasets deep network based algorithms have pro-

duced slight progress in error rates.

Due to the fact that in time series classification tasks the imbalanced class distribu-

tions cases are very common, we should not evaluate the methods only with the total

classification error rates. Imbalanced data means sets do not have equal number of

observations in each class. To understand the capability of the models we have de-

cided to use the precision and recall metrics for imbalanced-class cases. Basically the

precision is an accuracy and the recall is a sensitivity related metrics. The precision

gives us the ratio of how many predicted items are relevant to the expected class and

the recall gives us the ratio of how many relevant items are labelled as target value of

predicted class.

The 6th class of the ElectricDevices and 4thth class of Two Pattern datasets have got-

ten the highest precision and recall values when classified by DTW-1NN model. So

if we want to classify or identify these classes particularly, in spite of the higher total

66

Ta
bl

e
5.

14
:C

la
ss

ifi
ca

tio
n

Pe
rf

or
m

an
ce

s
of

Pr
op

os
ed

an
d

B
en

ch
m

ar
k

M
et

ho
ds

E
le

ct
ri

cD
ev

ic
es

W
af

er
Tw

o
Pa

tte
rn

s
Pr

ox
im

al
Ph

al
an

xO
ut

lin
eC

or
re

ct

E
D

w
ith

1-
N

N
45

.8
%

2.
6%

6.
9%

18
.6

%

D
T

W
w

ith
1-

N
N

37
.6

%
0.

5%
2.

5%
20

.0
%

SV
M

40
.4

%
0.

4%
6.

0%
15

.2
%

SA
E

ba
se

d
Pr

op
os

ed
M

et
ho

d
34

.1
%

3.
0%

2.
8%

13
.0

%

D
B

N
ba

se
d

Pr
op

os
ed

M
et

ho
d

36
.1

%
0.

1%
2.

3%
15

.2
%

67

Ta
bl

e
5.

15
:T

ot
al

Ti
m

e
C

om
pa

ri
so

n
of

D
T

W
1-

N
N

an
d

Pr
op

os
ed

M
et

ho
ds

E
le

ct
ri

cD
ev

ic
es

W
af

er
Tw

o
Pa

tte
rn

s
Pr

ox
im

al
Ph

al
an

xO
ut

lin
eC

or
re

ct

D
T

W
w

ith
1-

N
N

1.
38

7x
10

6
3.

57
1x

10
4

1.
72

8x
10

4
17

6.
01

2

SA
E

ba
se

d
Pr

op
os

ed
M

et
ho

d
1.

16
4x

10
5

1.
26

0x
10

4
5.

76
2x

10
4

3.
01

7x
10

4

D
B

N
ba

se
d

Pr
op

os
ed

M
et

ho
d

2.
54

5x
10

5
5.

11
3x

10
3

1.
16

2x
10

4
6.

66
1x

10
3

68

classification error, DTW-1NN model should be considered as the best option. Fur-

thermore, the sensitivity or accuracy of the one class should be taking into account

while choosing the model. Such as if we do not want to miss even a single obser-

vation for a class, we should analyze the recall metrics of that class. 2nd class of

the ProximalPhalanxOutlineCorrect dataset with DBN based method has the highest

recall performance of any algorithm can produce ever. Hence regardless the impor-

tance of any false alarms, if we do not want to miss a single entry of the 2nd class

of ProximalPhalanxOutlineCorrect dataset we should choose DBN based network as

the classifier. Appendix A contains the detailed precision and recall results of each

methods and each class.

To inspect every aspect of the dataset properties, four disparate datasets have been

selected from the UCR database set. As mentioned earlier, one of our criteria while

selecting these datasets was that we need smaller warping window parameters to com-

plete the DTW-1NN test physically. To demonstrate the workload of DTW and the

importance of warping window parameter ElectricalDevices dataset with 14% warp-

ing window ratio was selected. Even for 14% warping window ratio which means

constructing about one fourth of the pairwise DTW distance matrix, the test has taken

more than 16 days. In all of the DTW computations parallel CPU programming

techniques were used. Without parallel programing and smaller warping windows

parameters, tests would not be completed in months. Moreover, we did not search for

the best warping window parameters due to the resource and time constraints. Ob-

viously the most time consuming classification method is DTW-1NN and the least

time consuming one is ED-1NN due to simplicity of the algorithm. For one of the

dataset, ProximalPhalanxOutlineCorrect, ED-1NN is more successful than the DTW-

1NN model, however for the rest of the datasets DTW outperform due to elasticity

property of the DTW metric. While giving the better performance, DTW consumes

much more time than ED based classifier obviously.

Produced DTW-1NN performances show very close similarities with the reported

performances in the [16] even the testing set divided into validation and new testing

groups for parameter search stage of classifiers. This fact cannot prove but strongly

support the idea that the random seeds have insignificant effect to the classification

performances.

69

SVM based classifiers are the least sensible method to the model parameters. In fact

the models produced by the algorithms have slight change hence the classification

performances have not varied with the different input parameters. Because the pa-

rameter tuning stage is not valid for SVM based algorithms we can compare only the

optimal model training and final test durations with the proposed methods. Training

time of the proposed methods’ models with fixed parameters are less than the training

time of the SVM based model while final testing times of proposed and SVM based

algorithms are quite similar.

Computational times of SAE and DBN based algorithms shows similarity in super-

vised phases. However the unsupervised phase of SAE trainings takes more time than

DBN. This duration gap is caused by the working principle of contrastive diverge and

backpropagation. Our study is not suitable to give exact mathematical comparison

between the contrastive diverge and backpropogation algorithms, but intuitively we

can say contrastive divergence method trains the model faster with mini-batches. For

both of the proposed algorithm deeper networks takes more time in both unsupervised

and supervised phases. In fact, in fine tuning stage the deeper network could not be

trained due to vanishing gradient phenomenon. We can examine these fact from the

supervised training phase diagrams in Appendix B . For instance, 5th and deeper net-

works of the SAE and DBN based approaches begin failing on the supervised training

stage of the ElectricalDevices dataset. The overfitting issue has also been observed

during the supervised classification processes. The second network of SAE based

approaches and the third network of DBN based architectures of ElecrticalDevices

dataset shows the overfitting issue clearly. After a certain point the validation error

starts increasing due to outlier or anomalous samples while the classification error of

the training dataset continues decreasing. To prevent models from overtraining we

should examine the validation set errors after the training process of each epochs.

70

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Summary

In this work, we explored the applicability of deep learning idea to time series datasets

and we tried to propose novel methods for classification task of time series. Our main

goal is to outperform the benchmark methods and classical approaches. While pro-

ducing deep learning based classification methods, we have also analyzed the fea-

sibility of applying deep architectures to the differential time series datasets. Prior

information was not used in any step of the procedure of proposed algorithms. We

have constructed various depth sized networks for both stacked autoencoder and deep

belief network by inspecting the average total reconstruction errors automatically in

unsupervised stage. Then by monitoring validation set supervised training errors, we

compared the networks in terms of accuracy and elapsed time in training for each

dataset. From beginning to the end all phases of proposed and benchmark methods

have been executed without any external interaction except one condition. When the

vanishing gradient phenomenon prevented the improvement of the classification pro-

cess, the training procedures of larger networks were interrupted.

The performances indicate that it is possible to get a reasonable accuracy even with

only one-hidden-layer network for some datasets. However depending on the com-

plexity of the dataset the optimum number of hidden layer can vary for both of the

proposed methods and every datasets. One of the important implications from the re-

sults of proposed methods is that models have not failed even for highly imbalanced

dataset.

71

Although the main decision criteria is total classification error in this study, we should

observe the related precision and recall ratios that should have an impact on classifier

selection. We have figured out that if we want to classify a specific class with higher

accuracy or sensitivity expectation, the classifier can be chosen with respect to the

class-wise performance. In fact we can design a hybrid classifier which fuses the

proposed and benchmark methods on specified recall and precision demands.

Due to the size of the datasets and complexity of DTW algorithm, the whole dynamic

programming computations have parallelized. However, due to the architecture of

source codes taken by [47], the proposed methods could not be optimized or paral-

lelized in this work. After reimplementation of the source codes, drastic reduction in

computational times may be observed.

6.2 Future Work

This study can be considered as the first phase of an optimized robust time series

classifier system based on deep learning architectures. If we want to develop an opti-

mized universal solution to the time series classification, the proposed model should

be tested using different datasets with varying properties in terms of the distribution

of samples and the intrinsic characteristics of the data itself. Unity tests should be

applied to the proposed algorithms to ensure that the bug-free library has been pro-

duced in this work. Moreover some source codes will be implemented again to make

the algorithms become suitable for parallel computing techniques.

To eliminate slight effects of the random seed on hyper-parameters selection a set of

random seed should be used instead of one. However due to the time and resource

restriction, this step is postponed until the reimplementation of source codes used

in study. The optimization of hyperparameters has very crucial effect on the per-

formance of the proposed methods. Hence more systematic and detailed parameter

search techniques will be integrated to the developed models so as to increase the

classification ability. Besides the short term improvements, the applicability of deep

architecture to LSTM networks can be investigated in long term.

While implementing DTW with 1-NN, we have also implemented the DDTW and

72

WDTW classifiers and tested them in sample time series. However there is no a

reported study for warping window parameters for DDTW and WDTW. Moreover

we do not have enough computational resources to search the parameters of these

algorithms. Hence we could not have worked with these classifiers in our study. If

we have opportunity of using computers having more computational ability, we can

compare our proposed methods with these additional classification methods.

73

74

REFERENCES

[1] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for
boltzmann machines. Cognitive science, 9(1):147–169, 1985.

[2] H.-M. Adorf. Connectionism and neural networks. In Knowledge-Based Sys-
tems in Astronomy, pages 213–245. Springer, 1989.

[3] E. Aleskerov, B. Freisleben, and B. Rao. Cardwatch: A neural network based
database mining system for credit card fraud detection. In Computational Intel-
ligence for Financial Engineering (CIFEr), 1997., Proceedings of the IEEE/I-
AFE 1997, pages 220–226. IEEE, 1997.

[4] L. Arnold, S. Rebecchi, S. Chevallier, and H. Paugam-Moisy. An introduction
to deep learning. In ESANN, 2011.

[5] C. Bahlmann, B. Haasdonk, and H. Burkhardt. Online handwriting recognition
with support vector machines-a kernel approach. In Frontiers in handwriting
recognition, 2002. proceedings. eighth international workshop on, pages 49–
54. IEEE, 2002.

[6] R. E. Bellman. Adaptive control processes: a guided tour. Princeton university
press, 2015.

[7] Y. Bengio. Learning deep architectures for ai. Foundations and trends R© in
Machine Learning, 2(1):1–127, 2009.

[8] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and
new perspectives. IEEE transactions on pattern analysis and machine intelli-
gence, 35(8):1798–1828, 2013.

[9] Y. Bengio, O. Delalleau, and N. L. Roux. The curse of highly variable func-
tions for local kernel machines. In Advances in neural information processing
systems, pages 107–114, 2005.

[10] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, et al. Greedy layer-wise
training of deep networks. Advances in neural information processing systems,
19:153, 2007.

[11] D. J. Berndt and J. Clifford. Using dynamic time warping to find patterns in
time series. In KDD workshop, volume 10, pages 359–370. Seattle, WA, 1994.

75

[12] V. Blanz, B. Schölkopf, H. Bülthoff, C. Burges, V. Vapnik, and T. Vetter. Com-
parison of view-based object recognition algorithms using realistic 3d mod-
els. In International Conference on Artificial Neural Networks, pages 251–256.
Springer, 1996.

[13] H. Bourlard and Y. Kamp. Auto-association by multilayer perceptrons and sin-
gular value decomposition. Biological cybernetics, 59(4-5):291–294, 1988.

[14] E. Caiani, A. Porta, G. Baselli, M. Turiel, S. Muzzupappa, F. Pieruzzi, C. Crema,
A. Malliani, and S. Cerutti. Warped-average template technique to track on a
cycle-by-cycle basis the cardiac filling phases on left ventricular volume. In
Computers in Cardiology 1998, pages 73–76. IEEE, 1998.

[15] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011.

[16] Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen, and G. Batista.
The ucr time series classification archive, July 2015.

[17] Y. Chen, M. A. Nascimento, B. C. Ooi, and A. K. Tung. Spade: On shape-based
pattern detection in streaming time series. In 2007 IEEE 23rd International
Conference on Data Engineering, pages 786–795. IEEE, 2007.

[18] Y. Cho and L. K. Saul. Kernel methods for deep learning. In Advances in neural
information processing systems, pages 342–350, 2009.

[19] C. Cortes and V. Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[20] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification. John Wiley &
Sons, 2012.

[21] D. R. Eads, D. Hill, S. Davis, S. J. Perkins, J. Ma, R. B. Porter, and J. P. Theiler.
Genetic algorithms and support vector machines for time series classification.
In International Symposium on Optical Science and Technology, pages 74–85.
International Society for Optics and Photonics, 2002.

[22] J. L. Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

[23] E. Fix and J. L. Hodges Jr. Discriminatory analysis-nonparametric discrimina-
tion: consistency properties. Technical report, DTIC Document, 1951.

[24] J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning,
volume 1. Springer series in statistics Springer, Berlin, 2001.

[25] D. Gavrila, L. Davis, et al. Towards 3-d model-based tracking and recognition
of human movement: a multi-view approach. In International workshop on
automatic face-and gesture-recognition, pages 272–277. Citeseer, 1995.

76

[26] K. Gollmer and C. Posten. Detection of distorted pattern using dynamic time
warping algorithm and application for supervision of bioprocesses. On-line
fault detection and supervision in chemical process industries, 1995.

[27] S. Gudmundsson, T. P. Runarsson, and S. Sigurdsson. Support vector machines
and dynamic time warping for time series. In 2008 IEEE International Joint
Conference on Neural Networks (IEEE World Congress on Computational In-
telligence), pages 2772–2776. IEEE, 2008.

[28] S. Haykin and N. Network. A comprehensive foundation. Neural Networks,
2(2004), 2004.

[29] G. F. Hepner. Artificial neural network classification using a minimal train-
ing set. comparison to conventional supervised classification. Photogrammetric
Engineering and Remote Sensing, 56(4):469–473, 1990.

[30] G. E. Hinton. Connectionist learning procedures. artificial intelligence, 40 1-3:
185 234, 1989. reprinted in j. carbonell, editor,". Machine Learning: Paradigms
and Methods", MIT Press, 1990.

[31] G. E. Hinton. Training products of experts by minimizing contrastive diver-
gence. Neural computation, 14(8):1771–1800, 2002.

[32] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep
belief nets. Neural computation, 18(7):1527–1554, 2006.

[33] J. J. Hopfield. Neural networks and physical systems with emergent collec-
tive computational abilities. Proceedings of the national academy of sciences,
79(8):2554–2558, 1982.

[34] Y.-S. Jeong, M. K. Jeong, and O. A. Omitaomu. Weighted dynamic time warp-
ing for time series classification. Pattern Recognition, 44(9):2231–2240, 2011.

[35] M. I. Jordan. Attractor dynamics and parallellism in a connectionist sequential
machine. 1986.

[36] K. Kavukcuoglu, R. Fergus, Y. LeCun, et al. Learning invariant features through
topographic filter maps. In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, pages 1605–1612. IEEE, 2009.

[37] E. Keogh and C. A. Ratanamahatana. Exact indexing of dynamic time warping.
Knowledge and information systems, 7(3):358–386, 2005.

[38] E. J. Keogh and M. J. Pazzani. Derivative dynamic time warping. In Sdm,
volume 1, pages 5–7. SIAM, 2001.

[39] A. Krenker, A. Kos, and J. Bešter. Introduction to the artificial neural networks.
INTECH Open Access Publisher, 2011.

77

[40] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[41] M. Längkvist, L. Karlsson, and A. Loutfi. A review of unsupervised feature
learning and deep learning for time-series modeling. Pattern Recognition Let-
ters, 42:11–24, 2014.

[42] M. McCloskey. Networks and theories: The place of connectionism in cognitive
science. Psychological Science, 2(6):387–395, 1991.

[43] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[44] M. D. Morse and J. M. Patel. An efficient and accurate method for evaluating
time series similarity. In Proceedings of the 2007 ACM SIGMOD international
conference on Management of data, pages 569–580. ACM, 2007.

[45] S. Mukherjee, E. Osuna, and F. Girosi. Nonlinear prediction of chaotic time
series using support vector machines. In Neural Networks for Signal Processing
[1997] VII. Proceedings of the 1997 IEEE Workshop, pages 511–520. IEEE,
1997.

[46] K.-R. Müller, A. J. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen, and V. Vap-
nik. Predicting time series with support vector machines. In International Con-
ference on Artificial Neural Networks, pages 999–1004. Springer, 1997.

[47] R. B. Palm. Prediction as a candidate for learning deep hierarchical models of
data, 2012.

[48] S. Rüping. Svm kernels for time series analysis. Technical report, Universitäts-
bibliothek Dortmund, 2001.

[49] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spo-
ken word recognition. IEEE transactions on acoustics, speech, and signal pro-
cessing, 26(1):43–49, 1978.

[50] P. Schiilkop, C. Burgest, and V. Vapnik. Extracting support data for a given task.
In Proceedings of the 1st International Conference on Knowledge Discovery &
Data Mining, pages 252–257, 1995.

[51] M. D. Schmill, T. Oates, and P. R. Cohen. Learned models for continuous plan-
ning. In AISTATS, 1999.

[52] B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a
kernel eigenvalue problem. Neural computation, 10(5):1299–1319, 1998.

[53] B. Scholkopf and A. J. Smola. Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press, 2001.

78

[54] H. A. Song and S.-Y. Lee. Hierarchical representation using nmf. In Interna-
tional Conference on Neural Information Processing, pages 466–473. Springer,
2013.

[55] S. Theodoridis and K. Koutroumbas. Pattern recognition., 1999.

[56] I. Vasiliyev. A deep learning tutorial: From perceptrons to deep
networks. https://www.toptal.com/machine-learning/an-introduction-to-deep-
learning-from-perceptrons-to-deep-networks, 2016. [Online; accessed 08-July-
2016].

[57] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image
caption generator. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3156–3164, 2015.

[58] M. Vlachos, G. Kollios, and D. Gunopulos. Discovering similar multidimen-
sional trajectories. In Data Engineering, 2002. Proceedings. 18th International
Conference on, pages 673–684. IEEE, 2002.

[59] H. Wakuya and K. Shida. Bi-directionalization of neural computing architecture
for time series prediction. iii. application to laser intensity time record “data
set a”. In Neural Networks, 2001. Proceedings. IJCNN’01. International Joint
Conference on, volume 3, pages 2098–2103. IEEE, 2001.

[60] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and E. Keogh.
Experimental comparison of representation methods and distance measures for
time series data. Data Mining and Knowledge Discovery, 26(2):275–309, 2013.

[61] J. Weston and C. Watkins. Multi-class support vector machines. Technical
report, Citeseer, 1998.

[62] Y. Wu and E. Y. Chang. Distance-function design and fusion for sequence data.
In Proceedings of the thirteenth ACM international conference on Information
and knowledge management, pages 324–333. ACM, 2004.

[63] X. Xi, E. Keogh, C. Shelton, L. Wei, and C. A. Ratanamahatana. Fast time
series classification using numerosity reduction. In Proceedings of the 23rd
international conference on Machine learning, pages 1033–1040. ACM, 2006.

[64] Q. Yang and X. Wu. 10 challenging problems in data mining research. Interna-
tional Journal of Information Technology & Decision Making, 5(04):597–604,
2006.

[65] D. Yu, L. Deng, and D. Yu. Deep learning methods and applications. Founda-
tions and Trends in Signal Processing, 2014.

[66] D. Zhang, W. Zuo, D. Zhang, and H. Zhang. Time series classification using
support vector machine with gaussian elastic metric kernel. In Pattern Recogni-
tion (ICPR), 2010 20th International Conference on, pages 29–32. IEEE, 2010.

79

[67] J. M. Zurada. Introduction to artificial neural systems, volume 8. West St. Paul,
1992.

80

APPENDIX A

CONFUSION MATRICES AND DETAILED PERFORMANCES

A.1 Confusion Matrices & Precision and Recall Values for ED with 1NN Clas-

sifier

Table A.1: Confusion Matrix of ElectricDevices Dataset
Predicted Classes

1st Class 2nd Class 3rd Class 4th Class 5th Class 6th Class 7th Class

Actual Classes

1st Class 49 2 7 61 133 73 8

2nd Class 1 661 7 112 189 7 1

3rd Class 24 0 200 44 20 41 48

4th Class 32 0 52 334 99 53 12

5th Class 25 97 12 80 667 20 33

6th Class 49 0 50 80 41 124 27

7th Class 5 1 10 46 159 4 53

Table A.2: Precision and Recall Values of ElectricDevices Dataset
1st Class 2nd Class 3rd Class 4th Class 5th Class 6th Class 7th Class

Precision 0.265 0.869 0.592 0.441 0.510 0.385 0.291

Recall 0.147 0.676 0.531 0.574 0.714 0.334 0.191

Table A.3: Confusion Matrix of Wafer Dataset
Predicted Classes

1st Class 2nd Class

Actual Classes
1st Class 302 0

2nd Class 81 2698

Table A.4: Precision and Recall Values of Wafer Dataset
1st Class 2nd Class

Precision 0.789 1.000

Recall 1.000 0.971

81

Table A.5: Confusion Matrix of Two Patterns Dataset
Predicted Classes

1st Class 2nd Class 3rd Class 4th Class

Actual Classes

1st Class 488 14 12 3

2nd Class 18 468 0 19

3rd Class 14 0 468 15

4th Class 1 27 15 436

Table A.6: Precision and Recall Values of Two Patterns Dataset
1st Class 2nd Class 3rd Class 4th Class

Precision 0.937 0.919 0.946 0.922

Recall 0.944 0.927 0.942 0.910

Table A.7: Confusion Matrix of ProximalPhalanxOutlineCorrect
Predicted Classes

1st Class 2nd Class

Actual Classes
1st Class 28 18

2nd Class 9 90

Table A.8: Precision and Recall Values of ProximalPhalanxOutlineCorrect
1st Class 2nd Class

Precision 0.765 0.820

Recall 0.565 0.919

A.2 Confusion Matrices & Precision and Recall Values for DTW with 1NN

Classifier

Table A.9: Confusion Matrix of ElectricDevices Dataset
Predicted Classes

1st Class 2nd Class 3rd Class 4th Class 5th Class 6th Class 7th Class

Actual Classes

1st Class 80 0 17 80 104 41 11

2nd Class 0 685 0 24 268 0 1

3rd Class 5 0 264 9 6 8 85

4th Class 33 0 74 332 105 23 15

5th Class 7 58 7 78 761 2 21

6th Class 42 0 8 60 51 204 5

7th Class 2 4 4 11 170 2 85

Table A.10: Precision and Recall Values of ElectricDevices Dataset
1st Class 2nd Class 3rd Class 4th Class 5th Class 6th Class 7th Class

Precision 0.473 0.917 0.704 0.559 0.516 0.729 0.381

Recall 0.240 0.700 0.700 0.561 0.815 0.550 0.306

82

Table A.11: Confusion Matrix of Wafer Dataset
Predicted Classes

1st Class 2nd Class

Actual Classes
1st Class 302 0

2nd Class 14 2715

Table A.12: Precision and Recall Values of Wafer Dataset
1st Class 2nd Class

Precision 0.956 1.000

Recall 1.000 0.995

Table A.13: Confusion Matrix of Two Patterns Dataset
Predicted Classes

1st Class 2nd Class 3rd Class 4th Class

Actual Classes

1st Class 506 10 0 0

2nd Class 13 492 0 0

3rd Class 5 21 471 0

4th Class 0 0 0 479

Table A.14: Precision and Recall Values of Two Patterns Dataset
1st Class 2nd Class 3rd Class 4th Class

Precision 0.966 0.941 1.000 1.000

Recall 0.981 0.9743 0.948 1.000

Table A.15: Confusion Matrix of ProximalPhalanxOutlineCorrect
Predicted Classes

1st Class 2nd Class

Actual Classes
1st Class 26 20

2nd Class 9 90

Table A.16: Precision and Recall Values of ProximalPhalanxOutlineCorrect
1st Class 2nd Class

Precision 0.743 0.818

Recall 0.565 0.909

83

A.3 Confusion Matrices & Precision and Recall Values for Multi-Class SVM

Classifier

Table A.17: Confusion Matrix of ElectricDevices Dataset
Predicted Classes

1st Class 2nd Class 3rd Class 4th Class 5th Class 6th Class 7th Class

Actual Classes

1st Class 35 11 1 84 154 38 10

2nd Class 2 709 9 21 228 1 8

3rd Class 10 9 238 35 9 12 64

4th Class 25 12 35 424 59 20 7

5th Class 11 86 4 57 745 6 25

6th Class 36 30 44 106 40 87 28

7th Class 3 11 19 69 114 4 58

Table A.18: Precision and Recall Values of ElectricDevices Dataset
1st Class 2nd Class 3rd Class 4th Class 5th Class 6th Class 7th Class

Precision 0.287 0.817 0.680 0.533 0.552 0.518 0.290

Recall 0.105 0.725 0.631 0.729 0.798 0.235 0.209

Table A.19: Confusion Matrix of Wafer Dataset
Predicted Classes

1st Class 2nd Class

Actual Classes
1st Class 302 0

2nd Class 13 2766

Table A.20: Precision and Recall Values of Wafer Dataset
1st Class 2nd Class

Precision 0.959 1.000

Recall 1.000 0.995

Table A.21: Confusion Matrix of Two Patterns Dataset
Predicted Classes

1st Class 2nd Class 3rd Class 4th Class

Actual Classes

1st Class 487 14 16 0

2nd Class 9 478 2 16

3rd Class 11 1 462 23

4th Class 0 11 17 451

Table A.22: Precision and Recall Values of Two Patterns Dataset
1st Class 2nd Class 3rd Class 4th Class

Precision 0.961 0.948 0.930 0.920

Recall 0.942 0.947 0.930 0.942

Table A.23: Confusion Matrix of ProximalPhalanxOutlineCorrect
Predicted Classes

1st Class 2nd Class

Actual Classes
1st Class 29 17

2nd Class 5 94

84

Table A.24: Precision and Recall Values of ProximalPhalanxOutlineCorrect
1st Class 2nd Class

Precision 0.853 0.847

Recall 0.630 0.950

A.4 Confusion Matrices & Precision and Recall Values for SAE Based Classi-

fier

Table A.25: Confusion Matrix of ElectricDevices Dataset
Predicted Classes

1st Class 2nd Class 3rd Class 4th Class 5th Class 6th Class 7th Class

Actual Classes

1st Class 84 14 17 57 92 66 3

2nd Class 0 856 0 0 122 0 0

3rd Class 1 0 271 15 1 18 71

4th Class 25 1 98 381 41 25 10

5th Class 29 91 9 37 726 20 22

6th Class 33 4 48 60 65 140 21

7th Class 2 80 3 8 95 8 82

Table A.26: Precision and Recall Values of ElectricDevices Dataset
1st Class 2nd Class 3rd Class 4th Class 5th Class 6th Class 7th Class

Precision 0.483 0.818 0.608 0.683 0.636 0.505 0.392

Recall 0.252 0.875 0.719 0.656 0.777 0.377 0.295

Table A.27: Confusion Matrix of Wafer Dataset
Predicted Classes

1st Class 2nd Class

Actual Classes
1st Class 212 90

2nd Class 3 2776

Table A.28: Precision and Recall Values of Wafer Dataset
1st Class 2nd Class

Precision 0.986 0.969

Recall 0.702 0.999

Table A.29: Confusion Matrix of Two Patterns Dataset
Predicted Classes

1st Class 2nd Class 3rd Class 4th Class

Actual Classes

1st Class 506 5 6 0

2nd Class 6 490 2 7

3rd Class 2 2 481 12

4th Class 0 4 10 465

Table A.30: Precision and Recall Values of Two Patterns Dataset
1st Class 2nd Class 3rd Class 4th Class

Precision 0.984 0.978 0.964 0.961

Recall 0.989 0.970 0.968 0.971

85

Table A.31: Confusion Matrix of ProximalPhalanxOutlineCorrect
Predicted Classes

1st Class 2nd Class

Actual Classes
1st Class 36 10

2nd Class 9 90

Table A.32: Precision and Recall Values of ProximalPhalanxOutlineCorrect
1st Class 2nd Class

Precision 0.800 0.900

Recall 0.783 0.909

A.5 Confusion Matrices & Precision and Recall Values for DBN Based Classi-

fier

Table A.33: Confusion Matrix of ElectricDevices Dataset
Predicted Classes

1st Class 2nd Class 3rd Class 4th Class 5th Class 6th Class 7th Class

Actual Classes

1st Class 71 77 32 128 19 5 1

2nd Class 0 912 0 1 65 0 0

3rd Class 2 0 334 14 1 0 26

4th Class 46 0 97 397 36 4 1

5th Class 21 131 15 55 689 2 10

6th Class 22 0 105 156 59 9 20

7th Class 2 39 14 45 126 2 50

Table A.34: Precision and Recall Values of ElectricDevices Dataset
1st Class 2nd Class 3rd Class 4th Class 5th Class 6th Class 7th Class

Precision 0.4056 0.787 0.560 0.499 0.693 0.409 0.463

Recall 0.213 0.933 0.886 0.683 0.738 0.024 0.180

Table A.35: Confusion Matrix of Wafer Dataset
Predicted Classes

1st Class 2nd Class

Actual Classes
1st Class 301 1

2nd Class 3 2776

Table A.36: Precision and Recall Values of Wafer Dataset
1st Class 2nd Class

Precision 0.9901 0.9996

Recall 0.9967 0.9989

86

Table A.37: Confusion Matrix of Two Patterns Dataset
Predicted Classes

1st Class 2nd Class 3rd Class 4th Class

Actual Classes

1st Class 512 3 2 0

2nd Class 16 482 1 6

3rd Class 1 2 484 10

4th Class 0 3 3 473

Table A.38: Precision and Recall Values of Two Patterns Dataset
1st Class 2nd Class 3rd Class 4th Class

Precision 0.968 0.984 0.988 0.967

Recall 0.990 0.955 0.974 0.988

Table A.39: Confusion Matrix of ProximalPhalanxOutlineCorrect
Predicted Classes

1st Class 2nd Class

Actual Classes
1st Class 24 22

2nd Class 0 99

Table A.40: Precision and Recall Values of ProximalPhalanxOutlineCorrect
1st Class 2nd Class

Precision 1.000 0.818

Recall 0.522 1.000

87

88

APPENDIX B

TRAINING SET ERROR AND VALIDATION SET ERROR

DIAGRAMS

Green lines in Appendix B diagrams indicate the minimum values that is reached by

the validation error curves.

B.1 Training Set Error and Validation Set Error Diagrams for SAE Based

Classifier

Figure B.1: Training and Validation Set Errors of ElectricalDevices Dataset for 1-

Hidden-Layer-SAE architecture

89

Figure B.2: Training and Validation Set Errors of ElectricalDevices Dataset for 2-

Hidden-Layers-SAE architecture

Figure B.3: Training and Validation Set Errors of ElectricalDevices Dataset for 3-

Hidden-Layers-SAE architecture

90

Figure B.4: Training and Validation Set Errors of ElectricalDevices Dataset for 4-

Hidden-Layers-SAE architecture

Figure B.5: Training and Validation Set Errors of ElectricalDevices Dataset for 5-

Hidden-Layers-SAE architecture

91

Figure B.6: Training and Validation Set Errors of ElectricalDevices Dataset for 6-

Hidden-Layers-SAE architecture

Figure B.7: Training and Validation Set Errors of ElectricalDevices Dataset for 7-

Hidden-Layers-SAE architecture

92

Figure B.8: Training and Validation Set Errors of Wafer Dataset for 1-Hidden-Layer-

SAE architecture

Figure B.9: Training and Validation Set Errors of Wafer Dataset for 2-Hidden-Layers-

SAE architecture

93

Figure B.10: Training and Validation Set Errors of Wafer Dataset for 3-Hidden-

Layers-SAE architecture

Figure B.11: Training and Validation Set Errors of Wafer Dataset for 4-Hidden-

Layers-SAE architecture

94

Figure B.12: Training and Validation Set Errors of Wafer Dataset for 5-Hidden-

Layers-SAE architecture

Figure B.13: Training and Validation Set Errors of Wafer Dataset for 6-Hidden-

Layers-SAE architecture

95

Figure B.14: Training and Validation Set Errors of Wafer Dataset for 7-Hidden-

Layers-SAE architecture

Figure B.15: Training and Validation Set Errors of Two Patterns Dataset for 1-

Hidden-Layer-SAE architecture

96

Figure B.16: Training and Validation Set Errors of Two Patterns Dataset for 2-

Hidden-Layers-SAE architecture

Figure B.17: Training and Validation Set Errors of Two Patterns Dataset for 3-

Hidden-Layers-SAE architecture

97

Figure B.18: Training and Validation Set Errors of Two Patterns Dataset for 4-

Hidden-Layers-SAE architecture

Figure B.19: Training and Validation Set Errors of Two Patterns Dataset for 5-

Hidden-Layers-SAE architecture

98

Figure B.20: Training and Validation Set Errors of Two Patterns Dataset for 6-

Hidden-Layers-SAE architecture

Figure B.21: Training and Validation Set Errors of Two Patterns Dataset for 7-

Hidden-Layers-SAE architecture

99

Figure B.22: Training and Validation Set Errors of ProximalPhalanxOutlineCorrect

Dataset for 1-Hidden-Layer-SAE architecture

Figure B.23: Training and Validation Set Errors of ProximalPhalanxOutlineCorrect

Dataset for 2-Hidden-Layers-SAE architecture

100

Figure B.24: Training and Validation Set Errors of ProximalPhalanxOutlineCorrect

Dataset for 3-Hidden-Layers-SAE architecture

B.2 Training Set Error and Validation Set Error Diagrams for DBN Based

Classifier

Figure B.25: Training and Validation Set Errors of ElectricalDevices Dataset for 1-

Hidden-Layer-DBN architecture

101

Figure B.26: Training and Validation Set Errors of ElectricalDevices Dataset for 2-

Hidden-Layers-DBN architecture

Figure B.27: Training and Validation Set Errors of ElectricalDevices Dataset for 3-

Hidden-Layers-DBN architecture

102

Figure B.28: Training and Validation Set Errors of ElectricalDevices Dataset for 4-

Hidden-Layers-DBN architecture

Figure B.29: Training and Validation Set Errors of ElectricalDevices Dataset for 5-

Hidden-Layers-DBN architecture

103

Figure B.30: Training and Validation Set Errors of ElectricalDevices Dataset for 6-

Hidden-Layers-DBN architecture

Figure B.31: Training and Validation Set Errors of ElectricalDevices Dataset for 7-

Hidden-Layers-DBN architecture

104

Figure B.32: Training and Validation Set Errors of ElectricalDevices Dataset for 8-

Hidden-Layers-DBN architecture

Figure B.33: Training and Validation Set Errors of ElectricalDevices Dataset for 9-

Hidden-Layers-DBN architecture

105

Figure B.34: Training and Validation Set Errors of ElectricalDevices Dataset for 10-

Hidden-Layers-DBN architecture

Figure B.35: Training and Validation Set Errors of ElectricalDevices Dataset for 11-

Hidden-Layers-DBN architecture

106

Figure B.36: Training and Validation Set Errors of Wafer Dataset for 1-Hidden-Layer-

DBN architecture

Figure B.37: Training and Validation Set Errors of Wafer Dataset for 2-Hidden-

Layers-DBN architecture

107

Figure B.38: Training and Validation Set Errors of Wafer Dataset for 3-Hidden-

Layers-DBN architecture

Figure B.39: Training and Validation Set Errors of Wafer Dataset for 4-Hidden-

Layers-DBN architecture

108

Figure B.40: Training and Validation Set Errors of Wafer Dataset for 5-Hidden-

Layers-DBN architecture

Figure B.41: Training and Validation Set Errors of Wafer Dataset for 6-Hidden-

Layers-DBN architecture

109

Figure B.42: Training and Validation Set Errors of Wafer Dataset for 7-Hidden-

Layers-DBN architecture

Figure B.43: Training and Validation Set Errors of Two Patterns Dataset for 1-

Hidden-Layer-DBN architecture

110

Figure B.44: Training and Validation Set Errors of Two Patterns Dataset for 2-

Hidden-Layers-DBN architecture

Figure B.45: Training and Validation Set Errors of Two Patterns Dataset for 3-

Hidden-Layers-DBN architecture

111

Figure B.46: Training and Validation Set Errors of Two Patterns Dataset for 4-

Hidden-Layers-DBN architecture

Figure B.47: Training and Validation Set Errors of Two Patterns Dataset for 5-

Hidden-Layers-DBN architecture

112

Figure B.48: Training and Validation Set Errors of Two Patterns Dataset for 6-

Hidden-Layers-DBN architecture

Figure B.49: Training and Validation Set Errors of Two Patterns Dataset for 7-

Hidden-Layers-DBN architecture

113

Figure B.50: Training and Validation Set Errors of Two Patterns Dataset for 8-

Hidden-Layers-DBN architecture

Figure B.51: Training and Validation Set Errors of ProximalPhalanxOutlineCorrect

Dataset for 1-Hidden-Layer-DBN architecture

114

Figure B.52: Training and Validation Set Errors of ProximalPhalanxOutlineCorrect

Dataset for 2-Hidden-Layers-DBN architecture

Figure B.53: Training and Validation Set Errors of ProximalPhalanxOutlineCorrect

Dataset for 3-Hidden-Layers-DBN architecture

115

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Motivation, Scope and Goal
	Contribution
	Outline

	TIME SERIES AND LEARNING
	Time Series
	Learning
	Supervised Learning
	Unsupervised Learning
	Type of Variables and Data Preparation
	Training-Validation-Test Set Separation
	Curse of Dimensionality
	Generalization and Overfitting
	Dimension Reduction

	BENCHMARK METHODS USED IN TIME SERIES CLASSIFICATION
	Dynamic Time Warping with Nearest Neighbor Classifier
	Dynamic Time Warping
	K-Nearest Neighbor Classifier
	DTW with KNN Classification Method

	Multi-Class Support Vector Machines
	Support Vector Classifier

	NEURAL NETWORKS, DEEP LEARNING & FRAMEWORK
	Neural Networks
	Artificial Neurons
	Models of Articially Neural Networks
	Feedforward Networks
	Backpropagation
	Recurrent Artificial Neural Networks
	Hopfield Artificial Neural Network
	Elman and Jordan Artificial Neural Networks
	Long Short Term Memory
	Bi-directional Artificial Neural Networks
	Stochastic Artificial Neural Network

	Deep Learning
	Applications of Deep Learning

	Autoencoders
	Stacked Autoencoders
	Restricted Boltzmann Machines
	Contrastive Divergence
	Deep Belief Networks
	Deep Kernel Machines and Deep Convolutional Networks

	Proposed Framework

	EXPERIMENTS AND RESULTS
	Datasets and The System Used in Experiments
	Data Preparation
	Measurements and Performance Metrics
	Experimental Procedures and Performances of Benchmark Methods
	Experimental Procedures and Performances of Deep Learning Approaches
	Discussions

	CONCLUSION AND FUTURE WORK
	Summary
	Future Work

	REFERENCES
	APPENDICES
	Confusion Matrices and Detailed Performances
	Confusion Matrices & Precision and Recall Values for ED with 1NN Classifier
	Confusion Matrices & Precision and Recall Values for DTW with 1NN Classifier
	Confusion Matrices & Precision and Recall Values for Multi-Class SVM Classifier
	Confusion Matrices & Precision and Recall Values for SAE Based Classifier
	Confusion Matrices & Precision and Recall Values for DBN Based Classifier

	Training Set Error and Validation Set Error Diagrams
	Training Set Error and Validation Set Error Diagrams for SAE Based Classifier
	Training Set Error and Validation Set Error Diagrams for DBN Based Classifier

