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CHAPTER 1 

INTRODUCTION 

In classification problems, supervised learning algorithms, such as decision trees, 

support vector machines, neural networks etc. are used to predict the class (or output 

variable) of an instance by observing its features’ (or input variables) values. 

Supervised learning algorithms train a prediction model over a dataset, in which 

different feature and class values of some past observations are provided, by 

understanding the relationship between the features and classes. Hence, the 

prediction model can be used to classify a new instance based on its features.   

The classification performance of the learning algorithm depends on its ability to 

detect the relationship between input and output variables accurately. However, the 

presence of features that are irrelevant to the class, or the redundancy within the 

features may have a negative impact on the classification performance of the learning 

algorithm (Kohavi and John, 1997). Yu and Liu (2004) classify the features based on 

their relevance with respect to the output as strongly relevant, weakly relevant, and 

irrelevant. A feature is strongly relevant to class if its existence affects classification 

performance independently from the other features used, weakly relevant if it affects 

the classification performance depending on the other features used and irrelevant if 

the feature does not affect the classification performance at all. They argue that the 

optimal subset of features in terms of classification performance includes all strongly 

relevant, and weakly relevant and non-redundant features. Selecting a subset that 

comprises of strongly relevant, and weakly relevant and non-redundant features to be 

used in the prediction model of the learning algorithm (or classifier), instead of using 

them all, is called as feature selection problem.  

Feature selection aims to improve the classification performance by eliminating 

irrelevant and redundant features. The decrease in the number of features to be used 
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in the prediction model is also useful in terms of reducing storage requirements, 

improving the time efficiency, and simplifying the prediction model itself (Guyon, 

2003). Therefore, feature selection methods are used in many areas, such as 

handwritten digit recognition, facial recognition, medical diagnosis, gene marker 

recognition etc.  

Even though, reduction in the number of input variables seems to be a natural 

outcome of the feature selection procedure that aims at maximizing the classification 

performance, it is possible to consider minimizing the cardinality of subset as 

another objective. That is, one may be willing to reduce the number of variables 

beyond the number of variables in the subset that gives the best classification 

performance to enjoy the benefits of reducing cardinality. In that case, the problem is 

converted into a multi-objective problem. Depending on the scope of the problem 

other objectives can also be defined. For example, in a medical diagnosis application, 

minimizing the screening costs of medical tests that will give feature values or 

minimizing the health related risks involved in those tests for the patient could be set 

as objectives. 

The algorithms developed for solving feature selection problem can be investigated 

in two dimensions. Firstly, since it is not straightforward to measure the impact of 

using a feature on classification performance, different strategies have been 

developed for subset selection; which are filter and wrapper approaches (Kohavi and 

John, 1997). Secondly, since the number of possible subsets grows exponentially 

with the number of available features, the feature selection problem is combinatorial 

in nature. Therefore, many optimization techniques are used to solve the feature 

selection problem, such as sequential backward selection, branch and bound, best-

first search, and genetic algorithms (Kohavi and John, 1997).   

In the literature, feature selection problem is usually treated as a bi-objective 

problem in which the objectives are maximizing the classification performance and 

minimizing the cardinality of the subset. Most of the studies aim to find all non-

dominated solutions for these two objectives, which refers to finding the subset with 

best classification performance for each cardinality level. However, in the presence 

of more objectives, enumeration of all non-dominated solutions is not practical and 
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useful because of the combinatorial nature of the problem. Instead of finding all non-

dominated solutions, concentrating on solutions that are of more interest to the 

decision maker (DM) of the problem, is more practical. Therefore, in this study, 

interactive evolutionary algorithms are developed for multi-objective feature 

selection problems that aim to converge the most preferred solution by guiding the 

search towards the regions that consists of appealing solutions for the DM.  

Measuring the classification performance is an important part of feature selection 

problems and a number of supervised learning algorithms have been developed in the 

literature. We leave this measurement problem out of the context of our research and 

we use one of the existing supervised algorithms for this purpose. The main 

contribution of this study is developing a multi-objective optimization approach that 

is compatible with the characteristics of the feature selection problem.  

The rest of the thesis is organized as follows. In Chapter 2, main concepts and 

definitions regarding the problem are provided. In Chapter 3, a literature review of 

related studies is given. In Chapter 4, the feature selection problem addressed in this 

study is defined. In Chapter 5, the interactive algorithms to find a preferred solution 

of the DM are developed and in Chapter 6 these algorithms are tested on several 

instances. Concluding remarks and future research directions are outlined in Chapter 

7.   
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 CHAPTER 2 

MAIN CONCEPTS AND DEFINITIONS 

In this chapter, basic concepts and definitions regarding feature selection problem 

and multi-objective optimization will be provided and explained on a small example.  

2.1 Feature Selection Problem 

Let there be a medical doctor who would like to make diagnosis of her patients’ 

disease. Assume there is a record of past patients on hand in which the patients’ all 

test results and actual diseases are given. Using the past records, the doctor is to 

decide how the test results should be evaluated in order to make diagnosis on future 

patients accurately. The past records can be defined as the dataset in the feature 

selection problem in which each patient corresponds to an instance, and test results 

and actual disease of each patient correspond to feature values and class variable 

value of each instance, respectively. The doctor’s expertise of constructing the 

relationship between the test results and diagnosis can be thought of as the learning 

algorithm. What we would like to decide in the feature selection problem is which 

tests should be performed so that the doctor’s performance of making accurate 

diagnosis is maximized.  

In this study, the classification problems where each instance is classified in only one 

of the non-overlapping classes are addressed. The classification problems with two 

non-overlapping classes and multiple non-overlapping classes are called as binary 

class and multi-class classification problems, respectively (Sokolova and Lapalme, 

2009). In the medical diagnosis example, if the doctor has to decide whether or not 

her patient has cancer, the problem is binary class. On the other hand, if the doctor 

classifies the disease based on the existence/type of tumor as class 1: no tumor, class 

2: benign tumor, and class 3: malignant tumor, then the problem is multi-class as 

there are more than two classes. 
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Let the dataset consist of 𝑁 instances. Assuming there exists 𝑀 available features 

defined as a vector  𝑋 = 𝑥!,… , 𝑥!  and a class variable y, the observed values of 𝑀 

features and class variable for each instance is provided in the dataset. Let 𝑆 be a 

subset of 𝑋 and 𝑓(𝑆) denote the classification performance of using the features in 𝑆 

to train the prediction model. 

The feature selection problem with a single objective of maximizing the 

classification performance can be formulated as follows: 

max 𝑓 𝑆    

s.to   

𝑆 ∈ 𝑋 

Once the learning algorithm is trained using past data, it can be used to classify the 

future observations based on their feature values. Actually, without knowing what 

will be the observations in future, the classification performance cannot be measured 

exactly. However, it can be estimated by using some observations on hand for testing 

the trained algorithm. For this aim, the dataset is divided into two sets: training and 

testing sets. The instances in the training set are used to train the learning algorithm 

and then the trained model is used to determine the classes of instances in the testing 

set. The classification performance of the algorithm can be estimated by using its 

performance on classifying the instances in the testing set. 

The classification performance depends on the division of dataset into training and 

testing sets. In order to reduce this dependency, k-fold cross validation procedure can 

be applied (Kohavi and John, 1997). In this procedure the dataset is divided into 

training and testing sets  𝑘 times, such that 𝑁/𝑘 instances are selected from the 

dataset randomly to form the testing set, and rest of the instances are used to form the 

training set. For each fold, the training set is used to train the algorithm and its 

classification performance on the testing set is calculated based on a predefined 

performance indicator (e.g.  𝑓). Let 𝑓! be the classification performance at the 𝑖!! 
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fold. Then, the final classification performance, 𝑓∗, is calculated as the average of 

performances obtained in k folds, i.e. 𝑓∗ = !!
!!!
!!!
!

. 

To calculate a certain classification performance measure, a confusion matrix is 

obtained by comparing the predicted and actual classes of the instances in the testing 

dataset. For a binary class classification problem where there are two classes (e.g. 

positive and negative), the confusion matrix would be as in Table 2.1. 

Table 2.1 Confusion matrix 
 Predicted class 

Positive Negative 

A
ct

ua
l c

la
ss

 

Positive 

True Positive (tp) 

number of instances 
whose actual classes are 
positive and predicted 

as positive 

False Negative (fn) 

number of instances 
whose actual classes are 
positive but predicted as 

negative 

Negative 

False Positive (fp) 

number of instances 
whose actual classes are 
negative but predicted 

as positive 

True Negative (tn) 

number of instances 
whose actual classes are 
negative and predicted as 

negative 

The classification performance of a subset of features, namely 𝑓(𝑆), can be measured 

in terms of different indicators using the confusion matrix. There are several 

performance measures defined to be used in different areas (Sokolova and Lapalme, 

2009). The formulations of three different indicators are given below.  

Accuracy = 
tp+tn

tp+fp+tn+fn
      Precision  = 

tp
tp+fp

     Sensitivity  = 
tp
tp+fn

 

Different indicators evaluate the performance of the learning algorithm in different 

senses. Accuracy is used as an indicator of overall effectiveness of the classifier, 

precision indicates what proportion of positively labeled instances are actually 

positive, and sensitivity stands for measuring the performance of identifying 

positively labeled instances. Back to the example of medical diagnosis, let us assume 
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that the doctor is asked to make a diagnosis on 10 patients for having cancer or not, 

and it is actually known that 3 patients have cancer and 7 do not. It is observed that 

she classified 3 patients, who actually do not have cancer, as having cancer and 

classified all 3 patients with cancer correctly. Assuming the class of having cancer is 

the positive class, the accuracy, precision, and sensitivity of the doctor are 70%, 

50%, and 100%, respectively.  

2.2 Multi-objective Optimization 

In multi-objective optimization problems there are two or more, generally 

conflicting, objectives to be optimized.  

Let 𝒙 and 𝑋 represent the decision variable vector and feasible decision space, 

respectively. Let there be 𝑝 objectives 𝑧! 𝒙 ,… , 𝑧! 𝒙  to be minimized and 𝑍 be the 

objective space defined by the feasible decision vectors. The general multi-objective 

optimization problem can be formulated as follows: 

"min"   𝑧! 𝒙 ,… , 𝑧! 𝒙  

s. to 

𝒙 ∈ 𝑋 

The quotation marks are used to emphasize that the minimization of a vector is not a 

well-defined mathematical operation. 

Definition 2.2.1: An objective vector 𝒛 𝒙! = 𝑧! 𝒙! ,… , 𝑧! 𝒙!  is said to 

dominate 𝒛 𝒙 = 𝑧! 𝒙 ,… , 𝑧! 𝒙   if and only if 𝑧! 𝒙! ≤   𝑧!(𝒙) for all 𝑗 = 1,… ,𝑝 

and 𝑧! 𝒙′ < 𝑧!(𝒙) for at least one 𝑗. 

Definition 2.2.2: 𝒛(𝒙) is non-dominated if and only if no 𝒛(𝒙!) dominates it. 

Definition 2.2.3: An objective vector 𝒛∗ = 𝑧!∗,… , 𝑧!∗  forms the ideal point in 𝑍 if 

and only if 𝑧!∗ = min𝒙∈!{𝑧! 𝒙 }    for all 𝑗 = 1,… ,𝑝. 
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Definition 2.2.4: An objective vector 𝒛!"# = 𝑧!!"# ,… , 𝑧!!"#  forms the nadir point 

in 𝑍 if and only if 𝑧!!"# = max𝒙∈!  {𝑧!(𝒙)} where 𝒛(𝒙) is non-dominated. 

In this study, interactive evolutionary algorithms that aim to find appealing solutions 

for a DM are developed for multi-objective feature selection problems. The DM of 

the problem is assumed to have an underlying monotone preference function, 

𝑈!"(𝒛), to be minimized. When the DM is presented with two solutions 𝒛 𝒙  and 

𝒛 𝒙! , he/she prefers 𝒛 𝒙  if 𝑈!" 𝒛 𝒙 < 𝑈!" 𝒛 𝒙! . We assume that there are 

no indifference responses. Indifference can be handled by allowing a small range in 

the estimated preference function values of both 𝒛 𝒙  and 𝒛 𝒙!  as in Karakaya and 

Köksalan (2014). However, we do not address this case in this study. We also do not 

consider the case where the DM gives responses inconsistent with his underlying 

preference function. 
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CHAPTER 3 

LITERATURE REVIEW 

In this chapter, a background of theory developed regarding feature selection 

problem and a general literature review of different multi-objective applications are 

mentioned.  

3.1 Feature Selection Theory 

As mentioned before, the number of possible subsets of features grows exponentially 

with the number of available features, that is; for 𝑀 features there are 2! possible 

subsets. Therefore, different searching algorithms can be used to explore the solution 

space, such as sequential backward selection, branch and bound, best-first search and 

evolutionary algorithms (Kohavi and John, 1997). For a survey of evolutionary 

algorithms used for feature selection problem Xue et al. (2016) can be referred to. 

There are two main approaches developed for subset selection: wrapper and filter 

approaches.  

In the search phase of a subset selection algorithm, in order to estimate the 

classification performance of a learning algorithm for a subset of features, namely 

𝑓 𝑆 , the learning algorithm itself can be used directly. Applying this procedure to 

find the subset of features with best classification performance is called the wrapper 

approach (Kohavi and John, 1997).  

Using the wrapper approach can be computationally time consuming since it requires 

to call learning algorithm to evaluate each subset found during search. Moreover, the 

classification performance estimated for a subset of features is dependent on the 

learning algorithm used. Therefore, instead of using a learning algorithm to estimate 

the classification performance during search, subsets of features can be evaluated 

with respect to some statistical measures (e.g. correlation, information theoretic 
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measures), which is called the filter approach (Kohavi and John, 1997). Although 

the filter approach is more efficient in terms of computational time, wrapper 

approach provides more reliable estimation of classification performance of feature 

subset as it uses learning algorithm during the search phase.  

There are many techniques used in supervised learning algorithms. Decision Trees 

are examples of logic-based algorithms in which classification rules are developed 

based on feature values. Instance based learning algorithms, such as k-Nearest 

Neighbor (kNN), classifies the instances bases on their nearest neighbors in the 

training instances in terms of a distance metric. Support Vector Machines (SVM), aim 

to create hyperplanes that separate the training data classes by maximizing the 

distance between the hyperplanes and the instances on different sides of the 

hyperplanes. Artificial Neural Networks (ANN) use input and output neurons together 

with hidden neurons to form a map between features and class variable (Figure 3.1).  

 

Figure 3.1 Artificial Neural Networks (ANN) 

The input neurons carry the activation function value of feature values. They send 

signals to hidden neurons and the collected signals are sent from hidden neurons to 

output neurons. The class values are determined based on the activation function 

values of output neurons.  

For a review of supervised learning algorithms Kotsiantis (2007) can be referred to.  

Input neurons Hidden neurons Output neurons

Signal from input 
units to hidden units

Signal from hidden 
units to output unitsFEATURE 

VALUES
CLASS
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3.2 Multi-objective Approaches and Applications 

Since feature selection is a combinatorial problem, it is popular to use evolutionary 

algorithms as search engines. In multi-objective feature selection problems it is 

typical to consider the number of selected features to be minimized and the 

classification performance of the corresponding subset to be maximized as two 

competing objectives.  

We next provide the literature that aims to find Pareto optimal solutions for the 

objectives defined, by using different evolutionary algorithms and some of them 

focus on specific applications of feature selection problems.  

Oliveira et al. (2002) use Non-dominated Sorting Genetic Algorithm (NSGA), which 

is suggested by Srinivas and Deb (1995), for feature selection in handwritten digit 

recognition in which the aim is to select the features that will contribute to 

characterize the expressions most. They define the objectives as minimizing number 

of features and maximizing accuracy. Once the non-dominated solutions are 

obtained, the one that has the minimum number of features with an accuracy level 

higher than a threshold value is chosen as the best solution.  

Hamdani et al. (2007) also define the feature selection problem with two objectives 

minimizing number of features and maximizing accuracy. They suggest using Non-

dominated Sorting Genetic Algorithm II (NSGA II), which is developed by Deb 

(2002), as search engine. Their results show that for simple problems, that is the 

problems with small number of features and small training sets, NSGA II is able to 

approximate the Pareto optimal solutions in a few iterations and even an exact 

convergence requires small number of iterations. When the training and test sets are 

relatively large compared to a simple problem, the computational time performance 

per iteration may drop but the number of iterations to convergence stays reasonable. 

Huang et al. (2010) develop a modified version of NSGA II to feature selection for 

customer churn prediction, where the customers are classified as churn or non-churn. 

The authors state that in customer churn prediction, the classification performance 

should be evaluated in terms of three indicators: overall accuracy, sensitivity for 
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churn class and sensitivity for non-churn class. They set their objectives as 

maximization of these three indicators and minimization of cardinality. They find 

non-dominated solution by NSGA II with a modification that population cannot 

include duplicated solutions. Then, they develop a method to find the best solution 

for each cardinality level among the non-dominated solutions.  

Xue et el. (2013) investigate the performance of Particle Swarm Optimization (PSO), 

which is first developed by Kennedy and Eberhart (1995), for feature selection 

problem by comparing it with existing algorithms. They develop two algorithms 

using the framework of PSO; NSPSOFS and CMDPSOFS where the objectives are 

minimizing cardinality and maximizing accuracy. They compare these algorithms 

with two conventional methods, two single objective algorithms, and three multi-

objective evolutionary algorithms in terms of non-dominated solutions obtained. 

They show that NSPSOFS and CMDPSOFS are able to find more and better 

solutions then conventional methods and single objective algorithms. In the final set 

of solutions obtained by NSPSOFS, some solutions dominate some of the solutions 

in the final solution set of multi-objective evolutionary algorithms, while the reverse 

is also possible. However, their results show that CMDPSOFS outperforms multi-

objective algorithms in most of the experiments by achieving better feature subsets in 

terms of classification performance requiring less computational effort.  

Most of the researchers work on the bi-objective (minimizing number of features and 

maximizing classification performance) version of the feature selection problem 

where typically the aim is to obtain Pareto optimal solutions. Karakaya et al. (2016) 

introduce the term “quasi equally informative subsets” into this problem. The idea is 

to find alternative subsets that have similar classification performances for each 

cardinality level. They propose two approaches, Wrapper for Quasi Equally 

Informative Subset Selection (WQEIS) and Filter for Quasi Equally Informative 

Subset Selection (FQEIS). They use Borg Multi-objective Evolutionary Algorithm, 

which is first proposed, by Hadka and Reed (2013) in both algorithms.  

In recent years, cost-based feature selection methods have been developed, in which 

the subsets are evaluated in terms of costs associated with the features in the subset 

in addition to classification performance.  
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Bolón-Canedo et al. (2014) introduce a framework for cost-based feature selection. 

They suggest adding a term into evaluation function of a filter algorithm to represent 

the costs associated with the features. The tradeoff between the cost and 

classification performance is controlled by a parameter. Their approach simply 

converts the problem into a single objective problem, which is a linear combination 

of cost and performance indicator used in the filter approach with the tradeoff 

parameter.  

Zhang et al. (2015) propose a multi-objective algorithm using PSO framework for 

cost-based feature selection problem where the objectives are minimizing cost and 

maximizing accuracy of feature subsets. While the earlier studies related with cost-

based feature selection generally forms a single objective by combining cost and 

classification performance, this study aims to generate all non-dominated solutions 

for these two objectives.  
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CHAPTER 4 

THE FEATURE SELECTION PROBLEM ADDRESSED 

In this chapter, the feature selection problem addressed in this thesis is introduced. In 

Section 4.1 general formulation of the problem is given and in Section 4.2 the DM’s 

objectives are explained in detail.  

4.1 General Formulation of the Problem 

We consider a DM who has four objectives: accuracy, cardinality, cost, and risk of 

the feature subset selected to use in the prediction model. The objectives will be 

discussed in detail in the following section.  

The problem can be formulated in closed form as given below.  

"min"   𝑧! 𝒙 ,      𝑧! 𝒙 ,      𝑧! 𝒙 ,      𝑧! 𝒙  

s. to  

                                                                                                                               x!

!

!!!

≥ 1                                                                                                                        (4.1) 

x!   ∈ 0, 1   ∀  𝑖 = 1,… ,𝑀 

where 𝑥! represents whether feature 𝑖 is selected to construct the prediction model 

(value of 1) or not (value of 0), 𝑀 is number of available features, z!(𝒙),  z!(𝒙), 

z!(𝒙), and z!(𝒙) represent the accuracy, cardinality, cost, and risk objectives, 

respectively, of solution 𝒙 = 𝑥!,… , 𝑥! . Constraint (4.1) ensures the selected subset 

will include at least one feature.  

Recall that the DM’s preferences are assumed to be consistent with a monotone 

preference function denoted as 𝑈!"(𝒛). Specifically, in the feature selection problem 
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addressed, in our experiments we mostly consider a DM who would like to minimize 

weighted Chebyshev distance of a point from the ideal point in the objective space. 

We later briefly experiment with underlying quadratic preference functions as well. 

Since all objectives are scaled between 0 and 1, the ideal point can be defined as 0 

for each objective. The underlying Chebyshev preference function can be formulated 

as in Equation (4.2). 

                                                                        𝑈!" 𝒛 = max 𝑤!𝑧!,𝑤!𝑧!,𝑤!𝑧!,𝑤!𝑧!                                                                 (4.2) 

where 𝒘 = (𝑤!,𝑤!,𝑤!,𝑤!) represents the objectives’ weights of the DM in his/her 

preference function.  

We note that the algorithms developed in this study are capable of handling any 

number of objectives. However, for the sake of completeness, in the rest of the paper 

we will address these four objectives only.  

4.2 Objective Functions 

Most of the studies that treat feature selection as a multi-objective problem focus on 

classification performance and cardinality. We use two more objectives; cost and 

risk.  

Cost represents an objective that measures the difficulty of obtaining feature 

information. This may have a common aspect for a group of features (such as a fixed 

cost incurred that is necessary to obtain information on a group of features) and an 

individual part for each feature (such as a variable cost). Risk represents an attribute 

that is feature based. While each feature equally affects cardinality, the effect on risk 

could vary between features.   

4.2.1 Accuracy 

In feature selection problems it is typical to consider maximization of accuracy as 

one of the objectives. The accuracy of a certain subset is estimated by calling the 

learning algorithm. Recall the formula Accuracy = tp+tn
tp+fp+tn+fn

 where tp, tn, fp, and fn 

stand for true positive, true negative, false positive, and false negative, respectively. 
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Accuracy is similar to rand index in statistics, which measures the similarity between 

two clusters of data. Generally, scaling of objective space is a critical issue in multi-

objective optimization techniques. It is not possible to calculate the accuracy level at 

ideal and nadir points without considering all possible combinations of features. In 

the accuracy formula, the denominator is the sum of all testing observations and the 

numerator is sum of correctly classified instances. Therefore, theoretically the 

accuracy can take values between 0 and 1, so the other objectives are also scaled 

between 0 and 1. To be consistent with the other objectives, accuracy is also 

converted to a minimization type objective by simply subtracting its original value 

from 1. 

The accuracy objective 𝑧! 𝒙  is defined shown in Equation (4.3). 

                                                                                                            𝑧! 𝒙 = 1− 𝑓 𝒙                                                                                                               (4.3) 

where 𝑓(𝒙) is the accuracy achieved for the selected features in solution 𝒙. 

4.2.2 Cardinality 

As mentioned before, decreasing the cardinality of the subset used in the prediction 

model is favorable in terms of reducing storage requirements and improving the time 

efficiency. Therefore, minimizing the cardinality of selected subset is considered as 

another objective of the DM. In bi-objective feature selection problems this objective 

is widely used together with maximization of accuracy (Hamdani, 2007). 

The maximum cardinality level is the number of features 𝑀, and without loss of 

generality it is assumed at least one feature is used in a solution. Linear scaling 

scheme is used to scale the real cardinality levels between 0 and 1, so the cardinality 

objective 𝑧! 𝒙  is defined as shown in Equation (4.4). 

                                                                                                        𝑧! 𝒙 =   
𝑥!!

!!! − 1
𝑀 − 1                                                                                                         (4.4) 
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4.2.3 Cost 

In some classification problems, the features are grouped such that each group has a 

fixed investment cost and within the group each feature has a measuring cost. The 

medical diagnosis example mentioned before can be used to exemplify that structure. 

For example, it is possible to perform a blood test and MRI scan on the patient, and 

each of these two tests discloses different features regarding the patient. Both of the 

tests have fixed costs and each feature obtained from the tests has a variable cost. In 

that case, total screening cost of a subset is defined considering which test or tests are 

applied and which features are measured.  

Let 𝐾 be the total number of tests that can be applied, 𝑘 = 1,… ,𝐾. To formulate the 

cost objective, following parameter definitions are made: 

𝑣𝑐!:  variable cost of feature  𝑖   

𝑓𝑐!:  fixed cost of test  𝑘 

𝑡!" :  
1,    if feature  𝑖  belongs test  𝑘
0,    otherwise                                                         

Note that each feature belongs to one test, that is 𝑡!"!
!!! = 1 for 𝑖 = 1,… ,𝑀.  

In order to identify which tests should be applied to measure the selected features in 

solution 𝒙, variable 𝑣!(𝒙) is defined for each test 𝑘 = 1,… ,𝐾 as in Equation (4.5). 

                                                                                              𝑣! 𝒙 ≥ 𝑡!"𝑥!       ∀𝑖 = 1,… ,𝑀                                                                                      (4.5) 

Using those definitions, the total measuring cost, 𝑇𝐶(𝒙), of  a solution 𝒙 is defined in 

Equation (4.6); 

                                                                                              𝑇𝐶 𝒙 = 𝑓𝑐!𝑣!

!

!!!

+ 𝑣𝑐!𝑥!

!

!!!

                                                                        (4.6) 

In order to linearly scale total costs between 0 and 1, the feature subset with 

minimum total cost 𝑇𝐶!"# and maximum total cost 𝑇𝐶!"# should be identified as in 

Equations (4.7) and (4.8) respectively. The maximum total cost occurs simply when 
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all features are used and the minimum total cost can be found by calculating the total 

costs of subsets with cardinality 1.  

                                                                                      𝑇𝐶!"# =    min!!!,…,!
𝑣𝑐! + 𝑡!"𝑓𝑐!

!

!!!

                                                                    (4.7) 

                                                                                                  𝑇𝐶!"# = 𝑓𝑐!

!

!!!

+ 𝑣𝑐!

!

!!!

                                                                                    (4.8) 

The resulting cost objective 𝑧! 𝒙  is defined as shown in Equation (4.9). 

                                                                                      𝑧! 𝒙 =
𝑇𝐶 𝒙 − 𝑇𝐶!"#
𝑇𝐶!"# − 𝑇𝐶!"#

                                                                                                      (4.9) 

4.2.4 Risk 

In the risk objective, each feature is assigned a risk value and the risk of a subset is 

determined by the summation of the risk values of the selected features in the 

corresponding subset. Continuing with the medical diagnosis example, assume each 

feature has a health related risk for the patient and it is a concern for the DM to 

minimize the risks that the patient is exposed to.  

To formulate the risk objective, the total risk involved in measuring the selected 

features in solution 𝒙 is defined as in Equation (4.10): 

r!:  risks involved in measuring feature  i 

                                                                                                                  𝑅 𝒙 = 𝑟!𝑥!

!

!!!

                                                                                                              (4.10) 

In order to linearly scale total risk between 0 and 1, the feature subset with minimum 

total risk 𝑅!"# and maximum total risk 𝑅!"# should be identified as in Equation 

(4.11) and (4.12). The maximum total risk occurs when all features are used, and the 

minimum total cost can be finding the feature with minimum risk.  

                                                                                                                𝑅!"# =    min!!!:!
r!                                                                                                           (4.11) 
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                                                                                                                    𝑅!"# = r!

!

!!!

                                                                                                                    (4.12) 

The risk objective 𝑧! 𝒙  is defined as shown in Equation (4.13); 

                                                                                                  𝑧! 𝒙 =   
𝑅 𝒙 − 𝑅!"#
𝑅!"# − 𝑅!"#

                                                                                                    (4.13) 
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CHAPTER 5   

ALGORITHMS 

In this chapter, two different algorithms, iTDEA-fs (Interactive Territory Defining 

Evolutionary Algorithm for Feature Selection Problem) and iWREA-fs (Interactive 

Weight Reducing Evolutionary Algorithm for Feature Selection), are developed. The 

main framework used in both algorithms, the details of iTDEA-fs, the improvement 

issues related with iTDEA-fs, and the details of iWREA-fs are explained in the 

following sections.  

5.1 Overview  

The general framework of the algorithms is based on the framework of Interactive 

Territory Defining Evolutionary Algorithm (iTDEA) developed by Köksalan and 

Karahan (2010). 

Being a preference-based multi-objective evolutionary algorithm, the main idea in 

iTDEA, is making a deeper search in the region that is estimated to be more 

appealing to the DM in order to approximate the most preferred solution better.  

In order to identify the preferred region of the solution space, the algorithm is 

constructed in a way that the preference information is obtained progressively during 

the search process. That is, the algorithm allows the DM to indicate his/her 

preferences through interaction stages integrated into iterations and the search is 

guided towards preferred regions accordingly.  

In iTDEA, to direct the search to the most preferred region, a territory defining 

approach is used. Generally speaking, non-dominated solutions are assigned with 

territory levels depending on their position in the solution space so that any other 

non-dominated solution cannot violate this territory. Eventually, this approach allows 
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the algorithm to give a higher chance of surviving to the solutions that are more 

promising to be the most preferred solution.  

In iTDEA, two populations are maintained through iterations; regular population and 

archive. In the initialization part, a regular population containing 𝑁 random solutions 

are generated and the non-dominated solutions in that population are used to form 

the initial archive. Both the archive and regular population is updated, and used 

throughout the algorithm, however; the size of the regular population, 𝑁, is kept 

constant while there is no restriction on the size of archive.  

Then, the number of iterations, 𝑇, and number of interaction stages, 𝐻, are 

determined. The interaction stages ℎ = 1,… ,𝐻 are scheduled at iterations 𝐺!,… ,𝐺!, 

respectively; so that the DM is involved in the process after completing a certain 

number of regular iterations.  

At each regular iteration, one offspring is generated by two selected parents. Then, it 

is decided whether the offspring will be accepted to the regular population and/or to 

the archive, and both the regular population and archive are updated accordingly. At 

each interaction stage, the DM is presented a set of solutions and asked to select the 

best solution among them. Based on the choice of the DM, the preference 

information is updated.  

The algorithm stops when the maximum number of iterations, 𝑇, is reached and the 

final interaction with the DM is performed to find the most preferred solution. The 

general framework of the algorithm used in the algorithms iTDEA-fs and iWREA-fs, 

is given below.  

1) Set iteration counter 𝑡 = 0 and interaction counter ℎ = 0. Schedule 

interaction stages at iterations 𝐺!,… ,𝐺!.  

2) Generate initial regular population 𝑃(0) of size 𝑁, and find the non-

dominated solutions in the population to form initial archive 𝐴(0).  

3) Set 𝑡 ← 𝑡 + 1 and ℎ ← ℎ + 1. Set 𝑃(𝑡) = 𝑃(𝑡 − 1)  and 𝐴(𝑡) = 𝐴(𝑡 − 1). 
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4) Offspring Generation: Select two parents, one from regular population and 

the other from archive, and apply crossover and mutation operators to create 

an offspring.  

5) Population Update: Check whether the offspring satisfies the acceptance 

conditions to regular population. If it does not satisfy the conditions reject the 

offspring and go to step 7, otherwise insert it into 𝑃(𝑡).  

6) Archive Update: Check whether the offspring satisfies the acceptance 

conditions to archive. If so insert it into 𝐴(𝑡), otherwise reject it.  

7) If 𝑡 < 𝐺!, go to step 3. 

8) Interaction Stages: Interact with the DM and update offspring acceptance 

conditions according to the preference information gathered.  

9) If 𝑡 = 𝑇, perform the final interaction and stop. Otherwise, go to step 3.  

iTDEA-fs and iWREA-fs use the same framework defined above as well as the same 

Offspring Generation procedure. At each iteration 𝑡, two parents are selected to 

create an offspring. First parent is selected from regular population by tournament 

selection with tournament size of two and probability of 1. That is, two random 

solutions are chosen from the current population and it is checked whether one of the 

solutions dominates the other solution. If so, the solution dominating the other one is 

selected as the first parent. If there is no dominance between two solutions, one of 

them is selected randomly. The second parent is selected from current archive 

randomly.  

In both evolutionary algorithms the chromosome representation is constructed such 

that each gene represents whether or not the corresponding feature is selected.  

When the two parents are selected, uniform crossover is applied with a crossover 

probability of 𝑝! = 0.5, and binary mutation is applied with a mutation probability of 

𝑝! = 1/𝑀, where 𝑀 is the total number of features on each gene to generate 

offspring 𝒛off (Deb, 2001). 
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Figure 5.1 An example of crossover and mutation operations 

Crossover and mutation procedure is exemplified in Figure 5.1. In this example there 

are 6 available features. Parent 1 consists of features 1, 3, 5, and 6 and Parent 2 

includes features 1, 2, and 5. The generated offspring after applying crossover and 

mutation operations consists of features 5 and 6.  

iTDEA-fs and iWREA-fs differ in the Population Update, Archive Update, and 

Interaction Stages that are explained for iTDEA-fs in Section 5.2 and for iWREA-fs 

in Section 5.4. Furthermore, the two algorithms include different parameter setting 

due to rules in their differing operations. 

5.2 Interactive Territory Defining Evolutionary Algorithm for the Feature 

Selection Problem (iTDEA-fs) 

In this study, iTDEA has been implemented on feature selection problem with some 

variations that are expected to be more compatible with the characteristics of the 

problem. The adopted version is called iTDEA-fs.  In this section, the details of 

iTDEA-fs are explained.  
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5.2.1 Definitions  

In archive update and interaction stage of iTDEA-fs, additional operations are 

required to calculate the objective weights that will minimize the Chebyshev distance 

of a solution from the ideal point, namely calculating favorable weights. Favorable 

weight vector 𝒘! = 𝑤!!,… ,𝑤!"  of a solution 𝒛𝒊, is calculated using the following 

formula;  

Favorable weights formula 

𝑤!" =

1
𝑧!" − 𝑧!∗

1
𝑧!" − 𝑧!∗

!

!!!

!!

  if  𝑧!" ≠ 𝑧!∗  for all  𝑘 = 1,…𝑝  

1                                                                                          if  𝑧!" = 𝑧!∗                                                                  
0                                                                                          if  𝑧!" ≠ 𝑧!∗ but  ∃𝑘                                       

                                                                    such that all  𝑧!" = 𝑧!∗

 

where 𝒛∗ is the ideal point and p is the number of objectives.  

Since all objectives are scaled between 0 and 1, as mentioned in Section 4.2, the 

ideal point can be defined as 𝒛∗ = 0 !×!. 

At each interaction stage h, the preference information obtained from DM is used to 

estimate the preferred weight region, 𝑅!. A preferred weight region is defined by a 

set of Chebyshev weight ranges 𝒍𝒉,𝒖𝒉 = 𝑙!! ,𝑢!! ,… , 𝑙!! ,𝑢!!  where 𝑙!! and 𝑢!! 

refers the lower and upper bound defined for preference function weight of objective 

𝑖.  Since there is no information regarding DM’s preferences until first interaction 

stage, the initial preferred weight region 𝑅! includes all feasible weight ranges, 

𝑙!!,𝑢!! = 0, 1  for all 𝑗 = 1,…𝑝. 

5.2.2 iTDEA-fs Interaction Stages 

At each interaction stage ℎ of iTDEA-fs, 𝑃 solutions are filtered from the current 

archive to present to the DM, and he/she is asked to choose the most preferred 

solution among them. The selected solution 𝒛!"#, is used to estimate the preferred 

weight region 𝑅!.  
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The preferred weight regions are used to direct the search by taking role in the 

archive update rules. As the algorithm progresses and more preference information is 

gathered, it is expected to converge to the preferred region. Therefore, the preferred 

weight region shrinks progressively with the help of reduction factor 𝑟 around the 

favorable weights of the selected solution, 𝒛!"# in each interaction stage. 

 

Figure 5.2 Smaller territory levels are assigned to the solutions in the preferred 
region in iTDEA-fs. 

Each preferred weight region 𝑅! has a territory level 𝜏!. The territory level assigned 

to the recently found region is smaller as exemplified in Figure 5.2 in order to allow 

more solutions in the preferred region.  This is accomplished with the usage of 

territories in archive update. Generally speaking, an offspring’s favorable weights 

determine in which preferred weight region it falls into. If it violates the territory of a 

solution within that region, then it is not accepted into archive. The archive update 

rules will be discussed in Section 5.2.4 in more detail.  

The steps of an interaction stage ℎ, are explained below.  

(1) Filtering: Find the solutions 𝒛! ∈ 𝐴(𝑡) whose favorable weights fall into most 

currently estimated preferred weight region and form the set 𝐹. That is for all 

𝒛! ∈ 𝐴(𝑡),  

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

Objective	  1

O
bj
ec
tiv
e	  
2

 

 
archive solutions
ideal point



 

29 

i. Calculate favorable weights 𝒘i = 𝑤!!,… ,𝑤!"  of 𝒛!. 

ii. Check if all 𝑙!!!! ≤ 𝑤!" ≤ 𝑢!!!! where 𝑙!!!!,𝑢!!!! ∈ 𝑅!!! for all 

𝑗 = 1,… ,𝑝. If so, insert 𝒛! into 𝐹.   

If the number of solutions in 𝐹 is more than 𝑃, select 𝑃 of them randomly 

to present the DM. Otherwise, fill the remaining slots by the solutions in 

the 𝐴(𝑡) that are not presented to the DM before.  

(2) Ask the DM to select 𝒛fav, i.e, the most preferred solution of him/her in 𝐹. 

(3) Estimate the weights of the DM’s preference function, 𝒘𝑫𝑴 =    𝑤!,… ,𝑤! , 

with the favorable weights of the selected solution 𝒛fav.  

(4) Set the preferred weight region 𝑅! defined by a set of Chebyshev weight 

ranges 𝒍𝒉,𝒖𝒉 = 𝑙!! ,𝑢!! ,… , 𝑙!! ,𝑢!!  as follows; 

𝑙!! ,𝑢!! =

0, 𝑟!                                                                                 if  𝑤!∗ −
𝑟!

2 ≤ 0

1− 𝑟! , 1                                                                 if  𝑤!∗ +
𝑟!

2
≥ 1

𝑤! −
𝑟!

2
,𝑤! +

𝑟!

2
                              otherwise                    

           

where  𝑤! ∈ 𝒘𝑫𝑴 and 𝑟 is the reduction factor. 

(5) Compute the territory level 𝜏!, and assign it to 𝑅! using following formula.  

𝜏!   =    𝜏!
𝜏!
𝜏!

!!!
!

 

where 𝜏! and 𝜏! represents initial and final territory level parameters, 

respectively and 𝐻 is the total number of interaction stages.  

The filtering procedure of iTDEA-fs differs from iTDEA. Since iTDEA originally 

implemented on the problems with continuous objective space, the number of non-

dominated solutions found is usually enough to fill 𝑃 slots, in fact they also check 𝜀 

dominance relations and select non-dominated ones. However, since the objective 

space in the feature selection problem is discrete, sometimes 𝑃 slots are not filled 

with the solutions whose favorable weights fall into currently estimated weight 

region, therefore in that case the remaining slots are filled with solutions that are not 

presented before.  
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5.2.3 iTDEA-fs Population Update 

Each time an offspring 𝒛off is generated, it is determined whether it will be accepted 

into the regular population. The steps of population update procedure at iteration 𝑡, 

are explained below: 

(1) Check whether 𝒛off ∈ 𝑃(𝑡), if so do not accept the offspring into population, 

otherwise go to step 2.  

(2) Set a counter 𝑖   =   1. 

(3) Test 𝒛off against 𝒛! ∈ 𝑃(𝑡). If 𝒛! is dominated by 𝒛off, discard 𝒛!, insert 𝒛off 

into 𝑃 𝑡  and stop, otherwise set 𝑖 ← 𝑖 + 1 and go step 4. 

(4) If 𝑖 ≤ 𝑁 go to step 3, otherwise choose a random solution 𝒛! ∈ 𝑃(𝑡) to 

discard and insert 𝒛off into 𝑃 𝑡 .  

In iTDEA, a solution dominated by the population is not accepted, however, in the 

feature selection problem generating a non-dominated solution is more challenging. 

Thus, for the sake of divergence, the offspring that are not included in regular 

population are accepted even if they are dominated.  

5.2.4 iTDEA-fs Archive Update  

iTDEA-fs slightly differs in archive update rules from iTDEA. The steps followed to 

decide whether the offspring 𝒛!"", will be accepted into archive is given below.  

(1) Test 𝒛!"" against each solution in the achieve, 𝒛! ∈ 𝐴(𝑡). If there exists 

𝒛! ∈ 𝐴(𝑡) that dominates 𝒛!"", reject it and stop, current archive remains 

same. Otherwise, go to step 2.  

(2) Check whether there exists 𝒛! ∈ 𝐴(𝑡) that is dominated by 𝒛!"". If there is, 

discard the dominated solutions from  𝐴(𝑡), insert 𝒛!"" into 𝐴(𝑡) and stop. 

Otherwise, go to step 3.  

(3) Calculate the favorable weights of the 𝒛!"" as 𝒘off = 𝑤!,… ,𝑤!  to find the 

most recently estimated preferred weight region lower and upper bounds of 

which covers 𝒘off . That is, 

i. Set 𝑞 = ℎ.  
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ii. Check if all 𝑙!
! ≤ 𝑤! ≤ 𝑢!

! where 𝑙!
! ,𝑢!

! ∈ 𝑅! for all 𝑗 = 1,… ,𝑝. If 

so, assign the territory level 𝜏 = 𝜏! to the offspring and go to step 4. 

Otherwise, set 𝑞 = 𝑞 − 1, and repeat this step.  

(4) Calculate the Chebyschev distances of 𝒛! ∈ 𝐴(𝑡) to 𝒛off as 𝑑!. Set 𝑑 =

min! 𝑑! . If 𝑑 ≤ 𝜏 insert the 𝒛!"" into 𝐴(𝑡), otherwise, reject it.  

Unlike iTDEA, the offspring is accepted into archive if it is non-dominated and there 

exist at least one solution dominated by the offspring regardless of territories in 

iTDEA-fs.  

The archive update procedure of this algorithm allows to keep more non-dominated 

solutions in the estimated preferred regions by comparing the territory level of the 

region that the offspring belongs to with the distance between the offspring and the 

closest solution in the archive as shown in Figure 5.3.  

 

Figure 5.3 Archive update in iTDEA-fs: the offspring is accepted into archive if 
𝑑 ≤ 𝜏. 

5.3 Improvement Issues of iTDEA-fs 

Feature selection problem has two characteristics originating from the nature of the 

problem that require a special treatment: scaling and imbalanced solution space.  
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As mentioned in Section 4.2, theoretically, accuracy can take any value between 0 

and 1. However, in practice, depending on the dataset the minimum and maximum 

accuracy levels can form a much narrower interval. For example, consider a 

classification problem with two classes where 99% of the instances in the dataset 

belong to the first class, while only 1% of the instances are from the second class. In 

that case, even without constructing any relation between the features and the classes 

of the instance, estimating the class of all instances as the first class would result in a 

high accuracy level. Since the true interval depends on the dataset, applying a scaling 

procedure that will fit to every dataset can be challenging. Not scaling the objectives 

properly have a negative impact on the convergence of iTDEA-fs because the 

favorable weight calculation method highly relies on the assumption that the 

objectives are scaled consistently with each other.  

In addition to the scaling issue, in the feature selection problem, discretized and 

imbalanced objective space may have a negative impact on estimating the objective 

weights of the DM. For example, for a feature selection problem with the number of 

features equal to 100, there are 100 distinct solutions with cardinality level of one 

while there is only one solution with cardinality level of 100. Moreover, all 

objectives have discrete values since accuracy is estimated on a certain size of testing 

set, and cardinality, cost, and risk depend on the features included in a subset.  

Favorable weight calculation procedure in iTDEA-fs is performed for both 

estimating the preferred weight region from preferred solution in an interaction stage 

and identifying in which estimated weight region a solution is included. Therefore, 

this procedure is an important part of the algorithm but it may not perform well in 

case of imprecise scaling and imbalanced solution spaces. The reason of this claim is 

explained through an example. 

Example: Consider a 3-objective minimization problem where the objectives are Z1, 

Z2, and Z3. Suppose that during an interaction stage, when the archive is filtered to 

present to the DM, five solutions as given in Table 5.1 are obtained.  

Let us assume that the DM has a preference function that minimizes the Chebyshev 

distance of a solution from the ideal point with objective weights w1, w2, and w3. 
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Assume without loss of generality that the ideal point is zero at each objective. For a 

weight set of w1, w2, and w3 equals to 0.1, 0.2, and 0.7 respectively, the DM would 

chose the solution which will minimize following function, 

max 0.1 Z! , 0.2 Z! , 0.7 Z!    

Table 5.1 Filtered archive in the example 

Solution Objective Value 
Z1 Z2 Z3 

Y1 0.10 0.40 0.40 
Y2 0.10 0.30 0.50 
Y3 0.20 0.30 0.45 
Y4 0.20 0.20 0.70 
Y5 0.30 0.10 0.70 

For this filtered archive and preference function, the DM would select Y1 as the most 

preferred solution. Using the favorable weight calculation method of iTDEA-fs, the 

DM’s objective weights would be estimated as 0.66, 0.17, and 0.17, for w1, w2, and 

w3, respectively.  

 

Figure 5.4 Favorable weights and actual weights in the example 

Figure 5.4 represents the feasible weight space for the 3-objective problem 

mentioned in the example above. Favorable weights of the presented solutions to the 

DM and actual preference function weights are shown in the figure. It can be 
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observed from Figure 5.4 that the favorable weights of the solutions presented to the 

DM tend to favor either first or second objectives, while the DM actually put more 

emphasis on the third objective. In iTDEA-fs, there can be two reasons for the 

filtered set presented to the DM consists of solutions whose favorable weights show 

a tendency of not to put emphasis on the third objective.  

First, the preferred weight region is converged to a certain region of the weight space 

and the solutions in the filtered set are the ones whose favorable weights fall into this 

specific region. In that case, if the region shrinks on weights that represent the DM’s 

actual weights well, the favorable weights of the solutions in the filtered set will be 

also representative and the algorithm will shrink the region around those weights 

even more, which is desirable. If the preferred weight region shrinks on weights that 

do not represent the DM’s actual objective weights, the solutions in the archive that 

are potentially appealing for the DM may not be included in the filtered set as their 

favorable weights does not belong to estimated preferred weight region.  

Second, the objective function values of non-dominated solutions in the archive may 

get squeezed within a narrow interval because of the imprecise scaling and/or 

imbalanced solution space. Especially, at early iterations of the algorithm it is 

possible that the solutions in the archive do not have balance in the objective space. 

In that case, the selected solution from the filtered set will have favorable weights 

that do not represent the actual weights well and the preferred weight region will 

shrink on those weights to be used in further iterations and interaction stages.  

As in the example above, it may be difficult for iTDEA-fs to interpret the behavior of 

DM good enough for several reasons. To avoid such problems a mixed integer 

mathematical model, Model (Mid∞), suggested by Karakaya et al. (2016), is used to 

evaluate the DM’s preferences in iWREA-fs. This model aims to find a weight set 

that will have a central location in the Chebyshev weight region that is feasible with 

respect to preferences of the DM. The details of the model are given below. 

Assuming the ideal point is zero for each objective, let 𝑧!" represents 𝑗!! objective 

value of solution 𝒛! and 𝐿 be the set of pairwise comparisons of the DM where 

𝐿 =    𝑧!, 𝑧! :  𝑧!  is preferred to  𝑧! . Forming the sets 𝐼!!,!!
! = 𝑡:  𝑧!" < 𝑧!"     and 
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𝐼!!,!!
! = 𝑠:  𝑧!" > 𝑧!"   , and assigning a large positive value to M, the weight 

estimation model can be constructed as follows: 

Model (Mid∞)  

max 𝜀 

s.to 

    𝑤!𝑧!" ≥   𝑤!𝑧!" + 𝜀 −𝑀 1− 𝑦! 𝑧!, 𝑧! ,   

                                                                                                                                    ∀𝑡   ∈ 𝐼!!,!!
! ,∀𝑠 ∈ 𝐼!!,!!

! ,∀ 𝑧!, 𝑧! ∈ 𝐿,          (5.1) 

                                                               𝑦! 𝑧!, 𝑧!
!  ∈!!!,!!

!

≥ 1, ∀ 𝑧!, 𝑧! ∈ 𝐿,                                                                     5.2  

                                                                                                                                                   𝑤!

!

!!!

= 1,                                                                                                (5.3) 

                                                                                                                            𝑤! ≥   𝜀, ∀𝑗,                                                                                                        (5.4) 

𝑦! 𝑧!, 𝑧! ∈ 0, 1 , ∀𝑡   ∈ 𝐼!!,!!
! , ∀ 𝑧!, 𝑧! ∈ 𝐿. 

where 𝑤! represents the estimated weight of 𝑗!! objective and 𝑦! 𝑧!, 𝑧!  is a binary 

decision variable which equals to one if 𝑡!! weighted objective of  𝑧!  has the 

minimum difference with the maximum weighted objective of 𝑧! among the 

objectives for which 𝑧! is better than 𝑧!.  

In this model, constraint (5.1) ensures the weights will be feasible with respect to 

DM’s preferences, however; together with objective function it also ensures that the 

minimum of the differences between the maximum of weighted objectives will be 

maximized. Constraint (5.2) stands for identifying the minimum of those differences 

for each preference. Constraint (5.3) normalizes the weights and constraint (5.4) 

helps to keep weights away from extremes on the feasible space. 
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Each preference of the DM restricts the feasible weight space and the optimal 

solution of the model 𝒘 = 𝑤!,… ,𝑤!  is the central weight vector in the feasible 

weight space.  

 

Figure 5.5 Model (Mid∞) weights, favorable weights and actual weights in the 
example 

Consider the example mentioned above. If the DM selects Y1, it refers to a 

preference list in which Y1 is preferred to solutions Y2, Y3, Y4 and Y5. Using this 

preference list Model (Mid∞) estimates the DM’s objective weights as 0.19, 0.19, and 

0.62, w1, w2, and w3, respectively. That is, with the same information Model (Mid∞) 

is able to estimate the true weights of the DM better by setting a relatively high 

estimated weight value to the 3rd objective as shown in Figure 5.5. 

5.4 Interactive Weight Reducing Evolutionary Algorithm for Feature Selection 

(iWREA-fs) 

In this section, a new interactive evolutionary algorithm that uses the general 

framework of iTDEA and improves iTDEA-fs in several dimensions is developed for 

feature selection problem. As mentioned in Section 5.2, in this algorithm an 

approach that is estimated to be more compatible with the characteristics of the 

problem is used.   
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5.4.1 iWREA-fs Interaction Stages 

In iWREA-fs, at each interaction stage, the DM is asked to make 𝑄 pairwise 

comparisons, where each comparison made between the incumbent solution, 𝒛!"#, 

and a selected solution to be compared with the incumbent, 𝒛!. The preferences of 

the DM are used as constraint to restrict the weight space in Model (Mid∞) 

introduced in Section 5.2.  Before making any interactions with the DM the 

preference list is initialized as 𝐿 = ∅. The steps of an interaction stage ℎ, are 

explained below.  

(1) Set the  question counter 𝑞 = 0. 

(2) If 𝐿 = ∅, select two random solutions, 𝒛! , 𝒛! ∈ 𝐴 𝑡  and 𝒛! ≠ 𝒛!. Then, ask 

the DM to compare 𝒛! and 𝒛!, and set 𝑞 ← 𝑞 + 1.  Without loss of generality, 

assume that 𝒛𝒊 is preferred to 𝒛𝒋. Then, set 𝐿 = 𝒛𝒊, 𝒛𝒋  and the incumbent 

solution 𝒛!"# = 𝒛𝒊. Otherwise, go to step 3. 

(3) Estimate the DM’s preference function weights 𝒘𝑫𝑴 =    𝑤!,… ,𝑤! , by 

solving Model(Mid!) with the current preference list, 𝐿. 

(4) Calculate the Chebyshev distances of the solutions in 𝐴(𝑡) to the ideal point, 

as follows: 

𝑢 𝒛! = max
!

𝑤!𝑧!":𝑤! ∈ 𝒘𝑫𝑴  

where 𝑧!" represents 𝑗!! objective value of solution 𝒛! ∈ 𝐴 𝑡  and 𝑤! 

represents the estimated weight of 𝑗!! objective.  

Rank the solutions in increasing order of 𝑢 𝒛!  as 𝒛!,… , 𝒛 !(!) , where 

𝐴(𝑡)  represents the number of solutions in the current archive. Initialize 

rank counter 𝑟   =   1. 

(5) Check whether the comparison (𝒛!"# , 𝒛!) is included in 𝐿, if it is not included 

set 𝒛! = 𝒛! and go to step 8. Otherwise, set 𝑟 ← 𝑟 + 1. If 𝑟 ≤ 𝐴(𝑡)  repeat 

step 5, if  𝑟 > 𝐴(𝑡)  go to step 6.  

(6) Calculate the Chebyshev distances of the solutions in 𝑃(𝑡) to the ideal point, 

as follows: 

𝑢 𝒛! = max
!

𝑤!𝑧!":𝑤! ∈ 𝒘𝑫𝑴  
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where 𝑧!" represents 𝑗!! objective value of solution 𝒛! ∈ 𝑃(𝑡) and 𝑤! 

represents the estimated weight of 𝑗!! objective. 

Rank the solutions in increasing order of 𝑢 𝒛!  as 𝒛!,… , 𝒛 !(!) , where 

𝑃(𝑡)  represents the number of solutions in the current regular population. 

Initialize rank counter 𝑟   =   1. 

(7) Check whether the comparison (𝒛!"# , 𝒛!) is included in 𝐿, if it is not included 

set 𝒛! = 𝒛! and go to step 8. Otherwise, set 𝑟 ← 𝑟 + 1 and repeat step 7. 

(8) Ask the DM to make a pairwise comparison between the current incumbent 

solution 𝒛!"# and selected solution 𝒛!. Let 𝒛𝒎 and 𝒛𝒍 represent the preferred 

and non-preferred solutions, respectively. Set 𝒛!"# = 𝒛𝒎, update the 

preference list as 𝐿 = 𝐿 ∪ 𝒛𝒎, 𝒛𝒍 . Set 𝑞 ← 𝑞 + 1. If 𝑞 = 𝑄 estimate the 

DM’s preference function weights 𝒘𝑫𝑴 and stop by solving Model (Mid∞) 

with the current preference list, 𝐿, otherwise, go to step 3.  

In the interaction stages of iWREA-fs, each pairwise comparison that the DM maker 

will make is aimed to be informative, in terms of reducing the feasible weight space 

as much as possible so that the objective weight of the DM can be estimated faster 

and more accurately and the most preferred solution can  converge better. To do that 

after each comparison the incumbent solution is kept and the estimated weights are 

updated. The next solution to be compared with the incumbent solution is selected 

based on the updated weights. If the DM’s objective weight can be estimated 

accurately, it is expected that the selected solution for the comparison and the 

incumbent solution have close preference function values and the preference of DM 

between these two solutions will be useful in terms of reducing the feasible weight 

space.    

As mentioned before, in iTDEA-fs the DM is presented 𝑃 solutions and asked to 

choose one of them, which actually refers asking the DM to make 𝑃 − 1 pairwise 

comparisons. Therefore, to be consistent while comparing two algorithms, the 

number of questions 𝑄, in each interaction stage of iWREA-fs is set to 𝑃 − 1 in our 

computational experiments. 
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5.4.2 iWREA-fs Population Update 

iWREA-fs uses regular population updating rules to direct the search towards 

appealing region of the solution space. When an offspring 𝒛!"" is generated at 

iteration 𝑡, the regular population is updated with the procedure defined below. 

(1) Calculate the Chebyshev distances of the offspring to the ideal point, as 

𝑢 𝒛!"" = max! 𝑤!𝑧!:𝑤! ∈ 𝒘𝑫𝑴  where 𝑧! represents 𝑗!! objective value of 

𝒛!"".  

(2) Calculate the Chebyshev distances of the solutions in 𝑃(𝑡) to the ideal point, 

as follows:  

𝑢 𝑧! = max
!

𝑤!𝑧!":𝑤! ∈ 𝒘𝑫𝑴  

where 𝑧!" represents 𝑗!! objective value of solution 𝒛! ∈ 𝑃(𝑡).  

(3) Rank the solutions in increasing order of 𝑢 𝒛!  as 𝒛!,… , 𝒛 !(!) , where 

𝑃(𝑡)  represents the number of solutions in the current regular population.  

(4) Compare 𝑢 𝒛!""  and 𝑢(𝑧 ! ! ), if 𝑢 𝒛!"" >   𝑢(𝒛 ! ! ) do not accept the 

offspring into regular population. Otherwise, discard 𝒛 ! !  and accept the 

offspring into the regular population.  

As in iTDEA, in WREA-fs it is allowed to keep dominated solutions in the regular 

population and its size is kept constant. However, while in iTDEA the search is 

directed by the archive with the acceptance rules, in iWREA-fs the search is directed 

by regular population. The offspring generated is compared with the worst solution 

in the regular population in terms of estimated preference function values and 

accepted if it’s preference function value is lower. As a result, better solutions evolve 

in the population in terms of estimated preference function values throughout the 

iterations and if the weights are estimated well, this procedure allows to direct the 

search accurately.  

5.4.3 iWREA-fs Archive Update 

If the offspring 𝒛off, is accepted to the regular population at iteration 𝑡, in order to 

decide whether it will be accepted into the archive, 𝒛off is tested against each 
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𝒛! ∈ 𝐴(𝑡). If the offspring is dominated at least by one solution, it is rejected and 

current archive remains same. If the offspring is non-dominated, the solutions 

dominated by the offspring are discarded and the offspring is accepted into archive. 

Having a discretized solution space, the number of non-dominated solutions in 

feature selection problem is small compared to continuous objective problems. 

Therefore, in iWREA-fs it is preferred to keep non-dominated solutions and use 

regular population to direct the search according to preferences of the DM.  
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CHAPTER 6  

COMPUTATIONAL EXPERIMENTS 

In this chapter, first, the datasets used to test the performances of the algorithms are 

introduced. Then, the parameter setting in the experiments is explained and lastly, 

computational results and their analysis are provided. 

6.1 Datasets  

The algorithms are implemented on four datasets from University of California 

(UCI) machine learning depository. Each dataset is designed for classification 

problems and none of them includes missing value in their observations. The number 

of features, number of classes and number of observations in each dataset are given 

in Table 6.1.  

Heart Disease and Breast Cancer datasets are examples of classification problems in 

medical diagnosis area where the purpose is to identify the presence of diseases in 

the patients. In Vehicle dataset, the features extracted by processing vehicle’s image 

are used to categorize the vehicle as Opel, Saab, Bus or Van. German dataset 

includes the data regarding the customers of a bank and the aim is to classify them as 

bad or good.  

Table 6.1 Datasets used in experiments 

Dataset Number of 
features 

Number of 
classes 

Number of 
observations 

Heart Disease 13 2 270 
Vehicle 18 4 846 
German 24 2 1000 

Breast Cancer 32 2 569 

In order to address the problem defined in Chapter 4, it is required to generate the 

parameters regarding cost and risk objectives for each dataset. In this study we 

consider the case where the objectives of the DM conflict with each other. This is 
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generally the case in real life situation where a solution that performs well in one 

objective performs worse in another objective. To reflect such a conflict in our 

objectives, we assume that the cost and risk objectives are inversely proportional to 

accuracy in different ways. We measure the accuracy level of each feature 

individually and use these values to generate inversely proportional cost and risk 

parameters for the corresponding feature. 

To exemplify the procedure of cost and risk parameters’ generation, consider a 

dataset with 5 features. Recall that the DM aims to maximize accuracy whereas to 

minimize the risk and the cost of the selected subset. Suppose that in terms of 

accuracy features 1 and 2 perform well, feature 3 perform moderately, and features 4 

and 5 perform poorly. The features that have close performances are grouped 

together and fixed costs of the group are generated directly proportional to their 

accuracy levels. That is, fixed costs of the groups comprising features 1 and 2, 

feature 3, and features 4 and 5 are high, moderate, and low, respectively. The 

variable costs in a group are generated randomly between an interval proportional to 

accuracy level, e.g. random between 80% and 120% of accuracy level. The 

individual risk levels are generated randomly from an interval that is proportional to 

the variable costs of the features.  

Heart Disease dataset in UCI repository includes the fixed and variable cost 

information of the features and these original values are used as cost parameters in 

our experiments.  

6.2 Implementation 

To estimate the accuracy level of a subset of features, a single hidden layer 

feedforward neural network Extreme Learning Machine (ELM), which is suggested 

by Huang et al. (2012), is used as the learning algorithm. ELM achieves comparably 

high classification performances with a high training speed when compared with 

gradient-based methods, traditional SVM, and least square SVM. In our experiments, 

we use the suggested parameter setting in Huang et al. (2006).  
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We use 10-fold cross validation to determine the training and test sets, and repeat 

this procedure 5 times in order to reduce variation in accuracy level estimation 

caused by the random nature of ELM. 

To be able to observe the effect of employing the DM’s preferences, a version, 

namely No Interaction, in which the number of interaction stages is set to zero, is 

also tested on each dataset in addition to iTDEA-fs and iWREA-fs.  

Recall that the Chebyshev preference function of DM, 𝑈!"(𝒛), is formulated in 

section 4.1 as follows: 

𝑈!" 𝒛 = max   𝑤!𝑧!,𝑤!𝑧!,𝑤!𝑧!,𝑤!𝑧!  

where 𝑧!, 𝑧!, 𝑧! and 𝑧! refer to accuracy, cardinality, cost and risk objectives of 

solution 𝒛, respectively, and 𝒘 = (𝑤!,𝑤!,𝑤!,𝑤!) represents the objective weight 

vector of the DM. 

We use different weight vectors to simulate the preferences of the DM so that 

different sets of solutions are favored by the DM for different weight sets. We refer 

to these weights sets as: Accuracy Favored, Accuracy and Cost Tradeoff, Equally 

Treated. In Table 6.2, the objective weights in 𝑈!" 𝒛  for each type of DM are 

given as 𝒘 = (𝑤!,𝑤!,𝑤!,𝑤!) where 𝑤!, 𝑤!, 𝑤!, and 𝑤! refer to the weights of 

accuracy, cardinality, cost, and risk objectives, respectively. 

Table 6.2 Types of DM's preference function weights tested 
Test Name Weight set 

Accuracy Favored  (0.97, 0.01, 0.01, 0.01) 
Accuracy and Cost Tradeoff  (0.40, 0.10, 0.40, 0.10) 

Equally Treated  (0.25, 0.25, 0.25, 0.25) 

6.3 Experimental Setting 

The algorithms are tested on each dataset for different types of underlying preference 

functions of the DM. In Tables 6.3-6.6, the evolutionary algorithms’ parameter 

settings are given for each experiment.  
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Within an experimental setting, iTDEA-fs, iWREA-fs and No Interaction shares the 

same parameter setting for the population size, 𝑁, and number of iterations, 𝑇, and 

number of interaction stages, 𝐻, is also set same for iTDEA-fs and iWREA-fs. The 

interactions with DM scheduled in equal intervals for iTDEA-fs and iWREA-fs in 

each experiment. That is, 𝐺 ℎ = !
!
ℎ for ℎ = 1,… ,𝐻. It is also possible to set an 

adaptive scheduling procedure for interactions such that the DM is interacted 

whenever solutions that are estimated to be favorable for the DM are obtained. We 

do not apply an adaptive scheduling procedure to be able to make a fair comparison 

between the algorithms. The number of comparisons, 𝑄, given in Tables 6.3-6.6 

refers the number of questions asked to the DM in iWREA-fs at each interaction 

stage. The number of solutions presented to the DM in the interactions stages of 

iTDEA-fs, 𝑃, is set to 𝑃 = 𝑄 + 1. Together with this setting, in an experiment 

iTDEA-fs and iWREA-fs employ same amount of DM interaction.   

The population size and the number of questions in the experiments of a dataset are 

kept constant, however, the number of iterations and number of interaction stages are 

determined such that the search is stopped at a point in which the algorithms can be 

compared. Accuracy Favored weight set is generally more challenging in terms of 

convergence, thus the number of iterations and interaction stages are set higher for its 

experiments. 

In addition to those parameters, iTDEA-fs requires to set initial and final territory 

levels, 𝜏! and 𝜏!, and reduction factor, 𝑟. Based on our preliminary experiments, we 

used 𝜏! = 0.1, 𝜏! = 0.0001 and 𝑟 = 1/𝑝 ! where  𝑝 is number of objectives in the 

experiments. 

In general, as the solution space enlarges, that is as the number of features increases, 

to converge the most preferred solution of the DM the number of iterations, number 

of interactions and number of questions asked to the DM are increased, as we did in 

our experimental settings. Different settings can be employed such as an adaptive 

interaction schedule based on the progress of non-dominated solutions. However, to 

make a fair comparison of the algorithms we do not consider such procedures and 

keep our original settings.   
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Table 6.3 Parameter settings of Heart Disease (13) experiments 

 
Weight Set 

Parameter 
Accuracy 
Favored 

Accuracy and Cost 
Tradeoff 

Equally 
Treated 

Population size, N 50 50 50 
Number of iterations, T 600 200 200 
Number of interactions, H 6 4 4 
Number of comparisons, Q 3 3 3 

 

Table 6.4 Parameter settings of Vehicle (18) experiments 

 
Weight Set 

Parameter 
Accuracy 
Favored 

Accuracy and Cost 
Tradeoff 

Equally 
Treated 

Population size, N 200 200 200 
Number of iterations, T 10,000 10,000 10,000 
Number of interactions, H 10 10 10 
Number of comparisons, Q 3 3 3 

 

Table 6.5 Parameter settings of German (24) experiments 

 
Weight Set 

Parameter 
Accuracy 
Favored 

Accuracy and Cost 
Tradeoff 

Equally 
Treated 

Population size, N 500 500 500 
Number of iterations, T 20,000 6,000 6,000 
Number of interactions, H 10 3 3 
Number of comparisons, Q 5 5 5 

 

Table 6.6 Parameter settings of Breast Cancer (32) experiments 

 
Weight Set 

Parameter 
Accuracy 
Favored 

Accuracy and Cost 
Tradeoff 

Equally 
Treated 

Population size, N 1,000 1,000 1,000 
Number of iterations, T 20,000 10,000 10,000 
Number of interactions, H 20 10 10 
Number of comparisons, Q 5 5 5 
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6.4 Results and Discussion 

Three algorithms are tested on each experimental setting with 10 replications. The 

algorithms are compared based on a performance indicator (defined in the next 

section) and their computational efficiency. 

6.4.1 Performance Indicator 

The performance of algorithms on finding an appealing solution for DM in an 

experiment can be evaluated based on the best solution in the final archive 

𝑈∗ 𝑇 = min!!∈!(!) 𝑈!"(𝑧!) . Although during the search process the underlying 

preference function of the DM is unknown to us, we use this simulated underlying 

preference function to calculate the performance indicator. Let 𝑈iTDEA-fs
! , 𝑈iWREA-fs

! , and 

𝑈No Interaction
!  represent 𝑈∗ 𝑇  values obtained in replication 𝑟 of an experimental 

setting by iTDEA-fs, iWREA-fs, and No Interaction, respectively. The values of 

𝑈iTDEA-fs
! , 𝑈iWREA-fs

! , and 𝑈No Interaction
!  are given in Appendix A for each experimental 

setting.  

Since in the feature selection problem addressed it is not possible to find the nadir 

and ideal point without total enumeration of possible subsets, in order to define a 

normalized performance indicator, for each experimental setting, the best and worst 

performance obtained by algorithms through 10 replications are found as shown in 

Equations (6.1) and (6.2). 

                                              𝑈!"# = max
!!!,…,!"

max 𝑈iTDEA-fs! ,𝑈iWREA-fs! ,𝑈No Interaction
!                                               (6.1) 

                                                𝑈!"# = min
!!!,…,!"

min 𝑈iTDEA-fs! ,𝑈iWREA-fs! ,𝑈No Interaction
!                                                 (6.2) 

By using 𝑈!"# and 𝑈!"#, the performance of algorithms in a replication is evaluated 

as percentage deviations, which are defined as given in Equations (6.3), (6.4) and 

(6.5). 

                                                                                              ∆iTDEA-fs! =
𝑈iTDEA-fs! − 𝑈!"#
𝑈!"# − 𝑈!"#

                                                                                              (6.3) 
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                                                                                            ∆iWREA-fs! =
𝑈iWREA-fs! − 𝑈!"#
𝑈!"# − 𝑈!"#

                                                                                              (6.4) 

                                                                                      ∆No  Interaction! =
𝑈No Interaction
! − 𝑈!"#
𝑈!"# − 𝑈!"#

                                                                                  (6.5) 

6.4.2 Evaluating Algorithms 

The mean and standard deviation of the percentage deviations of each algorithm 

from the minimum value on each experimental setting are given in Tables 6.7-6.10. 

The mean of percentage deviations is zero in some experimental settings, which 

indicates that the algorithm found the best solution of the three algorithms in 10 runs, 

𝑈!"#, in all replications. Those types of results are bold-faced in Tables 6.7-6.10, 

and it is observed that in some experiments iWREA-fs is able to converge the best 

solution found in all of the replications.  

One sample t test is applied on the paired differences of percentage deviations: 

(∆iWREA-fs
! − ∆iTDEA-fs

! ), (∆iWREA-fs
! − ∆No  Interaction! ) and (∆iTDEA-fs

! − ∆No  Interaction! ) in order to 

identify whether there exists statistically significant difference between means and 

95% confidence intervals are computed as given in Tables 6.11-6.14.  

In Tables 6.11-6.14, the results in which there is statistically significant difference 

between the algorithms are bold-faced. The results indicate that iWREA-fs performs 

better than iTDEA-fs and No Interaction in many cases. Based on our preliminary 

experiments, it is known that Vehicle and Breast Cancer datasets and Accuracy 

Favored weight set are comparably more challenging in terms of convergence than 

other settings since the relevance and redundancy relations between the features are 

more complicated. iWREA-fs’s performance is more apparent in those cases. On the 

other hand, according to Tables 6.11-6.14, there is no statistical difference between 

iTDEA-fs and No Interaction in none of the experimental settings, which will be 

discussed later in this section in detail.  
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Table 6.7 Mean and standard deviation of the percentage deviations for Heart 
Disease (13) experiments 

  
Algorithm 

Weight Set 
 

iTDEA-fs iWREA-fs No Interaction 

Accuracy Favored Mean 0.3887 0.0402 0.0919 
Std. Dev.  1.2051 0.3810 0.4437 

Accuracy and Cost 
Tradeoff 

Mean 0.2086 0.0000 0.1756 
Std. Dev.  1.0185 0.0000 1.1241 

Equally Treated Mean 0.1543 0.0241 0.1497 
Std. Dev.  1.0279 0.2289 0.7951 

Table 6.8 Mean and standard deviation of the percentage deviations for Vehicle (18) 
experiments 

  
Algorithm 

Weight Set 
 

iTDEA-fs iWREA-fs No Interaction 

Accuracy Favored Mean 0.6670 0.1523 0.7522 
Std. Dev.  1.0437 0.7501 1.0092 

Accuracy and Cost 
Tradeoff 

Mean 0.5263 0.0000 0.5861 
Std. Dev.  1.2447 0.0000 0.8261 

Equally Treated Mean 0.8000 0.4000 0.8000 
Std. Dev.  1.2649 1.5492 1.2649 

Table 6.9 Mean and standard deviation of the percentage deviations for German (24) 
Experiments 

  
Algorithm 

Weight Set 
 

iTDEA-fs iWREA-fs No Interaction 

Accuracy Favored Mean 0.7166 0.2811 0.6716 
Std. Dev.  0.6888 0.7127 0.9189 

Accuracy and Cost 
Tradeoff 

Mean 0.1176 0.0117 0.0176 
Std. Dev.  0.9339 0.0740 0.0848 

Equally Treated Mean 0.2106 0.0409 0.2162 
Std. Dev.  1.2521 0.3263 1.0046 

Table 6.10 Mean and standard deviation of the percentage deviations for Breast 
Cancer (32) experiments 

  
Algorithm 

Weight Set 
 

iTDEA-fs iWREA-fs No Interaction 

Accuracy Favored Mean 0.4436 0.0449 0.6640 
Std. Dev.  0.9839 0.4258 0.9090 

Accuracy and Cost 
Tradeoff 

Mean 0.3688 0.0000 0.4233 
Std. Dev.  1.2026 0.0000 1.0990 

Equally Treated Mean 0.1996 0.0000 0.0195 
Std. Dev.  1.0356 0.0000 0.0942 
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Table 6.11 95% confidence intervals on paired differences of percentage deviations 
for Heart Disease (13) experiments 

 
iWREA-fs iWREA-fs iTDEA-fs 

 
vs. vs. vs. 

Weight Set iTDEA-fs No Interaction No Interaction 
Accuracy Favored (-0.61, -0.09) (-0.21, 0.10) (-0.04, 0.63) 
Accuracy and Cost 

Tradeoff (-0.45, 0.03) (-0.44, 0.09) (-0.38, 0.45) 

Equally Treated (-0.33, 0.07) (-0.29, 0.04) (-0.20, 0.21) 
 

Table 6.12 95% confidence intervals on paired differences of percentage deviations 
for Vehicle (18) experiments 

 
iWREA-fs iWREA-fs iTDEA-fs 

 
vs. vs. vs. 

Weight Set iTDEA-fs No Interaction No Interaction 
Accuracy Favored (-0.88, -0.15) (-0.84, -0.36) (-0.36, 0.19) 
Accuracy and Cost 

Tradeoff (-0.82, -0.23) (-0.78, -0.39) (-0.33, 0.21) 

Equally Treated (-0.90, 0.10) (-0.77, -0.03) (-0.34, 0.34) 
 

Table 6.13 95% confidence intervals on paired differences of percentage deviations 
for German (24) experiments 

 
iWREA-fs iWREA-fs iTDEA-fs 

 
vs. vs. vs. 

Weight Set iTDEA-fs No Interaction No Interaction 
Accuracy Favored (-0.62, -0.25) (-0.73, -0.05) (-0.24, 0.33) 
Accuracy and Cost 

Tradeoff (-0.33, 0.12) (-0.02, 0.01) (-0.13, 0.33) 

Equally Treated (-0.41, 0.07) (-0.38, 0.03) (-0.13, 0.12) 
 

Table 6.14 95% confidence intervals on paired differences of percentage deviations 
for Breast Cancer (32) experiments 

 
iWREA-fs iWREA-fs iTDEA-fs 

 
vs. vs. vs. 

Weight Set iTDEA-fs No Interaction No Interaction 
Accuracy Favored (-0.64, -0.15) (-0.92, -0.32) (-0.55, 0.11) 
Accuracy and Cost 

Tradeoff (-0.66, -0.08) (-0.69, -0.16) (-0.36, 0.25) 

Equally Treated (-0.45, 0.05) (-0.04, -0.01) (-0.07, 0.43) 
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The deviations are used to compare the algorithms in their performance to converge 

to the best solution found in all replications for a given number of iterations. In order 

to evaluate the convergence speed of algorithms in detail, the deviations in each 

replication can be investigated. The progress of the best solution in the archive 

through iterations, 𝑈∗ 𝑡 = min!!∈!(!) 𝑈!"(𝑧!) , for 10 replications of experiments 

on Breast Cancer dataset with Accuracy Cost Tradeoff weight set are shown in 

Figures 6.1, 6.2, and 6.3 for iTDEA-fs, iWREA-fs, and No Interaction, respectively. 

As it can be inferred from those figures that iWREA-fs is converging better and 

faster to the best solution found by three algorithms in 10 replications. The progress 

of the best solution in the archive through iterations, namely archive progress, is 

given for each experimental setting in Appendix B as figures.  

 

Figure 6.1 Archive progress of iTDEA-fs on Breast Cancer dataset experiments with 
Accuracy Favored weight set 
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Figure 6.2 Archive progress of iWREA-fs on Breast Cancer dataset experiments 
with Accuracy Favored weight set  

 
Figure 6.3 Archive progress of No Interaction on Breast Cancer dataset experiments 
with Accuracy Favored weight set t 
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Although it is expected that the information gathered from the DM will be useful to 

find appealing solutions for the DM, one of the observation that can be inferred from 

the confidence intervals given in Tables 6.11-6.14 is that there is no statistical 

difference between the performances of iTDEA-fs and No Interaction. In order to 

explain the reason, one of the replications in which iTDEA-fs does not perform as 

well as No Interaction is investigated. 

In Figure 6.4, the progress of best solution for DM in the archive through iterations, 

𝑈∗ 𝑡 , is shown for the 5th replication of experiments on Breast Cancer dataset with 

Accuracy Cost Tradeoff weight set. Additionally, the preference function value of 

the selected solutions of iTDEA-fs’s and incumbent solutions of iWREA-fs’s at 

interaction stages are represented in the same figure. 

 

Figure 6.4 5th replication on Breast Cancer dataset experiments with Accuracy 
Favored weight set  

As it can be observed from Figure 6.4, the selected solution is not the same with the 

best solution of the archive after the fourth interaction stage of iTDEA-fs. This is 

only possible if the best solution is not included in the set of solutions presented to 
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the DM.  Recall that the filtered set in iTDEA-fs includes the solutions whose 

favorable weights fall into the most recently estimated preferred weight region. Even 

though in the first three interaction stages the best solution in the archive is presented 

to the DM, the preferred weight region is not shrunk on objective weights that 

represent the DM’s preference function well. Hence, in the later interaction stages 

the favorable weights of the best solution in the archive do not belong to the 

estimated preferred weight region and the search is not directed towards the 

appealing region of solution space for the DM.  

On the other hand, the incumbent solution in iWREA-fs is same with the best 

solution in the archive in most of the interaction stages, which indicates that the 

DM’s objective weights are represented well with the estimated weights throughout 

the algorithm. In addition to its benefit in directing search accurately, this property of 

iWREA-fs enables to identify best solution found without an additional interaction. 

By investigating plots provided in supplementary material that has the same form 

with Figure 6.4 for all individual runs, it can be observed that the conflict with the 

selected solution and best solution in iTDEA-fs is valid in most of the replications, 

while in iWREA-fs generally the best solution and incumbent overlaps. 

6.4.3 Comparison of Computational Efforts 

As mentioned before, ELM has randomness in its nature. Therefore, in order to 

compare the algorithms in terms of convergence performance precisely, accuracy 

level of one feature subset found in a replication is used in other replications without 

calling ELM again. As a result, it would not be fair to compare the algorithms in 

terms of computational effort with the original experiments.  

In order to compare the computational efforts, accuracy objective is defined as a 

simple function and experiments regarding Accuracy Favored weight set are 

conducted with that modification for 10 replications. 

The algorithms are coded on MATLAB R2014b, and implemented on a computer 

with Intel(R)Core(TM)i7-4770S CPU @ 3.10 GHz, 16 GB RAM and Windows 7. 
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The average CPU times for the implementation of algorithms on each dataset in 

Table 6.15. The individual CPU time of runs are provided  in Appendix C.  

Table 6.15 CPU times of algorithms (in seconds) 

 
Algorithm 

Dataset iTDEA-fs iWREA-fs No Interaction 
Heart Disease 0.38 1.55 0.38 
Vehicle 16.57 7.40 16.52 
German 71.83 18.06 72.65 
Breast Cancer 144.30 33.97 146.90 

In the interaction stages of iWREA-fs after each question asked to the DM, 

Model (Mid∞) is solved which is a mixed integer programming, while the favorable 

weight calculation procedure in iTDEA-fs is a simple algebraic function. However, 

at each iteration in order to update the regular population, the dominance relation 

between the offspring and population members is checked in iTDEA-fs and No 

Interaction, while in iWREA-fs after the first interaction estimated preference 

function value of the offspring is compared with the maximum of estimated 

preference function values of population members only. In Heart Disease dataset 

experiments for which the interaction stages are set more frequently, iWREA-fs 

requires higher computational effort. However, as the frequency of interaction stages 

decreases the efficiency of population update rules in iWREA-fs shows its effect, 

therefore the average CPU time of iWREA-fs is smaller than iTDEA-fs and No 

Interaction for the experiments of Vehicle, German and Breast Cancer datasets.   

6.4.4 Features Selected 

In feature selection problems it is a concern to identify the features that contribute to 

classification performance most. Therefore, we looked at the similarity of the 

features of the subsets that have high preference function values for the accuracy-

favored preference function casein this section. We selected the accuracy-favored 

case since it proved to be a difficult case in the experiments. Heart Disease dataset is 

used for that purpose since total enumeration of solutions is possible for this dataset.  

When the DM’s objective weights are Accuracy Favored, it is expected that the 

subsets of features with high accuracy levels will be favored according to the 

underlying preference function. Among all possible feature subsets of Heart Disease 
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dataset, the best solution in terms of preference function value with Accuracy 

Favored weight set includes only features  3, 12 and 13. In Table 6.16, the existence 

frequencies of features in the subsets ranked in top 5 percent by their respective 

preference function values with Accuracy Favored weight set are given. As it can be 

inferred from these results, most frequent features are 3rd, 12th and 13th, which are 

consistent with the features included in the best solution, as expected.  

Table 6.16 Existence frequencies of features in the subsets ranked in top 5 percent  
Feature Frequency 

1 0.3634 
2 0.4829 
3 0.7634 
4 0.3878 
5 0.3512 
6 0.3195 
7 0.3585 
8 0.4415 
9 0.4366 
10 0.5195 
11 0.4000 
12 0.8415 
13 0.9171 

6.4.5 Some Results for Quadratic Underlying Preference Functions 

In order to demonstrate the performance of algorithms for a different form of DM’s 

underlying preference function, we repeated the experiments on Vehicle dataset for a 

quadratic preference function to be minimized as formulated in Equation 6.6.  

                                            𝑈!" 𝒛 = 𝑤!𝑧! ! +    𝑤!𝑧! ! + 𝑤!𝑧! ! + 𝑤!𝑧! !                                                  (6.6) 

where 𝑧!, 𝑧!, 𝑧! and 𝑧! refer to (modified) accuracy, cardinality, cost and risk 

objectives of solution 𝒛, respectively, and 𝒘 = (𝑤!,𝑤!,𝑤!,𝑤!) represents the 

objective weight vector of the DM as discussed in Section 4.2. We used Accuracy 

Favored, Accuracy and Cost Tradeoff, Equally Treated weight vectors as defined in 

Section 6.2 and same evolutionary algorithms’ parameter settings with the previous 

experiments on Vehicle dataset as given in Table 6.2 for the experiments of quadratic 

preference function. 
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The progress of the best solution in the archive through iterations, 𝑈∗ 𝑡 =

min!!∈!(!) 𝑈!"(𝑧!) , for 10 replications of iTDEA-fs, iWREA-fs and No Interaction 

are given in Appendix D for each experimental setting. As it can be inferred from the 

figures, in Accuracy Favored weight set experiments, iWREA-fs has a better and 

faster convergence to the best solution found by three algorithms in 10 replications, 

namely 𝑈!"#. On the other hand, for Accuracy and Cost Tradeoff and Equally 

Treated weight vectors, all three algorithms are successful in converging to 𝑈!"#, 

while iWREA-fs seems to converge faster in several replications.  

 

Figure 6.5 4th replication of quadratic preference function experiments with 
Accuracy Favored weight set  

In Figure 6.5, the progress of the best solution for DM in the archive through 

iterations, 𝑈∗ 𝑡 , is shown for the 4th replication of quadratic preference function 

experiments on Vehicle dataset with Accuracy Favored weight set. The preference 

function value of the selected solutions of iTDEA-fs’s and incumbent solutions of 

iWREA-fs’s at interaction stages are represented in the same figure. Figure 6.5 

demonstrates that iWREA-fs is able to identify best solution for DM as in previous 

experiments.   
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 CHAPTER 7 

CONCLUSION 

Feature selection is an important problem as the result has a major impact on the 

performance, storage requirements, and computational efforts of learning algorithms.  

In this study, we have implemented several variations of a preference-based 

evolutionary algorithm, iTDEA-fs, on the feature selection problem. As the results 

revealed special characteristics of the problem, we developed a new preference based 

evolutionary algorithm, iWREA-fs, that is compatible with those characteristics.  

In addition to the traditional objectives defined for the feature selection problem in 

the literature, we set generic objectives that can be useful within different contexts of 

the problem. We defined the problem with representative objectives; however, in the 

presence of more objectives the algorithms can be used for more than four 

objectives. 

The feature selection is used for many applications of classification problems. The 

DM of the problem can be different agencies or customers depending on the scope of 

the application area. For example, in health care, association of medical doctors, 

governmental agencies or patients can be the DM of the problem whose concerns are 

selecting a set of tests that provides accurate diagnosis while being cost-efficient 

and/or while minimizing health related risks involved in the tests.  It may also be 

possible to select several meaningful subsets and then involve the patient in the final 

decision of which subset to use. 

The results show that the interactions with the DM provide a higher convergence 

speed while finding solutions appealing to the DM in iWREA-fs. We believe 

employing the DM preferences is beneficial for solving feature selection problem in 

terms of bringing both flexibility on implementing the algorithm without dataset-
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specific parameters and ability that the final best solution for the DM is known at the 

end of algorithm. To the best of our knowledge, this is the first study that uses a 

preference-based approach and considers additional objectives together with the 

traditional ones for the feature selection problem.  

It may be useful to try different underlying preference functions to further 

demonstrate the performance of algorithm. It may also be worthwhile to study DM 

inconsistencies. Köksalan and Karahan (2010) demonstrated that such 

inconsistencies did not deteriorate the performance of iTDEA much.  

Being a parameter-free and computationally efficient algorithm, iWREA-fs can be 

tested for other combinatorial problems as a preference-based evolutionary algorithm 

as a future work. We also intend to compare the performance of the algorithms with 

commonly used multi-objective evolutionary algorithms in feature selection 

problem.   

In some classification problems, there can be more than one class variable to be 

determined. That is, the features’ values of an instance are used to classify it in more 

than one class. To illustrate, in a medical diagnosis case the patients can be classified 

in terms of two diseases: flu and cold, and it is possible that the patient has both, only 

one, or none of those illnesses. As a future work, the algorithms developed in this 

study can be applied on feature selection for this type of classification problems.  
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APPENDICIES 

APPENDIX A 

PERFORMANCE MEASUREMENTS 

Table A.1 Heart Disease – Accuracy Favored  
Run 𝑈iTDEA-fs

!   𝑈iWREA-fs!  𝑈No Interaction
!  

1 1 0 0 
2 0 0 0 
3 0 0 0.3062 
4 0.3062 0 0.3062 
5 0.9632 0 0 
6 0.3062 0 0 
7 0 0 0 
8 0.3062 0 0.3062 
9 0.1498 0 0 
10 0.8554 0.4016 0 

 

Table A.2 Heart Disease – Accuracy and Cost Tradeoff 
Run 𝑈iTDEA-fs

!   𝑈iWREA-fs!  𝑈No Interaction
!  

1 0 0 0 
2 0.7563 0 0 
3 0.573 0 0 
4 0 0 0 
5 0.7563 0 0 
6 0 0 0 
7 0 0 0 
8 0 0 0 
9 0 0 0.7563 
10 0 0 1 

 

 



 

64 

Table A.3 Heart Disease – Equally Treated 
Run 𝑈iTDEA-fs

!   𝑈iWREA-fs!  𝑈No Interaction
!  

1 0 0 0 
2 0 0 0 
3 0.5427 0 0.2413 
4 0 0 0.6967 
5 1 0.2413 0.5593 
6 0 0 0 
7 0 0 0 
8 0 0 0 
9 0 0 0 
10 0 0 0 

 

Table A.4 Vehicle – Accuracy Favored 
Run 𝑈iTDEA-fs

!   𝑈iWREA-fs!  𝑈No Interaction
!  

1 0 0 0 
2 0.4681 0.625 0.9925 
3 0.43 0.4681 0.8432 
4 1 0 0.4681 
5 1 0 1 
6 0.4681 0.43 1 
7 1 0 0.802 
8 0.4681 0 0.9483 
9 0.9925 0 1 
10 0.8432 0 0.4681 

 

Table A.5 Vehicle – Accuracy and Cost Tradeoff 
Run 𝑈iTDEA-fs

!   𝑈iWREA-fs!  𝑈No Interaction
!  

1 1 0 0.6206 
2 0 0 0.2525 
3 0.2525 0 0.6206 
4 0.2525 0 0.6206 
5 1 0 0.6206 
6 0.2525 0 0.2525 
7 0.2525 0 1 
8 1 0 1 
9 1 0 0.6206 
10 0.2525 0 0.2525 
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Table A.6 Vehicle – Equally Treated 
Run 𝑈iTDEA-fs

!   𝑈iWREA-fs!  𝑈No Interaction
!  

1 1 1 1 
2 1 0 1 
3 1 1 1 
4 1 0 1 
5 1 1 1 
6 1 0 1 
7 0 1 1 
8 1 0 1 
9 0 0 0 
10 1 0 0 

 

Table A.7 German – Accuracy Favored 
Run 𝑈iTDEA-fs

!   𝑈iWREA-fs!  𝑈No Interaction
!  

1 0.338 0.338 0.6068 
2 0.6656 0.338 0.6068 
3 0.7826 0.338 0.8166 
4 0.811 0 0.7826 
5 0.7826 0.338 0.7826 
6 1 0.338 1 
7 0.7826 0 0.7826 
8 0.338 0 1 
9 0.6656 0.338 0 
10 1 0.7826 0.338 

 

Table A.8 German – Accuracy and Cost Tradeoff 
Run 𝑈iTDEA-fs

!   𝑈iWREA-fs!  𝑈No Interaction
!  

1 0 0 0 
2 0.0585 0 0 
3 0 0 0 
4 0 0 0 
5 0.0585 0 0.0585 
6 0 0.0585 0.0585 
7 1 0 0 
8 0 0 0 
9 0 0 0 
10 0.0585 0.0585 0.0585 
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Table A.9 German – Equally Treated 
Run 𝑈iTDEA-fs

!   𝑈iWREA-fs!  𝑈No Interaction
!  

1 0.1063 0 0.1063 
2 0 0 0 
3 0 0 0 
4 0 0 0 
5 0 0 0.3451 
6 1 0.3451 0.6463 
7 0 0 0.1063 
8 0 0 0 
9 0 0 0 
10 1 0.064 0.9576 

 

Table A.10 Breast Cancer – Accuracy Favored 
Run 𝑈iTDEA-fs

!   𝑈iWREA-fs!  𝑈No Interaction
!  

1 0.54 0.4488 0 
2 0 0 0.54 
3 0.54 0 0.6548 
4 0 0 0.9896 
5 0.8363 0 0.54 
6 0.5896 0 0.9907 
7 0.54 0 0.54 
8 0.8497 0 1 
9 0.54 0 0.6152 
10 0 0 0.7692 

 

Table A.11 Breast Cancer – Accuracy and Cost Tradeoff 
Run 𝑈iTDEA-fs

!   𝑈iWREA-fs!  𝑈No Interaction
!  

1 0.672 0 0.672 
2 0.672 0 0.672 
3 0 0 0.7724 
4 1 0 0.672 
5 0 0 0 
6 0 0 0 
7 0 0 0 
8 0.672 0 0 
9 0.672 0 0.7724 
10 0 0 0.672 
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Table A.12 Breast Cancer – Equally Treated 
Run 𝑈iTDEA-fs

!   𝑈iWREA-fs!  𝑈No Interaction
!  

1 0 0 0 
2 0.065 0 0 
3 1 0 0 
4 0 0 0 
5 0.065 0 0 
6 0.065 0 0.065 
7 0 0 0 
8 0.065 0 0 
9 0.6705 0 0.065 
10 0.065 0 0.065 
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APPENDIX B 

ARCHIVE PROGRESSES 

 
Figure B.1 Heart Disease – Accuracy Favored – iTDEA-fs 
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Figure B.2 Heart Disease – Accuracy Favored – iWREA-fs 

 
Figure B.3 Heart Disease – Accuracy Favored – No Interaction 
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Figure B.4 Heart Disease – Accuracy and Cost Tradeoff – iTDEA-fs 

 
Figure B.5 Heart Disease – Accuracy and Cost Tradeoff – iWREA-fs 
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Figure B.6 Heart Disease – Accuracy and Cost Tradeoff – No Interaction 

 
Figure B.7 Heart Disease – Equally Treated – iTDEA-fs 
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Figure B.8 Heart Disease – Equally Treated – iWREA-fs 

 
Figure B.9 Heart Disease – Equally Treated – No Interaction 
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Figure B.10 Vehicle – Accuracy Favored – iTDEA-fs 

 
Figure B.11 Vehicle – Accuracy Favored – iWREA-fs 
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Figure B.12 Vehicle – Accuracy Favored – No Interaction 

 
Figure B.13 Vehicle – Accuracy and Cost Tradeoff – iTDEA-fs 
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Figure B.14 Vehicle – Accuracy and Cost Tradeoff – iWREA-fs 

 
Figure B.15 Vehicle – Accuracy and Cost Tradeoff – No Interaction 
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Figure B.16 Vehicle – Equally Treated – iTDEA-fs 

 
Figure B.17 Vehicle – Equally Treated – iWREA-fs 
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Figure B.18 Vehicle – Equally Treated – No Interaction 

 
Figure B.19 German – Accuracy Favored – iTDEA-fs 
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Figure B.20 German – Accuracy Favored – iWREA-fs 

 
Figure B.21 German – Accuracy Favored – No Interaction 
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Figure B.22 German – Accuracy and Cost Tradeoff – iTDEA-fs 

 
Figure B.23 German – Accuracy and Cost Tradeoff – iWREA-fs 
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Figure B.24 German – Accuracy and Cost Tradeoff – No Interaction 

 
Figure B.25 German – Equally Treated – iTDEA-fs 
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Figure B.26 German – Equally Treated – iWREA-fs 

 
Figure B.27 German – Equally Treated – No Interaction 
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Figure B.28 Breast Cancer – Accuracy Favored – iTDEA-fs 

 
Figure B.29 Breast Cancer – Accuracy Favored – iWREA-fs 
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Figure B.30 Breast Cancer – Accuracy Favored – No Interaction 

 
Figure B.31 Breast Cancer – Accuracy Cost Tradeoff – iTDEA-fs 
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Figure B.32 Breast Cancer – Accuracy Cost Tradeoff – iWREA-fs 

 
Figure B.33 Breast Cancer – Accuracy Cost Tradeoff – No Interaction 
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Figure B.34 Breast Cancer – Equally Treated – iTDEA-fs 

 
Figure B.35 Breast Cancer – Equally Treated – iWREA-fs 
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Figure B.36 Breast Cancer – Equally Treated – No Interaction 
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APPENDIX C  

COMPUTATIONAL TIMES 

Table C.1 CPU Times of Heart Disease experiments (in seconds) 
Run iTDEA-fs iWREA-fs No Interaction 

1 0.38 1.47 0.39 
2 0.41 1.50 0.39 
3 0.38 1.98 0.38 
4 0.39 1.41 0.39 
5 0.41 1.61 0.39 
6 0.39 1.41 0.36 
7 0.34 1.70 0.38 
8 0.36 1.58 0.38 
9 0.38 1.27 0.36 

10 0.38 1.63 0.41 

Table C.2 CPU Times of Vehicle experiments (in seconds) 
Run iTDEA-fs iWREA-fs No Interaction 

1 15.98 8.92 16.19 
2 16.38 8.09 16.03 
3 17.34 7.38 17.06 
4 16.48 7.33 16.72 
5 16.83 6.17 16.23 
6 17.05 7.61 16.88 
7 16.19 6.66 16.56 
8 16.28 6.58 16.17 
9 16.20 7.25 16.66 

10 17.00 8.06 16.67 

Table C.3 CPU Times of German experiments (in seconds) 
Run iTDEA-fs iWREA-fs No Interaction 

1 71.45 17.47 71.92 
2 74.30 17.64 74.05 
3 73.70 19.81 75.13 
4 71.72 18.41 72.56 
5 71.14 17.17 71.08 
6 71.55 18.97 72.06 
7 69.89 18.72 71.45 
8 70.66 18.14 71.86 
9 73.39 18.48 73.98 

10 70.50 15.80 72.45 
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Table C.4 CPU Times of Breast Cancer experiments (in seconds) 
Run iTDEA-fs iWREA-fs No Interaction 

1 143.66 32.70 150.73 
2 147.38 37.14 154.27 
3 148.00 33.13 145.64 
4 145.06 33.47 149.06 
5 145.47 35.64 142.52 
6 139.25 32.16 146.03 
7 145.61 34.64 146.50 
8 141.13 32.05 144.86 
9 145.52 34.86 144.48 
10 141.94 33.88 144.92 
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APPENDIX D  

QUADRATIC PREFERENCE FUNCTION RESULTS 

 

Figure D.1 Accuracy Favored – iTDEA-fs 
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Figure D.2 Accuracy Favored – iWREA-fs 

 

Figure D.3 Accuracy Favored – No Interaction 



 

91 

 

Figure D.4 Accuracy and Cost Tradeoff – iTDEA-fs 

 

Figure D.5 Accuracy and Cost Tradeoff – iWREA-fs 
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Figure D.6 Accuracy and Cost Tradeoff – No Interaction 

 

Figure D.7 Equally Treated – iTDEA-fs 
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Figure D.8 Equally Treated – iWREA-fs 

 

Figure D.9 Equally Treated – No Interaction 


