
INTEGER PROGRAMMING APPROACHES TO THE DOMINATING
TREE PROBLEM

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

SELİN AKİFOĞLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

INDUSTRIAL ENGINEERING

SEPTEMBER 2016

Approval of the thesis:

INTEGER PROGRAMMING APPROACHES TO THE
DOMINATING TREE PROBLEM

submitted by SELİN AKİFOĞLU in partial fulfillment of the requirements for
the degree of Master of Science in Industrial Engineering Department,
Middle East Technical University by,

Prof. Dr. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Mustafa Murat Köksalan
Head of Department, Industrial Engineering

Assist. Prof. Dr. Mustafa Kemal Tural
Supervisor, Industrial Engineering Department,
METU

Examining Committee Members:

Assoc. Prof. Dr. İsmail Serdar Bakal
Industrial Engineering Department, METU

Assist. Prof. Dr. Mustafa Kemal Tural
Industrial Engineering Department, METU

Assoc. Prof. Dr. Serhan Duran
Industrial Engineering Department, METU

Assist. Prof. Dr. Bahar Çavdar
Industrial Engineering Department, METU

Assist. Prof. Dr. Ayşegül Altın Kayhan
Industrial Engineering Department, TOBB ETU

Date:

I hereby declare that all information in this document has been ob-
tained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct,
I have fully cited and referenced all material and results that are not
original to this work.

Name, Last Name: SELİN AKİFOĞLU

Signature :

iv

ABSTRACT

INTEGER PROGRAMMING APPROACHES TO THE DOMINATING
TREE PROBLEM

Akifoğlu, Selin

M.S., Department of Industrial Engineering

Supervisor : Assist. Prof. Dr. Mustafa Kemal Tural

September 2016, 90 pages

Let G = (V,E) be a simple undirected edge-weighted graph, where V and E

denote the set of vertices and edges of G, respectively. The Dominating Tree

Problem (DTP) searches for a minimum weighted tree in G, say DT , such that

each vertex either belongs to DT or is one-hop away from DT . This problem

is an NP-hard but a practical problem. The solution of the DTP is used to

construct a backbone for wireless sensor networks, which have a wide usage in

many industrial and consumer applications. In this thesis, different integer pro-

gramming formulations of the problem are introduced. For some instances in the

literature, optimal solutions are provided for the first time and for some others

best known heuristic solutions are shown to be optimal. Moreover, branch-and-

cut approach is applied to the problem.

Keywords: Integer Programming, Branch-and-Cut Procedure, Dominating Tree

v

Problem

vi

ÖZ

BASKIN AĞAÇ PROBLEMİ’NE TAMSAYILI PROGRAMLAMA
YAKLAŞIMLARI

Akifoğlu, Selin

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Mustafa Kemal Tural

Eylül 2016 , 90 sayfa

G = (V,E), V ’nin düğüm kümesini, E’nin kenar kümesini temsil ettiği ba-

sit, yönlendirilmemiş ve kenarları ağırlıklandırılmış bir çizge olsun. Baskın Ağaç

Problemi, DT adı verilen, G üzerindeki her düğümün ya DT ’ye ait olacağı ya da

DT ’deki düğümlerden en az birine komşu olacağı enaz ağırlıklı bir ağaç arar. Bu

problem gerçek hayat uygulamaları olan NP-zor bir problemdir. Baskın Ağaç

Problemi’nin çözümü endüstri ve tüketici uygulamalarında yaygın olarak kulla-

nılan kablosuz sensör ağları için bir omurga oluşturmak için kullanılmaktadır.

Bu tezde, bahsedilen problem için farklı tamsayılı programlama formülasyon-

ları sunulmuştur. Literatürdeki bazı problem örnekleri için en iyi sonuçlar ilk

defa sağlanmış, bazıları içinse bulunmuş sezgisel en iyi sonuçların en iyi olduğu

gösterilmiştir. Buna ek olarak, problem çözümünde dal-kesme yöntemi de kulla-

nılmıştır.

vii

Anahtar Kelimeler: Tamsayılı Programlama, Dal-Kesme Yöntemi, Baskın Ağaç

Problemi

viii

To my parents...

ix

ACKNOWLEDGMENTS

First of all, I would like to express my gratitude to my supervisor Assist. Prof.

Dr. Mustafa Kemal Tural for his endless support and assistance both throughout

this thesis and my new life in METU-IE Department. He is the inspiration for

me to study in this department.

I also owe a word to my family for their support and trust. Although the

distance we have in between, it is exclusive to feel their support right next to

me. Without them, this work would not be possible.

Moreover, I acknowledge my colleagues and my friends for the patience they

show to me and for cheering me up when I had difficulties throughout the work.

Specially, I would like to thank my friends whom I share the stage with.

I am also grateful to my committee members Assoc. Prof. Dr. İsmail Serdar

Bakal, Assoc. Prof. Dr. Serhan Duran, Assist. Prof. Dr. Bahar Çavdar, and

Assist. Prof. Dr. Ayşegül Altın Kayhan for their valuable contribution to this

work.

Last but not the least, I also would like to present my thanks to all my professors

of METU-IE Department for letting me to put myself forward.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xv

LIST OF FIGURES . xvii

LIST OF ABBREVIATIONS . xviii

CHAPTERS

1 INTRODUCTION . 1

2 LITERATURE REVIEW . 5

2.1 Wireless Sensor Networks (WSNs) 5

2.2 The Dominating Set Problem (DSP) 6

2.2.1 The Minimum Dominating Set Problem (MDSP) 6

2.2.2 The Minimum Connected Dominating Set Prob-
lem (MCDSP) 6

2.3 The Dominating Tree Problem (DTP) 7

2.4 Other Related Problems 8

xi

2.4.1 The Minimum Spanning Tree Problem (MST) 8

2.4.2 The Elementary Shortest Path Problem (ESPP) 9

3 PROBLEM DEFINITION AND INTEGER PROGRAMMING
FORMULATIONS . 11

3.1 Problem Definition . 11

3.1.1 Terminology 11

3.1.2 Classical IP formulation for the DTP 14

3.1.3 Strengthened formulation 16

3.1.3.1 Separating constraint set (3.1) into
two components: 16

3.1.3.2 Revising constraint set (3.4): 16

3.1.3.3 Revising constraint set (3.2): 17

3.1.3.4 Valid inequalities 20

3.2 Cutset Formulation . 22

3.2.1 Formulation 22

3.2.2 Proof of correctness 22

3.3 Single-commodity Flow Formulation 24

3.3.1 Selecting a source vertex 24

3.3.2 Formulation 26

3.3.3 Proof of correctness 28

3.4 Multi-commodity Flow Formulation 28

3.4.1 Formulation 28

xii

3.4.2 Proof of correctness 31

3.5 Martin’s Formulation 31

3.5.1 Formulation 31

3.5.2 Proof of correctness 35

4 PRE-PROCESSING PROCEDURES 37

4.1 Variable Fixing . 37

4.2 Edge Elimination . 39

4.3 Big-M Improvement for (FF) 41

5 OTHER SOLUTION APPROACHES 45

5.1 Iterative Branch-and-Cut Approach 45

5.1.1 Classical IP formulation 46

5.1.2 Strengthened IP formulation 47

5.2 Dynamic Branch-and-Cut Approach 50

6 COMPUTATIONAL EXPERIMENTS 53

6.1 Preliminary Computational Experiments 53

6.2 Detailed Computational Experiments 58

6.2.1 IP formulations 58

6.2.1.1 Results on the dataset by Dražić, Čan-
galović, and Kovačević-Vujčić [5] . . 59

6.2.1.2 Dataset of Chaurasia and Singh [3] 64

6.2.2 Iterative branch-and-cut 67

7 CONCLUSION AND FUTURE RESEARCH DIRECTIONS . . 71

xiii

REFERENCES . 75

APPENDICES

A COMPUTATIONAL RESULTS FOR THE INSTANCES PRO-
VIDED IN DČK (2016) . 79

B COMPUTATIONAL RESULTS FOR THE INSTANCES PRO-
VIDED IN CS (2014) . 87

xiv

LIST OF TABLES

TABLES

Table 6.1 LP-relaxation values to (MFD) for the EE, VF and EE-VF . . 57

Table 6.2 LP-relaxation values to (FF) for the EE-VF, BMI and EE-VF-

BMI . 57

Table 6.3 Number of DVs and constraints for proposed formulations . . 59

Table 6.4 Number of edges for the instances in the data set provided in [3] 65

Table 6.5 Number of edges eliminated, number of vertices fixed, and num-

ber of edges fixed for the instances in the data set provided in [3] . . 66

Table 6.6 Results of iterative branch-and-cut for small size instances pro-

vided in [5] . 68

Table 6.7 Results of iterative branch-and-cut for instances provided in [3] 70

Table 6.8 Results of iterative branch-and-cut for large size instances pro-

vided in [5] . 70

Table A.1 The abbreviations used throughout Appendix A 79

Table A.2 Results for small size instances provided in [5] 80

Table A.3 LP-relaxation values for small size instances provided in [5] . . 81

Table A.4 Results and LP-relaxation values of FF for large size instances

of [5] . 82

xv

Table A.5 Results and LP-relaxation values of MCFF for large size random

instances provided in [5] . 83

Table A.6 Results and LP-relaxation values of MFD for large size random

instances provided in [5] . 84

Table A.7 Results and LP-relaxation values of MFD for large size random

instances provided in [5] . 85

Table B.1 The abbreviations used throughout Appendix B 87

Table B.2 Results of FF for the instances provided in [3] 88

Table B.3 Results of MCFF for the instances provided in [3] 89

Table B.4 Results of MFD for the instances provided in [3] 90

xvi

LIST OF FIGURES

FIGURES

Figure 3.1 Illustration for Connected Component 13

Figure 3.2 Instance with 10 vertices and 15 edges 24

Figure 3.3 Instance with 15 vertices and 30 edges 25

Figure 3.4 Source vertex selection for the graph in Figure 3.3 25

Figure 3.5 Solution to the instance with 10 vertices and 15 edges 32

Figure 4.1 Variable Fixing Procedure 38

Figure 4.2 Edge Elimination Procedure 40

Figure 4.3 Big-M Improvement Procedure for (FF) 42

Figure 6.1 Edge Elimination and Variable Fixing Procedures 55

Figure 6.2 Time comparison for small size instances provided in [5] . . . 61

Figure 6.3 LP-relaxation values for small size instances provided in [5] . 62

Figure 6.4 LP-relaxation values for large size instances provided in [5] . 63

Figure 6.5 LP-relaxation values for the instances provided in [3] 67

Figure 6.6 Progress of the objective function value when iterative branch-

and-cut is applied on the instance dtp_100_200_1 69

xvii

LIST OF ABBREVIATIONS

BMI Big-M improvement

CDS Connected dominating set

CF Cutset formulation

DS Dominating set

DT Dominating tree

DTP Dominating tree problem

EE Edge elimination

EF Number of edges fixed

ESPP Elementary shortest path problem

FF Flow formulation

IP Integer programming

IPC Classical integer programming formulation

IPS Strengthened integer programming formulation

MCDSP Minimum connected dominating set problem

MCFF Multi-commodity flow formulation

MDSP Minimum dominating set problem

MFD Martin’s formulation for the DTP

MIP Mixed-integer programming

MST Minimum spanning tree

TSP Travelling salesman problem

VeF Number of vertices fixed

VF Variable fixing

VNS Variable neighborhood search

WSN Wireless sensor network

xviii

CHAPTER 1

INTRODUCTION

Wireless Sensor Networks (WSNs) include wireless sensors that collect data from

the environment they are in, and transmit the data throughout the network to

a base station, which communicates with other networks, or form a backbone

for other networks. As stated in [18], in the network layer of a WSN, sensors

form a network and try to transmit data to the base station.

Yick, Mukherjee, and Ghosal [28] conduct a comprehensive literature review

on WSNs. They point out that the wireless sensors are deployed in locations

that are hard to access, and mostly their places are not even known. So, it

becomes a crucial concern to keep the system working to reduce maintenance

and management costs. Since these sensors include electronic gadgets, they need

power to operate. Thus, as power supply, they use batteries embedded to their

system, but in some cases there may also exist external power supply such as

solar panels.

A WSN needs to transmit data using the available power. In some applications

the data is transmitted by using the so called flooding approach, in which each

sensor distributes the gathered data to all sensors that it is able to communicate

with. However, in [15], Ni et al. claim that the data transmission done by

flooding, causes redundancy, contention, and collision. Thus, we need a routing

protocol to save from energy as stated in [25]. To serve this aim, we will build

a backbone to transmit the data.

1

The constructed backbone provides routing information to sensors and lets them

communicate with each other using this information. In other words, with the

help of backbone construction, sensors do not need to flood their data to all

other sensors that they are able to communicate with; but only the ones that

are determined in the backbone construction.

WSNs are widely used in many application areas, such as health-care, environ-

mental sensing, military applications, and industrial monitoring. For instance,

sensors deployed to the environment can keep track of the changes of tempera-

ture, pressure, humidity, and provide high-level information to the user. Also,

in hospitals advanced medical systems can keep track of a patient by collecting

the raw data from the sensors, processing them using pre-defined procedures,

and providing high-level information to the doctor. Therefore, many studies are

held on such applications with wireless sensors as in [13], [14].

Expectedly, many problems arise from this field. One of them is constructing

this backbone, so that the sensors can communicate with each other and trans-

mit data to the base station. During the transmission, both wires and sensors

consume energy. Please note that by wires, we refer to the communication op-

portunity, not a physical wiring system. Since sensors run on battery, the energy

consumption is crucial in order to maintain the system. It is not easy to de-

tect the sensors that are down and replace them since these sensors are widely

deployed and hundreds of thousands of them may exist in the field.

Constructing a backbone which results in the least energy consumption so that

the system remains longer, is one of the main purposes. While constructing this,

we do not have to include all the sensors in the backbone, but the sensors that

are not included in the backbone should be exactly one-hop away from a vertex

included in the backbone because of the communication requirements. Actually,

this application is defined in the literature as domination and studied with the

name Dominating Set (DS) [1].

In a more formal way, a sensor u dominates sensor v, if u is in the dominating

set, and u and v are able to communicate. So, all the sensors not in DS, has to

be dominated by at least one sensor in DS, i.e. should be one-hop away from at

2

least one sensor in DS.

However, having a DS is not enough to transmit data between sensors. We need

to have a set of sensors that can communicate along the given network. To over-

come this issue several problems are studied in the literature. We will mention

two of these here: Minimum Connected Dominating Set Problem (MCDSP) and

Minimum Cost Dominating Tree Problem (DTP).

MCDSP searches for a set of sensors and wires which has the minimum number

of sensors and forms a connected DS. While MCDSP focuses on the number of

sensors included in the backbone, the DTP [21] aims to form an energy efficient

backbone by using the communication cost information between the sensors and

preserving connectivity across the network.

The DTP is constructed upon some assumptions. These assumptions are:

• Domination is defined only for sensors, i.e., vertices, not the communica-

tion edges.

• Sensor locations, communication opportunities between sensors are known

for sure.

• Energy consumption between nodes are known for sure and they are de-

terministic.

The assumptions show that the given network is a perfect network having a

reliable design. However, we are aware that such a design cannot exist in real

world. The sensors may collapse, the communication may be blocked because

of some environmental effects. We define a perfect environment without these

issues causing unreliability, and motivate the application of the DTP by its

measure of perfect information. In case of perfect conditions, we address the cost

of the network by the DTP and analyze real world cost accordingly. Therefore,

this thesis focuses on the DTP and proposes exact solution approaches for its

solution.

As stated, in minimum cost DTP, one needs to minimize the communication

cost across the network. So, each sensor pair included in the network, that

3

are able to communicate, is associated with a non-negative cost value. In the

literature, we see that this cost value increases as the distance between two

sensors increases. Furthermore, in the DTP literature, the cost is assumed to

be proportional to the square of the distance between two sensors. [23] defines

the cost, wuv, between vertices u and v as:

wuv ∝ d2
uv

where duv is the Euclidean distance between the corresponding vertices. Al-

though this assignment gives a general idea about the power consumption, one

may observe that it overlooks the fact that flow of information between some

sensors may be much more than the others, thus may have high impact on the

battery consumption.

In this thesis, we aim to examine the DTP, provide exact solutions by proposing

integer programming formulations. Besides, we aim to decrease the time spent

on finding the solution with the help of different solution approaches.

The thesis is organized as follows: In Chapter 2, we present a literature review

on wireless sensor networks and related problems to the DTP. Chapter 3 de-

fines the problem and introduces mixed-integer programming formulations for

the DTP. Chapter 4 details pre-processing procedures proposed for the prob-

lem. An iterative branch-and-cut procedure and a pure cutting plane algorithm

are introduced in Chapter 5. Chapter 6 presents the preliminary and detailed

computational experiments. We conclude and share comments on the future

research directions in Chapter 7.

4

CHAPTER 2

LITERATURE REVIEW

This chapter reviews the literature related to the DTP. First, the application

area WSNs, then the related problems are examined, namely the Dominating Set

Problem, the Minimum Spanning Tree Problem, and the Elementary Shortest

Path Problem. The variants of the DSP are also discussed throughout the

chapter.

2.1 Wireless Sensor Networks (WSNs)

WSNs have a wide application area in real-life. Therefore, many aspects of it

have been studied in the literature. With the emerging applications of Internet

of Things, the attention on the subject has come to a high level. As stated in [17],

there are some main characteristics of WSNs: lifetime, flexibility, maintenance,

and data collection. It is desired to have long-running, flexible networks to

reduce the cost of maintenance and data collection. Thus, constructing such

networks is crucial.

In [28], the authors state that, in the network layer of WSNs, the routing of

the data is determined. There are many protocols to transmit the data that the

sensors gather to the base station. However, as stated, it is desired to find one

with the least cost, and this cost can be determined by means of energy, memory,

and capability of computation. Moreover, some energy efficient protocols are

provided in [28].

5

2.2 The Dominating Set Problem (DSP)

The Dominating Set Problem aims to find a dominating set on a graph G =

(V,E). There are several variants of this problem studied in the literature. We

will briefly review some of them that are related to our study, namely, Mini-

mum Dominating Set Problem (MDSP), Minimum Connected Dominating Set

Problem (MCDSP), Minimum m-connected k-tuple Dominating Set Problem

((m,k)-CDS).

2.2.1 The Minimum Dominating Set Problem (MDSP)

The MDSP searches for a dominating set on a graph G = (V,E) by minimizing

the number of vertices included in the solution. Therefore, this problem is closely

related to the DTP by means of selecting a dominating set on a graph.

In [10], it is stated that the MDSP is NP-hard. Therefore, many heuristic and

meta-heuristic algorithms are proposed for its solution. For instance, Nieberg

and Hurink [16] propose a polynomial time approximation scheme (PTAS) for

the MDSP in unit disk graphs. In [9], the authors discuss exact exponential

algorithms to compute the minimum dominating set on specific type of graphs.

Moreover, Zou et al. [30] consider the MDSP with weights on vertices. They

propose an approximation algorithm for the solution to the minimum weight

DSP.

Now, we will introduce more specific problems to MDSP in the following section.

2.2.2 The Minimum Connected Dominating Set Problem (MCDSP)

MCDSP intends to find a minimum dominating set that is also connected via

the edges of the graph. We know that MDSP is NP-hard, and so MCDSP. The

DTP also tries to find a connected dominating set, but it serves to a different

objective. Therefore, some procedures, valid inequalities etc. are DTP specific.

Nevertheless, the MCDSP gives a wide aspect for the solution approaches to the

6

DTP, by its similar problem definition.

In [22], the authors propose some valid inequalities for MCDSP and apply Ben-

ders Decomposition and branch-and-cut procedures on the problem. On the

other side, Fan and Watson [8], propose many IP formulations that use Miller-

Tucker-Zemlin constraints, Martin constraints, single-commodity flow constraints,

and multi-commodity flow constraints.

A generalization of MCDSP, (m,k)-CDS, is studied from many aspects in the

literature. Here, m refers to connectedness, and k refers to domination. If all

pairs of the vertices are connected by at least m disjoint paths, and the vertices

not included in the backbone are dominated by at least k vertices, then it is a

solution for (m,k)-CDS Problem. In [27], the general problem is studied and

two algorithms, centralized algorithm and distributed deterministic algorithm,

produced better results for general k- and m-values than in the literature. The

problem is reduced for specific m and k values in some works. To exemplify,

in [20], they do not restrict m values, but work for k = 1, k = 2 and k = m.

On the other hand, the k-values are not restricted but m is assumed to be 2 in

the work of Li and Zhang [12]. Also, in [4], the authors study on 2-connected

dominating set problem.

This problem is also related to the WSNs, since the domination and connectivity

concerns are on site. It is also more realistic to have a m-connected and k-

dominated backbone in order to increase reliability. However, note that, while

increasing the reliability, the cost increases as well. So, one needs to examine

the trade-off in between.

2.3 The Dominating Tree Problem (DTP)

Dominating Tree Problem is introduced by [29] in 2008, and proved to be NP-
hard. As it is a recently introduced problem, the literature is limited.

To the best of our knowledge, no integer programming formulations has been

studied in the literature for the DTP other than the classical one which is intro-

7

duced in [21]. On the other hand, the studies in the literature on the DTP mainly

focus on heuristic algorithms, such as variable neighborhood search (VNS) and

meta-heuristic algorithms, such as genetic, artificial-bee colony, and ant-colony

optimization.

For instance, in 2013, Sundar and Singh [23] propose a new heuristic algorithm

and compare it with the existing ones. Besides, they work on two meta-heuristic

approaches which yield satisfying results. In [3], the heuristic algorithm proposed

in [23] is improved, and an additional evolutionary algorithm with guided search

is studied.

The most recent work on the DTP, held by Dražić, Čangalović, and Kovačević-

Vujčić [5], focuses on variable neighborhood search (VNS) based heuristic. The

results achieved by VNS are compared with the results of algorithms that exist

in the literature.

However, the studies held on this subject do not offer an exact approach to the

problem. They utilize heuristic approaches and the results are not proved to be

optimal. In this study, we aim to obtain the optimal values for those instances

with IP formulations or branch-and-cut operations.

2.4 Other Related Problems

The DTP is closely related to the Minimum Spanning Tree Problem (MST)

Problem, in the sense that it tries to minimize the total cost on the edges of a

tree. Therefore, some applications for the MST guided our research. Moreover,

the Travelling Salesman Problem (TSP), and the Elementary Shortest Path

Problem (ESPP) are also related problems, since they aim to eliminate cycles

in the solution.

2.4.1 The Minimum Spanning Tree Problem (MST)

The MST is a widely studied problem in the literature. It is not practical to

include all here, so we will limit ourselves to the most related literature.

8

Trying to get rid of exponentially many sub-tour elimination constraints is one

of the main concerns of the MST. Although pure MST has a polynomial time

algorithm for the solution, variants of the problem still need to deal with this is-

sue. To exemplify, Behle, Jünger, and Liers [2] work on the Degree-Constrained

Minimum Spanning Tree Problem that searches for a minimum spanning tree

with additional degree constraints. They present many separation procedures

to eliminate sub-tours and conclude that the primal separation procedures out-

weighs the standard ones.

Moreover, [19] works on minimum spanning trees under conflict constraints

and separate sub-tour elimination constraints with the help of Maximum Flow-

Minimum Cut Algorithm.

Apart from those, in [7], the authors review many integer programming formu-

lations for the MST. These are also related to the problem the DTP in the sense

that they have similar formulations. Therefore, in this thesis we utilize the idea

behind these formulations, and construct IP formulations for the DTP.

2.4.2 The Elementary Shortest Path Problem (ESPP)

The purpose of the ESPP is finding a shortest path on a graph G where edges

may take negative cost values. Because of this negativity, the algorithms pro-

posed by Bellman-Ford or Dijkstra do not apply, and the solution tends to

create sub-tours. Therefore, in order to solve the problem, some sub-tour elim-

ination procedures are needed. Since subtour elimination constraints increase

exponentially in number with the number of vertices, the computational com-

plexity increases as well. Thus, many approaches aiming to handle the sub-tour

elimination constraints are studied in the literature.

For instance, in [6], Drexl discusses the separation of sub-tour elimination con-

straints for the ESPP. He points out the application of eliminating the sub-tours

by maximum flows and by strong components. Also, Taccari [24] introduces

many integer programming formulations for the ESPP and applies a Min Cut-

based and a Strong Component-based separation procedures to eliminate the

9

sub-tours. He shows that the Strong Component-based separation procedure is

faster than all other procedures.

10

CHAPTER 3

PROBLEM DEFINITION AND INTEGER

PROGRAMMING FORMULATIONS

3.1 Problem Definition

3.1.1 Terminology

For the sake of completeness, before introducing the DTP, we first define the

related terminology. Following definitions introduce the concepts from graph

theory [26].

Definition 3.1. An undirected graph G consists a pair G = (V,E) where V

and E are the set of vertices, and the set of unordered pairs of vertices, i.e.,

edges, respectively.

Please note that, throughout this thesis, we will assume undirected graphs,

unless otherwise stated.

Definition 3.2. Two vertices u, v ∈ V of a graph are said to be adjacent if

(u, v) ∈ E. An edge (u, v) ∈ E is incident to the vertices u, v ∈ V . The set δ(u)

consists of the vertices that are adjacent to the vertex u ∈ V , and is called as the

open-neighborhood of vertex u. The set Γ(u), called as the closed-neighborhood

of a vertex is the union of the open-neighborhood of δ(u) of u and u; in other

words, Γ(u) = δ(u) ∪ {u}.

In the light of this basic terminology, we will define connectedness, cycle, and

cut-edge to enlighten the definition of tree.

11

Definition 3.3. A u, v-path exists between pair of vertices u and v, if a sequence

of adjacent edges connecting a sequence of vertices, where vertices are distinct

possibly except u and v, can be listed. Then, a graph G = (V,E) is said to be

connected if it has a u, v-path for all pairs of u, v ∈ V . It is said to contain a

cycle if a path with the same starting and ending vertex can be found, for at

least one vertex.

Definition 3.4. An edge (u, v) is a cut-edge of the graph if it belongs to no

cycle. We have that there are no cycles in a graph if and only if every edge is a

cut-edge.

Definition 3.5. A graph G = (V,E) is a tree if at least one of the following is

satisfied:

• G is connected and every edge is a cut-edge.

• G is connected and the number of edges is one less than the number of

vertices.

• For all u, v-pairs, there exist exactly one path that connects them.

• G is connected, but becomes disconnected when any of the edges is re-

moved.

• G is connected and contains no cycles.

• G is connected, and adding any edge to G creates exactly one cycle.

Now, suppose G = (V,E) defines a connected graph representing a WSN. In

this representation, vertices specify the wireless sensors, and edges specify the

communication opportunity between two wireless sensors. Note that this graph

does not need to be a tree. Next, we formally define two main problems related

to the DTP.

Definition 3.6. In a graph G, a set S ⊆ V is a Dominating Set (DS), if every

vertex in V \ S has at least one neighbor in S.

Definition 3.7. Minimum Connected Dominating Set Problem (MCDSP) searches

for a sensor set that has minimum number of sensors, i.e., vertices, and forms a

connected DS.

12

Definition 3.8. In a connected graph G, a subgraph DT is a dominating tree

if DT is a tree and the vertices in DT dominates the ones not in DT .

These definitions lead us to the definition of the minimum cost DTP.

Definition 3.9. The Minimum Cost Dominating Tree Problem (DTP), searches

for a dominating tree which has the least total cost on the edges of the tree.

Definition 3.10. The degree of a vertex is equal to the number of edges incident

to that vertex.

Definition 3.11. Given a connected graph G = (V,E), a spanning tree of G

is a tree that connects all the vertices of the graph. In a weighted graph, a

Minimum Spanning Tree (MST) minimizes the total weight of the edges used in

the tree.

Definition 3.12. Let G = (V,E) be an undirected graph. A connected compo-

nent, CC, of G, is a subgraph of G, where there exists at least one path between

each pair of vertices in CC, and no path exists between the vertices of CC and

the vertices not in CC.

In other words, in a connected component of an undirected graph G, all the

vertices are reachable from the other vertices of the same component, but none

of the vertices of a component can be reached from the vertices that are in a

different component. Consider the Figure 3.1 below.

Figure 3.1: Illustration for Connected Component

13

This graph includes three connected components: G1 = {V1, E1}, G2 = {V2, E2}
and G3 = {V3, E3}; where V1 = {1, 2, 3, 4}, V2 = {5, 6}, V3 = {7, 8, 9, 10, 11} and
E1, E2 and E3 are the corresponding edge sets. For instance, in the subgraph

G3, vertex 7 is reachable from vertex 11, by the paths 11-10-8-7, 11-8-7, 11-9-

8-7, 11-9-10-8-7, 11-10-9-8-7. Since we can find such path(s) for each pair of

vertices, we say that G3 is a connected component. Same applies for the other

vertices; so this graph has three connected components.

Definition 3.13. Let G = (V,E) be a graph and S ⊂ V be a subset of vertices.

The induced graph of G on set S is defined as G′ = (V ′, E ′), where V ′ = S and

E ′ = {(u, v) ∈ E|u, v ∈ S}.

3.1.2 Classical IP formulation for the DTP

We consider a network having n vertices andm edges. We represent this network

asG = (V,E) where V and E are the set of vertices and set of edges, respectively.

We assume that each edge (u, v) is associated with a weight wuv. Here, weight

values reflect the power consumption on the edges during data transmission.

Moreover, the weights are assumed to be deterministic. We want to decide on

which vertices and edges to appear in the dominating tree to minimize the cost

of the network.

We define our decision variables as follows,

xu =

 1 if vertex u is selected in a dominating tree

0 otherwise
, u ∈ V

yuv =

 1 if edge (u, v) is selected in a dominating tree

0 otherwise
, (u, v) ∈ E

We want to minimize the total weight of the selected edges of the dominating

tree. An integer programming formulation, presented in [21], is shown below in

14

(IPC). In this formulation, constraint set (3.1) defines the edge-vertex restric-

tions. If an edge (u, v) is selected, i.e., yuv = 1, then both end-points should be

selected as well, i.e., xu = xv = 1. Constraint set (3.2) ensures that the selected

edges do not form any cycle. To see this, if the selected edges form a cycle

C, then taking S = C results in the violation of (3.2). Moreover, constraint

(3.3) ensures that the number of vertices selected is exactly one more than the

number of edges, which is the case for trees. Lastly, with the help of constraint

set (3.4), the model constructs a dominating set, by selecting at least one of

the vertices that are in the closed neighborhood of each vertex. The objective

function minimizes the total weight of the dominating tree.

(IPC)

min
∑

(u,v)∈E

wuvyuv

s.to xu + xv ≥ 2yuv ∀(u, v) ∈ E (3.1)∑
u,v∈S,(u,v)∈E

yuv ≤ |S| − 1 ∀S ⊂ V, S 6= ∅, S 6= V (3.2)

∑
(u,v)∈E

yuv =
∑
u∈V

xu − 1 (3.3)

∑
u∈Γ(v)

xu ≥ 1 ∀v ∈ V (3.4)

xu ∈
{

0, 1
}

∀u ∈ V (3.5)

yuv ∈
{

0, 1
}

∀(u, v) ∈ E (3.6)

However, this model becomes inapplicable for large size problem instances, since

(3.2) includes 2|V | many constraints. So, in order to get through this computa-

tional disadvantage posed by the formulation (IPC), we propose different integer

programming based formulations for the exact solution of the DTP. Cutset, flow,

Martin’s [7] formulations and a multi-commodity network flow formulation [11]

that were proposed for the solution of the minimum (weighted) spanning tree

problem are taken as the building blocks to come up with other IP formulations

for the DTP. In the following subsection, the revised formulations for the DTP

are given.

15

3.1.3 Strengthened formulation

In this section, revisions on the (IPC) are presented.

3.1.3.1 Separating constraint set (3.1) into two components:

Firstly, constraint set (3.1) can be divided into two as follows,

xu ≥ yuv ∀u ∈ V, v ∈ δ(u) (3.7)

xv ≥ yuv ∀u ∈ V, v ∈ δ(u) (3.8)

By this way, we aim to tighten the LP-relaxation of the formulation. Note that

this disaggregation is classical and widely used in the literature.

Also, this revision makes the formulation stronger since the corresponding yuv
value will be at least the maximum of xu and xv, instead of the average of the

sum of those.

3.1.3.2 Revising constraint set (3.4):

The constraint set (3.4) enforces that either the vertex v or at least one of the

neighbors of v should be included in any dominating set for each v ∈ V . For

graphs in which there exists a vertex of degree |V | − 1, the solution of the dom-

inating tree problem is trivial (select that vertex only in the DTP). Therefore,

we assume that G does not have such a vertex and revise the constraint set (3.4)

after this assumption as follows:

∑
v∈δ(u)

xu ≥ 1 ∀v ∈ V (3.9)

16

Also, with the decrease in the left-hand side terms the formulation becomes

stronger.

Moreover, in [22], one more revision on (3.4) of (IPC) is studied. It is claimed

that, the inequality (3.4) can be lifted as:

∑
v∈Γ(u)

xu ≥ 1 +
∑
v∈Γ(u)

yuv ∀v ∈ V (3.10)

In the paper, the correctness of this inequality is discussed. In a similar manner,

(3.9) can be strengthened by lifting it as:

∑
v∈δ(u)

xu ≥ 1 +
∑
v∈δ(u)

yuv ∀v ∈ V (3.11)

The inequality (3.11) can be shown to be valid for the DTP. Suppose we have

a dominating tree D. If for a vertex v ∈ D,
∑

v∈δ(u) yuv=0, then
∑

v∈δ(u) xu will

clearly be greater than or equal to 1 by (3.9). On the other hand, if v ∈ D,∑
v∈δ(u) yuv > 0, then the subgraph of D induced by δ(u) is a forest and we have

that the number of vertices is at least 1 more than the number of edges in a

forest.

3.1.3.3 Revising constraint set (3.2):

In order to further strengthen the formulation (IPC), we can revise the constraint

set (3.2) as follows:

∑
u,v∈S
v∈δ(u)

yuv ≤
|S| − 1

|S|
∑
u∈S

xu ∀S ⊂ V, S 6= ∅, S 6= V (3.12)

17

Note that, the constraint set (3.2) is a classical set of sub-tour elimination con-

straints. Still, we could not find its strengthened form (3.12) in the literature.

We next show that (3.12) is valid for the DTP and it is stronger than (3.2).

Proof. (i) First, let us observe that the proposed constraint set (3.12) is stronger

than (3.2). We know that in a dominating tree the maximum value for the

number of vertices selected from a set S is |S|. Thus,

∑
u∈S

xu ≤ |S| ∀S ⊂ V, S 6= ∅, S 6= V (3.13)

Then,

∑
u,v∈S
v∈δ(u)

yuv ≤
|S| − 1

|S|
∑
u∈S

xu ≤ |S| − 1 ∀S ⊂ V, S 6= ∅, S 6= V

(3.14)

Therefore, the proposed upper bound is stronger than (3.2).

(ii) Unlike the MST problem, the DTP does not include all the vertices in the

optimal solution. From (3.3) we know that

∑
(u,v)∈E

yuv =
∑
u∈V

xu − 1 (3.15)

holds for every u ∈ V .

To prove the validity of the constraint set (3.12), we need to show that the

incidence vector of any dominating tree satisfies all the constraints in (3.12).

Let D be a dominating tree and S ⊂ V . The subgraph of D induced by S ∩D

18

is a forest and so
∑

u,v∈S
v∈δ(u)

yuv ≤
∑

u∈S xu − 1. Let k =
∑

u∈S xu. Clearly,

k− 1 ≤ |S|−1
|S| k holds true and using

∑
u,v∈S
v∈δ(u)

yuv ≤ k− 1 the inequality is proved

to be valid.

Therefore, proposed upper bound is valid for the formulation.

The following sub-tour elimination constraints were proposed in [22].

∑
u,v∈S
v∈δ(u)

yuv ≤
∑

u∈S\{i}

xu i ∈ S, S ⊂ V, S 6= ∅, S 6= V (3.16)

However, (3.16) results in more constraints than (3.12), since for each subset

elements we need to write one more equation, but it is still stronger.

Claim:
{
(x, y)|(x, y) satisfies (3.16)

}
⊆
{
(x, y)|(x, y) satisfies (3.12)

}

Proof. Suppose x̄ and ȳ form a solution for (3.16), and

x̄max = max{x̄j : j ∈ S}. (3.17)

Then,

x̄max ≥
∑

u∈S x̄u

|S|
(3.18)

since the maximum is greater than or equal to the average of all xj values.

Utilizing (3.12),

19

∑
u,v∈S
v∈δ(u)

yuv ≤
∑

u∈S\{i}

xu (3.19)

≤
∑
u∈S

x̄u − x̄max (3.20)

≤
∑
u∈S

x̄u −
∑

u∈S x̄u

|S|
(3.21)

≤ |S| − 1

|S|
∑
u∈S

x̄u (3.22)

3.1.3.4 Valid inequalities

In [22] some valid inequalities are proposed regarding connectivity property. We

know that sub-tour elimination constraints satisfy connectivity. So,

∑
u,v∈S
v∈δ(u)

yuv ≤
∑
u∈S

xu − 1 S ⊂ V, S 6= ∅, S 6= V, S ∩D 6= ∅ (3.23)

is valid, where D is a dominating tree. As stated, this holds true when the

selected subset includes at least one vertex from the dominating tree. There-

fore, we can write this inequality for the subsets that include a vertex of any

dominating tree for sure.

For instance, the vertices that are adjacent to a degree one vertex, are certainly

known to be included in the dominating tree in order to satisfy domination

properties. Therefore, for subsets including such vertices this inequality is valid.

Moreover, the following valid cut inequalities (3.24) are proposed in [22].

20

∑
u∈S,v∈V \S
v∈δ(u)

yuv ≥ 1 S ⊂ V, S 6= ∅, S 6= V,Γ(S) 6= V,Γ(V \ S) 6= V

(3.24)

The inequality (3.24) holds true when the closed neighborhoods of both subsets

S and V \ S do not cover the vertex set V . If one of them was to cover the set,

then we would not need to connect S and V \ S, and the inequality would not

necessarily be valid.

The strengthened formulation (IPS) that we will use in the computational ex-

periments can be summarized as follows:

(IPS)

min
∑

(u,v)∈E

wuvyuv

s.to xu ≥ yuv ∀(u, v) ∈ E (3.25)

xv ≥ yuv ∀(u, v) ∈ E (3.26)∑
u,v∈S
v∈δ(u)

yuv ≤
|S| − 1

|S|
∑
u∈S

xu ∀S ⊂ V, S 6= ∅, S 6= V (3.27)

∑
(u,v)∈E

yuv =
∑
u∈V

xu − 1 (3.28)

∑
v∈δ(u)

xu ≥ 1 +
∑
v∈δ(u)

yuv ∀v ∈ V (3.29)

xu ∈
{

0, 1
}

∀u ∈ V (3.30)

yuv ∈
{

0, 1
}

∀(u, v) ∈ E (3.31)

21

3.2 Cutset Formulation

3.2.1 Formulation

Cutset formulation (CF) is another variation of the IP formulation. Instead of

considering the vertices in the subsets, it considers the relation between the two

subsets, that are the vertices selected in S and the vertices not selected in S,

namely V \ S. In the (CF), the third constraint set (3.27), is revised as follows:

∑
u∈S
v∈δ(u)
v∈V \S

yuv ≥
∑

u∈S xu

|S|
+

∑
u∈V \S xu

|V | − |S|
− 1 S ⊂ V, S 6= ∅, S 6= V

(3.32)

3.2.2 Proof of correctness

As stated in (3.12), we know that the following holds:

∑
u,v∈S
v∈δ(u)

yuv ≤
|S| − 1

|S|
∑
u∈S

xu ∀S ⊂ V, S 6= ∅, S 6= V (3.33)

Utilizing equation (3.15) we get the following.

∑
u,v∈S
u∈δ(v)

yuv +
∑
u∈S
v∈V \S
u∈δ(v)

yuv +
∑

u,v∈V \S
u∈δ(v)

yuv =
∑
u∈S

xu +
∑
u∈V \S

xu − 1

(3.34)

We replace the first and third terms of the left-hand side of (3.34), and come up

22

with the following inequality:

∑
u∈S

xu +
∑
u∈V \S

xu − 1−
∑
u∈S
v∈δ(u)
v∈V \S

yuv ≤
|S| − 1

|S|
∑
u∈S

xu +
|V | − |S| − 1

|V | − |S|
∑
u∈V \S

xu

(3.35)

Rearranging (3.35), we get (3.32).

Claim: This inequality does not cut off the incidence vector of any dominating

tree.

Proof. Let D be a dominating tree and S be a subset of V , satisfying (3.25),

(3.26), (3.28) and (3.29). The right-hand side of (3.32) may take a maximum

value of 1, when all the vertices are included in the dominating tree. If S and

V \ S both contain vertices of D, then due to connectedness the left-hand side

of (3.32) will be at least 1. On the other hand, if one of S and V \ S does not

contain any vertex of D, then (3.32) is clearly satisfied by the incidence vector

of D as the left-hand side is greater than or equal to 0.

Claim: This inequality eliminates all the sub-tours.

Proof. Let D be a graph corresponding to a feasible solution of the cutset for-

mulation having a cycle. Then, it has at least two connected components since

incidence vector of D satisfies (3.28).

Suppose S includes only the vertices which belong to a connected component,

thus
∑

u∈S xu = |S|. The rest of the vertices are in V \ S, which we know to

include at least one connected component, thus
∑

u∈V \S xu ≥ 1.

So, the right-hand side takes a value greater than 0 and less than or equal to 1,

which enforces a yuv value to become positive on the left-hand side. This leads

to a contradiction and proves the claim.

23

3.3 Single-commodity Flow Formulation

In this section, we present the flow formulation (FF) for the DTP which is

obtained by modifying the classical flow formulation proposed for the MST [7].

First, source vertex selection, then the MIP formulation are described in detail.

3.3.1 Selecting a source vertex

As in the classical flow formulation of the MST, we need a source to supply flow

to the other vertices. At this point, by selecting a one-degree vertex as a source,

we guarantee that the vertex adjacent to the one-degree vertex is included in

the solution. However, if the graph does not contain a one-degree vertex, then

we choose a vertex having the least degree, create an extra vertex, and connect

it to this least-degree vertex and its neighbors. Note that when there are more

than one candidate source vertex, one can break the ties arbitrarily.

Suppose that we have a graph as in Figure 3.2 having 10 vertices and 15 edges.

Here, there are two vertices having degree one, 4 and 6. We arbitrarily choose

4 as a source vertex here.

Figure 3.2: Instance with 10 vertices and 15 edges

For the graph in Figure 3.3 with 15 vertices and 30 edges, no one-degree vertex

exists. Therefore, we prefer to choose a vertex having the least degree. Again,

there are more than one 2-degree vertices, 1, 5, and 9. Here we select 1 arbitrar-

ily, and connect a hypothetical source vertex to it and its neighbors. One may

see the selected source vertex in Figure 3.4.

24

Figure 3.3: Instance with 15 vertices and 30 edges

It is good to note that we may exclude the edge connecting the source vertex

and vertex 1 here, since we constraint to select at least one of the neighbors of 1.

In other words, the source vertex prefers to send its flow directly to a neighbor

of vertex 1 instead of following vertex 1 and a neighbor. Hereby, an extra edge

is not included in the graph.

Figure 3.4: Source vertex selection for the graph in Figure 3.3

25

3.3.2 Formulation

In the classical flow formulation, flow is generated at a vertex, that is the source

vertex, and sent to other vertices. With the flow balance restrictions, the con-

nectedness is guaranteed. So, we may apply the main idea behind the classical

single-commodity flow formulation to the DTP as well. Noting that a solution

need not include all the vertices in the DTP, not all the vertices will consume

flow. In other words, vertices included in the solution will consume one unit of

flow, where the others will not consume any.

Below, one can find the additional decision variables used in (FF).

fuv = The flow amount carried from vertex u to vertex v, (u, v) ∈ E

av =

 1 if the edge from source to vertex v is selected for flow

0 otherwise
, v ∈ δ(s)

As in the IPC, we have the same objective function for the problem. Next, we

provide the details of the formulation (FF).

The objective function aims to minimize the total weight of the dominating tree.

Inequalities (3.36) ensure the flow balance. A vertex is included in the optimal

solution if and only if there is a flow passing through that vertex. However,

this is valid for non-source vertices. Also, with (3.37) we enforce selected ver-

tices to form a dominating set. Next three constraints (3.38), (3.39), and (3.40)

ensure that the source is not included in the optimal solution. The first one

makes sure that no flow will go into the source vertex and the edge(s) leav-

ing the source vertex will not be included in the optimal solution by (3.39).

By (3.40), we are not going to have the source vertex in the optimal solution.

(3.41) and (3.42) put lower and upper bounds for the flow variables. If an

edge is included in the solution, then a flow should pass through that edge,

and the maximum flow that can be observed on an edge is two less than the

number of vertices in the graph, since maximum |V | − 2 number of vertices will

be included in the optimal DT. Therefore, the Big-M value is set to |V | − 2

throughout the model. (3.43) and (3.44) are the constraints that are already

26

included in the original IP formulation. (3.45) and (3.46) together make sure

that exactly one edge will be used while distributing the flow from the source

vertex. Last four constraints, (3.47), (3.48), (3.49), and (3.50), bind decision

variables x, y, and a to binary values and f to a non-negative value, respectively.

(FF)

min
∑

(u,v)∈E

wuvyuv

s.to
∑
v∈δ(u)

fvu −
∑
t∈δ(u)

fut = xu ∀u ∈ V \ {s} (3.36)

∑
v∈δ(u)

xu ≥ 1 +
∑
v∈δ(u)

yuv ∀v ∈ V (3.37)

∑
(u,s)∈E

fus = 0 (3.38)

∑
(u,s)∈E

ysu = 0 (3.39)

xs = 0 (3.40)

fuv ≥ yuv ∀v ∈ δ(u) s.t. u ∈ V \ {s}
(3.41)

fuv ≤Myuv ∀v ∈ δ(u) s.t. u ∈ V \ {s}
(3.42)

xu ≥ yuv ∀u ∈ δ(v) s.t. v ∈ V \ {s}
(3.43)

xv ≥ yuv ∀v ∈ δ(u) s.t. u ∈ V \ {s}
(3.44)

fsv ≤Mav ∀v ∈ δ(v) (3.45)∑
v∈δ(s)

av = 1 (3.46)

xu ∈ {0, 1} ∀u ∈ V (3.47)

yuv ∈ {0, 1} ∀u ∈ V, v ∈ δ(u) (3.48)

av ∈ {0, 1} ∀v ∈ δ(s) (3.49)

fuv ≥ 0 ∀u ∈ V, v ∈ δ(u) (3.50)

27

In [8], the authors propose a single-commodity flow formulation (SCF) for MDSP,

but there are some differences between (SCF) and (FF). For instance, as spec-

ified in Section 3.3.1, we determine the source vertex before the optimization.

However, in [8], the authors decide the root vertex through the model. In other

words, in (FF), the source vertex is a parameter, where in (SCF) it is a decision

variable. (SCF) and (FF) are similar to each other in the sense that they both

use Big-M in the formulation. However, because of the source vertex selection

procedure, the formulations differ.

3.3.3 Proof of correctness

Let us consider a graph resulting from a feasible solution of (FF). Let us assume

that the graph is disconnected. Since we have one source, the source will remain

on side of one of the connected components. Thus, we will not be able to send

flow to the connected component(s) which do not include the source vertex.

Therefore, we cannot include a vertex from those connected components. This

leads to a contradiction of having a disconnected graph. So, we will always have

a connected graph.

Now, let us have an incidence vector of any DT. This solution is not violated by

any of the constraints in (FF) since for each feasible solution we can find a path

for the flow.

The domination property is satisfied with the classical domination constraints.

All in all, every feasible solution in (FF) corresponds to an incidence vector of

a DT and vice versa.

3.4 Multi-commodity Flow Formulation

3.4.1 Formulation

In multi-commodity flow formulations studied in the literature, the vertices are

the suppliers of flow, and each vertex supplies a unique commodity. With the

28

flow balance constraints, each commodity is transmitted to the sink vertex. By

ensuring that the vertices included in the solution will distribute flows, and the

others not, we may form a dominating tree.

In the multi-commodity flow formulation (MCFF) a sink is defined. Besides,

each vertex k is defined as a source and supplies a commodity k and sends it to

the sink s. Therefore, the sink is the vertex that should receive all commodities.

Apart from decision variables x and y, we need one more decision variable t,

and it is defined as follows:

tkuv =

 1 if commodity k passes through edge (u, v)

0 otherwise

The first three constraint sets fulfill the balance constraints. Constraint set

(3.51) ensures that if vertex k, is included in the optimal solution, then the

difference between outflow and inflow should be one, otherwise zero. In other

words, if you supply a commodity from vertex k then you have to include that

vertex in the optimal solution.

Constraint set (3.52) is written for each commodity k other than the sink s, and

it makes sure that if that vertex is not the vertex k, then inflow should be equal

to outflow.

Constraint set (3.53) is written for each vertex except the sink. If a vertex k

supplies commodity k, then the commodity k should arrive to the sink for the

sake of connectivity.

(3.54) is the constraint set for the dominating set property. (3.55) ensures that

none of the edges will be included in the solution that are connected to the sink,

and (3.56) makes sure that the sink is not included in the DT.

Constraints included in set (3.57) are the edge-vertex restrictions. (3.58) states

that if commodity k passes through edge (u, v), then that edge has to be included

in the optimal solution, and (3.59) relates the decision variables x and y. The

last constraint, (3.60), uses the property of trees and imposes that the number

of edges is exactly one less than the number of vertices in the DT.

29

The last three, (3.61), (3.62), and (3.63), enforce the decision variables to be

binary for the given sets.

(MCFF)

min
∑

(u,v)∈E

wuvyuv

s.to
∑
v∈δ(k)

tkkv −
∑
k∈δ(u)

tkuk = xk ∀k ∈ V \ {s} (3.51)

∑
v∈δ(u)

tkuv −
∑

m∈δ(u)

tkmu = 0 ∀k ∈ V \ {s},∀u ∈ V \ {s, k}

(3.52)∑
v∈δ(s)

tksv −
∑
s∈δ(u)

tkus = −xk ∀k ∈ V \ {s} (3.53)

∑
v∈δ(u)

xu ≥ 1 +
∑
v∈δ(u)

yuv ∀v ∈ V (3.54)

∑
s∈δ(u)

ysu + yus = 0 (3.55)

xs = 0 (3.56)

yuv + yvu ≤ xu ∀v ∈ δ(u) s.t. u, v ∈ V \ {s}
(3.57)

tkuv ≤ yuv
∀k ∈ V \ {s}, v ∈ δ(u),

s.t. v ∈ V \ {s}

(3.58)∑
v∈δ(u)

(yuv + yvu) ≥ xu ∀u ∈ V (3.59)

∑
v∈δ(u)

yuv =
∑
u∈V

xu − 1 (3.60)

xu ∈ {0, 1} ∀u ∈ V (3.61)

yuv ∈ {0, 1} ∀u ∈ V, v ∈ δ(u)

(3.62)

tkuv ∈ {0, 1} ∀u ∈ V, v ∈ δ(u), k ∈ V
(3.63)

In [8], Fan and Watson propose a multi-commodity flow formulation for MCDSP.

30

However, it differs from the formulation that we propose in many aspects. For

instance, they use Big-M values in the formulation, while one of the main mo-

tivation for converting a single-commodity formulation to a multi-commodity

formulation is getting rid of Big-M values. With this approach, we do not make

use of any Big-M values in our formulation. Also, they use a decision variable

for selecting the sink vertex, where in (MCFF) we do not use such a decision

variable, but a sink vertex parameter.

3.4.2 Proof of correctness

The domination property is again satisfied by the set of constraints (3.54).

In (MCFF), every vertex is defined as a source. But, there is only one sink,

and all the commodities generated at vertices should be transferred to the sink

vertex. So, again suppose the formulation leads to a disconnected graph D as a

solution. Then, at least one vertex, supplying a commodity, cannot transfer its

commodity to the sink. However, constraint set (3.53) ensures that each com-

modity generated, must be transferred to the sink. This leads to a contradiction;

therefore, (MCFF) cannot lead to disconnected graph as a solution.

Now, consider a DT being an incidence vector. We may assign each vertex

in DT as a source, and send the corresponding commodities to the sink node.

We are able to find a path with the help of flow balance constraints, so each

commodity can reach to the sink. Therefore, DT is feasible to the model.

All in all, the proposed multi-commodity flow formulation constructs a domi-

nating tree.

3.5 Martin’s Formulation

3.5.1 Formulation

In Martin’s Formulation for the DTP (MFD), the regular decisions on vertices

and edges are to be made, but this time t refers to a different decision. This

31

formulation was previously proposed for the MST problem in [7], for the MDSP

in [8], and now it is modified for the DTP.

First, let us define decision variable t. Afterwards the details of the formulation

will be introduced.

tkuv =


1 if edge (u, v) and vertex k are in the optimal solution,

and k is on the side of vertex v when the edge (u, v) is removed

0 otherwise

Suppose you have a graph as in Figure 3.5. Here, a 10-vertex graph and its

solution for the DTP are given. In the optimal solution, vertices 0, 2, 7 and

9, and edges (0,2), (2,9), and (9,7) are included. Since the solution is a tree,

disconnecting an edge of the optimal solution results in two distinct trees. To

exemplify, if we remove the edge (2,9), (0,2) with vertices 0 and 2, and (9,7)

with vertices 9 and 7 refer to two different trees. Therefore, for this solution, t02,9
takes the value of zero, since after the removal of edge (2,9), vertex 0 remains on

the side of 2. On the other hand, t09,2 takes the value of 1, since vertex 0 remains

on the side of 2 when we remove the edge (2,9).

Figure 3.5: Solution to the instance with 10 vertices and 15 edges

Utilizing the decision variable t, we can prevent cycles in the solution, and form

a tree. Consider the left hand side of the inequalities in (3.64) and (3.65). The

first sum and y values are closely related to each other, and at most one of them

should be positive. If tvuk is positive for some k, then it means that vertex v

and the edge (u, k) exist in the optimal solution by definition, and v is on the

side of k when we remove the edge (u, k). Then, in order not to have cycles, we

32

cannot have the edge (u, v) in the optimal solution. And if one of them, the first

sum or y values, is non-zero, then we need to include the vertices u and v in the

optimal solution. Also, if u and v are included in the solution, then either the

edge (u, v) should be in the optimal solution, or they should be connected with

the help of a vertex k. If at least one of u and v is not included in the solution,

then we do not restrict y and t variables.

Moreover, constraint set (3.66) relates decision variable t to the other two deci-

sion variables x and y. It makes sure that if a decision variable tkuv is positive,

then we need to have edge (u, v) and vertex k in the optimal solution because of

the definition of the decision variable. Constraint set (3.67) puts a lower bound

on t. There are 4 cases as follows:

1. Edge (u, v) and vertex k are in the optimal solution:

Then yuv and xk take a value of one, right hand side becomes one, which

means that vertex k should be reachable from either u or v.

2. Edge (u, v) is in the optimal solution, vertex k is not:

Then yuv takes a value of one, and xk takes a value of zero, right hand

side becomes zero, which means that we should not restrict t values. Note

that, t is restricted to zero in this case by (3.69).

3. Edge (u, v) is not in the optimal solution, vertex k is:

Then yuv takes a value of zero, and xk take a value of one, right hand side

becomes zero, which means that we should not restrict t values.

4. Edge (u, v) and vertex k are not in the optimal solution:

Then yuv takes a value of zero, and xk take a value of zero, right hand side

becomes −1, and again t values should not be restricted.

Since we define t for the optimal solution, both the edge (u, v) and the vertex k

should be in the optimal solution, and these are satisfied by (3.68) and (3.69),

respectively. (3.70) relates edges and vertices, and also ensures that we cannot

include both (u,v) and (v,u) at the same time since this is an undirected network

33

and x cannot take a value greater than zero. (3.71) defines the dominating set,

and (3.72) ensures the tree property. (3.73) makes sure that if a vertex u is

included in the optimal solution, then at least one of its neighbor edges should

be included in the optimal solution as well.

Lastly, (3.74) makes sure that a vertex cannot be connected to itself through

other vertices, where (3.75) satisfies that a vertex is not reachable from another

vertex through more than one distinct paths. (3.76), (3.77), and (3.78) present

the binary restrictions.

(MFD)

min
∑

(u,v)∈E

wuvyuv

s.to
∑

k∈V \
{
u,v
}

k∈δ(u)

tvuk + yuv + yvu ≤
xu + xv

2
∀u ∈ V, v ∈ δ(u)

(3.64)∑
k∈V \

{
u,v
}

k∈δ(u)

tvuk + yuv + yvu ≥ xu + xv − 1 ∀u ∈ V, v ∈ δ(u)

(3.65)

xk + yuv + yvu ≥ 2tkuv ∀u ∈ V, v ∈ δ(u), k ∈ V
(3.66)

xk + yuv + yvu − 1 ≤ tkuv + tkvu ∀u ∈ V, v ∈ δ(u), k ∈ V
(3.67)

yuv + yvu ≥ tkuv + tkvu ∀u ∈ V, v ∈ δ(u), k ∈ V
(3.68)

xk ≥ tkuv + tkvu ∀u ∈ V, v ∈ δ(u), k ∈ V
(3.69)

yuv + yvu ≤ xu ∀u ∈ V, v ∈ δ(u)

(3.70)∑
v∈δ(u)

xu ≥ 1 +
∑
v∈δ(u)

yuv ∀v ∈ V (3.71)

34

(MFD-cont’d)

∑
v∈δ(u)

yuv =
∑
u∈V

xu − 1 (3.72)

∑
v∈δ(u)

yuv + yvu ≥ xu ∀u ∈ V (3.73)

tuuv = 0 ∀v ∈ V, u ∈ δ(v) (3.74)

tkuv + tkum ≤ 1

∀m ∈ V, v ∈ V \ {m},
k∈ V \ {v,m},
s.t.u∈ δ(v), u ∈ δ(m)

(3.75)

xu ∈ {0, 1} ∀u ∈ V (3.76)

yuv ∈ {0, 1} ∀u ∈ V, v ∈ δ(u) (3.77)

tkuv ∈ {0, 1} ∀u ∈ V, v ∈ δ(u), k ∈ V (3.78)

Although the feasible area of the MDSP and the DTP are the same, and the

formulation used in [8] can be used, we have updated some of the constraints,

and came up with a different formulation. In [8], they use Big-M values in the

formulation. On the other hand, in our formulation, Big-M values do not appear.

3.5.2 Proof of correctness

Suppose a disconnected graph D results as a feasible solution. By (3.72) D

contains a cycle. Then, at least for one (u, v) pair, we have the left-hand side

of (3.64), 2. However, the right-hand side is 1 as u and v are in the solution.

Thus, (3.64) eliminates the cycle, and leads to a contradiction.

Also, (MFD) does not exclude any dominating tree solutions while preventing

the cycles. We know that the set of constraints (3.71) satisfy the domination

property. So, assume a vertex set D ⊆ S satisfying (3.66)-(3.75). Then, for the

vertices in D, at least one of the incident edges is included in the dominating

tree. (3.65) puts a lower bound only if both u and v are in D. In this case, either

u and v are connected by an edge which means that yuv is 1, or u and v are

35

connected via some vertex k, which means that tkuv is one for some k ∈ D. So

the left-hand side of (3.65) becomes at least one, the constraint set is satisfied

for all dominating trees.

For the constraint set (3.64), the right-hand side is one when u, v ∈ D. Then,

the left-hand side is one for the same reason explained above for the constraint

set (3.65). It puts an upper bound of 1
2
when only one, 0 when none of u and

v are in D. Since the left-hand side variables are binary, both cases restrict the

left-hand side to zero. In those cases, where at least one of u, v is not in D,

corresponding t and y values should be zero because of (3.69)-(3.70). Thus, it

does not eliminate any dominating tree as well.

All in all, the proposed Martin’s formulation for the DTP constructs a dominat-

ing tree.

36

CHAPTER 4

PRE-PROCESSING PROCEDURES

In this chapter, two pre-processing procedures, variable fixing (VF) and edge

elimination (EE), applicable in general, and one pre-processing procedure, Big-

M improvement (BMI), applicable only in (FF) are presented.

4.1 Variable Fixing

Given an edge-weighted connected graph G, we would like to solve the DTP.

There may exist vertices of degree one. In G, if a vertex is of degree one, then

it is pointless to include it in the optimal solution since including that vertex

results in including the only edge incident to it, and therefore the only neighbor

adjacent to it. However, it is sufficient to have the neighbor of v in the optimal

solution without having v and satisfy domination with less cost.

Employing this property, we can fix x variables corresponding to vertices of

degree one to zero, x variables associated with the vertices adjacent to one-

degree vertices to one, and y variables for the edges that are incident to vertices

of degree one to zero.

After that, we may apply one more procedure on the resulting graph. If the

vertices whose x values are fixed to one, i.e., formerly adjacent to a one-degree

vertex, have a degree of one after the removal of the one-degree vertices, then we

need to include the only incident edge and the only adjacent vertex to the vertex

in the optimal solution so that we can maintain connectivity and domination

properties. We apply this fixing procedure until no candidates are left.

37

(a) Initial Graph (b) Iteration 1

(c) Iteration 2 (d) Iteration 3

(e) Iteration 4 (f) Iteration 5

Figure 4.1: Variable Fixing Procedure

38

To illustrate, consider the example given in Figure 4.1. The variable fixing

procedure applies as follows.

• Iteration 1: We look if there are any degree one vertices in the graph, and

see that 4 and 6 are degree one vertices. We fix these vertices to 0.

• Iteration 2: The edges incident to vertices 4 and 6, that are (0, 6) and

(4, 7), are fixed to 0 as well.

• Iteration 3: Since 4 and 6 have to be dominated, we fix the adjacent

vertices, 0 and 7 to 1.

• Iteration 4: We again look for degree one vertices. Since 4 and 6 are

removed from the graph, now 7 is a vertex of degree one. Since 7 is a

degree one vertex, it should be connected to the only adjacent vertex, in

order to form a connected graph. Therefore, the edge (7, 9) is also fixed

to 1.

• Iteration 5: Fixing (7, 9) brings along fixing the vertex 9 to 1.

• Iteration 6: We again, look for degree one vertices, since there does not

exist any, the algorithm stops.

Eventually, for this specific example, we fix vertices 4 and 6 to zero, 0, 7 and

9 to one; edges (0, 6) and (4, 7) to zero, (7, 9) to one. By this way, we aim to

improve the linear programming relaxation values.

Notice that, this procedure can also be applied to MCDSP, since the algorithm

does not depend on the edge-weights.

4.2 Edge Elimination

In the DTP, the model minimizes the total weight on the edges. Therefore, it

may prefer many edges if the cost associated to those set of edges is less than

fewer edges with high cost. To be more specific, let u and v be two adjacent

vertices, i.e., (u, v) ∈ E. If there is any other path in the graph connecting u

39

and v other than the edge (u, v) with less total cost, then the model prefers that

path connecting u and v over the edge (u, v). There are two reasons for this

decision:

1. The model tries to dominate the vertices that are not in the solution.

Therefore, the more vertices included in the solution, the more vertices

are tend to be dominated. By selecting the shortest path between two

vertices, it includes more vertices than the case of selecting the direct

edge.

2. It minimizes the cost over the network by connecting two vertices with less

cost.

With the help of edge elimination (EE), we are able to decrease the number

of edges and reduce the number of variables and constraints throughout the

mathematical models constructed.

Figure 4.2: Edge Elimination Procedure

To illustrate the edge elimination procedure, consider the illustration in Figure

4.2. Suppose

w12 > w13 + w23

There are two cases for the edge (1, 2),

• Case 1: Both u and v are in the solution, therefore they should be con-

nected. In other words, (u, v) edge may be used in the solution.

40

• Case 2: At least one of them is not in the solution, that is the edge (u, v)

will not be used for sure.

So, eliminating the edge in case 2, does not affect the solution; but we need to

analyze the first case. We assumed that w12 is strictly greater than the sum of

w13 and w23. To reduce the cost over the network, the model tends to include

edges (1, 3) and (2, 3) in the solution, which makes the edge (1, 2) redundant.

Besides, by (1, 2) and (1, 3), we include 3 vertices in the solution, so that we

have the chance to cover more vertices with less cost.

All in all, an edge becomes redundant and can be removed, if there exists a path

with less total cost than the direct edge cost.

It is crucial to observe that this procedure is problem specific and cannot be used

in MCDSP. This is due to the fact that MCDSP tries to minimize the number

of vertices included in the solution, and by EE we actually increase the number

of vertices which contradicts with the idea behind MCDSP.

4.3 Big-M Improvement for (FF)

The Big-M value proposed in (FF), was |V | − 2. However, further improvement

is possible on that value. The procedure uses the distance information from

source vertex to the corresponding edge. The details of the Big-M Improvement

(BMI) procedure are as follows.

In order to include a vertex in the solution, the flow supplied from the source

vertex has to pass through a number of edges and reach to the vertex. This

number of edges is at least the number of edges on the shortest path to edge

(u, v) from the source.

To obtain the shortest path to the edge (u, v), we need to calculate shortest paths

to u and v from the source vertex. Then the minimum of these values gives us

the shortest path to that edge. In other words, for each vertex u, shortest path,

41

Figure 4.3: Big-M Improvement Procedure for (FF)

su, from the source vertex is calculated. For each edge (u, v),

Auv = min {su, sv}

is determined. This value represents that at least Auv amount of flow will be

dropped off until this edge in the case that it is included in the graph. So, we

can decrease the Big-M value by Auv in the constraint set (3.42), since the flow

on this edge can be at most |V | − 2− Auv.

For instance, consider the graph in Figure 4.3. Here, the vertex S defines the

source, and the remaining vertices are a subset of the graph. Assume that there

are no other paths connecting pair of vertices included in this graph. That is to

say (1, 2) and (3, 5) are cut-edges, and all the adjacent vertices to vertices 2 and

4 are shown in the illustration.

Let us consider the edge (2, 3). The shortest path from the source vertex to

vertex 2 follows S − 1 − 2, and the shortest path from the source vertex to

vertex 3 follows S − 1− 2− 3. Then,

s2 = 2 s3 = 3

42

which leads

A23 = min {s2, s3}

A23 = min {2, 3}

A23 = 2

So M23 value becomes |V | − 4, where |V | is the number of vertices in the graph.

To interpret, the maximum possible flow value that can pass through the edge

(2, 3) is |V | − 4, since it needs to distribute at least two flows to vertices 1 and

2.

With the help of BMI, we aim to improve the LP-relaxation of (FF). In the LP-

relaxation upper bounds for flow values, fuv, will be tighter. Thus, the solution

space of the LP-relaxation will be closer to that of the MIP and the solution

time is expected to decrease.

43

44

CHAPTER 5

OTHER SOLUTION APPROACHES

5.1 Iterative Branch-and-Cut Approach

Sub-tour elimination constraints included in (IPC) and (IPS) formulations in-

crease the number of constraints exponentially. Therefore, it becomes impossi-

ble to enumerate all the constraints and solve the problem in an exact manner

within a reasonable time limit. To overcome this difficulty, we propose an iter-

ative branch-and-cut approach.

Basically, we remove the exponentially many sub-tour elimination constraints

from the formulation, and solve the resulting problem (IPWS). According to

the solution, we apply a separation procedure in order to determine the most

violated sub-tour elimination constraint, which is then added to the problem.

The procedure continues until no more violated sub-tour elimination constraint

is found. The main idea of the algorithm for both formulations is the same and

as follows:

Algorithm 1 Iterative Branch-and-Cut Approach
1: procedure IterativeBranch–and–CutApproach

2: PR⇐ IPWS

3: while 1 do

4: if there exists a violated sub-tour elimination constraint C then

5: PR⇐ PR ∪ C
6: else

7: break

45

In the following subsections, we give the details of the separation procedures

applied to both for (IPC) and (IPS).

5.1.1 Classical IP formulation

Let us recall the sub-tour elimination constraints of (IPC),

∑
u,v∈S,(u,v)∈E

yuv ≤ |S| − 1 ∀S ⊂ V, S 6= ∅, S 6= V (5.1)

To find the most violated inequality we need to maximize
∑

u∈V,v∈δ(u) yuv − |S|.
We can easily observe that if we can find a connected subgraph that is not a

tree, then the subset corresponding to that component violates the corresponding

sub-tour elimination constraint.

Claim: If we have a connected subgraph including a cycle, adding one more

vertex connected to this connected subgraph, and enlarging it does not make

the violation worse.

Proof: Let S1 be a connected subgraph and v be a vertex in V ∈ S1 such that v

is adjacent to at least one vertex in S1. Letting S2 = S1 ∪ {v}, we have that

∑
u,v∈S2,v∈δ(u)

yuv − |S2| −
∑

u,v∈S1,v∈δ(u)

yuv − |S1| ≥ 0

as S2 = S1 + 1 and
∑

u,v∈S2,v∈δ(u) yuv ≥
∑

u,v∈S1,v∈δ(u) yuv + 1.

Thus, S2 violates the constraint at least as much as S1. Therefore, we may search

for connected components while searching for the most violated inequalities.

Claim: If we have two independent connected components including cycles, com-

bining them and enlarging the subset does not make the violation worse.

Proof: Suppose a solution has two independent connected components, S1 and

S2. So, if

46

∑
u,v∈S1∪S2,v∈δ(u)

yuv − (|S1|+ |S2|) ≥
∑

u,v∈S1,v∈δ(u)

yuv − |S1|

we may add constraints corresponding to S1 ∪ S2 vertices.∑
u,v∈S1∪S2,v∈δ(u)

yuv − (|S1|+ |S2|)

=
∑

u,v∈S1,v∈δ(u)

yuv − |S1|+
∑

u,v∈S2,v∈δ(u)

yuv − |S2|

holds true since the two connected components are independent.

Since
∑

u,v∈S1,v∈δ(u) yuv−|S1| ≥ 0 and
∑

u,v∈S2,v∈δ(u) yuv−|S2| ≥ 0, the inequality

written for S1 ∪ S2 does not worsen the violation.

Since the connected components include cycles, this inequality holds. Thus,

combining two or more connected components including cycles does not worsen

the violation.

5.1.2 Strengthened IP formulation

Let us recall the sub-tour elimination constraints of (IPS),

∑
u,v∈S,(u,v)∈E

yuv ≤
|S| − 1

|S|
∑
u∈S

xu ∀S ⊂ V, S 6= ∅, S 6= V (5.2)

To find the most violated inequality we need to maximize∑
u,v∈S,v∈δ(u)

yuv −
|S| − 1

|S|
∑
u∈S

xu.

Claim: If we have a connected subgraph including a cycle, adding one more

vertex connected to this connected subgraph, and enlarging it does not make

the violation worse.

Proof: Suppose we have S1, S2 ⊂ V ,corresponding to two connected subgraphs

where S2 ⊃ S1. So, if

47

∑
u,v∈S2,v∈δ(u)

yuv − (1− 1

|S2|
)
∑
u∈S2

xu ≥
∑

u,v∈S1,v∈δ(u)

yuv − (1− 1

|S1|
)
∑
u∈S1

xu

then, we may add constraints corresponding to S2 vertices.∑
u,v∈S2,v∈δ(u)

yuv − (1− 1

|S2|
)
∑
u∈S2

xu

=
∑

u,v∈S1,v∈δ(u)

yuv + 1 + a− (1− 1

|S1|+ 1
)(
∑
u∈S1

xu + 1)

where a is a non-negative value, as S2 ⊃ S1. In other words, since the vertex to

be added to S1 is connected to at least one of the vertices in S1, there will be

additional a+ 1 edges to
∑

u,v∈S1,v∈δ(u) yuv.

=
∑

u,v∈S1,v∈δ(u)

yuv + 1 + a−
(∑
u∈S1

xu + 1− (
1

|S1|+ 1
)
∑
u∈S1

xu − (
1

|S1|+ 1
)
)

=
∑

u,v∈S1,v∈δ(u)

yuv + 1 + a− (1− 1

|S1|+ 1
)
∑
u∈S1

xu − 1 + (
1

|S1|+ 1
)

=
∑

u,v∈S1,v∈δ(u)

yuv − (1− 1

|S1|+ 1
)
∑
u∈S1

xu + a+ (
1

|S1|+ 1
)

Then,

∑
u,v∈S1,v∈δ(u)

yuv − (1− 1

|S1|+ 1
)
∑
u∈S1

xu + a+ (
1

|S1|+ 1
)

?

≥
∑

u,v∈S1,v∈δ(u)

yuv − (1− 1

|S1|
)
∑
u∈S1

xu

(
|S1| − 1

|S1|
− |S1|
|S1|+ 1

)
∑
u∈S1

xu + a+
1

|S1|+ 1

?

≥ 0

a+
1

|S1|+ 1

?

≥ (
1

|S1|(|S1|+ 1)
)
∑
u∈S1

xu

48

Since ∑
u∈S1

xu ≤ |S1|

the inequality holds true. Thus, S2 violates a constraint at least as much as

S1. Therefore, we may search for connected components while searching for the

most violated inequalities for the strengthened formulation as well.

Claim: If we have two independent connected components including cycles, com-

bining them and enlarging does not make the violation worse.

Proof: Suppose that the sets S1 and S2 are the vertex sets of two connected

components. So, if

∑
u,v∈S1∪S2,v∈δ(u)

yuv − (1− 1

|S1|+ |S2|
)
∑

u∈S1∪S2

xu

≥
∑

u,v∈S1,v∈δ(u)

yuv − (1− 1

|S1|
)
∑
u∈S1

xu

then, we may add constraints corresponding to S1 ∪ S2 vertices.∑
u,v∈S1,v∈δ(u)

yuv +
∑

u,v∈S2,v∈δ(u)

yuv − (1− 1

|S1|+ |S2|
)(
∑
u∈S1

xu +
∑
u∈S2

xu)

?

≥
∑

u,v∈S1,v∈δ(u)

yuv − (1− 1

|S1|
)
∑
u∈S1

xu

∑
u,v∈S1∪S2,v∈δ(u)

yuv − (1− 1

|S1|+ |S2|
)
∑

u∈S1∪S2

xu

?

≥
∑

u,v∈S1,v∈δ(u)

yuv − (1− 1

|S1|
)
∑
u∈S1

xu

holds true since the two connected components are independent. With basic

mathematical operations we get,∑
u,v∈S2,v∈δ(u)

yuv ≥ |S2|

49

Since S2 includes cycles, this inequality holds. Thus, combining two connected

components including cycles does not worsen the violation in the strengthened

formulation as well.

5.2 Dynamic Branch-and-Cut Approach

In the literature branch-and-cut applications are studied for many problems. In

this section, we will introduce, the branch-and-cut procedure applied to (FF),

and detail the separation procedure applied to determine the cuts.

We satisfy connectivity with the help of the flow variables in the implementation

of (FF). Thus, we do not have exponentially many constraints as in (IPC) or

(IPS). However, having a mixed integer program results in fractional solutions

in the branch-and-bound tree. At this step, one may add cuts to the nodes

wisely so that some fractional solutions are not considered anymore. Thus, a

separation problem arises at this point. With the application of this separation

procedure, we are able to decrease the depth of the branch-and-bound tree and

get the result faster.

In the branch-and-cut procedure, we are only allowed to separate fractional so-

lutions, and the feasible area of the original problem should not change with

the additional cuts. When we have fractional variables, we may have discon-

nected solution and cycles. Therefore, we may define the separation procedure

as preventing cycles in the solution. To serve this aim, we may add the sub-tour

elimination constraints stated in (IPC).

At this point it is crucial to find the most violated inequality so that we may

cut more fractional solutions from the feasible region of the LP-relaxation. Let

us recall the sub-tour elimination constraints introduced in (IPS),

∑
u,v∈S
v∈δ(u)

yuv ≤
|S| − 1

|S|
∑
u∈S

xu S ⊂ V, S 6= ∅, S 6= V

50

In order to find the most violated inequality, we need to maximize the following∑
u,v∈S
v∈δ(u)

yuv −
∑
u∈S

xu −
1

|S|
∑
u∈S

xu

and determine the set S resulting in the maximum violation. We define two sets

of decision variables as follows:

tu =

 1 if vertex u is selected in the set S

0 otherwise
u ∈ V

zuv =

 1 if edge (u, v) is selected in the set S

0 otherwise
(u, v) ∈ E

One may notice that the definitions of newly introduced decision variables, t and

z, have a similar meaning with the original x and y, respectively. Utilizing the

current LP-relaxation solution to the problem, we can decide on which variables

to include in the set S with the following mathematical model as a heuristic.

(SEP1)

max
∑

u∈S,v∈δ(u)

zuvyuv −
∑
u∈V

tuxu

s.to tu ≥ zuv ∀u ∈ S, v ∈ δ(u) (5.3)

tv ≥ zuv ∀u ∈ S, v ∈ δ(u) (5.4)

0 ≤ tu ≤ 1 ∀u ∈ V (5.5)

0 ≤ zuv ≤ 1 ∀u ∈ S, v ∈ δ(u) (5.6)

(SEP1) model aims to select a set S such that
∑

u,v∈Sv∈δ(u) yuv −
∑

u∈S xu is

mostly violated. Therefore, for the vertices that have the t value 1, we can

construct the corresponding sub-tour elimination constraint (SEC). Determined

SEC is added as a cut to the problem, and the branch-and-bound procedure

continues with the added cut. Note that this separation procedure ignores the

part 1
|S|
∑

u∈S xu.

Overview of the algorithm can be seen below in Algorithm 2:

51

Algorithm 2 Dynamic Branch-and-Cut Approach
1: procedure DynamicBranch–and–CutApproach

2: Solve relaxation of (FF)

3: while 1 do

4: Determine x and y values for the current node

5: Solve (SEP1) with given x and y

6: if max
∑

u∈S,v∈δ(u)

zuvyuv −
∑
u∈V

tuxu > −
1∑
u∈V tu

∑
u∈S

xu then

7: add
∑

u,v∈S
v∈δ(u)

yuv ≤ |S|−1
|S|
∑

u∈S xu

8: else

9: break

It also worths to note that we obtain integral solution when we solve the LP-

relaxation of (SEP1). Suppose we have a solution t̄ and z̄, including some

fractional values for some u and v. Selecting an ε small enough, we may add

and subtract it from that fractional value t̄u and z̄uv, and still remain in the

feasible area P . Since, we can write these solutions as convex combinations of

other solutions, these do not exist as extreme points. So, we are ensured to get

binary values for t and z variables.

52

CHAPTER 6

COMPUTATIONAL EXPERIMENTS

In this chapter, we will perform computational experiments on the instances

provided in the literature. First, we will conduct preliminary computational

experiments to decide on the pre-processing procedures to be used. Then, with

the determined sets of pre-processing procedures we will provide the detailed

computational experiments. With the help of these experiments, we aim to

comment on the strengths of the integer programming formulations and other

solution approaches.

6.1 Preliminary Computational Experiments

In the literature, there exist two data sets, created by Sundar and Singh [23] and

Dražić, Čangalović, and Kovačević-Vujčić [5] The former one includes instances

with up to 500 vertices while the latter one with up to 300 vertices. In the small

size instances of [5], the number of vertices vary from 10 to 20, while the large

size instances vary from 100 to 300. On the other hand, instances in [23] include

50 to 500 vertices. Moreover, the test instances generated in [5] reflect sparser

networks than those of [23].

In [5], the authors generate the instances in a random manner. The number

of vertices and edges are predetermined, but the communication between those

vertices are determined randomly. Moreover, these edges are created such that

the graph will not be disconnected, i.e., it includes only one connected compo-

nent which is the graph itself. If the randomly generated graph is detected to

53

be disconnected, then it is ignored and a new generation process starts. Be-

sides, the weight values are also randomly generated. A real value between

[1,10] is selected, and assigned to the edge. The related data can be found on

http://poincare.matf.bg.ac.rs/zdrazic/dtp.

In the generation of the instances in [23], the authors use a more realistic ap-

proach while determining the edge weights. Predetermined number of vertices

are randomly distributed in a 500m×500m area, and the transmission range of

the vertices is assumed to be 100m. That is, the sensors can communicate if

the distance between them is less than or equal to 100m. In [3], they also con-

sider 125m and 150m for the transmission range parameter. The data sets can

be found on http://dcis.uohyd.ernet.in/~alokcs/dtp.zip. Note that as of

September 3rd, 2016 the given link does not work.

We perform the computational experiments regarding the mathematical pro-

gramming formulations in AMPL environment, which is a modeling tool, and

we use CPLEX 12.6 as the optimizer. Runs are held on an Intel(R) Core(TM)

i7-4790 CPU @3.60GHz 8.00 GB DDR3 computer. Branch-and-cut applications

are implemented using NetBeans IDE 8.1 in Java programming language. Again,

CPLEX 12.6 is used as the optimizer in Java applications.

We proposed three pre-processing procedures, VF, EE and BMI in Chapter 4. In

this chapter, we will investigate the impacts of these procedures in preliminary

computational experiments.

Two instances from [5], dtp_10_15_0 and dtp_15_20_0 and 2 instances from

[3], 50_2 from range 100 and 100_2 from range 150, are selected arbitrar-

ily. These instances reflect sparsity and density. From now on, we will refer

dtp_10_15_0 as Drazic_1, dtp_15_20_0 as Drazic_2, 50_2 from range 100

as Alok_1 and 100_2 from range 150 as Alok_2.

For (IPC), (IPS), (CF), (MCFF), and (MFD), only variable fixing and edge

elimination procedures are applicable. For those, we will examine the effect of

these procedures.

One may observe that VF tends to fix more variables when the vertices have

54

(a) Graph Representation for Drazic_2 (b) Only VF

(c) Only EE (d) VF applied after EE

Figure 6.1: Edge Elimination and Variable Fixing Procedures

small degree. In other words, when there are fewer edges, i.e., when the graph

is sparser. Therefore, we expect that applying VF after EE results in better

solutions.

At this point, we need to analyze whether using only VF or only EE is better

than using the combination of them. To illustrate the situation, consider the

graph given in Figure 6.1a. It also corresponds to the data in Drazic_2. Here,

the red edges and vertices refer to edges and vertices fixed to zero; green edges

and vertices refer to edges and vertices fixed to one.

When only VF procedure is used, Figure 6.1b, we still have 15 vertices and 20

edges, where 7 of the vertices and 4 of the edges are fixed to a value with the

procedure.

For only EE procedure, Figure 6.1c, we see that the number of edges decreases

from 20 to 18, which leads to less number of constraints. Therefore, the model

becomes simpler.

55

In Figure 6.1d, we illustrate the combination of these procedures. First EE is

applied on the graph, then with VF we determine the vertices that can be fixed

to a value. With this combination we end up in with a 15-vertex 18-edge graph

having 10 vertices and 6 edges fixed to a binary value.

We can infer that the model gives better LP-relaxation values for the combina-

tion of those. To support this, we provide the LP-relaxation values for (MFD)

corresponding to those in Table 6.1. For Alok_2 we refer to the best solution

found in the literature as the optimal value.

As seen, when we apply EE and VF procedures together, the model gets tighter

and solution space to the relaxed problem approximates the IP solution space

better. Therefore, for further experiments we will use both pre-processing pro-

cedures to get better results.

We deduced that using EE-VF together results in tighter solution space. For

(FF), one more pre-processing procedure, BMI, can be applied. Thus, we need

to decide on whether we will use only EE-VF, only BMI or the combination of

these three procedures.

In (FF), smaller Big-M values are desired to tighten the solution space. The

Big-M value determined by BMI is related to the distance of the edge from

the source vertex. As the distance increases between an edge and the source

vertex, Big-M value decreases. In other words, Big-M value and the distance

of the shortest path between source vertex and the related edge are inversely

proportional.

Therefore, we need to have distant edges, no short-cuts from the source vertex

to the related edge to decrease the Big-M value. This is possible when the graph

is sparse. Therefore, we expect to have better results after EE procedure. Since

VF does not eliminate any vertices or edges, the order of EE-VF-BMI does

not differ from EE-BMI-VF. Optimal values and LP-relaxation values for only

EE-VF, only BMI, and EE-VF-BMI procedures can be seen in Table 6.2.

Looking to the results, we see that application of only EE-VF or only BMI

does not dominate each other. For instance, in Drazic_2, LP-relaxation value

56

regarding BMI is smaller than that regarding EE-VF. On the other hand, for

Alok_2, the case is vice versa. However, it is sure that the combination of

these three procedures constitute a tighter feasible area, and results in better

LP-relaxation values.

On the other hand, pre-processing times of the instances increases with the size

of instance. For Drazic_1 and Drazic_2, the total pre-processing time is less

than a second; where for Alok_1 and Alok_2 it increases to 5 and 7 seconds.

However, since these procedures are applied one-time for an instance, we do not

consider them in the running time.

Regarding to the results, for the full computational experiments, we will use

EE-VF sequence for (IPC), (IPS), (CF), (MCFF), and (MFD); and EE-VF-

BMI sequence for (FF).

Table 6.1: LP-relaxation values to (MFD) for the EE, VF and EE-VF

Instance ID Opt. value None Only EE Only VF EE-VF

Drazic_1 5.89 5.89 5.89 5.89 5.89

Drazic_2 18.87 18.46 18.46 18.46 18.87

Alok_1 1340.44 624.94 627.49 627.49 634.94

Alok_2 657.35* 68.04 97.33 68.04 97.75

*The best solution value found in the literature.

Table 6.2: LP-relaxation values to (FF) for the EE-VF, BMI and EE-VF-BMI

Instance ID Opt. value None Only EE-VF Only BMI EE-VF-BMI

Drazic_1 5.89 4.47 4.53 4.53 4.53

Drazic_2 18.87 9.42 14.71 11.61 14.98

Alok_1 1340.44 446.04 460.63 458.14 462.57

Alok_2 657.35* 47.90 47.90 48.07 52.78

*The best solution value found in the literature.

57

6.2 Detailed Computational Experiments

6.2.1 IP formulations

In Chapter 6.1, we introduced the data sets and determined the procedure se-

quence that will be used in the detailed computational experiments. So,

• For (IPC), (IPS), (CF), (MCFF), and (MFD); first EE, then VF is applied.

• For (FF); EE, VF and BMI are applied sequentially.

The proposed mathematical models differ both by logic behind them, and the

number of decision variables and constraints. Below, we identify the complexity

of the models by means of the number of decision variables and constraints.

In (IPC), we have |V |+ |E| number of binary decision variables. Constraint sets

(3.1), (3.3) and (3.4) put in |E|, 1 and |V |−2 number of constraints, respectively.

Moreover, (3.2) contributes to the number of constraints by ∼ 2|V |, which leads

a total number of constraints |E|+ |V |+ 2|V |.

For (IPS), the number of binary decision variables does not differ from (IPC),

but separating constraint set (3.1) into two, the number of constraints increases

by |E|, and becomes 2|E|+|V |+2|V |. Since (CF) is only a variation of (IPS), and

includes as many constraints for the sub-tour elimination as (IPS), the number

of decision variables and constraints are same with (IPS).

In (FF), we confront additional |E| number of continuous decision variables

corresponding to flow values. Constraint sets (3.36)-(3.37) contribute 2(|V |− 1)

many constraints where (3.41)-(3.44) contribute 4(|E| − 1). Moreover, with

(3.38)-(3.39), (3.40), (3.45)-(3.46) additional 4 + m constraints are added to

the model, where m is the number of vertices connected to the source vertex.

Consequently, (FF) includes 4|E|+ 2|V |+m− 2 constraints, |V |+ |E| number

of binary and |E| number of continuous decision variables.

In (MCFF), (3.52) contributes with (|V | − 1)(|V | − 2), (3.57) with |E| − m

and (3.58) with (|V | − 1)|E| number of constraints. We have 4|V | number of

58

constraints resulting from the rest of the constraints. In total, we have |V |(|V |+
|E|+1)+m+2 number of constraints, wherem is the number of adjacent vertices

incident to the sink vertex. Moreover, we have |V | + |E| + |V ||E| number of

binary decision variables.

Lastly, (MFD) presents a more complicated model with |V |+|E|+|V ||E| number

of binary decision variables as in (MCFF). With (3.64), (3.65), (3.70) and (3.75),

we have 4|E|; with (3.72)-(3.74), we have 2|V |+1; with (3.66)-(3.69) and (3.76),

we have 5|V ||E| number of constraints. In total we get 5|V ||E|+4|E|+2|V |+1

number of constraints.

One may find the summary of the number of constraints and decision variables

in Table 6.3.

Table 6.3: Number of DVs and constraints for proposed formulations

Binary DVs # Continuous DVs ∼# Constraints

IPC |E|+|V| - |E|+|V|+2|V |

IPS |E|+|V| - 2|E|+|V|+2|V |

CF |E|+|V| - 2|E|+|V|+2|V |

FF |E|+|V| |E| 4|E|+2|V|

MCFF |E|+|V|+|V||E| - |V|+|V||E|+|V|2

MFD |E|+|V|+|V||E| - 4|E|+2|V|+5|V||E|

*m is the number of adjacent vertices to the source/sink vertex.

6.2.1.1 Results on the dataset by Dražić, Čangalović, and Kovačević-

Vujčić [5]

The data set used in [5] includes 15 small size, and 18 large size instances. In their

work, they are able to solve the small size instances using variable neighborhood

search (VNS) at most within 0.20 seconds using an Intel Core i7-4702MQ 2.2

GHz with 4 GB RAM under Windows XP operating system (Table A.2).

However, the algorithm becomes rather inefficient when the size of the instance

increases. They run the algorithm for 600 seconds, make 20 replications for

59

each instance, and record the resulting solution values. For larger instances,

the resulting solution values for each instance differs more from replication to

replication, i.e., the standard deviation of the solution values becomes greater.

In the following figure (Figure 6.2) one can see the relative running times in

seconds for the related formulations. Here, (IPC), (IPS), and (CF) need to

run significantly more than the VNS algorithm, (FF), (MCFF), and (MFD)

formulations to reach the optimal solution (Figure 6.2a). So, let us compare

VNS algorithm, (FF), (MCFF), and (MFD) running times in detail to address

the differences between them (Figure 6.2b).

We see that for small size instances (FF) and (MFD) perform better than

VNS algorithm and (MCFF). Furthermore, VNS is never better than (FF) and

(MFD).

Herein, we may look for the LP-relaxation values of small size instances to

understand the strength relation between the formulations. The exact values of

the relaxations for small size instances can be found in Appendix A, in Table

A.3. Since (IPC), (IPS), and (CF) are not able to solve instances with more than

50 vertices, their LP-relaxation values for large size instances are not available;

but, one may find the values for (FF), (MCFF), and (MFD) in Appendix A, in

Tables A.4, A.5, and A.7, respectively.

Let us examine the LP-relaxation values for small size instances (Figure 6.3).

Here, we can see that, (MCFF) is the one that converges to the optimal value

the most. In 7 of the 15 instances, it achieves to the optimal value with the

LP-relaxation. Afterwards, the (MFD) comes with 5 instances achieving the

optimal solution. (IPS) achieves the optimal solution for only 1 instance, but it

can have relaxed values better than (MFD) for some instances. Therefore, we

cannot say anything about the strength between these two formulations.

Comparing the strengths, (FF) comes after (MCFF), (MFD), and (IPS). How-

ever, it is not able to catch the optimal values for any of the instances. But, still

it stays stronger than (IPC) and (CF) with lower run-time values.

60

(a) VNS algorithm, IPC, IPS, CF, FF, MCFF, MFD

(b) VNS algorithm, FF, MCFF, MFD

Figure 6.2: Time comparison for small size instances provided in [5]

61

Figure 6.3: LP-relaxation values for small size instances provided in [5]

The picture changes when we get to the large size instances. (IPC), (IPS) and

(CF) become unable to solve the system because of exponentially many con-

straints. Therefore, the larger size instances are solved with (MCFF), (MFD),

and (FF).

In the work [5], the large size instances are run with VNS algorithm for 600

seconds and the obtained solution is reported as the best solution. Therefore, the

algorithm is not able to achieve optimal solutions for some instances. However,

with our integer programming formulations, we are able to reach the optimal

solution values of most of the instances in 600 seconds.

In our computational experiment, we run our models for 10800 seconds, i.e., 3

hours.

Consider the (FF), where the detailed run-time results are given in Table A.4.

We can observe that excluding 5 instances, the model reaches the optimal solu-

tion in 600 seconds. Moreover, (MCFF) behaves similar to (FF) and it finds the

optimal values in 600 seconds except 4 instances. On the other hand, (MFD)

62

Figure 6.4: LP-relaxation values for large size instances provided in [5]

does not perform well with large size instances. Other than the first 6 instances,

which corresponds to instances with 100 vertices, the model reaches the time

limit, with a nonzero optimality gap.

It is also worth to examine LP-relaxation values for large size instances, since

they provide promising results. In Figure 6.4, one may see the relation between

the LP-relaxation values of three mathematical models and the optimal value.

(FF) always stays behind (MCFF) and (MFD), as in small size instances. More-

over, (MCFF) is slightly better than (MFD). Nevertheless, (MCFF) spends more

time for even the LP-relaxation solution than (MFD). Therefore, this trade-off

can be analyzed for the application areas. If solution time is much more impor-

tant, then (MFD) can be utilized to save time.

Actually, this result is not surprising since the flow formulation uses |V | +

|E| number of binary and |E| number of continuous decision variables, where

(MCFF) and (MFD) uses |V |+ |E|+ |V ||E| number of binary decision variables.

Therefore, (FF) is expected to be weaker but faster rather than (MCFF) and

(MFD).

63

All in all, we observe that (FF) provides rather reasonable running times both

for IP and LP-relaxation, where (MCFF) and (MFD) dominates the others

by means of strength. Moreover, although (MFD) performs well in small size

instances, as the instance gets larger, the number of decision variables lead to

increase in run-time.

In [5], the authors are able to solve the small size instances using CPLEX, and

prove that the found values by VNS algorithm are optimal values. However,

they lack to prove the large size instances because of memory limitation of

CPLEX. With the introduced formulations, we are able to prove that the first

6 large size instances are indeed the optimal solutions to the related instances.

Moreover, we improve the results found by VNS algorithm for the remaining

large size instances. In other words, we provide exact results for most of the

large size instances. For the ones, that result with optimality gap non-zero, we

are still able to improve the solutions provided in [5]. For a summary of those

improvements one may refer to Table A.4 in Appendix A.

6.2.1.2 Dataset of Chaurasia and Singh [3]

In the test instances used in [3], the number of vertices and edges are as in

Table 6.4. Here the instance ID’s are arranged as the first number referring to

the number of vertices, and the second number to the ordinal number of the

instance data. The number of edges differs from range to range because of the

definition. Moreover, one may see the number of reduced edges, number of fixed

vertices, and number of fixed edges in Table 6.5.

The creation of the data in [3] is as follows: The predetermined number of

vertices are deployed to a 500m×500m area randomly. Then, the vertices are

connected to each other if Euclidean distance between them does not exceed

the considered range value. For instance, for the data set 50_1 Range 125,

they deploy 50 vertices to the area randomly, and connect the vertices if the

corresponding distance between them is less than or equal to 125m. Moreover,

when an instance is created, i.e., vertices deployed to the area, three instances for

three range values are created on the same orientation. Therefore, as the range

64

value increases we see an increase in the number of edges since more vertices are

likely to be connected when the range is large.

Table 6.4: Number of edges for the instances in the data set provided in [3]

Instance Range 100 Range 125 Range 150

50_1 121 194 276

50_2 118 192 262

50_3 126 188 269

100_1 535 798 1041

100_2 526 781 1078

100_3 481 726 1013

200_1 2188 3244 4345

200_2 2147 3221 4446

200_3 2069 3090 4246

300_1 4983 7406 10039

300_2 4737 7008 9693

300_3 4577 6841 9418

400_1 8738 12958 17629

400_2 8314 12419 17058

400_3 8109 11942 16340

500_1 13716 20377 27720

500_2 13069 19374 26676

500_3 12681 18791 25814

The formulations (IPC), (IPS), and (CF) lack of generating the constraints

regarding to sub-tour elimination because of memory limitation of CPLEX. Be-

sides, except for the first 6 instances, which corresponds to the instances with

50 and 100 vertices, we either get out of memory error, or we exceed the time

limit, which is 3 hours, with no integer solution, or we stay in more than 90%

optimality gap after 3 hours. Thus, in this section, we will examine the behavior

of (FF), (MCFF) and (MFD), for the first 6 instances only.

The instances in [3] are solved using heuristic and meta-heuristic methods. For

65

Table 6.5: Number of edges eliminated, number of vertices fixed, and number of
edges fixed for the instances in the data set provided in [3]

Instance Range 100 Range 125 Range 150

ID #EE #VeF #EF #EE #VeF #EF #EE #VeF #EF

50_1 0 2 1 0 0 0 0 0 0

50_2 1 6 3 1 0 0 1 0 0

50_3 0 7 4 0 0 0 0 0 0

100_1 0 2 1 5 0 0 8 0 0

100_2 2 0 0 5 0 0 6 0 0

100_3 0 0 0 1 0 0 2 0 0

200_1 11 0 0 33 0 0 44 0 0

200_2 15 0 0 32 0 0 47 0 0

200_3 12 0 0 16 0 0 29 0 0

300_1 36 0 0 95 0 0 155 0 0

300_2 36 0 0 89 0 0 140 0 0

300_3 35 0 0 69 0 0 115 0 0

400_1 98 0 0 234 0 0 355 0 0

400_2 87 0 0 190 0 0 315 0 0

400_3 82 0 0 162 0 0 277 0 0

500_1 214 0 0 448 0 0 683 0 0

500_2 178 0 0 389 0 0 626 0 0

500_3 158 0 0 335 0 0 565 0 0

meta-heuristic approaches they get 20 replications for each instance. In some of

the instances, they report the standard deviation in 20 replications as zero.

However, as in [5], they are not able to prove that the obtained results provide

the optimal solution for sure. With the help of formulations introduced in this

study, we prove that some of the best solutions provided as indeed optimal. One

may see the related numeric results for the solutions in Appendix B, in Tables

B.2, B.3, and B.4.

Moreover, in Figure 6.5, we see that (MCFF) provides better LP-relaxation

66

Figure 6.5: LP-relaxation values for the instances provided in [3]

values for the problem, where (FF) stays the worst. Here, BSF provides the

best solution values found in the literature. Recalling the results in Section

6.2.1.1, we observe that the behavior of the formulations are consistent.

6.2.2 Iterative branch-and-cut

Although the IP formulations provide better LP-relaxation values regarding to

IPS, we see that the computational times differ much, especially when the num-

ber of vertices is greater than 100. It may not be practical and desirable to wait

for 3 hours and obtain solution values with optimality gap. Therefore, proposed

iterative branch-and-cut approach will be discussed in this section.

Also, please note that because of the memory limitations, the instances more

than 100 vertices could not be examined. The algorithm related to this approach

is given in Section 5.1. Hereby, we provide the corresponding results.

Below in Table 6.6, one may see the number of iterations needed to achieve

the optimal solution. As shown in Section 5.1, when we find more than one

67

connected component in the current solution, adding the sub-tour elimination

constraint corresponding to all of those, results in at least as good as adding

only one of them. For instance, consider the instance dtp_20_30_2. When

the reduced model is solved, and the most violated inequality corresponding to

a single connected component is added to the model, it took 9 iterations to

solve the problem. However, when we add the combination of those connected

components, we reach to optimality in one iteration.

Table 6.6: Results of iterative branch-and-cut for small size instances provided
in [5]

Add the most violated Add all
Instance ID # iterations Time (sec) # iterations Time (sec)
dtp_10_15_0 1 <0.01 1 <0.01

dtp_10_15_1 1 <0.01 1 <0.01

dtp_10_15_2 3 <0.01 1 <0.01

dtp_15_20_0 1 <0.01 1 <0.01

dtp_15_20_1 1 <0.01 1 <0.01

dtp_15_20_2 1 <0.01 1 <0.01

dtp_15_30_0 3 <0.01 3 <0.01

dtp_15_30_1 1 <0.01 1 <0.01

dtp_15_30_2 5 <0.01 5 <0.01

dtp_20_30_0 1 <0.01 1 <0.01

dtp_20_30_1 5 <0.01 1 <0.01

dtp_20_30_2 9 <0.01 1 <0.01

dtp_20_50_0 1 <0.01 1 <0.01

dtp_20_50_1 1 <0.01 1 <0.01

dtp_20_50_2 4 <0.01 4 <0.01

For larger size instances of [5], we are able to solve the first 6 instances because

of the memory limitations. In these 6 instances, we achieve the optimal solution

in 3 hours for 5 of the instances. For dtp_100_200_0, we cannot obtain the

optimal solution in 3 hours. But, for the others we attain the optimal solutions.

The exact time and solution values are provided in Table 6.8.

68

Figure 6.6: Progress of the objective function value when iterative
branch-and-cut is applied on the instance dtp_100_200_1

To better investigate the approximation to the optimal value, one may refer to

Figure 6.6. As seen, after some value, the optimal value starts to improve less.

However, it also worths to note that the starting value is so close to the optimal

value. In other instances, we confront with the same situation as well. So,

by using a stronger formulation to start with, the iterations may improve the

solution value faster.

In Table 6.7 one may see the results regarding the instances provided in [3]. Here

the values regarding Time is in seconds. Since this set of instances reflects denser

networks than the instances in [5], the optimal solutions are not available within

provided time. Therefore, in Table 6.7, we report the initial solution value, that

is the solution to the model without sub-tour elimination constraints, and the

last solution value for the related number of iterations. As in the large size

instances provided in [5], the objective function improves slower as the iteration

number increases. This behavior is due to the size and density of the instances.

69

Table 6.7: Results of iterative branch-and-cut for instances provided in [3]

Instance ID Initial solution Last recorded solution # iterations
Rng100 50_1 590.49 965.77 152

Rng100 50_2 726.99 969.78 223

Rng100 50_3 702.57 995.23 186

Rng100 100_1 529.92 673.61 23

Rng100 100_2 403.63 576.21 26

Rng100 100_3 420.50 668.22 18

Rng125 50_1 341.45 629.53 280

Rng125 50_2 639.18 819.32 168

Rng125 50_3 412.64 720.89 189

Rng125 100_1 306.07 419.58 46

Rng125 100_2 274.44 418.87 37

Rng125 100_3 256.32 462.2 19

Rng150 50_1 281.90 506.97 112

Rng150 50_2 476.5 658.54 107

Rng150 50_3 320.12 547.34 93

Rng150 100_1 243.66 334.58 28

Rng150 100_2 195.29 278.46 30

Rng150 100_3 167.24 313.28 18

Table 6.8: Results of iterative branch-and-cut for large size instances provided
in [5]

Instance ID Solution value # iterations Time (sec)
dtp_100_150_0 152.57 1017 236

dtp_100_150_1 192.21 1175 6595

dtp_100_150_2 146.34 485 236

dtp_100_200_0 130.58* 1138 10800

dtp_100_200_1 91.88 167 49

dtp_100_200_2 115.93 1253 8388

*The solution value with the specified number of iterations.

70

CHAPTER 7

CONCLUSION AND FUTURE RESEARCH

DIRECTIONS

Wireless Sensor Networks are getting more popular due to their use of area. In

health-care, military, environmental applications they are widely used to gather

data. However, since there are many of them deployed to the application area, it

is hard to detect the places of them on a break-down and maintain the system.

Therefore, they are required to transmit the data they gather in an efficient way.

Thus, we aim to construct a backbone for their communication protocols, and

make the system work in an efficient way.

This problem can be solved using the so called Dominating Tree Problem. This

problem aims to find an energy-efficient backbone to the WSN by considering the

communication difficulty between the sensors. Moreover, the system should be

able to communicate with each other and the system should not be disconnected.

Lastly, the sensors not in the backbone should be able to communicate with at

least one of the sensors lying in the backbone.

In this work, the DTP is analyzed in detail. The problem makes some assump-

tions on the network which are:

• The cost of the communication is known for sure.

• The location of the sensors is known for sure.

• The system is 100% reliable.

However, it is known for sure that a system cannot be 100% reliable. So, when

71

a backbone is constructed, even though it is the most cost-efficient one, it may

break-down for some reason, such as lack of battery power, or environmental

effects. This brings us to the motivation behind the problem we study. With

the solutions to the DTP, we aim to analyze the trade-off between the reliability

of a system and the cost. So, under perfect conditions, solution to the DTP is

actually the cost of the network. In other words, we see that the cost cannot be

less than the solution of the DTP even in a 100% reliable network.

Throughout this thesis, we proposed integer programming formulations to the

DTP. The classical IP formulation provided by [21] is strengthened and a cutset

formulation is provided. Apart from these, a single-commodity and a multi-

commodity integer programming formulations are presented. Lastly, Martin’s

formulation is modified for the DTP inspiring from [7].

Moreover, three pre-processing procedures are addressed, vertex fixing, edge

elimination, and Big-M improvement. These procedures aim to decrease the

number of decision variables, and the corresponding values are provided in Chap-

ter 4.

During the computational studies, the instances provided in [5] and [3] are used.

These five integer programming formulations are analyzed according to LP-

relaxation values and running times. According to results, (MCFF) is seen to

be the strongest among all.

Furthermore, two branch-and-cut procedures are studied on the problem. Itera-

tive branch-and-cut algorithm is seen to be inefficient on the large-size problems,

and the application of dynamic branch-and-cut algorithm is left for further stud-

ies.

Because of the wide application area of WSNs, we are motivated with a number

of future research directions as follows.

• Exact separation on the DTP can be examined.

• Because of the nature of the problem, Benders’ decomposition can be used

to solve it.

72

• The generalization of the problem m-connected k-dominated Dominating

Tree Problem may be introduced and studied in order to reflect the real-

world better.

• Apart from the edge-weights, vertex-weights can also be considered.

• The application of dynamic branch-and-cut approach can be studied.

• Dynamic branch-and-cut approach can be modified with the (MCFF) as a

base model. By this way, we may achieve the optimal solution faster since

its LP-relaxation values are better than the other formulations.

• The relation between the DTP and wired telecommunication networks can

be examined.

73

74

REFERENCES

[1] R. B. Allan and R. Laskar. On domination and independent domination
numbers of a graph. Discrete Mathematics, 23(2):73 – 76, 1978.

[2] M. Behle, M. Jünger, and F. Liers. A primal branch-and-cut algorithm for
the degree-constrained minimum spanning tree problem. In C. Demetrescu,
editor, Experimental Algorithms, 6th International Workshop, WEA 2007,
Rome, Italy, June 6-8, 2007, Proceedings, volume 4525 of Lecture Notes in
Computer Science, pages 379–392. Springer, 2007.

[3] S. N. Chaurasia and A. Singh. A hybrid heuristic for dominating tree
problem. Soft Computing, 20(1):377–397, 2014.

[4] V. L. do Forte, A. Lucenaa, and N. Maculana. Formulations for the mini-
mum 2-connected dominating set problem. In International Network Opti-
mization Conference, 2013.

[5] Z. Dražić, M. Čangalović, and V. Kovačević-Vujčić. A metaheuristic ap-
proach to the dominating tree problem. Optimization Letters, pages 1–13,
2016.

[6] M. Drexl. A note on the separation of subtour elimination constraints
in elementary shortest path problems. European Journal of Operational
Research, 229(3):595 – 598, 2013.

[7] N. Fan and M. Golari. Combinatorial Optimization and Applications: 8th
International Conference, COCOA 2014, Wailea, Maui, HI, USA, De-
cember 19-21, 2014, Proceedings, chapter Integer Programming Formula-
tions for Minimum Spanning Forests and Connected Components in Sparse
Graphs, pages 613–622. Springer International Publishing, Cham, 2014.

[8] N. Fan and J.-P. Watson. Solving the Connected Dominating Set Problem
and Power Dominating Set Problem by Integer Programming, pages 371–
383. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[9] F. V. Fomin, D. Kratsch, and G. J. Woeginger. Exact (exponential) al-
gorithms for the dominating set problem. In J. Hromkovic, M. Nagl, and
B. Westfechtel, editors, Graph-Theoretic Concepts in Computer Science,
30th International Workshop,WG 2004, Bad Honnef, Germany, June 21-
23, 2004, Revised Papers, volume 3353 of Lecture Notes in Computer Sci-
ence, pages 245–256. Springer, 2004.

75

[10] F. Grandoni. A note on the complexity of minimum dominating set. Jour-
nal of Discrete Algorithms, 4(2):209 – 214, 2006.

[11] S. T. Henn. Weight-constrained minimum spanning tree problem. PhD
thesis, Technische Universität Kaiserslautern, 2007.

[12] X. Li and Z. Zhang. Two algorithms for minimum 2-connected r-hop dom-
inating set. Information Processing Letters, 110(22):986 – 991, 2010.

[13] J. P. Lynch and K. J. Loh. A summary review of wireless sensors and sensor
networks for structural health monitoring. The Shock and Vibration Digest,
38(2):91–128, 2006.

[14] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson. Wire-
less sensor networks for habitat monitoring. In Proceedings of the 1st ACM
international workshop on Wireless sensor networks and applications, pages
88–97. ACM, 2002.

[15] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and S. Jang-Ping. The broadcast storm
problem in a mobile ad hoc network. Mobicom, pages 151–162, 1999.

[16] T. Nieberg and J. Hurink. A PTAS for the Minimum Dominating Set
Problem in Unit Disk Graphs, pages 296–306. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2006.

[17] D. Puccinelli and M. Haenggi. Wireless sensor networks: applications and
challenges of ubiquitous sensing. IEEE Circuits and Systems Magazine,
5(3):19–31, 2005.

[18] C. S. Raghavendra, K. M. Sivalingam, and T. Znati, editors. Wireless
Sensor Networks. Springer US, 1 edition, 2004.

[19] P. Samer and S. Urrutia. A branch and cut algorithm for minimum span-
ning trees under conflict constraints. Optimization Letters, 9(1):41–55,
2015.

[20] W. Shang, P. Wan, F. Yao, and X. Hu. Algorithms for minimum m-
connected k-tuple dominating set problem. Theoretical Computer Science,
381(1):241 – 247, 2007.

[21] I. Shin, Y. Shen, and M. T. Thai. On approximation of dominating tree in
wireless sensor networks. Optimization Letters, 4(3):393–403, 2010.

[22] L. Simonetti, A. Salles da Cunha, and A. Lucena. The minimum connected
dominating set problem: Formulation, valid inequalities and a branch-and-
cut algorithm. Springer-Verlag, pages 162–169, 2011.

[23] S. Sundar and A. Singh. New heuristic approaches for the dominating tree
problem. Applied Soft Computing, 13(12):4695 – 4703, 2013.

76

[24] L. Taccari. Integer programming formulations for the elementary shortest
path problem. European Journal of Operational Research, 252:122–130,
2016.

[25] J. A. Torkestani. Backbone formation in wireless sensor networks. Sensors
and Actuators A: Physical, 185:117 – 126, 2012.

[26] D. B. West. Introduction to Graph Theory. Prentice Hall, 2 edition, 2001.

[27] Y. Wu, F. Wang, M. T. Thai, and Y. Li. Constructing k-connected m-
dominating sets in wireless sensor networks. In MILCOM 2007-IEEE Mil-
itary Communications Conference, pages 1–7. IEEE, 2007.

[28] J. Yick, B. Mukherjee, and D. Ghosal. Wireless sensor network survey.
Computer networks, 52(12):2292–2330, 2008.

[29] N. Zhang, I. Shin, B. Li, C. Boyaci, R. Tiwari, and M. T. Thai. New ap-
proximation for minimum-weight routing backbone in wireless sensor net-
work. In Proceedings of the Third International Conference on Wireless
Algorithms, Systems, and Applications, WASA ’08, pages 96–108, Berlin,
Heidelberg, 2008. Springer-Verlag.

[30] F. Zou, Y. Wang, X.-H. Xu, X. Li, H. Du, P. Wan, andW.Wu. New approx-
imations for minimum-weighted dominating sets and minimum-weighted
connected dominating sets on unit disk graphs. Theoretical Computer Sci-
ence, 412(3):198–208, 2011.

77

78

APPENDIX A

COMPUTATIONAL RESULTS FOR THE INSTANCES

PROVIDED IN DČK (2016)

Table A.1: The abbreviations used throughout Appendix A

Abbreviation Meaning

VNS Variable Neighborhood Search

sol Solution to VNS

ttot Total time spent for VNS

opt Optimal solution to the instance

LPR LP-relaxation value

BBN Number of branch-and-bound nodes

RG Relative gap

AG Absolute gap

Time Corresponding runtime in seconds

79

Table
A
.2:

R
esults

for
sm

allsize
instances

provided
in

[5]

Instance
V
N
S

T
im

e

sol
t
to
t

opt
IP

C
IP

S
C
F

F
F

M
C
F
F

M
F
D

dtp_
10_

15_
0

5.89
0.04

5.89
<
0.01

<
0.01

<
0.01

<
0.01

0.02
<
0.01

dtp_
10_

15_
1

14.42
0.04

14.42
0.01

<
0.01

<
0.01

0.01
0.02

<
0.01

dtp_
10_

15_
2

14.35
0.04

14.35
0.04

0.02
0.03

0.01
0.09

0.01

dtp_
15_

20_
0

18.87
0.10

18.87
0.03

0.60
0.22

0.01
0.03

0.01

dtp_
15_

20_
1

23.03
0.09

23.03
0.02

0.60
0.17

0.01
0.03

<
0.01

dtp_
15_

20_
2

24.95
0.10

24.95
0.10

0.65
0.48

0.01
0.03

0.01

dtp_
15_

30_
0

18.20
0.11

18.20
0.24

1.03
0.75

0.02
0.06

0.01

dtp_
15_

30_
1

8.32
0.08

8.32
0.31

1.25
1.79

0.01
0.06

0.02

dtp_
15_

30_
2

18.07
0.09

18.07
2.16

2.00
4.65

0.06
0.14

0.06

dtp_
20_

30_
0

33.81
0.22

33.81
17.70

1031.41
374.44

0.04
0.08

0.03

dtp_
20_

30_
1

36.03
0.20

36.03
17.20

1000.08
213.02

0.04
0.09

0.06

dtp_
20_

30_
2

43.50
0.23

43.50
254.04

1197.38
332.87

0.06
0.17

0.07

dtp_
20_

50_
0

9.81
0.17

9.81
23.57

50.88
269.27

0.02
0.11

0.02

dtp_
20_

50_
1

12.19
0.16

12.19
205.02

218.83
770.42

0.09
0.17

0.09

dtp_
20_

50_
2

17.42
0.20

17.42
89.56

1135.42
196.02

0.03
0.06

0.08

80

Ta
bl
e
A
.3
:
LP

-r
el
ax

at
io
n
va
lu
es

fo
r
sm

al
ls

iz
e
in
st
an

ce
s
pr
ov

id
ed

in
[5
]

In
st
an

ce
IP

C
IP

S
C
F

F
F

M
C
F
F

M
F
D

op
t

LP
R

T
im

e
LP

R
T
im

e
LP

R
T
im

e
LP

R
T
im

e
LP

R
T
im

e
LP

R
T
im

e

dt
p_

10
_
15

_
0

5.
89

2.
74

0.
39

5.
89

<
0.
01

2.
74

<
0.
01

4.
53

0.
02

5.
89

0.
02

5.
89

<
0.
01

dt
p_

10
_
15

_
1

14
.4
2

4.
72

0.
67

12
.8
9

<
0.
01

5.
01

<
0.
01

10
.9
8

0.
02

14
.4
2

0.
02

14
.4
2

<
0.
01

dt
p_

10
_
15

_
2

14
.3
5

2.
82

0.
40

11
.1
5

<
0.
01

2.
88

<
0.
01

5.
50

0.
02

11
.6
1

0.
02

11
.4
4

<
0.
01

dt
p_

15
_
20

_
0

18
.8
7

5.
56

0.
79

14
.7
0

0.
01

5.
61

0.
03

14
.9
8

0.
02

18
.8
7

0.
02

18
.8
7

<
0.
01

dt
p_

15
_
20

_
1

23
.0
3

7.
01

1.
00

18
.4
8

0.
02

7.
58

0.
04

12
.8
4

0.
02

23
.0
3

0.
02

23
.0
3

<
0.
01

dt
p_

15
_
20

_
2

24
.9
5

9.
25

1.
32

20
.3
0

0.
02

9.
25

0.
05

11
.6
4

0.
02

24
.9
5

0.
02

24
.7
8

<
0.
01

dt
p_

15
_
30

_
0

18
.2
0

5.
79

0.
83

14
.5
9

0.
04

5.
79

0.
04

11
.2
6

0.
02

16
.8
1

0.
02

15
.9
9

<
0.
01

dt
p_

15
_
30

_
1

8.
32

2.
40

0.
34

6.
08

0.
04

2.
54

0.
04

3.
79

0.
02

6.
16

0.
02

5.
84

<
0.
01

dt
p_

15
_
30

_
2

18
.0
7

4.
34

0.
62

10
.6
4

0.
05

4.
34

0.
04

7.
62

0.
02

12
.1
2

0.
02

12
.0
2

<
0.
01

dt
p_

20
_
30

_
0

33
.8
1

11
.1
6

1.
59

28
.1
8

5.
60

11
.4
7

4.
13

20
.2
4

0.
02

29
.4
1

0.
02

27
.0
9

0.
01

dt
p_

20
_
30

_
1

36
.0
3

13
.2
7

1.
90

27
.9
3

2.
72

13
.4
4

3.
93

28
.9
8

0.
02

32
.9
6

0.
02

28
.9
6

<
0.
01

dt
p_

20
_
30

_
2

43
.5
0

10
.2
7

1.
47

30
.5
7

6.
83

10
.2
7

4.
66

19
.7
3

0.
02

34
.3
9

0.
02

33
.5
7

0.
01

dt
p_

20
_
50

_
0

9.
81

4.
67

0.
67

9.
46

4.
53

4.
67

5.
49

6.
89

0.
02

9.
81

0.
03

9.
81

0.
01

dt
p_

20
_
50

_
1

12
.1
9

4.
79

0.
68

9.
28

9.
67

4.
79

5.
40

7.
12

<
0.
01

11
.0
1

0.
05

10
.4
1

0.
01

dt
p_

20
_
50

_
2

17
.4
2

4.
15

0.
59

14
.1
7

9.
50

4.
15

4.
43

8.
04

<
0.
01

17
.4
2

0.
02

15
.2
4

<
0.
01

81

Table
A
.4:

R
esults

and
LP

-relaxation
values

ofF
F
for

large
size

instances
of[5]

Instance
V
N
S

F
F

sol
t
to
t

Solution
T
im

e
B
B
N

R
G

A
G

LP
R

T
im

e

dtp_
100_

150_
0

152.57
600.00

152.57
<
0.01

270
<
0.01

<
0.01

85.22
0.03

dtp_
100_

150_
1

192.21
600.00

192.21
<
0.01

232
<
0.01

0.01
89.92

0.02

dtp_
100_

150_
2

146.34
600.00

146.34
<
0.01

0
<
0.01

<
0.01

79.14
0.02

dtp_
100_

200_
0

135.04
600.00

135.04
<
0.01

1439
<
0.01

<
0.01

65.23
0.03

dtp_
100_

200_
1

91.88
600.00

91.88
0.53

0
<
0.01

<
0.01

50.47
0.03

dtp_
100_

200_
2

115.93
600.00

115.93
3.19

919
<
0.01

0.01
58.47

0.05

dtp_
200_

400_
0

306.06
600.00

257.09
112.13

11126
<
0.01

0.02
135.87

0.08

dtp_
200_

400_
1

303.53
600.00

258.77
57.50

7202
<
0.01

0.03
124.13

0.11

dtp_
200_

400_
2

274.37
600.00

238.27
21.27

4871
<
0.01

0.02
116.32

0.08

dtp_
200_

600_
0

132.49
600.00

121.62
538.19

20101
<
0.01

0.01
58.67

0.25

dtp_
200_

600_
1

162.92
600.00

135.08
33.02

1164
<
0.01

0.01
72.17

0.20

dtp_
200_

600_
2

139.08
600.00

123.31
2182.59

75520
<
0.01

0.01
58.28

0.22

dtp_
300_

600_
0

471.69
600.00

348.03
216.80

6654
<
0.01

0.03
189.66

0.25

dtp_
300_

600_
1

494.91
600.00

413.93
73.19

3599
<
0.01

0.02
79.60

0.64

dtp_
300_

600_
2

500.72
600.00

352.15
25.38

576
<
0.01

0.03
165.12

0.19

dtp_
300_

1000_
0

257.72
600.00

148.04
9941.75

85099
<
0.01

0.01
73.98

0.67

dtp_
300_

1000_
1

242.79
600.00

165.27
10800.00

46828
0.06

10.38
79.60

0.67

dtp_
300_

1000_
2

223.18
600.00

155.58
10800.00

55180
0.04

5.67
77.90

0.63

82

Ta
bl
e
A
.5
:
R
es
ul
ts

an
d
LP

-r
el
ax

at
io
n
va
lu
es

of
M
C
F
F
fo
r
la
rg
e
si
ze

ra
nd

om
in
st
an

ce
s
pr
ov

id
ed

in
[5
]

In
st
an

ce
V
N
S

M
C
F
F

so
l

t t
o
t

So
lu
ti
on

T
im

e
B
B
N

R
G

A
G

LP
R

T
im

e

dt
p_

10
0_

15
0_

0
15
2.
57

60
0.
00

15
2.
57

<
0.
01

27
0

<
0.
01

<
0.
01

14
5.
23

2.
09

dt
p_

10
0_

15
0_

1
19
2.
21

60
0.
00

19
2.
21

<
0.
01

23
2

<
0.
01

0.
01

18
6.
31

3.
91

dt
p_

10
0_

15
0_

2
14
6.
34

60
0.
00

14
6.
34

<
0.
01

0
<
0.
01

<
0.
01

14
5.
76

1.
06

dt
p_

10
0_

20
0_

0
13
5.
04

60
0.
00

13
5.
04

<
0.
01

14
39

<
0.
01

<
0.
01

12
3.
38

7.
61

dt
p_

10
0_

20
0_

1
91
.8
8

60
0.
00

91
.8
8

0.
53

0
<
0.
01

<
0.
01

91
.8
8

1.
14

dt
p_

10
0_

20
0_

2
11
5.
93

60
0.
00

11
5.
93

3.
19

91
9

<
0.
01

0.
01

10
9.
99

4.
89

dt
p_

20
0_

40
0_

0
30
6.
06

60
0.
00

27
1.
52

10
80
0.
00

0
0.
10

26
.4
3

24
0.
41

10
0.
58

dt
p_

20
0_

40
0_

1
30
3.
53

60
0.
00

26
8.
12

10
80
0.
00

0
0.
05

14
.2
7

25
0.
15

10
6.
39

dt
p_

20
0_

40
0_

2
27
4.
37

60
0.
00

23
8.
27

21
76
.6
1

0
<
0.
01

<
0.
01

23
4.
68

11
6.
78

dt
p_

20
0_

60
0_

0
13
2.
49

60
0.
00

31
4.
65

10
80
0.
00

0
0.
66

20
7.
33

10
7.
32

29
0.
00

dt
p_

20
0_

60
0_

1
16
2.
92

60
0.
00

13
9.
91

10
80
0.
00

0
0.
05

6.
56

13
1.
51

23
3.
52

dt
p_

20
0_

60
0_

2
13
9.
08

60
0.
00

13
3.
90

10
80
0.
00

0
0.
20

27
.4
1

10
4.
48

27
5.
88

dt
p_

30
0_

60
0_

0
47
1.
69

60
0.
00

T
im

e
lim

it
w
it
h
no

in
te
ge
r
so
lu
ti
on

32
5.
82

70
0.
20

dt
p_

30
0_

60
0_

1
49
4.
91

60
0.
00

T
im

e
lim

it
w
it
h
no

in
te
ge
r
so
lu
ti
on

40
1.
42

57
9.
24

dt
p_

30
0_

60
0_

2
50
0.
72

60
0.
00

T
im

e
lim

it
w
it
h
no

in
te
ge
r
so
lu
ti
on

34
3.
07

63
4.
33

dt
p_

30
0_

10
00
_
0

25
7.
72

60
0.
00

50
0.
45

10
80
0.
00

0
1.
00

50
0.
45

12
7.
36

21
49
.4
2

dt
p_

30
0_

10
00
_
1

24
2.
79

60
0.
00

44
6.
05

10
80
0.
00

0
1.
00

44
6.
05

13
9.
01

22
61
.3
8

dt
p_

30
0_

10
00
_
2

22
3.
18

60
0.
00

43
6.
90

10
80
0.
00

0
1.
00

43
6.
90

13
2.
07

21
29
.8
6

83

Table
A
.6:

R
esults

and
LP

-relaxation
values

ofM
F
D

for
large

size
random

instances
provided

in
[5]

Instance
V
N
S

M
F
D

sol
t_

tot
Solution

T
im

e
B
B
N

R
G

A
G

LP
R

T
im

e

dtp_
100_

150_
0

152.57
600.00

152.57
224.35

2229
<
0.01

0.01
143.46

3.94

dtp_
100_

150_
1

192.21
600.00

192.21
28.61

173
<
0.01

<
0.01

176.56
4.58

dtp_
100_

150_
2

146.34
600.00

146.34
6.10

22
<
0.01

<
0.01

140.27
4.52

dtp_
100_

200_
0

135.04
600.00

135.04
347.50

1265
<
0.01

0.01
116.65

6.17

dtp_
100_

200_
1

91.88
600.00

91.88
4.08

0
<
0.01

<
0.01

90.85
6.20

dtp_
100_

200_
2

115.93
600.00

115.93
28.22

89
<
0.01

<
0.01

106.30
6.98

dtp_
200_

400_
0

306.06
600.00

276.06
10800.00

970
0.13

35.72
223.02

61.67

dtp_
200_

400_
1

303.53
600.00

259.30
10800.00

947
0.01

2.62
238.67

68.73

dtp_
200_

400_
2

274.37
600.00

238.27
10800.00

779
<
0.01

<
0.01

222.00
52.75

dtp_
200_

600_
0

132.49
600.00

342.90
10800.00

527
0.69

236.78
102.61

122.28

dtp_
200_

600_
1

162.92
600.00

137.14
10800.00

901
0.03

4.19
127.97

125.13

dtp_
200_

600_
2

139.08
600.00

132.83
10800.00

2240
0.19

25.60
99.06

73.11

dtp_
300_

600_
0

471.69
600.00

775.93
10800.00

4
0.58

449.54
320.09

235.56

dtp_
300_

600_
1

494.91
600.00

497.52
10800.00

314
0.21

103.07
378.55

275.38

dtp_
300_

600_
2

500.72
600.00

490.75
10800.00

455
0.32

154.94
325.29

213.92

dtp_
300_

1000_
0

257.72
600.00

1587.10
10800.00

2
0.92

1463.59
123.01

555.30

dtp_
300_

1000_
1

242.79
600.00

1629.61
10800.00

0
0.92

1493.90
133.79

559.50

dtp_
300_

1000_
2

223.18
600.00

1533.29
10800.00

9
0.92

1404.48
126.83

488.92

84

Table A.7: Results and LP-relaxation values of MFD for large size random
instances provided in [5]

Instance VNS solution Improved solution
dtp_200_400_0 306.06 257.09
dtp_200_400_1 303.53 258.77
dtp_200_400_2 274.37 238.27
dtp_200_600_0 132.49 121.62
dtp_200_600_1 162.92 135.08
dtp_200_600_2 139.08 123.31
dtp_300_600_0 471.69 348.03
dtp_300_600_1 494.91 413.93
dtp_300_600_2 500.72 352.15
dtp_300_1000_0 257.72 148.04
dtp_300_1000_1 242.79 165.27
dtp_300_1000_2 223.18 155.58

85

86

APPENDIX B

COMPUTATIONAL RESULTS FOR THE INSTANCES

PROVIDED IN CS (2014)

Table B.1: The abbreviations used throughout Appendix B

Abbreviation Meaning

NV Number of vertices

ID Ordinal number of the instance

BSF Best solution found in the literature

Algorithm The algorithm corresponding to the BSF

LPR LP-relaxation value

BBN Number of branch-and-bound nodes

RG Relative gap

AG Absolute gap

Time Corresponding runtime in seconds

87

Table
B
.2:

R
esults

ofF
F
for

the
instances

provided
in

[3]

R
ange

N
V

ID
B
SF

A
lgorithm

T
im

e
F
F

Solution
T
im

e
B
B
N

R
G

A
G

LP
R

T
im

e

100

50

1
1204.41

A
C
O
_
D
T

2.41
1204.41

7.70
4289

<
0.01

<
0.01

278.06
<
0.01

2
1340.44

A
C
O
_
D
T

4.18
1340.44

9.27
7479

<
0.01

<
0.01

460.63
<
0.01

3
1316.39

A
C
O
_
D
T

2.50
1316.39

5.63
6234

<
0.01

<
0.01

392.45
<
0.01

100

1
1217.47

E
A
/G

-M
P

11.06
1217.47

10800.00
532570

0.09
111.66

161.39
<
0.01

2
1128.40

E
A
/G

-M
P

9.93
1128.40

10800.00
423933

0.12
136.18

146.41
<
0.01

3
1252.99

A
B
C
_
D
T

28.39
1253.49

10800.00
457012

0.31
391.53

172.84
<
0.01

125

50

1
802.95

A
C
O
_
D
T

2.16
802.95

28.56
9763

<
0.01

0.05
145.58

0.03

2
1055.10

A
C
O
_
D
T

2.01
1055.10

94.05
67578

<
0.01

0.10
257.28

0.02

3
877.77

A
C
O
_
D
T

1.40
877.77

42.28
23108

<
0.01

0.05
208.71

0.03

100

1
943.01

A
C
O
_
D
T

7.29
947.50

10800.00
363920

0.31
290.94

86.59
0.23

2
917.00

A
B
C
_
D
T

19.34
935.28

10800.00
233355

0.35
323.85

87.83
0.23

3
998.18

A
C
O
_
D
T

7.61
1005.54

10800.00
288330

0.41
414.03

115.79
0.19

150

50

1
647.75

A
C
O
_
D
T

1.02
647.75

75.69
31153

<
0.01

0.06
109.09

0.05

2
863.69

A
C
O
_
D
T

1.70
863.69

727.66
347541

<
0.01

0.09
192.92

0.03

3
743.74

A
B
C
_
D
T

7.38
743.94

267.08
105870

<
0.01

0.07
126.14

2.83

100

1
876.69

E
A
/G

-M
P

6.61
892.78

10800.00
270390

0.39
344.52

60.34
0.36

2
657.35

A
C
O
_
D
T

4.23
657.35

10800.00
210940

0.38
247.57

52.78
313.00

3
722.87

A
C
O
_
D
T

4.80
760.38

10800.00
243624

0.34
256.24

78.00
0.34

88

Ta
bl
e
B
.3
:
R
es
ul
ts

of
M
C
F
F
fo
r
th
e
in
st
an

ce
s
pr
ov

id
ed

in
[3
]

R
an

ge
N
V

ID
B
SF

A
lg
or
it
hm

T
im

e
M
C
F
F

So
lu
ti
on

T
im

e
B
B
N

R
G

A
G

LP
R

T
im

e

10
0

50

1
12

04
.4
1

A
C
O
_
D
T

2.
41

12
04

.4
1

82
.5
2

92
1

<
0.
01

<
0.
01

61
1.
64

0.
10

2
13

40
.4
4

A
C
O
_
D
T

4.
18

13
40

.4
4

3.
70

0
<
0.
01

<
0.
01

10
13

.2
6

0.
10

3
13

16
.3
9

A
C
O
_
D
T

2.
50

13
16

.3
9

6.
91

0
<
0.
01

<
0.
01

10
09

.1
7

0.
10

10
0

1
12

17
.4
7

E
A
/G

-M
P

11
.0
6

13
52

.2
0

10
80

0.
00

97
0.
48

65
3.
12

47
9.
59

70
.6
6

2
11

28
.4
0

E
A
/G

-M
P

9.
93

12
99

.1
7

10
80

0.
00

20
1

0.
46

60
3.
11

43
0.
54

71
.2
2

3
12

52
.9
9

A
B
C
_
D
T

28
.3
9

12
81

.9
4

10
80

0.
00

13
0.
58

74
6.
73

44
1.
81

58
.5
9

12
5

50

1
80

2.
95

A
C
O
_
D
T

2.
16

T
im

e
lim

it
w
it
h
no

in
te
ge
r
so
lu
ti
on

31
5.
56

0.
01

2
10

55
.1
0

A
C
O
_
D
T

2.
01

T
im

e
lim

it
w
it
h
no

in
te
ge
r
so
lu
ti
on

43
8.
76

0.
01

3
87

7.
77

A
C
O
_
D
T

1.
40

T
im

e
lim

it
w
it
h
no

in
te
ge
r
so
lu
ti
on

38
3.
58

0.
01

10
0

1
94

3.
01

A
C
O
_
D
T

7.
29

10
78

.3
1

10
80

0.
00

7
0.
67

72
6.
60

27
5.
63

66
8.
78

2
91

7.
00

A
B
C
_
D
T

19
.3
4

92
1.
16

10
80

0.
00

16
8

0.
62

57
3.
72

26
6.
24

28
2.
24

3
99

8.
18

A
C
O
_
D
T

7.
61

T
im

e
lim

it
w
it
h
no

in
te
ge
r
so
lu
ti
on

28
3.
87

10
9.
88

15
0

50

1
64

7.
75

A
C
O
_
D
T

1.
02

T
im

e
lim

it
w
it
h
no

in
te
ge
r
so
lu
ti
on

24
9.
09

8.
75

2
86

3.
69

A
C
O
_
D
T

1.
70

T
im

e
lim

it
w
it
h
no

in
te
ge
r
so
lu
ti
on

34
1.
40

3.
05

3
74

3.
74

A
B
C
_
D
T

7.
38

T
im

e
lim

it
w
it
h
no

in
te
ge
r
so
lu
ti
on

22
2.
47

3.
73

10
0

1
87

6.
69

E
A
/G

-M
P

6.
61

96
1.
15

10
80

0.
00

3
0.
74

70
9.
42

20
6.
86

13
22

.4
8

2
65

7.
35

A
C
O
_
D
T

4.
23

T
im

e
lim

it
w
it
h
no

in
te
ge
r
so
lu
ti
on

16
3.
65

11
70

.5
9

3
72

2.
87

A
C
O
_
D
T

4.
80

T
im

e
lim

it
w
it
h
no

in
te
ge
r
so
lu
ti
on

19
6.
74

11
55

.8
4

89

Table
B
.4:

R
esults

ofM
F
D

for
the

instances
provided

in
[3]

R
ange

N
V

ID
B
SF

A
lgorithm

T
im

e
M
F
D

Solution
T
im

e
B
B
N

R
G

A
G

LP
R

T
im

e

100

50

1
1204.41

A
C
O
_
D
T

2.41
1204.41

8637.14
131327

<
0.01

0.09
442.65

0.52

2
1340.44

A
C
O
_
D
T

4.18
1340.44

2237.01
82401

<
0.01

0.13
627.49

0.27

3
1316.39

A
C
O
_
D
T

2.50
1316.39

1727.07
34111

<
0.01

0.11
544.05

0.23

100

1
1217.47

E
A
/G

-M
P

11.06
1492.26

10800.00
19196

0.61
914.54

324.36
4.63

2
1128.40

E
A
/G

-M
P

9.93
1478.78

10800.00
31153

0.69
1018.34

246.73
5.83

3
1252.99

A
B
C
_
D
T

28.39
1609.98

10800.00
27989

0.70
1123.41

290.69
5.47

125

50

1
802.95

A
C
O
_
D
T

2.16
817.76

10800.00
139712

0.18
147.91

231.18
0.50

2
1055.10

A
C
O
_
D
T

2.01
1089.52

10800.00
159761

0.23
253.26

363.12
0.47

3
877.77

A
C
O
_
D
T

1.40
882.69

10800.00
219476

0.11
97.23

289.18
0.45

100

1
943.01

A
C
O
_
D
T

7.29
1444.78

10800.00
8084

0.80
1156.31

151.10
11.05

2
917.00

A
B
C
_
D
T

19.34
1179.82

10800.00
8756

0.75
885.63

159.39
9.67

3
998.18

A
C
O
_
D
T

7.61
1246.55

10800.00
2598

0.83
1038.75

169.97
7.48

150

50

1
647.75

A
C
O
_
D
T

1.02
649.07

10800.00
111343

0.11
71.19

164.69
0.91

2
863.69

A
C
O
_
D
T

1.70
946.26

10800.00
85335

0.34
319.49

274.10
0.88

3
743.74

A
B
C
_
D
T

7.38
857.84

10800.00
82647

0.42
356.18

183.70
1.13

100

1
876.69

E
A
/G

-M
P

6.61
1243.25

10800.00
2929

0.83
1037.55

101.35
17.75

2
657.35

A
C
O
_
D
T

4.23
1004.52

10800.00
2847

0.83
834.41

97.33
37.25

3
722.87

A
C
O
_
D
T

4.80
1246.55

10800.00
2598

0.83
1038.75

118.18
26.59

90

