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ABSTRACT

DEVELOPMENT OF A COMPUTER AIDED ENGINEERING TOOL FOR
PIPE LINES

Aydinoglu, Kemal Yiice
M.S., Department of Civil Engineering
Supervisor : Prof. Dr. Zafer BOZKUS
Co-Supervisor : Dr. Erdal OKTAY

OCTOBER 2016, pages

A computer program is developed to solve pipe network problems for incom-
pressible fluids. It is intended to run under the Computer Aided Engineering
software package C AEeda™ . The finite element method is employed to model
the governing equations. The accuracy of the program is validated by comparing
the results of five test case problems choosen from a reference literature. The
good agreement between present program and reference solutions is observed.
By using geometry, pre-process and post-process capabilities of C AEeda™ , as
a result of the program integration, complex pipe network systems can be ana-
lyzed easily. Consequently, it may be used as a promising tool for pipe network

analysis.

Keywords: Pipe Network, Pipe Flow, Finite Element Method, Computer Aided

Engineering
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Yiiksek Lisans, Insaat Miihendisligi Bliimii
Tez Yoneticisi : Prof. Dr. Zafer BOZKUS
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Ekim 2016 , sayfa

Sikigtirilamaz akigkanlar icin boru sebekesi problemlerini ¢6zen bir bilgisayar
programi gelistirilmistir. Bilgisayar destekli miihendislik yazilim paketi C' A Eeda™
altinda caligmas1 amaclanmistir. Denklemleri ¢6zmek icin sonlu elemanlar yon-
temi uygulanmigtir. Programin dogrulugu; referans literatiiriinden secilen beg
test problemle kiyaslanarak teyit edilmigtir. Mevcut program ile referans ¢o-
ziimler arasinda iyi uyum oldugu gozlenmistir. Programin entegrasonu sonucu
CAFEeda™  nin geometri, énislemci ve sonislemci yetenekleri kullanilarak komp-

leks boru sebekeleri kolaylikla analiz edilebilmektedir. Bu sayede program boru

sebeke analizleri icin gelecek vaat eden bir arag¢ olarak kullanilabilir.

Anahtar Kelimeler: Boru Sebekesi, Borularda Akig, Sonlu Elemanlar Yontemi,

Bilgisayar Destekli Miihendislik
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CHAPTER 1

INTRODUCTION

In the present study, it is intended to develop a computer aided design tool
for mainly water distribution lines and networks, etc. by using the finite ele-
ment method. The objective is to append the developed software to EDA En-
gineering’s multidisciplinary general purpose software, named CAFeda™ [1].
CAEeda™ has powerful built-in CAD, pro- and post-process, or modules as
well as CFD, CSD analysis and design optimization modules. As a result, the
pipe flow program developed here can be used as a part of CAEeda™ for large
systems.

Water distribution systems are important components of civil engineering works
as they continuously supply required amount of precious water for domestic,
commercial, public and industrial purposes. In domestic use, water is required
for drinking, cooking, and washing including, heating and cooling, air condition-
ing, sanitary purposes, etc. Examples of other uses can be a long list which is
beyond the scope of the study.

An efficient water supply system includes various facilities for accumulating and
storing water such as dam reservoirs or large tanks, pipelines for transportation,
if necessary, pumping and treatment plants, etc. In general, water is conveyed
through a main line from a reservoir to a treatment plant where water is treated
to get it ready for the consumption of the people. After treatment, it would be
distributed to pipe networks from which the end users would receive the water.
Thus, it is an important task of the civil engineers or water supply engineers
to evaluate accurately the demands of water and supply amount of the water

and the means to convey it properly to the users. Typically, water distribution



networks are made up of pipelines, pipe elements such as elbows, tee sections,
valves, pumps, etc. It is the job of the engineers to provide proper number of
them in a given network to achieve the goals. Discharge in each pipe should
be calculated and also the demands wherever they exist should be satisfied. It
is also important that the pipe network system is always under a reasonable
pressure head to maintain the safe operation. To achieve all these, an engineer
must perform many analyses, by using and changing various parameters such as
pipe material, pipe diameter, pipe lengths, location of the valves, pumps, etc.
One can realize that this is very complicated, time-consuming and repetitious
work that require the aid of computers.

Consequently, some numerical methods have been developed to do the task of an-
alyzing pipe networks for which commercial software such as WaterCAD-Bentley
[2], AFT Piping Software [3] and open source software EPANET [4] are available.
Also, Mohtar et al. [5] developed a finite element program named ANALYZER
in 1991. The purpose of this thesis is to develop a finite element program for
steady, incompressible flows through general piping systems, CAFeda™ to be
used for pipe network optimizations.

Most common numerical methods for analyzing pipe networks are Hardy-Cross
Method, Newton-Raphson Method, Linear Theory Method and Finite Element
Method. They will all be introduced briefly in the thesis. However, it is one of
the goals of this study to use the Finite Element Method to analyze the water
distribution networks.

Finite element methods and techniques have already been well established. In
the finite element method, a given physical problem is modeled by dividing it
into some small parts called "elements". This is followed by an analysis of the
physics of the problem performed on these elements. Ultimately, the elements
are put together to present the whole picture that is the solution to the original

problem.



CHAPTER 2

WATER DISTRIBUTION NETWORKS

2.1 Definitions

Pipe Networks may be divided into three types, serial, branching, and looped

networks. They are defined as follows.

2.1.1 Types of Networks
2.1.1.1 Serial Network

Serial Network is a network which has no branches or any loops. It is a con-
figuration in which pipe segments are connected in series form. It is shown in

Figure It is the simplest network among all types of networks.

Source T T

Figure 2.1: Serial Network [6]



2.1.1.2 Branching Network

It is also called dead-end network. Branching Network is a network which has
branches but no loops. In other words, it consists of serial networks and these

networks do not include any loops, Figure

i ) A
—enill—s vt ——J— ———
i i i
Source
m, | = -—
Y Y Y
Sl [ Sl

I

Figure 2.2: Branching Network [6]

2.1.1.3 Looped Network

Looped network is a network which consists of loops. It may contain also
branches or serial parts. However, it should have at least one loop to be con-
sidered looped network shown in Figure Bhave [6] stated that serial and
branching networks are not appropriate for repairs or replacements because there
is only one path for fluid flow. However, in the looped network, a part of the
system can be closed to fix or replace some of the parts in loop while fluid con-
tinues to flow. He also expressed looped network is more reliable than the other

two network types due to existence of alternative paths. On the other hand,

4



looped networks are more expensive compared to serial and branching network.

-

Source

- - . - a - -

Figure 2.3: Looped Network [6]

2.1.2 Pipe Parameters

A pipe network can be constructed with pipes, pumps, and fittings which may
be a bend, tee, contraction, expansion, and valves. Before analyzing a pipe
network, some important parameters should be defined. It is done in the next

sections.

2.1.2.1 Pipe Length

Pipe length, whose SI unit is meter, is a parameter of pipe which can be cal-
culated from the known geography. It is obtained by the Cartesian node coor-
dinates, X, Y, and Z. When the node coordinates are known, the pipe length

can be easily calculated with the equation below.

L= (X=X, + (Y=Y} + (2 - 2,;)° (2.1)

Where i represents the " node of the pipe element, j represents the j** node of

the pipe element, L represents length of the pipe element.

2.1.2.2 Pipe Diameter

Pipe diameter (D) is in meters and it is a known parameter while analyzing the

pipe network.



2.1.2.3 Pipe Roughness Coefficient

This is a unitless parameter. There are two types of head loss formula, and each
one has a different pipe roughness coefficient. These are namely Hazen-William
coefficient (Cry ) and Darcy-Weisbach friction factor (f). Darcy-Weisbach fric-
tion factor is also dependent on pipe discharge in addition to roughness of the
pipe material. Thus, it is changing while analyzing the pipe network. On the
other hand, Hazen-William coefficient is constant during the pipe network anal-

ysis because it is independent of pipe discharge.

2.1.2.4 Minor Head Loss Coeflicient

Minor head loss coefficient is a unitless coefficient which is changing for differ-
ent network elements. These elements can be bend, tee, valve, contraction, or

expansion of pipe.

2.1.2.5 Demand Pattern

Demand pattern is a nodal parameter. It generally fluctuates with time. How-

ever, in pipe network analysis, steady-state conditions are considered.

2.1.2.6 Source Supply Pattern

Source supply pattern is also a nodal parameter. It is dependent on the nodal
demands at the steady-state condition. For example, reservoirs are thought to

be source supply pattern.

2.1.2.7 Energy Grade Line Level at Demand Nodes

Energy grade line level is the sum of pressure head (¥/;), the elevation head
(Z) , and kinetic energy head (v?/2g) . This parameter, called H in Equation
is generally unknown at the demand nodes. However, demand discharge is

6



known at these nodes. In addition to these, kinetic energy head term is normally
neglected in the network calculations because its value is too small compared to
other terms.

P V2

H=—+27+ — =Total Head (2.2)
g 29

2.1.2.8 Energy Grade Line Level at Source Nodes

This parameter (H) is usually known parameter at the source nodes and it is

constant during the steady-flow analysis, such as reservoir water level.

2.1.3 Parameter Interrelationships

Basic energy equation from it node of the element to j** node of the element is
written as follows.
‘/}2

A P
—“+Zi+—=—"2+Z;+2+h 2.3
+ Z; + St g (2.3)

where h; is the head loss term.

Energy Equation for pipe networks is a nonlinear equation, because of the head
loss term. Since there is no direct solution for a nonlinear equation, numerical
solution (iterative solution) methods are used to solve these kinds of problems.
In this chapter, the types of iterative solution methods for the pipe networks in
steady-flow analysis will be explained. Before explaining the solution methods,
some parameters which interrelates these solution types will be covered.
Consider a looped network which has M source nodes, N demand nodes, X pipes,

and C loops that are shown in Figure [2.4]



Source Node Demand Node

'

2 M+1 M+2

C X

M+N
(=J)

L, =i

M

Figure 2.4: Detailed Looped Network [6]
The relationship between these values is shown in Equation
X=M+N+C-1 (2.4)

Where X illustrates the number of pipes. X may be represented as ij.
For the network analysis, there are three types of relationships, which will be

covered next.

2.1.3.1 Pipe Head Loss Relationship

In a pipe segment of ij, from the energy equation, the general head loss formula

is obtained as follows.

where the terms h;j, kij, Qi;, H;, H;, n represent the head loss in pipe ij, the resis-
tance constant which can change by the Hazen-William (HW), Darcy-Weisbach
(DW), or Manning equation, pipe discharge, hydraulic grade line elevation at
i'" and j** node of the element, and discharge exponent, respectively. While
analyzing the network, the flow direction may reverse. When the flow direction
reverses, the discharge sign will change and become negative. To ccount for the

change in flow direction, Equation [2.5] will be rewritten as follows.
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hij = Hy — Hy = kij|Qi;[" ' Qi (2.6)
When hydraulic grade line level at the it node is greater than the one at the

j"" node (H; > H;), Q;; will be positive. Otherwise, @Q;; will be negative.
Equation is sometimes expressed as

hij = ki;Qij (2.7)
Where k;] = kij’Qij‘n—l
This form is called the linearized form according to Bhave [6]. Equation [2.5|can

also be written as follows.

H, — H\""
Qij = (/f—zjj) (2.8)

To account for the change in the flow direction, Equation [2.§| can be rewritten

as follows.

1/n
Qij = N i — i 1 (2.9)
kY o, — H; |00

ij
Whose sign is positive while flow direction is from ¢ to j.

Equation [2.9] can also be expressed as follows.

Qi = Cj;(H; — H;) (2.10)

where C}; = y L = in which C7; is called modified conductance of pipe.
kij " |Hi—Hj|

-2

2.1.3.2 Node Flow Continuity Relationship

In a steady-state, incompressible flow in a pipe network, the continuity equation
must be satisfied at a node. In other words, inflow must be equal to the outflow.

Therefore,

Z Qij+¢; =0 (2.11)

pipe connected
to j



Where g; is external flow, either supply(inflow) or demand (outflow) at node j,
and @);; is the discharge in the pipe.
The equation above gives (M + N) times linear relationships in terms of the

pipe discharge. This equation can also be written as follows.

S (Y a1

i connected to &
j through pipe

When we rewrite the equations, it is formed below.

H, — H,
Z ( o 3(1_1)> + q; = 0 (213)
i connected to kij |HZ - H]| "

j through pipe
When this equation includes hydraulic grade line values, it becomes nonlinear
equation. If we try to linearize this equation which contains hydraulic grade line

values, it will be as follows.

i connected to
j through pipe

1
kg /| H; — H; | 07)

Where C! =

2.1.3.3 Loop Head Loss Relationship

For all loops of a pipe network, summation of all the head losses in the pipes

forming a loop must be zero. It is shown in Equation [2.15

Soohy= Y kyQp=0 (2.15)

pipe € loop pipe € loop

If this equation is linearized, it can take the following form.

Yo hy= ) KQy=0 (2.16)

pipe € loop pipe € loop

Where k;] = kileij‘n—l
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2.1.4 Solution Methods

As mentioned previously, energy equation for pipe networks is a nonlinear equa-
tion because of the head loss term. Since there is no direct solution for nonlinear
equations, numerical solutions, also called iterative solutions, are used to solve
these equations. In this chapter, the types of iterative solution methods will be

explained for pipe networks in a steady flow.

2.1.4.1 Hardy Cross Method

According to Bhave [6], Hardy Cross [7] might be the first person who suggested
in 1936 an iterative solution for network analyses. His approach is based on
AQ equations which are loop flow correction equations. This approach is called
method of balancing heads. After that Cornish [8] also applied the same proce-
dure to nodal head correction equations which are A H equations. This approach
is also called method of balancing flows. Both AQ equations and AH equations
belong to the Hardy Cross Method.

It has the following assumptions.

1. At a given time, only one equation is solved from the available set of AQ

equations.

2. There is only one AQ equation for each loop. The effect of adjacent loops

is ignored.

3. Each term of modified AQ equation is expanded in a Taylor’s series and

higher-powers of AQ) terms are neglected except the first-power AQ terms.

Let us consider a single loop of a network in Figure[2.5. There are four pipes and

they are labeled as a, b, ¢, and d. The known resistance constant k with a proper

11



subscript for each pipe is indicated in the figure as k., ks, k. and, kg, respectively.
Also assumed discharges are shown accordingly for each pipe satisfying the node-
flow continuity relationships. The AQ equation can be written for the loop of

Figure |2.5] as shown below.

A 19;3 (
! a ka !
- o
x X

/"\ o
ay Ba | [s]
il F=]
k
( c c {
o
) )
A Qe B

Figure 2.5: Single Loop of distribution network [6]

ka(l@a +1 AQ)n + kb(lQb +1 AQ)n
—ke(1Qc —1 AQ)" — kq(1Qq —1 AQ)" =0 (2.17)

When we expand this equation in a Taylor’s series and ignore the higher power

of AQ terms, it will become:

ka(1QE + 11 QF 1 1 AQ) + kp(1Q) + 1 kTt AQ)
—k(1Q —n1 Q1 AQ) — ky(1Q) —n 1 Q1 AQ) =0 (2.18)

If we rearrange this equation for ;AQ , we get

ko1 Qy +ky 1 Qp —ke1 QF — kg1 Qf

AQ=- 2.19
1 Q k‘a-n'lQTal_l+l€b-n.1Qg—1_i_kc,n,lQ?C’L—l_i_kd_n_le—l ( )
Further, it can be written as
AQ = - 2t QZH (2.20)
Yoln ki Q7

12



If this equation is generalized for all loops,

> ki QF

i€loop

> In ki Q77

i€loop

tAQ = —

(2.21)

Where t is the number of iteration steps. Consequently, a A(Q equation de-
veloped for each loop, will be solved simultaneously for the entire network to

compute the discharge in each pipe.

2.1.4.2 Newton-Raphson Method

Newton-Raphson Method may be considered as improved version of Hardy Cross
Method. Bhave [6] stated that in Hardy Cross Method, the effect of ignoring
the adjacent loops and considering about only one correction equation at a time
is considerable. Apart from this, while increasing the size of a network, number
of iteration steps is rising. Thus, if all the adjacent loops are considered to be
solved simultaneously, while achieving the solution in Newton-Raphson method,
the numbers of iteration steps are considerably less than that of Hardy-Cross
method. Again, since the energy equation is nonlinear due to head loss term in
general, iterative procedure is necessary for its solution. The general expression

for the Taylor’s series is as follows.

F(a+b) = F(a)+bF'(a) + %F"(a) + . F %F”_l(a)

Y2

b
+ EF”(a +60b), 0<0<1 (2.22)

in which F’, F”, ..., F™ are the first, second, ..., n'* derivative of the F function,
respectively. Last term is showing the remainder after n terms. Considering the

remainder after two terms, the finite Taylor’s series takes the form:

2

F(a+b):F(a)+bF’(a)+%F"(a+96), 0<f<1 (2.23)
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Single Variable Function

Assume that F'(xz) = 0 is a single-variable nonlinear function and a is one of its
roots so that F'(a) = 0. An iterative procedure is required to find the value of a.
If ;Ax is additive correction for the ¢ iteration and ,F'(z) is the value of F(x)
at the t'* iteration, the following equation may be written after the correction

is applied.

F(z)= Flx+Az)=0 (2.24)

If this equation is expanded as it is done in Equation we obtain:

A 2

In this equation, ;Az is a small value when comparing with ;z. Thus, (;Az)? is
even a smaller value such that we can neglect the remainder after the first two

terms. The new equation is as follows.

' (2) - JAr=— F(x) (2.26)
| F=)
D= [F/(x)} (2.27)

The value of the next iteration is obtained as follows.

it = o+ Ae == [Ji’/((::?)} (2.28)

If Equation is used repeatedly, the root * = a making F'(z) = 0 is eventually
found. If we consider Newton-Raphson Method in geometrical interpretation,

y = F(z), and if we want to draw a graph of it, it will be as in Figure

14



A

y=F(x)

P

Q
A \B S .
O \
tX WAy |

o

t+1X

Figure 2.6: Geometrical Interpretation of the Newton-Raphson Method [6]

Multiple Variable Function

When Newton- Raphson Method is considered in multiple variable function, two

equations can be given as follows.

Fl(ZL'l,IQ) = 0 (229)

and

FQ(ZL’l,Iz) = 0 (230)

Let the ¢ trial values of z1, z2, Az, and Az, be 121, 129 , (Axy , and ;Azs |
respectively. As the same way with the single variable function, multiple vari-

able function is as follows.

OF' OF'

t (8_3;'1) tAxl t (a—x;> tA.Tz = —tF1($17I2) (231)
OF: OF.

t (a_l‘f) tAl‘l + . (8_902) . tAZL’Q = —tFQ(l‘l,[EQ) (232)



writing in the matrix form

(g%) (g%) Anm| __ |5 (2.33)
OF: OF: :
LGB (2)] lae] |5

if we generalize this matrix form, it will be as follows.

() (3 ()] Tae]  [m
(8%> (8_52 (87%) Az F (2.34)
OF, OF, OFy,

L) (5) - () laa] LA

The first matrix is called the coefficient matrix or the Jacobian of the n func-
tions. The second matrix is the corrections column matrix and finally the col-
umn matrix on the other side of the equal sign is the residues of the functions
F\,F,, ..., F,. The iterations are performed until those values are sufficiently

small.

2.1.4.3 Linear Theory Method

The nonlinearity in energy equations for pipe network is algebraic, uniform,
and simple; the variables are raised to the same, non-unity exponent. For in-
stance, nonlinear () equations contain the nonlinear k;;Qj; and the H equations,
[(H; — H;)/kij]"/™ with the same n values. Tt is 1.852 for Hazen-William (HW)
head loss formula and 2.0 for Darcy-Weisbach (DW) and Manning head loss
formula. This feature is useful since those nonlinear terms can be conveniently
linearized by separating a part of the nonlinear term and putting it into the pipe
resistance constant as in Equation . According to Bhave [6], this principle
was first recommended and used by Mcllroy [9], Marlow et al. [10], and Muir
[11]. Later, Wood and Charles [12] developed this principle, and it is now widely
used in practice. Although this principle can be used for all types of equations,
it is used in practice for pipe discharge equations.

If we recall the nonlinear loop head-loss equation,
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Z (Fijl:Qu|" ) Qi = 0 (2.35)

pipe ij€E€loop
In which k;; is the known pipe resistance constant, ,();; is assumed pipe discharge
in the ¢ iteration step, and Q;; is unknown pipe discharge. If this equation is

linearized, it will be as follows.

> Q=0 (2.36)

pipe ij€loop
In which k;; is the modified resistance constant of pipe ij in the tth iteration
step and it stands for k;;[,Q;;|" .
Muir[II] and Wood and Charles [I2] have recommended that the pipe discharge
+Qi; is set equal to 1 for the first iteration. Therefore, for the first iteration, | k;;
is as follows.

1ki; = ki (2.37)

If we rewrite Equation

pipe ijeloop

After that solutions of linear node-flow continuity equations and the linearized
loop head loss equations together at the same time give us the pipe discharges
2Q;; in the loop at the end of the first iteration.

One can take the average of the assumed and obtained values in the previous
iteration as ;Q;; = M to find the pipe discharge at the ¢! iteration.

This is leading to rapid convergence.
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CHAPTER 3

NUMERICAL MODEL: THE FINITE ELEMENT
METHOD

In the previous chapter, three numerical solutions for analyzing pipe networks,
namely Hardy Cross method, Newton-Raphson method, Linear Theory method,
were explained.

In addition to these numerical solution methods, the Finite Element Modeling
(FEM) is also used to analyze pipe networks. The advantage of the FEM its
easiness to be programmed in a computer language. Also it helps the analyzer
to add or remove an element in a network conveniently. Like in Linear Theory
Method, the aim of FEM is also showing the head loss term in a general form
which is k;;Q". According to Mohtar et al. [5], expressing the loss terms in a
common form for all the pipe components will help the finite element formulation
for analyzing pipe networks. Next, the head loss term will be explained for each

type of element in pipe network analysis.

3.1 Head Loss Formulation

Head losses are divided into two groups. These are major losses and minor losses.
They are also called friction losses and local losses, respectively. Formulation of

these head losses will be explained in detail for different elements.
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3.1.1 Pipe Element Head Loss Formulation for Friction Losses

Pipe element and its finite element representation is shown in Figure |3.1. Pipe
element head losses are known as major head losses. Typically, there are two
types of friction head loss formula for pipe elements. These are Hazen-William

and Darcy-Weisbach equations.

0 — 5

i» - ®

Figure 3.1: General Pipe Element ij and its Finite Element Representation

3.1.1.1 Hazen-William Head Loss Formula for Friction Losses

It is basically as follows.

Ki eLQ;‘L’
Pupipe) = W (3.1)

Where K, is a constant equal to 10.68, C' is a Hazen-William friction coef-
ficient, L is the pipe length in meter, D is the pipe diameter in meter, Q;; is
the pipe discharge in meter cube per second, and n and m are constants with a
value of 1.852 and 4.87, respectively.

Hazen-William head loss formula can be written as follows.

hl(pipe) = kleZ (32)

KpipeL
Cw D"

Where k;; stands for

3.1.1.2 Darcy-Weisbach Head Loss Formula

Darcy-Weisbach head loss formula is expressed as follows.

LV?
D 2g

Pupipe) = / (3.3)

Where f is the Darcy-Weisbach friction factor that is explained below, L is the
pipe length in meter, D is the pipe diameter in meter, V' is the velocity of the

fluid in meter per second, and ¢ is the gravitational acceleration in meter per
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second squared.
Darcy-Weisbach friction factor (f) can be found by Colebrook-White formula
[13]. It is as follows.

. e 251
VP TR {3.717 " Re\/f]

Where ¢ is the roughness height of the pipe wall in meter, D is the pipe diameter

(3.4)

in meter, Re is the dimensionless Reynolds Number expressed below.

Re = — (3.5)

v
Where D is the pipe diameter in m, V is the velocity of the fluid in meter per
second, v is the kinematic viscosity of the fluid in meter squared per second.

Since Colebrook-White equation is nonlinear equation and it needs the iterative
solution for finding the friction factor f. Colebrook equation [14] for assuming
hydraulically rough flow (Re > 4000) may be used for the first trial friction

factors. It is shown below.
1.325

In <3.;D>2

Where ¢ is the roughness height of the pipe wall in meter, D is the pipe diameter

= (3.6)

in meter.

Head loss formula of Darcy-Weisbach can be written in terms of discharge as

8fL s
i(pipe) = g2 D5 i (3.7)
This can be further expressed as
hl(pipe) = ijQ;nj (38)

Where k;; stands for 8L and n is 2.0.

g7T2D5

3.1.2 Pipe Fitting Element Head Loss Formulation for Local Losses

Most commonly used pipe fitting elements are bends, tees, contraction and ex-
pansion in pipe area, and valves. These elements would generate head loss

locally, wherever they exist. These are shown in Figure A general head loss
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BEND

TEE

CONTRACTION| § —F—3 | ie———»—|

EXPANSION | &—— = ¥ | ie o

ALVE %i e
——— o

Figure 3.2: General Fitting Elements and their Finite Element Representations

formula of pipe fittings is as follows.

V2
hl(fitting) = Kfz'tting% (39)
Where Kygiing is a fitting loss coeflicient, which is different for each type of
fitting element, V is the average velocity of the fluid in meter per second, and g
is the gravitational acceleration in meter per second squared .

Fitting head loss formula can be written as follows.

hupitting) = kij Qi (3.10)

where k;; stands for % and n is 2.0.

Fitting Coefficient (K fiing) has a specific value for all type of fitting elements.
For example, in the network system, there may be a lot of valves or bends. For
each type of valve or bend, there is a certain fitting coefficient. Some of these

fitting coefficients are listed in Figure [3.3
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a. Elbows

Regular 90°, flanged 0.3 =
Regular 90°, threaded 1.5 h
Long radius 90°, flanged 0.2 *
Long radius 907, threaded 0.7
Long radins 45%, flanged 0.2
Regular 45°, threaded 0.4 d "’A\&
_ﬁ\'\
b. 180° return bends e
1807 return bend, flanged 02
1807 return bend, threaded 1.5
—
¢. Tees d L
Line flow, flanged 0.2 1 I
Line flow, threaded 09 ¥o— .
Branch flow, flanged 1.0
Branch flow, threaded 20 4 F

d. Union, threaded 0.08

"e. Valves Vo= —
Globe, fully open 10
Angle, fully open 2
Gate, fully open 0.15
Gate, } closed 0.26
Gate, § closed 2.1
Gate, 3 closed 17
Swing check, forward flow 2
Swing check, backward flow =
Ball valve, fully open 0.05
Ball valve, { closed 55
Ball valve, § closed 210

"See Fig. 836 for typical valve geometry

Figure 3.3: Fitting Coefficients [13]

If the fitting is contraction, there is a fitting coefficient graph shown in Figure
As it is seen in Figure fitting coefficient is changing with the ratio of
the pipe areas. In order to get rid of measuring the fitting coefficient for the
pipeline system and to be used in the written program, it is formulated as shown

below.

A AN A,
K fitting (KJ) = —2.6042 (j) +6.7708 (X) —5.3125 (K)
09792( ) —03333( ) (3.11)
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5, _"'
W
-
Pa k2

0 0.2 0.4 0.6 0.8 1.0

1’12;-’1:_
Figure 3.4: Loss coefficient for a sudden contraction [13]

Where A; and A; stands for area of the i and j* node, respectively.

If the fitting is expansion, Swamee [14] set the K g1, equal to 1.0 .

3.1.3 Pump Pressure Head Formulation

Pump element and its finite element representation is shown in Figure [3.5

L
—
i® ® .

Figure 3.5: General Pump Element and its Finite Element Representation

The typical characteristic curve of a centrifugal booster pump may be expressed

as in Equations (3.243.12]), Mohtar et al. [5].
hi(pump) = COH — a@}, (3.12)

Where COH is the cut of head that represents the pressure head at zero flow
when the valve is closed on the discharge side of the pump. a and b are constants
of pump characteristics curve. COH is a constant positive term to be added

to the elevation of the downstream node of the pump element. Therefore, the
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pump head takes the form
Papump) = i Q3 (3.13)
Where k;; = —a and n = b. The reason k;; is negative is that energy is being

added to the system.

3.2 General Finite Element Formulation

Consider an element in a network and assume flow direction is from *"* node to

5" node shown in Figure If we write the energy equation for this element,

i > .|

Figure 3.6: General Finite Element for Pipes

it will be as follows.

P, V2 P V7
“+Zi+="2+7Z;+L
Y 29 v 29

Where k;; is the resistance constant, );; is the element discharge, Fi/y, Z;, V7 29

+ by QT (3.14)

are pressure head, elevation head, and kinetic energy head at the i'® node and
Pily, Zj, Vi |29 are pressure head, elevation head, and kinetic energy head at the
5" node, respectively.

If we rearrange Equation [3.14] it will become,

P, 2 P; 2
=47 S /A k; 3.15
7+ +A229 7+J+A22+JQ (3.15)

where V2 is equal to Q7 /A,
Equation [3.15| can be written as follows.

P, P 11
— - Zi — 7)) = ki; Q1 — =2 | — — — 1
(7 ’Y)+( )= k@i~ 5, (A? A?) (316
or
P P 1 1 1
— - — Zi— 7; kii——— | — — — . 1
(7 7)“ Ly v (A? A?) K (347
if we take ();; term alone, it will be as follows.
. 1/n
(3-4)+ -2
Qij = (3.18)



This equation is put in a form for a matrix structure as below.

(1=n)

G-z (2o

—) +(Z; — Zj)} (3.19)

v g

Qij = Cij (E - &> + OZJ(ZZ — ZJ) (320)

where C; stands for

ko — 11
g3 —
7 20Q7, 2\ a2 az

Rewriting the equation in a matrix formulation

QZ(?) B +1 -1 PO (Zi— 7,)
t Qée) = i 141 o P}E’/Z g ~(Zi - ;j)(e) (3.21)

or
: [Q(e)} -, [K (e)} - [P/v(e)] + [A(Ze)] (3.22)

or
t [K(e)} . [P/v(e)} - [Q(a} - [A(Ze)} (3.23)

where (e) represents the element number and ¢ is the iteration step.

At each iteration, a linear system of equations of size is same as the number

of nodes in the network. This matrix form is illustrated just for one element.

For the entire system, all elements’ equations are assembled. We generalize this

element matrix for the whole system of a network. If all element equations are

assembled, Equation will be as follows.

t L

K} s41 [P/”} -, [Q} -, [Az} (3.24)

3.24

As it is seen in Equation

. both [ K ] and [P/W} terms are functions of pres-

sure head (£/y). This Equation is an implicit equation because some of (/)

terms are unknown in pipe network. Therefore, in the first iteration, unknown

[P/ﬂ,} values in [ K ] are assumed and elements’ flow directions for the first it-
t

eration is constructed. Then, the unknown ¥/y values in [P/y] are found.
t+1

Those [P/W] values, which are obtained at the end of the first iteration, are
t+1
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used as input £/y values for the matrix [K} for the second iteration and so on.
(P/) = (P/)
t(P/"Y)

and accordingly element discharges can be found. Furthermore, the Equation

Iterations proceed until £ is small enough. In this way, £/y values

3.24) cannot be calculated because [K } matrix is a singular matrix without the

boundary conditions. In order to get rid of this situation, the boundary condi-
tions must be applied. The Row-Column Elimination is is preferred approach

in imposing the boundary conditions on P/y values. It is expressed next.

3.2.1 Row-Column Elimination

Equation may be simply rewritten as follows.
Ku=f (3.25)

According to Reddy [15], if we write Equation more explicitly, it is as

follows. ) L o
Ky Ky Kz ... Ky, Uy f1
Koy Koo Koz ... Koy, Uz fz
K31 Ks Ks3 ... Ks, Uz | = f3 (3-26)
_Knl Kn2 Kn3 e Knn_ _un_ _fn_

If we use « instead of a known essential boundary condition us and substitute

a into Equation [3.26] the equation will form as follows.

Ky Ky Kz ... Ky, Uy f1
0 1 0O ... O Us «
K31 Ks K3 ... Ksp| |us| = | fs (3.27)
_Knl Kn2 KnS cee Knn_ _un_ _fn_
Equation [3.27 can be further modified as follows.
Ky 0 Kiz ... Ky, Uy f1 K
o 1 0 ... 0 Usy Qo 0
Kgl 0 K33 e Kgn us| = f3 — K32 (328)
_Knl 0 Kng . Knn_ _Un_ _fn_ _Kng_




This approach is more systematic then the row and column reordering method
which is less frequently used. It preserves symmetry and avoids singularity.

In this way, [ K ] matrix may be inverted. Apart from the general formulation of
FEM for pipeline system, construction of C;; formulation may vary for different
type of the pipeline system elements. This construction of Cj; formulation for a

different type of element is expressed in detail below.

3.3 Formulation of (;; for Different Elements

3.3.1 Formulation of (;; for Pipe Element

As it is mentioned before, the general C;; formulation is as follows.

(3.29)

In general, a pipe element has a constant pipe diameter (D). In other words,
areas of the i"® node and j™* node are the same in a pipe element. Therefore,
the general formulation of the C;; may be simplified for the pipe element and it

is given below.

Cij = 3.30
J [kw]l/n ( )

As it is easily seen from the equation, area terms are canceled out and the Cj;
formulation is simplified for the pipe element.

For a pipe element, the value of exponent m depends on whether or not Hazen-
William head loss formula or Darcy-Weisbach head loss formula is used.
Rewriting the C;; formulation of pipe element according to Hazen-William head

loss formula with n = 1.852.

(1—1.852)
1.852

Cij = [kij}1/1.852 (3.31)
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Rewriting the C;; formulation of pipe element according to Darcy-Weisbach head

loss formula with n = 2.0.
(1-2.0)

Cij — [<% - %) * (Zi B Zj)] B (3'32)

3.3.2 Formulation of C;; for Fitting Element

Fitting elements may be grouped in two parts. While the first group may be
composed of bends, tees, valves, the second group may be considered as contrac-
tion and expansion in pipe area. As the area of the i* node and the j* node
are the same for the first group fittings, the C;; formulation is the same as that

for the pipe element. It is shown below.

(1=n)
P; PJ’) n
(3-)+a-2)
S
Cij = [k-~]1/” (3.33)
ij
Rewriting the equation for n = 2.0 for fitting elements
(1-2.0)
P; pj) 2.0
(3-) -2
vy
ij

In the second group which includes contractions and expansions, the area of the

it

" node is different from the area of the j** node. At this point, we have to
go back to the head loss formulation for contraction and expansion. Recall the

head loss formulation shown below.

V2
hipitting) = K fitting 5 (3.35)

Because of the variation in areas for i and j** node, velocity of the fluid is

different at i** and j** node. Therefore, the head loss formulation is rewritten

as follows.
Vi + Vj>2
2 (Vi + V)
Uitting) = K pitting=— sitting =g (3.36)
s . Q) Qi
Rewriting the equation for V; = and V; =
A; A,
%+%y 2
A A K tiv; Ai+ A,
by pitting) = Kpittin, - 2 — —fitting . ] 2 3.37
I(fitting) fitting 89 89 A,LA] ij ( )
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If the head loss formulation is generalized, it will be as follows.

hl(fitting) = kleZ (338)

K pies A+ A;
Where k;; = fzttmg( i+ A

Next, if we write the energy equation from the i** node to the j* node

2
) and n = 2.0

—+Zi+ ="+ 7+ + k;Ql 3.39
Y 29 v 7 29 VY (3:39)
.. . Qz’j Qz‘j K fitting A + Aj ’
Rewriting th tion for V; = <2y, = XU p d
ewz (;ng € equation 1or AZ j Aj j 89 AZAJ an

n = 4.
(Qij ) 2 (Qij ) ’ ,
P A P; A; K pisting Ai + A,
I3 ZZ N/ 4 7. 7 fitting ) J 2.0 3.40
v AT Ty A A PR AiA; i (340

If Qi; term in Equation is taken alone, it will be as follows.

2
e |
Qij = 4A7 — 4AT + K(A + Aj) (341)
8g A7 A

Where K = Kjyiying, but the word fitting was not kept for the sake of conve-

niency. If this equation is reformed in a suitable matrix structure, it will be as

follows.
1
2
i Pj
0. <%—7>+(Zi—2j) 1
ij 41412 —4A?+K(A1+Aj) (% — %) + (Zl — Z])
8gA7A?
P Pj> }
D) 4z — 7)) (3.42
[(,y )+ (Z-2)| (42

Hereby, C;; is constructed for contraction and expansion and it is as follows.

C (% - %> * (Zi B Z‘j) 1 (3 43)
8gAFA?
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3.3.3 Formulation of C;; for Pump Element

Energy equation is written for a pump element as shown below.

P, V2 P V2
4+ Zi+ =2+ 7Z+-L —(COH + k;Q; 3.44
Because of the areas of the i"* and j** node are the same, kinetic energy term
will be cancelled each other. Then, we rewrite the equation for k;; = —a and
n==b
Iz P
— +Z; =~ +2;— COH + aQ); (3.45)
Y Y
If Q;; term is taken alone, it will be as follows.
1
(8-2)+z-2)+con]b
Qij = (3.46)
a
Rewriting the equation for a suitable matrix form
1
P _ D b
0, — (7—7>+(Zi—Zj)+C’OH b 1
! a (8-%)+Z-2)+con
v v ¢ J
PP
K— - —J) +(Zi — Z;) + COH} (3.47)
v
Hereby, C;; is constructed and it is shown below.
1
: P; 7
; (&-2)+Z-2)+com]b .
iy = ) P,
a (&-2)+z-2)+coH
(3.48)

Besides, it is easily seen here, it has to be explained that our matrix equation

has one more vector matrix [COH]. Thus, our matrix formulation for pumps is

as follows.
Q(e) 41 -1 Pi(e)/’Y (Zi _ Z-)(e) COH®
= + ! +
| T tu -ty . ] .
" Q5 B IO L ~(Z; = ;)" ~COH™
(3.49)

If COH term in Equation is added directly to the (Z; — Z;) term and then
construct the matrix form, the results of the problems would be wrong due to
the nonlinearity in the energy equation. Therefore, [COH]| vector matrix has to

appear separately in Equation [3.49]
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3.4 Solution Methods of System of Linear Equations

There are several solution methods for the solution of the system of equations.
These are generally classified in two categories as direct and iterative methods.
Among the direct solution methods, Gaussian elimination and LU decomposition
methods are the most popular. Among the iterative methods, Gauss-Seidel and
Conjugate Gradient methods are popular. In the thesis, LU decomposition as a
direct solution method and Conjugate Gradient method as an iterative method

are used. This will be explained next.

3.4.1 LU Decomposition Method (Direct)

This method is the simplest method. It simply solves Ku = f equation by using
LU decomposition. In this method, system matrix (K) is inverted and directly

multiplied with the vector f as shown below.
K'f=u (3.50)

This version is usually achieved by elimination techniques. This method may
be useful while mesh size could be up to the thousands. However, it will be
convenient when we have millions of nodes in the network because of the re-
quired memory and computer times. Thus, conjugate gradient method becomes

a preferred approach.

3.4.2 Conjugate Gradient Method(Iterative)

This method also solves Ku = f equation. However, while there may be millions
of meshes in pipe network, this method converges to the solution faster than the
direct solution method because iteration steps are less than the direct solution
method.

Steps of conjugate gradient method for the symmetric and positive defined ma-

trix K according to Dai et al. [I6] are as follows.
po=r0=k—Kuy (uo arbitrary)
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Let us say ¢ = 0.

Repeat
T
TiT;
Stepl : a; =
" oplAp
Step2 : Uit1 = U + Qup;
Step3 : ric1 =1 — o Kp; if rig1 =0, then stop
T
Fip1Tit1
Step4 : B; = —‘;;;
;T

Stepd: pip1 = rip1 + Bipi
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CHAPTER 4

DEVELOPMENT OF SOFTWARE

In this chapter, the environment of the program, logic of the program, and input
and output generation of the program will be expressed.

The program was written in Fortran F95 programming language. While devel-
oping the program, a support was received from NetBeans Integrated Develop-
ment Environment (IDE) 8.1. Apart from these, C++ programming language
and QT cross-platform application framework [I7] have been used to develop
the developed graphical user interface (GUI) for integrating the program into
the CAFEeda™ software package by EDA Ltd. company.

4.1 The Input Generation For The Program

The input file to be used by the program is created by using Geometry and
Preprocess modules of CAEeda™ . User draws a sketch for the pipeline network
using the Geometry module and then firstly identifies different types of elements
of his network using the Prepocess module.

The network topology is exported by CAEeda™

as a FEM type line mesh file
with an extension of ".edf". The other necessary inputs involving solution type,
loss modeling type, solution accuracy and desired output details are entered to
the program by means of an other input file with an extension of ".inp". This

file is generated by an graphical user interface as shown in Figure 4.1
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Project Name: [| l

Solution Type: @ Conjugate Gradient () Direct Solution

Relative Error: [ le-6 l

Head Loss Modeling:

HAZEN-WILLIAMS

[ | DARCY-WEISBACH
@ Epsilon (O Friction Factor

Kinematic Viscosity: | 1.12e-6 |

PRINT-OUT OPTIONS

Input Data Demand Discharge
Element Area Flow Direction
Initial Friction Factor Element Discharge
lteration Count Final Friction Factor
Pressure Head Hydraulic Grade Line
OK l [ Cancel

Figure 4.1: The Graphical User Interface integrated to C AEeda™

Program process is basically shown in Figure The user follows the geometry,

preprocess, solver gui section and enter all of the data.
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After entering all data in the geometry, preprocess section, the input file is
generated. Input file is divided into six parts.
In the first part, it contains node, element, and zone number of the designed

pipeline network. It is shown in Figure [4.3

nnodes nlines nzones
17 19 12

Figure 4.3: Number of Nodes, Elements and Zones in Input

In the second part, the zones are defined. The zones are useful when designing
a network because user can use the same element or same nodal information
applicable to the different parts of the pipeline network. In other words, a zone
is used such that the user does not have to redefine the same structure through

the different parts of the pipeline network. It is shown in Figure [4.4]

ZONES

id type name bc material thickness bodytype
"reservoir" 40 1 -1.00000000 N
"discharge" 39 1 -1.00000000 N
"discharge-2" 39 1 -1.00000000 N
"pipel" 35 1 -1 N

"valve" 36 1 -1 N

"pump" 38 1 -1 N

"reservoir-2" 40 1 -1.00000000 N
"reservoir-3" 40 1 -1.00000000 N
"reservoir-4" 40 1 -1.00000000 N
10 N "discharge-3" 39 1 -1.00000000 N
11 N "discharge-4" 39 1 -1.00000000 N
12 N "discharge-5" 39 1 -1.00000000 N

© W N O O W N
=2 =2 =2 -0 0= ==

Figure 4.4: Definition of Zone IDs, Types, Names, Boundary Conditions, Mate-

rials, Thickness in Input

Furthermore, the third part is nodes with the geographical coordinates (x, y, z)

and relevant zone label. It is illustrated in Figure [4.5]
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NODES

id x y z zone

1 -90124.583 17769.232 3.00000000 1
2 -91553.186 20598.066 30.00000000 1
3 -91919.857 20017.137 34.00000000 1
4 -91823.029 20047.795 34.00000000 1
5 -90125.030 17770.127 3.00000000 2

6 -90796.040 19112.761 12.00000000

7 -91556.034 19112.761 15.00000000

8 -90796.032 19723.744 12.00000000

9 -90796.032 20637.725 18.00000000

10 -91553.186 20572.085 15.00000000

11 -91339.514 20000.739 12.00000000

12 -91787.643 20090.154 6.00000000 4
13 -92163.179 20572.085 12.00000000 4
14 -90795.593 19111.866 12.00000000 4
15 -90796.032 19722.744 12.00000000 4
16 -91788.285 20089.386 6.00000000 4

17 -92162.564 20571.296 12.00000000 1

Figure 4.5: Definition of Node IDs, X, Y, Z Coordinates and Zone Numbers in

O N G

Input

In the fourth part, it consists of element connectivity. In other words, it shows
which elements are attached to which nodes. It also gives the relevant zones and

the element lengths. It is shown in Figure 4.6
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LINES

id connectivity zone length
16 15 3 610.00000000
289 3 914.00000000

3 9 10 3 760.00000000
4 10 13 3 610.00000000
514 6 4 100.00000000

6 11 12 3 457.00000000
7 11 10 3 610.00000000
8 7 11 3 914.00000000
967 3 760.00000000

10 8 11 3 610.00000000
11 10 2 3 30.00000000
12 4 16 3 61.00000000
13 5 14 3 1500.00000000
14 7 3 3 975.00000000
15 15 8 4 100.00000000
16 12 17 3 610.00000000
17 16 12 4 100.00000000
18 1 5 5 100.00000000
19 17 13 4 100.00000000

Figure 4.6: Definition of Element Ids, Connectivities, Zones and Lengths in

Input

Fifth part is the node boundary condition attributes. In this part, the input file

gives the defined nodal demand discharges. It is shown in Figure [4.7

NODE-BC-ATTRIBUTES
140 1 0.00
240 1 0.00
340 1 0.00
4 40 1 0.00
7 39 1 0.06
939 10.11
10 39 1 0.11
12 39 1 0.06
13 39 1 0.06

Figure 4.7: Node Boundary Condition Attributes in Input

Sixth Part is the element boundary condition attributes. In this part, CAEeda™
gives the element information. If the element is a pipe, the main program gives

the pipe diameter and accordingly Hazen-William head loss coefficient or Darcy-
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Weisbach pipe roughness height according to the element attributes in input. If
the element is a fitting, pipe diameter and fitting coefficient (K') are also pro-
vided. If the fitting is a contraction or an expansion, both pipe diameters,
before and after the change in the area should be input. Lastly, if the element is
a pump, then the cut of head (COH) and Pump Head-Discharge graph’s function
constants should be provided. Hazen-William head loss modeling is provided in

Figure 4.8

LINE-BC-ATTRIBUTES

1 35 2 0.35000000 100.00000000
2 35 2 0.35000000 100.00000000
3 35 2 0.35000000 100.00000000
4 35 2 0.35000000 100.00000000
5 36 2 0.40000000 5.00000000

6 35 2 0.30000000 100.00000000
7 35 2 0.35000000 100.00000000
8 35 2 0.35000000 100.00000000
9 35 2 0.35000000 100.00000000
10 35 2 0.35000000 100.00000000
11 35 2 0.20000000 100.00000000
12 35 2 0.15000000 100.00000000
13 35 2 0.40000000 100.00000000
14 35 2 0.30000000 100.00000000
15 36 2 0.35000000 8.00000000
16 35 2 0.35000000 100.00000000
17 36 2 0.15000000 10.00000000
18 38 3 166.00000000 148.00000000 2.87990000
19 36 2 0.35000000 10.00000000

Figure 4.8: Element Boundary Condition Attributes in the Input for Hazen-
William Head Loss Modeling

4.2 Functional Steps of the Program

In this section, functional steps of the program are expressed. General flow chart

of the program which performs the pipe network analysis is shown in Figure [4.9
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/ Input Data from CAEeda™
1

’ Number of Unknown Pressure Head Calculation ‘

l

’Initial Guess for Unknown Pressure Head at Nodes ‘

!

Initial Friction Factors for Darcy-Weisbach

Head Loss Model if It is Selected

|

Assign Zero Discharge at Nodes

where there is No Demand

B

l

{ Construction of Network Matrix ‘
1

Row-Column Elimination of System Matrix

According to Known Pressure Heads

¥

Solution of Sytem of Equations

i

Friction Factor Calculation for Darcy-

Weisbach Head Loss Model if It is Selected
!

Iteration Count Calculation

)

Relative
Error

NO(t=t+1) for 7

<
Error

Tolerance
?

lYES

Flow Direction and Element Discharge Calculation

1
Printed and Plotted Outputs From CAEeda™

l

Figure 4.9: Block Diagram of the Pipe Flow Program
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Firstly, symbols and notations are defined at the beginning of the program. The
graphical user interface integrated to C AEeda™ appears to ask project name,
solution type, relative error precision, and output format shown in Figure 4.1
If the user designs the network according to Hazen-Williams head loss mod-
eling, then he must check the Hazen-Williams box. Otherwise, he must select
Darcy-Weisbach. After the selection of head loss modeling type, input file which
comes from the main program opens. The program starts to read the necessary
flow data in input. It reads firstly node numbers, element numbers and zone
numbers, respectively. Then, the program allocates the notations which will be
arrays according to the element and node number. Furthermore, it continues
to read input file. It reads zones, nodes’ geographical information (x, y, z co-
ordinates), element connectivity, node boundary condition attributes, element
boundary condition attributes, respectively. After reading the element boundary
condition attributes, the program closes the input file and starts to calculates
the necessary information with using the read data.

First of all, it calculates the element areas. Then, it finds the unknown pressure
head counts. After that, it assigns a random value for the unknown pressure
heads because both [K} matrix and [P/V] vector is a function of /5. That is
why the unknown pressure heads are assigned to the random value.

Next, if the head loss modeling is Darcy-Weisbach head loss modeling, the user
decides whether to calculate friction factor by given roughness height(e) or to
use the decided friction factor(f) instead of roughness height in input. If the
Epsilon (roughness height) is chosen, it assigns the first trial friction factors.
Otherwise, it does not calculate the friction factor.

Furthermore, if the demand discharges are not defined for some of the nodes, it
assigns zero value for these nodes because there is no inflow or outflow at these
nodes.

After all types of data are collected, computations are performed in a loop. Ac-
cording to hydraulic grade lines, which are a sum of pressure heads and elevation
heads, flow directions of the elements are found. Then, resistance constants are
calculated. After that, system matrix and [Q©)] — C};[A.()] calculations are
done. Accordingly, row-column elimination process is done in order to impose

the pressure head boundary conditions on the system which also eliminates the
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singularity of the system matrix. After row-column eliminations, the matrix
[P/ﬂ,} is calculated. This calculation is done either with the direct solver
grl the conjugate gradient solver [I6] which is an option in the graphical user
interface shown in Figure [L.I] If the solution is done with the direct solver,
the system matrix is inverted. The code which takes the inverse of the system
matrix has been taken from an open source [18].
Lastly, the relative error is controlled and the loop finishes. If the relative error
is greater than the defined tolerable value given in the graphical user interface,
the loop returns to the beginning and do the all steps until the relative error is
less than the defined value.
After the loop finishes, it calculates the last flow directions of the elements
and element discharges. If the head loss modeling is Darcy-Weisbach head loss

modeling, it also calculates the final friction factors and the program ends.

4.3 The Output Generation of the Program

After entering all data, user presses the "OK" button in solver gui and pipe pro-
gram starts to run. After running the pipe program, it generates two output file
as shown in Figure [£.2] One of them is a data file which is read by postprocess
module of CAEeda™ to plot flow directions on the pipe network system and
graphical representation of the results. The other output of the program is a
text output file which shows all calculated results on the nodes and elements.
As it is seen in Figure[4.1] the only difference between Hazen-William and Darcy-
Weisbach head loss modeling is the initial friction factor and the final friction
factor between them.

Furthermore, all of these selections are expressed one by one below.

When the user clicks the input data box in GUI, the program prints out the
entered node and element number, nodal geographical coordinates, element con-
nectivity, nodal demand discharge and pressure head information and element

characteristics. They are shown in Figures [4.10} [4.11} 4.12] 4.13] and 4.14}
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Node Number: 17
Element Number: 19

Figure 4.10: Illustration of the Node and Element Number at the Output

Node Coordinates

Id X Y Z
1 -90124.583 17769.232 3.000
2 -91553.186 20598.066 30.000
3 -91919.857 20017.137 34.000
4 -91823.029 20047 .795 34.000
5 -90125.030 17770.127 3.000
6 -90796.040 19112.761 12.000
7 -91556.034 19112.761 15.000
8 -90796.032 19723.744 12.000
9 -90796.032 20637.725 18.000
10 -91553.186 20572.085 15.000
11 -91339.514 20000.739 12.000
12 -91787.643 20090.154 6.000
13 -92163.179 20572.085 12.000
14 -90795.593 19111.866 12.000
15 -90796.032 19722.744 12.000
16 -91788.285 20089.386 6.000
17 -92162.564 20571.296 12.000

Figure 4.11: Tllustration of the Nodal Geographical Coordinates at the Output

Element Connectivity

Id Node_i Node_j Length
(-] -] (-] [m]
1 6 15 610.000

2 8 9 914.000

3 9 10 760.000

4 10 13 610.000

5 14 6 100.000

6 11 12 457.000

7 11 10 610.000

8 7 11 914.000

9 6 7 760.000

10 8 11 610.000
11 10 2 30.000
12 16 61.000
13 5 14 1500.000
14 7 3 975.000
15 15 8 100.000
16 12 17 610.000
17 16 12 100.000
18 1 5 100.000
19 17 13 100.000

Figure 4.12: Illustration of the Element Connectivity at the Output
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Nodal Information

Node Demand Pressure
Number  Discharge Head
Id Qi P/Gama
-1 [m~3/s] [m]

1 UNKNOWN 0.0000
2 UNKNOWN 0.0000
3 UNKNOWN 0.0000
4 UNKNOWN 0.0000
5 0.0000 UNKNOWN
6 0.0000 UNKNOWN
7 -0.0600 UNKNOWN
8 0.0000 UNKNOWN
9 -0.1100 UNKNOWN
10 -0.1100 UNKNOWN
11 0.0000 UNKNOWN
12 -0.0600 UNKNOWN
13 -0.0600 UNKNOWN
14 0.0000 UNKNOWN
15 0.0000 UNKNOWN
16 0.0000 UNKNOWN
17 0.0000 UNKNOWN

Figure 4.13: Tllustration of the Nodal Information at the Output
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When the user clicks the Element Area box in the GUI, the program prints out
the areas of the elements. They are shown in Figure If the element is

contraction or expansion, then the D2 and accordingly A2 is calculated.

Element Area
Element D1 D2 | Al A2
Number [m] [m] | [m~2] [m~2]
1 0.350 - | 0.096 -
2 0.350 - | 0.096 -
3 0.350 - | 0.096 -
4 0.350 - | 0.096 -
5 0.400 - | 0.126 -
6 0.300 - | 0.071 -
7 0.350 - | 0.096 -
8 0.350 - | 0.096 -
9 0.350 - | 0.096 -
10 0.350 - | 0.096 -
11 0.200 - | 0.031 -
12 0.150 - | 0.018 -
13 0.400 - | 0.126 -
14 0.300 - | 0.071 -
15 0.350 - | 0.096 -
16 0.350 - | 0.096 -
17 0.150 - | 0.018 -
18 - - - -
19 0.350 - | 0.096 -

Figure 4.15: Hlustration of the Element Areas at the Output

If the user clicks the Iteration Count box in the GUI, the program prints out

the number of iteration steps shown in Figure [4.16

‘Count of Iteration Steps: 52‘

Figure 4.16: Illustration of the Iteration Counts at the Output

When the user clicks the Pressure Head box or the Demand Discharge box in
the GUI, the program prints out final pressure heads or final demand discharges

at nodes. They are shown in Figures and respectively.
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Pressure Head Results
Id P/Gamma
-] [m]
1 0.000
2 0.000
3 0.000
4 0.000
5 143.913
6 49.816
7 26.239
8 28.320
9 13.322
10 15.778
11 24.071
12 25.941
13 18.768
14 54.123
15 31.432
16 26.791
17 18.936

Figure 4.17: Illustration of the Pressure Heads at the Output

Demand Discharge Results
Id Qi
(-] [m~3/s]
1 0.51658
2 -0.05625
3 -0.08316
4 0.02283
5 0.00000
6 0.00000
7 -0.06000
8 0.00000
9 -0.11000
10 -0.11000
11 0.00000
12 -0.06000
13 -0.06000
14 0.00000
15 0.00000
16 0.00000
17 0.00000

Figure 4.18: Illustration of the Demand Discharges at the Output
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If the user wants to know only the flow direction and clicks the relevant box
in the GUI, the program prints out final flow directions of the elements. Tt is

shown in Figure 4.19

Flow Direction(i -> j)
Element
Id i -> Jj
1 6 -> 15
2 8 -> 9
3 9 -> 10
4 10 -> 13
5 14 -> 6
6 11 -> 12
7 11 -> 10
8 7 -> 11
9 6 -> 7
10 8 -> 11
11 10 -> 2
12 4 -> 16
13 5 -> 14
14 7 -> 3
15 15 -> 8
16 12 -> 17
17 16 -> 12
18 1 -> 5
19 17 -> 13

Figure 4.19: Nlustration of the Flow Directions at the Output

When the user wants to know only the element discharges or HGL elevations
and clicks the relevant box in the GUI, the program prints out final element

discharges and hydraulic grade line levels, respectively. They are illustrated in

Figures and
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Element Discharge Results
Id Qij
(-] [m~3/s]
1 0.2658
2 0.1453
3 0.0353
4 0.0047
5 0.5166
6 0.0925
7 0.1357
8 0.1077
9 0.2508
10 0.1205
11 0.0563
12 0.0228
13 0.5166
14 0.0832
15 0.2658
16 0.0553
17 0.0228
18 0.5166
19 0.0553

Figure 4.20: Illustration of the Element Discharges at the Output

Hydraulic Grade Line Level Results
Id P/Gamma+z
(-] [m]

1 15.000
2 61.000
3 192.147
4 155.639
5 132.590
6 126.432
7 122.173
8 122.615
9 129.739
10 123.810
11 136.465
12 135.919
13 133.023
14 128.347
15 122.152
16 119.366
17 159.958

Figure 4.21: Illustration of Hydraulic Grade Line Level at the Output
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CHAPTER 5

CASE STUDIES

In this chapter, five test case problems will be solved by the program developed
in the study. Problems and their solutions have been taken from the reference
book [I9]. The reference book gives the results of test case problems 4| and [5| as
an EPANET output. The results of the present program which were calculated
in both LU Decomposition method and Conjugate Gradient method will be
compared to those obtained from the textbook.

Network symbols of the free-body diagram of the problems are shown in Figure

b1l

RESERVOIR NODE SYMBOL

DEMAND NODE SYMBOL

NODE NUMBER SYMBOL

ELEMENT NUMBER SYMBOL

ISR

...... o7 " 0.11M°%/S | pEMAND DISCHARGE SYMBOL

! VALVE SYMBOL

® PUMP SYMBOL

Figure 5.1: Definition of Network Symbols
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5.1 Test Case Problems

Test Case 1. For the system shown in Figure determine water flow dis-
tribution and piezometric head at the junction. Assume constant friction fac-
tors. The pump characteristic curve is Hp = a — bQ?, where a = 20m and
b = 30s%/m®. The reservoir elevation heads, 21, z and z3 are 10m, 20m and

18m, respectively. Table[5.1] shows the element parameters.

Figure 5.2: Network of Test Case [1| [19]

Table 5.1: Element Parameters of Test Case [1]

Pipe | L (m) | D (em) | f YK
1 30 24 0.020 2
2 60 20 0.015 0
3 90 16 0.025 0

For this problem, the free-body diagram is shown in Figure As it is seen
from Figure [5.3] there are 6 nodes, 5 elements. Elements are composed of 1
pump, 1 valve and 3 pipes. There are also 3 reservoirs as nodal parameters.

Element Characteristics of the system and node parameters are shown in Table
and respectively. Element discharges are shown in Table As it is
seen at the tables, the program results are compared with the results of the
book [19]. The relative errors among the results are almost none. Therefore, it

is shown that the program solves this problem correctly.
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Table 5.2: Element Characteristics of Test Case [1]

Elem. | Elem. | L Friction | Fitting Pump

Num. | Type i (m) | (m) Factor | Coeff. | Parameters
f K COH | a | b
1 Pipe |56 ] 30 |0.24 0.020 - - - |-
2 Pipe |42 ] 60 | 0.20 0.015 - - - |-
3 Pipe |43 ] 90 |0.16 0.025 - - - |-
4 Pump | 1|5 - - - 20 30 | 2
5 Fitting | 6 | 4| - 0.24 - 2.00 - - |-

Table 5.3: Node Parameters of Test Case

Pressure Demand )

e, el )| Pl
(m) (m°/s)

1 0.00 Unknown 10

2 0.00 Unknown 20

3 0.00 Unknown 18

4 Unknown 0.00 0

5 Unknown 0.00 0

6 Unknown 0.00 0
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Table 5.4: Element Discharge Comparison of Test Case

Element | Element 'Flovir Element Pischarge Relative
Number | Type D.II'eCtIO-Il (m°/s) Er.ror
i j | Computed | Reference (%)

1 Pipe 5 6 0.1981 0.2000 0.95

2 Pipe 4 2 0.1380 0.1400 1.43

3 Pipe 4 3 0.0602 0.0600 -0.33

4 Pump 1 5 0.1981 - -

> Fitting 6 4 0.1981 - -
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Test Case 2. Determine the flow distribution of water in the system shown in
Figure [5.4] The equivalent roughness height for all elements is 0.1mm. Table
shows the element parameters.

Figure 5.4: Network of Test Case [2| [19]

Table 5.5: Element Parameters of Test Case

Pipe | L (m) | D (mm) | Y. K
1 1000 200 3
2 200 25 0
3 250 25 0
4 340 30 2
5 420 40 0
6 500 175 d

For this problem, the free-body diagram is shown in Figure As it is seen
from Figure there are 7 nodes, 9 elements. Elements are composed of 3
valves and 6 pipes. There are also 2 reservoirs as a nodal parameter.

Element characteristics of the system and node parameters are shown in Table
[b.6] and [5.7], respectively. Pressure heads, demand discharges and element dis-
charges are shown in Table 5.8 As it is seen at the table, the program results
are compared with the results of the reference [I9]. The relative errors between
the results are almost none. Therefore, it is shown that the program solves this

problem correctly.
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Figure 5.5: Free-Body Diagram of Test Case
Table 5.6: Element Characteristics of Test Case 2]

Elem. | Elem. | | | L D R01‘1gh. Fitting Pump
Num. | Type vy (m) | (m) Height | Coeff. | Parameters
e (mm) K COH |a|b
1 Pipe |1 |2 | 1000 | 0.200 0.10 - - - -
2 Pipe |3 |4 | 200 | 0.025 0.10 - - - |-
3 Pipe |3 |4 | 250 | 0.025 0.10 - - - |-
4 Pipe |7 |4 | 340 | 0.030 0.10 - - - -
5 Pipe |3 |4 | 420 | 0.040 0.10 - - - |-
6 Pipe | 5|6 | 500 | 0.175 0.10 - - - |-
7 Fitting | 2 | 3 - 0.200 - 3.00 - - |-
8 Fitting | 4 | 5 - 0.175 - 5.00 - - -
9 Fitting | 3 | 7 - 0.030 - 2.00 - - |-

Table 5.7: Node Parameters of Test Case

Pressure Demand )
e, ) ot
(m) (m°/s)
1 0.00 Unknown 70
2 Unknown 0.00 0
3 Unknown 0.00 0
4 Unknown 0.00 0
5 Unknown 0.00 0
6 0.00 Unknown 10
7 Unknown 0.00 0
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Table 5.8: Element Discharge Comparison of Test Case

Element | Element .Flov&'r Element Pischarge Relative
Number | Type D.1rect10.n ():) Er‘ror
i j | Computed | Reference (%)
1 Pipe 1 2 0.00590 0.00591 0.17
2 Pipe 3 4 0.00110 0.00107 -2.80
3 Pipe 3 4 0.00100 0.00095 -5.26
4 Pipe 7 4 0.00130 0.00132 1.52
5 Pipe 3 4 0.00250 0.00256 2.34
6 Pipe 5 6 0.00590 0.00591 0.17
7 Fitting 2 3 0.00590 - -
8 Fitting 4 5 0.00590 - -
9 Fitting 3 7 0.00130 - -
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Test Case 3. Determine the flow distribution of water in the system shown
in Figure [5.6, Assume constant friction factors, with f = 0.02. The head-
discharge relation for the pump is Hp = 60 — 10Q?, where Hp is in meters
and the discharge is in cubic meters per second. Table shows the element

parameters.
el 50 m
el 48 m

[2]

[3]

el0m

N O 3]

[1]
Figure 5.6: Network of Test Case [3| [19]

Table 5.9: Element Parameters of Test Case 3l

Pipe | L (m) | D (mm) | Y. K
1 100 350 2
2 750 200 0
3 850 200 0
4 500 200 2
5 350 250 2

For this problem, the free-body diagram is shown in Figure As it is seen
from Figure 5.7 there are 9 nodes, 9 elements. Elements are composed of 1
pump, 3 valves and 5 pipes. There are also 3 reservoirs as nodal parameters.

Element Characteristics of the system and node parameters are shown in Table
and respectively. Pressure heads, demand discharges and element
discharges are shown in Table [5.12] As it is seen at the table, the program
results are compared with the results of the book [19]. The relative errors among
the results are almost none. Therefore, it is shown that the program solves this

problem correctly.
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Figure 5.7: Free-Body Diagram of Test Case

Table 5.10: Element Characteristics of Test Case [3

Elem. | Elem. | L D Friction | Fitting Pump

Num. | Type v (m) | (m) Factor | Coeff. | Parameters
f K COH | a | b
1 Pipe |2 |3 ] 100 | 0.35 0.020 - - - |-
2 Pipe |4 |5 ] 750 | 0.20 0.020 - - - |-
3 Pipe |4 |5 ] 850 | 0.20 0.020 - - - |-
4 Pipe |6 |7 ] 500 | 0.20 0.020 - - - |-
5 Pipe |9 |8 | 350 | 0.25 0.020 - - - |-
6 Pump |12 - - - - 60 10 | 2
7 Fitting | 3 | 4| - 0.35 - 2.00 - - |-
8 Fitting | 5 | 8 - 0.25 - 2.00 - - |-
9 Fitting | 7| 5 - 0.20 - 2.00 - - |-

Table 5.11: Node Parameters of Test Case [3l

Pressure Demand )

) ot
(m) (m°/s)

1 0.00 Unknown 0

2 Unknown 0.00 0

3 Unknown 0.00 0

4 Unknown 0.00 0

5 Unknown 0.00 0

6 0.00 Unknown 50

7 Unknown 0.00 0

8 Unknown 0.00 0

9 0.00 Unknown 48

61




Table 5.12: Element Discharge Comparison of Test Case

Flow Element Discharge Relative
Element | Element . . 5
Number | Type D.II'eCtIO-Il (m°/s) Er.ror
i j | Computed | Reference (%)
1 Pipe 2 3 0.0906 0.0900 -0.67
2 Pipe 4 5 0.0467 0.0460 -1.52
3 Pipe 4 5 0.0439 0.0440 0.23
4 Pipe 7 6 0.0204 0.0200 -2.00
5 Pipe 8 9 0.0701 0.0700 -0.14
6 Pump 1 2 0.0906 - -
7 Fitting 3 4 0.0906 - -
8 Fitting 5 8 0.0701 - -
9 Fitting D 7 0.0204 - -
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Test Case 4. Determine the flow distribution for the 14-pipe water supply sys-
tem shown in Figure 5.8 The characteristic curve for the pump is represented

by 3 point data located on the curve, shown in Figure . (courtesy of D. Wood):

1

= 1500, 400
' e K=5 K=8 1 110 L/s
H < =
P Q 12

166 m 0 mils 610; 350 914; 350
132 0.60

18 1.00
\_.Y._J

(Pump perform-
ance curve

_.
N
=

30; 200

760; 350

(Elevation in m)

"—\

110 L/s

610; 350

2y
o
(Length in m) / %

(Diameter in mm)

K=10 12

610; 350

80 s 60 Lis

Figure 5.8: Network of Test Case [4] [19]

For this problem, the free-body diagram is shown in Figure[5.9] As it is seen from
Figure there are 17 nodes, 19 elements. Elements are composed of 1 pump,
4 valves and 14 pipes. There are also 4 reservoirs as nodal parameters. Actually,
it should be 3. However, one of which is added to satisfy the connectivity of two
pipes to the reservoir for FEM formulation as shown in Figure [5.9]

Element Characteristics of the system and node parameters are shown in Table
b.13] and respectively. Pressure heads and element discharges are shown
in Table |5.15| and respectively. When the program solves the problem, it
plots the flow directions on the network shown in Figure As it is seen in
the tables, the program results are compared with the results of the reference
book. The relative errors between the results are almost none. Therefore, it is

demonstrated that the program solves this problem satisfactorily.
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Table 5.14: Node Parameters of Test Case

Pressure

Demand

Node | Head(?/y) | Discharge(Q) E:(;\;az;c:;n
Number (m) (m*/s)
1 0.00 Unknown 3
2 0.00 Unknown 30
3 0.00 Unknown 34
4 0.00 Unknown 34
5 Unknown 0.00 3
6 Unknown 0.00 12
7 Unknown 0.06 15
8 Unknown 0.00 12
9 Unknown 0.11 18
10 Unknown 0.11 15
11 Unknown 0.00 12
12 Unknown 0.06 6
13 Unknown 0.06 12
14 Unknown 0.00 12
15 Unknown 0.00 12
16 Unknown 0.00 6
17 Unknown 0.00 12
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Table 5.15: Pressure Head Comparison of Test Case

Node Pressure Head (©/y) | Relative
Number (m) Error
Computed | Reference (%)
1 0.000 0.000 Given
2 0.000 0.000 Given
3 0.000 0.000 Given
4 0.000 0.000 Given
d 143.913 143.930 0.01
6 49.816 49.820 0.01
7 26.239 26.240 0.00
8 28.320 28.320 0.00
9 13.322 13.320 -0.02
10 15.778 15.780 0.01
11 24.071 24.070 0.00
12 25.941 25.940 0.00
13 18.768 18.770 0.01
14 04.123 - -
15 31.432 - -
16 26.791 - -
17 18.936 - -
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Table 5.16: Element Discharge Comparison of Test Case

Flow Element Discharge Relative
Element | Element . . 5
Number | Type D.II'eCtIO-Il (m°/s) Er.ror
i j | Computed | Reference (%)

1 Pipe 6 15 0.26580 0.26567 -0.05
2 Pipe 8 9 0.14530 0.14521 -0.06
3 Pipe 9 10 0.03530 0.03521 -0.26
4 Pipe 10 13 0.00470 0.00472 0.42
5 Fitting 14 6 0.51660 - -
6 Pipe 11 12 0.09250 0.09245 -0.05
7 Pipe 11 10 0.13570 0.13563 -0.05
8 Pipe 7 11 0.10770 0.10762 -0.07
9 Pipe 6 7 0.25080 0.25073 -0.03
10 Pipe 8 11 0.12050 0.12046 -0.03
11 Pipe 10 2 0.05630 0.05612 -0.32
12 Pipe 4 16 0.02280 0.02283 0.13
13 Pipe 5 14 0.51660 0.51640 -0.04
14 Pipe 7 3 0.08320 0.08311 -0.11
15 Fitting 15 8 0.26580 - -
16 Pipe 12 17 0.05530 0.05528 -0.04
17 Fitting 16 12 0.02280 - -
18 Pump 1 5 0.51660 0.51640 -0.04
19 Fitting 17 | 13 0.05530 - -
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Test Case 5. For the piping system shown in Figure determine the flow
distribution and piozemelric heads at the junctions. Friction losses are based on
the Darcy-Weisbach relation with an absolute roughness of 0.15mm for all pipes

and a kinematic viscosity of 1076m* /s,

0.14 ms
1520; 400

Length in ™
diiarnetEr in mm)

4000; 600 p

Hp
180m Om'/s
177  0.85
171 1.70

0.10 m'/s

[Pump perform-
ance curve

1380; 300

e

ks
@5"

0.055 m'/s

40
0.055 m’is

Figure 5.11: Network of Test Case [5| [19]

0.055 m'/s

For this problem, the free-body diagram is shown in Figure As it is seen
from Figure [5.12] there are 17 nodes, 20 elements. Elements are composed of 1
pump, 2 valve and 17 pipes. There are also 2 reservoirs as nodal parameters.

Element Characteristics of the system and node parameters are shown in Table
and respectively. Pressure heads and element discharges are shown
in Table [5.19 and [5.20] respectively. When the program solves the problem, it
plots the flow directions on the network as shown in Figure [5.13] As it is seen
at the tables, the program results are compared with the results of the reference
book. The relative errors among the results are very negligible with only one
exception. There is only one relative error which is too big while comparing the
computed and the reference results. This happens to be 19" element’s discharge.

However, continuity equations are satisfied at each node for both the computed
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and the reference results.

0.10m?%s

0.055M/Seaee”

-

0.055“13!5-1-"‘ -..\0'055”13';5
Figure 5.12: Free-Body Diagram of Test Case
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Table 5.18: Node Parameters of Test Case [l

Pressure Demand
Node Elevation
Head(”/y) | Discharge(Q)
Number (m) (m'/2) (Z)(m)
1 0.00 Unknown 15
2 0.00 Unknown 61
3 Unknown 0.000 15
4 Unknown 0.000 46
5 Unknown 0.140 49
6 Unknown 0.000 50
7 Unknown 0.100 49
8 Unknown 0.100 46
9 Unknown 0.000 43
10 Unknown 0.140 44
11 Unknown 0.000 44
12 Unknown 0.055 40
13 Unknown 0.055 41
14 Unknown 0.055 40
15 Unknown 0.085 46
16 Unknown 0.000 50
17 Unknown 0.000 46
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Table 5.19: Pressure Head Comparison of Test Case

Node Pressure Head (©/y) | Relative
Number (m) Error
Computed | Reference (%)
1 0.000 0.000 Given
2 0.000 0.000 Given
3 177.145 177.150 0.00
4 109.711 109.490 -0.20
3 83.757 83.550 -0.25
6 76.608 76.030 -0.76
7 73.440 73.640 0.27
8 76.876 77.040 0.21
9 86.947 87.000 0.06
10 80.060 80.130 0.09
11 92.632 92.560 -0.08
12 96.093 96.020 -0.08
13 92.213 92.120 -0.10
14 88.573 88.610 0.04
15 76.419 76.590 0.22
16 69.501 - -
17 114.032 - -
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Table 5.20: Element Discharge Comparison of Test Case

Element | Element .Flov&'r Element Pischarge Relative
Number | Type D.1rect10.n ():) Er‘ror
i j | Computed | Reference (%)
1 Pump 1 3 0.82330 0.82311 -0.02
2 Pipe 3 17 0.82330 0.82311 -0.02
3 Pipe 4 5 0.45910 0.46026 0.25
4 Pipe 5 6 0.17330 0.17763 2.44
5 Pipe 16 2 0.09330 0.09311 -0.20
6 Pipe 6 7 0.08000 0.08452 5.35
7 Fitting 6 16 0.09330 - -
8 Pipe 8 7 0.02430 0.02287 -6.25
9 Pipe 9 8 0.12430 0.12287 -1.16
10 Pipe 9 10 0.07490 0.07498 0.11
11 Pipe 9 14 0.03910 0.03919 0.23
12 Pipe 13 | 14 0.01590 0.01581 -0.57
13 Pipe 11 | 13 0.07090 0.07081 -0.13
14 Pipe 4 11 0.36430 0.36285 -0.40
15 Pipe 11 | 12 0.05500 0.05500 0.00
16 Pipe 11 9 0.23840 0.23704 -0.57
17 Pipe > 10 0.14570 0.14263 -2.15
18 Pipe 10 | 15 0.08070 0.07761 -3.98
19 Pipe 7 15 0.00430 0.00739 41.81
20 Fitting 17 4 0.82330 - -
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary and Conclusions

In this thesis, a pipe network solution program is developed by using the Finite
Element Method to run under an existing computer aided engineering software
package C AEeda®™ [I]. The program is capable of solving inflow or outflow
discharges at the reservoir nodes, pressure heads at the junctions and the de-
mand nodes and pipe element discharges in the network.

Large variety of elements, such as pipe, bend, elbow, tee, contraction, expansion,
pump, etc. may be considered.

The program have been tested with several types of networks expressed in Chap-
ter bl The good agreement between program and reference solutions has been
observed. By using geometry, pre and post process capabilities of CAEeda™,
as a result of the program integration, complex pipe network systems can be
analyzed easily. By these ways, it may be used as a promising tool for pipe

network analysis.

6.2 Recommendations

This program may be thought as a prototype solver for pipe networks. Some
methods may also be implemented to the program in the further studies as
mentioned belows:

e Pipe network optimizations

77



e Solution of unsteady-state (water hammer) pipe network analysis
e Solution of pipe network analysis for unknown resistance constant

e Inclusion of the choice for pump characteristics curve data (Currently, 3

point data form is used)
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APPENDIX A

CONTINUITY CHECK FOR EACH NODE FOR TEST
CASE PROBLEMS

In this appendix, continuity checks of the test case problems at each node is
performed in order to verify the correctness of the solutions. Hand Calculations
are used here, but the same checks is made by the program by back substituting
the calculated pressure heads at the nodes to the system of linear equations.

To satisfy the continuity equation, total inflow must be equal to the total outflow

at each node. This is shown below.

Z Qinflow = Z Qoutflow (Al)

or

Z Qinflow - Z Qoutflow =0 (AQ)

A.1 Continuity Check for Each Node for Test Case

[2]

@
s

B

Figure A.1: Continuity for Node 4 in Test Case
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Continuity equation for node 4 is as follows.

5
Z Qinflaw = Qé 10 4

3
= 0.1081
S
2 3
Z Qoutflow = Qé 3&0 9 T+ Qé(l 350 3

= 0.1380 + 0.0602

3
— 0.1982"-
S

5 2 3
Z Qinflow - Z Qoutflow = Q((S 3&0 4 Qé 2&0 2 = 4(1 3&0 3

— 0.1981 — 0.1982
3

— —0.0001%-
S

Error is only 0.0001m°/s. Continuity equation is satisfied at the 4 node.

[¢]
.

@

Figure A.2: Continuity for Node 5 in Test Case

.—_(S)’-l.E .
@)

Continuity equation for node 5 is as follows.

4
Z Qinflow = Qg 3&0 5
3
—0.1981 2%
s

1
E Qoutflow = ff, 10 [
3

m
= 0.1981—
5

4 1
Z Qinflow - Z Qoutflow = QS 250 5 Qé 260 6

= 0.1981 — 0.1981

3
— 0.00002-
S
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Continuity equation is satisfied at the 5 node.

I (Y Yo

Figure A.3: Continuity for Node 6 in Test Case
Continuity equation for node 6 is as follows.

1
E Qinflow - Qé )to 6
3

— 0.1981°%
S

5
E Qoutflow = é 350 4
3

—0.1081%
S

1 5
Z Qinflow - Z Qoutflow = QE’) 2&0 6 Qé 3&0 4

= 0.1981 — 0.1981

3
— 0.00007%
S

Continuity equation is satisfied at the 6 node.

A.2 Continuity Check for Each Node for Test Case

o & @l

Figure A.4: Continuity for Node 2 in Test Case
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Continuity equation for node 2 is as follows.

1
Z Qinflaw = Qg 10 2

3
— 0.0059-
S

7
Z Qoutflow = g 350 3

3

— 0.005972
S

Z Qinflow — Z Qout flow = (1) (7)

1to2 <2 to3

= 0.0059 — 0.0059

3
— 0.00002-
S

Continuity equation is satisfied at the 2"¢ node.

Figure A.5: Continuity for Node 3 in Test Case

Continuity equation for node 3 is as follows.

7
Z Qinflow = Qg )to 3

3
— 0.0059-
S

3to7

Z Qout flow = QgQ)to 4t Q:())S)to 4t Q(g) + Qésia 4
= 0.0011 + 0.0010 + 0.0013 + 0.0025

3
— 0.00597
S
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7 2 3 9
ZQinflow_ZQoutflow:Qg 3503_622(3 )to4_ g3504_ 2(33507_

= 0.0059 — 0.0059

3
— 0.00002
S

Continuity equation is satisfied at the 3" node.

6}

Figure A.6: Continuity for Node 4 in Test Case

Continuity equation for node 4 is as follows.

2 3 4 5
ZQinﬂOw:QL())104+Q£(’)2‘/04+Q$104+Q:(3104

= (0.0011 + 0.0010 + 0.0013 + 0.0025

3
— 0.005972
S

Z Qoutflow = 1(1810 5
3
— 0.0059
S

2 3 4 5
ZQinflow - ZQoutflow = Qi(’) 350 4+QZ(’; 2&0 4+Q$ 2&04+Qi(’) 250 4

= (0.0059 — 0.0059

3
— 0.00007-
S

Continuity equation is satisfied at the 4" node.
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Figure A.7: Continuity for Node 5 in Test Case

Continuity equation for node 5 is as follows.

8
Z Qinflow = Qz(l 2&0 5

3
— 0.0059-
S

6
Z Qoutflow = 5(’) 350 6

3
— 0.0059
S

Z Qinflow - Z Qoutflow

8 6
Qé(lzfoS_QézfoG

= 0.0059 — 0.0059

3
— 0.0000%
S

Continuity equation is satisfied at the 5* node.

[4]

Olk;

Figure A.8: Continuity for Node 7 in Test Case
Continuity equation for node 7 is as follows.

9
§ Qinflow = Qg 3&0 7
3

— 0.00137-
S
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4
E Qoutflow = ’(7 3&0 4
3

—0.00137%
S

9 4
Z melow - Z Qautflow = Qg 2‘/0 7 Qg 3&0 4
= 0.0013 — 0.0013
3

— 0.00007%
S

Continuity equation is satisfied at the 7" node.

A.3 Continuity Check for Each Node for Test Case

EI@—@ 6 @
®

Figure A.9: Continuity for Node 2 in Test Case

Continuity equation for node 2 is as follows.

6
§ Qinflow = g )to 2
3

— 0.0906—
S

1
E Qoutflow = g 350 3
3

— 0.0906
S

Z Qinflow - Z Qoutflow = Qgﬁz‘,o 2 leio 3
= 0.0906 — 0.0906

3
— 0.0000°%
S

Continuity equation is satisfied at the 2"¢ node.

87



.

Figure A.10: Continuity for Node 3 in Test Case

Continuity equation for node 3 is as follows.

1
E Qinflow = Qg 3&0 3
3

— 0.0906-
S

7
Z Qoutflow - Qg 350 4

3

— 0.09062
S

Z Qinflow — Z Qout flow = (1) (7)

2to3 W3to4d

— 0.0906 — 0.0906
3
— 0.00007%
S

Continuity equation is satisfied at the 3" node.

Figure A.11: Continuity for Node 4 in Test Case
Continuity equation for node 4 is as follows.

7
§ Qinflow = Qg 3&0 4
3

— 0.0906-
S
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2 3
Z Qoutflow = QA(L )to 5 1 Qz(l 3?0 5

= 0.0467 + 0.0439

3
— 0.0906-
S

7 2 3
Z Qinflow - Z Qoutflow = 2(3 )to 4 51 3&0 5 El 3&0 5

= (0.0906 — 0.0906

3
— 0.00007-
S

Continuity equation is satisfied at the 4" node.

Figure A.12: Continuity for Node 5 in Test Case

Continuity equation for node 5 is as follows.

2 3
ZQinflow = QA(L 2&0 5 + Qé(l )to 5

= 0.0467 + 0.0439
3

— 0.09062
S

9 8
Z Qoutflow = Qé )to 7+ Qg 10 8

= 0.0204 + 0.0701

3
— 0.0905—
S

2 3 9 8
ZQinflow_ZQOutflOw:Qé(l 3&05+Q4(1 3505_ ézfo?_Qé 2508

= 0.0906 — 0.0905

3
— 0.0001 -
S
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Error is only 0.00017%/s. Continuity equation is satisfied at the 5 node

(6]

Figure A.13: Continuity for Node 7 in Test Case

Continuity equation for node 7 is as follows.

9
§ Qinflow = Qé 3&0 7
3

— 0.020472
S

4
Z Qoutflow = g 350 6

3

— 0.02042-
S

Z Qinflow - Z Qoutflow - Qég)to 7 Q’(74250 6
= (0.0204 — 0.0204
3

— 0.000072
S

Continuity equation is satisfied at the 7" node.

5] _, [e] ® [o]
9 o~ l

Figure A.14: Continuity for Node 8 in Test Case
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Continuity equation for node 8 is as follows.

8
Z Qinflow = Qé )to 8

3
— 0.07012%
S

5
E Qoutflow = é 3&0 9
3

— 0.07012%
S

8 5
Z Qinflow - Z C20utflow = Qé 260 8 — Qé 3‘/0 9

= 0.0701 — 0.0701

3

— 0.0000°2
S

Continuity equation is satisfied at the 8t node.

A.4 Continuity Check for Each Node for Test Case

18

N\
[5]

13

Figure A.15: Continuity for Node 5

Continuity equation for node 5 is as follows.

Z Qinflou) = lei)) 5
3
— 05166
S
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13
Z Qoutflow = Qé t()) 14
3

— 05166
S

18 13
Z Q'mflow - Z Qoutflow = g tg 5 Qé tt)) 14

= 0.5166 — 0.5166

3
— 0.000072
S

Continuity equation is satisfied at the 5* node.

L

ol

®
Figure A.16: Continuity for Node 6 in Test Case

Continuity equation for node 6 is as follows.

Z melow - Qﬁ) to 6
3
— 0.5166—
S

1 9
Z Qoutflow = Qé )to 15 + Qé )to 7

= 0.2658 + 0.2658

3
— 05166
S

5 1 9
Z Qinflow - Z Qoutflow = §4) to 6 Qé )to 15 Q((i 2&0 7

= (0.5166 — 0.2658 — 0.2658

3
— 0.00002-
S
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Continuity equation is satisfied at the 6 node.

O

)

[7] o[

Pl F -
0.06mM>/S g’

4y

||
Figure A.17: Continuity for Node 7 in Test Case

Continuity equation for node 7 is as follows.

9
Z Qinflow - ((5 )to 7

3
— 0.2508-
S

Z Qout flow = lei); 3t Q??ﬁo 1+ Q7
= 0.0832 + 0.1077 + 0.0600

3

— 0.25097%
S

Z Qinflow - Z Qoutflow = Qég)to 7T Q;li)) 3 gszto 1 — Q7
= 0.2508 — 0.0832 — 0.1077 — 0.0600

3
— —0.00017%
S

Error is only 0.0001m°/s. Continuity equation is satisfied at the 7*" node.
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Figure A.18: Continuity for Node 8 in Test Case

Continuity equation for node 8 is as follows.

Z Qinflow = Q§155350 8
3
— 0.2658
S

2 10
Z Qoutflow = Qé )to 9 + Qé t()) 11

= 0.1453 4+ 0.1205
3

— 0.2658"1
S

15 2 10
Z Qinflow - Z Qoutflow = §5 2&0 8 Qé 350 9 é tzw 11

= (0.2658 — 0.1453 — 0.1205

3
— 0.00002-
S

Continuity equation is satisfied at the 8" node.
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[ele @ s

 16))

Figure A.19: Continuity for Node 9 in Test Case

Continuity equation for node 9 is as follows.

2
E melow = Qé 3&0 9
3

—0.14537%
S

Z Qout flow = QE(;)?&O 10+ Qo

= 0.0353 + 0.1100

3
—0.1453"%
S

2 3
Z Qinflow - Z Qoutflow = é(g 350 9 5() 10 10 — QQ

= 0.1453 — 0.0353 — 0.1100

3
— 0.00007%
S

Continuity equation is satisfied at the 9 node.
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Figure A.20: Continuity for Node 10 in Test Case

Continuity equation for node 10 is as follows.

7 3
Z Qinflow = le) to 10 + QS() 10 10

= 0.1357 4+ 0.0353

3
—0.17102%
S

4 11
Z Qoutflow = ng) to 13 + QSO 10 2 + QlO

= 0.0563 + 0.0047 + 0.1100

3
—0.17102%
S

7 3 4 11
Z melow - Z Qoutflow = gl) to 10 T ng 10 10 — ng) to 13 go 350 2 Qlo

= 0.1357 4 0.0353 — 0.0563 — 0.0047 — 0.1100
3

— 0.000072
S

Continuity equation is satisfied at the 10 node.

96



@

B
19
®
B

Figure A.21: Continuity for Node 11 in Test Case

Continuity equation for node 11 is as follows.

8 10
Z Qinflow = Q(7 )to 1+ Qé t()) 11

= 0.1077 4+ 0.1205

3
— 0.228270
S

7 6
Z Qoutflow = le) to 10 + Q(ll) to 12

= 0.0925 + 0.1357

3
— 0.22827%
S

8 10 7 6
Z melow - Z Qoutflow = 53:0 n+ Qé ti 11 — le) to 10 T Q§1) to 12

= 0.1077 4 0.1205 — 0.0925 — 0.1357
3

— 0.0000%
S

Continuity equation is satisfied at the 11** node.
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Figure A.22: Continuity for Node 12 in Test Case

Continuity equation for node 12 is as follows.

Z Qinflow = Q§16710 12+ Qgﬁl) to 12
= 0.0228 + 0.0925

3
—0.1153%
S

16
Z Qoutflow = 52 350 17 + Q12

= 0.0553 + 0.0600

3
—0.11537%
S

17 6 16
Z Qinfiow — Z Qout flow = 56 10 12T le) to 12 ng )to 17+ Q12

= 0.0228 4 0.0925 — 0.0553 — 0.0600

m3
= 0.0000—
S

Continuity equation is satisfied at the 12 node.
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Figure A.23: Continuity for Node 13 in Test Case

Continuity equation for node 13 is as follows.

19 4
Z Qinflow = Q§7 10 13+ ng) to 13

= 0.0553 + 0.0047
3

— 0.06002
S

Z Qoutflow - Q13
3

— 0.06002
S

19 4
Z melow - Z Qoutfzow = Q§7 )to 13+ ng) to 13 — QlS

= 0.0553 4 0.0047 — 0.0600

3
— 0.00007-
S

Continuity equation is satisfied at the 13" node.

Figure A.24: Continuity for Node 14 in Test Case
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Continuity equation for node 14 is as follows.

13
Z Qinflow = Qé ti 14

3
— 0.5166—
S

5
Z Qoutflow - Q§4) to 6

3
— 051662
S

13 5
Z Qinflow - Z Qoutflow = Qé t()) 14 — Q§4) to 6

= (0.5166 — 0.5166

3

— 0.00007-
S

Continuity equation is satisfied at the 14" node.

IEI —-
15
Figure A.25: Continuity for Node 15 in Test Case

Continuity equation for node 15 is as follows.

1
Z Qinflow = Q((i 350 15

3
— 0.2658-
S

15
Z Qoutflow = §5 350 8

3
— 0.26587-
S

1 15
Z Qinflow - Z Qoutflow = Q((S 2&0 15 )

15 to 8

= (0.2658 — 0.2658

3
— 0.00007-
S
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Continuity equation is satisfied at the 15 node.

[4]

@—-—

Figure A.26: Continuity for Node 16 in Test Case

Continuity equation for node 16 is as follows.

12
Z Qinflow = Qz(l t()) 16
3
— 0.02287%
s

Z Qoutflow = Q§167)to 12
3
= 0.0228"

S

Z Qinflow - Z Qoutflow = Qz(llfc)) 16 leﬁ’?z%o 12
= 0.0228 — 0.0228

3
— 0.00002-
S

Continuity equation is satisfied at the 16" node.

[i2]e - o--=o[i]

Figure A.27: Continuity for Node 17 in Test Case

Continuity equation for node 17 is as follows.

Z Qinflow = Q§126350 17
3
— 0.05537%

S
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Z Qoutflow = Q§179)to 13
3
—0.05537%

S

16 19
Z Qinflow - Z Qoutflow = Q§2 3&0 17 )

17 to 13

— 0.0553 — 0.0553
3
— 0.00002
S

Continuity equation is satisfied at the 17" node.

A.5 Continuity Check for Each Node for Test Case

—» [3]
E: (2
@

Figure A.28: Continuity for Node 3 in Test Case

Continuity equation for node 3 is as follows.

1
E Qinflow = Qg )to 3
3

— 0.82337%
S

2
Z Qoutflow = g 350 17

3
—0.82337%
S

Z Qinflow - Z Qoutflow = leio 3 ngg&o 17
= (0.8233 — 0.8233
3

m
= 0.0000—
S

Continuity equation is satisfied at the 3¢ node.
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Figure A.29: Continuity for Node 4 in Test Case

Continuity equation for node 4 is as follows.

20
E Qinflow = Qg’? 250 4
3

—0.82337%
S

3 14
Z Qoutflow - Qz(l 10 5 + QEL t()J 11

= 0.4591 + 0.3643

3
—0.82347%
S

20 3 14
ZQinflow - ZQoutflow - g? )to 4 4(1 250 5 Z(L t()J 11

= 0.8232 — 0.4591 — 0.3643
3

— —0.0001%
S

Error is only 0.0001m°/s. Continuity equation is satisfied at the 4" node.
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Figure A.30: Continuity for Node 5 in Test Case

Continuity equation for node 5 is as follows.

3
g Qinflow = Qz(l 3&0 5
3

— 0.4591%
S

4 17
Z Qout flow = Qé 350 6T Qé t()) 10+ @s

= 0.1733 + 0.1457 + 0.1400

3
— 0.4590-
S

3 4 17
ZQinflow_ZQoutflow :Qé(l 105 - é)to6_ ét()) 10_Q5

= 0.4591 — 0.1733 — 0.1457 — 0.1400

3
— 0.00012%
S

Error is only 0.00017%/s. Continuity equation is satisfied at the 5 node.

o[v]
)

Figure A.31: Continuity for Node 6 in Test Case
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Continuity equation for node 6 is as follows.

4
E Qinflow - Qé 2&0 6
3

—0.17337%
S

7 7
Z Qoutflow - ((3 250 16 + Q((S 350 7

= 0.0933 + 0.0800

3
—0.1733"%
S

4 7
Z Qinflow - Z Qoutflow = é 2&0 6 é 3&0 16 —

(7)
6 to7

=0.1733 — 0.0933 — 0.0800

3
— 0.000°-
S

Continuity equation is satisfied at the 6" node.

Figure A.32: Continuity for Node 7 in Test Case

Continuity equation for node 7 is as follows.

6 8
ZQinﬂow = Qf(i 260 7 + Qé )to 7

= 0.0800 + 0.0243

3
—0.1043%
S
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7
Z Qout flow = Qg 250 15+ Q7

= 0.0043 + 0.1000

3
—0.10437%
S

6 8 7
ZQinflow - ZQoutﬂow = Qé 10 7 + Qé 2&0 7 Qg )to 15 Q?

= 0.0800 + 0.0243 — 0.0043 — 0.1000

3
— 0.00002%
S

Continuity equation is satisfied at the 7" node.

5] 9 0.10m3%s
Figure A.33: Continuity for Node 8 in Test Case

Continuity equation for node 8 is as follows.

9
E Qinflow = Qé 3&0 8
3

—0.12437%
S

8
Z Qoutflow - Qé 3}0 7 + QB

= 0.0243 + 0.1000

3
—0.1243%
S

9 8
Z Qinflow - Z Qoutflow = QS() )to 8 é; 350 7 QS

= 0.1243 — 0.0243 — 0.1000
3

— 0.00007-
S
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Continuity equation is satisfied at the 8 node.

Figure A.34: Continuity for Node 9 in Test Case

Continuity equation for node 9 is as follows.

16
E Qinflow = le 250 9
3

— 0238472
S

10 9 1
Z Qoutfiow = Q') 10+ Q1o s + Q810 14

= 0.0749 + 0.1243 + 0.0391

3
— 0.23837%
S

16 10 9 11
Z Qinflow - Z Qoutflow - le 2‘/0 9 (S tz)) 10 — QE() 2‘/0 8 (S tz)) 14

= 0.2384 — 0.0749 — 0.1243 — 0.0391

3
— 0.00012%
S

Error is only 0.0001m°/s. Continuity equation is satisfied at the 9" node.
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Figure A.35: Continuity for Node 10 in Test Case

Continuity equation for node 10 is as follows.

17 10
Z Qinflaw - Qé ti 10 + QE() t()) 10

= 0.1457 4 0.0749

3
— 0.2206%
S

18
Z Qoutflow - ng 3&0 15 + QIO

= 0.0.0807 + 0.1400

3
— 0.2207%
S

17 10 18
Z Qinflow - Z Qoutflow = Qé tc)> 10T QS() tc)) 10 — (10 )to 15 (10

— 0.1457 + 0.0749 — 0.0807 — 0.1400
3
— —0.0001%
S

Error is only 0.0001m°/s. Continuity equation is satisfied at the 10" node.
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Figure A.36: Continuity for Node 11 in Test Case

Continuity equation for node 11 is as follows.

14
§ Qinflow = Qz(l t()) 11
3

— 0.36437-
S

16 13 15
Z Qoutflow = le 2‘/0 9 + le 2‘/0 13 + le 3&0 12

= 0.2384 + 0.0709 + 0.0550

3
— 0.36437
S

_ (14 (16) (13) (15)
Z Q'mflow - Z Qoutflow - Q4 to 11 ~— W1l to 9 — Qll to 13~ w11 to 12

= 0.3643 — 0.2384 — 0.0709 — 0.0550

3
— 0.00007%
S

Continuity equation is satisfied at the 11** node.

109



15

0.055mM%/s "
Figure A.37: Continuity for Node 12 in Test Case

Continuity equation for node 12 is as follows.

15
Z melow = 51 10 12
3
— 0.0550—
S

Z Qoutflow = QlQ
3

— 0.05502
S

Z Qinflow - Z Qoutflow - §115350 12 — Q12
= 0.0550 — 0.0550
3

— 0.0000"%
S

Continuity equation is satisfied at the 12 node.

0.055mM%s "
Figure A.38: Continuity for Node 13 in Test Case

Continuity equation for node 13 is as follows.
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Z Qinflow = lelngo 13
3
— 0.07097-

S

12
Z Qoutflow - Qg{& 250 14 + QlS

= 0.0159 + 0.0550

3
— 0.0708"-
S

13 12
Z Qinflow - Z Qoutflow = le 10 13 — §3 )to 14 — Q13

= 0.0709 — 0.0159 — 0.0550
3

— 0.00002%
S

Continuity equation is satisfied at the 13" node.

[o]

(i

]
@ L
0.055m®/s
Figure A.39: Continuity for Node 14 in Test Case

Continuity equation for node 14 is as follows.

11 12
Z Qinflow = Qs() t()) 14T nga 350 14

= 0.0391 4 0.0159

m3
= 0.0550—
S

Z Qoutflow = Q14
3

— 0.0550
S
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11 12
Z Qinflow - Z Qoutflow = QE() t()a 14 + Qg?) 350 14 = Q14

— 0.0391 + 0.0159 — 0.0550
3
— 0.000072
S

Continuity equation is satisfied at the 14" node.

p @ 2"

/4
0.085m%/s
Figure A.40: Continuity for Node 15 in Test Case

Continuity equation for node 15 is as follows.

18 19
Z Qinflow = Qg() 2‘/0 15 + Qg t()7 15

= 0.0807 + 0.0043

3
— 0.0850-
S

Z Qoutflow = Q15
3
—0.0850°%
S

18 19
Z Qinflow - Z Qoutflow - ng 250 15 + Q(7 t()) 15 — Q15

= 0.0807 4- 0.0043 — 0.0850

3
— 0.00002-
S

Continuity equation is satisfied at the 15 node.

5
@C?r

Figure A.41: Continuity for Node 16 in Test Case
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Continuity equation for node 16 is as follows.

7
Z Qinflow = é )to 16

3
— 0.09337-
S

5
§ Qoutflow = Qg()) to 2
3

—0.09337
S

7 5
Z Qinflow - Z Qoutflow = Q((S )to 16 — Qgﬁ) to 2

= 0.0933 — 0.0933

3
— 0.00007-
S

Continuity equation is satisfied at the 16" node.

2 2
= =alt

Figure A.42: Continuity for Node 17 in Test Case

Continuity equation for node 17 is as follows.

2
§ Qinflow = Q:(; )to 17
3

— 0.82337%
S

20
Z Qoutflow = g? )to 4
3

—0.82337%
S

2 20
Z Qinflow - Z Qoutflow = QZ(S )to 17— )

17 to 4

= (0.8233 — 0.8233

3
— 0.00007-
S

Continuity equation is satisfied at the 17" node.
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