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ABSTRACT

COMPARISON OF ROTOR INFLOW MODELS FOR FLIGHT SIMULATION
FIDELITY

Güner, Feyyaz

M.S., Department of Aerospace Engineering

Supervisor : Assoc. Prof. Dr. İlkay Yavrucuk

September 2016, 116 pages

In real-time rotorcraft simulations, there are various dynamic inflow models to chose
from. Although dynamic inflow models are well documented in literature, a compar-
isons of them are not commonly available.

In this thesis, dynamic inflow models commonly used in flight simulators are, namely
uniform inflow, extesion of uniform inflow with Payne’s coefficients, Pitt-Peters in-
flow and Peters-He inflow model with higher harmonics, integrated to a well-known
blade element model. A theoretical background for dynamic inflow models are given.
Blade element model and trimming methods are explained. The considered dynamic
inflow models are compared with three different sets of experimental data. First, com-
puted induced flow field for tapered and rectangular blade configurations are com-
pared with the measured inflow. Secondly, the effects of induced flow variation over
the flapping dynamics is examined. Finally, the dynamic inflow models are compared
in terms of steady-state performance predictions. In all comparisons, inflow distribu-
tions on the rotor disk are given and related observations are presented. The fidelity
of the dynamic inflow models are summarized and recommendations are given.

Keywords: dynamic inflow, flight simulation fidelity, Pitt-Peters, Peters-He, uniform
inflow, low advance ratio flapping, rotor performance
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ÖZ

ROTOR İÇ-AKIŞ MODELLERİNİN UÇUŞ SİMÜLATÖRÜ DOĞRULUĞU İÇİN
KARŞILAŞTIRILMASI

Güner, Feyyaz

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. İlkay Yavrucuk

Eylül 2016 , 116 sayfa

Gerçek zamanlı döner kanat simülasyonlarında, seçim yapılabilecek birçok dinamik
iç-akış modeli bulunmaktadır. Dinamik iç-akış modelleri literatürde iyi belgelenme-
sine karşın, modellerin karşılaştırılması genellikle mevcut değildir.

Bu tezde, uçuş simülatörlerinde yaygın olarak kullanılan eşdağılımlı iç-akış, Payne’nin
katsayılarıyla genişletilmiş eşdağılımlı iç-akış, Pitt-Peters iç-akış ve yüksek harmo-
nikli Peters-He iç-akış modelleri iyi bilinen bir pal elemanı modeline entegre edil-
miştir. Dinamik iç-akış modellerinin dayandığı teorik altyapı verilmiştir. Pal elemanı
modeli ve trim metodu açıklanmıştır. Dikkate alınan dinamik iç-akış modelleri üç
farklı gruptaki deneylesel verilerle karşılaştırılmıştır. İlk olarak, konik ve diktörgen
palli konfigurasyon için hesaplanan iç-akış alanı, deneysel iç-akış ölçümleriyle kar-
şılaştırılmıştır. İkinci olarak, iç-akış varyasyonunun flaplama dinamiğine etkisi in-
celenmiştir. Son olarak, dinamik iç-akış modellerinin kararlı durumdaki performans
tahminleri karşılaştırılmıştır. Tüm karşılaştırmalarda, rotor diski üzerindeki iç-akış
dağılımı verilmiş ve ilgili gözlemler sunulmuştur. Dinamik iç-akış modellerinin doğ-
ruluğu özetlenmiş ve modellerin kullanımı için tavsiyeler verilmiştir.

Anahtar Kelimeler: dinamik iç-akış, uçuş simulasyonu doğruluğu, Pitt-Peters, Peters-
He, eşdağılımlı iç-akış, düşük hız oranlı flaplama, rotor performansı
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for his guidance, support and encouragement during preparation of this thesis.

I would like thank my colleges and friends from Aerotim Engineering LLC, Dr. Gö-
nenç Gürsoy, Onur Tarımcı, Mert Türkal, Serdar Üşenmez, Ercan Özgönül, Nil Ercan,
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NOMENCLATURE

Latin Symbols

a, Clα lift curve slope

A rotor disk area, ft2

c blade chord, ft

CL roll moment coefficient

CM pitch moment coefficient

CT thrust coefficient

CP power coefficient

CX drag force coefficient, shaft axis

CY side force coefficient, shaft axis

Iβ flapping inertia, slug − ft2

k effective radius gain

kβ flapping spring constant

L′ sectional lift, N/m

L influence coefficient matrix

m, r harmonic number

n, j polynomial number

M apparent mass or time-filter matrix

p non-dimensional rotating flapping frequency, p =
√

1 +
kβ

Ω2Iβ

Q number of rotor blades

R rotor radius, ft

r non-dimensional radial location of a blade element

t̄ non-dimensional time, Ωt

V flow parameter matrix

vi induced flow, ft/s

Vclimb climb velocity, Vclimb = −V∞sin(αs), ft/s

Vinplane inplane velocity, Vinplane = V∞cos(αs), ft/s

VT non-dimensional total average velocity passing the rotor

xix



Vtip tip speed, ΩR, ft/s

V∞ freestream velocity, ft/s

Greek Symbols

αrj , β
r
j inflow coefficients

α angle of attack, rad

αs shaft angle, positive aft of vertical

αtpp tip-path plane angle, positive aft of vertical

λ total inflow divided by ΩR

λf inflow due to freestream divided by ΩR

λi induced flow divided by ΩR

µ advance ratio defined in the experiments, µ = V∞
ΩR

µr advance ratio defined in the inflow theories, µr =
Vinplane

ΩR

Ω rotor rotational speed, rad/s

φrj radial shape function

ψ rotor azimuth angle

ρ air density, slug − ft3

σ rotor solidity, σ = Qc
πR

χ wake skew angle, χ = π
2
− tan− 1(| λ

µr
|)

X wake skew function, X = tan(| χ
2
|)

τ inflow time constant

θ0 collective pitch

θ1c lateral cyclic pitch

θ1s longitudinal cyclic pitch

θ blade total pitch angle, θ = θ0 − θ1c cos(ψ)− θ1s sin(ψ)

β0, a0 coning angle

β1c, a1 longitudinal flapping angle

β1s, b1 lateral flapping angle

β total flapping angle, β = β0 − β1c cos(ψ)− β1s sin(ψ)
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Superscripts

( )c cosine element

( )s sine element

( )
′ sectional element

˙( ) derivative respect to time, ( )/dt

( )∗ derivative respect to non-dimensional time, ( )/dt̄

(̄ ) non-dimensional quantity or reference parameter

Subscripts

( )0 mean element

( )c cosine element

( )s sine element

( )q element of qth blade

( )aero only related to aerodynamics
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CHAPTER 1

INTRODUCTION

Real-time helicopter simulations are extensively used in pilot training. Building a

real-time simulator is a challenge due to the complex aerodynamic flow around the

helicopter. Especially the helicopter main rotor contributes the complex flow field.

Theories such as free-wake, momentum, blade element-momentum and dynamic in-

flow are generally used in the calculation of the induced flow field in a rotor. In

real-time simulations, usage of dynamic inflows theory is popular.

Helicopters are controlled by forces and moments mainly created at the rotor hub.

Blade element rotor theory is coupled with a dynamic inflow theory to predict these

forces and moments for given control inputs. When different dynamic inflow models

with the same control inputs are used, predicted forces and moments exhibit differ-

ences. Therefore, the contribution of dynamic inflow models to the fidelity of the

helicopter arises. In this thesis, some of the dynamic inflow models commonly used

in flight simulators are compared with the wind tunnel tests and then, a fidelity as-

sessments of the inflow models is given.

1.1 Literature Review

Dynamic inflow models represents the unsteady behaviour of air and incorporate its

effect into the inflow models in a dynamic fashion. These dynamic wake models

use rotor loads as forcing functions. These dynamic models introduce additional

degrees of freedom to helicopter simulation. In dynamic inflow theory, rotor unsteady

aerodynamics such as the wake and lift are treated separately [1]. Thus, various lift
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models can be used in the calculation of the rotor aerodynamics forces. Dynamic

inflow formulations are powerful tools in rotorcraft simulation due to its flexibility

in choosing the lift model. Also, the state-space formulation of the dynamic inflow

models allows both theoretical and empirical modifications to the simulation model.

A simple inflow is the uniform inflow model [2]. This inflow model is based on

momentum theory. The uniform inflow is fairly good in hover calculations due to

symmetry in the relative airspeeds seen by the local blade elements. In forward flight

the symmetric flow conditions are no longer applicable. Thus, induced flow over the

rotor disk becomes non-uniform. In order to improve the uniform inflow solution,

Glauert [3] proposed a linear inflow distribution along the longitudinal axis for for-

ward flight. Similar to Glauert’s proposition, series of experiments on measuring the

time-averaged-induced velocities on rotor disk were conducted by Brotherhood [4].

Using results from experiments, Brotherhood concluded that inflow distribution can

be approximated as a linear function along the rotor longitudinal axis. In later years,

linear distribution of the inflow was suggested by scientists such as Coleman [5],

Dress [6] and Payne [7]. In these studies, the inflow distribution on the rotor is ex-

pressed as a function of static harmonic coefficients. Often, harmonic coefficients are

related to the wake skew angle or/and advance ratio.

Although empirical formulation can represent the inflow distribution in steady-state

flight, an accurate distribution in maneuvering flight requires dynamic inflow coef-

ficients. Carpenter and Friedovich [8] monitored rapid change in the blade pitch

and corresponding thrust response. From measurements, they established a physical

relation between perturbed thrust and the unsteady flow of the air. According to Car-

penter and Friedovich [8], the mean inflow and rotor thrust create inertia effects on

the airflow, thus the settling time of the air is delayed. To have a dynamic representa-

tion, they introduced an apparent mass term into the blade element-momentum theory

equation. This apparent mass term accounts the acceleration of the stagnant fluid.

Based on the classical momentum theory [3], Sissingh [9] worked on the instanta-

neous excitation of thrust and induced flow. He established induced flow and lift

distributions on the rotor disk by using first harmonic sine and cosine terms of the

Fourier series. Sissingh’s model is instantaneous and does not consider the delay of
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the induced flow after the perturbation. Thus, the induced flow model is a quasi-

steady model.

Curtiss and Shupe [10] perturbed the rolling and pitching moments for the hingeless

rotors. Using perturbation, an inflow model for hovering flight in quasi-steady form

is achieved. In their model, Curtiss and Shupe modified the Lock number to include

dynamic inflow effects into the calculation of rotor control derivatives. After Curtiss

and Shupe, the equivalent Lock number and dynamic inflow models were compared

with wind tunnel measurements by Banarjee et al. [11, 12]. Banarjee et al. concluded

that the dynamic inflow model has better response when advance ratio is below 0.4

[11].

Work on the dynamic inflow models was continued by Ormiston and Peters [13]

and they expressed the dynamic inflow model in state-space form. In the developed

model, induced flow is distributed by Fourier series and lift is associated with this

flow. The model has improved correlation with the hingeless rotor experiment. Al-

though the dynamic inflow model uses a complex circulation theory, some elements

of inflow gain matrices are constant or assumed to be zero. In this model, the wake

skew and other flight parameters are not taken into the consideration and coupling

effects between the variables are neglected.

Peters [14] extended the dynamic inflow model by including the apparent mass ef-

fects. In the development, curve fitting of the test data (empirical formulas) is used.

In the model, differential forces on the rotor disk consist of two parts. One part is

due to the acceleration of induced flow, the other part is due to change in the air flow

which passes through the rotor. Although Peters’s model shows good responses in

hover, it is not appropriate for forward flight as a result of missing terms in inflow

gain matrix. Peters’s model has only diagonal elements, in other words, he neglected

the coupling effects arising in forward flight.

Pitt and Peters [15, 16] extended dynamic inflow model for forward flight by using the

actuator disk theory of Mangler [17]. Pitt and Peters’ dynamic inflow model is an un-

steady aerodynamic model which works in time domain. This dynamic inflow model

is widely used in stability and control analysis applications and real-time simulations.

In Pitt-Peters inflow model only low frequency aerodynamics are considered. Thus,
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it is only a low-order approximation to the induced flow field. Considering only low

frequencies is inadequate in the investigation of the higher frequency dynamics such

as vibration, higher harmonic controls and aeroelastic applications. Consequently, a

more general model is needed for higher frequency dynamics.

Using the solution of acceleration potential on elliptic domain, and assuming rotor

has skewed cylindrical wakes, Peters and He [18, 19] developed a new inflow model

which considers the higher frequency of wake dynamics. In previous models, inflow

on the rotor disk was limited to only uniform inflow or first static harmonic coeffi-

cients. In this model, higher harmonics, hence, higher order dynamics (frequencies)

are included. This new model is called Peters-He inflow model, and inflow states are

calculated using first order differential equations. In this model, the blade lift is used

as the forcing function in the equations. Also a complete closed form solution of the

equations are derived. In this approach, inflow states are expressed azimuthally by

Fourier series and radially by Legendre functions [18, 19].

Following the Peters-He model, Peters and Morillo [20, 21] developed an inflow

model based on velocity potential (Galerkin approach) rather than the acceleration

potential. Here, Peters-He model was extended to get a solution off the rotor disk.

1.2 Objective of the Thesis

This research is focused on the fidelity assessment of the dynamic inflow theories

commonly used in flight simulators. Although each inflow model is well documented

in literature, detailed comparison of the models is not common.

The rotor inflow has a major influence on the fidelity and accuracy of a main rotor

model on a different inflow models have various characteristics. Some inflow models

are more accurate in hover, yet they have comparably large errors in forward flight. In

some conditions, simple inflow models exhibit relatively close results when compared

with complex models. Moreover, some inflow models might provide better estimation

in blade angle trim, while other models might predict better hub loadings.

In this thesis, dynamic inflow models are compared with various wind tunnel tests.
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Firstly, estimated induced flow fields on the rotor disk are compared with an exper-

imental flow fields [22, 23]. Secondly, the effects of the inflow distribution on low

advance ratio flapping dynamics are investigated [24]. Finally, the S-76 helicopter’s

main rotor steady-state performance data is compared with the numerous inflow mod-

els [25].

In the thesis, dynamic uniform inflow, linearly distributed inflow with Payne’s coeffi-

cients, Pitt-Peters inflow and Peters-He inflow model with higher harmonics are used.

In Peters-He inflow model 3, 6, 10, 15 and 21 inflow states are selected.

1.3 Organization of this Thesis

In Chapter 1, literature review on dynamic inflow models are given. Pitt-Peters and

Peters-He inflow models are reviewed. Also, some characteristic features of the dy-

namic inflow models are shown.

In Chapter 2, theory of the selected inflow models are explained. Here, the closed

form of Pitt-Peters and Peters-He inflow equations are presented. In addition, the

used of blade element rotor model and the trimming method are shown.

In Chapter 3, estimated induced flow fields on the rotor disk are compared with the

wind tunnel measurements. In this chapter, inflow models are compared at the ad-

vance ratio of 0.15 with rectangular and tapered blade configurations. Predicted flow

fields on the rotor are presented in the form of 3-D and contour plots. For some cases,

induced flow variation along longitudinal and lateral axes are presented.

In Chapter 4, low advance ratio flapping dynamics are examined with inflow models

in consideration. Change in the lateral flapping angle, longitudinal flapping angle

and coning angle are provided for three set of experiments. In the wind tunnel tests,

advance ratio, collective pitch angle and shaft tilt angle are treated as sweeping pa-

rameters.

In Chapter 5, steady-state performance data of the S-76 main rotor is compared with

the studied inflow models. In both hover and forward flight tests, trimmed blade an-

gles and power estimations are considered. In forward flight cases, hub drag and side
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forces are additionally given. For some specific test points, inflow distribution and

angle of attack distribution on the rotor disk are shown in terms of 3-D and contour

plots.

In Chapter 6, presented results are summarized and important points are outlined.

Finally, recommendations on future research are given.
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CHAPTER 2

TECHNICAL BACKGROUND

In this chapter, theory behind the inflow models commonly used in flight simulations

are presented. Formulation of the inflow starts with the basic uniform inflow theory.

Then, uniform inflow is extended with linear coefficients to create an inflow distribu-

tion on the rotor disk. Subsequently, closed form of the Pitt-Peters inflow model and

Generalized Dynamic Wake Theory (Peters-He) are explained. After the considered

inflow models, blade element rotor model and trimming approach used in this thesis

are given in the last two sections, respectively.

2.1 Dynamic Uniform Inflow

According to [2] and [3], thrust, T , is a function of uniform induced flow, vi, and at

the rotor hub, momentum theory thrust is given as follow:

T = 2ρA|VT |vi (2.1)

where, VT represents the total average air velocity passing from the rotor disk. In

equation (2.1), VT depends on the vi and relationship between vi and VT are given in

equation (2.2).

|VT | =
√
V 2
inplane + (vi + Vclimb)2 (2.2)

Here, Vinplane and Vclimb are the inplane and climb velocities defined on the rotor

plane, respectively. In the section of blade element rotor model, velocities required
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by the inflow models are shown in Figure 2.2. In equation (2.1), T and vi are un-

knowns, therefore VT become also unknown due to its dependence on vi. In order

to solve equation (2.1), iterative schemes and root finding algorithms are introduced

in [26, 27]. Generally, in these solution methods, blade element theory is used as a

thrust source for momentum theory. The solution converges when blade element and

momentum theory thrust or inflow values are matched.

When rotor is placed in a sphere and perturbed from its steady-state condition, some

portion of the air in the sphere is accelerated [28]. Because of the unaccelerated

air around the rotor, air-mass cannot settle down immediately. When this effect is

introduced into the equation (2.1), inflow dynamics become unsteady and iterative

solution can be avoided as,

T = 2ρA|VT |vi +
4

3
π(kR)3ρv̇i (2.3)

where the acceleration of air is represented by the last term. In literature, this last

term is known as apparent mass or time-lag filter term. In this equation, k represents

the effective radius gain and it has a value between 0.74− 0.86 [28]. In this thesis, k

is assumed as equal to 0.8. For convenience, equation (2.3) is put in a dimensionless

form by normalizing it with ρA(ΩR)2. Then, newly formed first order differential

equation can be solved for derivative of non-dimensional inflow, λi. The new equation

is established as follows:

τ λ̇i = −2
|VT |
ΩR

λi + CT . (2.4)

Here, time-lag filter, τ and derivative of induced flow, λ̇i, are given by,

τ =
4

3
k3

λ̇i =
v̇i

Ω2R

(2.5)

In equation (2.4), uniform inflow dynamics are defined by a first order differential
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equation. In this equation, thrust coefficient, CT , can be calculated using blade ele-

ment theory [26, 27].

2.2 Extension of Uniform Inflow Theory with Glauert Coefficients

The uniform inflow at the rotor disk can be distributed along the longitudinal and lat-

eral axes by adding static linear coefficients. At first, only longitudinal axis variation

is taken into consideration [3]:

λi(r̄, ψ) = λ0(1 + kcr̄ cosψ) (2.6)

where, ψ and r̄ are the azimuth angle and non-dimensional radial position of the

rotor element, respectively. Here, distribution of induced flow in longitudinal axis

is provided by kc term. When variation along the lateral axis is concerned equation

(2.6) can be extended by the similar approach. The following form can be used for

this case,

λi(r̄, ψ) = λ0(1 + kcr̄ cosψ + ksr̄ sinψ) (2.7)

Induced flow measurements are used for kc and ks correlations. Some of the kc and

ks (based on empirical formulas) are given in [5, 6, 7]. Additionally, in [29] linear

inflow coefficients, kc and ks, are well summarized. Table 2.1 presents the related

coefficients [29].

In this thesis, Payne’s kc and ks coefficients are selected. These coefficients are ex-

pressed as follows:

kc =
4/3 tan(χ)

1.2 + tan(χ)
ks = 0. (2.8)

here, χ is called as the wake skew angle. When equations (2.7) and (2.8) are used,

variation along the longitudinal and lateral axes can be obtained. The uniform in-

flow used in equation (2.7) is calculated from equation (2.4). In this thesis, linearly
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distributed inflow model is named as Payne’s inflow model due to selection of coeffi-

cients given in equation (2.8)

Table 2.1: First Harmonic Inflow Model Coefficients

Year Author(s) kc ks
1945 Coleman et al. tan(χ/2) 0

1949 Dress (4/3)(1− 1.8µ2
rtan(χ/2) −2µr

1959 Payne 4/3 tan(χ)
1.2+tan(χ)

0

1979 Blake and White
√

2sin(χ) 0

1981 Pitt and Peters (15π/32)tan(χ/2) 0

1981 Howlett sin2(χ) 0

2.3 Pitt-Peters Inflow

The Pitt-Peters inflow model is constructed using actuator-disk theory and the model

consists of both unsteady and quasi-steady parts. Unsteady part of the theory is in-

cluded in the apparent mass term and this term is obtained from delayed reaction

of the accelareted impermeable disk [30]. The quasi-steady part of the equation is

related to solution of the pressure discontinuity at a circular disk [30].

According to [15, 16, 31], induced flow variation on the rotor disk can be shown as

follows:

λi(r̄, ψ) = λ0 + λsr̄ sinψ + λcr̄ cosψ (2.9)

where, λ0, λs, λc are the inflow states. Here, r̄ represents the non-dimensional radial

location and ψ is the azimuth angle. Distribution defined in equation (2.9) is similar

to the previous distribution given in equation (2.7). In the newly defined distribution,

linear coefficients (kc & ks) are replaced with the λc, λs and they become new states

of the equation (2.9). Through these states (λc and λs) a relation between inflow

variation and aerodynamic hub moments is established.
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In Pitt-Peters inflow model, states are obtained after solving a first order differential

equation given in matrix form. Here, aerodynamic hub thrust, roll moment and pitch

moment coefficients are used as forcing terms of dynamic equation. The governing

equation of Pitt-Peters inflow is expressed as follow [15, 31]:

[M ]


λ0

λs

λc


∗

+ [V ][L]−1


λ0

λs

λc

 =


CT

−CL
−CM


aero

(2.10)

where,M , V andL are known to be as mass (time filter), flow parameter and influence

coefficient matrices of Pitt-Peters inflow model. These matrices are defined in [15, 31]

and can be obtained from the following equations (2.11-2.15).

[M ] =
1

π


128
75

0 0

0 16
45

0

0 0 16
45

 (2.11)

[V ] =


VT 0 0

0 V 0

0 0 V

 (2.12)

[L] =


0.5 0 −15

64
π
√

1−sinα∗
1+sinα∗

0 4
1+sinα∗

0

15
64
π
√

1−sinα∗
1+sinα∗

0 4sinα∗

1+sinα∗

 (2.13)

where, the parameters α∗, VT and V are defined as,

α∗ = tan−1 |λ|
µr

VT =
√
µ2
r + λ2

V =
µ2
r + (λ+ λ0)λ

VT

λ = λ0 + λf

(2.14)
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where, µr is expressed as,

µr =
Vinplane

ΩR
(2.15)

Forcing terms of the Pitt-Peters inflow model are the aerodynamic thrust (CT ), roll

moment (CL) and pitch moment (CM ) coefficients. In the model, these terms are

defined on a reference frame placed at the rotor center [31]. Following [15], forcing

terms (CT , CL, CM ) of Pitt-Peters inflow model can be calculated:

CT =
1

ρπΩ2R4

2π∫
0

∫ R

0

L′drdψ

CL = − 1

ρπΩ2R5

2π∫
0

∫ R

0

L′r sin(ψ)drdψ

CM = − 1

ρπΩ2R5

2π∫
0

∫ R

0

L′r cos(ψ)drdψ

(2.16)

In equation (2.16), L′ represents the sectional blade lift.

2.4 Generalized Dynamic Wake Theory (Peters-He)

The Generalized Dynamic Wake Theory (Peters-He) is established by solving the po-

tential flow equation in elliptic domain. In this theory, induced flow on the rotor plane

is azimuthally expressed by Fourier series and radially by Legendre functions. In the

Peters-He inflow model, inflow states are generalized and higher inflow states can be

added to the model by a systematic approach. Therefore, it is of often considered an

extension of Pitt-Peters inflow model. This inflow model implicitly includes dynamic

inflow theory, Theodersen theory and the Prandtl/Goldstein static inflow distribution

[18]. The forcing functions of the model are the radial integrals of the blade loadings.

In this thesis, the closed form of the Peters-He inflow model is summarized. Deriva-

tion of the theory is given in [18, 19]. Closed form Peters-He inflow equations are in
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the form of state-space matrix equation, which makes it suitable for real-time simu-

lations. This form also allows modifications such as vortex ring state, ground effect,

wake distortion, etc.

In Peters-He inflow model [18, 19], induced flow on the rotor disk is expressed in the

following general form:

λi(r̄, ψ, t̄) =
∞∑
r=0

∞∑
j=r+z

φrj(r̄)[α
r
j(t̄)cos(rψ) + βrj (t̄)sin(rψ)], z = 1, 3, 5, ... (2.17)

where, αrj and βrj are the inflow expansion coefficients. Here, φrj represents the ra-

dial shape function for a given harmonic number, r, and order of the polynomial, j.

For any harmonic and polynomial number, the radial shape function, φrj , depends on

factorial ratios, Hr
j and they are given in the following equations (2.18 & 2.19).

φrj(r̄) =
√

(2j + 1)Hr
j

j−1∑
q=r,r+2,...

r̄q
(−1)

q−r
2 (j + q)!!

(q − r)!!(q + r)!!(j − q − 1)!!
(2.18)

Hr
j =

(j + r − 1)!!(j − r − 1)!!

(j + r)!!(j − r)!!
. (2.19)

Here, double factorials are defined as follow:

n!! =



n(n− 2)(n− 4)....3.1 if n is odd

n(n− 2)(n− 4)....2 if n is even

1 if n is equal to 0

1 if n is equal to − 1

−1 if n is equal to − 3

In Peters-He inflow model, the governing equation is expressed as a first order differ-

ential matrix equation [18, 19]. In this model, the cosine and sine part of the inflow
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model is decoupled. Thus, they can be treated as two independent equations.

[M c]{αrj}∗ + [L̃c]−1[V c]{αrj} =
1

2
{τ rcj }. (2.20)

[M s]{βrj}∗ + [L̃s]−1[V s]{βrj} =
1

2
{τ rsj } (2.21)

where, (M c, M s), (V c, V s) and (L̃c, L̃s) are apparent mass, mass flow parameter,

and inflow gain matrices, respectively. Calculation of these matrices are given in the

following equations (2.22 - 2.27).

Apparent mass matrix is a purely diagonal matrix which shows no coupling between

the states. Sine and cosine mass matrices are identical except when r = 0. In this

case, sine term vanishes (sin(0) = 0).

[M ]c,s =
2

π


. . .

Hr
j

. . .

 (2.22)

In Peters-He inflow model, calculation of flow parameter matrix is similar to the one

defined in Pitt-Peters model. Likewise the mass matrix; cosine and sine parts of the

flow parameter matrix is equal unless r = 0. In flow paramer matrix, when r = 0

and j = 1, V 0
1 become equal to VT . For any other r and j, elements of V r

j become

equivalent to V .

[V ]c,s =


. . .

V r
j

. . .

 (2.23)

VT =
√
µ2
r + λ2

V =
µ2
r + (λ+ λm)λ

VT

λ = λm + λf

(2.24)
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where, λm is the mean inflow of the Peters-He inflow model. When λm =
√

3α0
1 is

used as mean inflow, coupling between α0
1 and VT make the theory non-linear [18].

Inflow gain matrix, L, depends on the wake skew angle. This dependence varies

according to polynomial number, r, cosine and sine part of the matrix.

˜[L0m
jn ]

c
= Xm[Γ0m

jn ] if r = 0

˜[Lrmjn ]
c

= [X |m−r| + (−1)lX |m+r|][Γrmjn ] if r 6= 0

˜[Lrmjn ]
s

= [X |m−r| − (−1)lX |m+r|][Γrmjn ] if r 6= 0

(2.25)

where, l and X are defined as follows:

l = min(r,m)

X = tan(| χ
2
|)

χ =
π

2
− tan− 1(| λ

µr
|)

(2.26)

Finally, Γ elements of L matrix are given in the next equation.

[T rmjn ] =
(−1)

n+j−2r
2√

Hn
mH

j
r

2
√

(2n+ 1)(2j + 1)

(j + n)(j + n+ 2)[(j − n)2 − 1]
if r +m is even

[T rmjn ] =
π

2
√
Hn
mH

j
r

sign(r −m)√
(2n+ 1)(2j + 1)

if r +m is odd, |j − n| = 1

[T rmjn ] = 0 if r +m is odd, |j − n| 6= 1

(2.27)

Forcing terms in the governing equations (2.20, 2.21), (τ 0c
j , τ rcj , τ rsj ) relate blade lift

to the pressure coefficients through radial shape functions. Pressure coefficients can

15



be expressed as [19]:

τ 0c
j =

1

2π

Q∑
q=1

[

∫ 1

0

L′q
ρΩ2R3

φ0
j(r̄)dr̄]

τ rcj =
1

π

Q∑
q=1

[

∫ 1

0

L′q
ρΩ2R3

φrj(r̄)dr̄] cos(rψq)

τ rsj =
1

π

Q∑
q=1

[

∫ 1

0

L′q
ρΩ2R3

φrj(r̄)dr̄] sin(rψq)

(2.28)

Here, L′q represents blade sectional lift of the qth blade. In Peters-He inflow theory, in-

flow and blade lift are individually treated, thus any blade lift theory can be integrated

to the model. Throughout the thesis, lifting line theory is applied in the calculation of

blade lift.

In this thesis, equation (2.17) is expanded to obtain 3, 6, 10, 15 and 21 inflow states.

The expansion is performed using the table given in [19]. Using the table, the maxi-

mum required indices of the parameters, r and j, hence, inflow models with desired

number of states are obtained.

2.5 Blade Element Rotor Model

The blade element rotor model used in this thesis is based on [32]. This well-known

rotor model is commonly used in real-time flight simulators. Here, the default inflow

model is replaced by the inflow models explained in the previous sections. Coupling

between dynamic inflow models and blade dynamics [18] are expressed in the Fig-

ure 2.1.

In blade element theory, the rotor blade is discretized into differential elements radi-

ally and azimuthally on the rotor plane with a number of virtual blades. Selection of

the virtual blade number depends on parameters such as rotor rotational speed, sim-

ulation step-size and magnitude of the numerical oscillations, etc. There should be

enough virtual blades number to allow the main rotor to represent the dynamics of

the main rotor flapping.
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Figure 2.1: Relation between Dynamic Inflow and Rotor Dynamics

This blade element main rotor code uses detailed rotor parameters and geometry in-

formation. The model takes rotational speed, blade number, radius, twist, mass, chord

and flapping inertia as input. It also uses hinge offset, hub spring, pitch-flap coupling

angle and pre-cone angle when available. In order to increase fidelity, blade twist and

chord geometries can be given in the form of look up tables. These tables are created

as a function of non-dimensional radial blade location.

The inflow has a complex distribution on the rotor disk and it changes the angle of

attack of the blade element on the rotor disk. Because of this change, the calculated

differential forces and moments at the given location also changes. Thus, induced

flow distribution plays important role in the estimation of the rotor forces and mo-

ments.

The collective motion is directly related to the loading on the blade, which causes the

coning. Cyclic movements change the flapping angles to adjust the load distribution

on the hub. Therefore, the solution of the flapping dynamics plays a major role in

helicopter’s steady-state performance and its transient response. The flapping angle

acceleration is expressed in terms of a second order differential equation and this

equation consists of aerodynamic and inertial forces. The flapping rate and flapping

angle are found by integration. The integration of this equation is a major challenge

since the rotor flapping dynamics is much faster than the total helicopter dynamics.

The method for the integration technique can be found at [32].
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In the blade element main rotor code, the net air velocity vector are calculated at ev-

ery azimuth angle and radial location (all elements in the hub). The net perpendicular

velocity of the blade element is used in the calculation of the corresponding (local)

angle of attack. The net perpendicular velocity consists of a free-stream velocity com-

ponent, induced flow contribution and velocity created by the flapping motion. After

attaining angle of attack; lift and drag coefficients are determined from 2-D look up

tables, which are functions of angle of attack and Mach number when available. Then,

sectional lift and drag forces are calculated at the considered blade element. In the

force calculation, tip loss is neglected. Also, reverse flow region is not included in the

model whenever a linear lift curve slope is used instead of lookup tables. In reverse

flow region, while angle of attack is high, the dynamic pressure seen by the blade

is low. Thus, overall force contribution is small and can be neglected. According

to [33], the reverse flow effects can be ignored when advance ratio is below 0.5.

In this thesis, isolated blade element rotor models with different inflow theories are

investigated. In the calculations of the induced flow theories, some velocities are

defined such as climb and inplane. Figure 2.2 presents these velocities and related

coordinate system. Free-stream velocity, V∞ and advance ratio, µ, are aligned with

a reference line. Shaft tilt angle, αS , is defined positive to aft of the vertical line. In

Figure 2.2, shaft is tilted forward; thus has a negative value. Since free-stream veloc-

ity is parallel to the reference line, velocities parallel (Vinplane, µr) and perpendicular

(Vclimb, λf ) to rotor (hub) plane can be calculated as follow:

Vinplane = V∞cos(αs) µr =
Vinplane

ΩR

Vclimb = −V∞sin(αs) λf =
Vclimb
ΩR

(2.29)

In the inflow theories, induced flow (vi, λ0, λm or λi ) is defined perpendicular to

the rotor plane and it has a positive value when flow is towards the negative z-axis

direction. In blade element rotor model, angle of attack is calculated at the local blade

element which has a flapping motion. Therefore, induced flow is transformed to the

flapped blade frame and the component of the inflow perpendicular to local blade

element is used in the calculation of angle of attack.
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Figure 2.2: Velocities on a Rotor Plane

2.6 Trim using an Automatic Controller

The helicopter rotors are tested in the wind tunnel [22, 23, 24, 25] at various condi-

tions. In order to do comparisons with the experimental data, simulations must be

trimmed to appropriate test conditions. In this thesis, models are trimmed with the

auto-pilot algorithm [1, 34]. Figure 2.3 shows the implementation of the trim scheme.

In this trim scheme, blade cyclic inputs are connected to rotor hub thrust and moments

or first harmonic flapping angles through a second order differential matrix equation.

Thus, when experimental hub thrust (C̄T ), roll (C̄L) and pitch moment (C̄M ) values

are known, corresponding blade inputs (θ0, θ1s, θ1c) can be found by integrating the

differential equation. The trimming algorithm block in Figure 2.3 has the following

differential equation [1]:
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Figure 2.3: Schematic of the Trim Method


τ0 0 0

0 τ1 0

0 0 τ1




θ0

θ1s

θ1c


∗∗

+


θ0

θ1s

θ1c


∗

=


K0 0 0

0 K1 0

0 0 K1




6
aσ

0 0

0 − 16
aσ

2γ
aσ(p2−1)

0 − 2γ
aσ(p2−1)

− 16
aσ




C̄T − CT
C̄L − CL
C̄M − CM


(2.30)

where, τ0 and τ1 are the time constants for the collective and cyclic channels, re-

spectively. Parameters, K0 and K1 represent the collective and cyclic pitch gains.

Typical values for the time constants (τ0, τ1) and cyclic gains (K0, K1) are given in

the [1, 34]. In equation (2.30), a stands for the lift curve slope, σ is the solidity, p

is non-dimensional rotating frequency and γ represents the Lock number. The super-

script bar, (̄ ), shows the reference parameters where the model is to be trimmed.

In equation (2.30), the far right term at the right hand side defines the errors between

the desired hub loadings and simulation outputs. For robustness of the solution, time

filter constants are introduced for the non-dimensional second derivatives of the con-

trol inputs [34]. In order to find converged control inputs, equation (2.30) is integrated

in time. The initial conditions of [θ0 θ1s θ1c]
∗ and [θ0 θ1s θ1c] are taken as zero vectors.

Rotor parameters can be initialized to any meaningful values. For Pitt-Peters inflow
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model, typical convergence of the control inputs are given in Figure 2.4 and errors are

presented in Figure 2.5.
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Figure 2.4: Convergence of the Control Inputs
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Figure 2.5: Error of the Control Inputs

When flapping angles are used instead of thrust and moments, some part of the equa-

tion is changed. The new trimming algorithm for this case is expressed in [1].

21



22



CHAPTER 3

COMPARISON OF INFLOW THEORIES

3.1 Introduction

In this chapter, induced flow field estimation of considered inflow models are com-

pared with the experimental measurements [22, 23]. In literature, higher state Peters-

He models are already validated [1, 18, 19]. Here, inflow models used in flight sim-

ulations (models with relatively less states) are compared with the experimental flow

field. Also, by analysing the flow field, accuracy of the blade element code is double

checked.

In this chapter, induced flow measurement and implementation of the theories are de-

scribed. Then, theoretical flow field computations are compared when advance ratio

is equal 0.15. In the comparison, both rectangular blade and tapered blade config-

urations are used and predictions are given in the form of 3-D and contour plots.

Moreover, inflow along the longitudinal and lateral axes are presented.

3.2 Induced Flow Measurement

Induced inflow experiments [22, 23] are conducted in NASA Langley Research Cen-

ter to measure induced flow on the rotor disk, in various forward flight conditions.

Measurements are taken one chord above from the rotor tip path plane using the Laser

Velocimeter technique. In experiments, measurements are taken in time-accurate

and time-averaged form. In the experiment, sensors are placed at 9 azimuthal po-

sitions (ψ = 0, 30, 60, 90, 150, 180, 210, 240, 330 degrees) and 15 radial blade loca-
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tions. Measurements inherently include the interaction with the fuselage.

In this thesis, time-averaged induced flow data is selected in the comparison of the-

oretical induced flow predictions. Series of experiments are considered at advance

ratio of 0.15 and 0.23 with two blade configuration (rectangular & tapered blades). In

this thesis, experiments at advance ratio 0.15 with rectangular and tapered blades are

concerned. Experiments are carried out such a way that tip path plane of the rotor is

held constant at−3◦, likewise shaft angle is arranged to−3◦ to make flapping angles,

β1c and β1s, equal to zero. Also, steady-state thrust coefficient is set to 0.0064 during

the experiments.

3.3 Implementation

The isolated rotor model explained in Chapter 2 is configured according the rotor

parameters given in Table 3.1. Model compares time-averaged induced inflow data

rather than time-instantaneous ones. Although the resized test rotor has exceptionally

fast dynamics (rotational speed is high), model provide enough robustness in the both

flapping and inflow dynamics. In this chapter, the isolated rotor model has 64 az-

imuthal and 100 radial positions. Also, the model takes into account the root cut-out

and hinge offset location when defining the blade geometry. Shape of the used rectan-

gular and tapered blades are shown at Appendix A. For comparison, the isolated rotor

models must have the same conditions with the experiment for each inflow model.

The isolated rotor model is trimmed using the method explained in Chapter 2.

Isolated rotor model is constructed with the following assumptions:

• Angle of attack is small, linear lift curve slope is used

• Reverse flow region is not modelled

• Elasticity of the blade is neglected

• Flow is incompressible and inviscid

• Lag and feathering dynamics are not considered

• Fuselage interaction on the rotor is neglected
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• Hub drag is not considered

Table 3.1: Rotor Parameters used in Model

Parameter Rectangular Tapered
Number of blades 4 4
Airfoil NACA 0012, Clα = 5.73 NACA 0012, Clα = 5.73

Hinge offset, in 2.0 2.0
Root cutout, in 8.25 8.25
δ3, deg 0.0 0.0
Linear twist, deg -8.0 -13.0
Radius, in 33.88 32.5
Root chord, in 2.6 3.2
Taper ratio - 3:1 to 0.75R
Solidity 0.0977 0.0977
Blade weight, grams 259.3 222.0
Shaft tilt, deg -3.0 -3.0
C̄T 0.0064 0.0064
V∞, knots 55.4 55.7
Vtip, ft/s 624.3 624.0

3.4 Simulation Results and Discussion

3.4.1 Rectangular Blade

In this case, induced inflow at each 64 azimuth and 100 radial positions are calcu-

lated and saved until the desired steady-state condition is reached. This data on the

rotor disk is shown as 3-D and 2-D (contour) plots. In addition, induced flow along

longitudinal axis and lateral axis are presented.

3.4.1.1 3-D Plots

In this section, visualization in 3-D is employed. In uniform inflow theory (Fig-

ure 3.1(a)), a disk parallel on the rotor plane is constructed and it does not show any

variation. Starting with Payne’s inflow model, Pitt-Peters and Peters-He 3-State in-

flow models have linear variation and magnitude of the flows are biased towards aft
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of the rotor. Although Pitt-Peters and Payne models show similar linear variation,

Peters-He 3-State inflow model exhibit comparably larger variation (Figure 3.1(d)).

Figure 3.2 presents non-linear inflow distribution on the rotor plane. Peters-He 6-

state inflow model anticipates greater induced flow values near the blade tip. From

Figures 3.2(b) and 3.2(c), it is seen that Peters-He 15 & 21-State inflow models show

the most resemblance with the measured flow field. Yet, Peters-He 15 & 21-State

models still have discrepancy near the blade tip. According to [18, 19], this discrep-

ancy is alleviated when inflow state is increased to higher values.
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Figure 3.1: Uniform, Payne, Pitt-Peters and Peters-He 3-State Induced Flow 3-D

Plots, Rectangular Blade, µ = 0.15
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gular Blade, µ = 0.15
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3.4.1.2 Contour Plots

Another approach to visualize induced flow distribution on the rotor disk are the con-

tour plots. These plots are established by equipotential lines covering the rotor disk.

From figure 3.3(a), it is seen that uniform inflow does not have any equipotential line

since it consist of a single value. Similar to 3-D plots, contour plots display upwash

at the front (ψ = 180◦) and downwash at the back (ψ = 0◦). Payne, Pitt-Peters and

Peters-He 3-State inflow models have similar flow variation over disk (Figure 3.3). At

the front tip of the longitudinal axis, Peters-He 3-State model (3.3(d)) predicts slightly

larger upwash. Also this model has relatively greater downwash towards the rear side

of the helicopter. Along lateral axis, Payne, Pitt-Peters and Peters-He 3-State models

does not show any variation in this trimmed simulation.

When number of states are increased from 3 to 6, the induced flow variations on the

rotor disk become non-linear (Figure 3.4(a)). Although Peters-He 6-State inflow does

not have upwash at the front tip of the rotor, it clearly has longitudinal variation with

comparably lesser slope. Moreover, this variation is not linear, instead longitudinal

variation is in the form of a second order polynomial. Also, the Peters-He 6-State

inflow model shows lateral variation. As inflow flow states increase from 6 to 15 and

21, the computed flow fields become similar to measured induced flow (Figure 3.4).

Figures 3.4(b) & 3.4(c) show that increase in the state number changes the flow field

on rotor disk such that characteristic double S-shaped lines become apparent. It is

stated in [18, 19] that for a 4-bladed rotor, at least four harmonic numbers (15 inflow

state) should be selected to capture the most fundamental characteristics of the in-

duced flow. Indeed, Figure 3.4(c) presents the fundamental shape of the experimental

flow. Although higher state inflow models have promising estimations without con-

sidering fuselage and hub drag effects, these models are still not enough for predicting

the small upwash region at the tip of the advancing side (Figure 3.4(d)).

In a 4 rectangular bladed rotor configuration, predictions at the root and tip region

become sufficiently well when 51 or greater inflow states are used [19]. However,

inflow models with comparatively high states will add additional complexity to flight

mechanics simulations. Also, they are computationally more demanding than the

lower state models.
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Figure 3.3: Uniform, Payne, Pitt-Peters and Peters-He 3-State Induced Flow Contour

Plots, Rectangular Blade, µ = 0.15
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Figure 3.4: Peters-He 6, 15, 21-State and Measured Induced Flow Contour Plots,

Rectangular Blade, µ = 0.15
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3.4.1.3 Induced Flow along Longitudinal and Lateral Axes

In simulation, all sectional forces and moments on rotor plane are summed, and

moved to the hub. Components of the these forces and moments on the hub plane

become parallel to longitudinal and lateral axes at the hub. From the hub, these forces

and moments are transformed to the body reference system and they are finally carried

to center of gravity for 6-DOF calculations.

Figure 3.5 presents the inflow estimations along the lateral axis. Obviously, uniform

inflow does not have any variation. In this trimmed condition, Payne, Pitt-Peters and

Peters-He 3-State inflow models have uniform flow in lateral axis. Peters-He 15 &

21-State inflow follow the experimental trend at the advancing side near blade tip.

Compared to 15 & 21 state models, Peters-He 6-State inflow model has opposite

trend. However, their inflow estimations are relatively worse when inflow along the

retreating side is concerned.

Longitudinal inflow variation displays better correlations with respect to the lateral

axis (Figure 3.6). While uniform inflow consist of a single value, Payne, Pitt-Peters

and Peters-He 3-State inflow models have linear distribution along longitudinal axis.

In addition to these models, Peters-He 6-State inflow model also presents linear vari-

ation. Although Payne, Pitt-Peters and Peter-He 6-State are relatively close to each

other, Peters-He 3-State model demonstrates excessive linear variation compared to

others. Figure 3.6 shows that higher state inflow models have better correlation to-

wards the root, however they still have discrepancies, especially at the aft of rotor in

predicting the inflow near the blade tip. According to [19], rectangular blades require

higher inflow states in order to achieve improved correlation around the tip region.

In a rectangular blade, pressure becomes relatively larger towards the blade tip when

compared to tapered blade. Thus, models with rectangular blades converge slowly

near the tip and because of that they need more inflow states for better correlation.

In Figure 3.6, Peters-He 15 & 21-State inflow models closely follow the inflow trend

from hub center to front of the rotor. At the front tip, they calculate slightly more up-

wash than the measured flow. Around the center, these high state models overpredict

the measured inflow.
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3.4.2 Tapered Blade

In tapered blade configuration, model construction is similar to the rectangular blade

configuration. In this section, addition to the rectangular blade model, steady-state

control settings are given.

3.4.2.1 3-D Plots

In tapered blade case, considered inflow models are plotted through Figures 3.7 and

figure 3.8. Uniform inflow has a single value on the entire rotor as shown in Fig-

ure 3.7(a). Models with linear variation along longitudinal axis such as Payne, Pitt-

Peters and Peters-He 3-State inflow models are displayed in Figures 3.7(b), 3.7(c)

and 3.7(d), respectively. These models have less downwash or upwash towards the

fore of rotor (ψ = 180◦) and they have greater downwash towards to aft (ψ = 0◦).

Here, Peters-He 3-State inflow model has larger slope than other models. Due to this

large slope, the Peters-He 3-State model has more upwash and more downwash along

longitudinal axis. In steady-state condition with minimal longitudinal and lateral flap-

ping angle, Payne, Pitt-Peters and Peters-He 3-State inflow models do not show any

variation along lateral axis.

Unlike the models with longitudinal distribution, the Peters-He 6-State inflow model

(Figure 3.8(a)) demonstrates a non-linear variation from the retreating side to the

advancing side. The Peters-He 6-State, the magnitude of inflow become less towards

the tip along lateral axis. Figures 3.8(b) and 3.8(c) shows that higher state inflow

models can capture the fundamental characteristics of the measured inflow. Peters-

He 15-State inflow model exhibits good correlation except near the blade tip. In

order to have better prediction in the tip region, the increase in the selected harmonic

numbers (i.e state number) are suggested. When 6 or more states are added to the

Peters-He 15 State inflow model, improvement on estimation of the induced flow are

seen (Figure 3.8(c)). The Peters-He 21-State inflow model, estimation of downwash

towards the aft of the rotor is improved compared to Peters-He 15-State model. Also,

the magnitude of the Peters-He 21-State induced flow at the retreating side (ψ = 270◦)

is reduced and become closer to the experiment.
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Figure 3.7: Uniform, Payne, Pitt-Peters and Peters-He 3-State Induced Flow 3-D

Plots, Tapered Blade, µ = 0.15
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3.4.2.2 Contour Plots

In this section, contour plots for the tapered blade configuration are plotted. Similar

to previous results, uniform inflow does not have equi-potential lines. Contour plots

of Payne, Pitt-Peters and Peters-He 3 State inflow models are given in Figure 3.9.

While these inflow theories have variations along the longitudinal axis, magnitude of

the induced flow is constant in a selected line parallel to lateral axis. Figure 3.9(d)

shows that Peters-He 3-state inflow model predicts greater upwash at the front and

greater downash at the aft of the rotor compared to Payne and Pitt-Peters.

Measured inflow and higher state inflow approximations are presented in Figure 3.10.

Peters-He 6-State model’s contour plot (Figure 3.10(a)) has non-linear variation along

lateral axis and this variation is in the reverse direction compared to rectangular blade

shown previously in Figure 3.4(a). In Peters-He 6-State inflow model, when a line is

selected along the lateral axis, the magnitude of induced inflow near the tip become

relatively less than flow induced at the center. In the rectangular blade configuration,

the magnitude of the inflow is comparatively larger near the tip. Figures 3.10(b)-

3.10(c) show a characteristic "double S" shaped lines for Peters-He 15 & 21-State

models. Peters-He 15-State model has more upwash than measured induced flow at

the front edge. The Peters-He 21-State inflow model presents a better correlation at

the front since it has better flow converges at the front edge compared to Peters-He

15-State model. The Peters-He 15-State model has better predictions towards the aft

of the rotor. Along the lateral axis, both Peters-He 15-State and 21-State predictions

show the correct trend (upwash) near the tip of the advancing blade. However, they

have comparably worse predictions near the tip of retreating blade. These higher

order models predict upwash from azimuthal position of 90◦ to about 240◦. However,

Figure 3.10(d) shows that measured inflow have upwash from 90◦ to 270◦.
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Figure 3.9: Uniform, Payne, Pitt-Peters and Peters-He 3-State Induced Flow Contour

Plots, Tapered Blade, µ = 0.15

37



−0
.0

05

0

0
0.

00
5

0.005

0.
01

0.
01

0.01

0.
01

5

0.
01

5

0.015

0.
02

0.02

0.
02

5

0.025

0.
03

0.03

0.
03

5

0.035

0.
04

0.04

0.
04

5

0.05

ψ = 180o ψ = 0o

ψ = 270o−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(a) Pe-He 6 State Induced Flow

−0.03

−0.
03

−0.02

−0.02

−
0.

02
−0.02

−0.01

−0.0
1

−0.01

−0.01

0

0

0

0

0

0.01

0.01

0.
01

0.01

0.01

0.
01

0.01

0.02
0.02

0.02

0.02

0.02

0.02

0.03

0.
03

0.03

0.
03

0.03

0.04

0.04

0.
04

0.04

0.05

0.05

0.
05

0.06

0.
06

ψ = 180o
ψ = 0o

ψ = 270o−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(b) Pe-He 15-State Induced Flow

−0.02

−0.02

−0.01

−0
.0

1

−0.01

−0.01

0

0

0

0

0

0.01

0.
01

0.01

0.01

0.01

0.01

0.02

0.02
0.02

0.020.02

0.02

0.03

0.03

0.03

0.03

0.03

0.04

0.04

0.
04

0.04

0.
05

0.05

0.0
5

0.06

ψ = 180o ψ = 0o

ψ = 270o−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(c) Pe-He 21-State Induced Flow

−0.02

−0.01

−
0.01

−0.0
1

−0.01

−0.01

0

0

0

0

0.01

0.01

0.
01

0.01

0.02

0.02

0.
02

0.02

0.
03

0.03

0.
03

0.04

0.04

0.04

0.04

0.
05

0.05

0.05

ψ = 180o ψ = 0o

ψ = 270o−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d) Measured Induced Flow

Figure 3.10: Peters-He 6, 15, 21-State and Measured Induced Flow Contour Plots,

Tapered Blade, µ = 0.15

38



3.4.2.3 Induced Flow along Longitudinal and Lateral Axes

In this section, the induced flow predictions of tapered bladed models are closely

examined along lateral and longitudinal axes. Figures 3.11 & 3.12 present inflow

variation along lateral axis and longitudinal axis, respectively.

Along the lateral axis, uniform inflow and Payne, Pitt-Peters and Peters-He 3-State

models do not exhibit any variation. Similar to the rectangular blade case, the Peters-

He 6-State inflow model displays less variation along the lateral axis, but in this case

the direction of the variation is reserved. This reversed flow makes Peters-He 6-State

inflow estimation closer to the experimental results. Similar to the Peters-He 6-State

inflow case, Peters-He 15-State and 21-State inflow predictions become closer to the

data near the blade tip compared to rectangular case.

Along the longitudinal axis, Payne, Pitt-Peters and Peters-He 3-State models show

linear distribution. Addition to these low state models, Peters-He 6-State model also

exhibit linear variation and its variation is close to the Payne and Pitt-Peters. Higher

order induced flow models estimate the induced flow at the tip of rotor aft well, yet

they have discrepancy in the upwash estimations near the front tip.

3.4.2.4 Control Positions

Control positions in trimmed condition are collected for the tapered blade models

and are compared with the experimental settings. Control positions are given in Ta-

ble 3.2. All models generate a relatively close collective (θ0) pitch angle position

and a longitudinal cyclic setting (θ1s) compared to the experiments. However, inflow

models show differences on the lateral cyclic control position (θ1c). While the Peters-

He 3-State model overpredicts the lateral cyclic, Payne and Pitt-Peters inflow models

underpredict the lateral cyclic. Higher state models such as Peters-He 15 and 21-State

show competitively better correlation with the data. However, in lateral cyclic estima-

tion uniform inflow has poor prediction compared the other models. The effect of the

inflow variation over the flapping angle (flapping angle changes the control settings)

is discussed in Chapter 4.
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Figure 3.11: Induced Flows in Lateral Axis, Tapered Blade, µ = 0.15

Figure 3.12: Induced Flows in Longitudinal Axis, Tapered Blade, µ = 0.15

Table 3.2: Controller Settings of Inflow Models, Tapered Blade Configuration, µ =

0.15

Measured Uniform Payne Pitt-Pe Pe-He 3 Pe-He 6 Pe-He 15 Pe-He 21
θ0 6.260 5.943 5.941 5.935 6.148 5.999 6.130 6.140
θ1c -2.080 -0.295 -1.714 -1.719 -2.545 -1.920 -2.206 -2.193
θ1s 1.960 1.846 1.850 1.842 1.846 1.895 1.905 1.850
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3.5 Observations

In this chapter, inflow models with rectangular and tapered blade configurations are

examined. 3-D plots are used to visualize the inflow on rotor disk, and these plots

clearly show the magnitude of the induced flow on the rotor disk. In literature, contour

plots are more common and they are better at the presenting trend. Together with the

3-D and contour plots, the inflow along the lateral and longitudinal axes are displayed

for comparison with [35]. Finally, the control positions of the tapered bladed models

are collected and compared with the measured settings. The following observations

are made using the results in this chapter:

• Models such as Payne, Pitt-Peters and Peters-He 3-State have only linear varia-

tion along longitudinal axis when they are trimmed to zero tip path plane angle.

• Peters-He 3-State inflow model has a steeper linear inflow variation than the

Payne and Pitt-Peters inflow models along the longitudinal axis.

• Visible variation along lateral axis starts with Peters-He 6-State, but it is small

compared to higher state models.

• Higher order models have better flow patterns when compared with the mea-

sured flow.

• Tapered bladed models have better correlation compared to rectangular ones,

especially near the blade tip.

• Excluding the uniform inflow, estimated controller settings are in good agree-

ment with measured ones.

By redoing the same simulations with [18, 19, 35] and having similar results, it is

concluded that constructed blade element model with different inflow theories are

validated for future use.
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CHAPTER 4

EFFECT OF INFLOW DISTRIBUTION ON FLAPPING

ANGLE

4.1 Introduction

Helicopter flapping has utmost importance in flight simulations due to its strong effect

on handling qualities. Rotor inflow has substantial contribution to the simulation

of the blade motion and therefore to the flapping motion ([24]). The non-uniform

rotor inflow affects the prediction of the blade loads, rotor performance, handling

qualities, vibration and noise, etc. Moreover, at low advance ratios the blade motion

is influenced by integrated effects of non-uniform inflow [24]. Therefore the effect of

rotor inflow becomes particularly important at low speeds.

In this chapter, the flapping angles of the rotor with various inflow models and the

experimental setup are compared. The analytical solution based on harmonic balance

approach is discussed and solution is compared with the experimental data. After that,

dynamic inflow theory flapping angles estimations are compared with the experiment.

Finally, observations regarding simulation results are pointed out.

4.2 Experimental Setup and Implementation

Helicopters show relatively larger lateral flapping angle at the low advance ratio flight.

This large lateral flapping angle is mainly caused by the longitudinal inflow variation.

In order to investigate this effect, an experiment [24] on the model rotor of the CH-
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Figure 4.1: CH-47C Model Rotor

47C is conducted in the Boeing V/STOL Wind Tunnel. Figure 4.1 shows the resized

rotor [24]. This rotor has tandem configuration and its forward rotor was removed to

eliminate front rotor’s wash on the rear rotor. Removing the front rotor also minimizes

the fuselage and rear rotor interaction. Therefore, the rear rotor can be treated as an

isolated rotor model with insignificant component interaction [24].

The rotor model explained in Chapter 2.6 is a well-known blade element rotor model

which uses second order rigid blade flapping solution. Here, the default inflow model

is replaced with the inflow models previously explained in Chapter 2.

The blade element model uses 16 virtual blades to calculate hub forces and moments

on the rotor disk. Each rotor blade is divided into 40 elements and elements become

denser towards the blade tip. In the calculations of the angle of attack, the inflow is

taken to be perpendicular to each blade element. Due to fast dynamics of the rotor

model used (resized, faster RPM), the time increment is reduced and is about 1/600

seconds. After calculating the rotor forces and moments on the hub, these forces are

averaged based on the actual blade number. The parameters of [24] are used and

tabulated in Table 4.1.

In this chapter, the isolated rotor model is always trimmed to a desired thrust condition

for a given advance ratio, shaft tilt, longitudinal and lateral cyclic. The result of the

trim routine then are the lateral and longitudinal flapping angles, coning angle and the

collective input angle.
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Table 4.1: CH-47C Resized Rotor Parameters

Parameter Value
Radius 2.73 ft
Chord 0.191 ft
Linear Twist -9.14 deg
Lift Curve Slope 5.73 /rad
Blade Number 4
Hinge Offset 0.0625 ft
Root Cut-out 0.525 ft
Weight Moment 0.49 ft-lbs
Flapping Inertia 0.0248 slug-ft2

Nominal RPM 1574

4.3 Harmonic Balance Solution

In steady state, the flapping equation can be solved analytically. In the analytical

solution, the flapping is approximated with a Fourier series expansion. If this series

is truncated after the first cosine and sine terms, then flapping angle can be expressed

as follows:

β = a0 − a1 cosψ − b1 sinψ (4.1)

Using the flapping expression given in equation 4.1 and its first and second deriva-

tives, a second order flapping equation can be analytically solved. The analyti-

cal flapping solution is not shown here, since it is a classic solution already given

in [36, 27, 26, 28]. Moreover, the same wind tunnel test results and analytical solu-

tion are analyzed in [36]. Findings from [36] are presented in Figures 4.2 and 4.3.

Longitudinal flapping angles, a1, show excellent agreement with the measurement.

On the other hand, analytical estimations of the lateral flapping angles, b1, have large

errors compared to the experiment. In order to improve these estimations, one can

use a more complex lateral flapping equation with correction factors [36]. These an-

alytical expressions implicitly include inflow variation along longitudinal axis. In the

next section, effect of the inflow on the numerical solution of the flapping angles is

examined.
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Figure 4.2: Longitudinal Flapping Angle, a1, Measured and Analytical Solution

Figure 4.3: Lateral Flapping Angle, b1, Measured and Analytical Solution
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4.4 Simulation Results and Discussion

In [24] the resized CH-47C rotor is tested in the wind tunnel using three sweeping

parameters. Those parameters are a sweep in the advance ratio, shaft tilt and collective

position. In all three experiments, the lateral cyclic and longitudinal cyclic input

positions are set to 0 and 0.73 degrees, respectively.

4.4.1 Advance Ratio Sweep, CT/σ = 0.08, αtpp = +1◦ Aft

In the first experiment, the advance ratio is swept from 0 (hover) to 0.24. In this test,

the normalized rotor thrust coefficient, CT/σ, is fixed to 0.08 and the rotor tip path

plane angle, αtpp, is held around 1 degree towards the aft rotor.

The variation in the lateral flapping angle in steady-state with respect to the ad-

vance ratio is presented in Figure 4.4. Results are similar to [24] for uniform inflow.

Throughout the advance ratio sweep, the uniform inflow model has a relatively large

error in predicting the lateral flapping angle. Pitt-Peters and Payne’s inflow mod-

els correctly predict the point of the maximum lateral flapping angle (µ = 0.08).

Whereas the Peters-He inflow model estimates the maximum flapping to be at an

advance ratio of 0.14.
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Figure 4.4: Lateral Flapping Angle vs. Advance Ratio
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The advance ratio (µ = 0.080) where the lateral flapping angle reaches a maximum, is

of particular interest since the modelling error is also the largest at this point. There-

fore, the inflow distributions along the longitudinal and lateral axes at µ = 0.08 are

presented in Figures 4.5 and 4.7, respectively. Additionally, the inflow distributions

over the rotor disks are given in the Figure 4.8.
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Figure 4.5: Induced Flow along Longitudinal Axis, CT/σ = 0.08, µ = 0.08

Figure 4.5 shows that the inflow distributions of Payne and Pitt-Peters Inflow models

are almost identical along the longitudinal axis. As a result, the lateral flapping angle

estimation of these two models are close to each other.

The Peters-He 6-State Inflow model has the lowest longitudinal inflow variation. This

is a result that is obtained when the pressure coefficients of [18] are used. Therefore,

the Peters-He 6-State inflow model has the lowest lateral flapping angle at this ad-

vance ratio.

Figure 4.6 shows the steady-state longitudinal flapping angle predictions with re-

spect to advance ratio. Models have similar trends throughout the velocity range, that

agrees with the experiments. However, the Peters-He 15-State inflow model seems

to have the least correlation for advance ratios higher than 0.08. That is because the
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Peters-He 15-State inflow model starts to predict upwash compared to other consid-

ered models around the blade tip at the advancing side (Figure 4.7). At advance ratios

below 0.08, the Peters-He 15-State inflow model is closer to the Peters-He 21-State.
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Figure 4.6: Longitudinal Flapping Angle vs. Advance Ratio
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Figure 4.7: Induced Flow along Lateral Axis, CT/σ = 0.08, µ = 0.08

The results of Figure 4.6 agree with [24], in the sense that the non-uniformity in the

lateral axis has a minor effect on the longitudinal flapping angle. The results of the

Peters-He 15-State inflow model is an exception due to the reasons explained above.

In fact, the inflow variation in the lateral axis for this model is so large (Figure 4.7) that

the lateral axis inflow distribution effects the longitudinal flapping angle response.
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Figure 4.8: Inflow Distributions over Rotor Disk, CT/σ = 0.08, µ = 0.08
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In these set of experiments, the coning angles are fixed to 3.3 degree. Estimated

coning angles are compared with the experimental results in Figure 4.9. Overall, the

coning angle estimations are close to the results obtained in the experiments.

The modelling error increases with the advance ratio and is always less than 0.4 de-

gree. At low speeds, the coning angle predictions are closer to experimental data.

However, as speed increases they slightly deviate. Unlike in the wind tunnel experi-

ments, the coning angle is a function of the advance ratio in simulation.
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Figure 4.9: Coning Angle vs. Advance Ratio
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Figure 4.10: Collective Pitch Angle vs. Advance Ratio
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In Figure 4.10, the trimmed collective angle variation with advance ratio is shown.

This figure shows that all models have acceptable correlation with the experiment in

the collective channel throughout the advance ratio sweep.

4.4.2 Collective Sweep, µ = 0.08, αs = −1.35◦

The second set of experiments show the rotor flapping angle variations with respect

to changing collective pitch angle. Here, the advance ratio and shaft angle are fixed

to 0.08 and forward 1.35 degree, respectively. Changes in the coning, lateral and

longitudinal flapping with respect to collective pitch are shown.

It is observed that, when the advance ratio and shaft tilt are fixed, the steady-state

flapping angles increase rather linearly with increasing collective pitch (Figures, 4.11-

4.13).
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Figure 4.11: Lateral Flapping Angle vs. Normalized Thrust Coefficient

The comparison of the lateral flapping angle with the experimental data is presented

in Figure 4.11. The lack of non-uniformity in the uniform inflow predictions result

in large errors when compared to the results of the experiment. Other considered

inflow models have better correlation. As the collective pitch increases, the lateral

flapping angles also slightly increase, but not as much as observed in the experiment.

Therefore, the error between the experimental data and the models become larger
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with higher rotor loading.

Figure 4.12 presents the estimations for the longitudinal flapping angles. The trend

of all inflow models seem to agree with the experimental data. While uniform inflow

underestimates the longitudinal flapping with an offset, the Peters-He 15-State inflow

model slightly overestimates the experimental flapping angle.
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Figure 4.12: Longitudinal Flapping Angle vs. Normalized Thrust Coefficient
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Figure 4.13: Coning Angle vs. Normalized Thrust Coefficient

The coning angle predictions are shown in Figure 4.13. All models almost have

identical predictions. As the collective pitch increases, the coning angles also increase
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and the error between the data and the experiment become smaller. Experimental

coning and model predictions show a relatively linear trend with changing collective

pitch.

4.4.3 Shaft Tilt Sweep, µ = 0.08, θ0.75 = 11◦

In this last set of experiments, the shaft angle is varied from −6 to 2 degrees, while

the advance ratio and the collective angle are held constant at 0.08 and 11.75 degree

at 75% radial location, respectively.

Figure 4.14 shows a comparison of the lateral flapping angle with respect to the shaft

tilt angle. The Uniform Inflow has the largest error when compared to the experimen-

tal data. With the exception of the Peters-He 6-State inflow model, the results of the

remaining inflow models are relatively close to each other. The discrepancy of the

Peters-He 6-State inflow model is again credited to the fact that the inflow variation

in the longitudinal axis is the least.
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Figure 4.14: Lateral Flapping Angle vs. Shaft Tilt Angle

While the shaft tilt angle is changed from the most forward position to the most

backward position, the steady-state lateral flapping angle responses show a slight

increase, except the uniform inflow model (Figure 4.14).
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Comparisons of the results of the longitudinal flapping angle are shown in Figure 4.15.

Similar to previous findings, the longitudinal flapping angle responses are in rela-

tive good agreement with the experimental data. Here, the Peters-He 15-State inflow

model overestimates the flapping angle while the uniform inflow model slightly un-

derestimates. All models predict a constant flapping angle, while there is a small

but noticeable increase in experimental data when shaft tilt is at its most backward

position.
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Figure 4.15: Longitudinal Flapping Angle vs. Shaft Tilt Angle
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Figure 4.16: Coning Angle vs. Shaft Tilt Angle
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Estimations of the coning angles are given in Figure 4.16. All rotor models show an

increase in the coning angle with increasing shaft tilt angle.

4.5 Observations

The comparison of the wind tunnel test data of the resized CH-47C model rotor in low

advance ratio as reported in 1972 by Harris [24] is compared with various dynamic

inflow models commonly used in literature. The findings are as follows:

• Generally, the uniform inflow is not enough to predict the lateral flapping angles

in steady forward flight. In fact it has the largest modelling errors.

• A simple linear variation in the longitudinal axis improves the results signifi-

cantly. Therefore, using Payne’s inflow variation or a Pitt-Peters Inflow varia-

tion brings the lateral flapping angle closer to the measured value in the exper-

iments.

• As the inflow states increase, the variation of the inflow on the rotor disk also

increases. Given this higher fidelity of inflow variation, one would expect that

the flap angle responses in steady-state always turn out closer to the experimen-

tal results. This in fact is not always true when Peters-He inflow is modelled

in a rotational system (when the original blade element rotor model structure

is preserved). For instance, results corresponding to Peters-He 6-State and 15-

State inflow models have shown discrepancies in this thesis.
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CHAPTER 5

EFFECT OF DYNAMIC INFLOW MODELS ON

STEADY-STATE PERFORMANCE RESULTS

5.1 Introduction

In this chapter, dynamic inflow models are compared with the wind tunnel test of the

main rotor of the S-76 helicopter in steady-state conditions [25].

The S-76 main rotor had been tested at various test cases. In this thesis, two hover

cases and two forward flight cases are selected. In hover tests, thrust of the rotor is

changed from low to high values. In the first hover test, shaft angle held constant at

−5 degree. In the other test, it is fixed to −15 degree. In forward flight tests, free-

stream velocity is changed from low to high speed conditions. Throughout the speed

range, thrust and shaft angle held constant. In the first forward flight test, normalized

thrust coefficient is equal to 0.065. In the second test, it is equal to 0.080. Shaft angle

is held constant at −5 degree for both forward flight cases.

The S-76 main rotor wind tunnel results are compared with the isolated rotor models

having inflow models explained in Chapter 2. In hover cases; power, first harmonic

blade angles (collective pitch, longitudinal cyclic and lateral cyclic) and coning angle

are compared. In forward flight cases; power, side force, drag force, first harmonic

blade angles and coning angle are shown. In addition to these performance results,

inflow and angle of attack distributions over rotor disk are presented in some test

points. Effect of these distributions over the performance results are also discussed.

57



5.2 Implementation

The S-76 main rotor is modelled as an isolated blade element model explained in

Chapter 2.5. Inflow part of the blade element code is replaced by the dynamic inflow

models explained in Chapter 2. In this chapter, dynamic uniform inflow, Payne’s

inflow, Pitt-Peters inflow and Peters-He inflow with higher harmonics are used. In

Peters-He; 3, 6, 10, 15 and 21 inflow states are selected.

The S-76 main rotor parameters are found at [25, 37, 38] and some parameters are

given at Table 5.1. Blade chord and twist distributions along spanwise direction are

taken from [38] and these distributions are given at Appendix A. Airfoils’ 2-D aero-

dynamic lift and drag coefficient tables are also taken from [38] and these tables are

available in the Appendix B. The S-76 main rotor blade has two different airfoil pro-

files. While SC1095-R8 airfoil is used from rotor center to 80% of the blade, SC1095

airfoil is used after the 84%. Transition region between these airfoils are linearly

interpolated.

Table 5.1: S-76 Main Rotor Properties

Parameter Value
Radius 22 ft
Number of Blades 4
Solidity 0.0748
Hinge Offset 3.70% radius
Blade Mass 3.04 slug
Flapping Inertia 408 slug-ft2

First Mass Moment 30 slug-ft
Hub Spring 1192 ft-lb/rad
Pitch-Flap Coupling 16.96 deg
Airfoils SC1095R8 & SC1095
Nominal RPM 293

The S-76 main rotor’s wind tunnel measurements are gathered at trimmed conditions.

In wind tunnel tests, S-76 main rotor is trimmed to desired thrust and lateral & lon-

gitudinal flapping angles which are assumed to be less than 0.2 degree. Auto-pilot

algorithm explained in Chapter 2.6 is capable of trimming the model to desired thrust

and hub moments or first harmonic flapping angles or mixing of two. In the tests,
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flapping angles are not clear, however hub moments are well documented. Therefore,

isolated rotor models are trimmed to desired thrust, roll and pitch hub moments.

Figure 5.1: S-76 Main Rotor Axis Convention

Direction of the thrust, drag force and orientation of tip path plane can be seen from

Figure 5.1. Normalized thrust coefficient, CT/σ, is perpendicular to tip path plane.

Normalized drag force coefficient, CX/σ, is parallel to plane and normalized side

force coefficient, CY /σ, is positive into the page direction. In the wind tunnel tests,

free-stream velocity, V∞, is taken parallel to ground.

5.3 Simulation Results and Discussion

The main rotor of the S-76 helicopter’s wind tunnel test campaigns are held in number

of different conditions. In this thesis, simulations are done at two hover cases and two

forward flight cases.

In the first hover test, shaft angle is taken equal to forward 5 degree. In the next

hover test, it is selected as −15 degree. In both hover tests, thrust is changed from

low to high values. Hover results are compared in terms of power, first harmonic

blade angles and coning angle for each inflow model. In addition to the performance

results, inflow and angle of attack distributions are plotted for a specific case (αs =

−5◦, CT/σ = 0.078).

In both forward flight cases, shaft angle is fixed to -5 degree. In the first forward flight

test, normalized thrust coefficient is held constant at 0.065. In the second experiment,
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it is equal to 0.080. In these speed tests, additional performance parameters such as

normalized side force and normalized drag force are also investigated. Inflow and

angle of attack distributions in forward flight tests are given at two advance ratio and

these advance ratios are equal to 0.2 and 0.08, respectively.

5.3.1 Hover Performance

5.3.1.1 Thrust Sweep, αs = −5◦

Normalized power coefficient, CP/σ, comparison is given at Figure 5.2. Overall

power estimations are close to experimental data. After the CT/σ value of 0.060, all

models slightly underestimate the power.

Collective angle predictions are presented in Figure 5.3. In middle thrust region,

CT/σ = 0.055, all considered models show good agreement with the experiment.

When CT/σ above 0.070, models do overprediction. In low thrust values, CT/σ is

below 0.040, simulations have slightly more collective pitch.

Figures 5.4 and 5.5 show lateral cyclic and longitudinal cyclic comparisons. For entire

thrust range, longitudinal and lateral cyclic positions have fairly well agreement with

the data. Although these cyclic positions have relatively small errors, both lateral and

longitudinal cyclic positions are consistently underestimated throughout the thrust

sweep. For both cyclic inputs, considered inflow models have almost identical results.

Coning angle estimation is given at Figure 5.6. At the lowest loading, CT/σ = 0.030,

models predict the experimental result. When thrust is increased from low loading to

high loading condition, the experiment shows non-linear change in the coning angle.

Normally, coning has a linear relationship with the thrust. In this case, simulation

results show this linear relationship. For this test condition, experiment is affected by

the ground and/or some kind of facility effect [39].

The inflow and angle of attack distributions on the rotor disk are recorded when CT/σ

is equal to 0.078. Inflow angles are plotted in Figures 5.7 & 5.8. According to

Figure 5.7, uniform, Payne, Pitt-Peters and Peters-He 3-State inflow models have

uniform flow field along both azimuthal and radial directions. Higher state models
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such as Peters-He 6, 10, 15 and 21-State have azimuthally symmetric flow field (Fig-

ure 5.8). In the higher state models, high order radial shape functions are used and

that is why these models have radial difference. In Peters-He 6 and 10-State inflow

models, magnitude of inflows are increased towards the tip of the blade. However,

in Peters-He 15 and 21-State inflow models, inflows are first increased, then near the

tip they are reduced. Effect of these different induced flow fields over the angle of

attack distribution can be seen from Figures 5.9 and 5.10. Although angle of attack

distributions show slight differences near the tip of the blade, performance results

given through in Figures 5.2-5.6 exhibit similar or identical results. Therefore, due to

symmetry, inflow and angle of attack distributions have insignificant effect in perfor-

mance evaluation in hover.
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Figure 5.2: Normalized Power Coefficient vs Normalized Thrust Coefficient, at

Hover, αs = −5◦
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Figure 5.3: Collective Angle vs Normalized Thrust Coefficient, at Hover, αs = −5◦
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Figure 5.4: Lateral Cyclic Position vs Normalized Thrust Coefficient, at Hover, αs =

−5◦
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Figure 5.5: Longitudinal Cyclic Position vs Normalized Thrust Coefficient, at Hover,

αs = −5◦
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Figure 5.6: Coning Angle vs Normalized Thrust Coefficient, at Hover, αs = −5◦
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Figure 5.7: Uniform, Payne, Pitt-Peters & Peters-He 3 State Induced Flow 3-D Plots,

at Hover, αs = −5◦, CT/σ = 0.078
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Figure 5.8: Peters-He 6, 10, 15 & 21 State Induced Flow 3-D Plots, at Hover, αs =

−5◦, CT/σ = 0.078
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Figure 5.9: Uniform, Payne, Pitt-Peters & Peters-He 3 State Angle of Attack Distri-

bution, at Hover, αs = −5◦, CT/σ = 0.078
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Figure 5.10: Peters-He 6, 10, 15 & 21 State Angle of Attack Distribution, at Hover,

αs = −5◦, CT/σ = 0.078
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5.3.1.2 Thrust Sweep, αs = −15◦

In this case, shaft angle is changed from −5 to −15 degree and range of the thrust

sweep is increased. Generally, simulation results are similar to previous case with

the exception of the coning angle. Since performance predictions show similarities,

inflow and angle of attack distributions are not presented in the second hover test.

Normalized power coefficient is compared with the experiment in Figure 5.11. All

considered inflow models are close to each other. When CT/σ is above the 0.05, all

models underpredict the power with small margins. As thrust increases, divergence

between the data and the inflow models become larger.

In Figure 5.12, change in the collective angle respect to normalized thrust coefficient

is presented. Explained inflow models have similar predictions and they have good

agreement with the data especially beneath the CT/σ value of 0.077. When loading

condition become relatively higher, models have comparably less collective angles

than the experiment. At the lowest CT/σ, collective angles become slightly larger

than the data.

The lateral and longitudinal cyclic pitch positions are given in Figures 5.13 and 5.14,

respectively. Likewise the previous hover test, performance results are almost iden-

tical. When CT/σ is under the 0.04, lateral cyclic input is well correlated with the

data. After 0.04, differences between data and the models become comparatively

larger. The maximum error in lateral cyclic position is less than 1 degree. Compared

to lateral cyclic estimations, longitudinal cyclic predictions are closer to the experi-

ment. Throughout the thrust range, longitudinal cyclic exhibit good agreement with

the experimental input.

Coning angle results respect to CT/σ are shown in Figure 5.15. This figure indicates

that experimental coning has a linear relationship with the loading or thrust level.

In the previous case, experimental coning had non-linear relationship. In this case,

overall coning angle estimations agree well with the data. Figure 5.15 shows that

all models have larger coning to thrust ratio compared to the experiment. Therefore,

considered inflow models have relatively less coning than the experiment at the low

loading case. When thrust is high, models have rather greater coning angle.
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Figure 5.11: Normalized Power Coefficient vs Normalized Thrust Coefficient, at

Hover, αs = −15◦
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Figure 5.12: Collective Angle vs Normalized Thrust Coefficient, at Hover, αs =

−15◦
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Figure 5.13: Lateral Cyclic Position vs Normalized Thrust Coefficient, at Hover, αs =

−15◦

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
−4

−3

−2

−1

0

1

2

C
T
 / σ

θ 1s
 (

de
g)

 

 

Experiment
Uniform
Payne
Pitt−Peters
Pe−He 3
Pe−He 6
Pe−He 10
Pe−He 15
Pe−He 21

Figure 5.14: Longitudinal Cyclic Position vs Normalized Thrust Coefficient, at

Hover, αs = −15◦
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Figure 5.15: Coning Angle vs Normalized Thrust Coefficient, at Hover, αs = −15◦

5.3.2 Forward Flight Performance

In this part, forward flight performance results are compared with the wind tunnel

test data. Among various wind tunnel tests, two set of test conditions are selected for

performance evaluation. In these tests, the advance ratio changes from 0.01 to 0.25

and rotor shaft angle is held constant at −5 degree. In the first test, normalized thrust

is held at 0.065. In the second test, normalized thrust coefficient is increased to 0.080.

5.3.2.1 Speed Sweep, CT/σ = 0.065, αs = −5◦

The power estimation respect to advance ratio, µ, is given in Figure 5.16. Except

Peters-He 15-State inflow, all models are close to each other and they show good

agreement with the data throughout the speed range. When advance ratio is under

0.1, models do slight overestimation. After this advance ratio, predictions become

comparatively closer to the experiment, except Peters-He 15-State. After the advance

ratio of 0.15, Peters-He 15-State inflow model starts to diverge from other models and

from the experiment. In high speed conditions, Peters-He 15-State inflow model has
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excessive upwash at the front of the rotor and downwash at the rear side of the rotor.

At the advance ratio of 0.2, inflow distributions are given at Figures 5.23, 5.24, 5.25

and 5.26. Effect of the inflow over the angle of attack can be examined from Fig-

ures 5.27, 5.28, 5.29 and 5.30. Figures 5.28 & 5.30 show that when blade pass through

the retreating side, Peters-He 15-State inflow model has large angle of attack peak

near the blade center. It also has rather large angle of attack at the tip of the ad-

vancing blade. In contrast to this large angle of attack regions, this inflow model has

relatively low angle of attacks at the other regions. Therefore, compared to other mod-

els, Peters-He 15-State inflow model requires more power to provide same loading in

high speed conditions.

Normalized drag force coefficient, CX/σ, estimations are presented in Figure 5.17.

Beneath the advance ratio of 0.1, considered models are close to each other. As

speed decreases, models converge to a single line where they do slight overestimation

respect to experiment. As free-stream velocity increases, models start to deviate from

each other. In high speed, all models underpredict the experimental data. In this

test case, higher state models such as Peters-He 10, 15 and 21-State have marginally

worse results than the low state models.

Change in the side force is shown at Figure 5.18. In high speed conditions, inflow

models have good correlation with the data, except the uniform inflow model. In the

low advance ratio region, uniform inflow cannot correctly predict the side force and

its trend. According to [24], inflow models which have a variation over the rotor disk

can capture the low speed dynamics better than the uniform inflow. This phenomena

is studied in detail at the Chapter 4. In the CY /σ predictions, Peters-He 10, 15 and

21-State models have better results than the other inflow models.

The low speed inflow distributions are displayed in Figures 5.31, 5.32, 5.33 and 5.34.

Except the uniform inflow, models have similar longitudinal variation at the advance

ratio of 0.08. Higher state models such as Peters-He 6, 10, 15 and 21-State show

similarity along lateral axis. The low state inflow models do not have any lateral

variation in this trimmed condition. In contrast to high speed flight, Peters-He 15-

State model does not have excessive upwash and downwash in low advance ratio

condition. In fact, at the advance ratio of 0.08, Peters-He 15 and 21-State inflow

72



models have similar induced flow field. In this forward flight test, along addition to

inflow plots, angle of attack distributions are also presented in Figures 5.35, 5.36, 5.37

and 5.38. Since Peters-He 15 and 21-State show similarity in inflow distribution, their

angle of attack distributions are also similar (Figs. 5.36 & 5.38).

Collective pitch predictions are compared with the experimental data in Figure 5.19.

When advance ratio is below 0.05, inflow models have good agreement with the data.

As speed increases towards to advance ratio of 0.15 , error between the models and the

data become larger. Between 0.12 and 0.15 advance ratio, models have the maximum

collective pitch error which is less than 1.2 degrees. Likewise the power case, Peters-

He 15-State inflow model deviate from other models at high speed flights. Again, this

model requires more collective pitch angle to provide same loading at high advance

ratio.

Lateral cyclic predictions are similar to normalized side force coefficient results. Fig-

ure 5.20 presents lateral cyclic predictions throughout the speed range. In low ad-

vance ratio region, uniform inflow estimation has large error and it does not follow

the experimental trend. Note that, in this region, other inflow models are close to

experimental data and they seem to capture peak cyclic position. After the advance

ratio of 0.08 (peak cyclic position), Payne, Pitt-Peters, Peters-He 3 and 6-State in-

flow models try to follow the reduced lateral cyclic position. However, Peters-He

10, 15 and 21-State inflow models become almost steady after the peak lateral cyclic

input. In high speed region, low state inflow models have better correlation with the

experimental cyclic position.

Figure 5.21 shows longitudinal cyclic estimations. Considered inflow models are

close to experimental data up to advance ratio of 0.1. As free-stream velocity in-

creases, longitudinal cyclic pitch also increases to stay in trimmed condition. Al-

though models follow the experimental pitch trend throughout the speed range, off-

sets between predictions and the experiment become comparatively larger. In high

speed conditions, models except the Peters-He 10 and 21-State have similar predic-

tions. Peters-He 10 and 21-State inflow models have comparably larger errors than

the other models. In longitudinal cyclic estimations, the maximum error occurs at the

highest speed and it is less than 2 degrees.
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In this experiment CT/σ is fixed at 0.065. Since coning angle is directly connected

to loading, it can be expected to have a constant coning angle throughout the speed

range. In fact, Figure 5.21 shows that coning angle is held around 4 degree. Although

considered models do slight overestimation under the advance ratio of 0.1, they have

good correlation with the data. As speed increases, models slightly deviate from each

other. High state models such as Peters-He 15, 10 and 21-State have relatively better

results at the high advance ratio. The experiment indicates that effect of free-stream

velocity on coning angle is insignificant. However, free-stream velocity affects the

theoretical inflow, therefore model predictions show dependence on free-stream ve-

locity. The maximum error in this case is less than 0.4 degree.
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Figure 5.16: Normalized Power Coefficient vs Advance Ratio, at CT/σ = 0.065,

αs = −5◦
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Figure 5.17: Normalized Drag Force Coefficient vs Advance Ratio, atCT/σ = 0.065,

αs = −5◦
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Figure 5.18: Normalized Side Force Coefficient vs Advance Ratio, at CT/σ = 0.065,

αs = −5◦
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Figure 5.19: Collective Angle vs Advance Ratio, at CT/σ = 0.065, αs = −5◦
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Figure 5.20: Lateral Cyclic Position vs Advance Ratio, at CT/σ = 0.065, αs = −5◦
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Figure 5.21: Longitudinal Cyclic Position vs Advance Ratio, at CT/σ = 0.065, αs =

−5◦
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Figure 5.22: Coning Angle vs Advance Ratio, at CT/σ = 0.065, αs = −5◦
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Figure 5.23: Uniform, Payne, Pitt-Peters & Peters-He 3 State Induced Flow 3-D Plots,

at Forward Speed, αs = −5◦, µ = 0.2, CT/σ = 0.065
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Figure 5.24: Peters-He 6, 10, 15 & 21 State Induced Flow 3-D Plots, at Forward

Speed, αs = −5◦, µ = 0.2, CT/σ = 0.065
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Figure 5.25: Uniform, Payne, Pitt-Peters & Peters-He 3 State Induced Flow Contour

Plots, at Forward Speed, αs = −5◦, µ = 0.2, CT/σ = 0.065
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Figure 5.26: Peters-He 6, 10, 15 & 21 State Induced Flow Contour Plots, at Forward

Speed, αs = −5◦, µ = 0.2, CT/σ = 0.065
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Figure 5.27: Uniform, Payne, Pitt-Peters & Peters-He 3 State Angle of Attack 3-D

Plots, at Forward Speed, αs = −5◦, µ = 0.2, CT/σ = 0.065
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Figure 5.28: Peters-He 6, 10, 15 & 21 State Angle of Attack 3-D Plots, at Forward

Speed, αs = −5◦, µ = 0.2, CT/σ = 0.065
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Figure 5.29: Uniform, Payne, Pitt-Peters & Peters-He 3 State Angle of Attack Con-

tour Plots, at Forward Speed, αs = −5◦, µ = 0.2, CT/σ = 0.065
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Figure 5.30: Peters-He 6, 10, 15 & 21 State Angle of Attack Contour Plots, at Forward

Speed, αs = −5◦, µ = 0.2, CT/σ = 0.065
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Figure 5.31: Uniform, Payne, Pitt-Peters & Peters-He 3 State Induced Flow 3-D Plots,

at Forward Speed, αs = −5◦, µ = 0.08, CT/σ = 0.065
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Figure 5.32: Peters-He 6, 10, 15 & 21 State Induced Flow 3-D Plots, at Forward

Speed, αs = −5◦, µ = 0.08, CT/σ = 0.065
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Figure 5.33: Uniform, Payne, Pitt-Peters & Peters-He 3 State Induced Flow Contour

Plots, at Forward Speed, αs = −5◦, µ = 0.08, CT/σ = 0.065
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Figure 5.34: Peters-He 6, 10, 15 & 21 State Induced Flow Contour Plots, at Forward

Speed, αs = −5◦, µ = 0.2, CT/σ = 0.065
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Figure 5.35: Uniform, Payne, Pitt-Peters & Peters-He 3 State Angle of Attack 3-D

Plots, at Forward Speed, αs = −5◦, µ = 0.08, CT/σ = 0.065
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Figure 5.36: Peters-He 6, 10, 15 & 21 State Angle of Attack 3-D Plots, at Forward

Speed, αs = −5◦, µ = 0.08, CT/σ = 0.065
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Figure 5.37: Uniform, Payne, Pitt-Peters & Peters-He 3 State Angle of Attack Con-

tour Plots, at Forward Speed, αs = −5◦, µ = 0.08, CT/σ = 0.065
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Figure 5.38: Peters-He 6, 10, 15 & 21 State Angle of Attack Contour Plots, at Forward

Speed, αs = −5◦, µ = 0.08, CT/σ = 0.065
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5.3.2.2 Speed Sweep, CT/σ = 0.080, αs = −5◦

In this forward flight test condition, normalized thrust coefficient, CT/σ, is increased

from 0.065 to 0.080. Apart from normalized drag force coefficient and coning angle,

other performance results such as power, side force, collective pitch angle, lateral

cyclic and longitudinal cyclic positions have common results. These common results

are given in Figures 5.39, 5.41, 5.42, 5.43 & 5.44. Since results are close to previous

case, inflow and angle of attack distributions are not presented.

Normalized drag force coefficient predictions are plotted in Figure 5.40. CX/σ es-

timations have good agreement with the data up to the advance ratio of 0.08. After

this point, inflow models do not follow the experimental drag. As speed increases,

error between models and the data become wider. Peters-He 10, 15 & 21-State inflow

models have comparably worse predictions than the other considered models.

In Figure 5.45, coning angle, β0, correlations are given. All models overpredict the

experimental coning angle. The low state inflow models such as uniform, Payne,

Pitt-Peters and Peters-He 3-State are close to each other and they have slightly more

overprediction than the high state models. After the advance ratio of 0.1, models

become closer the data. Except the Peters-He 15-State inflow model, other models

follow the same trend towards the higher speeds. Peters-He 15-State inflow model

is deviated from other models after the advance ratio of 0.15. Also, it slightly over-

estimates the experimental coning angle. Peters-He 15-State inflow model requires

more collective pitch or power to provide same loading in high speed flight. This

phenomena explained at the previous forward flight test case. Other models, espe-

cially Peters-He 10 and 21-State, have good agreement with the data in high speed

conditions.
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Figure 5.39: Normalized Power Coefficient vs Advance Ratio, at CT/σ = 0.080,

αs = −5◦
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Figure 5.40: Normalized Drag Force Coefficient vs Advance Ratio, atCT/σ = 0.080,

αs = −5◦
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Figure 5.41: Normalized Side Force Coefficient vs Advance Ratio, at CT/σ = 0.080,

αs = −5◦
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Figure 5.42: Collective Angle vs Advance Ratio, at CT/σ = 0.080, αs = −5◦
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Figure 5.43: Lateral Cyclic Position vs Advance Ratio, at CT/σ = 0.080, αs = −5◦
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Figure 5.44: Longitudinal Cyclic Position vs Advance Ratio, at CT/σ = 0.080, αs =

−5◦
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Figure 5.45: Coning Angle vs Advance Ratio, at CT/σ = 0.080, αs = −5◦

5.4 Observations

• In hover, all inflow models have good correlation with experimental data. Higher

state inflow models such as Peters-He 6, 10, 15 and 21-State inflow have radial

inflow distributions. These distributions slightly affect the magnitude of angle

of attack especially near the blade tip. Although there are some differences in

the inflow and angle of attack, performance predictions indicate that all inflow

models are almost identical in hovering flight. From the performance evalua-

tion, it is deduced that the effect of the radial shape functions used in Peters-He

inflow models are less significant due to symmetry. In both hover case, power,

collective pitch, lateral cyclic and longitudinal cyclic blade angles are fairly

well estimated.

• In forward flight test cases, predictions have less accuracy than the hover cases.

Forward flight tests show that variation of the longitudinal axis play major role

in estimating the side force and lateral cyclic position. In the low advance ratio

region, prediction of side force and lateral cyclic position of the uniform inflow
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is the least accurate. Other models try to follow experimental data in the low

advance ratio region. Most of the time, the side force and longitudinal cyclic

angles are underestimated. Power, drag force, collective angle, lateral cyclic

and coning angle predictions vary with the advance ratio.

• The results in hover usually have good agreement with the data and all models

present almost identical results. Therefore, in hover, uniform inflow can be pre-

ferred for its simplicity. However, in forward flight the uniform inflow predic-

tion of the side force and lateral cyclic have large errors. Other inflow models

exhibit similar results throughout the speed range. Thus, Payne, Pitt-Peters and

Peters-He 3-State inflow models can be used for performance calculations in

forward flight.
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CHAPTER 6

CONCLUSION & RECOMMENDATIONS

6.1 Conclusion

In this thesis, dynamic inflow models commonly used in flight simulations namely

uniform inflow, extesion of uniform inflow with Payne’s coefficients, Pitt-Peters in-

flow and Peters-He inflow model with higher harmonics are compared and a fidelity

assessment of the inflow models is given. Firstly, predicted induced flow fields on

the rotor disk are compared with experimental measurements. Secondly, the effect of

the inflow variation on the flapping angle estimations is investigated. Finally, steady-

state performance results of the various dynamic inflow models are compared with the

wind tunnel tests. From these comparisons, the following conclusions are obtained:

1. Low state inflow models such as Payne, Pitt-Peters and Peters-He 3-State in-

flow models have only longitudinal inflow variation when trimmed to steady

flapping angle.

2. In low state inflow models, selection of the excitation functions greatly affect

the inflow variation along with the wake skew angle.

3. Peters-He 6-State inflow model adds additional modes to the low state inflow

models and introduces slight lateral inflow variation.

4. In Peters-He inflow models, when inflow state become high enough, the funda-

mental characteristic of the measured flow is attained.

5. Development of high pressure towards the blade tip negatively affects the con-
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vergence of the Peters-He inflow model, thus models with tapered blade con-

figuration have better correlation than the rectangular ones.

6. In low advance ratio flight, lateral flapping angle predictions of uniform inflow

model have large modelling errors.

7. An inflow model with a basic longitudinal inflow distribution significantly im-

proves the prediction of the lateral flapping angle and lateral cyclic position.

8. Steady-state lateral and longitudinal flapping angles are dependent on inflow

variations along longitudinal and lateral axes, respectively. Here, approxi-

mately 90◦ phase shift is seen between inflow and flapping dynamics.

9. In this study, it is shown that higher state inflow models are not always better

than the models with comparatively less state in terms of low advance ratio

lateral flapping angle and forward flight steady-state performance estimations,

since flapping dynamics are restricted to one-per-revolution frequency. There is

only one flapping mode due to rigid blade assumption (elasticity of the blade is

neglected) and the solution method depends on harmonic variation. Yet, inflow

models with a variation are always better than uniform inflow when the lateral

flapping angle is considered.

10. In hover, symmetric flow conditions are applied in azimuthal direction. In the

radial direction, velocity becomes larger towards the tip. Since the inflow ulti-

mately depends on the thrust, it becomes symmetric along the azimuthal direc-

tion. Differences in inflow are seen in radial direction. However, in hovering

flight, symmetric elements on the rotor disk cancel each other and they are re-

duced to uniform inflow. Thus, radial differences seen in higher state inflow

models are insignificant. In hover, all models are almost identical.

11. In forward flight, the dependence on the wake skew angle becomes apparent.

Due to phase shift, an inflow variation at least along the longitudinal axis is

required for improved estimations along the lateral axis.

To conclude, the considered inflow models are almost identical in hover. Thus,

in hover, uniform inflow can be preferred due to its simplicity in steady-steady

performance analysis. In forward flight, longitudinal inflow variation is a must
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for capturing the lateral dynamics. The lateral inflow variation is less significant

since some portion of the advancing side and retreating side inflow variations

are symmetric, thus the effect of the lateral inflow distribution is alleviated.

Moreover, flight mechanics are heavily affected by the one-per-revolution fre-

quency dynamics. Since the coupled blade element model only considers one

flapping mode (rigid blade), the rotor tip-path plane dynamics become restricted

to this frequency. Therefore, inflow models with higher frequencies (harmon-

ics) are not effective enough in rotor dynamics. In forward flight steady-state

estimations, Payne, Pitt-Peters and Peters-He 3-State inflow models can be used

when rigid blade flapping is apparent.

6.2 Recommendation for Future Work

The comparison of dynamic inflow models can be extended. Possible recommenda-

tions for the future work are listed below:

1. More dynamic inflow flow models can be added to the comparison.

2. Models such as free-wake, vortex-theory, and CFD estimations can be consid-

ered. Differences between these models and the dynamic inflow models can

be examined. Then, possible corrections to dynamic inflow models can be ex-

tracted.

3. Rigid blade flapping solution can be replaced by a elastic blade solution to

provide higher frequency coupling between the flapping and inflow.

4. For transient response comparison, dynamic inflow models can be integrated to

a full helicopter simulation.
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APPENDIX A

MAIN ROTOR BLADE GEOMETRIES

In this part, geometry of the main rotor blades used in Chapters 3 and 5 are given.

In Chapter 3, rectangular and tapered blades are used [23]. In Chapter 5, the S-76

advanced main rotor blade is used [38]. For this blade, twist and chord distributions

are also given.

A.1 Rectangular Blade Geometry

Figure A.1: 2-D View of the Rectangular Blade

A.2 Tapered Blade Geometry

Figure A.2: 2-D View of the Tapered Blade

109



A.3 S-76 Main Rotor Blade Geometry

Figure A.3: 2-D View of the S-76 Main Rotor Blade
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Figure A.4: S-76 Main Rotor Blade Twist Distribution
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APPENDIX B

AIRFOIL CHARACTERISTICS OF THE S-76 MAIN ROTOR

BLADE

The S-76 main rotor blade airfoils aerodynamic lift and drag coefficients are given

in this part. The data is taken from the [38]. In order to have 2-D tables, the data

structure is modified.
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B.1 SC1095 Airfoil

Table B.1: 2-D Lift Coefficient Data of the SC1095 Airfoil

Mach #/ A.o.A 0 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9 1 2
-180 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
-172 0.780 0.780 0.780 0.780 0.780 0.780 0.780 0.780 0.780 0.780 0.780
-160 0.640 0.640 0.640 0.640 0.640 0.640 0.640 0.640 0.640 0.640 0.640
-150 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950
-30 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -0.950 -0.950 -0.950 -0.950
-15 -0.910 -0.910 -0.685 -0.790 -0.655 -0.745 -0.790 -0.809 -0.740 -0.710 -0.710
-10 -0.880 -0.880 -0.580 -0.720 -0.540 -0.660 -0.720 -0.810 -0.740 -0.630 -0.630

-8 -0.760 -0.760 -0.640 -0.720 -0.590 -0.713 -0.725 -0.750 -0.702 -0.623 -0.623
-6 -0.600 -0.600 -0.580 -0.613 -0.609 -0.740 -0.730 -0.690 -0.663 -0.615 -0.615
-5 -0.500 -0.500 -0.520 -0.520 -0.580 -0.720 -0.720 -0.580 -0.575 -0.521 -0.521
-3 -0.300 -0.300 -0.327 -0.477 -0.354 -0.516 -0.517 -0.360 -0.398 -0.334 -0.334
0 0.041 0.041 0.041 -0.038 0.075 -0.263 0.066 0.070 -0.150 -0.050 -0.050
2 0.269 0.269 0.286 0.255 0.361 -0.094 0.478 0.350 0.133 0.200 0.200
4 0.496 0.496 0.531 0.547 0.647 0.075 0.704 0.560 0.390 0.449 0.449
6 0.723 0.723 0.776 0.840 0.860 0.830 0.745 0.705 0.640 0.700 0.700
8 0.951 0.951 1.021 1.027 0.910 0.870 0.786 0.805 0.765 0.806 0.806
9 1.065 1.065 1.124 1.072 0.930 0.890 0.807 0.840 0.788 0.828 0.828

10 1.157 1.157 1.182 1.078 0.950 0.913 0.827 0.842 0.810 0.850 0.850
12 1.200 1.200 1.138 1.049 1.006 0.960 0.868 0.845 0.829 0.865 0.865
15 1.015 1.015 0.992 0.982 1.090 1.030 0.930 0.850 0.858 0.888 0.888
30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

150 -0.950 -0.950 -0.950 -0.950 -0.950 -0.950 -0.950 -0.950 -0.950 -0.950 -0.950
156 -0.700 -0.700 -0.700 -0.700 -0.700 -0.700 -0.700 -0.700 -0.700 -0.700 -0.700
158 -0.660 -0.660 -0.660 -0.660 -0.660 -0.660 -0.660 -0.660 -0.660 -0.660 -0.660
160 -0.640 -0.640 -0.640 -0.640 -0.640 -0.640 -0.640 -0.640 -0.640 -0.640 -0.640
172 -0.780 -0.780 -0.780 -0.780 -0.780 -0.780 -0.780 -0.780 -0.780 -0.780 -0.780
180 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Table B.2: 2-D Drag Coefficient Data of the SC1095 Airfoil

Mach #/ A.o.A 0 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9 1 2
-180 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020
-179 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025
-175 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065
-172 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.110
-150 0.642 0.642 0.642 0.642 0.642 0.642 0.642 0.642 0.642 0.642 0.642
-115 1.880 1.880 1.880 1.880 1.880 1.880 1.880 1.880 1.880 1.880 1.880

-90 2.080 2.080 2.080 2.080 2.080 2.080 2.080 2.080 2.080 2.080 2.080
-65 1.880 1.880 1.880 1.880 1.880 1.880 1.880 1.880 1.880 1.880 1.880
-30 0.630 0.630 0.630 0.630 0.630 0.630 0.630 0.630 0.630 0.630 0.630
-10 0.210 0.210 0.215 0.015 0.016 0.210 0.185 0.225 0.262 0.297 0.297
-9 0.102 0.102 0.160 0.033 0.026 0.182 0.162 0.193 0.233 0.273 0.273
-8 0.042 0.042 0.104 0.050 0.036 0.153 0.139 0.160 0.203 0.248 0.248
-7 0.018 0.018 0.050 0.035 0.036 0.125 0.117 0.130 0.176 0.225 0.225
-6 0.011 0.011 0.022 0.023 0.036 0.096 0.094 0.100 0.149 0.202 0.202
-5 0.009 0.009 0.012 0.011 0.026 0.068 0.071 0.083 0.132 0.177 0.177
-4 0.009 0.009 0.009 0.009 0.014 0.039 0.048 0.065 0.115 0.152 0.152
-3 0.008 0.008 0.008 0.008 0.011 0.020 0.027 0.042 0.091 0.135 0.135
-1 0.009 0.009 0.008 0.008 0.008 0.009 0.011 0.025 0.060 0.104 0.104
0 0.008 0.008 0.008 0.008 0.008 0.008 0.009 0.017 0.050 0.090 0.090
1 0.009 0.009 0.008 0.008 0.008 0.009 0.011 0.025 0.060 0.104 0.104
2 0.009 0.009 0.008 0.008 0.009 0.010 0.023 0.040 0.080 0.118 0.118
3 0.009 0.009 0.008 0.009 0.010 0.020 0.045 0.065 0.100 0.135 0.135
4 0.010 0.010 0.008 0.009 0.012 0.044 0.068 0.090 0.120 0.153 0.153
5 0.011 0.011 0.009 0.011 0.021 0.068 0.091 0.109 0.144 0.178 0.178
6 0.014 0.014 0.011 0.014 0.040 0.092 0.114 0.128 0.167 0.203 0.203
7 0.019 0.019 0.012 0.020 0.065 0.116 0.137 0.149 0.189 0.226 0.226
8 0.037 0.037 0.014 0.030 0.086 0.140 0.160 0.170 0.210 0.249 0.249
9 0.100 0.100 0.017 0.055 0.106 0.164 0.183 0.198 0.236 0.274 0.274

10 0.210 0.210 0.024 0.090 0.126 0.188 0.206 0.225 0.262 0.298 0.298
15 0.315 0.315 0.222 0.240 0.227 0.308 0.320 0.343 0.374 0.408 0.376
30 0.630 0.630 0.630 0.630 0.630 0.630 0.630 0.630 0.630 0.630 0.630
65 1.880 1.880 1.880 1.880 1.880 1.880 1.880 1.880 1.880 1.880 1.880
90 2.080 2.080 2.080 2.080 2.080 2.080 2.080 2.080 2.080 2.080 2.080

150 0.640 0.640 0.640 0.640 0.640 0.640 0.640 0.640 0.640 0.640 0.640
172 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.110
175 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065
179 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025
180 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020
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B.2 SC1095-R8 Airfoil

Table B.3: 2-D Lift Coefficient Data of the SC1095-R8 Airfoil

Mach # /A.o.A 0 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9 1 2
-180 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
-172 0.780 0.780 0.780 0.780 0.780 0.780 0.780 0.780 0.780 0.780 0.780
-160 0.640 0.640 0.640 0.640 0.640 0.640 0.640 0.640 0.640 0.640 0.640
-150 0.556 0.556 0.556 0.556 0.556 0.556 0.556 0.556 0.556 0.556 0.556
-30 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -0.950 -0.950 -0.950 -0.950
-15 -0.850 -0.850 -0.805 -0.700 -0.700 -0.700 -0.775 -0.809 -0.740 -0.710 -0.710
-10 -0.800 -0.800 -0.740 -0.600 -0.600 -0.600 -0.700 -0.810 -0.670 -0.630 -0.630

-8 -0.744 -0.744 -0.684 -0.656 -0.600 -0.600 -0.700 -0.750 -0.667 -0.623 -0.623
-6 -0.534 -0.534 -0.545 -0.560 -0.580 -0.592 -0.694 -0.690 -0.663 -0.615 -0.615
-5 -0.440 -0.440 -0.450 -0.470 -0.500 -0.550 -0.650 -0.580 -0.575 -0.521 -0.521
-3 -0.204 -0.204 -0.202 -0.215 -0.240 -0.310 -0.380 -0.360 -0.398 -0.334 -0.334
0 0.150 0.150 0.171 0.166 0.140 0.200 0.241 0.070 -0.150 -0.050 -0.050
2 0.386 0.386 0.419 0.421 0.453 0.570 0.630 0.350 0.138 0.200 0.200
4 0.622 0.622 0.668 0.675 0.750 0.810 0.740 0.560 0.390 0.449 0.449
6 0.852 0.852 0.916 0.930 0.900 0.866 0.800 0.705 0.640 0.700 0.700
8 1.076 1.076 1.150 1.040 0.937 0.898 0.845 0.805 0.765 0.806 0.806
9 1.188 1.188 1.220 1.060 0.954 0.914 0.860 0.840 0.788 0.828 0.828

10 1.300 1.300 1.270 1.080 0.971 0.926 0.875 0.842 0.810 0.850 0.850
12 1.440 1.440 1.130 1.110 1.006 0.948 0.905 0.845 0.829 0.865 0.865
15 1.263 1.263 1.125 1.110 1.070 0.980 0.950 0.850 0.858 0.888 0.888
30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

150 -0.950 -0.950 -0.950 -0.950 -0.950 -0.950 -0.950 -0.950 -0.950 -0.950 -0.950
156 -0.700 -0.700 -0.700 -0.700 -0.700 -0.700 -0.700 -0.700 -0.700 -0.700 -0.700
158 -0.660 -0.660 -0.660 -0.660 -0.660 -0.660 -0.660 -0.660 -0.660 -0.660 -0.660
160 -0.640 -0.640 -0.640 -0.640 -0.640 -0.640 -0.640 -0.640 -0.640 -0.640 -0.640
172 -0.780 -0.780 -0.780 -0.780 -0.780 -0.780 -0.780 -0.780 -0.780 -0.780 -0.780
180 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Table B.4: 2-D Drag Coefficient Data of the SC1095-R8 Airfoil

Mach # /A.o.A 0 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9 1 2
-180 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020
-179 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025
-175 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065
-172 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.110
-150 0.642 0.642 0.642 0.642 0.642 0.642 0.642 0.642 0.642 0.642 0.642
-115 1.880 1.880 1.880 1.880 1.880 1.880 1.880 1.880 1.880 1.880 1.880
-90 1.880 1.880 1.880 1.880 1.880 1.880 1.880 1.880 1.880 1.880 1.880
-65 1.880 1.880 1.880 1.880 1.880 1.880 1.880 1.880 1.880 1.880 1.880
-30 0.630 0.630 0.630 0.630 0.630 0.630 0.630 0.630 0.630 0.630 0.630
-10 0.250 0.250 0.260 0.270 0.288 0.310 0.326 0.225 0.262 0.297 0.297

-9 0.195 0.195 0.207 0.215 0.213 0.258 0.273 0.198 0.236 0.273 0.273
-8 0.141 0.141 0.154 0.161 0.137 0.207 0.221 0.170 0.210 0.248 0.248
-7 0.086 0.086 0.101 0.106 0.109 0.155 0.168 0.146 0.187 0.225 0.225
-6 0.050 0.050 0.062 0.070 0.081 0.094 0.109 0.122 0.163 0.202 0.202
-5 0.031 0.031 0.034 0.038 0.045 0.060 0.085 0.099 0.139 0.177 0.177
-4 0.018 0.018 0.013 0.024 0.025 0.044 0.060 0.075 0.115 0.152 0.152
-3 0.011 0.011 0.010 0.015 0.017 0.027 0.035 0.042 0.091 0.135 0.135
-1 0.010 0.010 0.008 0.009 0.009 0.010 0.012 0.026 0.063 0.109 0.109
0 0.009 0.009 0.008 0.008 0.008 0.010 0.014 0.025 0.060 0.100 0.100
1 0.009 0.009 0.008 0.008 0.008 0.012 0.024 0.042 0.078 0.118 0.118
2 0.010 0.010 0.009 0.008 0.010 0.025 0.048 0.070 0.100 0.136 0.136
3 0.010 0.010 0.009 0.009 0.016 0.048 0.071 0.089 0.119 0.153 0.153
4 0.010 0.010 0.010 0.010 0.025 0.070 0.095 0.108 0.138 0.170 0.170
5 0.011 0.011 0.010 0.011 0.038 0.093 0.115 0.128 0.160 0.193 0.193
6 0.011 0.011 0.011 0.018 0.060 0.115 0.134 0.148 0.182 0.215 0.215
7 0.012 0.012 0.013 0.027 0.086 0.138 0.152 0.167 0.202 0.235 0.235
8 0.012 0.012 0.015 0.044 0.112 0.160 0.173 0.185 0.221 0.255 0.255
9 0.013 0.013 0.018 0.078 0.137 0.183 0.195 0.208 0.242 0.277 0.277

10 0.014 0.014 0.027 0.111 0.163 0.206 0.218 0.230 0.262 0.298 0.298
15 0.114 0.114 0.230 0.280 0.300 0.320 0.330 0.343 0.374 0.408 0.390
30 0.630 0.630 0.630 0.630 0.630 0.630 0.630 0.630 0.630 0.630 0.630
65 1.880 1.880 1.880 1.880 1.880 1.880 1.880 1.880 1.880 1.880 1.880
90 1.516 1.516 1.516 1.516 1.516 1.516 1.516 1.516 1.516 1.516 1.516

150 0.642 0.642 0.642 0.642 0.642 0.642 0.642 0.642 0.642 0.642 0.642
172 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.110
175 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065
179 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029
180 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020
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