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ABSTRACT 

 

CAMERA TRAJECTORY ESTIMATION FOR INDOOR ROBOT ODOMETRY 

USING STEREO IMAGES AND INERTIAL MEASUREMENTS  

 

 

Horasan, Anıl  

M.S., Department of Mechanical Engineering 

Supervisor:    Assoc. Prof. Dr. Melik Dölen 

  

 

September 2016, 135 pages 

 

 

 

In this study, the development and implementation of an algorithm for stereo visual-

inertial odometry are described. The study spans the complete process from analyzing 

the sensory data to the development of a robot odometry algorithm. The criteria for 

indoor visual-inertial odometry include using low-cost sensor systems, having an error 

less than five percent of the movement regardless of the distance covered, and building 

a robust algorithm in the presence of geometric and photometric invariances as well as 

noise. Utilizing the complementary characteristics of two different sensors, these steps 

are followed: First, orientation, velocity and position are estimated using inertial 

measurements. Second, the machine vision algorithm is developed consisting of 

feature detection and extraction, feature tracking in consecutive images, disparity map 

calculation, outlier rejection, motion estimation and optimization. Finally, inertial 

estimates are fused to visual pose estimates using EKF and a proposed filter. In this 

research, all the algorithms are implemented offline and tested using EuRoC MAV 

datasets. The results show that it is possible to achieve less than five percent positional 

errors in different indoor environments. 

 

Keywords: Stereo Vision, Visual-Inertial Odometry, Robot Trajectory Estimation, 

Indoor Localization, Sensor Fusion  
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ÖZ 

 

KAPALI ALANLARDA ROBOT KONUMLAMASI İÇİN STEREO 

GÖRÜNTÜLER VE EYLEMSİZLİK DUYUCUSU KULLANILARAK KAMERA 

YÖRÜNGESİNİN KESTİRİLMESİ 

 

 

Horasan, Anıl  

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Melik Dölen 

 

 

Eylül 2016, 135 sayfa 

 

 

 

Bu çalışmada bir görsel-ataletsel odometre algoritmasının geliştirilmesi ve 

uygulanması anlatılmıştır. Çalışma, duyu verisinin incelenmesinden robot odometre 

algoritmasına kadar olan bütün süreci kapsamaktadır. Kapalı alanlarda görsel/ataletsel 

odometre için belirlenen ölçütler, düşük maliyetli duyucu sistemlerin kullanılması, 

hareket edilen mesafeden bağımsız olarak yüzde beşten az hata payına sahip olunması 

ve gürültü, fotometrik ve geometrik değişimler altında gürbüz bir algoritma 

oluşturulmasıdır. İki farklı duyucu sisteminin tamamlayıcı özellikleri kullanılarak şu 

aşamalar izlenmiştir: İlk olarak, ataletsel duyuculardan gelen ölçümler kullanılarak 

doğrultu, hız ve konum tahmini yapılmıştır. İkinci olarak, özellik bulma ve çıkarma, 

özellik takibi, fark değeri haritası çıkarma, aykırı değerleri temizleme, hareket 

kestirimi ve en iyileme aşamalarıyla yapay görü algoritması oluşturulmuştur. Son 

olarak, EKF ve önerilen filtre ile tahminler görüntüden elde edilen tahminlerle 

birleştirilmiştir. Bu çalışmada tüm algoritmalar çevrimdışı olarak çalıştırılmış ve 

EuRoC MAV veri kümesi ile test edilmiştir. Sonuçlar, farklı kapalı alanlarda yüzde 

beşten daha düşük hataları yakalamanın mümkün olduğunu göstermektedir. 

 

Anahtar Kelimeler: İkili Kamera Sistemi, Görsel-Ataletsel Odometre, Robot 

Yörünge Kestirimi, Kapalı Alan Konumlama, Duyucu Tümleştirme 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

The last few decades have witnessed the most significant leaps in the field of robotics. 

Especially, the development and use of unmanned vehicles have shown a growing 

trend [1] as the technology is developing rapidly and the world is becoming more 

autonomous. Accordingly, so far innovative household robotics such as robotic 

vacuum cleaners, cook and ironing robots, security homebots, and robotic 

lawnmowers have been developed and released to the market. Moreover, it is estimated 

that soon human driven vehicles are to going to be replaced by self-driving cars; help 

and rescue robots are going to be used in disasters in which the rescue teams are unable 

to reach; and transportation systems in big depots and warehouses are going to be 

operated by autonomous trucks. Considering the developments in the robotics field, it 

is highly important for these autonomous systems to know their location and navigate 

accordingly. This situation is called motion estimation or localization problem in the 

field of robotics.  

Regarding the localization problem there have been a number of developments, the 

most important of which is the navigation systems in vehicles. For the vehicle 

navigation systems, an old technique to calculate the current position of a platform was 

dead reckoning, using previous pose and velocity information over a period of time 

and course. Adding encoders to dead reckoning systems, wheel odometry 
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incrementally estimates the distance travelled by a vehicle using the readings of wheel 

turns. These are still popular methods due to their simplicity and practicality. However, 

because of the accurate localization needs of different moving platforms, most of the 

navigation systems nowadays are relying on two primary technologies: Global 

Positioning System (GPS) and inertial navigation. GPS provides a global coordinate 

unless the navigating platform is outside the Earth or in urban areas, forests or indoors. 

Besides, GPS is subject to jamming and it is only owned and operated by US 

Government. Still, it is a widely used navigation system because of its global 

positioning and can provide less than 0.7 meters horizontal median error in open air 

[2]. On the other hand, inertial navigation systems can be easily degraded in long runs 

and must be corrected using GPS or another global localization system to know its 

location correctly. Without the fixes, inertial navigation systems are rather 

counterproductive. 

Since GPS introduced a great solution to outdoor positioning, interest in indoor 

positioning problem has attracted attention in robotics studies. One of the most elegant 

solutions to this problem is to use sequential images from single or multiple cameras 

to estimate the motion of the platform with respect to a reference starting point. This 

problem is called Visual Odometry (VO) in the literature. Different from the wheel 

odometry, slippage cannot affect VO in uneven terrains. Furthermore, VO can be used 

by platforms without wheels, such as humanoid robots and unmanned air vehicles. 

Considering the pros and cons of wheel odometry, GPS and VO; space explorations 

and indoor applications are the main areas of usage for VO. In this particular study, a 

stereo visual-inertial odometry system is discussed, analyzed and developed. 

Following the state-of-the-art two-part visual odometry tutorial [3, 4], a path extraction 

methodology is described and compared with the noted VO algorithms in the literature. 

Different combinations of feature detectors/descriptors, optimization techniques and 

fusion algorithms are experimented and compared among each other using available 

datasets. The optimal technique is verified with ground truth data in different indoor 

environments.  
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 Motivation of the Thesis 

One need in the robotic industry is that a robotic system will almost always need to 

localize itself while at the same time being able to see the actual world. In fact, in some 

autonomous systems, cameras have already been utilized for the purposes of obstacle 

detection and object recognition. At this very point, these cameras present in robotic 

vehicles can also be exploited to solve the localization problem. To this end, two 

functions of a robot – localizing itself and seeing the actual world– are combined. 

Thus, the solution of the localization problem through the use of visual sensors has led 

the main purpose of this thesis: Visual Odometry  

In robotic navigation, vision has received a great amount of interest. Thanks to the 

developments in feature detectors and feature tracking innovative high-end cameras, 

and processing algorithms, the function of vision has gained so much importance that 

its contributions to robotic navigation have become inevitable and vital [5]. Vision 

provides not only a less drift-prone navigation than low-cost inertial navigation 

systems, but also supports indoor navigation which GPS does not.  

There has been a growing trend in the use of visual sensors for robot localization. The 

importance of visual sensors in robot localization has increased along with the increase 

in the number of robotic systems. According to International Federation of Robotics, 

the total number of service robots sold in 2014 is increased by 11.5% compared to 

preceding year, and it is estimated to be further increased by 2018 [6] as shown in 

Figure 1.1.  

 

Figure 1.1 Estimated number of industrial robots in 2002-2018 [6] 
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Applications of service robotics can be as follows [6]: 

● Household applications 

○ Security robots, 

○ Cleaning robots, 

○ Handicap assistance robots, 

○ Lawn mowing robots, 

● Logistics applications 

○ Automated guided vehicles, 

○ Autonomous trucks and forklifts, 

● Defense applications  

○ Unmanned air and ground vehicles, 

○ Search & rescue robots. 

○ Bomb fighting and demining robots, 

● Agriculture and livestock applications 

○ Harvesting robots, 

○ Mobile barn cleaners 

○ Robotic fencers, 

○ Milking robots, 

● Medical applications 

○ Surgery robots, 

○ Rehabilitation robots, 

○ Assistant robots. 

 

These applications of robotic systems function not only outdoors but also indoors as 

illustrated in the list above. Although there are well-known navigational services such 

as GPS, employed in outdoor environments, they are not very common indoors. The 

problem is GPS cannot be used for the localization of indoor autonomous vehicles 

because satellite signals are thwarted by thick walls of buildings resulting with 

deflection in accurate localization [7]. What is more important is that indoor robotic 

applications require sub-meter accuracy in localization which GPS cannot provide.  
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Accordingly, the idea of developing an independent localization system that has stereo 

camera and inertial sensors which can be used on robotic platforms has evolved. While 

developing the algorithms, there were certain criteria that contributed to the motivation 

of the research. These include developing an open-source and low-cost VO system as 

well as using portable tools in its development stage such as an average laptop 

computer and available datasets. Such advantages as being open-source and low-cost 

will allow future developers to afford and use the system, which constitutes another 

motivation for this study.  

For short, this study is inspired by emerging technologies in robotics and future 

breakthroughs. Brainstorming about technological developments and future 

breakthroughs, it is inevitable to question what these emerging technologies are, where 

the field of robotics is heading to, at what point the national industry is in this field, 

how researchers feel towards these developing technologies, what paths in the field 

are promising, and most importantly, what innovations are more needed by people. It 

is motivational to work on a project that is more needed and promising for the future 

of the field. It is also important to have an insight and an extensive know-how at the 

end of the work which will be beneficial for future studies.  

In this scope, this thesis is set out to investigate the navigation and localization 

algorithms for an indoor robot due to the great potential in the robotics field. In 

addition, the algorithms have been implemented meticulously since the background to 

construct a completely autonomous robot can be made possible as a result of such 

research. 

 Objective and Evaluation Criteria 

Building upon the motivation for this thesis, research question is asked as follows:  

Using only cost-efficient stereo cameras and inertial sensors, can we robustly 

estimate the path of an indoors robotic platform?  

 Before going into any work to answer this question, a list of criteria should be 

established to be able to evaluate the results at the end of the study. To this end, there 
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are 6 main criteria determined to evaluate the work. These are listed and explained 

below: 

● Accuracy and repeatability: The system should have a repeatable error less 

than 5% of the movement for translation components and less than 10 degrees 

for rotational components. Since there will be a drift, translational error will be 

relative to the distance covered. Nevertheless, drift can be minimized and 

corrected with the help absolute indoor localization systems. 

● Robustness: Since the system mostly relies on camera images, changes in 

illumination of the scene and noise in the environment will affect the quality 

of the localization. Therefore, VO algorithm should be robust in the presence 

of noise such as photometric and geometric invariances. 

● Cost efficiency: Low-cost but effective sensors should be used to have an 

efficient overall system if a custom dataset is used. There are high resolution 

cameras in the market for less than 50 USD and MEMS IMUs for about 10 

USD. However, high-end sensors can also be used for comparison with the 

low-cost sensors. If a dataset would be developed, total cost of the system 

should not exceed 350 USD for the whole system with the data acquisition 

cards and the other electronics. If an available dataset is used, effects of sensor 

quality should be discussed at the end of the study.  

● Offline calculation: The system does not have to be working real-time. Since, 

according to the Moore’s Law, it is known that the power of processors will 

double itself every two years, so that the system can be designed to work in 

real-time several years later. Thus, the computations will be done in an average 

laptop after data is acquired offline.  

● Open-source: For the programming language and computer vision libraries, 

open-source software will be used as much as possible. Source codes should 

be available so that everyone can be able to contribute and develop the work 

and the localization system can be adapted to various robotic platforms.  

● Portable test setup: This criterion is optional as the algorithm can be tested 

using available datasets. However, yet to explain briefly, if a test setup is built 

for evaluation of the algorithms, it should be portable so that measurements 
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could be taken from different indoor environments. This will also be important 

to see if the algorithms are robust or not, to the changes in different places. 

 

Furthermore, there are also a couple of important considerations that have to keep in 

mind. These are not must-have criteria but nice-to-have. One of them is to create an 

easy-to-use, user-friendly and practical system for other researchers and developers so 

they do not experience any problems while using the algorithm. Furthermore, the 

system should be able to be used in or integrated to different operating systems and 

development environments.  

 The Outline of the Thesis 

In this thesis, a stereo visual-inertial odometry methodology is analyzed and discussed 

with comparison with mainstream algorithms.  

After this brief introduction in Chapter 1, Chapter 2 presents a review of literature on 

visual-only and visual-inertial odometry. Chapter 2 illustrates samples from previous 

related works with detailed description of used algorithms and experimental results. 

In Chapter 3, theory and methodology for both visual and inertial odometry are 

described. Fusion of these two sensor inputs are also presented in this section. The 

chapter begins with a detailed analysis of methodology of VO and inertial navigation 

techniques. The chapter is concluded with the proposed solution and implementation 

details. 

Chapter 4 consists of the experimental setup and utilized dataset. The chapter also 

includes the results of the previous works that are using the same datasets. 

Chapter 5 presents experimental results of the proposed solution in different datasets. 

Inertial measurements results, VO results, data fusion and discussion of the results are 

presented respectively. 

Chapter 6 gives a brief conclusion of the thesis. It has been accompanied with future 

work suggestions. 
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CHAPTER 2 

 

 

LITERATURE SURVEY 

 

 

 

Indoor localization is a multi-disciplinary problem which includes topics from both 

machine vision and dynamics. Before attempting to propose a solution to this problem, 

it is important to give an in-depth survey of the literature of previous related works. 

Having dealt with thoroughly, however, the literature reviews has been compiled 

mostly in machine vision field. Accordingly, this chapter has been organized as 

follows: First, a general thought of the main topic called Structure from Motion (SfM) 

is explored. Then, detailed literature of VO along with its components and its 

comparison with Simultaneous Localization and Mapping (SLAM) problem is 

presented. VO is divided into three subtopics for convenience. First, monocular VO, 

which uses a single camera for path extraction, is explained and its literature is 

revealed. Then, stereo VO and its state-of-art are explored. Furthermore, previous 

works about Inertial Measurement Unit (IMU) integration to VO are investigated. 

Finally, most influential works are explored in the closure part in order to be able to 

show similarities and differences and to make a comparison in the end.  

  Structure from Motion  

Taking a set of image correspondences as the only input, SfM attempts to deduce or 

estimate the 3D structure of the viewed scene and/or 6D camera locations where the 

images have been captured. SfM has been a hot topic in machine vision and robotics 

after the Millennium, and it can be affirmed that it has advanced to a mature level with 
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commercial applications. 2d3 Sensing [8], acquired by Boeing in 2015, is one of the 

first companies that uses SfM in their products for film industry and aerial imagery. 

Likewise, inspired by Photo tourism [9], Microsoft revealed the software Photosynth 

[10], which can take 200 photos and turn them into a 3D photo in less than ten minutes 

on an average laptop. A detailed categorization of other SfM applications is available 

in [11]. [14, 15, 16, 17, 18, 19, 20, 21, 22, 23] 

Origins of SfM can be traced back to so-called photogrammetry, which is an old 

technique used for mapping [12]. Measuring topographic lengths and angles from 

images, photogrammetry reached to an important level, forming the fundamental 

theory of SfM. Machine vision community has been spurred by the developments in 

the field not only for its implementations, but also accuracy, speed and stability. The 

researchers have mostly focused on the automation of SfM, which is thought to enable 

its usage in mobile robotics. The study on SfM can be divided into three sub-

categories. First of which are the assumptions done in the geometry, formulations and 

the calibration parameters as mentioned by Hartley and Zisserman [13]. Second one is 

the salient feature detection/description and tracking even in the presence of changes 

and invariances. Some of the most famous feature detectors and key point descriptors 

are presented in [14-25]. For the last category, autonomous feature matching from the 

structure is enabled, and in-frame optimization is made, which is often called rejection 

of the wrong data or outlier rejection [24]. Several methods have been proposed using 

these three subroutines in different combinations. Prior knowledge about the camera 

parameters and constraints on the environment have yielded better results. Using an 

optimization technique like Bundle Adjustment (BA) [25], estimates are refined by 

minimizing the reprojection error.  

  Visual Odometry 

Estimation of the egomotion of a mobile platform, which is the motion part of the SfM 

problem, has also been tackled by robotics community from a slightly different point 

of view. The so-called VO, a term coined in 2004 by David Nistér [26], uses one or 

more cameras placed on a platform as the main input, and then calculates the motion 

of the platform. Optionally, other sensors such as encoders, Micro Electro-Mechanical 

references 
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Systems (MEMS) gyro and accelerometers, laser range finders, and the like are used 

along with the visual input to calibrate or enhance the estimation.  

Contrary to SfM, VO aims to determine the motion from the structure, in other words, 

from the features/objects in the environment. Camera sensor captures consecutive 

images with sufficient overlap so that a structure or a feature can be tracked and the 

motion in six degree-of-freedom (DOF) can be calculated. This topic has been studied 

vigorously since 1980s. The most propelling reason for the development of VO is the 

NASA Mars exploration program, which consists of designing all-terrain rovers 

needing to eliminate slipping of the wheels. The studies started with landmark papers 

[27, 28], continued with various other works [29, 30], and then were summarized and 

concluded with field reports [31]. 

VO can be considered as a sub-problem of Visual Simultaneous Localization and 

Mapping (V-SLAM) problem. While VO aims to extract the local camera path 

incrementally, Visual SLAM maps the environment, discloses global camera path, and 

optimizes map and path using the loop closure technique.  Since V-SLAM somehow 

encompasses VO, it is important to take a look at corresponding literature.  There are 

mainly two methods used in V-SLAM: One is uses filtering methods which utilize 

probability distribution to fuse information gathered from images. the other method 

uses key frame methods which apply bundle adjustment to selected frames. Durrant-

Whyte and Bailey [32, 33] explain the methodology used in V-SLAM in a two-part-

tutorial and a survey paper by Fuentes et al. [34] presents a brief and comprehensive 

review of the state-of-the-art by dividing V-SLAM into two as visual-only and visual-

inertial. 

 Monocular Visual Odometry 

Using only one camera to estimate the motion of the platform has gained a great 

amount of importance and interest following the widespread use of the smartphones 

[3]. For users’ localization and navigation purposes in indoor environments, 

monocular scheme should be used since smartphones usually have one camera on each 

side. However, using only one camera instead of two has a drawback of estimating the 
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position as a ratio due to unknown absolute scale. This can be compensated by 

knowing the environment in advance or using external sensors such as proximity 

sensors or IMUs.  

Monocular VO, considered to be one of the active areas of research in computer vision 

society, can be divided into two main groups as feature-based methods and 

appearance-based methods. While salient consistent features are found and compared 

to other frames in the former approach, the latter one examines the intensity 

information of the pixels. Moreover, there are studies combining these two methods to 

bring out a more stable algorithm.  

One of the first and well-known studies of monocular VO is by Nister et al. [26], in 

which improved Harris corner detector and Kanade-Lucas-Tomasi (KLT) tracker have 

been utilized. The paper suggests the use of five-point Random Sample Consensus 

(RANSAC) [35] for outlier rejection, which is then supervened by other works [36, 37]. 

A long run (about 2.5 km) is accomplished by Tardif et al. [37], where an algorithm is 

introduced to separate translation and rotation estimates.  

Another study in which the Harris corners have been employed is by [38] which have 

improved to real-time odometry in 1 km test setup. The results are refined with local 

bundle adjustment and compared to a ground truth of accurate GPS system. Later, 

Scaramuzza et al. [39] have used non-holonomic constraints and minimized the 

number of necessary feature points to track the camera motion and utilized a one-point 

RANSAC for the rejection of the wrong data.  

Although appearance-based methods were not used at the beginning of the VO 

development stage, it has recently favored by most. In one of the earlier works, [40] 

uses not only appearance for rotation estimation but also features for translation and 

scale estimations. Preceeding works are more successful using only appearance-based 

methods such as in [41], which is called Semi-direct Visual Odometry (SVO). Without 

using the features, the researchers recommend the use of pixel intensities to obtain sub-

pixel accuracy in high frame rates. They also use probabilistic mapping methods for 
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outlier rejection at very high speeds up to 300 fps. It is said to add robustness to the 

estimation. 

 Stereo Visual Odometry 

The idea of using dual cameras to combine the depth information and motion 

estimation has a longer history than monocular systems. From 1977 to 2003, 

researchers focused specifically on the problem of navigation on the Mars’ surface as 

mentioned before, in spite of the inadequate and insufficient number of feature 

detection algorithms. All the works up to 2007 have been analyzed and summarized 

by NASA scientists in [42, 31]. Final version of Mars rover localization algorithm uses 

Harris corners with error covariance matrix of each feature point and 6-point RANSAC 

for outlier rejection. Depending on the development of fast corner detectors and 

invariant feature descriptors, accuracy of stereo VO has increased comparatively. 

Howard [43] experiments a neat method combining previous knowledge of VO with 

novel key points by using dense disparity images. The algorithm makes no prior 

assumptions on the environment and utilizes standard feature detectors Harris or 

FAST. It constructs a score matrix and computes the matching features in a repetitive 

manner. The key step of the algorithm is pointed out as finding the largest set of 

consistent features. Without using a RANSAC scheme, algorithm detects the inliers in 

the feature sets rather than rejecting the outliers. Achieving an error of 0.25% at 50 Hz 

in a 400 m run, this study shows that the better accuracies could be accomplished. 

Without reconstructing the 3D world, Geiger et al. [44] uses trifocal geometry between 

image triplets (which is called “bucketing”, suggesting that majority of the features lie 

on the static background) in combination with RANSAC to estimate the motion. 

Iterative Sigma Point Kalman Filter (ISPKF) is employed to fuse the data and to deal 

with the nonlinearities. Although giving similar results, it is shown that ISPKF is 

superior to both Iterated Extended Kalman Filter (IEKF) and Unscented Kalman Filter 

(UKF) because of considerably low execution times.  

Konolige et al. [45], on the contrary, uses a specifically developed, feature detector 

called Center Surround Extrema (CenSurE) [46], which is claimed as complex as SIFT 
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but as fast as Harris corner detector. Corresponding features are then found in the 

second image using dense stereo. Their algorithm performs a 3-point RANSAC and 

sparse bundle adjustment (SBA) to N recent frames. In the final step, IMU data is fused 

for refinement using Extended Kalman Filter (EKF). 

With the help of IMU fusion, [47] matches the egomotion with key-frame based VO 

using an increased performance Semi-Global Matching (SGM) [48]. This work is 

important due to two aspects: 

 High computing rates and real time applications are possible with the use 

of Field Programmable Gate Arrays (FPGAs). 

 VO systems can be as small as a handheld device under a kilogram. 

In a more recent work, Siegwart et al. [49] also uses visual-inertial system and FPGA 

pre-processing for SLAM of Micro Aerial Vehicles (MAVs). 

Consequently, “multi-frame feature integration” technique is used in [50] suggesting 

the utilization of the whole history of the tracked points to correct the tracking error. 

Badino et al. [50] claim that this statistical analysis of the feature tracking error 

increases the accuracy up to 65% while adding only 3.8% computational cost. The 

authors also indicate that their algorithm outperforms previous VO methods with a 

translational error of 1.62% and rotational error of 0.0062 /m. 

 Visual-Inertial Odometry 

GPS is a highly accurate, absolute and widespread system that is being used by almost 

everyone in the world. However, GPS cannot be used in other planets; its usage is 

constrained by thick walls for indoors and by trees, valleys for outdoors. For the indoor 

applications, which are the primary concern of this work, other sensors such as IMUs 

can be utilized. Standing for inertial measurement unit, IMUs basically consist of 

integrated accelerometers and gyros, providing a 6-DOF. Optionally, some IMUs 

include 3-axis magnetometers and barometric pressure sensors, making the sensor 

system 10-DOF. Precise, high-end and very high-cost mechanical IMUs have been 

used for navigational purposes of aerial and naval vehicles for years. Nevertheless, 
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low-cost integrated IMUs quickly degrade over time unless corrected. If used with VO, 

position and orientation information taken from IMU, which has been a part of indoor 

positioning research for years, can be corrected.  

In one of the studies, Konolige et al. [45] use 6-DOF IMU in combination with stereo 

cameras and determines the global orientation and rotation at each frame. It is shown 

that even a very low-cost IMU dramatically increases the accuracy up to 10-14 times.  

IMU is fused via loose coupling in every frame. Then, simple, small-sized EKF 

procedure is used as a second stage of fusion. Weiss et al. [51] uses a 20-gram 

monocular camera - IMU setup to estimate 6-DOF pose of MAVs in real-time by 

utilizing optical-flow based positioning. Schmid and Hirchmüller [47] combined 

stereo camera system and IMU into an 830-gram handheld device consisting of CPU, 

FPGA and ARM-processor boards. Key frame based position estimation in 15 Hz and 

less than 1% positioning error are achieved. Use of tightly coupled visual-inertial 

framework with ARM-processor and FPGA for preprocessing have also been worked 

by Nikolic et al. [49], showing that under 1% positioning error can be obtained in real-

time indoor positioning. It is showed that their system is more accurate and robust 

compared to visual only or loosely coupled systems. 

There is an approach that exploits ground plane constraints while triangulating the 3D 

data by Panahandeh et al. [52]. The study is done indoors and imposes visual 

constraints to inertial measurements via Sigma-Point Kalman Filter. Martinelli [53] 

also develops a closed-form solution to indoor fusion of IMU and monocular camera, 

showing that the result will either have a unique solution, two distinct solutions or 

infinite solutions depending on the trajectory and the feature point locations.  

Following the widespread use of smartphones and camera-equipped mobile devices, 

researchers have focused on developing VO algorithms using built-in IMU and camera 

of these devices. Since almost every phone has one camera on each side, most of the 

research has focused on using monocular VO and internal calibration and fusion of 

built-in sensors. One of the first attempts of using cameras of mobile phones is in 2005 

by Nokia engineers [54], where a feature-based tracking algorithm facilitates user 

interaction for phone applications. Goldberg and Matthies [55] use OMAP3530 
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system-on-a-chip (SoC) processors with stereo camera and IMU to show that VO can 

be run real-time with very compact, low-power, yet high performance processors. 

Engel et al [56] present a direct monocular VO scheme rather than feature (key point) 

based method  for Augmented Reality (AR) applications. In a direct method, they track 

the new images using direct image alignment and the geometry is preserved as a semi-

dense map as shown in Figure 2.1 Unlike the previous works, Mourikis et al. [57] 

models rolling-shutter camera rather than global shutter camera since most of the 

smartphones are equipped with this type. They claim that 0.8% error accumulation of 

the distance travelled is possible by fusing camera and IMU of a smartphone by EKF 

based Visual-Inertial Odometry (VIO). Tomazic and Skrjanc [58] also use VIO on a 

smartphone with KLT and RANSAC and claims less than 1-m error over 27-m run. 

 

Figure 2.1 Feature-based methods vs. Direct methods [59]  

 

  Closure 

Due to the advancements in technology, studies on VO have gained momentum. There 

are many studies on pose estimation and visual-inertial odometry. The literature 

indicates that these studies focus on monocular camera systems since outdoor 

navigation is mostly explored. In this study, a stereo camera system is used for 

trajectory estimation in indoor environments. 
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CHAPTER 3 

 

 

BACKGROUND AND  

PROPOSED METHODOLOGY 

 

 

 

In this chapter, the theory of VO is given in detail with the specific numerical analysis 

of the used algorithm. Next, inertial navigation and the usage of IMU in the study is 

described. Then, the fusion of accelerometer and gyroscope using complementary 

filter and vision sensors and the inertial sensors is explained. Finally, proposed 

methodology is presented including inertial navigation, VO and fusion of the inertial 

data to the visual position estimation. 

  Visual Odometry 

Using only camera images, VO estimates the motion of a platform which could vary 

from a human to a robot [3]. When Moravec used stereo cameras for estimating robotic 

motions back in 1980s, VO simply refers to the estimation of the camera motion using 

image sequences. That is, it is one of the means of finding a robot’s trajectory. Nister 

et al. [26] described the generation of VO through the estimated motion from visual 

input. It was concluded in their study that to estimate a vehicle’s position, VO is an 

invaluable means. Therefore, VO is employed in a number of fields ranging from 

robotics to automotive [3]. 

For VO to operate effectively, there are a number of requisitions. To begin with, the 

environment is required to be illuminated adequately. Sufficient texture is also needed 
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so that the motions can be extracted. Moreover, without adequate scene overlapping, 

subsequent images may not be used for feature matching and tracking. Since the aim 

of this thesis is to work in indoor environments, it is assumed that there are sufficient 

features present in the images; however, illumination remains a challenge and a 

limitation of the study. 

In capturing the camera motions, there are two different image acquisition sensors 

available in today’s technology: namely Charged Coupled Device (CCD) and 

complementary metal–oxide–semiconductor (CMOS) cameras. These two devices can 

be compared based on their pros and cons [60]. One advantage of CCD lies in the 

aspect of noise. While CCD sensors create high-quality and low-noise images, CMOS 

sensors are more susceptible to noise. Another fundamental difference between them 

is their readout architecture [61]. CCD sensors employ interline charge transfer and 

have photo detectors as well as vertical and horizontal CCDs. Upon immediate 

exposure, charge is readout through charge transfer from each photo-detector to 

vertical and horizontal CCDs for all pixels. CMOS sensors; however, use horizontal 

line for pixels and vertical line for charge, resulting in transformation of one row to 

capacitors. Other advantages of CCD are related to sensitivity and power. CCD offers 

greater sensitivity and fidelity whereas CMOS offers lower sensitivity. The former 

consumes 100 times more power than its counterpart. On the other hand, CCD entails 

specialized assembly lines to produce, yet the production of CMOS is relatively easier. 

The first one is older and requires more developed technology but the latter is more 

inexpensive. CCD is larger in size. In contrast, the other is smaller. CCD can be less 

responsive; however, CMOS provides more signals per unit. While CCD is akin to 

blooming, CMOS possesses natural anti-blooming.  

In addition, different lenses and configurations are available. Camera types range from 

passive to active or hybrid types as follows: 

 Passive cameras 

o Monocular: Monocular cameras are single ones. Their trajectory 

estimation is only possible up to a scale using minimum of three 

consecutive frames [3].  
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o Stereo: Stereo cameras refer to two camera systems. Its biggest appeal 

is that exact trajectory can be estimated by triangulating feature points 

and calculating depth information [3]. More data in the scene makes 

stereo VO more robust; but when the distance between the stereo 

system and scene is greater than that of stereo camera baseline, stereo 

vision converges to monocular vision. 

o Trinocular: Trinocular cameras refer to three camera systems, which 

are more robust than stereo but wide baseline trinocular systems are not 

useful, because they take up more space than monocular or stereo 

systems. Camera trajectory can be obtained using trifocal tensor as 

mentioned in [13]. 

o Omnidirectional: Omnidirectional cameras can see a view of all 360 

degrees on a horizontal plane or almost the whole sphere.  Catching the 

light in all dimensions that see the focal point, omnidirectional cameras 

capture the sphere. Nevertheless, practically it is usually not a full 

sphere of 360 degrees. They play a critical role in robotics or panoramic 

photography which requires a vast visual field. Particularly in VO, 

omnidirectional cameras are frequently employed concerning the 

SLAM problems.  

 Active cameras 

o LIDAR: Lidar cameras include a laser, scanners, optics, photodetector, 

and navigation systems and measure distances using a laser light, which 

is ultraviolet and visible. They brighten the target with a laser, so are 

used for high-resolution operations; even a narrow beam resulting in 

high resolutions. Thus, Lidar cameras are widely used for surveying 

and mapping. However, they are very costly systems. 

o Time-of-flight (ToF): These cameras are range imaging systems. They 

determine distance using the speed of light and functions as follows: 

Time-of-flight of a light between the subject and camera is measured 

for each image point. They include an illumination unit, optics, image 

sensors, driver electronics, and interface. These are similar to Lidar 

cameras without scanners. ToF cameras work fast; almost 160 images 
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are captured each second [62].  They are also simple and efficient but 

costly. In robotics, they are preferred to create a map quickly without 

obstacles and to spend less power in computation. However, there are 

issues to be considered such as time measurement accuracy, multiple 

reflections, background lights, disturbance, and cost.   

o RGB-Depth: RGB image and its depth image, in which each pixel 

correlates with a distance between the image and object, are combined 

to form a point cloud [63].  With an RGB-D sensor, depth information 

for each pixel can be captured. Microsoft’s Kinect and ASUS’s Xtion 

can be used for that purpose. 

 Hybrid cameras 

o Using multiple sensors: Active and passive sensors can be combined 

to make a more advantageous system for position estimation. 

In this study, a stereo camera setup has been used. Stereo images converge to 

monocular when the features are far away from the camera. Because this study is only 

concerned with indoor VO, features in the environment are very close to the camera 

system. As a result, it enables calculation of the depth and scale which cannot be 

obtained using monocular method without the use of external sensors or initial 

information about the scene [3]. In other words, stereo cameras are more advantageous 

for practical purposes. On the other hand, the rationale behind the preference on CCD 

can be traced on its certain assets. As Litwiller [60] discussed, CCD is more favorable 

in terms of noise advantage. In addition, the uniformity of response in both imagers 

for different pixels makes CCD desirable over CMOS which are worse despite a great 

amount of effort. CCD also enjoys the advantage of lower power dissipation to other 

circuits on the device. Furthermore, it is easier to modify the binning, speed, range, 

depth, and other modes for different goals. For an improved pose estimation, inertial 

sensors are utilized. Since gyroscope data drifts over time, it is combined to an 

accelerometer for drift compensation. A 6-axis IMU is as a primary sensor for attitude 

estimation and a secondary sensor for position estimation.  

 



21 

 

For the formulation of the problem, inputs and outputs are defined as follows: 

 Input: For the VO system, the input is grayscale image streams from stereo 

camera system. Camera intrinsic parameters and baseline distance between 

stereo camera pair are calculated using stereo calibration algorithms such as 

[64] and [65]. 

 Output: 6 axes motion of the platform is required at the end of the VO 

algorithm. This will be given as 3x3 rotation matrix and 3x1 translation vector 

with respect to the initial pose of the platform.  

Drawing upon Scaramuzza and Fraundorfer’s work [3], basic VO process begins with 

taking images using one or multiple cameras attached to a moving platform. This stage 

is called the stereo image sequence or stereo image acquisition. Images taken from 

different cameras, namely left and right cameras, in different time instants, k, can be 

denoted by 𝑰𝒍,𝟎:𝒏 = {𝑰𝒍,𝟎, 𝑰𝒍,𝟏, … , 𝑰𝒍,𝒏−𝟏, 𝑰𝒍,𝒏} and by 𝑰𝒓,𝟎:𝒏 = {𝑰𝒓,𝟎, 𝑰𝒓,𝟏, … , 𝑰𝒓,𝒏−𝟏, 𝑰𝒓,𝒏}. 

Transformation of the camera at successive frames, T, can be represented by rotation 

matrix R, and translation vector t in the following form:  

 
  
 

k+1,k k+1,k

k+1,k

R t
T

0 1
     (3.1) 

Transformation matrix, T, contains motions in adjacent time instants, while the set of 

vectors C0: n = {C0, C1, …, Cn-1, Cn} denotes the cumulative transformation of the 

camera pose with respect to the initial camera location as shown in Figure 3.1.  

In Figure 3.1, C0 is the initial camera pose and the VO algorithm results with a 

trajectory estimation with respect to this very point. On the other hand, Cn can be 

calculated by using the product of all the previous transformations T0 to Tn. In other 

words, Cn can be computed as Cn = Cn-1Tn = C0T1T2…Tn-1Tn. Main purpose of VO 

problem is to calculate the rotation and translation components between successive 

frames as in T and recover estimated trajectory between the initial and final poses as 

in C.  
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Following this first phase comes the image processing step which includes 

preprocessing algorithms on the taken images. Images are first undistorted while stereo 

images are rectified to have a same image plane which makes stereo feature detection 

and tracking easier. Salient and robust features are found in stereo image sequence 

using the using feature detector. Found features are matched and tracked in the ensuing 

images to estimate or extract the motion. Using an optimization technique, results are 

refined to minimize the localization error.  

 

Figure 3.1 VO problem in a nutshell [3] 

 

 

This pipeline is explained in detailed subsections. First, camera basics are explained 

in terms of camera model, camera sensor and lens technology, camera parameters, 

distortion and calibration. Next, feature detectors and descriptors are described. 

Finally, feature tracking algorithms, motion estimation, outlier rejection and 

optimization subsections are included. 

 Camera Basics 

Camera model, camera distortion, and camera calibration must be understood before 

image processing and machine vision algorithms. Details of camera basics can be 

found in Appendix A. In this study, perspective projection is utilized to project 3D 
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scene features on an image plane which is more favorable in machine vision algorithms 

[3].  

Camera calibration refers to the intrinsic and extrinsic camera parameters. Intrinsic 

parameters consist of three different parameters as explained in Appendix A. Focal 

length representing the distance between the image plane and the lens of the camera, 

principal point representing the image center point, and the skew coefficient which 

non-zero if the image axes are not perpendicular as in most CCD cameras. Extrinsic 

parameters, on the other hand, relate the 3D world point to camera image plane by 

means of rotation and translation components which is to be found as a result of VO. 

CCD cameras provide non-ideal images which must be corrected before machine 

vision algorithms for better results. Distorted camera images can be formulated using 

radial and tangential distortion parameters of the camera as showed in Appendix A. 

Image distortion can be removed using well-known camera calibration algorithms 

such as [64].  

 Feature Detection 

Computer vision (CV) algorithms are based on local feature detectors and descriptors. 

Feature detection is a method of image processing in which abstractions of image 

information are computed so that the possibility of image feature in a given point at 

each image can be found. As a result, the image domain subsets can be formed. A 

feature can be considered as a starting point for algorithms in a low-level processing. 

As such, consequent algorithms can be as good as its feature detection. In other words, 

repeatability is an essential characteristic in feature detection. Local features are 

distinct patterns in an image. Features may represent a number of things, but the 

important thing about them is that they are distinctive from their surroundings. 

Therefore, it can be inferred that being repeatable, distinctive, and localizable to assign 

exact points are the three distinguishing merits of a good local feature. 

Feature detectors should be distinguished from feature extractors in that the former 

determines the regions of an image using corners, edges, or blobs whereas the latter 

computes the descriptors on regions of detected features. To put it in another way, 
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feature detectors enable selection of the points for processing. However, feature 

extractors allow the transformation of local pixel neighborhood to a compact vector 

representation. Descriptors including SIFT, SURF, BRISK, or FREAK (the last two 

being the binary ones) can be employed.  

There are several types of feature detection such as edges, corners, blobs, and ridges. 

In this study, corner detection has been focused and used, but also blobs are taken into 

consideration for feature descriptors for reference and comparison. 

 Corner Detection 

Corner detection, also referred as interest points, connotes a point-like characteristic 

in an image with two dimensional structure. Corner detection is used to extract 

particular features to deduce the properties of an image. A corner, in this sense, refers 

to the neighboring point where the intersections of two different edges meet. An 

interest point, similarly, refers to a robustly defined point which could be a corner, line 

endings, or an isolated point. However, as seen in the literature that these two terms, 

are interchangeably used.  

Some of the corner characteristics are as follows: Corners 

 can be defined as junctions of contours or intersection of edges, 

 have large changes in intensity in neighborhood points, 

 are generally stable and robust over viewpoint and illumination changes, 

 are not invariant to image scale. 

 

The history of corner detection lies back to Moravec [66], who viewed corners as low 

self-similarity points. Whether every pixel views any corners is tested in algorithms. 

The focus is on the similarity between the nearby patches. Calculating the sum of 

squared differences between the matching pixels (a low score signifies a high 

similarity) similarity between the overlapping patches can be tested. However, the 

problem arises when the edge is out of the neighbors’ directions, because it causes to 

obtain a large sum of squared difference, meaning to select an incorrect edge. Figure 
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3.2 demonstrates that a corner can be easily recognized by shifting a window over the 

frame. 

 

Figure 3.2 Shifting a pre-defined window to determine a corner [17] 

 

If there is a major change in intensity in all directions, the point can be defined as a 

corner according to Moravec’s algorithm. Drawing upon Moravec’s work, Harris and 

Stephens [17] advanced the algorithm using gradients to find the response of the 

shifted window. In mathematical representation, corner function around an interest 

point can be expressed as the square of the differences between the current intensity 

and the shifted intensity of the point.  

𝐸(𝑢, 𝑣) =  ∑𝑤(𝑥, 𝑦)[𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼(𝑥, 𝑦)]2

𝑥,𝑦

 (3.2) 

where 

𝐸(𝑢, 𝑣) is the corner function, 

𝑤(𝑥, 𝑦) is the window function which can be a rectangular or Gaussian window, 

[u,v] is shifting property, 

𝐼(𝑥, 𝑦) is the current intensity, 

𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) is the shifted intensity. 

According to the above expression, if the difference between shifted intensity and the 

current intensity is close to zero, there is no change in the scene. However, if the 

difference is large, it means that the score function is large and a corner is located at 

that point.  Writing the intensity change using Taylor Series expansion:  
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∑𝑤(𝑥, 𝑦)[𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼(𝑥, 𝑦)]2  

≈  ∑𝑤(𝑥, 𝑦)[𝐼(𝑥, 𝑦) + 𝑢𝐼𝑥 + 𝑣𝐼𝑦 − 𝐼(𝑥, 𝑦)]2 

= ∑𝑤(𝑥, 𝑦)[𝑢2𝐼𝑥
2 + 2𝑢𝑣𝐼𝑥𝐼𝑦 + 𝑣2𝐼𝑦

2] 

= [ 𝑢 𝑣 ] (∑𝑤(𝑥, 𝑦) [
𝐼𝑥

2 𝐼𝑥𝐼𝑦

𝐼𝑥𝐼𝑦 𝐼𝑦
2 ]

𝑥,𝑦

)[
𝑢
𝑣
] =  [ 𝑢 𝑣 ]  𝐌 [

𝑢
𝑣
] 

(3.3) 

where 

𝐼𝑥 is the image derivate in x-direction, 

𝐼𝑦 is the image derivative in y-direction, 

𝐌 is called Harris matrix for corner detection. 

If eigenvalues of M are described as λ1 and λ2,  a score function can be defined using 

the determinant and the trace of the eigenvalues as follows: d𝑒𝑡(𝐌) = |𝐌| = λ1λ2 and 

𝑡𝑟(𝐌) = λ1 + λ2. Thus cornerness measure can be made according to below 

formulation:  

𝑅 = λ1λ2 − k (λ1 + λ2)
2 = |𝐌| − 𝑘(𝑡𝑟(𝐌))2 (3.4) 

where k  [0.04, 0.06] is empirically tunable parameter. Since eigenvalue 

decomposition is computationally expensive because of the computation of square 

root, it is convenient to use determinant and trace of the function M instead of the 

eigenvalues λ1 and λ2. A point can be specified using a score function as follows: 

 if λ1 and λ2 are small, |R| is small, then the region is flat, 

 if λ1 is larger than λ2 or vice versa, R<0, then the region is an edge, 

 if λ1 and λ2 are both large and R is also large, then the region is a corner. λ1 

and λ2 values of each pixel in an image can be sorted to obtain the corner 

strength and most strong n point can be selected. Exact corner point is the local 

maxima in that region Figure 3.3 shows how eigenvalues corresponds to a 

corner, an edge or a region:  
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Figure 3.3 Graphical representation of Harris corner detector [17] 

 

Improving upon Harris Corner Detector, Shi and Tomasi [16] suggest using the 

minimum of the eigenvalues as the score function, thus setting a threshold value for 

corner quality. Shi-Tomasi corner detector in graph representation can be seen in 

Figure 3.4.  

 

Figure 3.4 Graphical representation of Shi-Tomasi corner detector [16] 

 

There are also FAST [19] and FASTER [67] single scale corner detectors for faster 

detection of corners. They have their own advantages and disadvantages over Harris 

and Shi-Tomasi corner detectors. However, in this study Harris and Shi-Tomasi corner 

detectors are utilized due to their stability in feature tracking.  
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 Feature Description 

To be able to compare and relate two feature sets of consecutive or stereo images, it is 

important to attribute a description to each feature point. This can be done using feature 

vectors and is called feature description. A good feature descriptor has to be robust, 

and should be able to extract features even under different conditions such as noise, 

and scale/illumination change. There are many different descriptors in computer 

vision. Since it is impossible to explain all of them in detail, a comprehensive 

comparison of famous feature descriptors is given in Table 3.1. 

 

 

Table 3.1 Comparison of some of the famous feature descriptors 

Descriptor 
Invariance 

Binary 
Usage 

Patent 
Scale Rotation Affine Matching Class 

SIFT [18]        

SURF [23]        

BRISK [22]        

FREAK [68]        

ORB [21]        

MSER [69]        

 

The most well-known feature descriptor is Scale Invariant Feature Transform (SIFT) 

by Lowe [18]. SIFT is not only scale invariant but also rotation, illumination and 

viewpoint invariant, which makes the algorithm robust and stable. SIFT can be 

described in six steps as follows: 

1. Scale space construction: A filter called scale space is used to take different 

scales of an image in order to be able to detect different key points. Blob 

detection is made by finding local maxima using Laplacian of Gaussian (LoG) 

for different 𝜎 values.   
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𝐿(𝑥, 𝑦, 𝜎) = 𝐺(𝑥, 𝑦, 𝜎) ∗ 𝐼(𝑥, 𝑦) =  
1

2𝜋𝜎2
 𝑒

−[
(𝑥2+𝑦2)

2𝜎2 ]
∗  𝐼(𝑥, 𝑦) (3.5) 

2. Finding extremes: Since LoG is computationally costly, an approximation, 

Different of Gaussians (DoG), is used and local extremes on different layers 

are found. Local extrema points are marked as potential key points for future 

description process. Figure 3.5 shows the DoG method for SIFT descriptor. 

3. Key point localization: Using Taylor series expansion, location points in terms 

of 𝑥, 𝑦 and 𝜎 is found with subpixel accuracy. A 22 Hessian window is then 

used to eliminate edges.  

𝐷(𝑥) = 𝐷 + 
𝜕𝐷𝑇

𝜕𝑥
𝑥 + 𝑥𝑇

𝜕2𝐷

2𝜕𝑥2
𝑥 

  Differentiating  𝑥 =  
𝜕2𝐷−1

𝜕𝑥2
 
𝜕𝐷

𝜕𝑥
   (𝑥, 𝑦, 𝜎) 

(3.6) 

 

Figure 3.5 Difference of Gaussian method is used in SIFT [18] 

4. Orientation estimation: For rotation invariance, each key point is associated 

with and orientation vector. In the Gaussian smoothed image 𝐿(𝑥, 𝑦), 

orientation 𝜃(𝑥, 𝑦)  and magnitude 𝑚(𝑥, 𝑦) is found around each key point and 
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a histogram for orientation is created. The histogram is weighted by magnitude 

and 𝜎 = 1.5 𝑠𝑐𝑎𝑙𝑒 and peaks larger than 0.8 of key point is used to calculate 

the orientation.  

𝑚(𝑥, 𝑦) =  √[𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦)]2 + [𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1)]2 (3.7a) 

𝜃(𝑥, 𝑦) =  𝑡𝑎𝑛−1 [
𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1)

𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦)
] (3.7b) 

5. Key point descriptor: A 4x4 block is created around the key point where each 

block also divided into a 4x4 sub-block so that histogram of orientation can be 

represented as key point descriptor vector. 

6. Key point matching: Nearest neighbors of key points are matched between two 

images. If there are two very close matches, second closest is eliminated if their 

ratio is higher than 0.8. 

 Feature Tracking 

Feature tracking and matching can be done using key point descriptors or optical flow 

which can be defined as the motion of the features within consecutive frames. Since 

feature descriptors are explained in section 3.1.2, feature tracking with optical flow 

will be described here.  

One can assume that object in a frame sequence does not change its pixel intensities 

over time and its connecting pixels also move with it. Mathematically, this can be 

shown that  

𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 𝑡 + 𝑑𝑡) (3.8) 

Using Taylor series expansion, 

𝑓𝑥𝑢 + 𝑓𝑦𝑣 + 𝑓𝑡 = 
𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑡
+ 

𝜕𝑓

𝜕𝑦

𝜕𝑦

𝜕𝑡
+ 𝑓𝑡 = 0 (3.9) 
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Image gradients in 𝑥 and 𝑦 directions are indicated by 𝑓𝑥 and 𝑓𝑦 and time gradient is 

shown by 𝑓𝑡. There are two unknowns for one equation so the problem cannot be 

solved without further assumptions. 

Kanade-Lucas-Tomasi (KLT) feature tracker [70, 71] is one of the most famous 

methods that deals with the under-determined optical flow problem. KLT assumes that 

neighboring pixel around the feature point also travels the same distance, thus having 

9 points and 9 equations instead of 1 point and 1 equation to solve for 2 unknowns. 

Since this is only valid for small motions, tracking is done for different pyramid scales 

in order to track for large motions. KLT algorithm with a pseudocode is provided in 

Appendix B. Still steps of the simple KLT algorithm are given in Table 3.2:  

 

Table 3.2 KLT algorithm steps 

1) Detect features (Harris corners can be used) 

2) For each feature, compute motion between respective frames 

3) Link motion vectors in adjacent frames for tracking 

4) Since most of the features will be lost after some time, assign new feature 

points for instance in every 10 frames 

5) Track from the beginning. 

 

 

While KLT uses sparse features for optical flow, it is possible to use all pixels for a 

dense optical flow as in [72]. Optical flow vectors are calculated using magnitude and 

direction of pixel intensities. In this study, however, sparse features are tracked via 

KLT feature tracker. 

 Motion Estimation 

Motion estimation is the core step of VO as the translation and rotation component of 

the motion is calculated in an additive manner. Assume that a stereo camera system 

captures images, 𝑰, at certain time instances, 𝑘, and successive images are 𝑰𝒍,𝒌 and 
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𝑰𝒍,𝒌+𝟏 for the left camera and 𝑰𝒓,𝒌 and 𝑰𝒓,𝒌+𝟏 for the right camera. Motion is estimated 

between these consecutive frames for the whole sequence and then concatenated to 

build the whole path from the beginning to the end of the motion. There are different 

methods in the literature [3] to solve the problem as explained in the following 

sections. 

 Using Essential Matrix and Singular Value Decomposition 

Motion between two successive camera frames is related by essential matrix 𝐸 defined 

in [13]. Let the locations of the matched feature points in adjacent images are 𝒑 and 𝒑′ 

respectively, essential matrix for a calibrated camera can be expressed as follows: 

𝐩′𝐄 𝐩 = 𝟎 (3.10) 

Using Nister’s 5-point algorithm [35] which requires a minimum of five feature 

correspondences or Longuet-Higgins’ 8-point algorithm [28] requiring minimum of 8 

point correspondences, essential matrix can be calculated efficiently. Essential matrix 

consists of translation and rotation parameters. 

𝐄𝐤~ 𝐭̂𝐤𝐑𝐤 (3.11) 

where  𝒕̂𝒌 is the skew symmetric form of the translation vector.  

Scale factor is calculated using the same technique among stereo image pairs and then 

calculated translation components are refined. However, calculation of translation and 

rotation components from the essential matrix is not straightforward as a 

decomposition method is needed. Here, singular value decomposition (SVD) from [73]  

is utilized to obtain: 

𝐑 = 𝐔(𝐖𝐓)𝐕𝐓 (3.12a) 

𝐭̂ = 𝐔(𝐖𝐓)𝐒𝐔𝐓 (3.12b) 

The detailed explanation of SVD calculation is given in the Appendix A. Step-by-step 

description of the algorithm is summarized in Table 3.3.  
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Table 3.3 Motion estimation algorithm using essential matrix and SVD 

1) Capture two frames 𝑰𝒌 and 𝑰𝒌+𝟏 

2) Match features between them 

3) Compute 𝑬 

4) Use SVD to get 𝑹𝒌 and 𝒕𝒌+𝟏 

5) Repeat from 1 for stereo image pair and calculate the scale 

6) Repeat 1-5 and multiply all transformations 

 

 Using Perspective from 𝒏 Points 

This approach is generally known as 3D-to-2D image correspondence method for 

calculating the ego-motion. 3D feature location 𝑿𝒌 can be found using stereo data. 2D 

feature point is 𝑝𝑘, which is the projection of 𝑿𝒌 using the transformation 𝑻𝒌. The aim 

of the algorithm is to minimize the reprojection error: 

𝑎𝑟𝑔 min
𝑻𝒌

∑‖𝒑𝒌
𝒊 − 𝑻𝒌−𝟏𝑿𝒌−𝟏

𝒊 ‖
2

𝑖

=  𝑎𝑟𝑔 min
𝒌

∑‖𝒑𝒌
𝒊 − 𝒑𝒌−𝟏

𝒊 ‖
2

𝑖

 (3.13) 

Direct Linear Transformation (DLT) is the simplest solution to this problem as 

suggested in [13]. To apply DLT, 29 matrices 𝑨𝒊 are computed using a minimum of 

6 correspondences: 

[
𝟎𝑻 −𝒛𝒊

′𝒙𝒊
𝑻 𝒚𝒊

′𝒙𝒊
𝑻

𝒛𝒊
′𝒙𝒊

𝑻 𝟎𝑻 −𝒙𝒊
′𝒙𝒊

𝑻] =  [

𝒑𝟏

𝒑𝟐

𝒑𝟑

] (3.14) 

where 𝒙𝒊
𝑻 = [𝑥𝑖 𝑦𝑖 𝑧𝑖   1] and 𝒑𝒊𝑻is a 4-vector (jth row of Pk). Stacking 𝑛 29 

matrices 𝑨𝒊 into a single 2n9 matrix 𝑨, SVD can be used to extract translation and 

rotation components from 𝑷 =  [𝑹 | 𝒕].  

There is also a neat minimal case solution to PnP problem using only 3 

correspondences which is called P3P [74]. Each step of perspective from 𝑛 points 

solution is summarized in Table 3.4. 
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Table 3.4 Motion estimation using perspective from n points 

1) Match stereo image features. Triangulate to get 3D correspondences 

2) Track features for several frames reject outliers (chapter 3.1.5) 

3) Repeat step 2 for robustness and compute camera pose  

4) Triangulate for new matches for both left and right images 

5) Repeat from step 2 

 

 Using 3D-to-3D Point Correspondences 

This method is for stereo case only; however, there are issues of being not as accurate 

as the previous algorithms because of minimizing the feature position error instead of 

image reprojection error. As the name suggests, 3D point locations from stereo 

cameras are found in this case and matched with the successive 3D points. 𝑿𝒌
𝒊  and 

𝑿𝒌+𝟏
𝒊  representing the 3D point coordinates, algorithm aims to minimize the distance 

between them as follows: 

𝑎𝑟𝑔min
𝑻𝒌+𝟏

∑‖𝑿𝒌+𝟏
𝒊 − 𝑻𝒌+𝟏𝑿𝒌

𝒊 ‖
2

𝑖

 (3.15) 

As in the first two algorithms, SVD is used to decompose transformation matrix into 

rotation and translation components. The algorithm steps can be found in Table 3.5. 

 

Table 3.5 Motion estimation using 3D-to-3D point correspondences 

1) Capture 2 stereo images and match features  

2) Triangulate matched features to get 3D point set 

3) Match features for the left image 

4) Compute transformation for the left image 

5) Compute transformation for the right image and minimize the error 

6) Repeat 1-5 and sum up all transformations 

 

 



35 

 

 Outlier Rejection 

An outlier is a point in a dataset that is distant from the other points, i.e. noisy data. In 

pose estimation, outlier features show different motion characteristics than the 

estimated motion. If the feature set contains outliers, the estimates gets more 

erroneous. Since the odometry is done frame-by-frame, error in the motion estimation 

accumulate and the drift increases. There are lots of reasons of outliers. Some of them 

are listed below:  

 Image noise 

 Camera movement during shooting 

 Illumination change 

 Motion blur 

 Occlusions and environmental changes 

 Measurement errors 

 Uncertainties in mathematical assumptions, etc. 

There are several methods in the literature for rejecting outliers or taking inliers, but 

the most famous one is using Random Sample Consensus (RANSAC) [24]or RANSAC-

like outlier rejection schemes. RANSAC assumes that the data points contain inliers 

with an explainable model and outliers that cannot be explained with that model. It 

takes a small set of inliers and iteratively finds the correct data set rejecting the outliers. 

For the VO problem, data points are detected features from successive frames. 

Procedure is illustrated in Table 3.6.  

Since RANSAC offers a non-deterministic probabilistic solution to the outlier 

rejection problem, it may give different but very similar solutions in different runs 

especially when the iteration is large. However, when the number of iterations is high, 

the execution time of the algorithm grows exponentially. Nevertheless, there are 

algorithms devised to decrease the run time of RANSAC as in Nister’s 5-point minimal 

solver with RANSAC [35]. There are also constrained algorithms to decrease the 

number of iterations needed to estimate the motion as in [75]. 
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Table 3.6 RANSAC pipeline 

1) Take full set of feature matches from successive frames 

2) Choose a small set of features are taken from 

3) Fit a model to the small feature points set 

4) Compute feature distances to the fitted model 

5) Find inliers whose distance is smaller than a specified distance 

6) Repeat from 2 to cover all feature points 

7) Choose the set with most inliers and reject the outliers 

 

 

 Optimization 

While RANSAC optimizes the feature matches, this step optimizes the camera pose 

over last 𝑁 frames. Since motion estimation is made between adjacent frames, 

uncertainties accumulate over time. However, it is possible to estimate the motion 

between the current frame and the 𝑛 frame before to improve the estimation 

performance. For this purpose pose-graph optimization [76] or bundle adjustment (BA) 

[13] is used. Pose-graph optimization improves the camera parameters only while BA 

optimizes 3D feature points that are tracked over last 𝑛 frames. For a 3D feature point 

𝑿𝒊, the corresponding image feature point 𝑝𝑖, camera pose 𝑪𝒌 and the reprojection 

𝒈(𝑿𝒊, 𝑪𝒌) , bundle adjustment tries to minimize this function: 

𝑎𝑟𝑔 min
𝑿𝒊,𝑪𝒌

∑‖𝒑𝒌
𝒊 − 𝒈(𝑿𝑖, 𝑪𝒌)‖

2

𝑖,𝑘

 (3.16) 

Since the function g is non-linear, Levenberg-Marquardt method is utilized to compute 

the optimized pose. Pseudocode of sparse Levenberg-Marquardt algorithm is 

presented in Appendix D. 

The only deficiency of the BA optimization is that it is computationally expensive. 

Complexity of bundle adjustment in general is O ((qm + ln)3) where m is the number 

of feature points; n is the number of camera poses; q is the number of parameters for 
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feature points and l is the number of parameters for camera poses. For real time 

applications, n is being kept small by optimizing only a group of frames. Since offline 

processing is made in this study, number of frames to be optimized are kept slightly 

large. 

  Inertial Navigation 

Inertia is basically a property that keeps the velocity of translation and rotation steady, 

if not altered by forces or torques. A self-contained technique for navigation, inertial 

navigation utilizes accelerometer and gyroscope measurements to determine the 

location and orientation of the objects with respect to their starting point, velocity, and 

orientation. That is, inertial navigation requires the information on initial point, 

attitude, and velocity. 

Inertial Navigation systems (INS) are autonomous systems that can function 

underwater or in tunnels, which means that they do not need external aids or visibility 

since they are only based on Newton’s laws of motion. They are also resistant to 

jamming. INS are quite appropriate for integrated navigation for which IMUs calculate 

the other variables such as velocity. An INS involves inertial measurement units, 

instruments support electronics, and navigation computer(s). Inertial Measurement 

Units (IMUs) or Inertial Reference Units (IRUs) involve a set of three or more 

accelerometers and gyroscopes to preserve a constant orientation. But usually, an IMU 

includes three orthogonal rate-gyroscopes to gauge angular velocity and three 

orthogonal accelerometers to measure linear acceleration.  

Basically, if the acceleration of a vehicle is measured, its velocity and position in 

regard to time can be found by integration. If navigation in regard to inertial reference 

frame is desired, then the directions that the accelerometers point should be traced. In 

addition, IMUs can be utilized to solve the problem of lost visual tracking due to 

unexpected alterations in illumination, quick motions, or occlusions. In the following 

section, accelerometers and gyroscopes have been described. 
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 Accelerometers 

These sensors measure acceleration, yet not gravitational acceleration. In other words, 

without gravitational acceleration an accelerometer in freefall does not detect input. 

There are mechanical, solid-state and MEMs accelerometers. Detailed descriptions of 

different types of accelerometers can be found in Titterton and Weston’s work [77]. In 

this work, MEMs accelerometers are utilized. Advantages and disadvantages of 

MEMs accelerometers over traditional systems are presented in Table 3.7. 

 

Table 3.7 Comparison of traditional- and MEMS accelerometers 

Traditional Accelerometers MEMS Accelerometers 

High performance (Accurate) 

More prone to drift and error. (Despite 

the fact that performance of MEMS 

accelerometers are increasing rapidly) 

Heavy and bulk Lightweight and small 

High power consumption Low power 

Long start-up time Fast start 

Very high cost Low-cost when mass produced 

 

 

 Error Characteristics 

Output of an accelerometer without error components can be modeled as:  

𝒂𝒎 =  
1

𝑚
 (𝑭 − 𝑭𝑔) =  𝒂𝑩 − 𝑹𝑰

𝑩 [
0
0
𝑔
] (3.17) 

where  

𝒂𝒎:  measured acceleration 

𝑚:  body mass 

𝑭:  total force acting on the body expressed in the sensor coordinate system 

𝑭𝑔:  gravitational force expressed in the sensor coordinate system 
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𝒂𝑩:  Actual acceleration 

𝑹𝑰
𝑩:  rotation matrix between the inertial frame of reference and sensor body frame 

𝑔:  gravitational acceleration. 

However, different error sources affect the acceleration measurements. Constant bias, 

white noise, temperature errors, alignment errors and scale factor is explained in detail: 

Constant Bias: This error corresponds to the constant offset of the measured value 

from the correct value. Since position is found by double integration, sensor bias, ϵ, 

grows with square of the time.  

𝛽𝑎(𝑇) = ∈ ∙  
𝑡2

2
 (3.18) 

To correct the error, orientation controlled sensor measurements have to be averaged 

and the bias must be estimated. However, gravity compensation should be done very 

accurately in order not to include a second bias to the system.  

White Noise and Random Walk: White noise in the system results in a huge amount 

of random walk when double integrated. Let 𝑁𝑖 be random variable in the white noise 

sequence with 𝐸(𝑁𝑖) = 𝐸(𝑁) = 0 and (𝑁𝑖) =  𝜎2 , then the error characteristics can 

be calculated as 

∬𝜖(𝜏) 𝑑𝜏 𝑑𝜏 =  𝛿𝑡 ∑𝛿𝑡

𝑛

𝑖=1

∑𝑁𝑗

𝑖

𝑗=1

𝑡

0

= 𝛿𝑡2  ∑(𝑛 − 𝑖 + 1) 𝑁𝑖

𝑛

𝑖=1

 (3.19) 

where n is number of samples and t is the sampling period. Expected error in position 

becomes 

𝐸 (∬𝜖(𝜏) 𝑑𝜏 𝑑𝜏

𝑡

0

) =   𝛿𝑡2  ∑(𝑛 − 𝑖 + 1) 𝐸(𝑁𝑖)

𝑛

𝑖=1

 =   0 (3.20) 

Variance is: 
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𝑉𝑎𝑟 (∬𝜖(𝜏) 𝑑𝜏 𝑑𝜏

𝑡

0

) =   𝛿𝑡4  ∑(𝑛 − 𝑖 + 1)2 𝑉𝑎𝑟(𝑁𝑖)

𝑛

𝑖=1

 

= 
𝛿𝑡4 𝑛 (𝑛 + 1)  (2𝑛 + 1)

6
 𝑉𝑎𝑟(𝑁)   ≅    

1

3
  𝛿𝑡  𝑡3  𝜎2 

 

(3.21) 

It is shown that a second order random walk is formed due to the white noise with a 

standard deviation growing proportional to 𝑡3/2. 

Temperature Errors: Nonlinear effects of temperature causes quadratic errors [77] 

on the sensor which can then be compensated using temperature sensor. 

Alignment Errors and Scale Factor: Misalignment of the sensor and scale factor 

introduces a temperature independent bias to the sensor measurements when an 

acceleration is present. This can be calibrated during the calibration stage of the sensor 

by putting the sensor body stationary and observing the gravitational acceleration.  

 Velocity and Position Estimation 

Velocity and position can be deduced from inertial-frame acceleration by using single 

and double integration, respectively.  

𝑣 =  ∫𝑎(𝑡) 𝑑𝑡 (3.22a) 

𝑥 =  ∬𝑎(𝑡) 𝑑𝑡 = ∫𝑣(𝑡) 𝑑𝑡  (3.22b) 

However, data is not gathered continuously but in discrete periods so that velocity and 

position can only be estimated between small time intervals, T, using 

𝑣[𝑖 + 1] = 𝑣[𝑖] + 𝑇 𝑎[𝑖] (3.23a) 

𝑥[𝑖 + 1] = 𝑥[𝑖] + 𝑇 𝑣[𝑖] + 𝑇2 𝑎[𝑖] (3.23b) 

Block diagram of velocity and position estimation is shown in Figure 3.6. 
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Figure 3.6 Velocity and position estimation block diagram 

 

 Gyroscopes  

These sensors measure rotation. While rate-gyroscope measures the rate of rotation, 

whole-angle (integrating) gyroscopes measure the angle of rotation. In a conventional 

gyroscope, there is a spinning wheel on two gimbals enabling it to turn in three axes. 

There are mechanical, optical and MEMS gyroscopes. Difference between MEMS 

gyroscopes and traditional gyroscopes are very similar with Table 3.7 as in 

accelerometers. Error sources are very similar to those in MEMS accelerometers. 

While the effect of the double integration is large in position estimation of 

accelerometer results, single integration yields less error in orientation estimation of 

gyroscopes. Description and the effect of each error source is shown in Table 3.8: 

 

Table 3.8 Error sources of MEMS gyroscopes 

Error Type Error Description Effect in orientation 

Bias Constant bias ϵ 

 

Proportional with the time 

White  

Noise 

Standard deviation 𝜎 Proportional with square root of 

the time 

Temperature Bias due to temp. change Residual bias is proportional with 

time 

Alignment, 

Scale 

Non-random calibration 

errors 

Proportional with the angular 

velocity rate and the time 

Gravity 

compen-

sation 
ʃ ʃ 

𝑎 𝑣 

𝑣𝑖𝑛𝑖𝑡𝑖𝑎𝑙 

Position (x) 

𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 

Accelerometer 

measurement 
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 Orientation Estimation 

As in accelerometer, angular velocity signals are measured in fixed time periods in a 

gyroscope. Several methods and notations are used to calculate the orientation from 

angular velocity like Euler angles and quaternions. In this study, direction cosines 

representation is used to calculate the rotation matrix C with respect to the initial 

attitude.  

𝐯𝐠𝐥𝐨𝐛𝐚𝐥 = 𝐂 𝐯𝐛𝐨𝐝𝐲 (3.24) 

where 𝒗𝒈𝒍𝒐𝒃𝒂𝒍  is vector in global frame while 𝒗𝒃𝒐𝒅𝒚 denotes vector in body frame. 

Rate of change of C can be calculated as 

𝐂̇(t) =  lim
𝑇→0

(
𝐂(t + T) − 𝐂(t)

T
) (3.25) 

where 𝐂(t + T) can be written using the rotation matrix 𝐀(t):  

𝐂(t + T) =  𝐂(t) 𝐀(t) = 𝐈 +  𝛅𝛙 (3.26) 

In Eqn. (3.26), 

𝜹𝛙 = (

0 −𝛿ψ 𝛿𝜃
𝛿ψ 0 −𝛿𝜑
−𝛿𝜃 𝛿𝜑 0

) (3.27) 

Consequently, 

𝐂̇(t) =  lim
𝑇→0

(
𝐂(t + T) − 𝐂(t)

T
)

=  lim
𝑇→0

(
𝐂(t)𝐀(t) − 𝐂(t)

T
)

= lim
𝑇→0

(
𝐂(t)(𝐈 +  𝛅𝛙) − 𝐂(t)

T
) =  𝐂(t) lim

𝑇→0
=  𝛀(t) 

(3.28) 

where 𝜴(𝑡) is the matrix representation of angular velocity vector 𝝎𝑏(𝑡) as 

𝛀(t) =  [

0 −𝜔𝑏𝑧(𝑡) 𝜔𝑏𝑦(𝑡)

𝜔𝑏𝑧(𝑡) 0 −𝜔𝑏𝑥(𝑡)
−𝜔𝑏𝑦(𝑡) 𝜔𝑏𝑥(𝑡) 0

] (3.29) 
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Finally, orientation with respect to the initial attitude is found as: 

𝐂̇(t) =  𝐂(t)𝛀(t) (3.30a) 

𝐂(t) =  𝐂(0) 𝑒∫ 𝜴(𝑡)
𝑡
0  (3.30b) 

 Sensor Fusion 

In this section, data fusion is explained. First, fusion of accelerometer and gyroscope 

readings is done using so-called complementary filter to obtain orientation and 

position estimations. Second, inertial and visual data is fused using Extended Kalman 

Filter which is a non-linear version of standard Kalman Filtering method. 

 Fusion of Accelerometer and Gyroscope Data 

As mentioned in section 3.2, outputs of MEMS accelerometer and gyroscope are very 

noisy due to white noise and sensor bias. However, their error characteristics are 

slightly different from each other in different conditions. On one hand, accelerometers 

are highly sensitive to dynamic conditions while providing decent results in slight 

movements. On the other hand, gyroscopes have poor static characteristics, but do 

better in dynamic conditions. Thus a filter mechanism should be applied to each sensor 

output in order to utilize the best output overcoming the shortcomings of each sensor. 

To fuse the noisy inertial sensor measurements, complementary filter can be utilized. 

Numerically integrated gyroscope data is high-pass filtered and fused with low-pass 

filtered accelerometer data in order to obtain the orientation. Low-pass filtered 

acceleration only allow long-term changes while filtering the short-term fluctuations. 

Since gyroscope data drifts over time, high-pass filter only trust the sensor in the short 

term while filtering the steady signals. Figure 3.7 presents basic complementary filter.  

Mahony’s explicit complementary filter [78], as illustrated in Figure 3.8, presents an 

enhanced estimation of the orientation. quaternion notation (see Appendix E) is used 

for orientation estimation to eliminate the singularity of Euler angles.  
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Figure 3.7 Basic complementary filter for orientation estimation 

 

 

 

 

Figure 3.8 Explicit complementary filter for orientation estimation [78] 
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Algorithm steps for the complementary filter is described as follows: 

1. First, data is gathered from the inertial sensors. Initial pose is assumed to be 

zero meaning that there is no rotation. Gain parameters and sampling rate is 

defined. 

2. Direction of the gravity vector is estimated using the output quaternion: 

𝒗̂ =  [

2(𝑞1𝑞3 + 𝑞0𝑞2)
2(𝑞2𝑞3 + 𝑞0𝑞1)

𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2
] (3.31) 

3. Acceleration data is normalized. Cross-product of normalized acceleration and 

the estimated gravity direction is combined to form the error function.   

𝒗̅ =  
𝒈̂

|𝒈̂|
  𝒆 =  𝒗̅  ×  𝒗̂ (3.32) 

4. Error in estimated direction of gravity, e, is fused to gyroscope data using 

adjustable proportional and integral gain values kp and ki, respectively.  

𝛀̅ =  𝛀 + 𝐤𝐩𝐞 + 𝐤𝐢 ∫𝐞 𝐝𝐭 (3.33) 

5. Formula of quaternion differentiation gives: 

𝐪̇̂ =  
𝟏

𝟐
 𝐪̂ ⊗ 𝐩(𝛀̅) (3.34) 

6. Taking the integral of 𝑞̇̂ and normalizing, orientation estimation for one 

iteration is completed. For a long run, these steps are followed from 1 to 6 and 

the orientation estimation is updated in each step.  

Position is estimated by taking the double integral of the acceleration and filtering in 

every iteration. Since there is random walk in accelerometer readings, the instances 

when the system has zero velocity are estimated. Thus, the system resets its velocity 

and drift is reduced. Zero velocity can be easily observed from IMU readings. When 
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the system is not in motion, velocity is zero and the angular rate is zero. However, 

accelerometer also reads zero when the velocity is not zero but a constant value. 

However, it is assumed that the base system that holds the inertial sensors cannot make 

odometry without slight vibrations, thus a high-pass filter can solve this problem. 

Figure 3.9 shows the complete block diagram for IMU pose and orientation estimation. 

 

 

 

Figure 3.9 IMU pose and orientation estimation block diagram  

 

 

Algorithm steps are described as follows: 

1. Velocity is found by taking the integral of the cross product of the 

accelerometer readings and complementary filter output quaternion. 

2. To filter the zero velocity, first a high-pass filter is applied for smoothing. 

Second, a low-pass filter is applied to filter zero velocity. If filtered 

acceleration is below a predetermined threshold value, it is marked as 

stationary. 

3. Filtered velocity values are integrated and high-pass filtered to obtain the 

position estimation. 
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 Fusion of Visual and Inertial Data 

Visual and inertial data is fused using Kalman filter which is a probabilistic estimation 

method that minimizes the estimation error using state representation and transition. 

For an optimal estimate, Kalman filter combines two estimates of position or velocity 

and creates an enhanced estimate with minimal uncertainty. The system uses state-

space representation, and probability density function with Gaussian distribution is 

utilized for the stochastic estimation algorithm. However, linear state propagation and 

correction estimates are a limitation for visual and inertial navigation which can be 

considered as a nonlinear problem. Thus, an EKF is utilized for data fusion. For the 

formulation of the EKF, [79] is followed. 

For a general definition, EKF takes two different predictions for the state vector as 

inputs. In our case, they are VO and inertial navigation outputs. Then, EKF consists of 

two stages. First a prediction is made using inertial measurements and then prediction 

is corrected (updated) using VO results. Therefore, EKF is explained in three different 

sections: state representation, prediction stage and update stage. 

 State Representation 

The estimates from two different sensors form the state transition vector. It consists of 

3-DOF visual input representing the camera position in world frame, 𝝉𝒏, 1-DOF scale 

factor, 𝝀, and 4-DOF quaternion of the camera orientation in world frame, 𝒒𝒏. 

Equations are as follows: 

𝝁𝒏 =  [𝝉𝒙,𝒌 𝝉𝒚,𝒌 𝝉𝒛,𝒌 𝝀 𝒒𝒔,𝒌 𝒒𝒂,𝒌 𝒒𝒃,𝒌 𝒒𝒄,𝒌]𝑻 (3.35) 

In extended Kalman filter, state transition and update equations are non-linear. Thus, 

an approximation of the probability density function is used instead of a Gaussian 

distribution. Taylor expansion is utilized for the linearization of Gaussian distribution.  
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 Prediction Stage 

Prediction stage generally consists of a motion model in navigation systems. Given the 

previous state, expected motion is represented in motion model. This can be done using 

velocity motion model in which the velocity is assumed to be unchanged. However, 

this method cannot estimate the state vector truly when there are sudden changes in 

velocity. Thus, odometry motion model [79] is used in this study and prediction is 

done using inertial sensor measurements. State equation can be written as follows: 

𝝁̂𝒌 = 𝒈(𝝁𝒌−𝟏, 𝒗𝒌) (3.36) 

where 𝜇̂⃗𝑘 consists of 

𝝉̂𝒌 = 𝒒̃𝒗,𝒌𝝉̃𝒌−𝟏𝒒̃
∗
𝒗,𝒌

+ 𝝀𝒌−𝟏𝝉̂𝒌 (3.37a) 

𝝀̂𝒌 = 𝝀𝒌−𝟏 (3.37b) 

𝒒̂𝒌 = 𝒒̃𝒗,𝒌𝒒̃𝒌−𝟏 (3.37c) 

In the equations, 𝝁̂𝒌 is the predicted state vector, 𝒗𝒌 is the inertial measurement vector, 

𝝁𝒌−𝟏 is the previous state vector. To linearize the non-linear function 𝒈(𝝁̂𝒌−𝟏, 𝒗𝒌), 

Taylor expansion around the input and the current state is used. Necessary Jacobians 

are presented below: 

𝐉𝐠(𝐤−𝟏
) =  [

𝐑𝐪̃𝐯
𝛕𝐯 𝟎𝟑×𝟒

𝐈𝟏×𝟑 𝟏𝟒×𝟏 𝟏𝟏×𝟒

𝟎𝟒×𝟑 𝟎𝟒×𝟏 𝐉𝐪𝐯𝐪𝐤−𝟏
(𝐪𝐤−𝟏)

] (3.38a) 

𝐉𝐠(𝐯𝐤) =  [

𝐯. 𝐈𝟑×𝟑 𝐉𝐪̃𝐯𝛕̃𝐤−𝟏𝐪̃∗
𝐯
(𝐪̃𝐯)

𝟎𝟏×𝟑 𝟎𝟏×𝟒

𝟎𝟒×𝟑 𝐉𝐪𝐯𝐪𝐤−𝟏
(𝐪𝐯)

] (3.38b) 
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𝐉𝐪̃𝐯𝐭̃𝐤−𝟏𝐪̃𝐯
(𝐪̃𝐯) = [𝐑𝐬,𝐪̃𝐭̃𝐤−𝟏 𝐑𝐚,𝐪̃𝐭̃𝐤−𝟏 𝐑𝐛,𝐪̃𝐭̃𝐤−𝟏 𝐑𝐜,𝐪̃𝐭̃𝐤−𝟏] (3.38c) 

𝐉𝐪𝐯𝐪𝐤−𝟏
(𝐪𝐤−𝟏) =  [

𝑞𝑣,𝑠 −𝑞𝑣,𝑎

𝑞𝑣,𝑎 𝑞𝑣,𝑠

−𝑞𝑣,𝑏 −𝑞𝑣,𝑐

−𝑞𝑣,𝑐 𝑞𝑣,𝑏

𝑞𝑣,𝑏 𝑞𝑣,𝑐

𝑞𝑣,𝑐 −𝑞𝑣,𝑏
   

𝑞𝑣,𝑠   −𝑞𝑣,𝑎

𝑞𝑣,𝑎 𝑞𝑣,𝑠

] (3.38d) 

𝐉𝐪𝐯𝐪𝐤−𝟏
(𝐪𝐯) =  [

𝑞𝑘−1,𝑠 −𝑞𝑘−1,𝑎

𝑞𝑘−1,𝑎 𝑞𝑘−1,𝑠

−𝑞𝑘−1,𝑏 −𝑞𝑘−1,𝑐

−𝑞𝑘−1,𝑐 𝑞𝑘−1,𝑏

𝑞𝑘−1,𝑏 𝑞𝑘−1,𝑐

𝑞𝑘−1,𝑐 −𝑞𝑘−1,𝑏
   

𝑞𝑘−1,𝑠   −𝑞𝑘−1,𝑎

𝑞𝑘−1,𝑎 𝑞𝑘−1,𝑠

] (3.38e) 

where 𝑹𝒒̃𝒗
 is the rotation matrix. 

It is important to present the error covariance matrix of the current state which will 

reveal how much the state estimation is trustable. Smaller error covariance matrix 

means that the current estimated state is more trustable. The equation for covariance 

with respect to the previous estimation and the error is as follows:  

𝐌̂𝐤 = 𝐉𝐠(𝛍̂𝐤−𝟏)𝐌𝐤−𝟏 𝐉𝐠
𝐓(𝛍̂𝐤−𝟏) + 𝐉𝐠(𝐯𝐤) 𝛄𝐤 𝐉𝐠

𝐓(𝐯𝐤) (3.39) 

where 𝜸𝒌 is inertial measurement noise vector. 

 Update Stage 

Unlike the prediction stage, this stage is linear. As the name suggests, this stage 

updates the prediction made in the previous step. First, difference between the 

measurement and the priori state estimation, which is called innovation, is found as 

𝐲̃𝐤 = 𝛗𝐤 − 𝛃 𝛍𝐤 (3.40) 

where 𝝋𝒌 is a 78 matrix and  𝜷 is the measurement model vector defined as 



50 

 

𝛗𝐤 =  𝛃 𝛍𝐤 = [
𝐈𝟏×𝟑 𝟎𝟑×𝟏 𝟎𝟑×𝟒

𝟎𝟒×𝟑 𝟎𝟒×𝟏 𝐈𝟒×𝟒
] 𝛍𝐤 (3.41) 

Innovation covariance is calculated as 

𝐒𝐤 =   𝛃 𝐌̂𝐤𝛃
𝐓 + 𝐑 (3.42) 

Then Kalman gain can be calculated. Kalman gain states the trust ratio to the 

innovation.  

𝐊𝐤 = 𝐌𝐤 𝛃
𝐓𝐒𝐤

−𝟏 = 𝐌𝐤 𝛃
𝐓(𝛃 𝐌̂𝐤𝛃

𝐓 + 𝐑)−𝟏 (3.43) 

If innovation is not trustable, innovation covariance S will be high and if the estimation 

is trustable, error covariance matrix 𝑴𝒌 will be small, thus the Kalman gain. On the 

contrary, if S is high and 𝑴𝒌 is low, then Kalman gain will be large stating that 

innovation is trustable. Now, corrected estimate can be written as:  

𝛍̂𝐤 = 𝛍̂𝐤 + 𝐊𝐤𝐲̃𝐤 = 𝛍̂𝐤 + 𝐊𝐤(𝛗𝐤 − 𝛃 𝛍̂𝐤) (3.44) 

Finally, corrected estimation error covariance matrix is updated as: 

𝐌𝐤 = (𝐈𝟖×𝟖 − 𝐊𝐤 𝛃) 𝐌̂𝐤 (3.45) 

 

 Proposed Methodology 

Theory of VO, inertial navigation and fusion of inertial and visual data is given in 

previous sections. In this section, a methodology is proposed for the implementation 

of stereo visual inertial odometry. First, VO implementation details are presented. 

Second, IMU attitude estimation is given. Third, fusion of IMU data and visual data is 

implemented. 
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 Implementation of Stereo Visual Odometry  

Stereo VO is implemented mainly from the works of Howard [43] and Nister [35]. For 

the implementation, MATLAB’s computer vision and optimization toolboxes are 

utilized. Inputs and outputs of each step of the stereo VO implementation is described 

as: 

Input: Stereo image pairs captured at times k and k+1 as defined in Chapter 3.1. 

Successive stereo image pairs can be denoted as 𝑰 = {𝑰𝒍,𝒌, 𝑰𝒍,𝒌+𝟏, 𝑰𝒓,𝒌, 𝑰𝒓,𝒌+𝟏}  

Output: Rotation matrix, R, and translation vector, t, as contained in T as outlined in 

Equation (3.1). Homogenous transformation matrix, T, contains estimated motions in 

adjacent time instants. Homogeneous transformation matrices are multiplied to obtain 

a pose estimation between initial and final frames. Implementation of stereo VO is 

given in Figure 3.10. 

Used datasets provide visual data in .png format which can be read easily with 

MATLAB. There is also a file for camera parameters (i.e. distortion, intrinsic and 

extrinsic parameters) which is required for image pre-processing algorithms. Step by 

step explanation of the implementation is: 

1. Input images at time k and k+1 are taken from the dataset  

𝑰 = {𝑰𝑙,𝑘, 𝑰𝑙,𝑘+1, 𝑰𝑟,𝑘, 𝑰𝑟,𝑘+1} 

2. To apply machine vision algorithms to the input images, a preprocessing step 

is implemented using image processing techniques. First of all, camera 

matrices for intrinsic and extrinsic parameters are constructed. Using the given 

lens distortion parameters, tangential and radial distortion effects of the CCD 

camera is compensated. Stereo image pairs are rectified so that epipolar lines 

are collinear in each image. This is an important step for further calculations 

because disparity map, Dk, is computed using horizontal matching blocks. 

Epipolar geometry and stereo rectification is explained in Appendix A and 

Appendix C, respectively. 

3. Using the left image, 𝑰𝑙,𝑘, Harris features are found and each feature point is 

given a score for corner strength. Since homogeneity in features location is 
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important for VO algorithms, Harris feature detector is improved. Images are 

divided to 6x8 small images and 10 strongest Harris features are detected in 

each small image. Thus, features are homogenously distributed over the whole 

frame. 

4. KLT tracker is used to track a feature point in 𝑰𝑙,𝑘+1. Feature points cannot be 

tracked in a large tracking framework, because features can be lost due to 

illumination change, out of plane rotation, or articulated motion of the 

platform. If the number of tracked features is below a threshold, a new set of 

 

Figure 3.10 Stereo VO block diagram 



53 

 

features are detected and the tracker object is established again. KLT details 

can be found in Appendix B. In the implementation, a pyramid size of 3 is used 

to track the features in different levels to account for the scale change. Validity 

of the tracking is ensured using a backtracking algorithm, so that invalidly 

tracked points are not used for further calculations. KLT implementation uses 

a 31x31 block size for the tracking window and number of iterations for the 

new location of the feature point is limited to 30 for computational reasons. 

5. Using stereo image pairs, 𝑰𝑙,𝑘 and 𝑰𝑟,𝑘, disparity map, 𝑫𝑘, is calculated. 

Disparity map holds the horizontal pixel location change of a 3D point in stereo 

image pairs. Since the images are rectified, a feature location in the left image 

(𝑥𝑙,𝑘, 𝑦𝑙,𝑘) appears in the right image as (𝑥𝑟,𝑘 + 𝑑, 𝑦𝑟,𝑘). Note that location of 

the feature point does not change in vertical direction because of the 

rectification. Dense disparity calculation [48] is implemented which minimizes 

the sum of the absolute differences within the search window size of 15 in our 

application.  

6. Similarly, using 𝑰𝑙,𝑘+1 and 𝑰𝑟,𝑘+1, disparity map, 𝑫𝑘+1, is computed.  

7. Using disparity maps, 𝑫𝑘 and 𝑫𝑘+1, and their projections on the image plane 

feature sets, 𝑭𝑘 and 𝑭𝑘+1, are constructed. Reprojection matrix for 

triangulation is denoted as Q, and the resulting 3D feature set is denoted as 𝑾.  

8. Assuming 3D features at time k and k+1 should have the same motion, outliers 

can be rejected. In other words, the distance between a feature in 𝑾𝑘 and the 

corresponding feature in 𝑾𝑘+1 must not change. Furthermore, if a moving 

object is present in the images, its motion differs from the remaining part of 

the scene and rejected. A consistency matrix, 𝑴, is constructed as suggested in 

[43] to detect the inliers and reject the outliers. 

9. Image reprojection error between 3D features and the 2D image 

correspondences is minimized in the last step to obtain the motion estimation. 

Sparse Levenberg-Marquardt optimization is used for this purpose. Estimated 

motion is divided into rotation matrix and translation vector in order to extract 

the motion in the camera frame.  
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 Implementation of Inertial Pose Estimation 

Since the movement of the MAV, described in Chapter 4, is very shaky, orientation 

estimates from VO is not reliable. Thus, inertial sensors are used for estimating the 

orientation of the vehicle. Madgwick [80] developed a gradient descent complimentary 

filter improving the work by Mahony described in 3.3.1. The rate of change of angular 

rate in quaternion representation is same with Equation (3.34). Orientation at time t, 

𝒒𝒆𝒔𝒕,𝒕, is computed by numerically integrating estimated orientation rate 𝒒̇𝒆𝒔𝒕,𝒕: 

 

𝒒𝒆𝒔𝒕,𝒕 = 𝒒𝒆𝒔𝒕,𝒕−𝟏 + 𝒒̇𝒆𝒔𝒕,𝒕 ∆𝑡 (3.46a) 

where, 

𝒒̇𝒆𝒔𝒕,𝒕  =  𝒒̇𝝎,𝒕 −  𝛽
𝛁𝒇

‖𝛁𝒇‖
 (3.46b) 

𝛁𝒇 = 𝑱𝒈
𝑻(𝒒)𝒇𝒈(𝒒, 𝒂) (3.46c) 

𝒇𝒈(𝒒, 𝒂) = 2 [

(𝑞2𝑞4 − 𝑞1𝑞3)

(𝑞1𝑞2 + 𝑞3𝑞4)

(0.5 − 𝑞2
2 − 𝑞3

2)

] − 𝒂 (3.46d) 

𝑱𝒈(𝒒) =  [

−2𝑞3 2𝑞4

2𝑞2 2𝑞1

−2𝑞1 2𝑞2

2𝑞4 2𝑞3

0 −4𝑞2 −4𝑞3 0
] (3.46e) 

 

In the formulation, 𝒒̇𝝎,𝒕 is the rate of change of the orientation from gyroscope 

readings, β is the orientation measurement error,  
𝛁𝒇

‖𝛁𝒇‖
  is the direction of the estimated 

error, 𝛁𝒇 is the gradient function, 𝒇𝒈(𝒒, 𝒂) is the objective function of the gradient and 

𝑱𝒈(𝒒) is its Jacobian. Detailed explanation of the terms is given in the step by step 

algorithm description after the block diagram of the improved version of Madgwick’s 

complementary filter [80] used in the implementation in Figure 3.11. 
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Figure 3.11 Block diagram of implemented complementary filter [80] 

 

1) Initialization: Orientation, sampling time and divergence rate, 𝛽, are 

initialized. Sampling time is 0.005 seconds and 𝛽 is initialized as 0.1. 𝛽 is an 

adjustable parameter and can take a value between 0 and 1. Values larger than 

1 can be given in initialization for fast convergence. Orientation initialization 

is done using quaternions as: 

𝒒 = [1 0 0 0] 

2) Normalization: Three axes accelerometer data is normalized. 

3) Gradient descent algorithm: Gradient descent is calculated as in Equation 

(3.48) to compensate for the gravity vector with an optimization method.  

4) Error direction: The direction of the error is calculated as  
𝛁𝒇

‖𝛁𝒇‖
. 

5) Data fusion: Using Equation (3.47), rate quaternion correction is performed. In 

the equation, 𝒒̇𝝎,𝒕 depends on gyroscope data, while 
𝛁𝒇

‖𝛁𝒇‖
  depends on 

accelerometer data. 

6) Integration: Final orientation is estimated using numerical integration as in 

Equation (3.46). Here, 𝒒𝒆𝒔𝒕,𝒕−𝟏 is the normalized quaternion estimated at time 

t-1, 𝒒̇𝒆𝒔𝒕,𝒕 is from step (5), and ∆𝑡 is the sampling time which is 0.005 seconds. 

7) Normalization: Estimated quaternion is normalized in the final step.  
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 Implementation of Visual – Inertial Odometry 

Odometry sensor fusion is implemented in two different aspects. First, visual position 

estimate is refined using gyroscope readings. Second, inertial orientation estimate is 

substituted into visual orientation estimate. Step-by-step description of the stereo 

visual-inertial odometry is given as: 

1. Gyroscope readings are transformed using Continuous Wavelet Transform 

(CWT) using Fast Fourier Transform (FFT). Time-frequency representation of 

gyroscope signals is revealed as a result of CWT. Unlike standard FFT 

representation, high frequency components of the signal can be detected in 

time-domain using CWT. It is seen that high-frequency gyroscope data 

correspond to blurry images. Using a pre-defined empirical threshold value, 

high-frequency data points corresponding to blurry images are selected. 

2. Since the sampling time of IMU is 10 times larger than stereo camera system, 

visual and inertial timestamps are synchronized. Next, corresponding blurry 

images which is a cause of wrong feature tracking are deleted. Therefore, more 

reliable feature detection, matching and tracking is provided. 

3. Blurry images may correspond to fast movements, thus deleted images may 

introduce larger distances between tracked feature points. Therefore, disparity 

matching and feature tracking window sizes are enlarged when images are 

deleted. 

4. Since the data is taken by a MAV, vibration affects the measurements. Thus, 

VO cannot make a good estimation of orientation due to the low sampling rate 

of the camera system. Therefore, orientation estimates from inertial 

measurements are substituted for visual orientation estimates in the final step.  

Figure 3.12 represents the block diagram of stereo visual-inertial odometry in the next 

page. 
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Figure 3.12 Block diagram of fusion of visual and inertial measurements 
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 Closure 

This section summarizes the theory behind the visual-inertial odometry since it is very 

important to have a broad understanding of machine vision before implementing the 

algorithms. Various approaches to different problems are presented for both VO, 

inertial navigation and sensor fusion. Therefore, this section is kept relatively long, 

explanatory and illustrative. In section 3.4, proposed methodology is presented with 

the details of the implementation. The results and discussion of the implementation is 

given in Chapter 5. 
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CHAPTER 4 

 

 

EXPERIMENTAL SETUP  

AND  

DATASETS USED 

 

 

 

For computer vision, there is a great number of datasets available online to verify 

developed algorithms. For this study, VO or SLAM datasets are utilized. Most popular 

datasets in this research area are KITTI Vision Benchmark Suite [81] and Middlebury 

Stereo Datasets [82]. However, being an outdoor dataset, KITTI is not suitable for this 

research. Outdoor VO is different from indoor VO due to the different characteristics 

of the features that are located far away from each other. Moreover, stereo vision 

converges to monocular when the distance between camera and the scene is much 

larger than the baseline of the stereo camera pair. Middlebury dataset, on the other 

hand, consists of very small movement of the camera which cannot simulate indoor 

path estimation and lacks IMU data. Rawseeds Project’s Bicocca dataset [83] is 

utilized in which various sensors are used to take data including IMU and stereo vision 

in different indoor environments. However, it is observed that there are leaps and 

significant disconnections in some parts of the ground truth data. Therefore, the EuRoC 

MAV dataset [84], a more reliable and stable dataset in which high quality sensors are 

gathered on a MAV to collect data, is utilized throughout this thesis study.  
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  The EuRoC MAV Dataset 

The dataset is recorded in the context of the European Robotics Challenge (EuRoC), 

to evaluate visual-inertial SLAM and 3D reconstruction algorithms on MAVs. EuRoC 

MAV dataset, published in [84], presents visual-inertial sensor data collected on-board 

a MAV. Synchronized stereo images, accelerometer and gyroscope measurements and 

accurate ground truth is included in the dataset. Data is taken in two different 

environments. The first batch of real flight data is collected in an industrial 

environment for the evaluation of visual-inertial localization algorithms. The data 

contains millimeter accuracy position ground truth from a laser tracking system. The 

second batch of the dataset is taken for 3D reconstruction algorithms and the ground 

truth is recorded with a motion capture system. A total of eleven datasets are provided 

ranging from slow flights under good visual conditions to dynamic flights with motion 

blur and poor illumination.  

 Sensor Setup 

The main features and sensor specifications of EuRoC MAV dataset are provided 

below: 

 Sensor system 

 Monochrome Aptina MT9V034 global shutter stereo camera system at 

2  20 FPS 

 ADIS16448 6-axis IMU - gyroscope and accelerometer - at 200 Hz 

 Sensors are aligned using shutter-centric based alignment 

 Calibration 

 Camera intrinsic parameters are provided 

 Camera-IMU transformation matrices are provided 

 Stereo calibration checkerboard images are provided 

 Spatio-temporally alignment with ground truth is provided 

 Ground Truth Verification 

 6D pose is gathered using Vicon motion capture system at 100 Hz 

 3D position is obtained using Leica MS50 laser tracker at 50 Hz 



61 

 

 Indoor datasets: 

 Machine Hall dataset 

 Vicon Room dataset 

An AscTec Firefly hex-robot is used to collect data as shown in Figure 4.1. Visual 

inertial sensor unit is mounted in a front-down looking position to enable an 

unobstructed stereo view. A respective prism for laser tracker and markers for motion 

capture system are mounted at the top of the MAV to track the pose of the vehicle. 

Stereo images and IMU readings are logged and timestamped on-board. However, 

ground truth data is logged on the base station. Thus, a maximum likelihood estimator 

is used to align and synchronize the data.  

 

 

 

Figure 4.1 EuRoC MAV dataset, data collector micro air vehicle [84] 
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Each sensor data is logged with respect to its own reference coordinate frame S. The 

sensor system that was used to capture the datasets and the transformations between 

their coordinate frames are depicted in Figure 4.2. Ground truth data is measured with 

respect to prism/marker coordinate frame. Body frame of the MAV is located on the 

IMU coordinate frame and transformation of each sensory system with respect to the 

base frame is provided with the datasets.  

 

 

 

Figure 4.2 The sensor setup that is used to capture datasets [84] 

 

 

 Industrial Machine Hall Dataset 

This dataset is recorded in a large machine hall shown in Figure 4.3 which represents 

a challenging industrial environment for visual-inertial motion estimation or SLAM 

algorithms.  Ground truth data is taken by Leica Nova MS50 laser tracker and recorded 

on the base station. There are a total of five datasets taken in machine hall from easy 

to medium. Table 4.1 shows the total length, total duration, average velocities and 

explanations for each dataset. 
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Figure 4.3 A representative image from machine hall dataset [84] 

 

 Vicon Room Dataset 

This dataset is recorded in a specially prepared 8 m x 8.4 m x 4 m room. There are two 

different configurations for this dataset in different obstacle scenarios. There are also 

moving curtains in the dataset which makes motion estimation difficult. Ground truth 

data is taken by Vicon motion capture system. Leica laser scanner is also utilized for 

point cloud data as shown in Figure 4.4. 

 Dataset Format 

Format and the conventions of the dataset is elaborated in this section. Sensor systems 

are rigidly attached to the body frame as denoted by B. Figure 4.1 shows the sensors 

and Figure 4.2 shows the frames and their convention with respect to each other. B 

moves with respect to a world frame as denoted by W. Sensor’s reference frame is used 

to represent the raw sensor data of each sensor as denoted by S. Extrinsic parameters 



64 

 

showing the transformation between S and B are provided in the sensor’s yaml file in 

the datasets. Ground truth data provides transformation between B and W.  

Each sensor in the datasets consists of two different files. One is yaml files containing 

the sensor type and 4x4 homogenous transformation matrix representing the extrinsic 

parameters of the sensor with respect to the body frame. The other file is Comma 

Separated Value (CSV) data file containing sensor data with nanoseconds resolution 

timestamps. First raw of the CSV data file includes the name of the sensor with the SI 

units in square brackets. 

 

 

 

 

Figure 4.4 Point cloud of Vicon room in 2 different configurations [84]  
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Table 4.1 Dataset characteristics 

Name 

Length / 

Duration 

Avg. Vel. / 

Angular Vel. Note 

MH_01_easy 
80.6 m 

182 s 

0.44 m s –1 

0.22 rad s – 1 

good texture, 

bright scene 

MH_02_easy 
73.5 m 

150 s 

0.49 m s –1 

0.21 rad s – 1 

good texture, 

bright scene 

MH_03_medium 
130.9 m 

132 s 

0.9 m s –1 

0.29 rad s – 1 

fast motion, 

bright scene 

MH_04_difficult 
91.7 m 

99 s 

0.93 m s –1 

0.24 rad s – 1 

fast motion, 

dark scene 

MH_05_difficult 
97.6 m 

111 s 

0.88 m s –1 

0.21 rad s – 1 

fast motion, 

dark scene 

V1_01_easy 
58.6 m 

144 s 

0.41 m s –1 

0.28 rad s – 1 

slow motion, 

bright scene 

V1_02_medium 
75.9 m 

83.5 s 

0.91 m s –1 

0.56 rad s – 1 

fast motion, 

bright scene 

V1_03_difficult 
79.0 m 

105 s 

0.75 m s –1 

0.62 rad s – 1 

fast motion, 

motion blur 

V2_01_easy 
36.5 m 

112 s 

0.33 m s –1 

0.28 rad s – 1 

slow motion, 

bright scene 

V2_02_medium 
83.2 m 

115 s 

0.72 m s –1 

0.59 rad s – 1 

fast motion, 

bright scene 

V2_03_difficult 
86.1 m 

115 s 

0.75 m s –1 

0.66 rad s – 1 

fast motion, 

motion blur 

 

 

 Rotations and Transformations 

Quaternion representation is used for rotations. Detail explanation of rotation 

quaternions can be found in Appendix E. The rotation quaternions are shown as: 

𝒒 = [𝑞𝑤 𝑞𝑥 𝑞𝑦 𝑞𝑧]
𝑇

= [
𝑞𝑤

𝒒̅ ]      (4.1) 

where 𝑞𝑤 and 𝒒̅ denotes real and imaginary parts of the quaternion, respectively. Using 

q, direction cosine matrix transforming between B to W, 𝑪𝑊𝐵(𝒒𝑊𝐵), can be computed: 
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𝑪(𝒒) =  𝑞𝑤
2  𝑰3𝑥3 + 2 𝑞𝑤 [𝒒̅ ×] + [𝒒̅ ×]2 + 𝒒𝒒 𝑇    (4.2) 

where [𝑎 ×] is the skew-symmetric matrix of vector 𝑎. A position estimation vector 

 𝐾𝐿⃗⃗⃗⃗⃗⃗  expressed in B, 𝒑𝐾𝐿
𝐵 ,  can be expressed in W as: 

𝒑𝐾𝐿
𝑊 = 𝑪𝑊𝐵 (𝒒𝑊𝐵) 𝒑𝐾𝐿

𝐵      (4.3) 

4x4 homogenous transformation matrix is defined as: 

𝑻𝑊𝐵 = [𝑪𝑊𝐵 𝒑𝑊𝐵
𝑊

0 1
]    (4.4) 

  Dataset Results 

In this section, studies that use available datasets are presented in order to give insight 

about the expected results from the odometry and motion estimation algorithms. First 

of all, Table 4.2 is presented to show outdoor VO results from KITTI dataset [81]. 

Stereo VO translational and rotational errors are presented as offset ratio. Contestant 

methods are tested on all eleven sequences of the benchmark and the errors are 

calculated for different subsequences (i.e. 5, 10, 50, …, 400 meters). Table 4.2 shows 

the average of results from all sequences. Translational error is computed as 

percentages while rotational error is presented in degrees per meter. Ground truth is 

taken using a GPS aided inertial navigation system with centimeter level accuracy. 

EuRoC results not available online, but results of some of the motion estimation 

algorithms using EuRoC MAV datasets are published recently. In one of the works, 

Oleynikova et al. [85] shows that an integrated visual-inertial odometry and 

localization systems can be run in real-time on-board robots. The study utilizes BRISK 

descriptors and graph filtering to remove outliers. Then, PnP RANSAC is used to 

estimate motion and further refine the inliers. Finally, bundle adjustment is done for 

pose estimation optimization. Algorithm is tested on machine hall datasets. For the 

MH_01 dataset, for 77 m and 182 sec run, algorithm gives 0.37±0.23 meters pose 

estimation error in translation and 0.13±0.11 radians rotational errors. Rotational error 

makes a total of 13 degrees and translational error makes a total of 0.6 meters which 

corresponds to 0.78 percent of covered distance. 
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In one of the works by Krombach et al. [87], combination of feature based and direct 

methods is used which utilizes FAST or Harris features in combination with ORB 

descriptor. Again a PnP RANSAC scheme is used to estimate the motion. Unlike the 

VO, this method uses a SLAM approach, extracts the local map of the triangulated 3D 

points and uses a key frame based pose estimation. Absolute Trajectory Error (ATE) 

is used for the error metric which gives the Root Mean Square (RMS) error in each 

frame location. Vicon room dataset is used for this study. 0.22-meter ATE and 0.35 m 

maximum error is reported for the V2_01 dataset which corresponds to 0.61 percent of 

the covered distance. 

 

Table 4.2 Odometry translation and rotational errors from KITTI [86] 

Rank Method Translation Rotation [/m] 

1 MFI 1.69 % 0.0066 

2 VoBA 1.77 % 0.0066 

3 VISA2-SLANM 1.88 % 0.0152 

4 SSLAM 1.87 % 0.0083 

5 eVO 1.93 % 0.0076 

6 D6DVO 2.10 % 0.0083 

7 GT-VO3pt 2.21 % 0.0117 

8 VISO2-S 2.27 % 0.0152 

9 BoofCV-SQ3 2.27 % 0.0111 

10 TGVO 2.44 % 0.0105 

11 SVO 2.45 % 0.0109 

12 SSLAM-HR 2.45 % 0.0112 

13 KPnP 2.73 % 0.0107 

14 VO3pt 2.93 % 0.0116 

15 VO3ptLBA 3.17 % 0.0180 

16 MSD VO 3.50 % 0.0166 

17 MLM-SFM 4.07 % 0.0104 

18 VOFS 4.21 % 0.0158 

19 VOFSLBA 4.35 % 0.0189 

20 VISO2-M 13.79 % 0.0372 
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Fu et al. [88] evaluates their stereo visual-inertial odometry algorithm using Vicon 

room dataset V2_01 before implementing their real-world small scale ARM-based 

stereo vision preprocessing system. Their algorithm tracks a certain number of FAST 

features with BRIEF descriptor. Finally, they apply a bundle adjustment optimization, 

selecting the key frames when the tracked feature number is less than a threshold or 

camera motion is larger than a threshold. Implementation of the algorithm gives 0.43 

meter RMS translational error corresponding to 1.2% of the covered distance and 6.5 

degrees rotational error.  

Table 4.3 summarizes the results of the works on EuRoC MAV datasets. As seen in 

the table, translational errors are between 0.6 and 1.2 percent of the covered distance. 

However, orientation estimation errors are high since their estimate only relies on VO 

estimates. 

 Closure 

This chapter analyzes the datasets that are utilized throughout the experimental studies 

of the thesis. There are many datasets available in the literature, however, it is 

important to make use of a prestigious and reliable datasets in order to prevent later 

complications and problems. Therefore, EuRoC MAV datasets are chosen for the 

evaluation of the algorithms. Results of different algorithms using the datasets are also 

presented in this chapter. 

Table 4.3 Odometry translation and rotational errors from various studies 

Reference 
Oleynikova et al. 

[85] 

Krombach et al. 

[87] 
Fu et al. [88] 

Datasets MH_01 V2_01 MH_01 V2_01 MH_01 V2_01 

Translation 

error [m] 
0.37 - - 0.22 - 0.43 

Translational 

error [%] 
0.78 - - 0.61 - 1.2 

Rotational 

error [] 
13 - - - - 6.5 



69 

 

 

CHAPTER 5 

 

 

EXPERIMENTAL RESULTS  

AND  

DISCUSSION 

 

 

 

In this chapter, experiments of developed algorithms are described and the results are 

shown in a proper manner. First, the results of the implementations are shown in three 

parts: inertial-only, visual-only, and visual inertial. Next, the interpretations of the 

results are included in the discussion part. 

 Experimental Results 

Experimental results are examined in three sections. First, inertial odometry and 

orientation estimates are shown. Second, VO results are presented. Lastly, fusion of 

stereo images and inertial measurements, titled as Visual-Inertial Odometry (VIO), is 

presented. For the translational components, errors are calculated using quadratic 

mean known as Root Mean Square (RMS) for each frame location. This error metric 

is standard in VO literature as in [3, 43, 87]. However, it is important to give the 

percentage of the error with respect to the covered distance to compare the results from 

different datasets. In this study RMS errors, maximum errors and error percentages are 

given for translational position estimates. Only RMS errors and maximum errors are 

used for orientation estimation errors.  
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 Inertial Odometry Implementation 

Change in velocity, orientation, and position are estimated using inertial data. Two 

inertial sensors (namely, accelerometer and gyroscope) combined in an IMU are 

utilized for this purpose. Accelerometer produces principal components (including 

gravity vector) by measuring the body forces. Compensating the gravity vector, only 

actual acceleration data are used. Gyroscope, on the other hand, measures the 

rotational velocities. Both sensors’ data are fused using the gradient-descent-based 

explicit complementary filter [80] explained in Chapter 3.4.2. Orientation estimate of 

the fusion is improved using a line-fitting drift elimination technique using the 

stationary periods. Original implementation is called “estimate” while the improved 

version is called “improved estimate” for simplicity. 

Accelerometer and gyroscope used in EuRoC MAV dataset are calibrated beforehand. 

Thus, their data are used without any pre-processing. Using MATLAB R2016a, raw 

and filtered readings from the sensors, orientation, velocity and position estimates are 

plotted for Machine Hall MH_01 and Vicon Room V2_01 datasets. Figure 5.1 and 

Figure 5.2 show raw and filtered accelerometer readings for MH_01 and V2_01 

datasets, respectively. Stationary periods can be observed easily after filtering the data 

with a high-pass filter followed by a low-pass filter as explained in Chapter 3.3.1. 

While MAV is stationary in the first and last three seconds in V2_01 dataset, it is 

stationary between the 20th and 40th seconds in MH_01 dataset. Stationary periods are 

used in drift elimination of orientation estimates.  

Figure 5.3 and Figure 5.4 illustrate the transformed gyroscope readings for MH_01 

and V2_01 datasets, respectively. Continuous Wavelet Transform (CWT) using Fast 

Fourier Transform (FFT), which has the ability to construct a time-frequency 

representation of a signal, is applied to gyroscope data in order to detect high-

frequency components corresponding to the blurry images.  

Furthermore, Figure 5.5 and Figure 5.6 present the Power Spectral Density (PSD) of 

gyroscope and accelerometer signals from MH_01 and V2_01 datasets, respectively. 

There are high amplitude components in gyroscope signals at very low frequencies. 



71 

 

Flat PSD of accelerometer signal means that the sensor noise is small [89]; therefore, 

the direct integration of the acceleration will yield velocity and position without further 

operation. However, in both datasets, there are obvious high-amplitude frequency 

components in accelerometer spectral density. Thus, filtering methods are utilized 

when integrating the acceleration to obtain velocity and position. 

 

 

Figure 5.1 Original (blue) and filtered (red) accelerometer data for MH_01 dataset  
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Figure 5.2 Original (blue) and filtered (red) accelerometer data for V2_01 dataset  
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Figure 5.3 Continuous wavelet transform of gyroscope data from MH_01 dataset 

 

Figure 5.4 Continuous wavelet transform of gyroscope data from V2_01 dataset 
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Figure 5.5 PSD of gyroscope and accelerometer signals from MH_01 

 

Figure 5.7 presents orientation estimates, using only inertial measurements, 

represented in the world frame, W, for MH_01 dataset. The implementation of 

gradient-descent-based explicit complementary filter is plotted in black whereas an 

improved version of the same filter based on a line-fitting drift elimination is shown 

in blue. Since there is no drift in x- and y-axes, these two estimates are overlaid; thus, 

only improved estimated quantities are visible in the first two figures.  However, there 

is a significant drift in z-axis in the orientation estimate which is eliminated in the 
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improved estimate. RMS error in z-axis is decreased from 190.7 degrees to 14.4 

degrees in the improved estimate. Figure 5.8 presents orientation estimate for V2_01 

dataset. Similar to MH_01, only z-axis drifts and it is eliminated in the improved 

estimate from 128.5 degrees to 16.4. Table 5.1 shows the RMS and maximum errors 

for these two algorithms. 

 

 

 

 

Figure 5.6 PSD of gyroscope and accelerometer signals from V2_01 
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Figure 5.7 GT orientation vs. estimates from IMU readings for MH_01. Ground 

truth (red), estimate (black) and improved estimate (blue) data are plotted.  

 

 

Similarly, Figure 5.9 and Figure 5.10 demonstrate the velocity estimates for MH_01 

and V2_01 datasets, respectively.  It is obvious from the figures that MAV is stationary 

between the 20th and 40th seconds in MH_01; however, there are small offsets in the 

estimates due to the drift elimination stage and filtering after the zero velocity update 

stage. RMS velocity error for MH_01 dataset is found to be 0.5063 m/s while the 

maximum error is found as 1.3386 m/s. For the V2_01 dataset, RMS velocity error is 
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0.3144 m/s while maximum velocity error is 0.7516 m/s. These error magnitudes can 

be considered as relatively large if compared to the average MAV velocity which is 

0.44 m/s for MH_01 and 0.33 m/s for V2_01 respectively. Figure 5.11 and Figure 5.12 

present the estimated positions from IMU. Although there are significant drifts in the 

plots, the results are promising for sensor fusion. Likewise, inertial orientation, 

velocity- and position estimation errors are summarized in Table 5.1. 

 

 

Figure 5.8 GT orientation vs. estimates from IMU readings for V2_01. Ground truth 

(red), estimate (black) and improved estimate (blue) data are plotted. 
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Figure 5.9 GT velocity vs. estimates from IMU readings for MH_01 

 

 

 

Figure 5.10 GT velocity vs. estimates from IMU readings for V2_01 
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Figure 5.11 GT position vs. estimates from IMU readings for MH_01  

 

 

 

Figure 5.12 GT position vs. estimates from IMU readings for V2_01  
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Table 5.1 IMU pose estimate comparison 

 MH_01 V2_01 

RMS max RMS max 

O
ri

en
ta

ti
o
n

 [
]

 x 5.7213     17.9406     8.211 17.6025 

y 1.3815   5.7455    1.571 4.7835 

z 14.3926 45.4524 16.3872 34.4991 

 15.5496 49.2016 18.3965 38.9804 

  [%] - - - - 

V
el

o
ci

ty
 [

m
/s

] x 0.3165 0.9649     0.2022     0.4693     

y 0.2802 0.7860     0.2062     0.4809     

z 0.2786 0.4931     0.1242     0.3367     

 0.5063     1.3386 0.3144   0.7516 

  [%] - - - - 

P
o
si

ti
o
n

 [
m

] 

x 3.5751     8.8311    3.4801     6.9696     

y 5.8735     10.4296     1.1163     2.2522     

z 0.5626     1.3047    0.1870     0.5215     

 6.8990       13.7283 3.6595    7.3430 

  [%] 8.56 17.03 10.03 20.12 

 

 

 Visual Odometry Implementation 

VO tests are again conducted on two different datasets, namely Machine Hall MH_01 

and Vicon Room V2_01. Note that VO implementations of MH_01 take approximately 

10 hours on an Intel I5, 3.2 GHz desktop computer while V2_01 implementation lasts 

for 2 hours. One of the reasons for the long computing time is the number of frames 

per dataset since 3500 stereo image pairs are processed in MH_01 dataset whereas 

2000 frames are processed in V2_01 dataset. Another reason is the number of frames 

tracked in consecutive images. Average processing time for each successive frames is 

given in Table 5.2.  
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Table 5.2 Average computing times between successive frames for VO algorithm 

 

 MH_01 V2_01 

# of processed frames 3500 2000 

Disparity map 0.35 seconds 0.28 seconds 

KLT and 3D feature 

location extraction 
0.99 seconds 0.31 seconds 

Outlier rejection and 

motion estimation 
7.98 seconds 0.62 seconds 

Optimization 1.84 seconds 0.94 seconds 

Average time per loop 11.16 seconds 2.15 seconds 

Average total time 10.8 hours 1.2 hours 

 

As explained before, images are divided into a 68 grid and strongest 100 features are 

found in each grid in order to obtain a homogeneous distribution of features over the 

whole frame. Since grids are very small, exact number of 100 features cannot always 

be extracted. The reason why 100 features are specified is to ensure that the maximum 

number of possible features is found in each grid. Figure 5.13 presents the number of 

frames tracked over the MH_01 left image sequence. As can be seen from the figure, 

the number of features tracked varies from a minimum of 38 to a maximum of 1696. 

This huge difference is due to the featureless and blurry images. Average number of 

tracked features for MH_01 is found to be 821 in each image. Figure 5.14 illustrates 

the number of frames tracked over the V2_01 left image sequence.  Average number 

of features tracked between sequential images is 333. It can be observed that the 

number of tracked features decreases to a minimum of 14 in between 395th and 396th 

images. This significant difference is due to the fast rotations of the vehicle and the 

image sampling time. It is also important to note that the average number of features 

tracked in MH_01 is more than two times of the average number of features tracked in 

V2_01. 
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Figure 5.13 The number of features tracked over MH_01 left image sequence 

 

 

Figure 5.14 The number of features tracked over V2_01 left image sequence 
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 Machine Hall MH_01 Dataset Results 

The EuRoC MAV dataset is recorded in two different indoor places, one of which is a 

machine hall as described in Chapter 4.1.2. There are a lot of features in the area, yet 

the vibration of MAV is a big challenge to overcome for VO algorithm as the stereo 

image data is gathered at 20 Hz.  

VO algorithm takes image pairs and uses rectified images in order to ease the 

manipulation. Rectification process used in the VO algorithm is explained in Appendix 

C. VO is preformed between consecutive stereo pairs to output transformation in each 

step. These transformations are then multiplied to form the cumulative transformation 

between the starting frame and the end frame.  

Figure 5.15 illustrates the ground truth (GT) trajectory and the estimated VO trajectory 

on the same plot for xy-plane. It is known from the dataset that in the first 50 seconds, 

MAV is almost stationary where it takes off (hovers) and lands several times. The 

figure shows that the drift occurs proportional to the distance covered. Drift in time is 

almost negligible if compared to the drift on the distance covered. Figure 5.16 presents 

the sliced data, which indicates that the estimated trajectory is almost identical to the 

GT data. However, the orientation errors accumulate and generate a big deviation in 

the end. Likewise, Figure 5.17 shows the comparison in the xz-plane and Figure 5.18 

indicates the sliced data. As can be seen, the sliced data have small errors since they 

consist of the beginning of the movement. Drift in z-axis is obvious in Figure 5.17.  

Figure 5.19 presents the comparison of GT data and VO estimates separately at each 

axis. As can be seen from the figure, a sudden drift occurs around the 100th second in 

y- and z-axes. Note that the RMS error in x-axis is calculated as 0.5236 m while the 

RMS error in y- and z-axes are 0.8293 m and 2.9163 m, respectively. Maximum errors 

are 1.2730 m, 2.0267 m and 5.5888 m for x-, y-, and z-axes, respectively. Similarly, 

3D RMS error is calculated as 3.0768 m and 3D maximum error is calculated as 6.0797 

m which corresponds to 3.82% and 7.54% of the total distance covered. Comparing 

the drifts in the graph with the dataset images, it can be observed that the very close 

flight opposite to a featureless plane caused the corresponding drift in that period.  
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Figure 5.15 GT position vs. VO estimate in xy-plane for MH_01 

 

 

 

Figure 5.16 GT position vs. VO estimate sliced from frames 0-1550, 2800-3500  
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Figure 5.17 GT position vs. VO estimate in xz-plane for MH_01 

 

 

 

Figure 5.18 GT position vs. VO estimate sliced from frames 0-1550 
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Figure 5.19 GT position vs. VO estimate in x, y and z separately for MH_01 

 

 Vicon Room V2_01 Dataset Results 

This dataset is relatively small compared to its counterpart. Total number of processed 

frames is 2000 over a 36.5-meter total distance. It is critical to note that the RMS error 

in x-axis is calculated as 1.49 m while the RMS error in y- and z-axes are 0.8409 m 

and 0.7918 m, respectively. Maximum errors are 2.6855 m, 2.1.7881 m and 1.7961 m 

for x-, y-, and z-axes, respectively. Similarly, the 3D RMS error is calculated as 1.8852 

m and 3D maximum error is calculated as 3.6926 m which correspond to 5.16% and 
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10.11% of the covered distance, respectively. Comparing the drifts in the graph with 

the dataset images, it can be observed that the full turns around the z-axis worsen the 

estimates. After the full turns, the orientation of the path drifts due to the large errors 

if compared to the MH_01 dataset. 

Figure 5.20 illustrates VO estimates vs. GT data in xz-plane for V2_01 dataset. As can 

be inferred from the figure, the major source of error is in x-direction due to straight 

and full angle turns of the vehicle. Figure 5.21 presents the sliced version of the 

previous figure for better visualization. It is observed that the estimated trajectories are 

very similar despite the drift. Figure 5.22 shows GT vs. VO estimates in xy-plane. It 

can be inferred that final pose error in x-axis is twice as large as the error in y-axis. On 

the other hand, Figure 5.23 demonstrates that y-axis errors are large in the middle of 

the run, but they do decrease to minimum in the end.  

 

 

 

 

Figure 5.20 GT position vs. VO estimate in xz-plane for V2_01 
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Figure 5.21 GT position vs. VO estimate sliced from frames 0-500, 1550-2000  

 

 

 

Figure 5.22 GT position vs. VO estimate in xy-plane for V2_01 
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Figure 5.23 GT position vs. VO estimate in x, y and z separately for V2_01 

 

 

 

 Visual-Inertial Odometry Implementations 

In this section, the results of VIO implementation are presented. Unlike the 

complicated filtering processes, a very easy and handful sensor fusion is applied which 

leads to slight improvements over visual-only estimates when the noise is small. 

Moreover, pose estimation results are fused via EKF using empirical covariance 
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matrices for comparison. Figure 5.24 and Figure 5.25 present the comparison of 

position estimation algorithms implemented on MH_01 and V2_01 datasets, 

respectively. In the figures, red lines represent the ground truth; blue lines represent 

the visual-only estimates; black dashed lines represent the EKF estimates and yellow 

dashed lines are representing the proposed filter results. Table 5.3 summarizes the 

results with the RMS, maximum and percentage errors for both datasets.  

 

 

  

Figure 5.24 Position estimate comparison of implementations for MH_01 
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Figure 5.25 Position estimate comparison of implementations for V2_01 
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Table 5.3 VO results from different datasets 

Dataset Error Visual only EKF 
Proposed 

Filter 

M
a
ch

in
e 

H
a
ll

  

M
H

_
0
1

 d
a
ta

se
t 

RMS (max) error 

in x [m] 
0.52 (1.27) 0.52 (1.45) 0.63 (1.73) 

RMS (max) error 

in y [m] 
0.83 (2.02) 0.55 (1.4) 0.58 (1.53) 

RMS (max) error 

in z [m] 
2.92 (5.59) 2.75 (5.46) 2.77 (5.28) 

RMS (max) error 

in 3D [m] 
3.08 (6.08) 2.85 (5.81) 2.90 (5.74) 

RMS (max) error 

in 3D [%] 
4 (7.9) 3.7 (7.55) 3.77 (7.45) 

V
ic

o
n

 R
o
o
m

 

 V
2
_
0
1

 d
a
ta

se
t 

RMS (max) error 

in x [m] 
1.49 (2.68) 1.29 (2.14) 1.42 (2.55) 

RMS (max) error 

in y [m] 
0.84 (1.79) 0.6 (1.27) 0.85 (1.84) 

RMS (max) error 

in z [m] 
0.79 (1.79) 0.93 (2.03) 0.85 (1.82) 

RMS (max) error 

in 3D [m] 
1.88 (3.69) 1.7 (3.21) 1.86 (3.66) 

RMS (max) error 

in 3D [%] 
5.17 (10.12) 4.65 (8.81) 5.10 (9.96) 

 

 

 

 Discussion 

The results in Table 5.1 show that orientation, velocity and position can be estimated 

using only inertial sensors; however, sensor bias and unknown gravity direction 

introduce errors in the estimates. It is because small errors in orientation estimate 

produce extremely high erroneous acceleration and gravity measurements. Since 

gyroscope itself also drifts in long-term, it is not favorable to use only inertial sensors 

for long-term positioning systems, but they can be utilized in combination with VO 

because in short term, accelerometer and gyroscope give sufficient accuracy in 
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estimating the orientation and velocity, which can then be used in predicting the 

position for sensor fusion.  

For the IMU-only orientation estimate, Madgwick’s complementary filter is utilized 

and improved to cope with the drift. Since the motion and the change of the orientation 

is mostly in z-axis, a significant drift is observed in Madgwick’s filter. This drift is 

eliminated by fitting a line between stationary periods which are detected by filtering 

accelerometer signals as Figure 5.1 and Figure 5.2 show. Z-axis orientation error 

decreases dramatically after using a first order line fitting for both datasets. It is 

important to note that the MAV is stationary between the 20th and 40th seconds in 

MH_01 while only first and last three seconds of the movement is stationary in V2_01. 

Therefore, different line fitting periods are used for different datasets.  Results show 

that RMS orientation error is still large in z-axis whereas relatively small errors are 

present in other two axes.  

Velocity estimate is used as a pre-processing step to position estimates. Since 

integration introduces drift due to the integration constants, high-pass filter corrects 

the estimates. Average velocities of the datasets are given as 0.44 m/s for MH_01 and 

0.33 m/s for V2_01 [84] and RMS 3D velocity errors are found as 0.5 m/s and 0.31 

m/s, respectively. It is observed from Figure 5.9 and Figure 5.10 that the shape of the 

estimation signal is very close to the shape of the ground truth, but the error magnitude 

is large due to the drift. 

Inertial position estimate is done by integrating the filtered and drift eliminated 

velocity vector. Position estimates in the direction of the gravity, z-axis in the world 

frame, are quite accurate compared to the other two axes. When the motion along an 

axis is large, estimates become more uncorrelated compared to the ground truth. One 

can observe that the shapes of the signals in the z-axis of the inertial position estimates 

are very close to the ground truth except the drift. However, there are obvious 

diffractions in x- and y-axes for both datasets.  

For the VO implementation, only 2 datasets are processed from EuRoc MAV datasets 

in order to avoid long computation time. Since the VO algorithm is developed for 
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offline processing, algorithm is not optimized for fast operations. Therefore, pose 

estimation between two successive frames takes 11.16 seconds on average for MH_01 

dataset while 2.15 seconds is spent for V2_01. There are various reasons affecting the 

computation time. One of the most crucial reasons is that all images in the datasets are 

taken into large files before the implementation of the main algorithm, which uses a 

lot of RAM in the computer’s memory. Since MH_01 dataset has 1.75 times more 

images than V2_01, more memory is used to store variables, leaving a limited memory 

for calculations. The effects of memory can be seen in computation times of disparity 

maps which is the only part that is not affected by the number of tracked. These 

computation times are 0.28 seconds for V2_01 compared to 0.35 seconds for MH_01. 

However, main reason for long execution time is the number of tracked features. The 

average number of tracked features is 821 for MH_01 and 333 for V2_01. Figure 5.26 

illustrates the correlation between the computation times of different parts of the VO 

algorithm and the number of features tracked between frames. Computation times are 

multiplied by a constant shown in the legend of the figure in order to visualize the 

correlation and bring the two data to a comparable scale. It can be seen from the figure 

that the processing time of costly outlier rejection is multiplied by a small scaling 

number and shown in black. Although the number of tracked features is high when the 

MAV is stationary, running time for outlier rejection is very small, which means that 

the features are located and matched accurately and the need for outlier rejection is 

minimum. However, it can be easily seen that around the 1000th and 3000th frames, 

computation duration increases rapidly as the number of tracked features increases. 

Likewise, KLT and optimization algorithms are also affected by the number of features 

as expected. However, the computation duration of dense disparity map is not affected 

from the number of features. Figure 5.27 illustrates the same correlation with constant 

multipliers for V2_01 dataset. It is notable that the execution time of the minimization 

of the image reprojection error in motion estimation algorithm increases exponentially 

with the number of tracked features. This is because of the computational complexity 

of the Levenberg-Marquardt algorithm which is O(n3). This is also the main reason of 

the difference between the running times of the datasets MH_01 and V2_01. A twice-

larger dataset takes eight times longer computational time.  
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Figure 5.26 Computation times and number of tracked features for MH_01 

 

Figure 5.27 Computation times and number of tracked features for V2_01 
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Visual-only position estimates are affected by various factors. The most influential 

factors are noise, vibration of the MAV, illumination and sudden full turns around an 

axis. The main reasons of the errors in MH_01 are vibrations and illumination while 

of the errors in VH_01 are full rotations and featureless scenes.   

Both proposed filter and EKF for sensor fusion offer slightly better overall results 

compared to the visual-only results. Table 5.3 shows that using a sensor fusion system, 

it is possible to succeed less than five percent errors. VO estimates in Machine Hall 

MH_01 dataset are improved by 0.3 and 0.23 percent using respectively EKF and 

proposed filter. In V2_01, visual-only position estimates are enhanced by 0.52 percent 

with EKF and 0.07 percent with the proposed filter. Since the proposed filter identifies 

the blurry images, delete them and enlarge the window sizes, it gives better results 

when there is a vibration in the images. Vibratory motion of the camera forms noisy 

feature points but the locations of the features stay very close. Taking advantage of 

this characteristic proposed filter provides better improvements in MH_01 dataset. 

However, this procedure is not thriving when there are fast orientation changes as in 

V2_01. Since high angular velocity introduces noise and blur, number of deleted blurry 

images increases. Accordingly, the uncertainty and the distance between tracked 

features increase, causing the proposed filter to converge to visual-only results. On the 

contrary, EKF is more resistant to orientation changes as it also utilizes inertial position 

estimate which is robust in attitude change. Thus EKF gives the best estimate in V2_01 

dataset, improving the visual-only RMS error 0.18 meters. 

While position ground truth is taken by high-end laser tracking and motion capture 

systems in EuRoC MAV dataset, orientation ground truth is obtained only by using 6-

axis IMU. Since the visual-only orientation estimates are prone to drift and not reliable, 

attitude estimate of the MAV is also done using only IMU readings. Thus, inertial 

orientation estimates are directly substituted for VO orientation estimates to form a 6D 

position estimate for each frame location.  
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 Closure 

Implementation results using different algorithms and different datasets are presented 

in this chapter. First, inertial pose estimations are given. It is shown that orientation 

estimates using IMU readings are very reliable, as it offers less than 20 degrees 3D 

RMS error. Thus, inertial orientation estimates are taken as the final estimates of the 

pose. For translational motion estimation, inertial pose estimates are fused to VO 

results using both EKF and proposed filter. Results show that proposed filter offer 

minor improvements over visual-only results while EKF introduces slightly more 

enhancements. Final remarks, conclusion and future works are given in the following 

chapter. 

         

  



98 

 

  

  



99 

 

 

CHAPTER 6 

 

 

CONCLUSIONS 

 

 

 

This thesis study investigated the camera trajectory estimation for indoor robot 

odometry using IMU and stereo images. Since GPS is a great solution for outdoor 

environments, indoor visual inertial odometry is researched. The study first focused 

on the inertial pose estimation. Second, pose estimation using stereo images are done. 

Finally, sensor fusion is implemented to attain improved estimates. In other words, the 

aim was to develop and implement an algorithm for stereo visual-inertial odometry. 

For this goal, three basic criteria were determined. These are (1) to employ low-cost 

sensor systems, (2) to obtain less than five percent error, and (3) to create a robust 

algorithm working in harsh conditions such as noise. A custom sensor system is not 

constructed because an already available dataset is used in the study. Nevertheless, a 

very low cost camera and a medium priced IMU is utilized in the dataset [84], which 

partly satisfies the criterion. Using noisy stereo images and inertial reading less than 

five percent error is achieved in position estimates. Orientations estimates are shown 

to be less than 20 degrees. 

Inertial measurements are processed in three stages: First, orientation is estimated by 

implementing Madgwick’s gradient-descent based explicit complementary filter. An 

improvement is suggested to eliminated the drift in z-axis. Second, velocity is 

estimated by integrating the accelerometer measurements and high-pass filtering the 

results. Zero velocity positions are used to eliminate the drift. Lastly, velocity is 
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integrated to obtain position estimates. Again, drift in position estimates is removed 

by further filtering and line fitting between zero velocity positions. For MH_01 dataset 

15.54 degrees, 0.5 m/s and 6.9 m RMS errors are obtained respectively for orientation, 

velocity and position as demonstrated in Table 5.1. Algorithm implemented on V2_01 

dataset resulted in 18.4 degrees RMS error for attitude, 0.31 m/s RMS error for 

velocity and 3.66 m RMS error for position estimates.  

Visual-only estimate is only used for translational component of the 6D pose estimate. 

As explained in Chapter 3.4.1, successive stereo image pairs are captured and the 

images are undistorted and rectified for further processing. Then, salient corner 

features are detected and extracted features in both stereo and sequential images. Then, 

motion is estimated by minimizing the image reprojection error between kth 3D feature 

and (k+1)th 2D point correspondence after finding the inliers’ set. Results in Table 5.3 

show that 3.08 m and 4% 3D RMS error is obtained in MH_01 dataset while 1.88 m 

and 5.17% 3D RMS error is obtained in V2_01 dataset.  

An original filter is proposed to fuse the inertial and visual data. EKF is also 

implemented to the pose estimates of IMU and VO for comparison. Results are 

compared in Table 5.3. It is shown that proposed filter improves visual-only estimates. 

While proposed filter enhances visual-only estimates as much as EKF in MH_01, it is 

observed that V2_01 dataset gives only a minor improvement over VO estimate. 

Chapter 5.2 discusses the performance of the algorithms.  

 Future Work 

First of all, proposed fusion filter can be improved. Gyroscope aided feature tracking 

can be added and number of tracked features can be optimized to have a better fusion. 

It will have a great impact on the camera trajectory estimation results as the MAV 

vibrates during its motion which can be compensated easily using high rate 

accelerometer readings. Kalman filter can also be improved by improving the update 

and measurement error covariance matrices.  

Utilizing a magnetometer and barometer together would increase the accuracy of the 

estimates since error in z-direction is relatively high as indicated by experimental 
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results. The use of a magnetometer and a barometer would enable system to precisely 

know its altitude. Moreover, altitude data could be fused with VO to have better 

position estimates. 

It is important to test the algorithms for different indoor vehicles other than micro air 

vehicles. Due to the challenging motion characteristics of the MAV, implementation 

results are not completely satisfying, yet sufficient. It is predicted that better results 

can be obtained with wheeled robotic platforms. Since the motion is usually planar in 

indoors for wheeled vehicles, change in tilt and roll angle is very small, which will 

result in increased accuracy in position and orientation estimates. Visual-inertial 

odometry algorithm should also be tested using real world data that will be taken 

specifically for the study. This has various advantages in exchange for the cost of 

reliable data gathering platform. First of all, application specific dataset can be 

constructed making long-range runs in different indoor environments like malls, large 

and small rooms, hospitals, warehouses with different circumstances such as 

illumination change, noise, etc. For instance, EuRoC MAV dataset has a movement 

only in an 8 m × 8.4 m × 4 m room. There is no room change, no corridor movements 

in the dataset which should have also been considered for indoor positioning and 

navigation purposes. It is also important to use different kinds of sensors while creating 

a dataset. Using 2 different stereo camera system and 5 to 10 different low- and 

medium-cost IMUs would enable the researchers to evaluate different sensors in 

different specifications. Since visual-inertial odometry is a future technology that will 

be used in commercial applications, promising results should have been taken with 

low-cost sensors as well as high-end sensors.  

There is also a room for developing adaptive algorithms for changing conditions in the 

environment. Using IMU readings noisy movements can be detected and VO 

algorithm can be changed accordingly. Moreover, room scale can be calculated from 

stereo data. The algorithm can be adapted so that for long range data a monocular 

scheme can be used since stereo odometry converges to monocular odometry if the 

features are far away. Likewise, baseline length can be changed on the fly so that depth 

estimates of distant objects can be identified easily. What’s more, different feature 
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detection, feature extraction, feature matching, outlier rejection, motion estimation and 

optimization algorithms for VO can be combined in a single package and can be 

compared both for accuracy and efficiency. 

Since the electronics and information technologies are developing so rapidly, camera 

trajectory estimation algorithm is implemented offline, thinking that the technology 

eventually reach the maturity for online visual-inertial odometry in a short period of 

time. For the future works, the study can be implemented in real time using parallel 

processing systems such as FPGAs and high-end DSPs.  
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APPENDIX A 

 

 

CAMERA BASICS  

AND  

EPIPOLAR GEOMETRY 

 

 

 

Camera modeling and calibration are to be reviewed for VO. In perspective projection, 

pinhole camera models are more favorable. In pinhole cameras, the intersection of 

light rays produces an image through the projection center [3]. In other words, the 

principle of pinhole camera is based on one small hole –pinhole– in a light-proof 

system in which the light enters from the pinhole to reflect a reversed image in the box 

on the other side. Thus, a pinhole camera has a single aperture, rather than lenses. As 

illustrated in Figure A.1, running through a small pinhole, light rays of an item produce 

an image in an inverted way.  

To easily visualize and calculate the necessary parameters, image plane is taken 

between the pinhole plane and the 3D object as virtual image plane. The distance 

between virtual image plane and pinhole plane is as much as focal length in order to 

ensure the mirror image representation with same magnitude. This is shown in Figure 

A.1. Then, using triangle similarities, x and y coordinates of the 3D world point can 

be calculated by Eqns. (A.1) and (A.2). These are the simplest form of the perspective 

projection, which will be used throughout this study. 

𝑋

𝑍
=  

𝑥

𝑓
 →   𝑥 =  𝑓 

𝑋

𝑍
 

(A.1) 
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𝑌

𝑍
=  

𝑦

𝑓
 →   𝑦 =  𝑓 

𝑌

𝑍
 (A.2) 

 

 

Figure A.1 Pinhole camera working principle [90] 

 

The other vital aspect of the camera is the camera calibration. The aim in this sense is 

to gauge the intrinsic and extrinsic parameters from the camera systems accurately [3]. 

First of all, intrinsic parameters consist of the focal length (𝑓𝑥 , 𝑓𝑦), skew coefficient 

(𝑠), and the principal point (𝑐𝑥, 𝑐𝑦). In Figure A.2, for instance, the item is a 3-D object 

whereas the image is a 2-D inverted image. The hole is the focal point whereas the 

distance between the focal point and the inverted image is the focal length. 

Accordingly, the camera calibration matrix, K, can be shown as 

𝐊 = [

𝑓𝑥 0 0
𝑠 𝑓𝑦 0

𝑐𝑥 𝑐𝑦 1
] (A.3) 

Secondly, extrinsic parameters relate the 3D world point to camera image plane by 

means of rotation and translation components. For stereo cameras, a multi-camera 

system, the translation and orientation between two cameras can also be designated by 
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extrinsic parameters. Extrinsic camera parameters can be retrieved by calibrating the 

stereo system using a well-defined image pattern like checkerboard as in Figure A.3. 

 

Figure A.2 Pinhole camera model [90] 

 

 

 

Figure A.3 Radial distortion and correction lines [91] 

 

Cameras do not give a perfect image output due to distortions. Most common distortion 

types for pin hole camera systems are radial- and tangential distortions. Radial 

distortion makes straight lines seem curved which is called barreling effect. Barreling 

effect is much more dominant when moved away from the center of the image. Figure 
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A.3 shows the original grey scale image and how the lines should be in aa undistorted 

image in red lines. 

Radial distortion can be formulated as 

𝑥𝑐 = 𝑥(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6) (A.4a) 

𝑦𝑐 = 𝑦(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6) (A.4b) 

Because of the lens mount imperfections, image plane cannot be perfectly aligned with 

the lens resulting with a non-parallel configuration. This deficiency can be defined as 

tangential distortion. As a result of tangential distortion, part of the image can be seen 

closer than it is supposed to. Similarly, tangential distortion can be calculated as 

𝑥𝑐 = 𝑥 + (2𝑝1𝑥𝑦 + 𝑝2(𝑟
2 +  2𝑥2)) (A.5a) 

𝑦𝑐 = 𝑦 + ((𝑝1(𝑟
2 +  2𝑦2) +  2𝑝2𝑥𝑦)) (A.5b) 

Note that there are a total of five parameters to define in order to model radial and 

tangential distortion: 

𝐷𝑖𝑠𝑡. 𝐶𝑜𝑒𝑓. = (𝑘1,  𝑘2,  𝑘3,  𝑝1, 𝑝2) (A.6) 

As mentioned before, camera calibration can be done using a checkerboard pattern. 

Corners of the checkerboard black squares are detected with subpixel accuracy. Since 

the location of the detected corners are known both in the image and in the real world, 

the mathematical problem of the camera calibration parameters and the distortion 

coefficients can be solved accordingly. Detailed explanation of the used functions from 

Utilized functions from MATLAB computer vision library for the camera calibration 

and undistortion can be found in the Appendix F. 

In order to match corresponding points in a stereo image pair, epipolar geometry is 

utilized. Epipolar geometry, as shown in Figure A.4, uses the intersection of the stereo 

image planes of which stereo baseline constitutes the pencil of planes. Formulation in 
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this section is mostly gathered up from the book Multiple View Geometry in Computer 

Vision [13]. 

 

Figure A.4 Epipolar geometry for stereo camera setup [13] 

In Figure A.4; 

 Baseline is defined as the line joining the camera centers.  

 𝑒 and 𝑒’ represents the epipoles, the intersection of the baseline with the image 

plane. 

 Epipolar plane, 𝜋, is the plane consisting the baseline. 

 Epipolar lines, 𝑙 and 𝑙’, are the intersection of the epipolar plane and the image 

plane. 

33 fundamental matrix relates left image feature points, 𝐱, with the corresponding 

right image features, 𝐱’, using epipolar geometry. 𝐅𝐱 defines a line, 𝑙’, in which the 

corresponding feature point, 𝐱’, must lie. Therefore, all feature matches can be 

described using fundamental matrix as 

𝐱′𝐓 𝐅 𝐱 = 𝟎 (A.7) 

Fundamental matrix is of rank 2 and has 7-DOF, i.e. can be determined using seven 

point correspondences. A specialized version of F is called essential matrix which also 

relates stereo image pairs in case of calibrated cameras where the intrinsic parameters 
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are known. Thus, the 33 essential matrix, 𝐄, is only dependent to the extrinsic 

parameters which are rotation and translation components:  

𝐱̂′𝐓 𝐄 𝐱̂ =  𝐱̂′𝐓 𝐑 𝐭𝐬𝐬 𝐱̂  =  𝟎 (A.8) 

where 𝐱̂ is the normalized feature coordinate and 𝐭𝐬𝐬 is the skew-symmetric form of 

the translation vector. Essential matrix is also of rank 2 and has both a left- and right 

null space. 𝐊 is being the intrinsic camera parameters, essential and fundamental 

matrices can be related as 

𝐄 = 𝐊′𝐓 𝐅 𝐊 (A.9) 

Essential matrix can be decomposed to obtain rotation matrix and translation vector 

using Singular Value Decomposition (SVD) method. SVD of 𝐄 can be written as 

𝐄 = 𝐔   𝐕𝐓 (A.10) 

where U and V are 3×3 orthogonal matrices: 

 =  [
𝑠 0 0
0 𝑠 0
0 0 0

]   (A.11a) 

𝐖 = [
0 −1 0
1 0 0
0 0 1

] (A.11b) 

Here, the diagonal entries of  are the singular values of 𝐄, which and 

must consist of two identical and one zero value. Finally, translation and 

rotation matrices can be given as 

𝐭𝐬𝐬 = 𝐔 𝐖   𝐔𝐓 

 

 

 

(A.12a) 

𝐑 = 𝐔 𝐖−𝟏 𝐕𝐓 (A.12b) 



117 

 

 

APPENDIX B 

 

 

KANADE-LUCAS-TOMASI TRACKER 

 

 

 

Kanade-Lucas-Tomasi (KLT) feature tracker [70, 71] works on optical flow principle 

which is the movement pattern of the objects between two successive images. Optical 

flow assumes that the intensity of feature point in an image does not change in the 

consecutive image. It also assumes that the neighboring points make a similar motion. 

Considering a feature point 𝐼(𝑥, 𝑦, 𝑡), which is moved by (𝑑𝑥, 𝑑𝑦) after a small time 

period 𝑑𝑡: 

𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 𝑡 + 𝑑𝑡) (B.1) 

Thus, Taylor series expansion of Eqn. (A.10) gives the optical flow equation: 

𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 = 
𝜕𝐼

𝜕𝑥
 
𝜕𝑥

𝜕𝑡
 + 

𝜕𝐼

𝜕𝑦
 
𝜕𝑦

𝜕𝑡
+ 𝐼𝑡 = 0 (B.2) 

KLT tracker method uses a 33 patch around the feature point and assuming that all 

the 9 points would have the same motion. Then, (𝐼𝑥, 𝐼𝑦, 𝐼𝑡) can be revealed with over-

determined nine equations using a least-squares minimization. Complete iterative 

pseudocode is given in Table B.1. 
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Table B.1 Pseudocode of KLT feature tracker. 

Goal: To find location of feature point v in image J corresponding feature u in 

image  

Image pyramid construction:  {IL} and {JL} from L0 to Lm  

Initialization:     𝐠𝐋𝐦 = [gx
Lm  gy

Lm]
𝑇

= [0 0 ]𝑇 

For each pyramid in the sequence from L to Lm: 

 Location of point:  u: 𝒖𝑳 = [𝑝𝑥 𝑝𝑦]𝑇 = 
𝐮

2𝐿
 

 Find  Ix:   𝐼𝑥(𝑥, 𝑦) =  [𝐼𝐿(𝑥 + 1, 𝑦) − 𝐼𝐿(𝑥 − 1 , 𝑦)] / 2 

 Find Iy:   𝐼𝑦(𝑥, 𝑦) =  [𝐼𝐿(𝑥, 𝑦 + 1) − 𝐼𝐿(𝑥, − + 1)] / 2 

Spatial Gradient Matrix:      

𝐆 = ∑ ∑ [
𝐼𝑥
2(𝑥, 𝑦) 𝐼𝑥(𝑥, 𝑦)𝐼𝑦(𝑥, 𝑦)

𝐼𝑥(𝑥, 𝑦)𝐼𝑦(𝑥, 𝑦) 𝐼𝑦
2(𝑥, 𝑦)

]

𝑝𝑦+𝑤𝑦

𝑦=𝑝𝑦−𝑤𝑦

𝑝𝑥+𝑤𝑥

𝑥=𝑝𝑥−𝑤𝑥

 

Initialize v:    𝒗̅𝟎 = [ 0  0 ]𝑇 

For each point k in the feature set: 

Difference:    

𝛿𝐼𝑘(𝑥, 𝑦) =  𝐼𝐿(𝑥, 𝑦) − 𝐽𝐿(𝑥 + 𝑔𝑥
𝐿 + 𝑣𝑥

𝑘−1, 𝑦 + 𝑔𝑦
𝐿 + 𝑣𝑦

𝑘−1) 

Mismatch vector:   

𝐛̅𝐤 =  ∑ ∑ [
𝐼𝑥
2(𝑥, 𝑦) 𝐼𝑥(𝑥, 𝑦)𝐼𝑦(𝑥, 𝑦)

𝐼𝑥(𝑥, 𝑦)𝐼𝑦(𝑥, 𝑦) 𝐼𝑦
2(𝑥, 𝑦)

]

𝑝𝑦+𝑤𝑦

𝑦=𝑝𝑦−𝑤𝑦

𝑝𝑥+𝑤𝑥

𝑥=𝑝𝑥−𝑤𝑥

 

Optical Flow:    𝛍̅𝐤 = 𝐆−𝟏𝐛̅𝐤 

Update v:    𝐯̅𝐤 = 𝐯̅𝐤−𝟏 + 𝛍̅𝐤 

Final optical flow:   𝐝 =  𝐠𝟎 + 𝐝𝟎 

Find tracked feature point:  𝐯 = 𝐮 + 𝐝 
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APPENDIX C 

 

 

STEREO IMAGE RECTIFICATION 

 

 

 

Stereo rectification is used in stereo motion estimation to project the images onto a 

common plane so that the corresponding image points are gathered into the same row, 

i.e. epipolar line. Since calibration results of the image sensors are not reliable, stereo 

rectification is done using uncalibrated image rectification techniques. Then, 

calibration results are used throughout the study. Figure C.1 shows the left and right 

images blended onto each other to show the difference in the angle of the view. Figure 

C.2 shows anaglyph of left and right images. Anaglyph is used for viewing 

stereoscopic 3D effects. It is implemented using red and cyan color filters which are 

chromatically opposite colors. Figure C.3 and C.4 show detected key points in left and 

right images, respectively and Figure C.5 presents the matched features between left 

and right images on the same plane. Outlier feature matches are removed in Figure C.6 

and rectified stereo images are shown in Figure C.7. Figure C.8 shows the initial image 

anaglyph to easily compare with the resulting rectified stereo image Figure C.7.  
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Figure C.1 Blended image of left and right images 

 

 

Figure C.2 Anaglyph of left and right images 



121 

 

 

Figure C.3 SIFT features found in the left image 

 

 

Figure C.4 SIFT features found in the right image 
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Figure C.5 Putative match of the key points from left to right image 

 

 

Figure C.6 Image after outlier rejection is applied 
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Figure C.7 Anaglyph of rectified images 

 

 

Figure C.8 Anaglyph of left and right images before rectification process 
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APPENDIX D 

 

 

BUNDLE ADJUSTMENT 

 

 

 

For the calculation of the BA, the objective of the sparse Levenberg-Marquardt 

algorithm [13] is to obtain an optimization when the parameter vector is defined as 

𝑷 = [𝐚𝐓  𝐛𝟏
𝐓  … 𝐛𝒏

𝐓]𝐓, incremental vector is 𝛅 = [𝛅a  𝛅b]
𝐓, and the measurement 

vector is 𝐗 =  [𝐗1
T  … 𝐗𝑛

T]T, such that 𝜕𝐗̂𝑖 ∕ 𝜕𝒃𝑗 = 0 for 𝑖 ≠ 𝑗. Nomenclature for the 

formulation is given as: 

𝐀 =  [𝐀𝟏
𝐓  𝐀𝟐

𝐓   … 𝐀𝐧
𝐓  ]

𝐓
 (D.1a) 

𝐁 = 𝑑𝑖𝑎𝑔(𝐁𝟏, 𝐁𝟐, … , 𝐁𝐧) (D.1b) 

∑ = 𝑑𝑖𝑎𝑔(∑ ,… ,∑ )
𝒙𝒏𝒙𝟏𝒙

 (D.1c) 

𝛅b = [𝛅b1

T   𝛅b2

T  … 𝛅bn

T ]T (D.1d) 

𝛜 = [𝛜𝟏
𝐓 𝛜𝟐

𝐓   … 𝛜𝐧
𝐓]𝐓 (D.1e) 

Here A and B are the Jacobian matrices, Ʃx is the covariance matrix, 𝛜 is the error 

matrix with 𝐉𝛅 =  𝛜 = 𝐗 − 𝐗̂ 

Algorithm:  

1. 𝜆 = 0.001 is used as the starting point. 

2. The derivate matrices as well as the error vectors are computed:  
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𝐀𝒊 = [𝜕𝐗̂𝑖/ ∂𝐚], 𝐁𝒊 = [𝜕𝐗̂𝑖/ ∂𝐛𝑖], ∈𝑖= 𝐗𝑖 − 𝐗̂𝑖 (D.2) 

3. Intermediate values are calculated as 

𝐔 =  ∑ 𝐀𝒊
𝑻 ∑ 𝐀𝒊

−𝟏
𝐗𝒊

 𝒊      (D.3a) 

𝐕 = 𝑑𝑖𝑎𝑔 (𝑽𝟏, … , 𝑽𝒏)   in  𝑽𝒊 = 𝐁𝒊
𝐓 ∑ 𝐁𝒊

−𝟏
𝐗𝒊

   (D.3b) 

 

𝐖 =  [𝐖𝟏,𝐖𝟐, … ,𝐖𝒏]  in  𝐖𝒊 = 𝐀𝒊
𝐓 ∑ 𝐁𝒊

−𝟏
𝐗𝒊

   (D.3c) 

∈𝐀  =  ∑ 𝐀𝒊
𝐓

𝒊      (D.3d) 

∈𝐁   =   [∈𝐁𝟏

𝐓   ∈𝐁𝟐

𝐓 … ∈𝐁𝒏

𝐓 ]
𝐓
 in ∈B𝑖

= 𝐁𝒊
𝐓 ∑ ∈𝑖

−𝟏
𝐗𝒊

   (D.3e) 

𝐘𝒊  =   𝐖𝒊𝐕𝒊
∗−𝟏     (D.3f) 

 

4. 𝜹a in the following equation is computed as 

(𝐔∗ − ∑ 𝐘𝒊𝒊 𝐖𝒊
𝐓)𝜹𝐚 = ∈𝐀− ∑ 𝐘𝒊𝒊 ∈𝐁𝒊

   (D.4) 

 

5. Each 𝜹b𝑖
  is computed.  

𝜹b𝑖
 =   𝐕𝒊

∗−𝟏 (∈𝐁𝒊
− 𝐖𝒊

𝐓𝜹𝐚)     (D.5) 

 

6. Parameter vector is updated and the new error vector is computed. 

7. If ∈𝑛𝑒𝑤<∈𝑜𝑙𝑑 , then 𝜆 =  𝜆/10  and start again from step 2. If   𝜆 < 0.001 

then terminate. 

8. If ∈𝑛𝑒𝑤>∈𝑜𝑙𝑑 , then 𝜆 =  𝜆 ∗ 10 . and start again from step 4. 

Covariance of the parameters a and b estimated using the above algorithm: 

1. U, V and W is computed as in step 3, and also 𝐘𝒊 = 𝐖𝒊𝐕𝒊
−𝟏 is redefined. 

2. ∑ = (𝐔 − ∑ 𝐘𝒊𝒊 𝐖𝒊
𝐓)

+
𝐚  

3. ∑ =𝒃𝒊𝒃𝒋
 𝐘𝒊

𝐓 ∑ 𝐘𝒋 + 𝐚 𝜹𝒊𝒋𝐕𝒊
−𝟏  

4. The cross covariance ∑ =𝒂𝒃𝒊
 −  ∑ 𝐘𝒊𝐚  
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APPENDIX E 

 

 

ROTATION QUATERNIONS 

 

 

 

 Quaternion notation [13] is used in this study which can be defined as: 

𝑞̃ =  𝑞𝑠 + 𝑞𝑎𝑖 + 𝑞𝑏𝑗 + 𝑞𝑐𝑘 (E.1) 

where 𝑞𝑠, 𝑞𝑎, 𝑞𝑏, and 𝑞𝑐 are all real numbers. By definition, the complex numbers in 

(E.1) are 

𝑖2 = −1, 𝑖𝑗 =  −𝑗𝑖 = 𝑘 

𝑗2 = −1, 𝑗𝑘 =  −𝑗𝑘 = 𝑖 

𝑘2 = −1, 𝑘𝑖 =  −𝑖𝑘 = 𝑗 

A convenient form for notation is 

𝑞̃ ⟺ 𝒒 = [ 

𝑞𝑠

𝑞𝑎

𝑞𝑏

] (E.2) 

Eqn. (E.3) denotes the addition and subtraction properties of two quaternions 

(Namely, 𝑞̃1 = 𝑞1,𝑠 + 𝑞1,𝑎𝑖 + 𝑞1,𝑏𝑗 + 𝑞1,𝑐𝑘  and  𝑞̃2 = 𝑞2,𝑠 + 𝑞2,𝑎𝑖 + 𝑞2,𝑏𝑗 + 𝑞2,𝑐𝑘): 

𝑞̃1 + 𝑞̃2 = (𝑞1,𝑠 + 𝑞2,𝑠) + (𝑞1,𝑎 + 𝑞2,𝑎)𝑖 + (𝑞1,𝑏 + 𝑞2,𝑏)𝑗 + (𝑞1,𝑐 + 𝑞2,𝑐)𝑘 (E.3a) 
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𝑞̃1 − 𝑞̃2 = (𝑞1,𝑠 − 𝑞2,𝑠) + (𝑞1,𝑎 − 𝑞2,𝑎)𝑖 + (𝑞1,𝑏 − 𝑞2,𝑏)𝑗 + (𝑞1,𝑐 − 𝑞2,𝑐)𝑘 (E.3b) 

Their multiplication constitutes a Hamiltonian product. For three imaginary 

parameters, one has 

𝑞̃3 = 𝑞̃1𝑞̃2 ⟹ {

𝑠3 = 𝑞1,𝑠𝑞2,𝑠 − 𝑞1,𝑎𝑞2,𝑎 − 𝑞1,𝑏𝑞2,𝑎 − 𝑞1,𝑐𝑞2,𝑎

𝑎3 = 𝑞1,𝑠𝑞2,𝑎 + 𝑞1,𝑎𝑞2𝑠 − 𝑞1,𝑏𝑞2,𝑐 − 𝑞1,𝑐𝑞2,𝑏

𝑏3 = 𝑞1,𝑠𝑞2,𝑏 − 𝑞1,𝑎𝑞2,𝑐 − 𝑞1,𝑏𝑞2,𝑠 − 𝑞1,𝑐𝑞2,𝑎

𝑐3 = 𝑞1,𝑠𝑞2,𝑐 − 𝑞1,𝑎𝑞2,𝑏 − 𝑞1,𝑏𝑞2,𝑎 − 𝑞1,𝑐𝑞2,𝑠

} (E.4) 

Similarly, the norm of a quaternion is defined as 

‖𝑞̃‖ = √𝑞𝑠
2 + 𝑞𝑎

2 + 𝑞𝑏
2 + 𝑞𝑐

2 (E.5) 

Consequently, the inverse of a quaternion is 

𝑞̃ ∗ 𝑞̃−1 = 1   ⟹   𝑞̃−1 =
𝑞𝑠 − 𝑞𝑎𝑖 − 𝑞𝑏𝑗 − 𝑞𝑐𝑘

‖𝑞‖
 (E.6) 

Unit quaternion with a unit form and pure quaternion with zero real part are two types 

of quaternions. The inverse of unit quaternions equals to the complex conjugate of it 

(𝑞̃−1 = 𝑞̃∗). For rotations, unit quaternions can be utilized. For example, in a 3D point 

p = (px, py, pz), the axis of rotation can be formed as 𝑢̃ = 𝑥𝑢𝑖 + 𝑦𝑢𝑗 + 𝑧𝑢𝑘 and 

magnitude of rotation as 𝜃. That is, the quaternion for this rotation becomes  

𝑞̃ = cos(𝜃 2⁄ ) + sin(𝜃 2⁄ ) 𝑢 (E.7) 

As a result, the Hamilton-Cayley formula is 𝑃̃′ = 𝑞̃𝑃̃𝑞̃−1 where 𝑃̃ is the pure 

quaternion representing the point p in 𝑃̃ = 𝑝𝑥𝑖 + 𝑝𝑦𝑗 + 𝑝𝑧𝑘 while 𝑃̃′shows the rotated 

point 𝐩′. 
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B.1. Transformation from Rotation Quaternions to Rotation Matrices 

An orthogonal 3x3 matrix R with unit determinant shows a three-dimensional rotation. 

The transformation from a rotation quaternion to a rotation matrix can be made through 

Hamilton-Cayley formula with a matrix, resulting in the Euler-Rodrigues formula:  

𝑃̃′ = 𝑞̃𝑃̃𝑞̃−1

or   𝐩′ = 𝐑𝐩
 (E.8a) 

 𝐑 = [

𝑞𝑠
2 + 𝑞𝑎

2 − 𝑞𝑏
2 − 𝑞𝑐

2 −2𝑞𝑠𝑞𝑐 + 2𝑞𝑎𝑞𝑏 2𝑞𝑠𝑞𝑏 + 2𝑞𝑎𝑞𝑐

2𝑞𝑠𝑞𝑐 + 2𝑞𝑎𝑞𝑏 𝑞𝑠
2 − 𝑞𝑎

2 + 𝑞𝑏
2 − 𝑞𝑐

2 −2𝑞𝑠𝑞𝑎 + 2𝑞𝑏𝑞𝑐

−2𝑞𝑠𝑞𝑏 + 2𝑞𝑎𝑞𝑐 2𝑞𝑠𝑞𝑎 + 2𝑞𝑏𝑞𝑐 𝑞𝑠
2 − 𝑞𝑎

2 − 𝑞𝑏
2 + 𝑞𝑐

2

] 
 

(E.8b) 

The followings are the inverse transformations: 

𝑞𝑠
2 = (1 + 𝑟11 + 𝑟22 + 𝑟33) 4⁄  (E.9a) 

𝑞𝑎
2 = (1 + 𝑟11 − 𝑟22 − 𝑟33) 4⁄  (E.9b) 

𝑞𝑏
2 = (1 − 𝑟11 + 𝑟22 − 𝑟33) 4⁄  (E.9c) 

𝑞𝑐
2 = (1 − 𝑟11 − 𝑟22 + 𝑟33) 4⁄  (E.9d) 

while 

𝑞𝑠𝑞𝑎 = (𝑟32 − 𝑟23) 4⁄  (E.10a) 

𝑞𝑠𝑞𝑏 = (𝑟13 − 𝑟31) 4⁄  (E.10b) 

𝑞𝑠𝑞𝑐 = (𝑟21 − 𝑟12) 4⁄  (E.10c) 

𝑞𝑎𝑞𝑐 = (𝑟13 + 𝑟31) 4⁄  (E.10d) 

𝑞𝑎𝑞𝑏 = (𝑟21 + 𝑟12) 4⁄  (E.10e) 

𝑞𝑏𝑞𝑐 = (𝑟32 + 𝑟23) 4⁄  (E.10f) 

Since the signs of parameters are ambiguous, a sign for one parameter can be set using 

Eqn. (E.9) and others using Eqn. (E.10). 
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B.2 Orientation Represented as Quaternions 

Orientation change can be shown as 

 = [𝜃𝑥 𝜃𝑦 𝜃𝑧]𝑇 (E.11) 

where 𝜃𝑥 , 𝜃𝑥 and 𝜃𝑥 represent the change in attitude in radians. Small change in two 

consecutive orientation measurements is 

𝜃 =  ‖‖ (E.12) 

Then, the orientation quaternion can be expressed as 

𝒒 = [

𝑞𝑠

𝑞𝑎
𝑞𝑏

𝑞𝑐

] =  

[
 
 
 
 
 
 
 
 cos (

𝜃

2
)

sin (
𝜃

2
)
𝜃𝑥

𝜃

sin (
𝜃

2
)
𝜃𝑦

𝜃

sin (
𝜃

2
)
𝜃𝑧

𝜃 ]
 
 
 
 
 
 
 
 

 (E.13) 

 

B.3 Advantages of Quaternions for Rotations 

Two fundamental advantages of quaternions make them favorable to use in this study 

rather than other means of representing rotations such as Euler angles which have a 

pitch (rotation about the x-axis), yaw (rotation about the y-axis), and roll (rotation 

about the z-axis) and provide a convenient visualization of rotation. 

One advantage is that quaternions are both global and non-singular in contrast to some 

three dimensional representations of rotation such as Euler angles that is non-singular 

but cannot represent some rotations. In other words, Euler angle is disadvantageous 

due to the phenomenon called gimble lock. The other advantage is that numerical 

accuracy of quaternions is much better under restricted rotations about an arbitrary 

axis. 
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APPENDIX F 

 

 

MATLAB FUNCTIONS / OBJECTS DEVELOPED 

 

 

 

This section consists of selected optimization, image processing and machine vision 

functions, objects and libraries used in MATLAB R2016a. 

 

Function: blur_filter   

Explanation: Custom function that takes gyroscope data, calculates the CWT and 

extract image index corresponding the blurry images 

Input: Gyroscope measurements 

Output: Index of blurred images 

 

Function: complementary_filter 

Explanation: Custom function to estimate velocity and acceleration from IMU. 

Input: Sampling rate, time, accelerometer, gyroscope 

Output: IMU-only elocity and position estimates. 

 

Function: csv2plot 

Explanation: Custom function that takes estimates written on a .csv file and plots the 

results. 

Input: IMU position estimates, VO position estimates, GT position estimates, filtered 

position estimates 

Output: plot for comparison 
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Function: cwtft   

Explanation: built-in function that returns the continuous wavelet transform of the 1D 

input signal using an FFT algorithm. 

Input: Gyroscope 

Output: Transformed gyroscope signal 

 

Function: detectHarrisFeatures 

Explanation: Built-in function to find corner points using Harris-Stephens algorithm 

Input: An image 

Output: Corner points represented in 2D 

 

Function: disparity 

Explanation: Built-in function to form a disparity map using stereo images. 

Input: Left and right images 

Output: Disparity color map 

 

Function: errorcalc 

Explanation: Custom function that shows errors between ground truth and an estimate 

Input: 3-axis estimate, 3-axis ground truth in the same frame 

Output: RMS, max and percentage errors in x, y, z and total. 

 

Function: EKF_demo 

Explanation: Custom function that takes imu and visual estimations and applies 

extended Kalman Filter. 

Input: IMU position estimates, VO position estimates, GT position estimates 

Output: Filtered position estimates, filtered position estimates’ errors 

 

Function: featureBucketing 

Explanation: Custom function to uniformly distribute the corner features in an image 

Input: Input image, number of corners, window size 

Output: List of bucketed feature vectors 
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Function: filtfilt 

Explanation: Built-in function that performs zero-phase digital filtering  

Input: a signal, designed filter 

Output: filtered signal 

 

Function: findAdditionalNodes 

Explanation: Custom function to add additional tracking points if available 

Input: Tracked clique, graph 

Output: New set of nodes 

 

Function: MadgwickFilter 

Explanation: Custom function for inertial orientation estimates 

Input: Sampling rate, time, gyroscope, accelerometer 

Output: Orientation estimates of inertial sensors 

 

Function: minimize 

Explanation: Custom function that uses optimoptions and Levenberg-Marquardt 

algorithm to minimize the reprojection error 

Input: 2D projections, corresponding 3D points, projection matrices,  

Output: Updated reprojection matrices for both left and right images 

 

Function: numberOfTrackedFeatures   

Explanation: Custom function that takes the number of tracked features in a cell array 

and plots it to compare with the average times 

Input: number of tracked features per frame 

Output: plot of the number of tracked features per frame in comparison with the 

average times. 

 

Function: optimoptions 

Explanation: Built-in optimization function from MATLAB’s optimization toolbox. 

This is used to minimize the image reprojection error in motion estimation stage. 
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Input: Algorithm such as Levenberg-Marquardt minimization, Maximum number of 

iterations 

Output: Minimized reprojection error 

 

Function: PSD 

Explanation: Custom function for plotting PSD 

Input: Sampling frequency and signal (Gyroscope or accelerometer data) 

Output: PSD plot of the signal 

 

Library: quaternion_library 

Explanation: Custom library for quaternion manipulation such as converting 

quaternion to euler angles, rotation matrix or vice versa.   

 

Function: rectifyStereoImages 

Explanation: Built-in function to make stereo image pairs have epipolar lines on the 

same row. 

Input: Stereo image pairs and stereo parameters consisting of intrinsic, extrinsic and 

distortion elements. 

Output: Rectified left and right images 

 

Function: rms_error   

Explanation: Custom function that takes two arrays in the same length and calculates 

the root mean square error 

Input: 2 arrays of same length 

Output: RMS error 

 

Function: stereoParameters   

Explanation: Built-in function to store stereo parameters. 

Input: Left and right camera parameters consisting of intrinsic, extrinsic and distortion 

elements, rotation and translation of right camera with respect to left camera. 

Output: Stereo parameters object. 
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Function: undistortImage 

Explanation: Built-in function to undistort radial and tangential distortions using 

camera parameters. 

Input: An image with camera parameters consisting of intrinsic, extrinsic and 

distortion elements. 

Output: Undistorted image and new image origin after undistortion. 

 

Function: timesAveraging   

Explanation: Custom function that takes VO computation times and presents the 

mean values in a proper manner. 

Input: times cell array with the length of number of processed frames 

Output: Total and average computation times for disparity map, KLT, outlier 

rejection and optimization, separately 

 

Object: vision.PointTracker 

Explanation: Built-in object to store a set of point tracks using Kanade-Lucas-Tomasi 

tracker. First using initialize function, point features are initialized in the first image. 

Then, the features are tracked using step function. Step outputs the coordinate of the 

point in the successive image and score point between 0 and 1 showing the trust ratio 

to point track.  

 

Function: visualOdometry 

Explanation: Custom function to calculate translation, rotation and scale from 

successive frames. 

Input: Left and Right images at time t, left and right images at time t+1, left and right 

camera projection matrices. 

Output: 33 rotation matrix, 31 translation vector, optimization iteration size 


