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ABSTRACT

NUMERICAL ANALYSIS OF PLASMA PROPERTIES IN THE
GLOW DISCHARGE: ACCURACY AND APPLICABILITY OF

SIMPLE AND EXTENDED FLUID MODELS

KAYMAZLAR, KORAY
M.S., Department of Physics

Supervisor : Assoc. Prof. Dr. İsmail Rafatov

January 2017, 56 pages

The work deals with numerical investigation of physical processes in the gas dis-

charge plasma. Numerical models are based on the fluid description of plasma,

with drift-diffusion approximation for charged particle fluxes. First, we devel-

oped a “simple” fluid model, consisted of continuity equations for electrons and

ions, coupled to Poisson equation for electric field. Next, we extended this

model by incorporating the electron Boltzmann equation module, such that the

electron transport parameters (mobility and diffusion) as well as the rates of

electron induced plasma-chemical reactions are determined as functions of the

local electric field, from convolution of the electron energy distribution function.

The numerical method is based on the Method of Lines, where discretization in

the coordinate space (as well as in the energy space for Boltzmann equation)

is done by the Scharfetter-Gummel scheme. All numerical codes are developed

using MATLAB package. Computational tests are carried out for glow discharge

plasma in argon. Comparison of computed plasma parameters (such as the elec-
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tron and ion densities, the electric field and potential, the current-voltage curves)

obtained by “simple” and “extended” fluid models with one another and with ex-

perimental data allow to determine the accuracy and the ranges of applicability

of these models.

Keywords: plasma, glow discharge, method of lines, fluid model
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ÖZ

IŞILTILI DEŞARJIN PLAZMA ÖZELLİKLERİNİN NUMERİK
ANALİZİ: BASİT VE GENİŞLETİLMİŞ AKIŞKAN

MODELLERİNİN DOĞRULUĞU VE UYGULANABİLİRLİĞİ

KAYMAZLAR, KORAY
Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi : Doç. Dr. İsmail Rafatov

Ocak 2017 , 56 sayfa

Bu çalışma, ışıltılı deşarj plazmasındaki fiziksel süreçlerin nümerik analizi ile

ilgilidir. Nümerik modeller, plazmanın akışkan tasviri için yüklü parçacıkların

akılarının sürüklenme ve yayınım yaklaşımı üzerine kuruludur. İlk olarak, elect-

ron ve iyonların devamlılık denklemlerini dahil eden ve elektrik alan için Poisson

denklemine bağlı bir "yalın" akışkan modeli oluşturuldu. Daha sonra, elekt-

ron Boltzmann denklemi için bir modül eklenmesi ile elektron enerji dağılımı

fonksiyonu kullanılarak elektron taşıma parametreleri (hareketlilik ve yayınım)

ve elektronların katıldığı plazma-kimyasal reaksiyon hızları yerel elektrik alanın

fonksiyonu olarak hesaplanarak model genişletilmiştir. Nümerik yöntem ayrık-

laştırmanın koordinat uzayında (Boltzmann denklemi çözümü için enerji uza-

yında) Scharfetter-Gummel şemasında yapıldığı çizgiler yöntemidir (Method of

Lines). Numerik kodlar MATLAB ortamında geliştirilmiştir. Hesaplama testleri

argon ışıltılı deşarj plazma için yapılmıştır. "Yalın" ve "genişletilmiş" akışkan
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modellerinden hesaplanmış plazma verilerinin (elektron ve iyon yoğunlukları,

elektrik alan, gerilim, akım-voltaj eğrisi gibi) birbirleri ve deneysel veriler ile

karşılaştırılmaları doğruluk ve uygulanabilirlik bölgelerinin belirlenmesini müm-

kün kılmıştır.

Anahtar Kelimeler: plazma, ışıltılı deşarj, çizgiler metodu, akışkan modeli
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CHAPTER 1

INTRODUCTION

The word “plasma” means something molded in Greek [1]. The term “plasma”

first used in 1929 by Irving Langmuir (1881 - 1957) to define the jelly like behav-

ior of ionized gas. Later, it was generally accepted that the plasma is the fourth

state of the matter. In literature, plasma is usually defined as quasi–neutral

substances that consists of free electrons, ionized atoms or ionized molecules

and neutral species that display collective behavior due to Coulomb forces [2].

Quasi–neutrality means that the substance has locally almost the same number

of electrons and ions.

The majority of the matter of the “observable” universe is in plasma state. Stars,

nebulae, supernovas and lightning are examples of plasma that exist naturally.

Fluorescent lights, noble gas lambs, fusion reactors and plasma TVs are appli-

cations where man made plasma is generated.

One way to form plasma is to heat gases to high temperatures. Thermal col-

lisions cause ionization of the substance. Another way to generate plasma is

applying electric field high enough to ionize the gas. Because of their small

masses, electrons are easily accelerated and gain enough energy to ionize gas

atoms. Plasmas generated by applied electric field are called gas discharges [3].

Energetic photons can cause to ionization if they collides gas atoms or molecules.

This is called photoionization. Ionosphere is a good example for plasmas pro-

duced with photoionization.
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1.1 Classification of Plasmas

Plasmas can be classified according to diverse features.

Temperature:

• Low temperature plasmas (Te < 100eV)

• High temperature plasmas (Te > 100eV)

Here Te is the electron temperature.

Pressure:

• Low pressure plasmas (p < 10 Torr)

• Moderate pressure plasmas (p = 10− 100 Torr)

• High pressure plasmas (p > 100 Torr)

Thermodynamic equilibrium:

• Non thermal or non equilibrium plasmas (Te � Ti)

• Thermal or equilibrium plasmas (Te ∼ Ti)

Here Ti is the ion temperature.

Ionization degree:

• Weakly ionized plasmas (below 10−3)

• Fully ionized plasmas (close to 1)

Frequency of applied voltage:

• DC discharge plasmas

• Pulsed DC discharge plasmas (kHz)

• RF discharge plasmas (MHz)
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• Microwave discharge plasmas (GHz)

• Optical (laser sustained) plasmas

1.2 Glow Discharges

The main subject of the gas discharge physics is to study the current flow through

the ionized gas and ionization of gas by the applied electric field [4]. Gas dis-

charges can be sustained by applied voltage between two electrodes of a discharge

tube containing ionized gas at adequate pressure. Initially, the tube is filled with

an inert gas. At this stage the ionization is due to thermal collisions or cosmic

radiation and its degree is very low.

Applied field accelerates free electrons and ions. These free charge carriers with

sufficiently high energy, make collisions with the neutral atoms. These collisions

result in excitation (e + Ar → e + Ar∗) or ionization (e + Ar → 2e + Ar+)

of the atoms. Bounded electrons jump up to higher energy states due to the

excitations. When these electrons fall back lower energy states, they emit a char-

acteristic radiation. This process is responsible for the glow in the discharge.

Ionization occurs when free charge carriers have enough energy to ionize neutral

species. The accelerated ions directed towards the cathode and hitting it cause

secondary electron emission [5]. Depending on the amplitude of the applied

voltage, a non self–sustained or self–sustained plasma may develop.

The importance of glow discharges comes from their industrial applications [6].

Light emitting property of gas discharge plasmas is exploited in light industry

and display technology [7]. Fluorescent lamps are the most familiar examples of

the applications of gas discharges. Colorful advertisements in streets are nothing

but glow discharges sustained in an inert gas like neon. It is now becoming less

popular but, plasma TVs are also good example for usage of gas discharges in dis-

play technology. Gas lasers can also take place in this category. One of the most

important application is in microelectronic industry. Gas discharge plasmas are

employed in many steps for microfabrication of ICs. Prominent examples are gas

discharges for sputtering metals on superconducting films, growing oxide films

on semiconductors and plasma-enhanced chemical vapor depositions. Gas dis-
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charges are also used in microelectronic fabrication for implantation of dopant

atoms and removing films like photoresists or polymer films. Furthermore, gas

discharge plasmas have applications in analytical chemistry, environmental ap-

plications and material processing like coating [7].

1.3 Plasma Modelling

Importance of studies of gas discharge is due to applications in both industry

and science. In order to able to design and optimize the plasma systems, a deep

understanding of processes in gas discharges is required. Experiments on plasma

and numerical modelling of plasma are the ways to gain such an understanding.

However, experimental studies can be costly and time consuming. Moreover,

given the space and the time scales of the measurements can be extremly com-

plicated or even impossible. Analaytical solutions are available in exceptional

situations for idealized models. However, assumptions for idealized models are

valid for narrow limited ranges and they are not suitable for most of the cases

[8]. Therefore, in general, numerical studies allow to analyse and predict plasma

properties of such systems. Commonly used plasma models are classified into

kinetic/kinetic-particle models, fluid models and hybrid models.

A plasma medium like a discharge tube has too many particles to consider

them individually even for advanced computers. Kinetic model considers par-

ticle ensembles instead of treating them individually via statistical tools [8],[9].

Distribution function f(r,v, t) is defined in a 7D phase space. Evolution of the

distribution function is governed by the Boltzmann equation. Solving Boltz-

mann equation in 7D is not an easy task. Conventionally, distribution function

is decomposed before solving the Boltzmann equation [10]. Commonly used

two-term approximation is a good example for this approach. Particle method

(particle in cell method, PIC) which sometimes is classified as kinetic-particle

model, keep tracks an ensemble of particles individually according to fundamen-

tal laws (Newton, Lorents, Maxwell). PIC simulations are better for representing

collisional processes [11]. PIC method is best suited for low pressure systems

with simple chemistry in which the number of particle species is small [8].
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Fluid model is derived taking velocity moments of Boltzmann equation. These

moments (0th, 1st and 2nd) produce set of equations which are mass, momentum

and energy conservation equations. Solution of the fluid equations lead to the

macroscopic quantities like particle densities and fluid velocities. Fluid model is

usually suitable for discharges at relatively high pressure [11]. Further simpli-

fications of fluid model lead to the drift-diffusion approximation, which is very

common in models of gas discharges. In the drift-diffusion models with the local

field approximation (LFA), the transport and reaction rate coefficients are deter-

mined as functions of local electric field. Another approximation alternative to

LFA is local mean energy approximation (LMEA), in which transport and reac-

tion rate coefficients are functions of local mean energy. The main advantage of

the fluid model compared to kinetic model is that it requires less computational

work.

Hybrid model is the combination of fluid and kinetic-particle model. In this

model, ions and less energetic (slow) electrons are described by fluid equations.

For energetic (fast) electrons Monte-Carlo (MC) simulation is employed [12].

MC technique can be also applied for calculation of transport and reaction rate

coefficients for fluid equations [8].

Following Fig. 1.1 relates the pressure and the scale of the plasma system with

the appropriate theoretical description.
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Figure 1.1: Adequate plasma models as functions of system size and pressure
[13].

1.4 Aims and Motivations

One of the most important characteristics of the glow discharge is the current-

voltage (CVC) curve. It indicates the current through the tube and the corre-

sponding anode voltage. There are three different regimes which are subjects

of this study in the glow regions of the CVC curve, as it is illustrated in Fig.

1.2. These regimes are named abnormal, normal and subnormal regimes. The

system express different characteristics in these regimes.
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Figure 1.2: An example of CVC curve. Figure is adapted from [14].

A plasma column can be described by spatial distribution of its parameters,

which are the densities of species, voltage, electric field, etc.

The aim of this thesis is the numerical investigation of physical processes in

the DC gas discharge plasma. Results of our models which are based on fluid

description of plazma with drift-diffusion approximation are compared with the

results obtained in the previous works (e.g. [5],[15] and [16]). Comparisons

are based on CVC curves and spatial distributions of plasma parameters in the

abnormal, normal and subnormal regimes.

Numerical calculations are done for a DC glow discharge tube containing argon

gas under conditions similar with the Refs. [5], [15] and [16].

Figure 1.3: A schematic of a DC discharge tube. Figure is adapted from [17].
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Models we derived are simple and extended fluid models based on two fluid

plasma model with drift-diffusion approximation for particle fluxes. Numerical

technique is MOL (Method of Lines), where the spatial discretization is done by

the FVM (Finite Volume Method).

1.4.1 Organization of the Thesis

In Chapter 2, the derivation of two-fluid model of plasma from Boltzmann equa-

tions is explained. Subsequently, simple and extended fluid models of plasma

are introduced. Chapter 3 describes the numerical methods, where the MOL

technique and discretization schemes by FVM are presented. In Chapter 4, we

introduce Boltzmann equation (BE) solver module for deriving the transport

parameters and reaction rates. Then, results obtained from the solver are com-

pared with parameters used in [5]. In Chapter 5, CVC curves obtained from

numerical calculations are presented and compared with those from [5],[15] and

[16]. Later, spatial distributions of plasma parameters calculated in abnormal,

normal and subnormal regimes of DC discharges are presented and compared

with [5]. In Chapter 6 the conclusions are presented.
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CHAPTER 2

MODELS

A discharge volume contains a great number of chatged particles of the order

1016 at pressure p = 1 Torr. Keeping track of parameters like position and

velocity of these particles one by one is impossible even for supercomputers.

Therefore, it is not practical to consider behavior of the particles individually.

For this reason fluid model of plasma has been developed. Derivation of fluid

model is based on the kinetic model of plasma which uses statistical tools for

dynamical behavior of plasma [18]. Further, the fluid model is reduced to the

drift-diffusion models for plasma.

2.1 Governing Equations

Kinetic Boltzmann equation for one species of particles can be written as

∂f

∂t
+∇r · uf +

q

m
∇u · (E + u×B)f ] =

δf

δt

∣∣∣∣
coll

,

where m is the mass of the particle, q is the charge, E is the electric field and

B is the magnetic field. Number of the particles in phase space volume element

is

f(r,u, t)drdu,

where r and u are vectors in the position and velocity spaces respectively. Ad-

ditionally, Maxwell’s equations are also needed to be supplied to kinetic model.

The fluid equations can be derived from the Boltzmann equation by taking its

zeroth, first and second moments [19].
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0th moment produces the continuity equation

∂n

∂t
+∇ · (vn) = 0.

1st moment produces the momentum equation

mn
dv

dt
= qn(E + v ×B)−∇p+ ν.

2nd moment gives the energy equation

3

2
n
dkBT

dt
+ p∇ · v = 0.

In these equations p is the pressure, T is the temperature, kB is the Boltzmann

constant, n represents the particle density and v is the fluid velocity, which are

calculated as

n(r, t) =

∫
f(r,u, t)du,

v(r, t) =
1

n

∫
uf(r,u, t)du.

2.1.1 Two-Fluid Plasma Model

Two fluid plasma model is constructed using fluid equations described above.

It is called two-fluid since it considers fluids of electron and ion separately.

According to this definition, equations can be written for electrons and ions as

follows:

∂ne
∂t

+∇ · (vene) = Se, (2.1)

mene
dve
dt

= qene(E + ve ×B)−∇pe + f ei, (2.2)

3

2
ne
dkBTe
dt

+ pe∇ · ve = Qei, (2.3)

∂ni
∂t

+∇ · (vini) = Si, (2.4)

mini
dvi
dt

= qini(E + vi ×B)−∇pi + f ie (2.5)

3

2
ni
dkBTi
dt

+ pi∇ · vi = Qie. (2.6)

10



These equations are also needed to be supplied by the Maxwell’s equations to

have a self consisted model:

∇×B = µ0J +
1

c2
∂E

∂t
, (2.7)

∇ ·B = 0, (2.8)

∇×E = −∂B
∂t

, (2.9)

∇ ·E =
σ

ε0
. (2.10)

In these equations ne and ni represent the densities of electrons and ions, Se
and Si represents the source terms which represents creation or vanishing of

the charged particles, me and mi are masses of the particles, pe and pi are

the pressures, E is the electric field and B is the magnetic flux density, kB is

the Boltzmann constant, ε0 is the permittivity of vacuum. Moreover, σ and J

represent the charge and the current densities:

σ = niqi + neqe,

J = niqivi + neqeve.

The momentum lost per collusion is related to the relative velocity

f e,i = −νeimene(ve − vi),

where νe,i is the electron-ion collision frequency [19].

Momentum conservation equations (2.2) and (2.5) can be written as

ρe
∂ve
∂t

+ ρe(ve · ∇)ve =

−∇pe − ene(E + ve ×B)− νenmene(ve − vn)− νeimene(ve − vi)

and

ρe
∂vi
∂t

+ ρi(vi · ∇)vi =

−∇pi + eni(E + vi ×B)− νiemini(vi − ve)− νinmene(vi − vn),

where vn is velocity of neutral gas atoms. Considering me � mi, it gives

ρe(ve · ∇)ve � ρi(vi · ∇)vi.

Then the momentum equations can be simplified:

−∇pe − ene(E + ve ×B)− νenmene(ve − vn)− νeimene(ve − vi) = 0.

11



For ve � vn,vi and pe = nekBTe, simplification proceeds to

kBTe∇ne + eneE + ene(ve ×B) + (meνe)neve = 0.

It can be written as

neve = −De∇ne − µeneE − µene(ve ×B), (2.11)

where the mobility of the electrons is

µe ≡
e

meνe

and the electron diffusion coefficient is

De ≡
kBTe
e

µe.

Here the averaged electron collision frequency is taken approximately as νe =

νen + νei.

In a similar way,

−∇pi + eni(E + vi ×B)− νiemini(vi − ve)− νinmini(vi − vn) = 0.

Assuming

νiemini(vi − ve) = −νeimene(ve − vi),

vn = 0,

and meνe � miνin, we get

nivi = −Di∇ni + µiniE + µini(vi ×B), (2.12)

where the mobility of the ions is defined as

µi ≡
e

miνi

and the ion diffusion coefficient is [20, 21]

Di ≡
kBTi
e

µi

Putting the results above into the continuity equations (2.1) and (2.4) and ne-

glecting magnetic field B leads to the two fluid equations with drift-diffusion

approximation:

∂ne
∂t

+∇ · (−µeneE −De∇ne) = Se, (2.13)

∂ni
∂t

+∇ · (µiniE −Di∇ni) = Si. (2.14)
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Two processes, ionization and recombination, determine the source terms, for

example,

Se = Si = α(E, p)|Γe| − βnine,

where α is the Townsend ionization coefficient and β is the recombination coef-

ficient and

Γe = −µeneE −De∇ne

is the total electron flux density. The set of equations is completed with the

Poisson equation for electric potential

−∇2Φ =
e

ε0
(ni − ne).

Finally, the strength of the electric field is calculated from the relation

E = −∇Φ.

In this work, α, β and γ processes are considered. α process is the ionization

through collision of electrons with neutral atoms. β process is the recombination

process where electrons and ions combine and become neutral atoms. γ process

is secondary emission where ions hit the cathode and cause emission of electrons.

2.2 1D Simple and Extended Fluid Models

In this study, 1D simple and extended fluid models are constructed and investi-

gated. Simple fluid model is examined first and validation of numerical model

is carried out.

In simple fluid models transport parameters like mobility µe and µi, diffusion

coefficients De and Di are usually defined as constants. In more detailed models

like extended fluid models, local field approximation (LFA) is a way to determine

transport and reaction rate coefficients. In this case transport and reaction rate

coefficients are calculated from the solution of kinetic Boltzmann equation as

functions of the reduced electric field E/N .

Extended fluid model with local mean energy approximation (LMEA) offers an-

other alternative to calculate the transport coefficients by solving the kinetic

Boltzmann equation again for the value of reduced electric field E/N which cor-

responds the value of electron mean energy, ε̄ at that point. This approach comes
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with a price that energy balance equation is needed to add into set of equations

[22]. A computational module can be generated to solve kinetic Boltzmann

equation and derive transport and reaction coefficients as functions of reduced

electric field E/N . However, it is time consuming to use the module for each

node on the grid. In this work, the coefficients are interpolated from the look−up
tables that were produced for a range of values of reduced electric field. There-

fore, in this way, energy balance equation is excluded from the consideration

and the calculations are simplified.

For 1D simple and extended fluid models with LFA the set of equations has the

form

∂ne
∂t
− ∂

∂x

(
µeEne +De

∂ne
∂x

)
= Se, (2.15)

∂ne
∂t
− ∂

∂x

(
−µiEni +Di

∂ni
∂x

)
= Si, (2.16)

∂2Φ

∂x2
= − e

ε0
(ni − ne). (2.17)

The extended fluid model with LMEA includes additionally the energy equation

for electrons [22]

∂nε
∂t

+
∂Γε
∂x

= −eΓe ·E −
3

2

me

mg

νenekB(Te − Tg)−
∑
j

∆EjRj,

where

Γε = −Dε∇nε − µεEnε,

nε = neε̄

and Dε, µε, ∆Ej, Rj and mg are defined as in [22].

2.3 Parameter Regime

In this section parameters that are used in calculations are described. Numerical

test are carried out for the DC glow discharge in argon. In the following table

values of constant parameters for argon gas are listed. In case if a parameter

is not a constant, the variable that they depend on is showed in parenthesis.

Note that the gas density is obtained using the Ng = pN0 relation. A and
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B constants for argon gas are taken from the Yuri P. Raizer’s book [4] and

Townsend coefficient in the case of simple fluid model is calculated as

Ap e−
Bp
|E| . (2.18)

Symbol Value(S.F.) Value(LFA) Unit Definition
L 0.01 0.01 m length of the tube
U 500 500 V electric potential
R 10k - 10 M 10k - 10 M Ω resistance
C 1 1 pF capacitance
p 3 3 Torr pressure
µe 10 µe(E/N) m2/(sV ) electron mobility
µi 0.08 0.08 m2/(sV ) ion mobility
De 10 De(E/N) m2/s electron diffusion coefficient
Di 0.002 0.002 m2/s ion diffusion coefficient
α α(A,B,E) α(E/N) m−1 Townsend coefficient
A 1200 - m2/Torr constant for T. coefficient
B 18000 - m2/Torr constant for T. coefficient
β 2× 10−13 2× 10−13 m3/s recombination coefficient
γ 0.06 0.06 - secondary emission coefficient
N0 3.54× 1022 3.54× 1022 m−3/Torr gas density for 1 Torr
r 0.015 0.015 m cathode radius
Te 1 Te(E/N) eV electron temperature

Tg = Ti 0.025 0.025 eV ion or gas temperature

Table2.1: Parameters used in simple fluid (S.F.) and extended fluid (E.F.) mod-
els.

2.4 Boundary Conditions

The same boundary conditions as in [5] are applied for ne and ni in the models.

These are defined as directed fluxes

n̂ · Γe =
1

4
neve − ωeµene(n̂ ·E)− κγn̂ · Γi, (2.19)

n̂ · Γi =
1

4
nivi + ωiµini(n̂ ·E), (2.20)

where n̂ is the unit vector directed towards the cathode and ωe,i = 1 when fluxes

are directed to the walls and 0 otherwise. Moreover, κ = 1 at the cathode only

and

ve,i =

√
8πTe,i
eme,i
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are particle thermal speeds.

Boundary conditions for potential at anode Φ = Ud is determined from the

external circuit equation (see Fig.(2.1)):

dUd
dt
− 1

C

(
Id −

U − Ud
R

)
= 0, (2.21)

Figure 2.1: A DC discharge system with external circuit. The figure is adapted
from [22].

where Ud is the anode voltage, C is the capacitance, Id is the discharge current

and R is the resistance, whose magnitudes are given in table 2.1. Since cathode

side is grounded the boundary condition for that node is taken Φ = 0.
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CHAPTER 3

NUMERICAL METHODS

3.1 Method of Lines

Method of lines (MOL) is applied in this work to solve time-dependent partial

differential equations (PDEs) [23]. This method is based on disintegration of

PDE to N number of ordinary differential equations (ODEs). Here N is the

number of nodes in the spatial grid for the PDE:

PDE (having a grid of N nodes) → N× ODEs

After this disintegration the PDE problem is reduced to N number of initial

value problems described by first order ODEs, where the values of the dependent

variables at the spatial nodes at the initial time are the initial values of the

corresponding ODEs. Solving the systems of ODEs individually and bringing

together of the solution gives the solution of the PDE.

ODEs can be solved by generating a numerical code or using built in ODE

solvers. In this work the MATLAB ODE solver ode15s was used. The command

in the numerical code where ODE15s is used as follows:

options=odeset(’Mass’,M,’RelTol’,reltol,’AbsTol’,abstol);

[t,u]=ode15s(pdefunc,timespan,IC,options);

The first line is for the basic setting options for the solver. AbsTol and RelTol

set the solver desired tolerances of the computation. Mass represents the mass
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matrix which allows the solver to distinguish between the ODE and DAE and

apply an appropriate method. For example, for a space divided by N grid

points, there are 3N ODE equations for electrons, ions and potential in the

drift-diffusion model. Poisson equation for potential is time independent except

for the anode node. Therefore, other than anode node the diagonal entries

in Mass matrix for potential are set to be 0. Since the anode node is time

dependent, the diagonal entry in Mass matrix for anode node is set to be 1.

Therefore, when solving Poisson equation, ODE solver acts as a DAE solver for

nodes other than the anode node.

The second command is the part of the code, where the algorithm sets where to

save the results, the initial conditions, when to save the results and RHS (Right

Hand Side) of the equations. The RHS of the equations is determined from

FVM (Finite Volume Methods) methods as in the following section.

3.2 Finite Volume Method

As discussed above MOL creates a number of 1st order ODEs to solve the PDE.

The right hand side of these ODEs are determined by the discretization method

in spatial domain. In this study, Finite Volume Method (FVM) is used. This

method focuses to a small volume which is called the control volume (CV) in the

spatial domain and considers the center of this volume and the fluxes through

the walls of this volume element.

Here, P is the central point, W and E are left ("west") and right ("east")

Figure 3.1: Control Volume in 1D.

nodes accordingly, w and e are the middle points between the nodes.
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Consider the fluid equation with drift-diffusion approximation

∂nk
∂t

+∇ · (skµknkE −Dk∇nk) = Sk, (3.1)

where k represents the species and can be omitted. Equation (3.1) can be written

as
∂n

∂t
+
∂J

∂x
= S, (3.2)

where the total flux J is

J = sµEn−D∂n
∂x
. (3.3)

If Eq. (3.2) is integrated over x in control volume, we have [24]

∂

∂t

∫ xe

xw

ndx+

∫ xe

xw

∂J

∂x
dx =

∫ xe

xw

Sdx.

It is assumed that S is constant in CV, so that

∂n

∂t
∆x+ (Je − Jw) = Sp∆x

or
∂n

∂t
=

(Jw − Je)
∆x

+ Sp (3.4)

Looking at Je closer,

Je =

(
sµEn−D∂n

∂x

) ∣∣∣
e

= (sµEn)|e −De
nE − nP

(δx)|e
.

Using the notations

fe = (sµE)|e,

Γe =

(
D

δx

) ∣∣∣
e
,

we obtain

Je = fene − Γe(nE − nP ). (3.5)

Similarly

Jw = fwnw − Γw(nP − nW ).

Notice that Γe and Γw are always positive. The differential scheme takes the

final form according to the definitions for ne and nw.
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3.2.1 Central Difference Scheme

In central difference scheme, ne is taken as follows:

ne = 0.5(nE + nP ).

Putting it into the equation (3.4), we have

Je = 0.5(nE + nP )fe − Γe(nE − nP )

= nE(0.5fe − Γe) + nP (0.5fe + Γe).

Similarly,

nw = 0.5(nP + nW )

and

Jw = nW (0.5fw + Γw) + nP (0.5fw − Γw).

Considering the term Jw − Je, we have

Jw − Je = nW (0.5fw + Γw) + nP (0.5fw − Γw)− nE(0.5fe − Γe)− nP (0.5fe + Γe)

= aEnE + aWnW − aPnP , (3.6)

where

aE = Γe − 0.5fe,

aW = Γw + 0.5fw,

aP = (Γe + 0.5fe) + (Γw − 0.5fw),

= aE + aW + (fe − fw).

3.2.2 Upwind Scheme

In upwind scheme, the value of n at the control volume walls are determined by

direction of the flow (or the sign of the velocity). For our case the value at the

"east" wall is

ne =

nP , fe > 0

nE, fe < 0
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Alternatively,

fene = nP [|fe, 0|]− nE[| − fe, 0|],

where [| |] function returns the maximum element inside. Then,

Je = nP [|fe, 0|]− nE[| − fe, 0|]− Γe(nE − nP )

= nP (Γe + [|fe, 0|])− nE(Γe + [| − fe, 0|])

= nP (Γe + [|fe, 0|])− aEnE,

where

aE = Γe + [| − fe, 0|].

In a similar way,

nw =

nP , fw < 0

nW , fw < 0.

Alternatively

fwnw = −nP [| − fw, 0|] + nW [|fw, 0|],

and

Jw = nW [|fw, 0|]− nP [| − fw, 0|]− Γw(nP − nW )

= −nP (Γw + [| − fe, 0|]) + nW (Γw + [|fe, 0|])

= −nP (Γw + [| − fe, 0|]) + aWnW ,

where

aW = Γw + [|fe, 0|].

Again, Jw − Je term can be written as

Jw − Je = −nP (Γw + [| − fw, 0|]) + aWnW − nP (Γe + [| − fe, 0|]) + aEnE

= aenE + aWnW − aPnP ,

where

aP = Γw + [| − fw, 0|] + Γe + [|fe, 0|]

= aE + aW + (fe − fw).

Notice that formally this relation is similar to that obtained for the central

difference scheme [24].
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3.2.3 Exponential Scheme

Consider a steady situation

d

dx
(sµEn) =

d

dx
D

(
dn

dx

)
in the domain 0 ≤ x ≤ L subject to boundary conditions

n|x=0 = n0.

n|x=L = nL.

Its solution is
n− n0

nL − n0

=
exp(sµEx/DL)− 1)

exp(sµE/D)− 1
. (3.7)

A parameter named Peclet number is define as

P ≡ sµE

D/δx
=
f

Γ
.

Then the equation (3.7) turns into

n− n0

nL − n0

=
exp(Px/L)− 1

exp(P )− 1
. (3.8)

Putting Eq. (3.8) into Eq.(3.3) and substituting n0 = nP , nL = nE and taking

δx = L yields

Je = fe

(
nP +

np − nE
exp(Pe)− 1

)
,

and similarly

Jw = fw

(
nW +

nW − nP
exp(Pw)− 1

)
.

Jw − Je term can be written again in the form

Jw − Je = aEnE + aWnW − aPnP ,

where

aE =
fe

exp(Pe)− 1
,

aW =
fwexp(Pw)

exp(Pw)− 1
,

aP = aE + aW + (fe − fw).
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In the literature [25], the exponential scheme is also called the Scharfetter -

Gummel (S.G.) scheme.

3.2.4 Generalization of Formulation

Using the results above, Eq. (3.4) can be written as

∂n

∂t
=
aEnE + aWnW − aPnP

∆x
+ Sp. (3.9)

A function depending on the Peclet number can be introduced to define any of

these schemes. Definition of the functions A(|P |)s and corresponding schemes

are as in the table 3.1 [24]:

Scheme A(|P |)
Central Difference 1− 0.5|P |
Upwind 1
Exponential (S.G.) |P |/exp(|P |)-1

Table3.1: The A(|P |) function and corresponding discretization schemes.

The terms in the equation (3.9) are also generalized according to the A(|P |)
function:

aE = ΓeA(|Pe|) + [| − fe, 0|],

aW = ΓwA(|Pw|) + [| − fe, 0|],

aP = aE + aW + (fe − fw).

Thus, using these generalized equations, a numerical code can be designed, which

will comprise all of these three schemes.
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CHAPTER 4

BOLTZMANN EQUATION MODULE

As mentioned in chapter 2, extended fluid model for gas dischrge employs the

transport parameters and reaction rate coefficients, which are obtained from so-

lution of Boltzmann equation (BE) for the electron energy distribution function

(EEDF). For this purpose, BE module is developed to solve Boltzmann equation

and calculate necessary parameters using two term approximation method as in

[26].

4.1 Equations for BE Module

Consider Boltzmann equation for electrons in ionized gas:

∂f

∂t
+ v · ∇f − e

m
E · ∇vf = C[f ]. (4.1)

Here f is EEDF in seven dimensional phase space and C is the rate of change of

it due to collisions. After assumptions of uniform electric field E and symmetric

f in velocity space, BE in spherical coordinates is simplified to

∂f

∂t
+ v cos θ

∂f

∂z
− e

m
E

(
cos θ

∂f

∂v
+

sin2 θ

v

∂f

∂ cos θ

)
= C[f ]. (4.2)

Here v is the magnitude of the velocity, z and θ are the the coordinates. Two

term approximation simplifies the θ dependence. In two term approximation f

is expanded in terms of Legendre polynomials and Eq. (4.2) is reconstructed

accordingly for first the two terms of the expansion [26]. Results with higher

accuracy can be obtained by taking for first six or more terms [27]. However,
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first two terms already have useful results in most of the cases [26]. EEDF with

two term approximation is written as

f(v, cos θ, z, t) = f0(v, z, t) + f1(v, z, t) cos θ, (4.3)

where f is decomposed into isotropic velocity part f0 and anisotropic velocity

part f1 [6]. Substituting Eq. (4.3) into (4.2) gives

∂f0
∂t

+
γ

3
ε1/2

∂f1
∂z
− γ

3
ε−1/2

∂

∂ε
(εEf1) = C0, (4.4)

∂f1
∂t

+ γε1/2
∂f0
∂z
− Eγε1/2∂f0

∂ε
= −Nσmγε1/2f1. (4.5)

In these equations constant γ = (2e/m)1/2, ε = (v/γ)2 is the electron energy, E

is electric field and N is gas density, σm represents the total momentum cross -

section

σm =
∑
k

xkσk, (4.6)

where k indicates certain collision process, xk is mole fraction, which is equal to

one in this study. The term σk is effective momentum transfer cross−section for

elastic collisions and total cross−section for inelastic collisions.

EEDF is separated as

f0(ε, z, t) =
1

2πγ3
F0(ε)n(z, t), (4.7)

f1(ε, z, t) =
1

2πγ3
F1(ε)n(z, t). (4.8)

Note that F0,1 has only energy dependence and satisfy the following normaliza-

tion condition ∫ ∞
0

ε1/2F0dε = 1.

There are different ways to consider the growth of electron density. It is conve-

nient to use exponential temporal growth without space dependence for analyz-

ing pulsed Townsend experiments [26]. For this case, the rate of electron density

growth equals to the net production frequency ν̄i :

1

ne

∂ne
∂t

= ν̄i = Nγ

∫ ∞
0

( ∑
k=ionization

σk

)
× εF0dε. (4.9)
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In [26] the attachment process is also considered and it takes place in the above

equation. Equation (4.5) can be written as

F1 =
E

N

1

σ̃m

∂F0

∂ε
,

where

σ̃m = σm +
ν̄i

Nγε1/2
.

Substituting these into Eq. (4.4), we obtain

− γ

3

∂

∂ε

((
E

N

)2
ε

σ̃m

∂F0

∂ε

)
= C̃0 + R̃, (4.10)

where

C̃0 = 2πγ3ε1/2
C0

Nn
,

R̃ = − ν̄i
N
ε1/2F0.

On the other hand, steady state experiments need to be considered with expo-

nential spatial growth without time dependence. This case is more convenient

to DC gas discharges. Equation (4.5) for this case is expressed as

F1 =
1

σm

(
E

N

∂F0

∂ε
+
α

N
F0

)
,

and Eq. (4.4)

− γ

3

∂

∂ε

((
E

N

)2
ε

σ̃m

∂F0

∂ε

)
= C̃0 + R̃, (4.11)

where

R̃ =
α

N

γ

3

[
ε

σm

(
2
E

N

∂F0

∂ε
+
α

N
F0

)
+
E

N
F0

∂

∂ε

(
ε

σm

)]
,

α =
1

2D
(µE −

√
(µE)2 − 4Dν̄i

Here α is Townsend coefficient. Collision terms can be divided into electron -

electron collision and contributions from all different collision processes is

C̃0 =
∑
k

C̃0,k + C̃0,e. (4.12)

Electron - electron collision term is obtained after some manipulation [26] as

C̃0,e = a
n

N

∂

∂ε

[
3A1F0 + 2(A2 + ε3/2A3)

∂F0

∂ε

]
. (4.13)
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Description of terms in (4.13) as follows [26]:

A1 =

∫ ε

0

u1/2F0(u)du,

A2 =

∫ ε

0

u3/2F0(u)du,

A3 =

∫ ∞
0

F0(u)du,

Λ =
12π(ε0kBTe)

3/2

e3n1/2
,

a =
e2γ

24πε20
ln Λ,

kBTe =
2

3
eA2(∞).

Combining these relations, the equation for EEDF can be written in a more

familiar form, which is formally the stationary convection-diffusion equation:

d

dε

(
W̃F0 − D̃

dF0

dε

)
= S̃, (4.14)

where

W̃ = −γε2σε − 3a
n

N
A1,

D̃ =
γ

3

(
E

N

)2
ε

σ̃m
+
γkBTe
e

ε2σε + 2a
n

N
(A2 + ε3/2A3),

σε =
∑

k=elastic

2m

Mk

σk,

S̃ =
∑

k=inelastic

C̃0 + R̃.

This equation for EEDF is solved with numerical techniques described in the

previous chapter. We imposed the following boundary conditions:

∂f

∂ε
= 0 at ε = 0

f = 0 at ε = εfinal

where εfinal is the maximum energy to be considered. Discretization for inelastic

terms on RHS is done in the following form [26]:∫ εi+1/2

εi−1/2

S̃dε ≡ −PiF0,i +
∑
j

Qi,jF0,j, (4.15)
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where scattering-out and scattering-in terms are

Pi =
∑

inelastic

γ

∫ εi+1/2

εi−1/2

εσkexp[(εi − ε)gi]dε,

Qi,j =
∑

inelastic

γ

∫ ε2

ε1

εσkexp[(εj − ε)gj]dε,

and [ε1, ε2] interval is the overlap of jth and ith cells after being shifted by thresh-

old energies uk:

ε1 = min(max(εi−1/2 + uk, εj−1/2), εj+1/2),

ε2 = min(max(εi+1/2 + uk, εj−1/2), εj+1/2).

Here gi (and also gj) is logarithmic slope assuming F0 distribution is piecewise

exponential in P and Q integrals. They can be expressed as

gi =
1

εi+1 − εi−1
ln

(
F0,i+1

F0,i−1

)
.

After finding the EEDF, the transport parameters (mobility and diffusion) and

the reaction rates (kks) are determined from the following relations [26]:

µ = − γ

3N

∫ ∞
0

ε

σ̃m

∂F0

∂ε
dε, (4.16)

D =
γ

3N

∫ ∞
0

ε

σ̃m
F0dε, (4.17)

kk = γ

∫ ∞
0

εσkF0dε. (4.18)

Additionally, Townsend coefficients are determined in the case of temporal and

spatial growths:

αk =
kkN

µE
(4.19)

and

αk =
kkαN

ν̄i
. (4.20)

4.2 Results of BE Solver

In this section, results from BE solver are demostrated and compared with the

results of BOLSIG+[28] and the data used in [5]. Calculations are done using

S.G. scheme (see Section 3). However, this time Matlab’s ODE solver was not
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used. Since BE solver deals with a time independent equation, formation of a

tridiagonal matrix with S.G. scheme and employing tridiagonal matrix algorithm

(or Thomas algorithm) is preferred. In order to validate our BE solver, first,

EEDF is compared with corresponding results from BOLSIG+. Subsequently,

transport coefficients and reaction rate coefficients are compared with [5]. Re-

sults for Townsend coefficient α are compared with the result from the formula

given in [4] with corresponding coefficients A and B (see Eq. 2.18)

Numerical tests for BE solver were carried out for argon gas at pressure p = 3

Torr. The reduced electric field E/N is in the range 10-10000 Td. During

the calculations, only three reactions are considered which are elastic collisions

(e+Ar → e+Ar), direct ionization (e+Ar → 2e+Ar+), and excitation (e+Ar →
e+Ar∗). In [5] which is the main reference for comparisons, there are different

plasma-chemical reactions included like stepwise ionization (e+Ar∗ → 2e+Ar+),

penning ionization (2Ar∗ → e+ Ar+ + Ar) and radiation (Ar∗ → hν + Ar).

Figure 4.1: Comparison of EEDFs obtained from BE solver and from
BOLSIG+[28] for two different E/N values.

Figure 4.1 shows EEDFs obtained from BE solver and from BOLSIG+[28] for

two different E/N values, 100 Td and 600 Td. They are in agreement and this
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validates the numerical code for BE solver module.

Figure 4.2 demonstrates EEDFs obtained from BE solver for temporal and spa-

tial growth at E/N = 600 Td. Since the difference is small between the curves,

both growth type can be used in discharge simulations. Comparison between

EEDFs from BE solver for various reduced E-fields shows that for higher values

of E/N the EEDF curve flattens as in Fig. 4.3 . In other words, for higher

values of E/N , EEDF has significant contributions from high energy regions. It

can be seen from Fig. 4.4, which demonstrates EEDFs obtained from BE solver

for various ionization degrees ne/Ng at reduced electric field E/N of 10 Td, that

as ionization degree increases its effect on EEDF increases.

Figure 4.2: EEDFs obtained from BE solver for temporal and spatial growth at
E/N = 600Td.
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Figure 4.3: EEDFs obtained from BE solver for various reduced E-fields.

Figure 4.4: EEDFs obtained from BE solver for various ionization degrees ne/Ng

at reduced electric field E/N value 10 Td.
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Fig. 4.5 compares electron mobility µe curves obtained from BE solver and from

Ref. [5]. They are in an agreement. It should be note that plasma chemistry

considered in [5] is different than ours. Reduced electric field (E/N) dependence

of electron diffusion coefficients are demonstrated in Fig. 4.6. They agree suf-

ficiently well. The small differences again can be explained by the difference in

plasma chemistry. Results shown in Fig. 4.7 illustrates Townsend coefficient α

obtained from BE solver and compared with formula (2.18) from Ref. [4]. As

expected, they agree each other sufficiently well. Since small E-field region is

not operating region for the formula (2.18) the curves deviate from one another.

Figure 4.5: Electron mobility µe curves obtained from BE solver and compared
with that from Ref. [5].

Figure 4.6: Electron diffusion coefficient De obtained from BE solver and com-
pared with that from Ref. [5].
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Figure 4.7: Townsend coefficient α obtained from BE solver and compared with
formula from Ref. [4].

Figure 4.8 shows elastic collision frequency νie obtained from BE solver and

compared with that from Ref. [5]. The effect of different plasma chemistry

explains the difference but they display the same behavior. As can be seen

from Fig. 4.9 and Fig. 4.10 which compares ionization rate coefficient kiz and

excitation rate coefficient kex respectively, BE solver results are in acceptable

agreement with the results from Ref. [5].
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Figure 4.8: Elastic collision frequency νie obtained from BE solver and compared
with that from Ref. [5].

Figure 4.9: Ionization rate coefficient kiz obtained from BE solver and compared
with that from Ref. [5].
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Figure 4.10: Excitation rate coefficient obtained from BE solver and compared
with Ref. [5].

As can be seen from these results obtained from the BE solver module and the

results computed from BOLSIG+ they are in reasonable agreement with [5] and

[4].
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CHAPTER 5

RESULTS OF THE FLUID MODELLING

In this chapter calculations via simple and extended models are carried out

and compared with corresponding results from Refs. [5],[15] and [16]. All the

calculations are performed using exponential (Scharfetter-Gummel) scheme for

DC glow discharge plasma in argon gas. First, CVC curves are derived and

compared with computed and experimental CVC curves from the literature.

Then, the spatial distributions of basic parameters of DC glow discharge are

presented and compared in abnormal, normal and subnormal regimes of the DC

glow discharge. Finally, further modifications that can improve the results of

the models are discussed.

5.1 CVCs and Spatial Distributions

The main difference between the extended model considered in present work and

reference extended model from Ref. [5] is that in our model there is no need to

include the energy equation for electrons, because in our model the local field

approximation (LFA) is applied. In Ref. [26], to exclude the energy equation,

usage of Townsend coefficients for ionization is recommended. Our extended

model is based on this approach. Since in Ref. [5] local mean energy approxi-

mation (LMEA) is applied, source terms of the fluid equations for electrons and

ions are written with reaction rate coefficients instead of Townsend coefficient.

Moreover, in [5], plasma-chemical reactions include elastic collision, direct ion-

ization excitation, stepwise ionization, penning ionization and radiation, while

our extended model includes elastic collisions, direct ionization and excitation
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reactions.

Figure 5.1: CVC curves corresponding to simple fluid, extended fluid (LFA)
with spatial and temporal growth, CVC curve from extended fluid (LMEA)
model [5] and two plotted experimental data from [15] and [16]. Discharge is in
argon and discharge gap is 1 cm

Three CVC curves have been derived, one from simple fluid (S.F.) model and

two from temporal and spatial growth cases within LFA and plotted in the same

graph (Fig. 5.1). This figure also contains experimental CVC data [15], [16]

and computed CVC from from Ref. [5]. Note that horizontal axis of CVC

curves indicates reduced current densities J/p2 where pressure is assumed to be

constant p = 3 Torr.

The vertical axis indicates the anode voltage Ud. The CVC curves in Fig. 5.1

are in general agreement with the theoritical expectations and experimental

data. The best result (nearest to experiment) is the one that obtained from the

spatial growth case within LFA model. In Ref. [26] it was claimed that the

temporal growth case can be used in such models. Indeed, the CVC curve for
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temporal case express an acceptable pattern. The curve for simple fluid model

gives relatively poorer results but still reflects a general behaviour.

Spatial distributions of plasma parameters of the simple fluid (S.F.) and ex-

tended models (LFA and LMEA) are compared in three different regimes at dif-

ferent the current densities. The corresponding reduced current density points

are demonstrated with vertical dashed lines in Fig. 5.1. The line number shown

in Fig. 5.1 indicates chosen reduced current density values that is 1 for abnormal

regime, 2 for normal regime and 3 for subnormal regime.

Abnormal Regime

Figures 5.2-5.6 shows spatial distributions of plasma parameters obtained from

the three different models (S.F., LFA and LMEA) in abnormal regime computed

at the same current density J = 45 A/m2.

Figure 5.2: Spatial distributions of particle densities ne and ni obtained from
the simple and extended fluid models in abnormal regime. Discharge is in argon
gas, p = 3 Torr, J = 45 A/m2 and discharge gap is 1 cm.

Figure 5.2 demonstrates spatial distributions of particle densities ne and ni ob-
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tained from simple and extended fluid models in abnormal regime. As expected

in abnormal regime, quasi-neutral region where ni ≈ ne occupies most of the

space in the tube and cathode sheath is very narrow. As Fig. 5.3 illustrates,

which is spatial distribution of ionization rates from simple and extended fluid

models, ionization process occurs mainly in the narrow cathode sheath.

Figure 5.3: Spatial distribution of ionization rates obtained from simple and
extended fluid models in abnormal regime. Conditions are the same as in Fig.
5.2.

Spatial distributions of potential Φ are illustrated in Fig. 5.4. The value at the

very left indicates the anode voltage. Voltage drop in quasi-neutral region is

small. However there is a rapid voltage drop in the cathode sheath. Electric

field E profile is shown in Fig. 5.5. It is almost zero throughout the quasi-

neutral region which can be estimated by looking the potential profile in this

region. In the cathode sheath region, however, E-field increases rapidly and

takes values at the order of 105 V/m. This explains why in the cathode sheath

region the ion density is higher than the electron density. Since, electrons have

higher mobilities than the ions, they moves more rapidly towards the electrodes

in the presence of electric field.

40



Figure 5.4: Spatial distribution of potential Φ obtained from the simple and
extended fluid models in abnormal regime. Conditions are the same as in Fig.
5.2.

Figure 5.5: Spatial distribution of electric field E obtained from the simple and
extended fluid models in abnormal regime. Conditions are the same as in Fig.
5.2.
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Figure 5.6 shows spatial distribution of ion, electron and total current densities

Ji, Je and Jt, for the simple and extended fluid models in abnormal regime.

Uniformity of the total current is the verification of charge conservation. There

is a small region where the uniformity is distorted, which can be easily removed

by grid refinement.

Figure 5.6: Spatial distribution of ion, electron and total current densities Ji, Je
and Jt obtained from the simple and extended fluid models in abnormal regime.
Conditions are the same as in Fig. 5.2.

Normal Regime

Figures 5.7-5.11 shows spatial distribution of plasma parameters computed from

the three different models (S.F., LFA and LMEA)in normal regime, at the same

current density J = 3 A/m2.

In normal regime particle densities are smaller than in abnormal regime, as il-

lustrated in Fig. 5.7, which indicates spatial distributions of particle densities ne
and ni obtained from simple and extended fluid models. In this regime, cathode
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sheath expands and quasi-neutral region gets narrower than in the abnormal

regime. Spatial distribution of ionization rates from simple and extended fluid

models are as in Fig. 5.8. As expected, ionization occurs in a wider space, the

cathode sheath is wider than in the abnormal regime. In this region electric

field E is smaller and Townsend coefficient α is smaller (see Fig. 4.7) corre-

spondingly. Therefore we have smaller ionization rates in this regime. This also

explains smaller values of densities in the normal regime. Since ionization rate

decreases, the system settles down to the steady state at smaller densities.

Figure 5.7: Spatial distributions of particle densities ne and ni obtained from
the simple and extended fluid models in normal regime. Discharge is in argon
gas, p = 3 Torr, J = 3 A/m2 and discharge gap is 1 cm.
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Figure 5.8: Spatial distribution of ionization rates obtained from simple and
extended fluid models in normal regime. Conditions are the same as in Fig. 5.7.

In Fig. 5.9, spatial distribution of potential Φ obtained from the simple and

extended fluid models is given. As expected, voltage drop in quasi-neutral region

is relatively small. The voltage drop in the cathode sheath is not sharp as in the

abnormal regime. The anode voltage takes smaller values compared to the other

regimes as can be seen in the CVC curves in Fig. 5.1. Electric field E profiles

are shown in Fig. 5.10 obtained from the simple and extended fluid models in

normal regime. E-field which is mainly formed in cathode sheath is smaller than

in abnormal regime.
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Figure 5.9: Spatial distribution of potential Φ obtained from the simple and
extended fluid models in normal regime. Conditions are the same as in Fig. 5.7.

Figure 5.10: Spatial distribution of electric field E obtained from the simple and
extended fluid models in normal regime. Conditions are the same as in Fig.5.7.
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Figure 5.11 which illustrates spatial distributions of ion, electron and total cur-

rent densities Ji, Je and Jt, obtained from the simple and extended fluid models,

verifies the charge conservation.

Figure 5.11: Spatial distribution of ion, electron and total current densities Ji,
Je and Jt obtained from the simple and extended fluid models in normal regime.
Conditions are the same as in Fig. 5.7.

Subnormal Regime

Figs. 5.12-5.16 shows spatial distribution obtained from the plasma parameters

of three different models (S.F., LFA and LMEA)in subnormal regime at the

same current density J = 0.19 A/m2.

Spatial distributions of particle densities ne and ni obtained from simple and
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extended fluid models are demonstrated in Fig. 5.12. In subnormal regime

quasi-neutral region is small or even absent. Particle densities are significantly

smaller than in abnormal or normal regimes. Ionization rates for the simple and

extended fluid models in subnormal regime also decrease as in Fig. 5.13.

Figure 5.12: Spatial distributions of particle densities ne and ni obtained from
the simple and extended fluid models in subnormal regime. Discharge is in argon
gas, p = 3 Torr, J = 0.19 A/m2 and discharge gap is 1 cm.
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Figure 5.13: Spatial distribution of ionization rates obtained from the simple
and extended fluid models in subnormal regime. Conditions are the same as in
Fig. 5.12.

Figure 5.14 shows spatial distribution of potential Φ obtained from simple and

extended fluid models in subnormal regime. In this case we have a smooth

voltage drop across the tube because of lack of quasi-neutrality. Figure 5.15

shows spatial distribution of electric field E obtained from simple and extended

fluid models in subnormal regime. In subnormal regime E-field forms almost

everywhere in the tube even if it is weaker than as in abnormal and normal

regimes in accordance with the potential distribution. Ion density is greater

than electron density almost everywhere in the tube.
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Figure 5.14: Spatial distribution of potential Φ obtained from the simple and
extended fluid models in subnormal regime. Conditions are the same as in Fig.
5.12.

Figure 5.15: Spatial distribution of electric field E obtained from the simple
and extended fluid models in subnormal regime. Conditions are the same as in
Fig. 5.12.
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Spatial distribution of ion, electron and total current densities Ji, Je and Jt
obtained from simple and extended fluid models are demonstrated in Fig. 5.16.
We observe again charge conversation in this figure.

Figure 5.16: Spatial distribution of ion, electron and total current densities Ji,
Je and Jt obtained from the simple and extended fluid models in subnormal
regime. Conditions are the same as in Fig. 5.12.

There are possible improvements that can be applied on extended fluid model.

First modification can be done in BE solver. In Fig. 4.4 it can be observed

that EEDF is different for different ionization degrees. Instead of tabulating an

average ionization degree value, a 2D table can be prepared for 2D interpolation.

Thus, transport coefficients and reaction rates will depend on not only the local

reduced electric field E/N but also on the local value of degree of ionization.
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Another suggestion to improve the BE solver module is to use adaptive ranges for

EEDF and corresponding grids. As in Fig. 4.1, EEDF has higher values at the

same energy for higher reduced electric fields E/N . Therefore, the position for

the right end boundary for EEDF where EEDF is imposed to be zero, should be

specified at higher ε values for higher E/N values. In other words, computational

domain should be taken larger for higher E/N values. This treatment also

requires an adaptive grid structure.
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CHAPTER 6

CONCLUSION

In this thesis, we have studied numerically plasma properties in DC glow dis-

charge, using two different 1D modelling approaches. These are simple fluid and

extended fluid models which are based on two-fluid model of plasma with drift-

diffusion approximation for particle fluxes. Numerical tests have been carried

out for a DC glow discharge in argon gas with between electrode distance of

1cm, at pressure p = 3 Torr.

First we have developed Boltzmann equation (BE) module following the method

in [26]. BE module has been validated by comparison with the results of BOL-

SIG+ [28]. Then using BE solver we have derived look-up tables (LUTs) for the

electron transport parameters as well as the reaction rate coefficients.

Calculations were carried out for simple fluid model with transport coefficients

from [29], while for the extended fluid model, the coefficients for electrons were

taken from the LUTs created from the BE solver. The MOL (Method of Lines)

technique was applied to convert PDEs to ODEs. For solution of ODEs, MAT-

LAB ode15s ODE solver was used. Discretization in spatial domain was done

with finite volume method (FVM) using Scharfetter−Gummel (exponential)

scheme.

We obtained CVC curves from simple fluid model and extended fluid model with

local field approximation (LFA) and compared them with experimental data

[15],[16] and results of extended fluid model with local mean energy approxima-

tion (LMEA) [5]. The analysis has also been done for spatial distributions of
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plasma parameters in abnormal, normal and subnormal regimes of the DC glow

discharge.

Comparisons showed that the extended fluid model with local field approxima-

tion (LFA) presents an agreement with experimental results in the abnormal

regime. In normal regime, computed models are also in an acceptable agree-

ment. However, in subnormal regime where the electric fields become weaker

the extended fluid model with LFA presents disagreement with others. There-

fore LFA approximation is not suitable for the subnormal regime. Simple fluid

model demonstrates the results that are generally in an agreement with exper-

imental data and computed results. It can be used for getting results to see

general behaviour of the system.
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