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ABSTRACT

SPECTRAL GRAPH BASED APPROACH FOR ANALYSIS OF 3D LIDAR
POINT CLOUDS

Bayram, Eda

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. A. Aydın Alatan

Co-Supervisor : Assist. Prof. Dr. Elif Vural

March 2017, 77 pages

Airborne Laser Scanning is a well-known remote sensing technology, which provides
quite dense and highly accurate, yet unorganized, point cloud descriptions of the earth
surface. However, processing of such a 3D point cloud is quite challenging due to its
irregular structure and 3D geometry. In this thesis, two novel approaches for the anal-
ysis of unorganized 3D point cloud data are proposed, specifically the ones that are
generated by the airborne mounted LIDAR sensor. These methods rely on the spectral
graph based and graph signal processing techniques which gain attention in the recent
years. The state-of-the-art techniques addressing the problems of LIDAR point clouds
are first examined. Next, the theory presented by the spectral graph based methods
is reviewed to analyze their solutions. Since irregular discrete data lying on a high
dimensional geometry, such as LIDAR point clouds, can be conveniently represented
by weighted graphs, spectral graph methods based on such weighted graphs enable
spectral analysis of the data representation, as in classical Fourier analysis for signal
processing. In the light of the revisited spectral graph literature, one can examine
techniques for clustering as well as edge detection problems by using graph represen-
tation of the unorganized 3D point clouds. The graph based representation introduces
the opportunity of analysis of the signal over its original input space; therefore, it
provides qualified comprehension of the data. Based on simulations, it is shown that
the graph spectral solutions can acquire remarkable advance in the analysis of unor-
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ganized 3D point clouds and the experimental results indicate the potentials of this
new approach.

Keywords: Signal Processing on Graphs, Graph Signal Filtering, Spectral Graph The-
ory, Spectral Clustering, Unorganized 3D Point Cloud, LIDAR, Airborne Laser Scan-
ning
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ÖZ

3 BOYUTLU LIDAR NOKTA BULUTLARININ ANALİZİNDE SPEKTRAL
ÇİZGE TEMELLİ YAKLAŞIM

Bayram, Eda

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. A. Aydın Alatan

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Elif Vural

Mart 2017 , 77 sayfa

Havadan lazer tarama, dünya yüzeyinin oldukça yoğun ve yüksek kesinliğe sahip
fakat organize olmayan nokta bulutu betimlemesini sağlayan, tanınan bir uzaktan
algılama teknolojisidir. Fakat, bu tip bir 3 boyutlu (3B) nokta bulutunun işlenmesi
düzensiz yapısı ve 3B geometrisi bakımından zorlayıcıdır. Bu tezde, organize olma-
yan 3B nokta bulutu verisinin analizi için iki yeni yaklaşım önerilmektedir, özellikle
hava araçları üzerindeki LIDAR cihazlarından alınmış veriler üzerine odaklanılmak-
tadır. Bu yöntemler son yıllarda ilgi kazanan spektral çizge temelli ve çizge sinyal
işleme tekniklerine dayanmaktadır. Öncelikle LIDAR nokta bulutu alanındaki prob-
lemlere hitap eden güncel teknikler incelenmiştir. Daha sonra, spektral çizge temelli
yöntemler tarafından sunulan teori, çözümlerini incelemek için gözden geçirilmiştir.
Ağırlıklandırılmış çizgeler, LIDAR nokta bulutları gibi, yüksek boyutlu geometri üze-
rine oturan, düzensiz, ayrık verilerin ifadesi için çok uygun olduğundan, aynı sinyal
işlemede klasik Fourier analiz kullanılarak yapıldığı gibi, spektral çizge yöntemleri
ile de veri ifadesinin spektral analizini gerçekleştirmek mümkündür. Tekrar gözden
geçirilmiş spektral çizge literatürünün ışığında, 3B nokta bulutunun çizge ifadesi üze-
rinde kümeleme ve kenar tespiti problemleri incelenebilir. Çizge temelli ifade, sinyali
özgün yapısı ile tanımlı olduğu uzay üzerinde analiz etme imkanı sağladığı için, veri-
nin niteikli bir şekilde kavranmasını sağlamaktadır. Simülasyonlar üzerinden spektral
çizge temelli çözümlerin, organize olmayan 3B nokta bulutlarının analizinde kayda
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değer bir avantaj sağladığı gösterilmiş ve deneyler ile bu yeni yaklaşımın potansiyeli
ortaya konmuştur.

Anahtar Kelimeler: Çizge Sinyal İşleme, Çizge Sinyal Filtreleme, Spektral Çizge Te-
ori, Spektral Kümeleme, Organize olmayan 3 Boyutlu Nokta Bulutu, LIDAR, Hava-
dan Lazer Tarama
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Can we hear the shape of a drum?
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Over the past few decades, the multimedia technology has evolved to a state where

it is capable of sampling and storing rich environmental information. For example,

various active or passive optical devices such as 3D scanners or depth sensors can

capture high dimensional or hyperspectral data. 3D data has become more widespread

in virtual reality, computer graphics, vision and surveillance systems, furthermore, it

is predicted to be more preferable and widely used in the future. As much more effort

is devoted on the aforementioned hardware technologies, the research community is

expected to attend to the problems emerged by their output data.

One of these technologies is LIDAR (Light Detection And Ranging) which is an op-

tical remote sensing device providing very dense and accurate point samples of the

surface scanned in 3D. Therefore, in recent years, airborne laser scanning (ALS) has

become one of the most desired technologies, especially in the Geographic Informa-

tion System (GIS), photogrammetry and cartography projects. However, processing

of LIDAR data is a challenging task due to the nonuniform sampling on the 3D ge-

ometry. To put it in another way, the solutions to the problems arising in unorganized

3D data are not straight forward as the ones developed for images or videos, which

are the 2D data structures having the regular lattice forms. For this purpose, most

of the primary studies converted airborne LIDAR point clouds into some other re-

duced data formats, such as Digital Elevation Model (DEM), Digital Surface Model

(DSM) or Triangulated Irregular Network (TIN)[2, 3], in order to use the conven-
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tional data processing methods to analyze the low dimensional and structured version

of the original data. However, transforming the 3D point cloud into those range im-

ages manipulates the data due to interpolation and resampling operations and loss of

3D geometry [4, 5]. Moreover, from a signal processing point of view, we need to

designate the raw output data as the signals to be processed, in order to fully exploit

the 3D nature of the data and so as to lead to efficient interpretations.

In recent years, many other irregular data formats have been produced together with

the 3D point clouds generated by LIDAR. For instance, 3D depth sensors capture 3D

models of the environment or there are data sources having network-like structures

such as the social networks, transportation networks etc. All the signals animated

on those topologically complicated domains can be represented on the vertices of the

weighted graphs by their nature [1, 6]. We refer those signals as graph signals and

this new research field as Graph Signal Processing, which analyzes the signals on

their native structures. It is built upon the well-known spectral graph theory [7], and

above that, it accomplishes the harmonic analysis of the graph signals in the adapted

graph structure of the data.

In a graph representation, vertices symbolize the samples on the discrete data domain.

The connections on the graph topology are represented by the links called edge, and

the weight associated with each edge stores the correlation between the two vertices

it links. With this in mind, a weighted graph is desirable tool for the acquisition of

the underlying data geometry. Building up such a representation, we can transpose

the Fourier analysis methods from the classical signal processing settings to the graph

settings.

Laplacian based transforms appear in many differential problems in physics and math-

ematics such as wave equation, heat equation or Schrödinger equation [8], since

Laplacian eigenfunctions provide a generalization of Fourier analysis on various do-

mains from time domain signals to manifolds or graph settings. Therefore, the Lapla-

cian operator defined on the graph settings uncovers the spectral identity of the graph

structure, just as we can obtain a wave component at a given frequency level on which

it vibrates based on the wave equation.

Discovering spectral embedding of a graph structure may serve many pattern recog-
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nition problems such as clustering, feature detection and classification. Moreover,

having revealed the spectral identity of the underlying graph, harmonic analysis of the

graph signal can be accomplished. Within the scope of signal processing of graphs,

filtering, compression and multi-resolution analysis applications can be realized [1].

In the light of this background, this study addresses the segmentation problem of

LIDAR data first by practicing the spectral clustering. Second, edge features on a

LIDAR scene are detected adopting a graph signal filtering based approach. To place

this study in the categorical ordering of the LIDAR literature, it can be asserted that

we propose new clustering based segmentation and edge-based segmentation methods

for unorganized airborne LIDAR point clouds.

1.2 Thesis Outline

The goal of this study is to analyze unorganized 3D airborne LIDAR point clouds by

adapting spectral graph based solutions.

For this purpose, we first go over the theory presented by the graph spectral ap-

proaches in order to familiarize the problems they address and examine the possible

solutions to our subject of interest. In Chapter 2, we review spectral graph theory by

introducing the terms; weighted graph representations, Laplacian operator on graphs

and eigensystem of graph Laplacian. We explain the significance of spectral graph

theory owing to exploring the spectral embedding encoded through the graph repre-

sentation by conducting an eigenvalue problem. We mention the solutions proposed

for dimension reduction and clustering problems by exploiting the uncovered spectral

embedding of the data.

In Chapter 3, we go one step further and carry the Fourier analysis methodology to the

graph structures. Just as we operate the classical signal processing on two different

domains, namely the time (or spatial) domain and the frequency domain, we define

the vertex domain and spectral domain on graphs. We introduce the term of graph

signal and we analyze this signal through some operations such as graph Fourier

transform, filtering, translation and localization.
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After we assemble the proposed solutions declared by the spectral graph literature, we

adapt some of them to practice on a number of LIDAR point cloud datasets by adopt-

ing computationally efficient algorithms. In Chapter 4, we propose a new framework

for LIDAR point cloud segmentation based on spectral clustering method. We justify

an adequate graph representation for the aerial LIDAR data to improve the perfor-

mance of spectral clustering. In order to accelerate the segmentation process, we

adapt a practical and fast spectral clustering algorithm.

In Chapter 5, we practice graph signal filtering method to detect the edge features on

a LIDAR point cloud, which is enlightened by the conventional signal processing ap-

proaches. This is a novel framework for the detection of boundary points in a LIDAR

object or scene. The boundary points resulted in this framework can be further be

assembled to create edge lines those are important for segmentation and reconstruc-

tion tasks. In this framework, before the filtering operation for edge detection, we

perform a smoothing operation to loose the effect of clutter. We adjust the filter to be

employed with respect to the property of the feature points on interest.

Finally in Chapter 6, the thesis is summed up by pointing out the important conclu-

sions given by the experimental results and the issues to be improved for further.
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CHAPTER 2

AN OVERVIEW OF SPECTRAL GRAPH BASED METHODS

2.1 Introduction

In recent years, many high dimensional data, those are structured or unstructured,

have been emerged by some advanced sensing technologies. The primary studies

working on high dimensional data developed the kernel-based methods to combat

the curse of dimensionality [9]. Kernel-based methods typically operate on high di-

mensional or irregular structured data by building correlations on pairs of samples.

Similarly, on later studies, those kernel-based relations established on the sensed data

are accommodated on a graph and the kernel-matrix is granted as a weight matrix.

The weight function is selected to measure the similarities between the data points

by exploiting some statistical learning problems [1], which is identical to the use of

kernel-function [10].

It is worth noting that graphs are flexible data structures those are capable of dealing

with various types of data domains, since they can encode complex relationships

between samples on any domain.

In this chapter, we introduce the spectral graph theory which is the scientific field we

leverage for significant applications defined on 3D point clouds (i.e., spectral cluster-

ing). It also constitutes a basis for the next chapter where we explain how to apply

signal processing algorithms on graphs. First, we give the basic definitions on graph

based methods. Second, we express their expansion in spectral domains within the

scope of the literature on algebraic graph theory [11] and spectral graph theory [12],

[7]. Finally, building an analogy between spectral graph based methods and manifold
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learning methods, we explain utilization of spectral graph theory for the essential

problems such as dimensionality reduction and spectral clustering.

2.2 Review of Spectral Graph Theory

2.2.1 Weighted Graphs and Graph Laplacian

Weighted graphs are generally utilized for representing the geometry-based local in-

teractions between inputs. In algebraic graph theory, adjacency matrix, A, stores

binary relations between the entries, namely A(x, y) = 1, if node-x is adjacent to

node-y, i.e., x ∼ y, and A(x, y) = 0, otherwise. The adjacency matrix informs

only about the topology of the graph, whereas for a weighted and undirected graph,

G = (V , E ,W ), weight matrix, W stores similarities between nodes. Its element

Wxy is determined by a weight function w(x, y) = w(y, x) > 0 for x ∼ y, and

w(x, y) = 0, otherwise. V and E stand for the vertex and edge set of the graph with

|V| = N .

In most of the practical cases, the vertices of the graph are depicted as the samples in

high dimensional Euclidean space and the weight function is formulated as a function

of Euclidean distance between the pairs of them.

Laplacian matrix, L, is described as L = D−W , where D is diagonal degree matrix,

whose entry Dii is the sum of the edge weights incident to vertex-i. The entries of the

Laplacian matrix are obtained as:

Lij =

Dii if i = j,

−Wij if i 6= j.
(2.1)

The graph Laplacian is simply the discrete analogue of the Laplacian operator ∆ in

calculus; i.e. the sum of the second partial derivatives, ∆f =
∑

i
∂2f
∂x2i

. The Laplacian

matrix is indeed a differential operator on the graph [1], in which interaction occurs

only between the neighboring vertices [13]. Considering a function f defined on

the vertices of the graph, f : V → R, the discrete model of ∆f measures how the

function differs at a vertex with respect to its neighbors. By means of 2nd order finite
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difference method (2.2), Laplacian operator ∆f = Σ∂2f
∂x2i

can be approximated for

discrete data domains.

f
′′
(x) =

f(x+ h)− 2f(x) + f(x− h)

h2
(2.2)

Therefore, at a vertex of a graph, Laplacian can be computed by taking the difference

of neighbors, and calculating the weighted sum of the results as the following,∑
j∼i

Wij[f(i)− f(j)] (2.3)

where the sum is calculated over j ∼ i which are the vertices connected to vertex i.

The above formulation can be rearranged as,∑
j∼i

Wijf(i)−
∑
j∼i

Wijf(j)

Diif(i)−
∑
j∼i

Wijf(j)

When we show the above rearrangement in terms of matrix-vector multiplication, we

obtain,

Df(i) −Wf(i) = (D −W )f(i)

and since we define graph Laplacian as L = D −W , we can compute Laplacian on

graphs as follows, ∑
j∼i

Wij(f(i)− f(j)) = (Lf)(i) (2.4)

Furthermore, one can easily draw an analogy between the aforementioned Laplacian

matrix for the graphs and Laplacian kernels for images, which are the discrete ap-

proximation of Laplacian operator obtained by finite-difference method and generally

applied for edge detection purposes. In Figure 2.1, the Laplacian image kernels are

shown with the associated graph topologies. Let us consider an image represented by

a 4-connected topology, which is illustrated by the graph on the left in Figure 2.1(b).

When the graph Laplacian operates on the center red node, whose degree is 4 and

weight of each incident edge is 1, it would be equivalent to filtering the image with

a kernel on the left in Figure 2.1(a). For an 8-connected case, one can consider the

illustrations on the right in Figure 2.1(a & b). Such an image filtering example would
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Figure 2.1: Analogy between Laplacian image kernels and Laplacian of graph topolo-
gies

be transposed to graph domain by performing the operation in (2.4), where f contains

the pixel values.

As a differential operator, the graph Laplacian has a crucial role for encoding the

physical properties of the input space, which will be explained in the next section.

2.2.2 Laplacian Eigensystems and Graph Spectrum

Defining the graph Laplacian is a significant step in practicing the differential geom-

etry on graphs. In this point of view, the analogy between the spectral analysis of the

Riemannian manifolds and the spectral graph theory is quite compelling [14]. In cer-

tain conditions, the graph representation is considered as the proxy for the manifold

underlying the sampled data. There are important studies for the approximation of

the Laplace-Beltrami operator on manifolds by the graph Laplacian [15], [16], [17].

Moreover, the eigenvectors of the graph Laplacian are affirmed to be natural dis-

cretization of the eigenfunctions of the Laplace-Beltrami operator on manifolds [18].

In this sense, the Laplacian based manifold methods can be transcribed to the graph

Laplacian based methods [7], [19], [20]. Since the Laplacian eigensystem unveils the

spectral identity of the data manifold, we exploit this information later on inferring

coarse-to-fine characteristics thoroughly on the underlying domain. The eigenvalues

of the Laplacian operator correspond to the characteristic frequencies of the struc-

ture [13], which is manifested by the below eigenvalue problem or the Helmholtz

equation:

∆f = −λf (2.5)

Since the Laplacian matrix L is real, symmetric and positive-semidefinite, it has a

8



complete set of orthonormal eigenvectors and non-negative, real eigenvalues. For a

connected graph, the eigenvalues of L are sorted as 0 = λ0 ≤ λ1 ≤ · · · ≤ λN−1,

which is called as the graph spectrum.

The non-negativity of the Laplacian operator is expressed by the graph Laplacian

quadratic form [12] defined as,

fTLf =
∑

(i,j)∈E

Wij[f(i)− f(j)]2 ≥ 0 (2.6)

The quadratic form of Laplacian matrix, fTLf , holds a kind of global notion of

smoothness in a weighted graph G = (V , E ,W ) [1], which will be exploited in the

next sections. One can calculate a global smoothness measure by computing the

weighted sum of squared differences of the neighbors defined by the edge set E of the

graph as follows, ∑
(i,j)∈E

Wij[f(i)− f(j)]2 (2.7)

Hence, how small the sum results signifies how smoothly the function f is changing

on the vertices of the graph. Since the sum is calculated over the edge set of the graph,

we can rearrange it as follows,∑
i∈V

∑
j∈Ni

Wij[f(i)− f(j)]2 (2.8)

If we expand the squared term, we get,∑
i∈V

∑
j∈Ni

Wij[f(i)(f(i)− f(j)]︸ ︷︷ ︸
(1)

+Wij[f(j)(f(j)− f(i))]︸ ︷︷ ︸
(2)

Let us analyze term (1) and term (2) separately. Starting with (2), we can divide it

into two parts as well,

∑
i∈V

∑
j∈Ni

Wijf(j)f(j)−
∑
i∈V

∑
j∈Ni

Wijf(j)f(i)

∑
i∈V

∑
j∈Ni

Wijf(j)2︸ ︷︷ ︸
[W (f�f)](i)

−
∑
i∈V

f(i)
∑
j∈Ni

Wijf(j)︸ ︷︷ ︸
[Wf ](i)

9



where � stands for elementwise product for a vector. When we analyze them further

by knowing that weight matrix, W , is a symmetric matrix, we see that both parts are

equal to fTWf , quadratic form of the weight matrix, hence they negate each other.

Now let us analyze term (1). We can displace the multiplier f(i) out of the inner sum

since it is constant with respect to the inner sum,∑
i∈V

f(i)
∑
j∈Ni

Wij[(f(i)− f(j)]︸ ︷︷ ︸
Lf(i)

= fT (Lf)

We already know the expansion stated in (2.4), which is equal to the inner sum in the

above equation. Therefore, term (1) can be written in matrix vector multiplication

form, which turns out to be the quadratic form of Laplacian matrix.

2.3 Dimension Reduction and Spectral Clustering

The spectral embedding exhibited by the graph representation empowers useful math-

ematical tools for nonlinear dimensionality reduction and clustering. In this section,

we analyze the practice of spectral graph theory for the embodied problems below.

2.3.1 Graph Based Dimensionality Reduction

When data is expected to occupy a manifold of lower dimensionality than the orig-

inal high dimensional space, it is crucial to explore the low-dimensional embedding

of the data set in order to simplify the data analysis process. Graphs are adequate

for representing the high dimensional data by defining similarities inside the local

neighborhoods of the data geometry and accommodate powerful tools for nonlin-

ear dimensionality reduction methods. During the last decades, important nonlinear

dimensionality reduction algorithms are proposed by the help of graph based tech-

niques, such as Isomap and Local Linear Embedding (LLE) [21]. In this chapter, we

concentrate on the one proposed by Belkin et al., namely Laplacian Eigenmaps [22].

From a mathematical point of view, the dimensionality reduction problem can be

defined as the mapping of the k points {x1,x2, · · · ,xk} in Rl to a set of points
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{y1,y2, · · · ,yk} in Rm where m � l. Note that, here the bold notation is used

for the vectors such as y1 and the regular letters denote the vector elements as y1

stands for the first element of y. To serve the dimensionality reduction problem,

after a weighted graph is constructed to represent the high dimensional data set, the

Laplacian matrix is computed subsequently by L = D −W . It is desired to find the

optimal mapping in the lower dimensional space.

Let us start with the one dimensional case where the sample set in Rl is aimed to be

mapped to a set of points on a line y = [y1, y2, · · · , yk]T . The connected points on

the graph are desired to be positioned as close as possible on the lower dimensional

mapping. Hence, the following objective function is minimized to obtain the optimal

dimensionality reduction into one dimension,∑
(i∼j)

Wij(yi − yj)2 = yTLy (2.9)

which is identical to the quadratic form of Laplacian for the new representation vector

y. In this regard, we can interpret the graph Laplacian quadratic form as a measure

for preservation of the neighborhood. In other words, quadratic form of Laplacian is

smaller when the connected points with large weights (i.e. more similar) are mapped

closer in this new representation [1]. Such an approach is the main principle of the

nonlinear dimensionality reduction problems, known as preservation of locality.

In this formulation, a constraint yTy = 1 must be introduced to fix the scale of the

vector. As a consequence, the following optimization problem is obtained:

argmin
y

yTLy subject to yTy = 1

One can obtain the same optimization after a conversion by the variational method or

the min-max theorem,

argmin
y

yTLy

yTy

∣∣∣∣
yTy=1

The above minimized ratio is called Rayleigh quotient, which is denoted by R(L,y)

and it is bounded with the spectral content of the graph Laplacian {0 = λ0 ≤ λ1 ≤
· · · ≤ λk−1},

λ0 ≤ R(L,y) ≤ λk−1
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The Rayleigh quotient of an eigenvector is its associated eigenvalue. As a result, the

solution is originated by the eigenvalue problem for the Laplacian operator,

Ly = λy

The trivial solution associated with λ = 0 is discarded, since it yields a constant

vector solution y = 1, which maps all the vertices to the same point on 1-D line.

Therefore, another constraint is inserted for solution to be orthogonal to the constant

vector yT1 = 0.

It can be shown that the solution vector y, which minimizes the Rayleigh quotient, is

given by the minimum eigenvalue of the eigenvalue problem, where λ 6= 0. In other

words, it will be the eigenvector corresponding to λ1.

In order to get an m-dimensional mapping, where each sample on the original dataset

is represented by an (m × 1) vector, one has to pick up the eigenvectors associated

with the m-lowest eigenvalues. If we denote this embedding with a (k ×m) matrix

Y = [y1,y2, · · · ,ym], which is composed by stacking those eigenvectors, then it

minimizes the following objective function, similar to the one described in (2.9),∑
i,j

‖Y (i) − Y (j)‖2Wij = tr(Y TLY ) (2.10)

where ith row of Y is expressed as Y (i) = [y1(i),y2(i), · · · ,ym(i)], and it represents

the data sample xi on the original dataset.

2.3.2 Graph Based Clustering

Prior to examining the spectral clustering technique, the graph theoretical segmen-

tation begins with the basic graph partitioning methods, such as graph cuts. Such

problems are stated to be on NP-hard, therefore, in [23], Shi & Malik reformulated

the normalized cut criteria by reducing the solution to finding the second eigenvector

of the normalized graph Laplacian on a generalized eigenvalue problem Ly = λDy.

In this formulation, the second eigenvector refers to the eigenvector associated with

the second smallest eigenvalue, the reader is referred to the previous part in order to

understand the reason for eliminating the smallest eigenvalue. They are followed with

spectral clustering by allowing a relaxation on the eigenvector space [24].
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In the previous formulation of the dimensionality reduction problem, the connected

points on the data set are desired to be mapped as close as possible. Therefore, the

Laplacian quadratic form on the transformed data is minimized, since it constitutes

a measure for preservation of locality. This relation indicates that the graph Lapla-

cian quadratic form gets smaller for the solution vectors corresponding to the smaller

eigenvalues on the graph spectrum. Reinterpreting this situation, one can claim that

locality is much more preserved by the eigenvectors corresponding to the smaller

eigenvalues. In other words, those eigenvectors are varying slowly through the con-

nected vertices of the graph structure, which can also be observed on Figure 2.2.

Figure 2.2: First row: Histogram of mixture of Gaussians on R, Second row: Eigen-
values and eigenvectors of unnormalized Laplacian, Adapted from [25]

In Figure 2.2, a connected graph is constructed from 200 random samples which are

taken from a mixture distribution of four Gaussians. The first four eigenvectors con-

stitute stable information for clustering these four Gaussian dataset since the differ-

ence between the fourth and the fifth eigenvalues are relatively large. This heuristic is

known eigengap [25, 24], and, the number of clusters and the eigenvectors to be used

in clustering procedure can be recognized by searching for the eigengap, as shown

in the plot of eigenvalues in Figure 2.2. The assumptions on the cohesiveness of the

clusters and the stability of the eigenvector set are explained in [25, 24] in detail to

justify the eigengap proposition.

After revealing the spectral identity of the data space, clustering is performed based

on the slowly varying components of the graph structure, since they designate a con-

sistent set of characteristics for the embedding. Within the complete graph spectrum,

a set of eigen components is favored and the data analysis is accomplished on this

small but consistent set.
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In [25], an algorithm is presented for the final clustering by using n eigenvectors

simultaneously. Based upon the presented dimensionality reduction approach, the

following algorithm is given,

Algorithm 1 Unnormalized Spectral Clustering [25]

Input: k point dataset {x1,x2, · · · ,xk} in Rl to be segmented into n clusters

1: Construct weight matrix W ∈ Rk×k

2: Compute the Laplacian matrix L = D −W
3: Compute the first n eigenvectors y1,y2, · · · ,yn of L

4: Let Y ∈ Rkxn matrix of stacked eigenvectors

5: Let ui ∈ Rn be i-th row of Y

6: Cluster the k points {ui}i=1,··· ,n in Rn into clusters {C1, · · · , Cn} via K-means

algorithm

7: Assign point xi to cluster-j if and only if ui was assigned to Cj

By maintaining the locality on the new mapping, the graph-based dimensionality re-

duction methods naturally provide the clustering solutions [22]. Indeed, developing

on the dimensionality reduction concept, the given algorithm intends to discover the

clusters properly by changing the representation, so that K-means algorithm can de-

tect the clusters in the new representation [25].

When the dataset lies already in a low dimensional space, yet it is complicated in

terms of connectivity, the linear dimensionality reduction or discrimination tech-

niques might fail to comprehend the intrinsic data structure. In that case, one may

even prefer to augment the dimension of data analysis in order to qualify the spectral

reasoning. Figure 2.3 illustrates such an example. In this example, each sample point

is taken as a node on the graph, and the weights are determined in terms of a Gaus-

sian function of the Euclidean distance between the samples. The two intertwined

spiral arms constitute one complicated structure for any linear partitioning method.

On the other hand, with a proper connected graph encoding, as shown in 2.3(b), the

connectivity of the dataset can be captured. By this mean, a proper segmentation can

be accomplished, as in 2.3(c), through practicing a k-means clustering on the spectral

embedding displayed in 2.3(d).
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(a) (b)

(c) (d)

Figure 2.3: (a) Original "Two Spiral" data set (b) Constructed graph topology (c)
Clustering on "Two Spiral" (d) 2-dimensional spectral embedding

2.4 Conclusion

In this chapter, we introduce the spectral graph theory which models the geometri-

cal structure of discrete input spaces. The weighted graph structure automatically

captures the intrinsic relationship between the data samples so that it embeds the ge-

ometrical domain of the data to the graph representation. We reviewed how one can

benefit from the graph based spectral analysis in dimension reduction and clustering

problems.

We presented widely accepted dimensionality reduction and clustering frameworks

based on the spectral graph theory. Comprehension of the underlying manifold illu-

minates the methods for processing the signals residing on those manifolds, which

is the main focus of Chapter 2. We will mention the details on the construction of

the topology and selection of the weight function in Chapter 4, since those proce-
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dures vary according to the application. In addition, the theory presented here will be

exploited by some clustering experiments on the 3D point cloud data.

16



CHAPTER 3

AN OVERVIEW OF GRAPH SIGNAL PROCESSING

3.1 Introduction

Graph-like structures may appear in many data forms. Employing machine learning

and signal processing techniques on those data forms can be challenging unlike the

traditional methods developed for the data structures defined on lattices or other reg-

ular domains. Identifying the structure of those data forms could be the first step to

achieve such methods, which is accomplished by describing the statistical relation-

ships between the sample points, prompted by the geometrical domain of the data.

The second step is to exploit the recognized structure for performing the signal pro-

cessing operations.

Graph signal processing both explores the intrinsic geometric structure of data space

and investigates the discrete data signal on the recognized domain at the same time.

Therefore, it combines the expertise on algebraic and spectral graph theory with com-

putational harmonic analysis [1].

In this chapter, we first review the spectral analysis of weighted graphs for which

we define two graph domains: vertex domain and graph spectral domain. Through

those definitions, we give the description of a graph signal and how we perceive it

on spectral domain through a new type of Fourier transform on graphs. Building

upon the spectral domain representation of a graph signal, we introduce important

operations on graph signals, such as filtering and localization, which also gives us the

opportunity of performing multi-resolution analysis on graph signal.
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3.2 Review of Vertex-Frequency Analysis on Graphs

In the previous chapter, we conclude that the spectral decomposition of the graph

Laplacian yields the characteristic frequencies of the graph structure. The character-

istic frequency components imply that the eigenfunctions associated with the lower

eigenvalues are slowly changing and, the ones associated with the higher eigenval-

ues are changing faster through the graph vertices. In other words, we may have the

notion of the frequency components of the underlying geometry.

For a weighted and undirected graph G = (V , E ,W ), V and E denote the vertex and

edge set with |V| = N and the Laplacian matrix is given by L = D−W where W is

weight (or similarity) matrix and D is its degree matrix. Since the Laplacian matrix

is real, symmetric and positive-semidefinite, it has a complete set of orthonormal

eigenvectors {el}l=0,1,··· ,N−1 and non-negative, real eigenvalues as explained before.

For a connected graph, the eigenvalues of L are sorted as 0 = λ0 ≤ λ1 ≤ · · · ≤
λN−1 which is called graph spectrum. The graph Laplacian quadratic form, in 2.6,

accommodates a global smoothness measure on a given graph setting G. Moreover,

the quadratic form of Laplacian acting on an eigenvector of a graph corresponds to its

associated eigenvalue,

λl = el
TLel =

∑
(i,j)∈E

Wij[el(i)− el(j)]2

It should be noted that for the equation above, the smaller the Laplacian quadratic

form, the smoother representation it generates due to weighted squared difference

between connected elements of the representation. Accordingly, the graph Laplacian

eigenvectors corresponding to lower eigenvalues are smoother compared to the ones

associated with higher eigenvalues, which can also be seen on Figure 3.1. Therefore,

the eigenvalues carry the notion of frequency.

Thus, we can analyze a graph through its spectral decomposition. Indeed, there are

two approaches for graph analysis. One approach is applied in the vertex domain,

which is interpreted as spatial domain in conventional signal processing sense, and

the other is the spectral (or frequency) domain. In the next step, this equivalence is

leveraged for the operations on the frequency domain of graph.
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(a) 4-connected graph of 9× 9 nodes

(b) Eigenvectors in an ascending order of eigenvalues

Figure 3.1: Eigenvectors of a 4-connected graph

3.3 Graph Signals and Graph Fourier Transform

Graph signal can be broadly defined as data existing on graph structures. A graph

signal f ∈ RN is described on the vertices of a graph and indicated by a vector

f = (f(v1), f(v2), · · · , f(vN))T . Graphs can be considered as representations of

discrete sample points on manifolds [26, 27]. To build an analogy between signals on

graphs and functions on manifolds, let us define an integrable function f(x) on a man-

ifoldM , where x is a point onM . The function is expressed by f(x) ∈ L2(M), which
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means the Hilbert space of the orthonormal and complete eigenfunctions {φk}∞k=0 of

the Laplace-Beltrami operator, ∆M , on the manifold M . As a result, we can write

any function f(x) in terms of the linear combination of the Laplace-Beltrami eigen-

functions, which is called manifold harmonic transform [28]. The Laplace-Beltrami

eigensystem quite resembles the Fourier basis which is used for the classical Fourier

transform of an integrable function f(t),

f̂(ξ) =

∫
R

f(t)e−2πiξtdt

Similarly, once the eigenfunctions of the graph Laplacian are obtained, any signal

residing on the graph can be formulated by the eigensystem of the graph Laplacian,

{ek}N−1k=0 . Then, this transform would be analogues to discrete version of Fourier

transform.

In fact, Laplacian eigenfunctions provide a generalization of Fourier analysis on var-

ious domains [29]. In the traditional form, the Laplacian eigenfunctions are complex

exponentials and their associated eigenvalues are the corresponding frequency values

determining their oscillation rate, as explained in Table 3.1.

Table 3.1: Comparison of Fourier analysis in classical and graph settings

Classical Setting Graph Setting

Laplacian eigenvalue problem ∂2

∂t2
e2πiξt = (2πξ)2e2πiξt Lel = λlel

Eigenfunction e2πiξt el

Eigenvalue (2πξ)2 λl

A function on the structure f ∈ L2(R) f ∈ L2(V)

Fourier Transfom f̂(ξ) = 〈f, e2πiξt〉 f̂(λl) = 〈f , el〉

As explained in the previous section, the graph Laplacian eigensystem carries notion

of frequency, just like the Fourier basis. Consequently, the Fourier transform on graph

setting is named Graph Fourier Transform (GFT) and defined as,

f̂(λl) :=
N∑
i=1

f(i)e∗l (i) (3.1)

By the help of GFT, one can obtain the spectral domain representation of a graph
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signal g which is already described on the graph vertex domain. There are also sig-

nals ĝ that are defined directly on the graph spectral domain, which are called graph

kernels. For example, a heat kernel is defined by the relation ĝ(λl) = Ce−tλl and

one can calculate the corresponding vertex domain representation special to a graph

structure via inverse GFT. In Figure 3.2, vertex domain representations of two heat

kernels with different spreading factor t, are calculated through the inverse GFT. The

physical meaning of a heat kernel is explained in Appendix A.2. At the moment, note

that as t gets larger, a smoother vertex domain representation is reached in 3.2(b), just

as it can be reached by convolving the the initially given distribution in 3.2(a) with a

low pass filter.

To be complete, the inverse graph Fourier transform (IGFT) is defined as,

f(i) =
N−1∑
l=0

f̂(λl)el(i) (3.2)

Figure 3.2: Heat kernel ĝ(λl) = Ce−tλl with two different spreading factor t and their
vertex domain distributions computed by IGFT

3.4 Filtering and Convolution on Graphs

In classical settings, for two time domain signals f and g, the convolution operation

is defined as,

h(t) = (f ∗ g)(t) =

∫
R

f(τ)g(t− τ)dτ
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In graph settings, a shifted version of a signal g(t − τ) can not be defined in a sim-

ple way. In order to generalize the convolution in graph settings, frequency domain

definition of convolution is employed,

h(t) =

∫
R

ĥ(ξ)e2πiξtdξ =

∫
R

f̂(ξ)ĝ(ξ)e2πiξtdξ

which applies IGFT on the signal filtered in frequency domain. Similarly, frequency

domain filtering in graph settings is expressed as follows and called graph spectral

filtering,

f̂out(λl) = f̂in(λl)ĥ(λl) (3.3)

Then, simply the inverse graph Fourier transform is applied to obtain the resulting

signal in vertex domain,

fout(i) =
N−1∑
l=0

f̂in(λl)ĥ(λl)el(i) (3.4)

At this point, one can examine the aforementioned graph operations in terms of the

matrix operations. To start with the Laplacian matrix, it is decomposed as L =

EΛE∗, where E = [e0, e1, · · · , eN−1] is the eigenvector matrix whose columns con-

sist of the eigenvectors of graph Laplacian and Λ is the eigenvalue matrix whose

diagonal entries are the corresponding eigenvalues, and then E∗ is the Hermitian of

E.

Once the graph signal f and its transform f̂ are considered as vectors in RN , the graph

Fourier transform and its inverse are given in matrix-vector multiplication form,

f̂(λl) =
N∑
i=1

f(i)e∗l (i) ⇒ f̂ = E∗f

f(i) =
N−1∑
l=0

f̂(λl)el(i) ⇒ f = Ef̂

Returning back to the graph spectral filtering, the output signal fout is computed by

means of inverse graph Fourier transform of the frequency filtered signal, which can

be given in matrix operational form in the following way,

fout = E (ĥ� (E∗f in)︸ ︷︷ ︸
GFT

)

︸ ︷︷ ︸
frequency filtering︸ ︷︷ ︸

IGFT
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where � stands for the element-wise multiplication operation of the vectors, which

is used for pointwise product of frequency components during frequency filtering

in (3.3). The element-wise multiplication can be performed in matrix operation by

putting the vector ĥ in diagonal matrix form ĥ(Λ) and then taking the product of

ĥ(Λ) and f̂ in as follows,

f out = E (ĥ(Λ) f̂in) = E


ĥ(λ0) 0

ĥ(λ1)
. . .

0 ĥ(λN−1)

E∗f in

Since the Laplacian matrix can be transformed into a diagonal form, any function ĥ(·)
applying to the Laplacian matrix can be written in matrix function form,

ĥ(L) = E ĥ(Λ) E∗ (3.5)

Therefore, filtering of a graph signal can be given in matrix notation accordingly,

f out = ĥ(L)f in (3.6)

Since graphs are irregular structures, the result of the graph spectral filtering on the

vertex domain representation cannot be simply conceived. Assume that the graph

spectral filtering operation in (3.6) has only effect on K-hop neighborhood on vertex

domain, where the K-hop neighborhood of a vertex i is denoted by N (i,K) and

conveys the reachable vertex set by crossing at most K number of edges starting

from vertex i. Such a vertex domain filtering can be formulated as,

fout(i) =
∑

j∈N (i,K)

βi,jfin(j) (3.7)

In that case, one can expect that the entries of ĥ(L) matrix in (3.6) correspond to the

coefficient terms {βi,j} in the vertex domain filtering operation such as,

[ĥ(L)]ij =

βi,j if j ∈ N (i,K),

0 otherwise.

LetLk denote kth power of Laplacian matrix. Through the graph theory, one can show

that [Lk]ij can be nonzero, only if there is a path in graph network that connects the
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vertex i to vertex j in k step. In other words, if vertex j is not in k-hop neighborhood

of vertex i, then [Lk]ij = 0 [6]. Exploiting this information, ĥ(L) can be written

in terms of K degree polynomial expansion of the Laplacian matrix, since it is only

effective in K-hop neighborhood,

ĥ(L) =
K∑
k=0

αkL
k (3.8)

K-hop filtering of a graph signal in vertex domain can be expressed once again using

the polynomial function of graph Laplacian,

fout(i) =
N∑
j=1

fin(j)
K∑
k=0

αk[L
k]ij (3.9)

which actually accomplishes a localized operation in the vertex domain that is ex-

ploited later.

3.5 Localization and Translation on Graphs

Unlike the data structures defined on regular domains, the graph signals lack a shift-

invariance notion which makes the translation of a graph signal from a vertex to an-

other ambiguous. However, we can obtain new localized transform of the graph signal

by means of centralizing the spectral content of it.

In fact, the localized graph signal filtering approach in (3.6) is not far from the tra-

ditional convolution application which is followed by "flip-shift and inner product".

Each column (or row) of matrix ĥ(L) = [h1,h2, · · · ,hN ] ∈ RN×N can be considered

as a graph signal vector translated on the associated vertex. During the the matrix-

vector product, we take the inner product of a row, which is the shifted version of the

originating graph signal h, with the graph signal vector to be filtered f in and then we

write the result to the corresponding index of the output graph signal vector,

f out(i) = [ĥ(L)f in](i) = 〈hi,f in〉 (3.10)

To analyze further the columns of matrix ĥ(L), let us define an impulse signal on the

graph denoted by δi ∈ RN , which expresses a graph signal taking a nonzero value

only at vertex i. We can obtain a column vector of ĥ(L) by simply multiplicating it
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with an impulse vector as follows,

hi = ĥ(L)δi

= Eĥ(Λ)E∗δi

= E (ĥ� (E∗δi)︸ ︷︷ ︸
GFT of impulse

)

︸ ︷︷ ︸
frequency filtering︸ ︷︷ ︸

IGFT

(3.11)

A column vector of ĥ(L) appears as a signal derived by the graph spectral filtering of

the originating signal h with an (shifted) impulse. Similarly, in classical settings, a

time domain signal f(t) to be translated is convolved with an impulse centered at the

location of shifting, such as f(t− u) = (f ∗ δu)(t).

As a consequence, to localize a graph kernel ĥ(λ) at vertex i, one can get the point-

wise product of a kernel ĥ and ith column of E∗, and then take the inverse graph

Fourier transform. A column of matrix E∗ is the frequency domain transform of an

impulse. Therefore, (3.11) can be written in the summation form in order to define

generalized translation operator on graphs, Ti : RN → RN ,

(Tih)(j) =
√
N

N−1∑
l=0

ĥ(λl)e
∗
l (i)el(j) (3.12)

where the normalizing constant
√
N is used for preserving the mean of the signal

after the translation operator.

Note that the graphs are irregular structures, which may result in complicated fre-

quency components. Therefore, this method should not be considered as translating

a graph signal to a vertex in general, but rather as localizing the spectral content of

a graph kernel to a desired vertex. Nonetheless, performing this, we may obtain a

shifting effect as illustrated for a heat kernel on a 4-connected graph in Figure 3.3.

In addition to the localization, translation and filtering operations, it is possible to

create dilated versions of a graph signal in both graph vertex domain and graph spec-

tral domain, those are analogues of the multi-resolutions applications in conventional

signal processing. More on the multi-resolution approaches on graphs can be found

in Appendix A.
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Figure 3.3: Translation of heat kernel ĝ(λl) = Ce−tλl on a 4-connected graph

3.6 A low-pass filtering application : Tikhonov Regularization [1]

A filtering example for noise reduction in graph signals is introduced in [1] by means

of Tikhonov regularization. The theory presented here will be employed in Chapter 5

for the smoothing problem on 3D point clouds.

In Tikhonov regularization, the regularization term is the quadratic form of Laplacian,

which penalizes the signal difference of the neighbor vertices with the factor of the

weight of the link between them as follows,

fTLf =
∑

(i,j)∈E

Wi,j[f(i)− f(j)]2

where f ∈ RN is the graph signal. Consequently, the optimization problem is denoted

as,

x̌ = argmin
x
||x− f ||22 + γxTLx (3.13)

where we desire to estimate the smoothed signal x̌, for a smoothing factor γ. The

optimization problem is convex, and the solution can be simply calculated by taking

the derivative of the objective function with respect to x and equating it to 0,

x̌ = (I + γL)−1f (3.14)

The graph signal filtering operation is justified under matrix notation in (3.6), which

can be shown in this case as follows,

ĥ(L) = Eĥ(Λ)E∗ = (I + γL)−1

Here, recall that the decomposition of Laplacian matrix is given as L = EΛE∗.

Hence, ĥ(Λ) = (I + γΛ)−1 and the optimal reconstruction corresponds to filtering
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the graph signal with the following low-pass filter,

ĥ(λ) =
1

1 + γλ
(3.15)

3.7 Conclusion

In this chapter, the Fourier analysis obtained by the Laplacian operator on graph struc-

tures is examined. Graph spectral domain is introduced through GFT and it is ex-

plained how it is leveraged for defining filtering and translation operations on graph

signals. Finally, a low-pass filtering example based on the Tikhonov regularization is

given, which will be employed in Chapter 5 for smoothing of 3D point cloud data.

All things considered, this chapter points out the significance of the localized ver-

sions of a graph signal in spatial and spectral fashion in terms of manifesting the

multi-resolution approaches mentioned in Appendix A. Hence, it stimulates the ideas

on some classification problems defined on the 3D point cloud data.
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CHAPTER 4

GRAPH REPRESENTATION OF AIRBORNE LIDAR DATA

AND ITS SEGMENTATION BY SPECTRAL CLUSTERING

4.1 Introduction

The computer vision problems defined on 3D data are highly challenging when the

sampling is irregular. LIDAR (Light Detection and Ranging) instrument is one of the

devices which produce unorganized 3D point clouds by scanning the environment.

Segmentation is one of the fundamental tasks defined on point clouds acquired by

LIDAR and it is significant for locating the point of interest objects on the scene such

as man-made objects and separating the scene into complete parts in terms of shape.

We address the problem of segmentation of unstructured LIDAR point clouds via

spectral clustering on the graph representation.

For irregular data structures, the topology of the data domain and the relationship

model between the data points are not directly given things in general, which may be

the main limitation in graph representations [1]. First of all, there is no optimal way

to decide the connection topology. Second, the weight function and the parameters

it acts on might be critical depending on the operations to be deployed on the graph.

Therefore, we may need to infer the weights and especially the edges of the graph by

exploring physical stance of the data. Nonetheless, the graph based techniques are

very convenient to conduct directly on the unstructured data.

Once a proper representation of a point cloud is embedded on a graph structure, we

can develop a framework achieving a semantic interpretation of a point cloud scene.
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The first step in this framework would probably be the segmentation of the scene. We

may employ some clustering and segmentation operations on the graph representa-

tion in order to divide the scene into smaller regions which have a notion of interior

physical completeness. Moreover, we simplify the complex operations to be executed

further by focusing on those small set of regions.

In this chapter, first we explain how one can represent a 3D point cloud in a graph

structure and we give the options for parameters to be chosen on the graph struc-

ture. Then we experiment the spectral clustering techniques, whose theory is given in

Chapter 2, on some LIDAR point cloud datasets.

4.2 Related Work

Airborne Laser Scanning (ALS) systems are very popular in urban applications and

geospatial analysis since they provide highly accurate and dense data. An ALS system

consists of a LIDAR device mounted on an aircraft and basically emits a laser beam

and extracts a 3D point cloud by collecting the reflections back from the ground

objects.

Besides the (x, y, z) world coordinates of a point, the second or last return of a laser

point may be available. The second return mostly occurs, when a laser point is re-

flected by the ground underneath a tree by passing through the leaves or branches

of the tree as demonstrated in Figure 4.1a. Additionally, some LIDAR data can also

contain the reflection intensity of the laser points (More details on airborne LIDAR

technology can be found in [30]).

In order to utilize the image processing tools readily, the early studies developed raster

image forms of LIDAR data such as DEM (Digital Elevation Model) and DSM (Digi-

tal Surface Model) [2] using methods such as TIN (Triangular Irregular Networks)[3].

The range images derived from the LIDAR data are basically generated by resampling

regularly over the XY plane which creates the image grid and the interpolated Z val-

ues are considered as pixel intensities. The interpolation artifacts occurring during

this conversion often mislead the following processing stages, besides, valuable in-

formation attached to the 3D shape and geometric layout is lost [4, 5]. In Figure
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(a) (b) (c)

Figure 4.1: (a) ALS data, first returns are shown in red and second returns are blue
(b) DEM generated with the given ALS data (c) Segmentation result by the proposed
spectral clustering algorithm
Dataset is available on website of ISPRS WG III/3 [31]
DEM generated using LasTools [32]

4.1b, distortions mostly appear around the intersection of two scan stripe, where the

density of the samples are mixed up and very obscure. Another approach, whose im-

plementers also aim direct use of image processing tools, is scan-line based approach

[33, 34]. They perceive the airborne 3D point cloud as irregularly spaced 2.5D points

where elevation values (z) can be defined as a function of x and y [35, 36]. This

method first detects the line segments by knowing that a scan line on a 3D plane cor-

responds to a 3D line. Then it merges the detected scan lines based on a proximity

measure in a region growing sense. Therefore, each scan line corresponds to a row

in the 2.5D range image. The main disadvantage of this method is its dependency on

2.5D grid model which is not applicable for the unstructured point clouds. In some

of ALS data, the scan lines are generated by arranging the points in a tubular volume

and it is mostly dependent on the preferred scan line direction and consequently the

segmentation result depends on the orientation.

Hence, the main motivation of this study is to fully exploit the 3D geometry of the

point cloud by establishing the processing methods directly on the raw data.

Numerous studies have been developed for segmentation of 3D point clouds [5] and

substantial amount of work have focused on LIDAR point clouds [37]. First, there

are region growing methods which select a number of seed points and enlarge over
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the neighborhood of points up to a certain criterion [38]. The numerical graph based

methods can be adapted to the region growing approach as in [39]. Second, there are

attribute based methods which make a selection of parameters for a group of points or

an individual point by usually extracting geometric primitives such as surface normals

[40], slopes [41], curvatures or eigenvalues of covariance matrix. Then, the clustering

is performed on the parameter (or feature) space to obtain a segmentation on the point

cloud by defining a similarity and neighborhood measure between the group of points

[42, 43]. Moreover, the geometric primitive shapes are employed by the model based

approaches to fit mathematical models for set of points [44]. RANSAC (Random

Sample Consensus) is the method that is commonly embraced by these approaches,

and first developed by Fischler et al. [45]. By combining the intensity or fused RGB

values with the 3D point cloud data, the attribute based segmentation methods are

maintained adopting the numerical graph based techniques in some studies [46, 47].

In addition, the classical graph partitioning methods are integrated by some studies

to segment 3D point clouds, either by constructing the graph directly on 3D point

data [48, 49] or on a feature space [50]. In [48], min-cut method is applied for fore-

ground/background segmentation at a given object location and background radius,

which is utilized for background penalty term within the cut cost. Furthermore, in

[50], graph-cut is employed for labeling 3D points in airborne LIDAR scene as points

belonging to a surface or a scatter. Similarly, it is used for categorizing the points in

a scene as tree or non-tree points in [49]. That is to say, the graph based methods are

observed to be optionally embraced both in the region growing based approaches and

the clustering based segmentation approaches in the literature. In terms of the afore-

mentioned categories, our proposed algorithm can be counted under the clustering

based segmentation techniques.

There are few studies pointing out the spectral embedding of the 3D point cloud data

[51, 52], even though they do not address the exact problem in our case, which is the

segmentation of an airborne LIDAR scene. In [53], spectral clustering is employed on

3D point cloud data by determining the neighborhood of points in graph using surface

normals to overcome the problem of close-by surface sheets, which could be valid for

360◦ laser scanners. However, it does not likely occur in airborne LIDAR data which

should be rather considered as irregular sampled range data since the scanning is
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made in downward direction constantly.

In this study, we practice the spectral clustering to obtain the elementary segments

on an aerial LIDAR scene by constructing an adequate graph representation of the

uneven sampled 3D point data.

4.3 Graph Representation of ALS Data

For the unstructured data, the neighborhood information is not inherent unlike the one

presented by the uniform sampled data structures. The performance of the operations

on an inferred graph representation may crucially be dependent on the encoded local-

ity. Different heuristics have been adopted for graph formulations depending on the

application. Some studies employ the k-nearest neighborhood to determine the edges

of graph [48, 54], while some others use ε - neighborhood [55], that is the neigh-

borhood constructed within the point volume of ε-radius sphere centering the subject

point. The former is the standard choice for irregularly spaced data to avoid the dis-

connected points, nonetheless, disconnected components may still appear. Therefore,

k has to be sufficiently large to conform the whole dataset in one connected compo-

nent, in turn, the choice of k is specific to the dataset.

The weights of a graph store the similarity measures of the connected points, thus

it should be inversely related to the distances of the edges. In general, the weight

function is chosen as a Gaussian function of the Euclidean distances between the

points. It is a standard choice to model the similarities between entities as Gaussian

processes.

When we imagine the airborne LIDAR data as non-uniformly sampled range data,

then we can adopt an image segmentation approach in terms of its graph representa-

tion. In notable graph based image segmentation studies [56, 57], pixels of an image

are regarded as the nodes of the graph and the distances of the edges are computed

as the pixel differences, where the lattice structure of image grid is leveraged for

the graph network. Similarly, many graph based approaches in 3D point cloud field

[48, 53], have considered 3D points as the vertices of the graph and they have se-

lected the weights in terms of the Euclidean distance between them. In addition, they
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have determined the neighborhood connections based on the same measure by em-

bedding the 3D geometry directly to the graph representation. Noting that the ALS

data is aerial range data, it is more plausible to encode the relationships in terms of

the range difference rather than the Euclidean distance between the 3D feature vec-

tors. This preference encourages a more discriminative characteristic on the graph

representation for segmentation application. A similar approach is employed in [47]

by weighting the impact of feature elements in the distance metric calculated between

the nodes. They determined both neighborhood model and the weights by assigning

the highest emphasis on z data and the lowest on the intensity data in their 4-tuple

feature vector [x, y, z, i] which constitutes 3D coordinate and intensity value of each

point. In our case, the intensity values are disregarded, since they are not discrimina-

tive enough because of the noise content, moreover, they may not always be available.

In our graph representation, there is equal impact of point vector elements [x, y, z] on

the neighborhood model, yet the weight function is purely determined by the z dif-

ference of neighboring points. We still prefer the graph connections to depend on the

3D Euclidean locality, in order to retain the 3D topology of the underlying data.

We represent the 3D point cloud data as a weighted and undirected graph G =

(V , E ,W ), where V is the set of nodes , E is the set of edges. The weight matrix

is constructed as follows,

Wij =

exp(−
(z(i)−z(j))2

2σ2 ) if vj ∈ NkNN(vi),

0 otherwise
(4.1)

where NkNN(vi) stands for k nearest neighborhood of vertex i.

After constructing the graph, the classical spectral clustering algorithm, whose theory

is covered in Chapter 2, can be employed. However, we adapt a more efficient spectral

clustering algorithm above the classical one for the sake of computational cost. The

next section explains the adapted spectral clustering algorithm.

4.4 Spectral Clustering on ALS Data

The spectral clustering is not based on convex partitioning unlike the traditional clus-

tering algorithms [58], rather it depends on the spectral embedding of the sample
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space. Therefore, it performs better on the high dimensional and complex datasets in

comparison to the traditional clustering techniques [25].

It achieves multiple clusters on the data set by employing a relaxation on classical

graph partitioning methods [24]. Algorithms, such as min-cut and normalized cut,

are equivalent to dividing the data space into two partitions through a linear clustering

based on the eigenvector corresponding to the second smallest eigenvalue of Lapla-

cian. In spectral clustering case, which provides multi-clustering, the relaxation on

eigenvector space implies a clustering based on k number of eigenvectors correspond-

ing to the k smallest eigenvalue. In graph-cut point of view, a graph is partitioned so

that the graph edges linking different groups have lower weights whereas, the ones

within a group have higher weights [25]. While spectral clustering tries to achieve

the same goal, it determines the groups through a spectral relaxation procedure. In

this regard, spectral clustering may end up with segments which are not connected

and yet assigned to the same cluster due to their similarity on the spectral embedding.

That is why, it is adapted by notable semi-supervised classification studies [59, 60].

All in all, it can be preferable just by the reason that it presents a simple linear algebra

problem to solve [25] in comparison to the numerical graph partitioning methods.

The number of partitions is usually decided by resolving the eigengap heuristic in-

troduced in [24]. Eigengap proposition searches for a gap in the trend of the first

eigenvalues of Laplacian. To give an illustration, the number of clusters can be deter-

mined as l if the first l − 1 eigenvalues, λ1, λ2, · · · , λl−1, are small and close and λl

is relatively larger and distant to that set.

4.4.1 Landmark Based Spectral Clustering

Segmentation task can be accomplished through the spectral clustering on the data

space, nonetheless, this has some drawbacks to be employed on large scale ones.

Despite the superiority of the spectral clustering above the traditional clustering tech-

niques, it has some limitations in terms of computational complexity and memory

use. In recent years there have been many efforts to overcome those problems [61,

62, 63, 64]. For instance in [61], the weight matrix is constructed as a sparse matrix by

storing only the similarities belonging to k nearest neighbors in each column which
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effectively handles the memory problem for large datasets. Then, the Laplacian is cal-

culated as a sparse matrix as well which brings the opportunity of employing a sparse

eigensolver through Lancoz-Arnoldi factorization to shorten the computational time.

Others preferred to approximate the graph similarity matrix which degrades memory

usage substantially and simplifies the eigen-decomposition problem at the same time

[63, 64]. We adopt a landmark based spectral clustering (LSC) [63], which picks p

number of sample points, those are called landmark points, and estimates the weight

matrix using the relations between the entire dataset and the landmarks. For an N

sample dataset, a (p × N) similarity matrix Z is created to accommodate the sim-

ilarities between landmark points and the dataset. This intends to represent all the

samples in terms of linear combinations of landmarks, which follows a sparse coding

concept to compress original dataset. However, instead of directly coding the samples

in terms of landmarks, it is claimed to be more practical achieving that representation

directly based on the relationships with landmarks.

In the end, the weight matrix W is approximated as,

W = ẐT Ẑ (4.2)

where Ẑ is calculated via a sequence of normalizations on Z, to equate the degree

matrix of W to identity matrix I . By this means, the Laplacian matrix can be di-

rectly calculated as I −W . Consequently, retrieving the eigenvectors for l smallest

eigenvalues of L will be equivalent to obtaining the ones corresponding to l largest

eigenvalue of W [24], which means eigen-decomposition can be directly performed

on W .

The ultimate goal is to perform the eigen-decomposition on ẐẐT , whose size is (p×
p), instead of dealing with the eigen-problem of (N × N) matrix W . The key point

lies in the singular value decomposition of Ẑ,

Ẑ = AΣBT (4.3)

Here, each column of (p× p) matrix A consists of the eigenvectors of ẐẐT and diag-

onal elements of Σ are the corresponding eigenvalues, those are obtained through the

eigen-decomposition of ẐẐT . The columns of matrix B give us the eigenvectors of
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ẐT Ẑ in other words W . Hence, after calculating A and Σ, matrix B can be achieved

as follows,

BT = Σ−1AT Ẑ (4.4)

See Algorithm 2 for details on the flow and adaptation to our ALS data application.

Algorithm 2 Landmark based spectral clustering on ALS data [63]
Input: ALS point cloud with N samples to be segmented into l clusters

1: Generate p landmark points with random selection

2: Construct Z ∈ Rp×N by finding r number of nearest landmarks to each data

point, store their similarities and zero out the other relationships

3: Obtain matrix Z̄ by normalizing the columns of Z

4: Compute Ẑ by dividing each element in a row of Z̄ to the square-root of row

sum.

5: Compute A = [a1, · · · al] and Σ based on first l eigenvectors of ẐẐT

6: Calculate BT = [b1, · · · , bl] by BT = Σ−1AT Ẑ

7: Employ k-means to get clusters considering each row ofBT as a vector (Classical

Spectral Clustering Finale)

As expressed in the previous section, the nearest landmarks are discovered based on

the 3D Euclidean distance, however, the similarities calculated with the Gaussian

function of range difference between nearest landmarks and data samples.

Classical spectral clustering for n data points has the computational complexity of

O(n2) in graph construction part and O(n3) in eigen-decomposition part, whereas

LSC requires O(np) for building the graph and O(p3 + p2n) to calculate the eigen-

vectors of Laplacian. Accuracy of LSC is lower than the classical spectral clustering

in general due to the approximation. As p approaches the number of whole sam-

ples, the algorithm approaches the classical spectral clustering, hence accuracy can

be raised by incrementing p with a trade in timing. Similarly to the classical spectral

clustering algorithm, the clusters can be achieved by employing the k-means method

on the eigenvector set yielded by the approximated weight matrix.

37



4.5 Experimental Results

4.5.1 Utilized Datasets

First of all, we have experimented classical Spectral clustering on a sample data

"France" presented by LasLab [32] which is demonstrated on Figure 4.2.

We tested the proposed segmentation framework adapting Algorithm 2 on eight sites

of publicly available dataset by ISPRS Working Group III/3 [31]. A result on "City

Site2" is demonstrated on Figure 4.5, where the total number of points is 243,400 with

a density of 0.67 points per square meter. In this dataset, second returns are mostly

present around the tree regions where the laser beams are reflected by the ground after

the tree scatters. We just focused on the first returns in order to segment the structures

above the ground level, including the tree objects. In studies concentrating on the

ground plane extraction, those second returns are very valuable. The point cloud is

denser on the parts when two stripes of scanning intersect.

Another ALS dataset "Vaihingen" is presented by ISPRS Commission WG III/4 [65].

We selected a part of this dataset in Figure 4.6, which is dominated by irregular shaped

buildings and trees.

4.5.2 Experiments on Spectral Clustering using Eigengap Proposition

In this section, we have experimented the classical spectral clustering algorithm based

on Algorithm 1, introduced in Chapter 2. We have adapted the eigengap heuristic

in the determination of number of clusters and the eigenvectors to be used in the

clustering procedure.

In the classical approach, we have constructed the graph using 8 nearest neighbors.

After calculating a number of smallest eigenvalues of Laplacian, the number of clus-

ters is chosen based on the eigengap proposition. For instance, in France point cloud,

an eigengap exists after the 20th eigenvalue since the smallest eigenvalues are plotted

in blue stems in 4.2a and the red stems stand for the difference with the next larger

eigenvalue, those make the peak at 20.
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(a) 25 smallest eigenvalues of graph Laplacian

(b) 3D view with elevation color coding using "hot" colormap, pointwise on the left and clusterwise
on the right

Figure 4.2: Segmentation of "France" point cloud by spectral clustering

(a) A complex
structure in 3D view

(b) k-Means
Clustering in 2D view

(c) Min-cut
Clustering in 2D view

(d) Spectral
Clustering in 2D view

Figure 4.3: Segmentation of a complex building by different clustering methods

Recalling the "intertwined spiral" demonstration in Chapter 2, we focus on a segmen-

tation of a building on "City Site2" which exhibits a complex structure. We conducted

39



k-means, min-cut and spectral clustering algorithm on this example. It is declared that

k-means clustering tends to find convex sets [25], and min-cut can manage to parti-

tion simple convex distributions as well [58]. On the other hand, spectral clustering

respects the inner connectivity of the data space owing to the encoded graph represen-

tation and the spectral relaxation. As seen on Figure 4.3, k-means clustering on 3D

points only gives a correct segmentation at one side of the building, whereas min-cut

gives a better result by discriminating four sides of the building from the background

owing to the graph representation developed specially for the airborne LIDAR scenes.

Nonetheless, only the spectral clustering algorithm can handle the shape of the build-

ing having a yard structure and gives a correct segmentation.

4.5.3 Experiments on LSC Algorithm

(a) Algorithm 1 (b) Algorithm 2

Figure 4.4: Segmentation of "France" point cloud on 2D view
Comparison of Algorithm 1 and Algorithm 2

In the experiments of LSC, based on Algorithm 2, the number of landmarks p is

chosen as 1000 and r is taken as 8, which must be chosen with respect to the scale of

dataset.

First of all, we present the segmentation results on "France" point cloud given by

Algorithm 1 and Algorithm 2 for the purpose of visual comparison. As seen on Figure

4.4, performance of LSC algorithm is close to the one given by classical spectral

clustering, except some of wrongly segmented points belonging to a roof. In terms

of computational time, LSC quite accelerates the segmentation process. For "France"
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point cloud, where more than 100,000 points exist, it resulted 56 times faster than

Algorithm 1. Note that, eigengap proposition is not adapted in LSC algorithm since

the eigen spectrum of Laplacian can not be analyzed explicitly in LSC owing to the

approximations pursued.

(a) 3D view of segmentation

(b) 2D view with elevation

Figure 4.5: Segmentation of City Site2 by LSC

Then, LSC framework is practiced on "City Site2" and "Vaihingen" datasets, whose

segmentation results are given on Figure 4.5 and Figure 4.6 respectively. In the re-

sults, we observe the effect of two major principle of spectral clustering, which are

very advantageous for segmentation task. First, it estimates the clusters by evaluat-

ing their spectral characteristics rather than spatial closeness. For this reason, two
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Figure 4.6: Segmentation of Vaihingen point cloud by LSC in 2D view
(a) overall segmentation (b) ground plane segmentation (c) complex building segmen-
tation

LIDAR objects can be assigned to the same cluster when they enclose similar spec-

tral identities in their localities even if they are not literally neighbors in the graph.

As it is seen from Figure 4.5, the trees in the same region are assigned to one clus-

ter, since they all have scattered forms which presents repeated localized patterns.

In this regard, spectral clustering fulfils a kind of classification task together with

the segmentation. Second, spectral clustering favors the spatial connectedness of the

segment, and it is not simply based on convex partitioning, which is demonstrated

by Figure 4.3. Therefore, it can be preferred to discriminate architectures with yard

structure as it is the case for some buildings in Figure 4.5. Both "City Site2" and

"Vaihingen" dataset contain irregularly shaped and connected large buildings which

can be challenging for model based algorithms. The spectral clustering does not re-

quire a previous knowledge on the shapes to be discriminated, thus it can be used to

segment any kind of shape in general. For this purpose, in Figure 4.6, we present the

segmentation result of a scene which is part of "Vaihingen" dataset. Together with

the overall segmentation of this scene, we highlight a cluster on Figure 4.6 (b & c),

which belongs to a region on ground plane and a complex building respectively.

4.6 Conclusion

In this chapter, we have proposed a special graph construction strategy to be adopted

for representing the aerial LIDAR data and conducted clustering experiments on some

ALS datasets, those are unstructured 3D point clouds. Due to the flexibility of graph

representations, we have accomplished the clustering operations directly on the un-

structured 3D data. We have presented a visual comparison between spectral cluster-
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ing and k-means, since k-means is a traditional clustering method that is applicable to

3D data as well. On this comparison, we have pointed out the superiority of spectral

clustering to k-means in terms of consideration of connectivity of data space.

In classical spectral clustering framework, eigengap heuristic can be used as a hint

for the number of clusters. However, LSC framework does not allow this.

The LSC algorithm intends to accelerate the classical spectral clustering through

some approximations. It provides sufficient results with a quite improvement in the

computational complexity.

All in all, spectral clustering gives adequate results for the post processing operations

such as recognition, 3D modeling and reconstruction. In this point of view, the pro-

posed approach can be considered as the first step in a framework reaching a semantic

description of a LIDAR scene. After employing the clustering operation, the next step

would be to formulate some feature vectors on the segmented sets in terms of shape

and context.
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CHAPTER 5

GRAPH SIGNAL FILTERING BASED EDGE DETECTION

FOR AIRBORNE LIDAR DATA

5.1 Introduction

In this chapter, we address the problem of edge detection on 3D LIDAR point clouds.

Edge features carry valuable information for segmentation and reconstruction tasks

and for the detection of man-made structures. In order to enhance the overall per-

formance of the proposed framework, outlier removal and smoothing operations are

highly recommended to be applied on the aerial LIDAR data as the pre-processing

steps.

Although LIDAR systems provide highly accurate and dense data, it may also contain

spikes and noise due to the measurement errors or complexity of the object space to

be scanned as it is the case for many signal forms captured by various sensors. The

outliers should be removed and the noisy points should be refined with a de-noising

stage for the purpose of preventing any misconception in the following processing

stages. By defining a smoothing stage prior to the edge detection procedure, we intend

to eliminate the distortions and the clutter in the scene, in addition to loosening the

effect of errors. While doing that, we avoid distorting the important features such as

discontinuities at the object boundaries. The graph based representation may provide

an edge aware smoothing solution [26, 1] depending on the construction of the graph

and choice of the graph signal.

In this chapter, we first review the related work on edge based segmentation and filter-
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ing methods on LIDAR data. Then, we explain how to build the graph representation

of ALS point cloud properly for the operations to be conducted. Then, we present the

algorithms for smoothing and edge detection tasks. Finally, we provide experiments

on some ALS data and give the discussions on the results.

5.2 Related Work

In order to acquire semantic analysis of a LIDAR scene, segmentation is a fundamen-

tal task, which aids to focus on objects of interest by separating the entire data set into

regions. For example, building extraction and reconstruction are among the most es-

sential LIDAR applications requiring segmentation information. In some studies, the

segmentation problem is addressed by adopting edge-based approaches which desire

to determine the edges on a data set to obtain the segments. The early ones mostly

preferred to detect edges on the range image formats of LIDAR data [66]. In the

previous chapter, we mentioned the possible information loss owing to converting

the 3D data to 2D. Especially for retrieving the important features such as edges, the

assessment of 3D geometry is vital. Furthermore, the studies operating directly on

3D data mostly conduct a local spatial analysis for each point to determine the points

on object boundaries. Among those studies, there are the ones calculating the local

curvatures [67], normals [68] and slopes or the ones computing the local convex hull

[69, 4] and local eigenanalysis [70].

Calculating all those local spatial primitives and grouping the points based on them

can be difficult. On the other hand, we propose to find the boundaries on a LIDAR

scene by adopting well-known signal processing filtering approaches. We intend to

detect the edge features on 3D point cloud data by employing high-pass and band-pass

filters via the graph spectral filtering. In other words, the classical image processing

tools can be transposed to weighted graphs [54] which is a practical way to process

unorganized 3D point clouds.

In LIDAR literature, filtering terminology is usually ascribed to applying some order

of thresholds based on elevation, slope or other spatial primitives for separation of

ground and non-ground points [71, 72, 73] rather than a spectral meaning as it is
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generally accustomed by the signal processing communities. In this study, we will

address the problem of edge detection abiding by the later convention and practice

band-pass and high-pass filtering operations on the graph representation of ALS data.

5.3 Outlier Removal and Graph Spectral Smoothing on ALS Data

The first step of the pre-processing stage is outlier removal. Outlier points are desig-

nated as the unexpected speckles on the elevation data. They can be distinguished by

investigating the isolated z values on the whole range of the point cloud without fo-

cusing on any local part. Nonetheless, for the data collected from the very large fields

or the ones having above a million points and steep elevation range, can be divided

into several to be analyzed separately for capturing the outliers efficiently. Those

points are omitted from the processing in order to prevent any misinterpretation that

might affect the next stages. In [74], histogram of elevation data is analyzed to reveal

the obvious outliers. We adopt this approach and simply discard the points having an

isolated z value with respect to the elevation range of entire point cloud.

The second step is the refinement of the elevation data. This step intends to raise the

integrity of the edge detection stage rather than de-noising of the 3D data on its own.

Indeed, it diminishes the small high frequency regions such as low vegetation and

little objects on the ground which are not in the point of interest, consequently helps

the edge detection result to be clearer. Moreover, the proposed smoothing operation

does not distort the object boundaries owing to the edge aware graph structure.

The most conventional studies approach the smoothing problem by convolving the

signal with a low pass filter, for instance a Gaussian filter. In fact, for the uniform

encoded signals, this is equivalent to create an isotropic diffusion across the signal

space using the heat equation, which is explained in Appendix A.2. In [75], a series

of regularization operators on graphs are introduced, including the diffusion kernels,

by defining them as functions of graph Laplacian. In [26], Zhang et al. exploit graph

representations for the anisotropic image smoothing application which preserves the

discontinuities on boundaries. By embedding the edge information into the weights

of the graph, they accomplish controlling the smoothing rate in the direction of edges
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to the contrary of smoothing the signal in each direction equally. For this purpose,

they utilize heat diffusion kernels described by the graph Laplacian and adjust the

heat flow from one vertex to another by determining edge weights between them in

terms of pixel intensity differences.

Others prefer to leverage p-Laplace regularization on weighted graphs, where p-

Dirichlet energy of a function defined on the vertices of the graph is affiliated as

the notion of smoothness on the graph [76]. In [27], graph signal terminology is

embraced instead of the function definition, and p-Laplace regularization is practiced

for de-noising of 3D point clouds, where their 3-tuple graph signal consists of the 3D

coordinates of each point.

In our smoothing application on LIDAR point clouds, we employ only the z values

of the point cloud as the graph signal, since airborne LIDAR signal constitutes an

irregular elevation data. We embed the 3D geometry directly into a weighted and

undirected graph G = (V , E ,W ), where V is vertex set whose size |V| = N is equal

to the number of points in the point cloud. The edge set, E , of the graph is built on

the k-nearest neighbor of points based on the 3D Euclidean distance between them.

Additionally, the elements of weight matrix, W , are calculated by weighting the 3D

Euclidean distances between points with a Gaussian function as follows,

Wi,j =

exp(−
d(i,j)2

2σ2 ) if vj ∈ NkNN(vi),

0 otherwise
(5.1)

where NkNN(vi) stands for k nearest neighborhood of point i and d(i, j) is the dis-

tance between point i and point j. Here, σ is simply chosen as the mean distance

between the neighbors. Then, we can compute the unnormalized Laplacian matrix,

L = D−W , where D is diagonal degree matrix whose elements are the row-sum (or

column-sum) of W .

We adapt the Tikhonov regularization on graphs, that is presented in Chapter 3. In

Tikhonov regularization, the regularization term is the quadratic form of Laplacian,

which corresponds to p-Laplace regularization where p = 2. Tikhonov regularization

results in the following filtering operation,

x̌ = (I + γL)−1f (5.2)
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where we desire to estimate the smoothed signal x̌ for the given graph signal f , with

a smoothing factor γ. Recall that in Chapter 3, graph signal filtering operation is

explained under matrix notation as f out = ĥ(L)f in. Hence, in this case, the optimal

reconstruction is given by filtering the graph signal with the following low-pass filter,

as expected for the smoothing problem,

ĥ(λ) =
1

1 + γλ

Note that, in this graph signal filtering based smoothing solution, the graph signal

is chosen as the z values on [x, y, z] coordinates of 3D point cloud, which appre-

ciates the elevation information enclosed in aerial LIDAR data. Another key thing

to remember is that z data acts upon the graph structure as well. To put it another

way, graph signal has influence on the weights of the graph, which accommodates

an edge aware smoothing procedure. To give an illustration, the neighboring points

on the boundaries of the point cloud are connected with small weights or not con-

nected at all due to the k-NN structure. Therefore, the edge features given by graph

signal are also emphasized in graph structure. The smoothing term, recalled at (3.6),

requires a graph signal that changes slowly over the graph representation, through

the optimization problem. Although elevation changes rapidly on the discontinuities,

the solution allows them to maintain on the reconstructed signal due to the low link

weight between the points on those discontinuities. In other words, smoothing is

less effectively performed across the edge features compared to the noisy or cluttered

regions, which prevents distorting the edge features.

5.4 Edge Detection Algorithm for ALS Data

In this section, we desire to find the edge points on the point cloud by performing a

graph signal filtering operation as well, where the signal is again the elevation values.

However, we need a slight change in the graph construction part special to the edge

detection application. Here, the graph structure is totally isolated from the graph

signal, z values of the point cloud. The graph signal filtering in this part serves

to find the signal differences between the neighboring points by the factor of the

weights between them. Hence the graph weights should be powerful to boost the
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differences at the discontinuities to the contrary of the smoothing application, where

the information flow across the discontinuities are highly discouraged.

For this purpose, the connections of the graph are determined with respect to k nearest

neighbors on xy plane. In addition, their weights are computed in terms of the 2D

Euclidean distances as well, that is only dependent on the x and y coordinates of the

3D points.

In conventional image processing applications, robust features are detected by the

well-known operations such as difference of Gaussians (DoG) and Laplacian of Gaus-

sians (LoG). Similarly, we employ a Mexican hat kernel for the detection of edge

points, denoted as follows,

ĝ(λ) = λexp(−tλ) (5.3)

The Mexican hat kernel is actually derived from the heat kernel ĥ(λ) = e−tλ. It is

the negative first derivative of the heat kernel with respect to diffusion factor t, which

behaves as a band-pass filter [77]. As we all know, in spatial domain it corresponds

to the negative normalized second derivative of the Gaussian function Gt(x) with

respect to x, that is mentioned in Appendix A.2. By adjusting the parameter t acting

on Mexican hat kernel, ĝ(λ), it is possible to generate a series of filters from band-

pass to high-pass.

Eventually, we can detect the edge features on the point cloud signal using a Mexican

hat kernel exhibiting much of a high-pass filter property. After the filtering operation

fout = ĝ(L)f , the edge points can be found with a proper thresholding on the absolute

value of the output signal fout.

Note that, if one prefer to apply the smoothing procedure explained in the previous

section prior to the edge detection procedure in this section, it will not be equivalent

to application of one filter produced by the integration a low-pass kernel and a high-

pass kernel. Here the reason lies in the adoption of different graph representations for

these two filtering operations, where the first one does not smooth the edge points,

whereas the second one responses at the edge points at most.

Performing a smoothing operation prior to the edge detection stage, eliminates both

the distortions aroused by noise content and clutter, and deduces a much more clear
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picture of object boundaries. Nonetheless, highly scattered objects such as trees are

still included in the detected high frequency features. For this purpose, in [4], the edge

points belonging to the tree objects and the ones of buildings are separated using the

correlation of the outlines where the former exhibits a 3D volume characteristics and

the later is much like 2D. Another option to discard the trees from this picture could

be exploiting the second returns in the LIDAR data, which aids to concentrate on only

the man-made objects in the scene. We will simply adopt the this approach to remove

the high frequency content belonging to the trees.

In [78], Bhandarkar et al. introduce two types of edges mostly encountered in range

imagery data, namely jump (step) edge and crease (roof) edge. The jump edges are

described by the discontinuities in elevation which correspond to the exterior bound-

aries of the 3D structures and they are leveraged for segmenting and detecting the

objects. On the other hand, the crease edges occur where two surfaces intersect and

they constitute vital information for roof/building reconstruction. The proposed edge

detection algorithm can also be employed for detecting the crease edges of an object

for building reconstruction and modeling purposes. Using a band-pass filter will di-

rectly give the interior breakline points of a LIDAR object, no matter how complex

shape it presents (convex, non-convex, polyhedral). Moreover, our method is much

more practical for extracting the planar and non-planar points than dealing with the

surface normals and curvatures etc.

5.5 Experimental Results

In this chapter, we worked on the same datasets, "Vaihingen" and "City Site2", those

have been utilized in the previous one.

In the experiments, we constructed the graph representations using a k nearest neigh-

bor approach where k = 8. Computation of the neighborhoods can be accom-

plished by applying the k-d tree search methods for nearest neighbors in an effi-

cient way [79, 80]. Moreover, computing the aforementioned graph kernel opera-

tors, ĥ(L) and ĝ(L) may be problematic as the number of nodes in the graph in-

creases. To overcome this problem, Hammond et al. exploit polynomial expansion
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of a filtering operation explained in Section 3.4 and introduce the Chebyshev polyno-

mial approximation of the graph kernels, which approximates graph kernel operators

in terms of low order polynomial of L [6]. This avoids fully decomposition of L

and computes the filtered signal through repeated matrix-vector multiplications in

a fast and efficient way. For this purpose, we have benefited from the SGWT tool-

box (https://wiki.epfl.ch/sgwt) which includes the implementation of the

Chebyshev polynomial approximation of graph kernels. In the experiments, we ap-

proximated the kernels as polynomials having a degree of 25.

(a) (b)

(c) (d)

Figure 5.1: Discovered boundaries on ’City Site2’(a) without smoothing on 1st re-
turns(b) after smoothing on 1st returns (c) without smoothing on 2nd returns(d) after
smoothing on 2nd returns
The filter output is shown in "hot" colormap where the edge points are color in red to
black region
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5.5.1 Edge Detection on some LIDAR scenes

Unlike the clustering experiments conducted in the previous chapter, in this chapter

we worked on both first and last echoes in "City Site2" dataset and in Figure 5.1

we present both of them for a visual comparison. Furthermore, we show the edge

detection results those are obtained with a pre-processing stage and without it in order

to asses the significance of smoothing operation on the performance of edge detection.

In pre-processing stage, we first removed the outliers and then smoothed the graph

signal adapting Tikhonov regularization, where γ = 10 based on kernel in (3.15).

Moreover, in the filtering procedure for edge detection, the Mexican hat kernel is

created for t = 0.1 based on (5.3).

The first column of Figure 5.1 shows the object boundaries without applying a smooth-

ing process prior to the edge detection, on ’City Site2’. The clutter content is more ap-

parent on the results displayed in the first column compared to the ones in the second

column where smoothing is applied before the edge detection operation. Therefore,

we can claim that a prior edge-aware smoothing stage enhances the edge-detection

process, that is akin to the experience gained in the image processing practices. In

addition, the boundary detection results on the second row are based on the 2nd laser

returns and we observe that most of the edge features originated by the trees are elim-

inated on those results.

Additionally, we experimented our edge detection algorithm in the test sites of Vai-

hingen city: Area 1 & Area 3, those are presented for benchmarking of tree and

building extraction studies. The scene is dominated by the trees and complex build-

ings where the edge points are highly detected. Due to low rate of multiple echoes in

this dataset, the scattered points, belonging to the trees, can not by simply separated

from the ground objects, which requires further attention following to the edge de-

tection stage. Despite the lack of 3D reference data, the 2D reference data, in which

buildings, trees and cars are manually labeled and outlined, is provided in Figure

5.2(b) and 5.3(b), for a qualitative assessment.

53



(a) (b) (c)

Figure 5.2: Vaihingen Test Site Area 1
(a)Digital area image (b)2D Reference data (c)Edge Detection in 2D view

(a) (b) (c)

Figure 5.3: Vaihingen Test Site Area 3
(a)Digital area image (b)2D Reference data (c)Edge Detection in 2D view
The Vaihingen data set was provided by the German Society for Photogrammetry,
Remote Sensing and Geoinformation (DGPF) [81]:
http://www.ifp.uni-stuttgart.de/dgpf/DKEP-Allg.html

5.5.2 Application of Filtering for different Edge Types

In Figure 5.4, the crease and jump edges are demonstrated on the LIDAR data of

two houses. In order to detect the jump edges, we adjusted the Mexican hat kernel

to have a high-pass characteristic as shown in 5.4(a). As mentioned in the previous

section, the jump edge generally occurs at the borders of the 3D objects where the
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height changes discontinuously, accordingly they are very valuable for segmentation

information. Therefore, the detected edge points, which are produced by the high-

pass filter, outline the roof of the houses in 5.4(a). On the other hand, in 5.4(b), we

observe that the points on the rooftop, where the two sides of the roof are met, also

appear as edge points. These are the crease edges which are not described by the

discontinuity in elevation but the discontinuity in surface normal. Consequently, they

can be emerged by a Mexican hat kernel with a band-pass characteristic as seen on

5.4(b).

(a) Jump edge detection

(b) Crease edge detection

Figure 5.4: Crease and jump edges and the filters employed to detect them
(Point cloud is shown in 2D view and it is colored with "parula" colormap with respect
to elevation values, except the red edge points.)

Note that in the detection of crease edges, low-pass filtering is not involved in the

pre-processing stage, since it smooths out crease edges to the contrary of the jump

edges, which are protected by the edge aware graph structure.

Sometimes, the jump edges can arise on the inner sections of a LIDAR object which
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Figure 5.5: Jump edges detected on a multi-layer building
(Point cloud is colored with "parula" colormap with respect to elevation values, except
the red edge points.)

is the case for the multi-layer buildings [4]. In Figure 5.5, the ALS data taken on

"City Site2" constitutes such an example.

5.6 Conclusion

In this chapter, we have proposed a novel edge detection approach for segmentation

and reconstruction of ALS data. Our algorithm is based on graph signal filtering

which is a rising field of signal processing for irregular structured data types. Due to

the convenient use of graph signal processing on unstructured LIDAR point clouds,

we have accomplished to detect the edge points directly on 3D data using a graph

structure which is constructed exclusively to answer the needs of the application.

Moreover, considering the elevation data as the graph signal, we have leveraged aerial

characteristic of the airborne LIDAR data.

We have applied outlier removal and smoothing operations as pre-processing stages

in order to raise the performance of overall edge detection framework. We have ob-

served that smoothing procedure quite helps to obtain better edge detection results by

eliminating noise and clutter on a scene. In order to prevent any misconception about

the overall edge detection procedure, it should not be considered as direct application

of a band-pass filter following a low-pass filter. The result is not equal to the direct
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integration of these filters since the graph representation is different in those two fil-

tering operations. Therefore, while we did not distort the edge points in low-pass

filtering due to the edge aware representation, with another graph representation, the

edge points are detected by the band-pass filtering.

Our proposed method can be employed both for discovering the jump edges on a

segmentation problem and for exploring the crease edges on a LIDAR object on a

reconstruction/modeling problem by only adjusting the filter characteristics, yet the

former was the main focus of this chapter.

As a framework that is applicable directly on unstructured 3D data, it is theoretically

superior to the edge-based methods on 2.5D range images. Furthermore, it is much

more practical than calculating surface normals or other geometric primitives which

are the approaches adopted by most of the studies working directly on 3D LIDAR

data.

In the experiments, we observe that the high frequency features are assembled mainly

in the tree objects and boundaries of buildings. As we detected those edge points

using one high-pass filter, they can be further classified by extracting multi-spectral

features on them. In this point of view, Spectral Graph Wavelet Transform (SGWT),

which is mentioned in Appendix A.3, is quite suitable. In future studies, we aim to

focus on classification of the LIDAR objects based on the wavelet features on graph

representations.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Summary

In this thesis, we have addressed the problem of segmentation and edge detection on

3D LIDAR point clouds by a signal processing approach. In order to process those

unorganized point cloud data as signals, we have leveraged graph representations,

since graphs are very convenient tools for encoding both irregular data, especially

lying on high dimensional geometry. In particular, we have exploited the fields of

spectral graph theory and graph signal processing to retrieve information via the graph

representations of 3D point clouds. Such approaches support analyzing the data of

interest not only in spatial fashion but also in a spectral manner.

Graph spectral approaches are separated from widely known numerical graph algo-

rithms or algebraic graph methods, since they are able to merge the graph theoretic

concepts with Fourier Analysis. To that end, we have reviewed the Spectral Graph

Theory and Graph Signal Processing in the first chapters. In those chapters, we in-

troduce the graph Laplacian and indicate that it is essentially important for the inter-

pretation of the spectral information on graphs. We explain the notion of smoothness

in graphs by the relation of graph Laplacian quadratic form. With this in mind, we

present an analogy between Laplacian eigensystems on graph settings and Fourier ba-

sis in classical signal processing settings. In the light of this theoretical background,

we aim to employ the operations that are originated by the graph spectral studies,

such as spectral clustering and graph signal filtering, as tools for segmentation and

edge detection tasks on LIDAR data.
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Throughout the remaining chapters, we review the studies that are dedicated for the

segmentation of LIDAR data, especially on ALS data, which are mostly addressed

by the geo-information and remote sensing literature. We intend to bring solutions

to LIDAR problems with a signal processing point of view. In fact, there are many

studies which have practiced the well-known image processing tools on the raster

image forms of LIDAR data. Yet, to the best of our knowledge, this study is novel in

practicing the graph spectral approaches for segmenting directly on the 3D ALS data.

Airborne LIDAR data is different from other types of 3D point cloud data, such as the

ones obtained by the terrestrial or mobile applications or 3D models captured by other

3D depth sensors. It constitutes much of the property of non-uniformly sampled ele-

vation data. Therefore, graph representations should be constructed considering this

fact. For instance, in spectral clustering application, we construct the graph topology

based on 3D geometry, while determining the weights of the graph based on the el-

evation values only. This approach advances the performance of spectral clustering

operation by transposing the graph spectral based image segmentation approaches to

the 3D aerial LIDAR data. Moreover, in the following chapter, we utilize the eleva-

tion values as graph signal and adopt different graph representations for smoothing

and edge detection operations. In smoothing application, edge features are preserved

due to the anisotropic regularization resulted with the graph structure. On the other

hand, in edge detection application, graph structure is adjusted so that the filtering

operation is carried out most effectively at the edge points.

Spectral analysis of a weighted graph requires eigen decomposition of the graph

Laplacian matrix. In spectral clustering, it is enough to extract a few of the small-

est eigenvalues. Nevertheless, such an approach can be problematic for large scale

datasets. For this purpose, we adapt LSC algorithm, which selects some landmark

points on the dataset, and approximates a weight matrix which contains the relation

of landmark points with the whole dataset, and in turn simplifies the eigen decompo-

sition process. In the edge detection chapter, we also avoid the entire eigen decom-

position of the graph Laplacian by considering the filtering operator as a polynomial

expansion of Laplacian and then adopting the Chebyshev approximation method for

the graph kernels.
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Experimental results are given on some datasets provided by the ISPRS commissions,

which have been tested in many other studies. The captured scenes for these datasets

also constitute difficult scenarios accommodating connected buildings, complex ob-

jects having unusual shape, etc. Those objects are not detached and discriminated as

a whole by the tested spectral clustering algorithm, since it does not simply realize a

convex partitioning, but recognizes the connectivity due to the weighted graph encod-

ing. It should be noted that the tested approaches do not require previous assumptions

on the shape of the objects; therefore, they are able to handle those complex shapes

successfully. During the background review of ALS research, we have observed that

most of the previous approaches are based on extracting the spatial primitives which

can be exhausting to compute for each point. On the other hand, we have developed

a graph spectral filtering algorithm that finds the points on the boundaries automati-

cally. Moreover, the filtering operation can be adjusted according to the type of the

edges to be detected.

As a concluding remark for this summary, we can state that the state-of-the-art tech-

niques addressed on LIDAR segmentation problem are extensively reviewed; next,

new approaches are considered during the solution of the problem. Moreover, the

algorithms are also extended to be able to utilize them in computationally efficient

ways. Experimental results indicate that the graph spectral studies have a promising

future, not only on the LIDAR point cloud area, but also in other data fields having

high dimensional geometry and irregular structure.

6.2 Conclusions

In this thesis, we present two application chapters one of which practices segmenta-

tion of ALS data by spectral clustering. It contains a novel segmentation framework

for ALS data that is based on the graph based image segmentation studies. Moreover,

the graph representation adopted in this chapter highlights aerial characteristic of the

ALS data, therefore it provides adequate segmentation results. In comparison to the

linear clustering methods, such as K-means, or basic graph partitioning methods, such

as min-cut, spectral clustering yields better partitioning on complex structures, where

the connectivity of the samples and the spectral embedding of the dataset carry signif-
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icant information. Based on the experimental results on classical spectral clustering,

the eigengap (i.e. relatively large difference between consecutive eigenvalues) can be

a useful indication for the eigenvectors to be used during clustering and the number of

clusters. It should also be noted that for the segmentation of large datasets, we tested

LSC algorithm, which approximates the classical spectral clustering in a computa-

tionally efficient way. It accelerates the segmentation process by 56 times in ’France’

point cloud without losing much from the segmentation performance.

In the other chapter, graph signal filtering is employed for detection of edge points on

a LIDAR scene or on a LIDAR object. We observed that a smoothing stage employed

prior to the edge detection stage successfully suppresses the small distortions on the

dataset, and consequently improves the edge detection result. Since we construct the

graph representation considering the target of filtering operation, in the smoothing

stage low-pass filter does not restrain the edge features, whereas in the edge detection

stage, high-pass filter has a larger response on the edge features. Furthermore, on

the edge detection part, we have seen that employing a high-pass filter detects the

jump edges, which are important for segmentation information, whereas employing a

band-pass filter detects the crease edges, which are significant for modeling a LIDAR

object.

One can finally conclude that in this thesis simple solutions are presented for some

of the problems in LIDAR field that are mostly based on fundamentals of linear al-

gebra. The presented solutions are computationally efficient and quite practical to

implement compared to some other approaches calculating the geometric primitives

of the samples in a dataset, which could be exhausting.

6.3 Future Directions

Segmentation is important in terms of splitting the scene into internally complete

regions and separating the objects such as buildings, trees, roads. Since spectral

clustering grasps the shape content by means of spectral analysis of input space, the

objects or regions existing on similar spectral ranges, which are encoded by the lo-

cality of graph representation, might be assigned to the same cluster. For this reason,
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the presented spectral clustering techniques can be improved towards a classification

problem for the scenes where the objects present dominant shape characteristics, for

instance, to classify similar houses in a residential area, or trees from the ground plane

in a wooded region.

Another advantage of spectral clustering is that it considers the internal connectivity

of the objects which is embedded on the graph representation. Therefore, it can also

be employed for discriminating an object having higher inner complexity such as

tangled buildings, yard structures etc.

The segmented regions emerged by the spectral clustering can be further analyzed

independently for the purpose of recognition and reconstruction. For those problems,

spectral graph based solutions can be adopted as well. Recently, some studies be-

longing to the computer graphics communities leverage spectral geometry for shape

retrieval on unstructured 3D models by considering a manifold learning approach

[82]. The same approach can be transposed to the discrete data spaces using graph

representations as practiced in [83]. Some other studies compute shape signatures

based on heat kernel or wavelets [84, 85]. Furthermore, the wavelets described on 3D

data gain popularity lately to accomplish multi-resolution analysis for geometric de-

scriptions, in particular, diffusion wavelets are preferred in notable studies [77, 86].

Finally, in [87], local descriptors are generated using spectral graph wavelet trans-

form, then the extracted features are combined to obtain a global shape descriptor.

All of these approaches could be adjusted on 3D LIDAR data by adopting the graph

based representations for the classification and reconstruction tasks.

For the problem of edge detection on aerial LIDAR data, we locate edge features

by adjusting a filter (band-pass or high-pass) according to the property of the edges

to be detected. However, using several filters simultaneously and obtaining local

descriptors for each point might enrich the solution comparing to employing only one

filter with roughly thresholding the result. Spectral graph wavelets can be employed

for this purpose, since the wavelets generated by this method localize on different

frequency ranges on graph spectrum and present an overcomplete transform at the

end. It is possible to realize a classification algorithm based on those local spectral

features.
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For all the aforementioned problems, better comprehension of 3D data can be at-

tainable through multi-resolution approaches adapted on the original geometry of the

data. Indeed, the experience achieved by the classical signal processing literature

indicates the promising potential of multi-resolution information on many applica-

tions.
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APPENDIX A

SUPPLEMENTARY MATERIAL ON MULTI-RESOLUTION

APPROACHES ON GRAPHS

Introducing the graph signals yields a requirement of effective description of this

new signal form. In particular, multi-resolution representation techniques on vertex

and graph spectral domain could give the desired local and global information for

the signal. Wavelet transform is one of the traditional and successful approaches in

the literature, since it has the property of localizing the signal both in space and fre-

quency at the same time. Therefore, the pioneering studies in graph signal processing

have transposed this approach to graph domain by means of windowed graph Fourier

transform [29], graph wavelet filterbanks [88] and spectral graph wavelet transform

(SGWT) [6].

There are other multiresolution approaches extended to general space of domains,

such as graphs, manifolds or meshes. For instance, diffusion wavelets developed

by Coifman et al. focus on diffusion operators for multi-resolution analysis [86].

Diffusion operators are emerged from the heat diffusion process defined on various

structures. Therefore, there are some studies employing heat kernel based filters for

multi-scale representations as well as smoothing purposes [26].

All of these approaches generate various representations of signal in terms of spread

and localization on both spatial and frequency domain which might lead to multi-

scale and localized descriptors of a graph signal and in turn answers the needs of

many pattern recognition problems.
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A.1 Diffusion on Graph

Let T denote the diffusion operator acting upon the functions defined on a graph

where the impact of diffusion can be extended by means of application of its dyadic

powers. The diffusion process can be considered as a stochastic process modeled by

the graph Laplacian. Then, one can adjust the quantity of information flow across the

graph structure using operator T and create multi-scale representations. In (3.8), we

represent a k-hop filtering operation in terms of k degree polynomial of the Laplacian

matrix. Similarly, we can dilate the diffusion operator T in vertex domain by taking

its powers.

An example of such a diffusion operator is given below, which is stimulated by the

transition of random walks on graphs.

T = I − βL (A.1)

for 0 < β ≤ 1, T describes a diffusion process on the graph [89]. Moreover, this

diffusion operator is associated to the Markov matrix which explains the stochastic

transitions on the graph [86].

Another example of T quantifies a dynamical system on a manifold to the discrete

input spaces.

T = e−βL (A.2)

These operators can dilate a signal through the diffusion process depending on its

underlying geometry [77]. Higher powers of the operator yield lower numerical rank,

which proposes a compression on the function or geometry. Therefore, coarse to

fine representations can be expressed via the powers of diffusion operator. Diffu-

sion mechanism is also employed for regularization of graph signals by exploiting

the anisotropic diffusion property supported by the graph structure, which will be

mentioned in Chapter 5.

When the distribution of the data set is modeled in Gaussian form, then the natu-

ral diffusion process appears as a heat flow [10], which will be clarified in the next

section.
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A.2 Heat Kernel on Graph

The natural diffusion processes induced on graphs are emerged from the heat equation

below,
∂Ht

∂t
+ LHt = 0 (A.3)

This differential equation presents a solution family of the form Ht = e−tL where

t > 0 can be considered as time instants of the heat flow process. Ht is an N × N
operator and can be viewed as the matrix notation of the heat kernel on graph, Ht =

ĥt(L). Accordingly, we can define a heat distribution function h(x, t) representing

the amount of heat at time t and on vertex x on a graph G. Then the spectral decom-

position of the heat distribution function can be written in terms of the eigensystem

of graph Laplacian as follows,

ht ∈ L2(V) ⇒ h(x, t) =
N−1∑
l=0

e−tλlel(x) (A.4)

Consider a heat transfer function ut(x, y) which represents the heat flow from point

x to point y. Reinterpreting the heat distribution function in terms of the heat transfer

function, we obtain,

ht(x) =
∑
y∼x

ut(x, y)

Assume that the initial condition for heat distribution is given as dirac delta function,

h0(x) = δ(x), and associated heat flow u0(x, y) = δ(x, y). Recall that the graph

Laplacian has an orthornormal set of basis then the initial heat transfer can be ex-

pressed as δ(x, y) =
∑N−1

l=0 el(x)el(y). Therefore, the spectral domain expansion of

the heat flow is given as follows,

ut(x, y) =
N−1∑
l=0

e−tλlel(x)el(y)

Setting these initial conditions, the heat transfer has an explicit space domain expres-

sion as a Gaussian function [10].

ht(x, y) =
1

4πt
exp(−

d2G(x, y)

4t
)

where dG(x, y) is the graph distance from vertex x to vertex y. Thus we can infer

that the vertex domain distribution of the heat kernel ĥ(λ) = e−tλ yields a Gaussian

relationship between the data points.
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At t = 0, the heat distribution is like an impulse and as t increases, heat spreads

through the graph structure. Furthermore, heat diffusion can be initiated at different

locations of the graph. A column vector of the heat diffusion operator Ht, reveals

the vertex domain distribution of a localized kernel as indicated in Equation (3.11).

For example, in Figure A.1, a network data signal is approximated by sum of different

scale of heat kernels emerged from distinct points of the graph. In [90], this technique

is employed for recovering the graph structure by simulating a graph signal in terms

of multi-scale and localized heat kernels. Similarly, heat kernels are widely used by

manifold learning and computer graphics communities for shape retrieval purposes

[77].

Figure A.1: Decomposition of a graph signal (a) in terms of localized heat kernels
(b), (c), (d), (e) Adapted from [90]

A.3 Spectral Graph Wavelet Transform

As explained in the previous sections, diffusion or heat kernel based operators intend

to produce multi-scale transforms through the dilation on vertex domain. On the other

hand, the wavelet designs based on the spectral domain of the graph are determined

by the dilations of a graph kernel on the graph spectrum. Different scale of wavelets

generated on the graph Fourier domain are then localized on any vertex of the graph

just as we perform for any graph kernel (3.11).

The spectral graph wavelet transform (SGWT) proposed by Hammond et al. [6]

employs a band-pass kernel ĝ(λ) as a wavelet generating function and a low-pass

kernel ĥ(λ) as a scaling function. Thus, it covers all the spectrum content of graph,

accordingly all the frequency components are represented in the transform at some

level so that it yields a redundant and invertible transform.

Let the wavelet operator determined by the band-pass filter be denoted by Ψg = ĝ(L).
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By scaling it on the graph spectral domain, the wavelet operator at scale t is given by

Ψt
g = ĝ(tL) for scales {t1, t2, · · · , tS}. Likewise, the operator determined by the

low-pass filter is designated by Ψh = ĥ(L).

A wavelet localized on vertex i is computed by applying the wavelet operator to an

impulse on vertex i as follows,

ψt,i = Ψt
gδi

As a result, the entire transform consists of S level wavelet operator and an operator

produced by the scaling function, that is indicated as ΨSGWT : RN → RN(S+1) and

given by,

ΨSGWT = [Ψh; Ψt1
g ; · · · ; ΨtS

g ]

The SGWT presents multispectral, localized and overcomplete representation of a

graph signal. Hence it constitutes a powerful tool for compression problems in addi-

tion to providing effective multiresolution feature descriptions on graph.

77


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motivation
	Thesis Outline

	An overview of spectral graph based methods
	Introduction
	Review of Spectral Graph Theory
	Weighted Graphs and Graph Laplacian
	Laplacian Eigensystems and Graph Spectrum

	Dimension Reduction and Spectral Clustering
	Graph Based Dimensionality Reduction
	Graph Based Clustering

	Conclusion

	An overview of graph signal processing
	Introduction
	Review of Vertex-Frequency Analysis on Graphs
	Graph Signals and Graph Fourier Transform
	Filtering and Convolution on Graphs
	Localization and Translation on Graphs
	A low-pass filtering application : Tikhonov Regularization ShumanNarangFrossardEtAl2012
	Conclusion

	Graph Representation of Airborne Lidar Data and its Segmentation by Spectral Clustering
	Introduction
	Related Work
	Graph Representation of ALS Data
	Spectral Clustering on ALS Data
	Landmark Based Spectral Clustering

	Experimental Results
	Utilized Datasets
	Experiments on Spectral Clustering using Eigengap Proposition
	Experiments on LSC Algorithm

	Conclusion

	Graph Signal Filtering Based Edge Detection For Airborne LIDAR Data
	Introduction
	Related Work
	Outlier Removal and Graph Spectral Smoothing on ALS Data
	Edge Detection Algorithm for ALS Data
	Experimental Results
	Edge Detection on some LIDAR scenes
	Application of Filtering for different Edge Types

	Conclusion

	Conclusion and Future Work
	Summary
	Conclusions
	Future Directions

	REFERENCES
	APPENDICES
	Supplementary Material on Multi-resolution Approaches on Graphs
	Diffusion on Graph
	Heat Kernel on Graph
	Spectral Graph Wavelet Transform


