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ABSTRACT 

 
DETERMINISTIC MODELING AND INFERENCE OF BIOLOGICAL SYSTEMS 

 

 
Seçilmiş, Deniz 

MSc., Department of Bioinformatics 
Supervisor: Assoc. Prof. Dr. Vilda Purutçuoğlu 

 
April 2017, 66 pages 

 
The mathematical description of biological networks can be performed mainly by 
stochastic and deterministic models. The former gives more information about the 
system, whereas, it needs very detailed measurements. On the other hand, the latter is 
relatively less informative, but, the collection of their data is easier than the stochastic 
ones, rendering it a more preferable modeling approach. In this study, we implement the 
deterministic modeling of biological systems due to the underlying advantage. Among 
many alternatives, we use the Gaussian graphical model (GGM) and evaluate its 
performance with respect to the random forest algorithm, which we suggest as an 
alternative approach of GGM. We estimate the model parameters, i.e., the structure of 
the networks, and then assess their findings based on their accuracies. Finally, we extend 
the study by using copulas in the description of data and apply the same modeling 
approaches to assess their effects. 

Keywords: Systems biology, Gaussian graphical model, random forest algorithm, 
copulas. 
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ÖZ 

 
BİYOLOJİK AĞLARIN DETERMİNİSTİK MODELLEMESİ VE SONUÇ 

ÇIKARIMI 

 
 

Seçilmiş, Deniz 
Yüksek Lisans, Biyoenformatik Bölümü 

Tez Yöneticisi: Doç. Dr. Vilda Purutçuoğlu 
 

Nisan 2017, 66 sayfa 
 

Biyolojik ağların matematiksel tanımlaması, başlıca, stokastik ve deterministik 
modellerle yapılabilir. Bunlardan ilki, sistem hakkında daha çok bilgi veriyor olmasına 
rağmen, çok detaylı ölçümler gerektirmektedir. Öte yandan, ikincisi, nispeten daha az 
bilgi verir fakat verilerinin toplanması stokastikte olduğundan daha kolaydır. 
Dolayısıyla, daha çok tercih edilen bir modelleme yaklaşımıdır. Belirtilen avantajından 
ötürü, biz bu çalışmada, biyolojik sistemlerin deterministik modellemesini 
uygulamaktayız. Birçok alternatif arasından Gaussian grafiksel modelini (GGM) 
kullanmaktayız ve performansını, GGM’ye bir alternatif yaklaşım olarak önerdiğimiz 
rasgele orman algoritmasına göre değerlendirmekteyiz. Model parametrelerini, diğer bir 
deyişle ağların yapılarını, tahmin etmekteyiz ve sonrasında bulguların doğruluklarına 
göre değerlendirmekteyiz. Son olarak, çalışmayı, verinin tanımında kopulaları 
kullanarak genişletmekteyiz ve etkileri değerlendirmek için aynı modelleme 
yaklaşımlarını uygulamaktayız. 

Anahtar Sözcükler: Sistem biyolojisi, Gaussian grafiksel modeli, rasgele orman 
algoritması, kopulalar. 
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CHAPTER 1 

CHAPTER 

INTRODUCTION 

  

We are living in the era of information, where it is easy to access a broad variety of 
knowledge ranging from biological datasets, such as gene expression, cell signaling etc. 
to all the personal information of almost all the people across the world, rendering 
technological and scientific developments highly possible. The measurements of blood 
or tissue samples from sick to healthy people are recorded and kept in the electronic 
environment based on their approval, and researchers have several options to use those 
data in their studies. There are several useful databases, i.e., NCBI, Ensembl, from 
which we can obtain a wide range of biological data. However, the biological data are 
not remarkably meaningful without being processed under different statistical and 
computational techniques. For instance, although it is possible to find a lot of protein 
sequences in the existing databases, only a small part of those has the structural 
information. Hence, identifying their structures can be considered as an issue in the 
molecular biology and genetics. Keeping proteins on the agenda, there are many other 
issues to deal with during the collection of the data as well. 

So, in the basis, DNA carries all the genetic information included in the coding and the 
non-coding parts that the living organisms need it to keep themselves alive. The central 
dogma of the molecular biology states that the genetic information carried by the coding 
part of DNA makes RNA by the process called the transcription. Then as a follow-up 
process, named as the translation, RNA makes the protein. The proteins have three-
dimensional structures providing them with their biological functions. Those functional 
proteins tend to interact with each other in addition to acting by themselves. Their 
interactions cause biological pathways and many other incidents, which are all 
represented by networks consisting of nodes (proteins) and edges connecting between 
the nodes. One way to save the raw data from being meaningless is to infer those 
interaction networks as accurate as possible, which has a huge importance for 
understanding biological incidents and disease pathways. Therefore, it is crucial in the 
personalized medicine.  

Hereby, if we see the biological data at a higher level, we start to deal with the network. 
Basically, the construction of the networks begins with connecting the two closest 
proteins with each other, and then keeping searching for the next closest pair of proteins 
to bind. The next one could be a completely new protein pair, or it could be a protein 
connecting with the previously bound couple. If the process goes with the second option, 
i.e., binding a single protein to a protein couple, then the three proteins together are 
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called as a motif. The procedure continues until there is no protein remaining.  Finally, 
we have a biological network consisting of motifs and modules resulting in networks. 
Hence, the identification of structures enables researchers to better understand the true 
activation of the biological process.  

The biological networks can be modeled mainly by the two methods, namely, 
deterministic and stochastic approaches. The former gives the information about the 
presence or lack of interactions between two nodes; whereas, the latter provides an extra 
information by stating the direction of the interaction. However, as the information 
needed for the modeling is not very detailed with respect to the stochastic models, the 
application of deterministic models is very common. Furthermore, these models can 
successfully explain the steady-state behavior of the systems. Therefore, we use the 
deterministic modeling of complex networks in our analyses and consider their 
alternatives under parametric and nonparametric models. 

Hereby, one of the major models, which we work on in detail, is the probabilistic 
Gaussian graphical model (GGM) as the graph-based approach. Combining it with the 
lasso regression, the graphical lasso (glasso) can be suggested as a suitable technique to 
infer GGM in biological systems. The lasso regression implies a linear regression model 
where each node is represented by all the other vertices under the conditional 
independency. It means that if there is no edge between two nodes, i.e., proteins, they 
are conditionally independent given all the other proteins in the system. In the 
construction of the network, GGM uses the covariance matrix of the data defined under 
the lasso regression. Accordingly, in the final stage of the inference, the estimated 
precision matrix, which is the inverse of the covariance matrix, is transformed as a 
binary adjacency matrix in order to construct the network. In this study, we further 
suggest a nonparametric modeling approach, which can describe the steady-state 
activation of the systems, and can be a strong alternative of GGM. Here, we apply the 
random forest algorithm. 

In order to make a general categorization, it can be said that the machine learning can be 
considered as having two main subgroups: supervised and unsupervised learning. The 
former includes the classification and the regression; while, the clustering is in the 
subpart of the latter. The classification is a procedure of the allocation of each 
observation to the subgroups that are previously known. Here, in the calculation of the 
classification, the boosting and the bagging have important roles. The boosting is a 
procedure that the misclassified points are repeatedly voted with respect to their weights 
at each iteration in order to produce a strong ensemble. However, for the data having 
high variance, the boosting is not enough to provide with accurate trees. Since it is very 
important to construct the model with a high stability and accuracy, the bagging can be 
put forward in order to avoid this problem by also reducing the variance. The bagging 
has the advantage of not depending on the earlier trees in the model. However, it has a 
weak property that it does not change the bias while reducing the variance. Here, the 
adaptive bagging unravels this challenge by reducing both the variance and the bias. The 
bagging is suggested as a useful algorithm due to its following advantages. It uses the 
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random features, resulting in an increase in accuracy; it provides accurate estimates for 
the generalization error (𝑃𝐸∗), strength and correlation; it infers the out-of-bagging error 
truly. However, we can also face with the problem of overfitting. The reason is that the 
model may start to fit not only the signal, but also, the noise. In order to overcome this 
problem, we can work on large datasets. However, it is not always possible to find such 
sets. In this study, we suggest the random forest algorithm (RFA) that has the basis of 
the adaptive bagging, and additionally, as an improvement, it creates an upper boundary 
to the generalization error in order to avoid the underlying overfitting problem. In the 
construction of the network, RFA maximizes the strength between the nodes and 
minimizes the correlations under a subset of nodes by taking majority votes in each 
iteration of the calculation. Considering all these properties, RFA provides with accurate 
and stable models without handling external values. Hence, in this work, the suggested 
algorithm is investigated deeply in the following sections. To illustrate the performance 
of RFA, we evaluate it under the multivariate normally distributed datasets and non-
normal datasets generated by copulas with distinct margins. Furthermore, we use real 
systems with simulated and real observations in order to assess its accuracy in 
realistically complex structures. In all of these analyses, we compare our outputs with 
GGM in terms of various accuracy measures.  

 

1.1. Aim of the Study 

One approach commonly used in the description of the biological networks can be 
argued as the probabilistic Gaussian graphical model (GGM) which is based on the most 
popular and globally used distribution, Gaussian (Normal) distribution whereas, 
considering the biological systems, data are not always normally distributed, causing 
mistaken normality approximations in the construction of networks. Additionally, it 
requires external ad-hoc values such as the threshold point to force the resulting 
estimated precision matrices to be in a binary form to find the estimated adjacency 
matrix. Hereby, the aim of this study is to suggest a more accurate approach to infer the 
biological systems from both normally distributed and non-normally distributed data. 
For this purpose, we consider the non-parametric approaches forward, and perform the 
random forest algorithm (RFA) as the propounded technique presenting a non-
parametric alternative. In order to reveal whether the non-parametric models can be 
strong alternatives to deterministic and probabilistic modeling techniques, such as GGM, 
in the construction of biological systems under steady-state conditions, we conduct 
comparative analyses between GGM and RFA based on distinct measures of accuracies. 

1.2. Motivation 

Developing technology renders the analysis of biological data by statistical and 
computational techniques highly easy. Since the accurate inference of biological systems 
would help the researchers to correctly identify specific disease pathways or any other 
biological incidents in terms of the regulatory elements of the system represented by 
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nodes as well as the directed or undirected interactions represented by edges among 
these elements, inference of biological systems from the raw data can be regarded as one 
of the promising outcomes of this developing technology. Considering current 
methodologies for the construction of the biological networks, it can be clearly said that 
even though there exists a variety of modeling challenges, the choice of the most 
appropriate model for the data is still a problem. To explicitly, combining the Gaussian 
graphical model with the lasso regression, the description of the network is implemented 
under the Gaussian distribution. However, if the data are far away from the normality 
assumption, performing the analysis by regarding it as normally distributed would be 
misguided. In this study, our motivation is to suggest a non-parametric approach in an 
attempt to overcome the underlying challenge arising from inappropriate assumptions, 
and to construct the networks as accurate as possible without dealing with external 
requirements. Furthermore, in the selection of the alternative model, we take the 
capacity of the model into account under highly correlated and large scale, i.e., high 
dimensional, data as typically observed in the biological systems.  
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CHAPTER 2 

 

1. BACKGROUND 

 

This chapter consists of two main parts that are independent of each other. First part 
explains the general network definition and structure, as well as defining the different 
types of networks (Barabási et al., 2011). Second part of this chapter demonstrates the 
Classification and Regression Trees (CART) methodology (Lewis, 2000; Timofeev, 
2004), which is the basis of the random forest algorithm suggested as an alternative to 
the Gaussian graphical model.  

 

2.1. Networks 

2.1.1. Definition of Network 

A network can be defined in terms of its components such as its nodes and the edges 
connecting between its corresponding vertices. Entities of a system can be viewed by 
representing them under networks. Basically, a couple of nodes constitute motifs, and 
then by becoming larger units, named as modules, they compose the network structures. 

The networks can be categorized into subgroups with respect to their explanations from 
different perspectives. To explicitly, networks can be separated into two branches in 
terms of their nodes and the properties of their edge or the distributional properties of 
these edges.  

The edge properties should be assigned with respect to the components of the networks. 
For example, if the deal is to construct a gene regulatory network, the direction of the 
relationship must be included in the graph, requiring directed networks. However, some 
networks, such as protein-protein interaction networks, do not require the definition of 
the direction among its vertices. Therefore, undirected networks can be used to exhibit 
these systems. 

Representing the biological systems as networks can be regarded as one of the important 
issues since the biological incidents mostly are not easily visible. The biological systems 
are very organized and everything is in order. However, in some conditions, specific 
differences may occur in these organized systems. In such kind of situations, 
identification of the regular system as well as exhibiting the system under the disease 
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conditions help researchers to determine the cause of the situation, solve the problems 
and to find alternative pathways to render the broken system organized again. There are 
many other reasons to represent the biological systems as networks such as drug design. 
If the interactions among the molecules can be identified, researchers could have the 
idea that which molecule regulates (activates or suppresses) the other(s), and then based 
on the pathway, the selection process of the drug target becomes much clear. The 
examples can be extended but the general approach remains the same. 

 

Figure 2.1.: Graphical view of different types of networks. 

When the deal is to construct a biological system, the choice of a scale-free network 
would be the most appropriate network type for not losing the sparsity. Since our main 
focus is to construct protein-protein interaction networks, undirected graphs with edges 
distributed under scale-freeness are investigated in this study. 

Scale-free Networks 

In the molecular biology, there exist a huge number of popular nodes, called hubs. These 
hubs tend to interact with up to millions of other biological entities in the system. 
Therefore, the presence of hubs in the network construction plays a key role, and 
missing the interactions of hubs among other entities may result in an increased number 
of false negatives. Hereby, the scale-free networks, in the basis, enable viewing the hubs 
in the systems. Therefore, it is preferable when the deal is to model a biological network.  

2.1.2. Modeling of Biological Networks 

The high-dimensional biological networks can be modeled by one of the three main 
methods: Boolean networks, differential equations and stochastic models. 



 
 

7 

 

Boolean Networks 

The Boolean models are mainly used for explaining the biochemical systems due to its 
underlying property that it has proved itself in the large biochemical networks by 
reaching a promising performance covering the overall behavior of the system. The 
expression level of each gene is referred as the state, and each state is considered as 
functionally related to the state (gene expression level) of other genes by using the 
binary logic.  

A biochemical system can be viewed by a Boolean model mainly by two ways: the truth 
table and the finite-state machine. The truth table includes three Boolean operators 
which are AND, OR and NOT. To illustrate, AND denotes both p and q are assigned by 
1, while the OR rule implies one of p and q must be assigned by 1.  

Table 2.1.: The truth table of Boolean operators in which i and j stand for the variables. 

i j i AND j i OR j NOT j 

1 1 1 1 0 

1 0 0 1 0 

0 1 0 1 1 

0 0 0 0 1 

 

The finite-state machine demonstrates a system in terms of its states and transitions. This 
model can be viewed as a diagram in which the nodes correspond to the states while the 
edges refer to the transitions. The states can be represented either by “current” term or 
by “next” term. As the names are obvious, current denotes the present state of the nodes; 
whereas next stands for the next state of the corresponding node i.e., gene, protein etc.  

Even though the Boolean model is suitable for the high-dimensional networks since the 
use of binary logical operators simplifies the structure of the large data, still more 
complex models satisfying different expression levels are required (Ayyıldız, 2013). 

Differential Equation Models 

It is previously mentioned that the expression levels of the genes are considered as the 
states of the gene regulation systems. Since the expression levels are time-dependent and 
continuous, it is possible to compute the rates in terms of the ordinary differential 
equations considered as responsible for controlling the steady-state behavior of the 
model. Additionally, the ordinary differential equations are deterministic since they 



 
 

8 

control the steady-state behavior of the system. Therefore, their use is not suitable when 
the system results in more than one outcome (Bower & Bolouri, 2001).  

Stochastic Models 

Instead of controlling the steady-state behavior of the gene regulatory systems, in 
stochastic models, the changes in the states (gene expression levels) are investigated in 
the discrete form which was the continuous form in the differential equation models 
(Bower & Bolouri, 2001). 

2.2. Classification and Regression Trees (CART) Methodology 

Classification and Regression Trees are used in order to construct decision trees from the 
learning samples (historical datasets), including prior classes for each observation in the 
dataset, for classifying the resulting data. CART is a binary and recursive method that 
processes by asking binary answered questions and constructing the tree by adding the 
nodes additively. Here, each node is assigned as a class and then parent nodes are 
divided into child nodes, followed by each child node to become a parent node. This 
procedure continues until there is no observation left to assign. These classification and 
regression trees can have highly complex structures as well as they could have quite 
simple ones. 

2.2.1. Steps of CART Analysis 
 
The basic steps of Classification and Regression Tree analysis can be argued as tree 
construction by splitting the nodes with respect to splitting rules and each node is 
considered as a predicted class based on its distribution; stopping the growth of the tree 
and it probably would overfit and require another procedure; tree pruning in which 
simpler trees are produced from the raw one and selection of the best tree that fits the 
requirements. 

2.2.2. Tree Construction 
 
Let us say 𝑡!  is the parent node and 𝑡! and 𝑡!  are its left and right child nodes, 
respectively. Assignment of the children nodes is done with respect to the probabilities 
from the distribution of the data. 

2.2.2.1. Splitting Rules 
 
All the observations in the dataset are included in this first step— tree construction. 
Since the selection of the splitting rule depends on the type of the tree, whether it will be 
classification or regression tree, this constitutes one of the key points of this tree 
construction step. 
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2.2.2.1.1. Splitting Rules in Classification 
 
The splitting rule differs according to the type of the tree. In the case of a classification 
tree, the response variable includes classes in a binary form. Dealing with the classes, 
the splitting can be performed mainly by impurity functions or the Twoing rule. The 
former, impurity functions, can be defined via Entropy, chi-square, misclassification 
rate, maximum deviation, and Gini rules. Among these alternatives, the Gini rule is the 
most preferred one and its basic mathematical explanation can be found via Equation 
(2.1.). 

 

𝑖 𝑡 =  1−  𝑝!(𝑘|𝑡)!
!!! . (2.1.) 

 

In Equation (2.1.), 𝑘 refers to the class in the interval [1,𝐾] and 𝑝(𝑘|𝑡) denotes the 
conditional probability of 𝑘 of node 𝑡. 

Additionally, the splitting is done with respect to the change of this Gini impurity 
function by solving the maximization implied via Equation (2.2.). 

 

𝑎𝑟𝑔max!!!!!! ∆𝑖(𝑡) =  −  𝑝! 𝑘 𝑡!!
!!! +  𝑃! 𝑝! 𝑘 𝑡!!

!!! +  𝑃! 𝑝! 𝑘 𝑡!!
!!! . (2.2.) 

 

Here, in Equation (2.2), 𝑥! ≤ 𝑥!! can be considered as the best split question, where 
𝑗 ∈ [1,𝑀] and 𝑀 denotes the number of variables in the variable matrix 𝑋. 

Apart from the impurity functions in the splitting procedure, the latter option, the change 
in the Twoing rule, let us imply it via 𝑇, can be used as demonstrated in Equation (2.3.). 

 

∆𝑇 =  !!!!
!

 𝑝 𝑘 𝑡! − 𝑝(𝑘|𝑡!)!
!!!

!. (2.3.) 

 

The splitting can be performed via Twoing rule by maximizing the change of Twoing 
function as shown in Equation (2.4.), where 𝑥!! refers to the best splitting value. 

𝑎𝑟𝑔 max
!!!!!

!
(∆𝑇) (2.4.) 
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Among these splitting rules in classification, the most commonly used ones are Gini and 
Twoing rules. In comparison, when the focus is to build more balanced tress, the Twoing 
performs better; however, it works highly slower than Gini. Therefore, in the case of 
obtaining the classification trees in limited time, the choice of Gini rule would be more 
beneficial. 

2.2.2.1.2. Splitting Rule in Regression 
 
Regression trees require a different splitting rule since the response variable we are 
dealing with is not a class, but a numeric or continuous variable. 

Regression trees do not have classes. To predict, now we have response values for each 
variable, which are located in the variable matrix 𝑋. Therefore, splitting in the regression 
trees is performed by Squared Residuals Minimization Algorithm. This algorithm 
minimizes the summation of the expected variances of the resulting nodes. Accordingly, 
solving the minimization problem in Equation (2.5.), the splitting is completed. 

 

𝑎𝑟𝑔min
!!!!!

!
𝑃!𝑉𝑎𝑟 𝑌! +  𝑃!𝑉𝑎𝑟 𝑌! . (2.5.) 

 

In Equation (2.5.), 𝑉𝑎𝑟(𝑌!) and 𝑉𝑎𝑟 𝑌!  refer to the variances of the response vectors 
for left and right children of the parent node, respectively. 

2.2.2.2.  Node Splitting 
 
In each iteration of the tree construction procedure, the data are divided into smaller 
parts, in which parent nodes are divided into two children nodes. To illustrate, the 
division of the parent node is performed in terms of the probabilities of the parent node 
to be divided into the left child node defined as 𝑃!"#$ and the same parent node to be 
divided into the right child node demonstrated as 𝑃!"#!!. So, the division results in the 
selection of the best splitting value, 𝑥!!, computed according to the previously defined 
probabilities, where 𝑥! is the variable 𝑗 from the variable matrix 𝑋.  

The CART algorithm considers all the possible split values belonging to all variables 
and decides the best split via 𝑥! ≤ 𝑥!!, and maximizes the change of impurity or Twoing 
function in classification, and minimizes the change in the squared residual 
minimization algorithm function in regression.  
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Furthermore, the assignment of nodes as classes can be performed via the criteria 
defined in Equation (2.6.). 

 

!(!\!)!(!)!!(!)
!(!"#$)!(!)!!(!)

≥  !!
!!

. (2.6.) 

 

Here, 𝐶(𝑗\𝑖) implies the cost of classification of 𝑖 as 𝑗, 𝐶(𝑖\𝑗) demonstrates the cost of 
classifying 𝑗 as 𝑖; 𝜋(𝑖) and 𝜋(𝑗)are the prior probabilities of 𝑖 and 𝑗, respectively; 𝑁! and 
𝑁! are the number of classes 𝑖 and 𝑗 in datasets, respectively; 𝑁!(𝑡) and 𝑁!(𝑡) are the 
number of classes 𝑖 and 𝑗 in node; and this equation is written for all values of the class 𝑗 
(Lewis, 2000). 

2.2.3. Stopping the Tree Growth 
 
In the first step as the tree construction, the tree could grow out of control since it needs 
to keep growing until it is impossible to continue (possible reasons to stop are no 
observation left; all observations constitute exactly the same distribution; and where to 
stop is previously defined in the algorithm. Therefore, most of the time it overfits. In 
order to solve this problem, a pruning procedure must be performed later (Lewis, 2000; 
Timofeev, 2004). 

2.2.4. Tree Pruning and Selection of the Best Tree 
 
Simpler tree sequences must be defined in order to overcome the overfitting problem in 
the constructed tree. Therefore, the calculation of the cost of the complexity and the 
optimization are necessary. The pruning procedure can be applied by one of the 
following two ways: (1) optimization by minimum number of points, (2) cross-
validation. 

In the former way, a required number, 𝑁!"#, is defined as prior; and then, when the 
number of observations in the specified node becomes less than 𝑁!"#, the splitting 
process is stopped. The latter, cross-validation, fully depends on defining an optimal 
proportion between the complexity and the misclassification error (the trade-off in the 
first way was between impurity and complexity). As the complexity increases, the 
misclassification error exhibits a decrease and it approaches to zero when the complexity 
is on its maximum level. It is not preferred commonly due to its time consuming 
disadvantage.  

 

Finally, as a result of the performed steps, each observation in the learning sample is 
assigned as a class for a classification tree or as a response value for a regression tree. 
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Each of these assigned observations is now considered as a class or a response value for 
the new observations from the new dataset. There exist split questions similar to the 
previously defined ones (represented via 𝑥! ≤ 𝑥!!) for the new observations and based on 
the best split question, each of the new observations should be assigned to a class or a 
response value (Timofeev, 2004). 
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CHAPTER 3 

 

3. MODELING 

 

3.1. Gaussian Graphical Model in the Literature 

The basis of the Gaussian graphical model (Whittaker, 2001) is one of the most popular 
distributions, the Gaussian distribution. Since it is widely used not only in statistics but 
also in many global applications, it is a trustable approach in different types of 
modeling.  

Biological entities tend to interact with each other in several ways such as activation or 
inhibition, causing biological incidents and many disease pathways. Explanation of their 
relationship requires the use of graphs, and accordingly, networks. There exist different 
approaches to infer the presence or lack of interaction among biological entities. Some 
of them are directed graphs while some of them are not directed and not weighted. The 
former type is commonly used in gene regulatory networks; whereas, the latter, e.g., 
protein-protein interaction network, is quite enough to display the existence or absence 
of the relationship among its vertices, also called nodes. Gaussian graphical model is one 
of the most suitable approaches for this type of biological networks. Considering the 
system has 𝑝 nodes referring the proteins, it is assumed in GGM that the system 
represented by a random vector 𝑌 = (𝑌 ! ,… ,𝑌 ! )  displays a multivariate normal 
distribution (𝑌 ∼ 𝑁 𝜇, Σ )  with the mean vector 𝜇 = (𝜇!,… , 𝜇!)  and the 𝑝×𝑝 -
dimensional variance-covariance matrix Σ = (𝜎!")!", where 𝜎!" denotes the variance of 
𝑌 !  and 𝑌 !  if 𝑖 = 𝑗; otherwise, it is the covariance. 

In a simple graph, the biological entities such as genes, proteins are represented via 
nodes, and their interactions are demonstrated by directed or undirected edges depending 
on the type of biological process. In the basis of the Gaussian graphical model, 
undirected edges are created among vertices of the system. Additionally, the Gaussian 
graphical model assumes that the absence of an edge between two nodes in the graph 
refers to the conditional independence, meaning that given all the other vertices in the 
system, the two nodes are conditionally independent of each other, causing a zero partial 
correlation between these corresponding nodes in the variance-covariance matrix 
(Whittaker, 2001). Though those conditionally independent vertices have zero partial 
correlation with each other, they can still exhibit a high correlation if they are related 
with each other only by another node in the system. Therefore, the dependence and the 
independence between nodes are directly controlled by the inverse of the variance-
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covariance matrix Θ, which is called the precision matrix. The conditional independence 
between nodes is represented by zero entries (no partial correlation) in this precision 
matrix, causing the network exhibiting the direct relation between corresponding 
vertices (Whittaker, 2001). 

3.1.1. Graphical Models via Regression 

The main approach in the Gaussian graphical model is to derive the partial correlations 
from the precision matrix Θ , which can be inferred by a number of alternative 
techniques, such that GGM can be modeled by different regression functions by 
regressing each node against all the other nodes in the system. This approach can be 
used to optimize the maximum likelihood; and it enlarges the solution sets for the high-
dimensional data (Whittaker, 2001). 

Regressing a selected node (let us choose the last node, 𝑝, in the system) against all the 
other nodes can be formularized by Equation (3.1.). 

 

𝑌(!) =  𝛽𝑌(!!) + 𝜖. (3.1.) 

 

Here, 𝑌 = (𝑌 !! ,  𝑌 ! ) , where 𝑌  is the joint multivariate Gaussian vector, and 
𝑌 !! = (𝑌 ! ,… ,𝑌 !!! ) implies all the nodes but the last one, 𝑝 , in the system. 
Furthermore, 𝛽  is the regression coefficient, which controls the conditional 
independence of the nodes. Lastly, 𝜖 represents the error representing a multivariate 
normal distribution with mean 𝜇 and variance Σ. In order to demonstrate all the nodes by 
the last one, the mean vector and the variance-covariance matrix should be partitioned. 
For this purpose, the following illustrations shown in Equation (3.2.) are made 
(Meinshausen & Bühlmann, 2006). 

 

𝜇 =
𝜇(!!)
𝜇(!)

 and Σ =
Σ!!,!! 𝜎!!,!
𝜎!!,!! 𝜎!,!

. (3.2.) 

 

Here, 𝛍!𝐩 denotes the mean entries apart from the mean of the 𝑝th node, and 𝛍𝐩 shows 
the mean of the 𝑝th node. Accordingly, 𝜮!𝐩,!𝐩 presents the covariance structure where 
the 𝑝th node is excluded, 𝛔𝐩,𝐩 indicates the variance of the 𝑝th node and finally, 𝛔!𝐩,𝐩 
refers to the covariance between the 𝑝th node and the remaining nodes. Therefore, 𝜇 is a 
𝑝-dimensional mean vector and Σ describes the (𝑝×𝑝)-dimensional variance-covariance 
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matrix. Additionally, the conditional distribution of the last node, 𝑝, on all the other 
vertices in the system can be exhibited as in Equation (3.3.).  

 

𝑌(!)| 𝑌 !! = 𝑦 ~ 𝑁(𝜇! +  𝑦 −  𝜇!!
!  𝜎!!,!,𝜎!,!

!!

–!,!!
−  𝜎!!,!!  𝜎!!,!)

!!

–!,!
. (3.3.) 

 

Let us assume a point j from the given sample (1,… ,𝑝). If the regression coefficient 𝛽 
in this specified point equals to zero (𝛽! = 0), then, in this situation, it can be suggested 
that the last node 𝑝 and the node 𝑗 are conditionally independent given the rest of the 
vertices in the model. 

The regression coefficient 𝛽 can be demonstrated based on the precision matrix as can 
be seen below (Wit et al., 2010). 

 

𝛽 =  −𝜃!!,!/𝜃!,!. (3.4.) 

 

In Equation (3.4.), similar to the previous explanation, 𝜃!!,!  implies the precision 
between the 𝑝th node and the remaining nodes, and 𝜃!,! represents the precision of the 
𝑝th node itself. Based on this formula, it can be said that the regression coefficient 
determines the structure of the precision matrix. 

3.1.2. Strength of the Protein Regulation and Inference of the Gaussian Graphical 
Model from the Data 

Under a known structure where the edges are defined between two corresponding 
biological entities, the strength of the interaction between two nodes of a graph is 
directly measured with the precision matrix of a multivariate vector. Considering the 
random sample 𝑌!,𝑌!,… ,𝑌! with size 𝑛 of the multivariate vector 𝑌, the joint density 
function of 𝑌 can be written based on observation 𝑦! , 𝑖𝜖[1,𝑛] as illustrated in Equation 
(3.5.).  

 

𝑓 𝑦!;  𝜇, Σ =  (2𝜋)!!/! Σ !!/! exp −
1
2 𝑦! − 𝜇 !Σ!! 𝑦! − 𝜇 . (3.5.) 
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In this equation, ( . )! and  .  denote the transpose and the determinant of the given 
term, respectively. Thereby, from Equation (3.5.), the likelihood is presented via 
𝐿 𝜇, Σ =  𝑓(𝑦!;  𝜇, Σ)!

!!! , the log-likelihood can be written via Equation (3.6.). 

 

𝑙 𝜇, Σ = log 𝐿 𝜇,𝛴 =  − !
!
𝑙𝑜𝑔 Σ −  !

!
𝑦! − 𝜇 !Σ!!(𝑦! − 𝜇)!

!!! . (3.6.) 

 

Equation (3.6.) is based on a constant, which is independent of 𝜇 and Σ. Since the deal is 
to illustrate the strength with respect to the precision matrix, the log-likelihood can be 
displayed by Θ as shown in Equation (3.7.). 

  

𝑙 𝜇,Θ =  
𝑛
2 𝑙𝑜𝑔 Θ −

1
2 𝑦! − 𝜇 !Θ 𝑦! − 𝜇

!

!!!

. (3.7.) 

 

Here, the log-likelihood in terms of the precision matrix can be written as a log-
likelihood function by replacing 𝜇 with its maximum likelihood estimate 𝑦, as given 
below (Friedman et al., 2008). 

 

𝑙 Θ =  !
!
𝑙𝑜𝑔 Θ −  !

!
𝑇𝑟𝑎𝑐𝑒(𝑆Θ). (3.8.) 

 

In Equation (3.8.), 𝑇𝑟𝑎𝑐𝑒( . ) implies summation of the diagonal entries of 𝑆Θ and 
𝑆 =  (𝑠!")!" is the sample covariance matrix, where 𝑠!" is defined as in Equation (3.9.). 

 

𝑠!" =  
1
𝑛 (𝑦!

!
!

!!!

−  𝑦 ! )(𝑦!
! −  𝑦 ! ). (3.9.) 

 

Traditionally, a fully connected graph whose all nodes are connected to each other can 
be the deal of the defining the system via the inverse of the variance-covariance, 
precision matrix. In this kind of situations, the maximum likelihood estimate of the 
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covariance matrix is represented by the symbol Σ = 𝑆, causing the maximum likelihood 
estimate of the precision matrix to be denoted by Θ =  𝑆!!.  In contrast, in the absence 
of some defined interactions, the aim becomes to find the precision matrix Θ 
maximizing the log-likelihood (𝑙 Θ ) with respect to the zero constraints already defined 
by the known structure of the graph. However, there exists a challenge that most of the 
time, not only the strength of the interactions but also the structure of the network are 
not known at the beginning, causing the necessity of the inference of the general model 
with its edges and strength of these edges from the data. For this purpose, five major 
different approaches are presented in the literature (Friedman et al., 2007; Friedman et 
al., 2008; Friedman et al., 2015; Meinshausen & Bühlmann, 2006; Tibshirani et al., 
2005; Witten & Tibshirani, 2009; Yuan & Lin, 2007; Zou, 2006; Zou & Hastie, 2005). 
These are 

- Maximum likelihood approach, 
- Shrinkage approach, 
- Lasso-based approach, 
- Graphical lasso approach with L1 penalized likelihood and 
- Low-order partial correlations approach. 

 

Maximum Likelihood Approach 

Basically, the maximum likelihood approach can be regarded as the most traditional 
method in the literature and it is used to infer the Gaussian graphical model by 
maximizing the likelihood of the data. Considering the log-likelihood function of a 
GGM given by the corresponding equation and the estimate of the precision matrix 
maximizing this function, partial correlations can be easily obtained. The decision of the 
partial correlations that are significantly different than zero denoting the existing edges 
between nodes in the graph is made as the final model selection stage. The theory states 
when the zero entities are present as the true partial correlation. Accordingly, the partial 
correlations estimated from the sample covariance matrix are distributed with respect to 
Equation (3.10.). 

 

𝑓 𝑟, 𝑘 =  (1− 𝑟!)(!!!)/!
Γ !

!

𝜋(Γ !!!
!

. (3.10.) 

 

In Equation (3.10.), 𝑟 shows the partial correlation coefficient in univariate dimension 
and Γ( . ) indicates the gamma function. Moreover, the degree of freedom is denoted by 
𝑘 = 𝑛 − 𝑝 − 1, under the sample size 𝑛 and the number of variables 𝑝. 
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Additionally, a 𝑧 transformation applied to the partial correlations can be regarded as an 
alternative of the Equation (3.10.), which leads to an approximate test based on the 
normal distribution. 

 

𝑧 𝑟 =  
1
2 𝑛 − 𝑝 − 1 ln

1+ 𝑟
1− 𝑟 . (3.11.) 

 

In Equation (3.11.), 𝑛 is the sample size and 𝑝 is the number of variables. 

Another method is named as the likelihood ratio (LR) test and it can be used as denoted 
in Equation (3.12.) which has an asymptotic 𝜒!! distribution. 

 

𝐿𝑅 𝑟 =  −𝑛 log 1− 𝑟! . (3.12.) 

 

Finally, in order to discard partial correlations by testing the significant difference 
between entities different than zero of the regression coefficients and the corresponding 
graphical model, the graphical models are viewed as the regression-based.  

In general, the networks can be inferred in terms of the partial correlations, which are 
significantly different than zero by using one of these defined tests. However, it is not 
preferred to use the maximum likelihood solution reached from the given method with 
the deal of the regulatory network inference. The biggest disadvantage can be regarded 
as a fully connected graph where all the possible nodes are connected to each other, 
causing the precision matrix to consist of only ones. This situation may result in the 
absence of the inverse of the covariance matrix (Whittaker, 2001).  

 

Shrinkage Approach 

 In large-scale biological networks, the main idea is to improve the estimation of the 
covariance matrix, accordingly, the precision matrix. Considering the estimate of the 
covariance matrix is defined by Equation (3.13.), 𝜆 has a key role in the level of 
shrinkage.  

 

𝑆∗ =  𝜆𝑇 + 1− 𝜆 𝑆!. (3.13.) 
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In Equation (3.13.), 𝑆! =  !
!!!

𝑆 is the unbiased sample covariance, T denotes the low 
dimensional target having smaller number of parameters and 𝜆 𝜖 [0,1]  implies the 
shrinkage intensity.  

Here, the challenge is to propound an exchange solution between an unbiased estimator 
(sample covariance) with a large variance and an estimator with a lower variance with a 
high bias. The importance of 𝜆 controlling the shrinkage level arises from its role in the 
estimate of the precision matrix. In the interval of [0,1] for 𝜆, the zero value results in an 
equivalence of the estimator with exactly the sample covariance. However, as the value 
of 𝜆 increases to one, the estimator becomes more shrinked. In an attempt to obtain 
better statistical properties, the implementation of the regularized estimator 𝑆∗ can be 
preferred instead of using an unbiased estimator with a large variance or applying an 
estimator with lower variance, but larger bias. In the literature, the use of a combination 
of possible targets demonstrated by the equation is suggested since it provides a balance 
between a simpler target and more complicated targets, eliminating the problems arising 
from both unequal and off-diagonal covariance. 

A second deal here is to identify the optimal shrinkage density 𝜆. In the literature, the 
choice of this optimal shrinkage density is the minimization of the mean-squared error 
that is defined by Equation (3.14.). 

 

𝑅 𝜆 =  𝐸 𝜆𝑡!" + 1− 𝜆 !!!"!
𝜎!"

!

!,!

. (3.14.) 

 

Considering Equation (3.14.) and any target of 𝑇, the solution for the estimation of the 
density minimization can be easily determined. A function minimizing the mean-square 
error can be written in terms of the target equation. First, the loss function for the mean 
square needs to be defined as in Equation (3.15.) in which 𝐸(. ) is the expectation. 

 

𝑅 𝜆 =  𝐸 𝜆𝑡!" + 1− 𝜆 !!!"!
𝜎!"

!

!,!

+ 𝐸 𝑠!!! −  𝜎!"
!

!

. (3.15.) 
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Second, the equation can be minimized with respect to 𝜆 as given in Equation (3.16.). 

 

𝜆 =  
𝑣𝑎𝑟(𝑠!!")!!!

𝐸[𝑠!!"! ]!!!
. (3.16.) 

 

According to Equation (3.16.), it is expected that 𝜆 would increase as the variance of the 
sample covariance increases. By replacing the sample mean and variance with their 
actual values, the real shrinkage intensity value 𝜆 can be calculated.  

Here, the shrinkage estimator of the covariance matrix can be computed by the target T 
and the shrinkage intensity value 𝜆; and accordingly, the precision matrix and partial 
correlations can be obtained. As the final stage, the decision which partial correlations 
have values significantly different than zero needs to be made. The use of the shrinkage 
approach requires different statistical tests than the tests used in the maximum likelihood 
approach in order to estimate the covariance matrix. The partial correlations exhibit 
different sampling distributions in the use of the shrinkage approach. However, in the 
literature, it is numerically argued that the sampling distributions eventually exhibit the 
same form as it is in the maximum likelihood approach under different degrees of 
freedom, and these distributions can be estimated from the data. The suggested method 
is argued to be more suited under 𝑛 << 𝑝, and it enables to eliminate the partial 
correlations that the shrinked covariance matrix provides (Wit et al., 2010).  

 

Lasso-based Approach 

The biological systems tend to exhibit highly sparse structures. Under high dimensions, 
several approaches have been proposed for estimating these sparse networks from the 
data. In order to make the situation more obvious, the number of parameters, which are 
expected to be estimated can be reduced. The Lasso-based approach is specifically used 
in the inference of sparse networks. As previously mentioned, it is possible to view the 
system with respect to the regression models by regressing each node in the graph 
against all the other vertices. In this approach, the key point is to represent the precision 
matrix in terms of the matrix of the regression coefficients 𝛽. Therefore, the conditional 
independence among nodes can be represented either by the precision matrix or by the 
regression coefficients, which eventually corresponds to the same solution. The 
regression models are also useful for understanding the structure as well as for 
estimating the partial correlations. Inferring the networks by the regression models also 
provides well approximations. However, they carry the problem that they do not always 
result with a symmetric variance-covariance matrix, which is one of the most important 
requirements in the network inference procedure. In the shrinkage approach, by 
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minimizing the shrinkage intensity, the whole model is forced for the sparsity. However, 
this approach has the advantage of imposing sparsity to each node in the system. 
Considering a system having 𝑝 vertices, for predicting the last node 𝑝, the regression 
model can be constructed as Equation (3.17.). 

 

𝑌(!) = 𝑌(!!)𝛽 + 𝜀. (3.17.) 

 

In Equation (3.17.), 𝜀 denotes the independent and normally distributed error term, and 
𝛽 implies the regression coefficient. Commonly, the regression coefficient 𝛽 is defined 
by a least-square criterion. However, in the lasso-based approach, to impose the sparsity 
to the model, the regression coefficients are limited with respect to a L1-penalty value 𝜆, 
which is demonstrated via Equation (3.18.). 

 

𝛽
!
=  𝛽!"  <  𝜆! . (3.18.) 

 

Accordingly, the regression coefficients are used as a solution for the following 
representation shown in Equation (3.19.). 

 

𝑚𝑖𝑛! 𝑌 ! − 𝑌 !! 𝛽
!

!
+  𝜆! 𝛽

!
. (3.19.) 

 

In Equation (3.19.), 𝜆! denotes the tuning parameter of the representation. Since the 
larger value of 𝜆 causes larger number of zero coefficients in the estimated precision 
matrix, a sparse network can be regarded as a result of a larger penalty value 𝜆; thus, a 
complex network is a consequence of a smaller 𝜆. 

On the other hand, as previously mentioned, the structure information can also be 
inferred by regression models, and a zero regression coefficient corresponds to no edge 
between two corresponding edges, enabling us to identify the connected and separate 
vertices in requires a final statistical test in order to reveal whether the non-zero 
elements are significantly different than zero. However, the lasso-based approach has the 
advantage that it results with exact zero regression coefficients in the precision matrix. 
Therefore, no further statistical analysis is needed to estimate the model. On the 
contrary, it comes with a disadvantage that is does not always provide a symmetric result 
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which is when the node 𝑖 is regressed against all nodes in such a way that it can exhibit a 
zero regression coefficient with the node 𝑗; however, when the node 𝑗 is regressed 
against all the other vertices in the model, it may or may not result with a zero regression 
coefficient with the node 𝑖. In the procedure of the network inference, the symmetric 
results are highly preferred due to the definition of the precision matrix. Therefore, the 
lasso-based approach is open to argue due to its underlying disadvantage. In the 
literature, this problem is overcame by one of the two options which are the use of an 
AND rule assigning no edge if both the two regression coefficient states in Θ are zero; 
and the use of an OR rule assigning no edge if one of the two regression coefficient in Θ 
is computed as zero. Since the deal is to infer the biological network, the sparsity is the 
feature to consider. Hence, it can be clearly expressed that the OR rule results with a 
sparser network than the AND rule; which is the closer structure to a biological system. 
One additional situation here arises from imposing each individual node for the sparsity, 
causing the missing hubs. In biological systems, hubs are mostly faced with, constituting 
a high sparsity problem in this approach. One suggested approach as a solution for this 
problem is to create a boundary for the penalty value, which is defined in Equation 
(3.20.) in terms of the type 1 error 𝛼. As the alternative way, the optimal 𝜆 is detected 
from a distribution function as presented in Equation (3.20.). 

 

𝜆! = 2 !!!
!

 𝜙!! 1− !
!!!

. (3.20.) 

 

In Equation (3.20.), 𝜙 denotes the cumulative distribution function of the standard 
normal density. This formula controls the penalty value by not allowing it to over 𝛼 
(Tibshirani, 1996; Whittaker, 2001).   

 

Graphical Lasso Approach with L1-Penalized Likelihood 

It is previously mentioned that the biological networks constitute sparse structures. 
Therefore, imposing sparsity while inferring these networks is one of the most important 
issues. The Lasso-based approach is propounded as providing this advantage by 
imposing sparsity to each node in the system; however, it has argued as not always 
providing a symmetric result. The graphical lasso, also called glasso, approach is a 
technique satisfying both the sparsity and the symmetric estimation of the precision 
matrix in the network inference by only assigning the L1-penalty to the elements of the 
precision matrix directly, instead of assigning this penalty value to the regression 
coefficients at each node. Hereby, the optimization can be represented via Equation 
(3.21.). 
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𝑚𝑎𝑥 ! !!!
𝑙𝑜𝑔 Θ − 𝑇𝑟𝑎𝑐𝑒 𝑆Θ . (3.21.) 

 

In Equation (3.21.), Θ
!
=  𝜃!"!,!   and 𝜌 implies a non-negative tuning parameter. 

Then, the penalized likelihood optimization can be demonstrated via Equation (3.22.). 

 

𝑚𝑎𝑥! 𝑙𝑜𝑔 Θ − 𝑇𝑟𝑎𝑐𝑒 𝑆Θ  −  𝜆 Θ
!

. (3.22.) 

 

In Equation (3.22.), 𝜆 is the non-negative Lagrange multiplier. The optimal solution of 
the zero value for 𝜆  refers to the maximum likelihood estimation; however, as 𝜆 
increases, sparser networks are constructed, but the associated likelihood decreases. In 
some situations such as in high dimensional problems, the number of observations is 
much lower than the number of variables. In order to solve this challenge and to estimate 
a more stable precision matrix, the penalized log-likelihood is maximized iteratively at 
each node by demonstrating the situation with respect to a lasso regression problem. 
Here, a matrix for different penalty values is created and these penalty values are 
assigned for different elements of the precision matrix. Then, the following inequality is 
detected as illustrated in Equation (3.23.). 

 

𝑚𝑎𝑥! 𝑙𝑜𝑔 Θ − 𝑇𝑟𝑎𝑐𝑒 𝑆Θ −  Θ ∗ Λ
!
. (3.23.) 

 

In Equation (3.23.), Λ = (𝜆!")!" . 𝜆!" =  𝜆!"  denotes the matrix consisting of different 
penalty values for the distinct elements of the precision matrix (Friedman et al., 2014; 
Friedman et al., 2008). 

 

Low-order Partial Correlations Approach 

The large-scale problems in the inference of the Gaussian graphical model can be 
eliminated by the use of low-order correlations as the estimators of full-order 
correlations constituting GGMs. For this purpose, rather than calculating the correlation 
between two variables given the rest in the network, any two variables can be selected 
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given a subset of variables among all the subsets, and the correlation of the two selected 
nodes can be computed in order to obtain the full-order correlations. Equation (3.24.) 
demonstrates the propounded approach. 

 

𝜋!"|! =  !!"! !!"!!"

(!!!!"
! )(!!!!"

! )
. (3.24.) 

 

Here, in Equation (3.24.), 𝜌 implies the marginal correlations. This formula expresses 
that the first order correlation between two variables are calculated by a variable from 
the rest of the network at each individual time. Here, the correlation between the 
variables 𝑌(!) and 𝑌(!) is computed with respect to the variable 𝑌(!). In second-order 
partial correlations, de la Fuente et al. (2004) and Veiga et al. (2007) suggest a decision 
for eliminating an edge between two nodes in the network; that is, if either one of the 
following conditions is true, the edge is discarded: The marginal conditions can be zero, 
and/or at least one of the first-order partial correlations is zero. Magwene & Kim (2004) 
propound a more restricted suggestion that in order to agree upon the presence of an 
edge between two corresponding nodes, both the marginal correlations and all the partial 
correlations obtained from the first-order should refer to the presence of the edge. 
Magwene & Kim (2004), Wille et al. (2004) and Wille & Bühlmann (2006) propose the 
use of the first-order partial correlations in which 𝜌 is estimated both by the Pearson 
coefficient which is the traditional method and by the Spearman rank correlation as the 
alternative method, as well as considering the second-order partial correlation but no 
more. Castelo & Roverato (2009) come up with the idea considering up to 𝑞th-order 
partial correlations by applying a Monte Carlo method to provide computational 
efficiency for all dual combinations of variables in the network. 

 

3.2. Random Forest Algorithm 

3.2.1. Basis of the Random Forest Algorithm 

Machine learning can be categorized into two subgroups, which are the supervised 
learning and the unsupervised learning. The supervised learning includes the 
classification and the regression, while the unsupervised learning includes the clustering. 
In order to explain the basis of the random forest algorithm, only the supervised 
learning, classification and regression, is considered. In the classification, the deal is to 
assign each observation to the correct subgroups whose elements are previously known. 
This process is called the classification (Breiman, 2001).  
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Boosting 

Boosting is a method discarding the classification problems in which the weighting 
process of the successive trees depends mainly on the earlier predictors. A weighted vote 
is selected among all variables for the prediction. In the boosting, a strong ensemble is 
created in terms of all the other weak classifiers in order to produce a strong classifier 
committee. This definition leads to the explanation of a weak classifier. A weak 
classifier can be defined as not providing a better error rate than the random guessing 
provides. The data are modified a number of times, and to each version of the data is 
exposed to these weak classifiers sequentially, resulting in a weak classifier chain 
constituting the purpose of the boosting. Also, Adaboost can be put forward as an 
adaptive version of boosting not including any random elements, and creating a 
committee of trees by recalculating the weights of the old ensembles. 

 

Overfitting Problem  

In the standard classification trees, the branching process continues by splitting each 
node with respect to the best groups among all variables. In the selection of the best 
groups, the branching goes only with the measurements (mainly, generalization error, 
strength and correlation); however, it also goes with the noises of the measurements, 
causing the overfitting problem during the calculation. 

 

Bagging 

One approach to overcome the overfitting challenge is to choose each tree independently 
from the previously chosen ones in the forests. The bagging is an algorithm that provides 
such a solution. Hereby, it constructs each tree independently by selecting a bootstrap 
sample of the datasets and then it chooses the most voted tree for the prediction. Even 
though bagging reduces the variance very effectively, it is not totally enough to discard 
the overfitting problem since it causes bias during the variance reduction. Therefore, the 
adaptive bagging is suggested as the improved version of the bagging reducing both the 
variance and the bias effectively. Additionally, it increases the accuracy by improving 
the estimates of the main measurements (generalization error, strength and correlation) 
of combined ensembles of trees. Hence, it prevents the effect of the bagging error on the 
estimates of the measurements, which has a remarkable importance in the inference of 
biological systems. However, the adaptive bagging algorithm is designed to work well 
on large datasets, which is not always possible when the data come from biological 
experiments or personal health records. 
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Random Forest Algorithm 

We have previously mentioned that the random forest accepts the CART methodology 
in its theoretical basis. 

The random forest is a technique selecting the most voted class among the classes 
consisting of many generated trees. It is also defined as a combination of the tree-
structured classifiers in the forest, meaning that it is the classifier of the classifiers. The 
random forest has superiority on bagging as it constructs each tree with respect to a 
different bootstrap sample and it applies its own classification as the tree construction 
method. As opposed to the standard trees, in RF, small subsets of predictors are created 
and under the random selection, each node is split by using the best one among these 
randomly chosen predictors. In RFA, as the forest becomes including more trees, an 
upper boundary for the generalization error (𝑃𝐸∗) is generated in order to prevent the 
overfitting problem without requiring large datasets. That is the reason why we do not 
face with such a problem in RFA while other algorithms may result in overfitting 
challenge. 

 

𝑃!,! 𝑃! ℎ 𝑋,Θ =  𝑌 −  𝑚𝑎𝑥!!!𝑃! ℎ 𝑋,Θ =  𝑗 < 0 (3.25.) 

 

In Equation (3.25.), 𝑚𝑎𝑥!!!𝑃! ℎ 𝑋,Θ =  𝑗  denotes the maximum of all the 
probability values among all the values of the classifier except for its value on the point 
𝑌, while ℎ 𝑋,Θ  denotes the classifier for the random vector 𝑋. 

Since the main rule in RFA is to maximize the strength between nodes (in biological 
systems, they are proteins) having the lowest correlation, the adaptive bagging is a 
useful basis due to the reason that its well estimates of the main measurements of 
strength, correlation and generalization error with an additional process of limiting the 
generalization error by creating an upper boundary increase the accuracy of trees, 
motifs, modules and the resulting networks. 

The strength of each individual tree and the correlation between combinations of these 
trees determine the generalization error of a random forest. Moreover, the use of the 
random feature selection to split each node results in an error rate comparable to the 
others. Furthermore, the generalization error, strength and correlation can be viewed by 
the internal estimates, and these estimates are used to exhibit the response to the 
increasing number of features involved in the splitting step. The internal estimates can 
also be applied to measure the importance of the variable. As it is mentioned, in random 
forests, small communities (ensembles) are created and these ensembles vote for the 
most popular class. In order to create these small communities, the most common way is 
to generate random vectors denoted by "Θ". In order to refer the 𝑘th tree in the forest, 
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the random vector representing that specific tree is taken as Θ!. In a forest, random 
vectors are Θ!,Θ!,… ,Θ!!!, resulting in Θ! and also resulting in a classifier ℎ(𝑋,Θ!), 
where 𝑋 is an input vector and 𝑘 also represents the convergence of trees in the forest. 
These vectors control the growth of each tree in the small communities. There are ways 
to generate these random vectors, such as bagging, random split selection, and selecting 
the training set from a random set of weights. On the other hand, the accuracy of a 
random forest can be defined in terms of the generalization error, the strength of the 
individual tree classifiers and the dependence measure correlation between these 
classifiers. Hence, the generalization error (𝑃𝐸∗) of RFA is controlled by Equation 
(3.26.). 

 

𝑃𝐸∗  ≤
𝜌 1−  𝑠!

𝑠! . (3.26.) 

 

In this inequality, the mean value of the correlation between random vectors Θ and Θ! is 
shown via 𝜌, while Θ′ is the proposal tree in the next iteration. Here, 𝑠 denotes the 
strength of the small communities via 𝑠 =  𝐸!,!𝑚𝑟(𝑋,𝑌).  𝐸 implies the expectation 
between the random vectors 𝑋 and 𝑌, whereas, the margin function is indicated by 
𝑚𝑟(. ). 

There exist some key points in the random forest algorithm that need to be known how 
they are generated, in order to construct the trees accurately. For example, the strength 
and the correlation play key roles in the random forest algorithm as much as the 
generalization error.  

3.2.2. Accuracy Definitions of Random Forest Algorithm 

Previously, it is defined that a classifier demonstrating a resulting random vector Θ! can 
be exhibited as ℎ(𝑥,Θ!). Here, creating an ensemble of classifiers, the representation of 
this committee will be ℎ! 𝑥 , ℎ! 𝑥 ,… , ℎ! 𝑥 . By using these given properties, the 
margin function can be defined as follows: 

 

𝑚𝑔 𝑋,𝑌 =  𝑎𝑣!𝐼 ℎ! 𝑋 =  𝑌 −  𝑚𝑎𝑥!!!𝑎𝑣!𝐼 ℎ! 𝑋 =  𝑗 . (3.27.) 

 

In Equation (3.27.), 𝑌,𝑋 are the random vectors 𝑌 = 1 . . . 𝑗 , 𝐼 ℎ! 𝑋 = . .  is the 
indicator function and 𝑎𝑣!   is the average of the 𝑘th tree. 
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The upper boundary of the generalization error is mentioned previously. In order to 
expand it, now, it is defined how it is determined by the margin function. By extending 
it, the generalization error represented by the margin function can be shown as in 
Equation (3.28.). 

 

𝑃𝐸∗ =  𝑃!,!(𝑚𝑔 𝑋,𝑌 < 0). (3.28.) 

 

In Equation (3.28.), the generalization error is represented by 𝑃𝐸∗. 

As the rule of the random forest algorithm, the number of trees should be increased. In 
this situation, for all the ensemble (Θ!, …), the generalization error converges to the 
formula shown in Equation (3.29.) as previously defined. 

 

𝑃!,! 𝑃! ℎ 𝑋,Θ =  𝑌 −  𝑚𝑎𝑥!!!𝑃! ℎ 𝑋,Θ =  𝑗 < 0 . (3.29.) 

 

We argue that since the rule in the random forest is to maximize the strength and to 
minimize the correlation, the strength is one of the most important features in the 
random forest algorithm for the process of the tree construction. So, again by looking at 
the margin function, it is possible to define the strength of the ensemble of classifiers by 
Equation (3.30.). 

 

𝑠 =  𝐸!,!𝑚𝑟(𝑋,𝑌). (3.30.) 

 

Now it is appropriate to connect the generalization error and the strength as in following 
representation: 

 

𝑃𝐸∗  ≤ 𝑣𝑎𝑟(𝑚𝑟)/𝑠!. (3.31.) 

 

In Equation (3.31.), 𝑃𝐸∗ is the generalization error and 𝑠! refers to the square of the 
strength. 
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If we bring the correlation into these equations, following representation can be made. 

 

𝑣𝑎𝑟 𝑚𝑟 =  𝜌(𝐸!𝑠𝑑 Θ )!  ≤   𝜌𝐸!𝑣𝑎𝑟(Θ). (3.32.) 

 

In Equation (3.32.), 𝜌  is the mean value of the correlation between Θ  and Θ! , 𝐸 
represents the expectation, 𝑠𝑑  denotes the standard deviation and 𝑣𝑎𝑟  implies the 
variance.  

So, in order to define an upper boundary to the generalization error, all the previously 
defined formulas are combined and the result is seen in Equation (3.33.). 

 

𝑃𝐸∗  ≤  𝜌(1− 𝑠!)/𝑠!. (3.33.) 

 

In Equation (3.33.), 𝑠 is the strength as defined above. 

Here, the ratio !
!!
=  𝜌/𝑠!. 

Now, it is explained how RFA works in the use of the random features with a random 
input selection and with linear combinations of inputs, respectively; and then, these two 
will be compared to Adaboost. 

3.2.3. Ways for Random Forest Algorithm to Work 

Random forests using random features 

The randomly selected inputs constituting of the forests are collected to grow each tree. 
The characteristics of this procedure and its comparison with the adaboost are given 
below: 

- Its accuracy is as good as other procedures, 
- It is relatively robust to outliers and noise, 
- It is faster than bagging and boosting, 
- It gives useful estimates of error, strength, correlation and also variable 

importance and 
- It is simple. 
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We calculate internal estimates in order to decide how many features will be selected in 
each node. These internal estimates belong to the generalization error, the classifier 
strength and the dependence, which are also called as the out-of-bag (OOB) estimates. 

Various use of out-of-bag estimates can be listed as follows: 

- OOB estimates are used as an ingredient in estimates of the generalization error, 
- OOB estimates of variance are used to estimate the generalization error for 

arbitrary classifiers, 
- It is proved that OOB estimate is accurate as using a test set of the same size as 

the training set, 
- Using the OOB error estimate removes the need for a set aside the test set. 

 
As mentioned previously, the use of random features can be categorized into two ways: 
the random input selection, and the linear combinations of inputs. In the random input 
selection, the keywords are the CART methodology and the Forest-RI, while in the 
linear combinations of inputs part, the keyword is the Forest-RC. In comparison, 
Breiman’s results (2001) exhibit that the Forest-RI performs better than the adaboost, 
whereas, the Forest-RC works better than the Forest-RI.  

 

Random forests using the random input selection 

The simplest random forest created by random features is selected at random. At each 
node, it is needed to select a small group of input variables, and these variables then 
should be split on. The trees are growing by the use of the CART methodology, which is 
a method to do maximum size but do not prune. In the CART methodology, the main 
rule is that each node can have only two children. Then each child becomes nodes and 
has two children. This process continues, recursively. Figure (3.1) exhibits a visual 
representation of the CART methodology.  
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Figure 3.1.: Representation of classification tree construction. 

Thus, this procedure is denoted by the Forest-RI, and the size of the group is fixed. For 
the size of the group, two values are tried, the first one used only one randomly selected 
variable, and the second one is expected to use the first integer less than 𝑙𝑜𝑔!(𝑀 + 1), 
where 𝑀 is the number of inputs. In almost all datasets, it is possible to observe that 
random forest uses 10% of the data as a test set, and the remaining as the training set. 
For the training set, RFA runs twice, one for F=1 and the other one is for 𝑖𝑛𝑡(𝐹) <
𝑙𝑜𝑔!(𝑀 + 1). Breiman’s study (2001) argues that, when compared to the Adaboost, this 
procedure is considerably faster. 

 

Random forests using the linear combinations of inputs 

Considering 𝑀 the number of inputs and 𝐹 the fraction of 𝑀, under the condition that 
the number of 𝑀 is only a few and we take 𝐹 as a fraction of 𝑀 in order to increase the 
strength. While increasing the strength, it also causes a higher correlation. Another way 
to solve this problem is to use a procedure called the Forest-RC. In this procedure, the 
random linear combinations of a number of input variables are taken in order to define 
more features. At that point, by specifying 𝐿, the features can be generated, leading 
number of variables to be combined. At each given node, 𝐿 variables are randomly 
selected with coefficients, which are uniform random numbers in the interval [−1, 1], 
and added together. After 𝐹 linear combinations are generated, a search is performed for 
the best split. This process is called the Forest-RC. 

In order to view the effects of the strength and the correlation on the generalization 
error, following explanations are done. 

The main rule here is that, at each iteration, 10% of the data is splitted off as a test set. 
Keeping this rule in mind, 𝐹 (the number of random inputs) is changed in between 1 and 
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50 at each node, then in order to form a random forest, 100 trees are grown for every 50 
𝐹, and terminal values of the set error, the strength and the correlation are recorded. 
Eighty iterations are performed and at each of these eighty iterations, 10% of the data is 
splitted as a test set. The results from these eighty iterations are averaged, and in total, 
400.000 trees are grown in order to see the effects of the strength and the correlation. As 
a result, it is observed that both the strength and the correlation exhibit a small, but a 
steady increase in the applied study. According to the results, random forests with lower 
generalization errors have higher strength and a lower correlation, making them better. 
In comparison with the Adaboost, the forest-RC seems better than the forest-RI. 
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CHAPTER 4 

CHAPTER 

COPULAS 

In many biological systems, expression levels of the genes may exhibit non-normal and 
non-linear behavior with strong tail dependence; and, most of the time, they are not 
suited for the use of normality-based models. In such cases, copula modeling provides a 
suitable solution for the construction of the joint distributions. Under the definition of 
the marginal distributions, the use of copulas can be regarded as a very suitable method 
for inferring the joint distributions of the non-normal variables (Trivedi & Zimmer, 
2007). 

4.1. Basic Definition of Copula 

The copulas are the joint distributions specified with respect to their parameters and 
generated in terms of the defined marginal distributions. Thereby, copulas reflect the 
properties of the joint distributions. 

A basic joint distribution of a set of random variables, (𝑌!,… ,𝑌!), can be demonstrated 
by Equation (4.1.). 

 

𝐹 𝑦!,… ,𝑦! =  𝑃 𝑌! ≤ 𝑦!; 𝑖 = 1,… ,𝑚 . (4.1.) 

 

From this equation, the survival function of 𝐹 𝑦!,… ,𝑦!  can be written for 𝑚 = 1, 2, 3 
as it is seen in Equation (4.2) (Trivedi & Zimmer, 2007).  

 

𝐹 𝑦!,… ,𝑦! =  𝑃 𝑌! > 𝑦!; 𝑖 = 1,… ,𝑚 =  1− 𝐹 𝑦!  

𝐹 𝑦!,… ,𝑦! = 1− 𝐹! 𝑦! −   𝐹! 𝑦! +  𝐹!(𝑦!)𝐹!(𝑦!) 

𝐹 𝑦!,… ,𝑦! = 1− 𝐹! 𝑦! −   𝐹! 𝑦! −  𝐹! 𝑦! +  𝐹!" 𝑦!,𝑦! +  𝐹!" 𝑦!,𝑦!
+  𝐹!" 𝑦!,𝑦! − 𝐹 𝑦!,𝑦!,𝑦! . (4.2.) 
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For another illustration of the copula definition functions, let us assume 𝑋 and 𝑌 
continuous random vectors, and any pair of (𝑋,𝑌) under a joint cumulative distribution 
function (cdf), 𝐻(𝑥,𝑦), is expressed by Equation (4.3.). 

 

𝐻 𝑥,𝑦 =  𝐶 𝐹 𝑥 ,𝐺(𝑦)  ,          𝑥,𝑦 ∈ 𝑅 . (4.3.) 

 

In Equation (4.3.), 𝐹(𝑥) and 𝐺(𝑦) are the marginal distributions and 𝐶: [0, 1]! → [0, 1] 
is the copula (Genest & Favre, 2007). 

4.2. Frechet-Hoeffding Bounds on Copulas 

Considering the joint cumulative distribution functions with 𝑚  variables under 
univariate marginal distributions 𝐹!,… ,𝐹!, it can be clearly said that each of these 
marginal distributions will be located in the interval [0, 1].   

The lower and the upper boundaries for the joint cumulative distribution function can be 
defined as 𝐹! and 𝐹! by the Frechet-Hoeffding bounds as shown in Equations (4.4.) and 
(4.5.). 

 

 

𝐹! 𝑦!,… ,𝑦! = max 𝐹! −𝑚 + 1,
!

!!!

 0 =  𝑊, (4.4.) 

 

𝐹! 𝑦!,… ,𝑦! = min 𝐹!,… ,𝐹! = 𝑀. (4.5.) 

 

Accordingly, 

𝑊 =  max 𝐹! −𝑚 + 1,!
!!!  0  ≤ 𝐹 𝑦!, . . ,𝑦! ≤  min 𝐹!,… ,𝐹! = 𝑀. (4.6.) 
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In Equations (4.4.), (4.5.) and (4.6.), the upper boundary always corresponds to a 
cumulative distribution function (cdf), and the lower boundary refers to a cdf for 𝑚 = 2; 
however, for the lower boundary, in order to be a cdf for 𝑚 > 2, there is a need for some 
other conditions. 

Here, margins can be either univariate, bivariate or higher dimensional. In the former 
type of marginal distributions, the Frechet-Hoeffding boundaries are defined under the 
𝑚 -variate distributions: ℱ 𝐹!,… ,𝐹! .  Otherwise, the boundaries defined under the 
classes such as ℱ 𝐹!", 𝐹!"  and ℱ 𝐹!",𝐹!",𝐹!"  (Trivedi & Zimmer, 2007). 

 

4.3. Sklar’s Theorem on Copula Functions 

According to the Sklar’s theorem, a copula under 𝑚-dimension can be represented by a 
function 𝐶 from [0,1]! to [0,1]. In order to conclude this statement, the following three 
conditions need to be satisfied: 

1. 𝐶 1,… , 1,𝑎!, 1,… , 1 =  𝑎! for all values of 𝑎! must be in the interval [0,1] and 
it is applicable for every 𝑛 ≤ 𝑚. 

2. 𝐶 𝑎!,… ,𝑎! =  0 if 𝑎! = 0 for any  𝑛 ≤ 𝑚. 
3. 𝐶 is 𝑚-increasing. 

 

The first property states that, among 𝑚 variables, if the marginal probability of all the 
𝑚 − 1 variables is 1, then the joint probability of the 𝑚 outcomes is the same with the 
remaining ones. 

According to the second property, which, in some situations, is also called the grounded 
property, if any of the outcomes results in a zero probability; then the joint probability of 
all outcomes becomes equal to zero. 

Finally, the third property stands for the non-negativity of the 𝐶-volume of any 𝑚-
dimensional interval.   

The second and the third properties are common in multivariate cumulative distribution 
functions. 

Considering these given definitions, it can be said that an 𝑚-dimensional distribution 
function can represent an 𝑚-copula with all its marginal distributions under 𝑈(0,1). 

A continuous distribution function with 𝑚  variables 𝐹(𝑦!,… ,𝑦!)  can view the 
relationship between distribution functions and the copulas with its univariate margins 
𝐹! 𝑦! ,… ,𝐹! 𝑦!  and the inverse functions 𝐹!!!,… ,𝐹!!! . Afterwards, the following 
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transformations can be done in order to represent marginal distributions and quantile 
functions in terms of uniformly distributed variables. Let us assume 

𝑦! =  𝐹!!! 𝑢! ∼  𝐹!,… ,𝑦! =  𝐹!!! 𝑢! ∼  𝐹!, 

 

in which 𝑢!,… ,𝑢! denotes the uniformly distributed variates.  

 

𝐹 𝑦!,… ,𝑦! =  𝐹 𝐹!!! 𝑢! ,… ,𝐹!!! 𝑢!  

                          = 𝑃 𝑈! ≤  𝑢!,… ,𝑈! ≤  𝑢!  

    =  𝐶 𝑢!,… ,𝑢! . (4.7.) 

 

Equation (4.7.) represents the copula associated with the distribution function (Trivedi & 
Zimmer, 2007). Here, 𝑦 ∼ 𝐹  and 𝐹! 𝑦! ,… ,𝐹! 𝑦! ∼ 𝐶 , 𝑈 ∼ 𝐶 . Then 
𝐹!!! 𝑢! ,… ,𝐹!!! 𝑢! ∼ 𝐹.  

 

4.4. Different Copula Types 

 4.4.1. Gaussian (Normal) Copula 

In the literature, it is suggested that the copula function can be proposed in terms of non-
normal distributions with continuous variables for the model selectivity. The following 
equation demonstrates this situation. 

 

𝐶 𝑢!,𝑢!;  𝜃 =  𝜙! 𝜙!! 𝑢! ,𝜙!! 𝑢! ;  𝜃

=  
1

2𝜋(1− 𝜃!)!/! 𝑥
−(𝑠! − 2𝜃𝑠𝑡 + 𝑡!

2(1− 𝜃!) 𝑑𝑠𝑑𝑡
!!! !!

!!

!!! !!

!!
. 

(4.8.) 

 

In Equation (4.8.), 𝜙 refers to the cumulative distribution function of the standard 
normal distribution, 𝜙!(𝑢!,𝑢!)  stands for the bivariate 𝜙  under the correlation 
parameter 𝜃 in the interval (-1,1).  
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It is analyzed that as the correlation parameter, also named as the dependence parameter, 
converges to the boundaries of its interval, the value of the Gaussian copula approaches 
to the Frechet-Hoeffding lower and upper boundaries, respectively. This flexibility of 
the Gaussian copula enables the dependence ranging from negative values to positive 
values equally, referring to the equivalent dependence (van Ophem, 1999). 

4.4.2. Gumbel Copula 

Let us assume that −𝑙𝑜𝑔𝑢! is denoted by 𝑢!. Then, it is possible to write the Gumbel 
copula function as Equation (4.9.). 

 

𝐶 𝑢!,𝑢!;  𝜃 = exp − 𝑢!! + 𝑢!!
!
! . (4.9.) 

 

Lower and upper boundaries of the Gumbel copula are defined as 1 and ∞, where 1 and 
∞ refer to the independence since they are also called the Frechet-Hoeffding bounds, 
and the interval [1,∞) defines the level of independence. No negative correlation is 
enabled in the Gumbel copula as it has a strong right tail but a weak left tail. Moreover, 
the Gumbel copula is suitable when the data are strongly correlated for high values 
while are weakly dependent for the lower values (Trivedi & Zimmer, 2007). 

4.4.3. Clayton Copula 

The defined interval for the Clayton copula is (0,∞). When the dependence parameter 𝜃 
becomes closer to infinity, it can be mentioned that it approaches the upper boundary of 
the Frechet-Hoeffding bounds. However, in contrast to the Gumbel copula, the 
dependence would never converge to the lower Frechet-Hoeffding bound. The 
representation of the Clayton copula is given in Equation (4.10.). 

 

𝐶 𝑢!,𝑢!;  𝜃 = (𝑢!!! + 𝑢!!! − 1)!!/!  . (4.10.) 

 

The Clayton copula has a strong left tail and a weak right tail (Trivedi & Zimmer, 2007). 

4.4.4. Frank Copula 

The Frank copula has its dependence in the interval (−∞,∞), where −∞ and ∞ imply 
the Frechet-Hoeffding lower and upper bounds, respectively, and 0 denotes the 
dependence between marginal distributions.  
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𝐶 𝑢!,𝑢!;  𝜃 =  −𝜃!! log 1+ !!!!!!! !!!!!!!
!!!!!

. (4.11.) 

 

In the Frank copula, the negative dependence is allowed between margins and it has 
symmetric tails referring to the dependence. Hence, it is appropriate to infer the models 
having strong positive and negative dependence between marginal distributions (Trivedi 
& Zimmer, 2007).  

4.5. Measure of the Dependence 

Assuming the random pair of continuous variables (𝑋,𝑌)  sampled as 
𝑋!,𝑌! ,… , 𝑋!,𝑌! , 𝐻(𝑥,𝑦) can be suggested as characterizing the behavior of their 

joint distribution. As stated previously, 𝐹(𝑥) and 𝐺(𝑦) are the corresponding marginal 
distributions of 𝑋 and 𝑌 continuous variables providing their individual behavior; while 
the copula 𝐶(𝑥,𝑦) is the copula function identifying their joint behavior of dependence. 

Considering the Frechet-Hoeffding bounds, if the copula function 𝐶  is one of the 
previously defined 𝑊 or 𝑀, 𝑌 can be viewed as a monotone decreasing or increasing 
deterministic function of 𝑋. 

 

𝑊 𝑢, 𝑣 =  max (0,𝑢 + 𝑣 − 1) or 𝑀 𝑢, 𝑣 = min (𝑢, 𝑣). (4.12.) 

 

In the former situation, which is 𝐶 =𝑊 , 𝑌  can be suggested as a monotonically 
decreasing function of 𝑋 and when 𝐶 = 𝑀, 𝑌 is regarded as a monotonically increasing 
function of 𝑋. Thereby, it can be said that the copula function 𝐶 is ranged between these 
defined extremes from 𝑊 to 𝑀, illustrated by Equation (4.13.). 

 

𝑊 𝑢, 𝑣 ≤ 𝐶 𝑢, 𝑣 ≤ 𝑀 𝑢, 𝑣 . (4.13.) 

 

Equation (4.13.) is written for all values of 𝑢, 𝑣 in the interval [0,1]. 

Let us assume the rank pairs (𝑅, 𝑆) ranging from 1 to 𝑛; denoted by 𝑅!, 𝑆! ,… , 𝑅!, 𝑆!  
in which the rank of 𝑋! from the sample (𝑋!,… ,𝑋!) is implied by 𝑅!, and 𝑆! refers to the 
rank of 𝑌! the continuous variable sample (𝑌!,… ,𝑌!) and the ranks are assigned as the 
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certain values rather than under continuity in order to exclude problems may arising 
from the zero probability for 𝑋 and 𝑌.   

Redesigning the ranks of both R and S by 1/(n+1), the unit square [0,1]! is obtained. 
Accordingly, the empirical copula 𝐶! can be written in terms of these redesigned ranks 
as shown below in Equation (4.14.).  

 

𝐶! 𝑢, 𝑣 =  !
!

1 !!
!!!

≤ 𝑢, !!
!!!

≤ 𝑣!
!!! . (4.14.) 

 

Thereby, 𝐶! can be regarded as a rank-based estimator of normally distributed 𝐶 for any 
given (𝑢, 𝑣) pair. 

Among the rank-based estimators, Spearman’s Rho and Kendall’s Tau can be 
propounded as the most common two methods for measuring the dependence (Genest & 
Favre, 2007). 

4.5.1 Spearman’s Rho 

The basis of the Spearman’s Rho method calculates the correlation either between the 
rank pairs (𝑅! , 𝑆!) of C or between ( !!

!!!
, !!
!!!

) of 𝐶! . Therefore, the equation of the 
Sperman’s Rho can be written as in Equation (4.15.). 

 

𝜌! =  !!!! !!!!
!
!!!

!!!! ! !!!! !!
!!!

!
!!!

 𝜖 −1,1 . (4.15.) 

 

In Equation (4.15.), 𝑅 and 𝑆 stand for the averages of ranks computed via !
!

𝑅!!
!!!  and 

!
!

𝑆!!
!!! , respectively (Genest & Favre, 2007). 

4.5.2. Kendall’s Tau 

The basis of this approach is to compute the dependence in terms of the number of 
concordant pairs of (𝑋! ,𝑌!) and 𝑋! ,𝑌!  represented by 𝑃! and the number of discordant 
pairs denoted by 𝑄!; and it is illustrated by Equation (4.16.). 
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𝜏! =  !!!!!!
!

=  !
!(!!!)

𝑃! − 1. (4.16.) 

 

In Equation (4.16.) a pair is called as concordant when 𝑋! − 𝑋! 𝑌! − 𝑌! > 0 ; 
otherwise, a pair is referred to as discordant when 𝑋! − 𝑋! 𝑌! − 𝑌! < 0. Here, it is 
obvious that these intervals do not include zero, which occurs under the zero probability 
when 𝑋 and 𝑌 are considered as continuous variables. In order to make this situation 
more clear, a number of transformations can be suggested; however, it is not included 
here since in this study, the Spearman’s Rho is chosen as the measure of dependence 
(Genest & Favre, 2007).  
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CHAPTER 5 

 

APPLICATION AND RESULTS 

 

5.1. Accuracy Measures 

In our study, in order to evaluate and compare the results of both algorithms, firstly, the 
true positive (TP), true negative (TN), false positive (FP) and the false negative (FN) 
numbers are calculated, and based on these values, the precision, recall, F-measure, false 
positive rate (FPR), false discovery rate (FDR) and the Matthew’s correlation coefficient 
(MCC) values are computed. Here, TP implies that an interaction found between two 
proteins as a result of the algorithm actually exists. TN denotes that an absence of an 
interaction between two proteins is not suggested as present at the end of the analysis. 
FP stands for the situation that the algorithm finds an interaction between two nodes 
where the interaction does not actually exist, and finally, FN illustrates that the 
algorithm misses an interaction that is present between two vertices in the real situation 
(Ayyıldız, 2013).  

Table 5.1.: TP, TN, FP and FN values in terms of actual and predicted situations. 

 

 

Actual Situation 

True False 

Predicted Situation True True Positive (TP) False Positive (FP) 

False False Negative (FN) True Negative (TN) 

 

Among the accuracy measures, the precision is represented in terms of TP and FP values 
in the following equation. 

Precision =  !"
!"!!"

. 

In the evaluation, higher values of the precision refer to better results in the 
inference of systems. 

Similarly, recall, F-measure and specificity values can be computed as below. 

(5.1) 
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Recall =  !"
!"!!"

. 

The recall value is also called as the True Positive Rate (TPR) of the analysis; therefore, 
higher values of TPR are preferred for correctly inferred networks.  

F−Measure = 2× !"#$%&%'( × !"#$%%
!"#$%&%'( ! !"#$%%

. 

The F-Measure is one of the most accurate measures since it controls both the precision 
and recall. However, in some situations, zero TP causes zero recall and zero precision, 
resulting in an undefined F-measure value. When it is applicable, higher F-measure is 
preferred for the evaluation. 

The false positive rate (FPR) can be computed as 1− 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 and the smaller value 
of FPR is preferred for performing accurate evaluations. 

FPR =  !"
!"!!"

. 

Similarly, the false discovery rate (FDR) can be written as 1− 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and it refers 
to the mislabeled positive ratio among all elements labeled as positive. 

FDR =  !"
!"!!"

. 

Finally, the balanced measure ranges from -1 to 1 and refers to the fully 
misclassification of the elements on the exact ratio of -1 and fully correct classification 
on 1 is represented by the Matthew’s Correlation Coefficient (MCC). MCC is 
demonstrated by the following formula. 

MCC =  !"#!$!!"#!$
(!"!!")(!"!!")(!"!!")(!"!!")

. 

 

5.2. Description of the Simulated Data 

In this study, in order to perform our suggested algorithms on the data under the 
normality assumption, we use the huge package in the R programing language and 
generate scale-free data under different dimensions. The scale-freeness is one of the 
main topological features of the biological systems and it is related with the connectivity 
of the nodes (Barabási et al., 2011). The scale-free system implies that the network is 
very sparse and there are few nodes, called hubs, having high connections with other 
nodes and many nodes having just few links with other nodes. 

5.2.1. Aim of Using Copulas 

Dealing with the biological data, it is not always possible to face with the normality 

(5.2) 

(5.5) 

(5.6) 

(5.3) 

(5.8) 
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assumption. For example, the gene expression levels can exhibit a wide range of 
distributional varieties. Thus, the algorithms used in the description of biological 
networks should provide equal performances as much as possible on any kind of data in 
order to avoid the problems arising from the distributional characteristics of the data. 
Unfortunately, current techniques perform the analyses with respect to their specific 
basis without regarding features of the data. On the other hand, since we suggest a non-
parametric model for overcoming these problems, we need to detect whether our 
proposed non-parametric algorithm (RFA) provides equal outputs on the data far away 
from the normality assumption as it provides on the normally distributed data. 
Furthermore, Gumbel, Frank and Clayton copulas, which are dependent on a single 
parameter, rather than a variance-covariance matrix denoting all pairwise correlations, 
do not have explicit solutions in high dimensional datasets (Wawrzyniak, 2006). 
Therefore, we apply the Gaussian Copula as it has explicit form for all dimensions and 
can describe positive defined covariance matrix. Hence, the Gaussian copula is 
performed with respect to exponential, student-t and log-normal marginal distributions 
in order to reveal the performance of the suggested algorithm under different joint 
distributions, and to compare the results of the GGM and RFA outputs under various 
measures of accuracies. 

5.3. Application via GGM 

In inference of the Gaussian graphical model (GGM) via the graphical lasso (glasso) 
from the biological data, the algorithm requires a penalty value, 𝜆 as stated in previous 
chapters. The choice of 𝜆 has a remarkable importance since it is directly responsible for 
the structure of the network. The lower value of 𝜆 causes a very complex system while 
higher value of the penalty results in very sparse networks. There exist a couple of 
criteria such as AIC (Akaike, 1973), BIC (Kass & Wasserman, 1995; Schwarz, 1978), 
RIC (Donoho & Johnstone, 1994; Foster & George, 1994) and StARS (Liu et al., 2010) 
in order to compute the optimal penalty value. In our analyses with glasso, we calculate 
the optimal 𝜆 according to the RIC criterion and compute our estimated precision via the 
glasso package in R (Friedman et al., 2015). Then, in order to convert the estimated 
precision to the adjacency matrix, we use 0.10 as the threshold value in all analyses 
based on GGM due to its suitability in biological systems. Later, in the evaluation, we 
apply the multivariate normal distribution and non-normal distributions generated via 
distinct copulas. Furthermore, to detect any change in the accuracy, we run the model 
under 10, 20, 50 and 100 number of genes/proteins, i.e., (10x10), (20x20), (50x50) and 
(100x100)-dimensional Θ, respectively. In all the calculations, we set the number of 
observations per gene/protein to 20, which is particularly reasonable for high 
dimensional systems. Moreover, in comparison of both estimated systems, we use a 
predefined structure of the population precision. This structure is directly obtained from 
the multivariate normal distribution via the huge package, whereas for non-normal data, 
we produce them originally as the following way. 

— We generate a binary structure (0 and 1) of the network under scale-freeness. 
Then we defined our independent margins from fully exponential (with rate 5), 
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fully student-t (with degree of freedom 5) and fully log-normal (with mean 10 
and standard deviation 2) distributions. Afterward, we bind these margins and 
correlation structure by the Gaussian copula. Finally, we compute the recall, 
precision, F-measure, false positive rate (FPR), false discovery rate (FDR) and 
the Matthew’s correlation coefficient (MCC) based on 1000 Monte Carlo runs 
from both approaches in order to observe the changes in accuracy. 

 

5.4. Application via RFA 

Since RFA is a non-parametric approach which does not deal with the variance-
covariance matrices and the threshold values, the basis of RFA depends on whether 
there is an interaction between nodes or not (Breiman, 2001). Therefore, a number of 
iterations are performed depending on the size of the data and nodes, i.e., proteins, are 
bound to each other iteratively by maximizing the strength while minimizing the 
correlation. In this way, after the two closest proteins are bound to each other with 
respect to their instance values from the confusion matrix provided by RFA as an output 
at the end of each iteration, this process can continue either by completely binding two 
new proteins to each other, or by binding an individual protein to the previously bound 
nodes. The underlying iterations continue until there are no related proteins left to bind. 
Accordingly, in the resulting matrix, all the proteins can be bound to each other as well 
as there can be individual proteins which are not interacting any of the other proteins in 
the system. The latter system is called as a sparse network, which is highly common 
when the deal is the biological data. 

In the application of RFA in R by using the package ‘randomForest’ (Breiman & Cutler, 
2012), first, we create a symmetric and empty adjacency matrix whose row and column 
names are the protein labels. When RFA starts to proceed, it creates a confusion matrix 
consisting of instance values at the end of each run. Since our purpose is to have the 
maximum strength between two nodes with very few correlation, we accept the instance 
values in the confusion matrix as equivalent to the strength; and at each run, we aim to 
select the nodes having the maximum strength. After we choose the proteins from the 
confusion, we go back to the original data consisting of observations, which belong to 
the proteins, and then label them with a common name. Afterward, the new form of the 
data becomes exposed for another random forest run, and again, the couples having the 
maximum strength are chosen from the confusion and labeled together in the original 
observation data. This process continues until there is no remaining protein to bind. 
During this iterative process, at the end of each run, we record the protein names before 
labeling them together, jump into the adjacency matrix that we create at the beginning of 
the procedure and write “1” to the correct cells that they refer to. Constructing the 
network, we do not only cope with the protein pairs, but also with the motifs and the 
modules. This occurrence arises from the situation that, in a specific run, a protein shares 
the maximum strength with a previously bound couple, goes and binds to them and these 
new complex proteins constitute a structure together. In such cases, in order to find out 
from which protein in the couple (or motif, or module) the single one binds to, we check 
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the first confusion matrix in which all the proteins stay single and search for the 
maximum strength among all possible combinations of those proteins. Finally, in the 
adjacency matrix, the cell having the labels of the chosen proteins is filled with “1”. 
When the procedure ends due to no protein to bind the empty cells of the adjacency 
matrix are filled with “0”s. In the end, the adjacency matrix becomes ready to be 
compared with the true precision matrix. 

5.5. Outputs of the Algorithms 

Analyses under the Normality Assumption 

In order to evaluate and compare the performances of both algorithms in terms of their 
accuracies, multivariate normally distributed data are generated under the dimensions 
10, 20, 50 and 100 proteins consisting of 20 observations per protein under scale-free 
structure. Table 5.2 indicates the outputs of the analyses from the simulated data. 

Table 5.2.: GGM and RFA results based on 1000 Monte Carlo runs under multivariate normally 
distributed data; and 10, 20, 50 and 100 number of nodes in the system, respectively. 

GGM and RFA Analyses under Normality Assumption 

 GGM RFA 

Perfection 
Level 

10 
Proteins 

20 
Proteins 

50 
Proteins 

100 
Proteins 

10 
Proteins 

20 
Proteins 

50 
Proteins 

100 
Proteins 

Precision 1 0.5207 1.0000 0.5000 0.2414 0.5832 0.5715 0.5936 0.6313 

Recall 1 0.3926 0.3448 0.0017 0.0003 0.3741 0.3573 0.3429 0.3389 

F-Measure 1 0.4476 0.5128 0.0034 0.0007 0.4558 0.4397 0.4347 0.4410 

FPR 0 0.1406 0.0000 0.0001 0.0000 0.1039 0.0454 0.0148 0.0061 

FDR 0 0.4793 0.0000 0.5000 0.7586 0.4168 0.4285 0.4064 0.3688 

MCC 1 0.2773 0.5571 0.0265 0.0079 0.3160 0.3824 0.4261 0.4510 

   

Considering the outputs of both algorithms under the multivariate normality, even 
though the results are highly close to each other in all accuracy measures, it can be 
observed that RFA provides relatively higher accuracy than GGM. Specifically, the 
precision outputs demonstrate that, especially in 100 dimensions, RFA provides a much 
better result than GGM. The true positive rate, demonstrated via the recall value, 
exhibits a remarkable difference between GGM and RFA, especially, in 50 and 100 
dimensions. From the perspective of the false discovery rate (FDR), it is obvious that 
RFA has better results, specifically, in 100 dimensions. MCC results show that, in the 
dimensions 50 and 100, RFA provides much better results than GGM.  
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The basis of GGM is the Normal distribution; therefore, it is expected for GGM to 
perform well on multivariate normal data. However, even under normality, the 
nonparametric approach RFA provides much better results, in particular, the dimension 
of the networks increases. 

Analyses under the Non-normality 

Biological data mostly are not normally distributed. Mistaken normality assumption may 
cause problems in inference of biological networks. Therefore, the choice of the 
algorithm that is the most suited one to the data has a significant importance in the 
model construction. In order to test how both algorithms perform when the normality 
assumption is not satisfied, data are generated from exponential, student-t and log-
normal marginal distributions under dimensions 10, 20, 50 and 100 proteins by using the 
Gaussian copula. Tables 5.3 and 5.4 demonstrate the results of analyses. 

Table 5.3.: GGM and RFA results based on 1000 Monte Carlo runs under non-normally distributed data 
whose margins are fully student-t with degrees of freedom 5; and whose number of nodes are 10, 20, 50 
and 100. NC refers to the not-computable value. 

Margins are Student-t 

 GGM RFA 

Perfection 
Level 

10 
Proteins 

20 
Proteins 

50 
Proteins 

100 
Proteins 

10 
Proteins 

20 
Proteins 

50 
Proteins 

100 
Proteins 

Precision 1 0.0998 0.0000 0.0000 0.0000 0.0069 0.0166 0.0000 0.0000 

Recall 1 0.0618 0.0000 0.0000 0.0000 0.0061 0.0154 0.0000 0.0000 

F-Measure 1 0.0763 NC 0.0000 NC 0.0065 0.0160 NC NC 

FPR 0 0.1223 0.0552 0.0208 0.0102 0.0359 0.0955 0.0216 0.0104 

FDR 0 0.9002 1.0000 1.0000 1.0000 0.9931 0.9834 1.0000 1.0000 

MCC 1 -0.0739 -0.0743 -0.0288 -0.0143 -0.0316 -0.0830 -0.0294 -0.0144 

 

From Table 5.3., it is seen that when the margins come from the student-t distribution 
with the degree of freedom 5, the precision and the recall values are slightly higher in 
GGM than RFA under 10-dimensional systems. While under 20-dimensional systems, 
RFA provides slightly higher results in terms of the same accuracy measures. On the 
other hand, in 50 and 100-dimensional systems, both GGM and RFA provide exactly the 
same outputs. 

Under fully exponential marginal distributions with rate 5 as presented in Table 5.4., the 
results of RFA and GGM are very close and there is no any particular advantage in 
modeling the system either RFA or GGM. 
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Table 5.4.: GGM and RFA results based on 1000 Monte Carlo runs under non-normally distributed data 
whose margins are fully exponential with rate 5; and whose number of nodes are 10, 20, 50 and 100. NC 
refers to the not-computable value. 

Margins are Exponential 

 GGM RFA 

Perfection 
Level 

10 
Proteins 

20 
Proteins 

50 
Proteins 

100 
Proteins 

10 
Proteins 

20 
Proteins 

50 
Proteins 

100 
Proteins 

Precision 1 0.0000 0.0000 0.0000 0.0000 0.0183 0.0127 0.0016 0.0041 

Recall 1 0.0000 0.0000 0.0000 0.0000 0.0151 0.0115 0.0009 0.0036 

F-Measure 1 NC NC NC NC 0.0166 0.0121 0.0011 0.0038 

FPR 0 0.1220 0.0552 0.0208 0.0102 0.1778 0.0938 0.0216 0.0174 

FDR 0 1.0000 1.0000 1.0000 1.0000 0.9817 0.9873 0.9984 0.9959 

MCC 1 -0.1562 -0.0743 -0.0289 -0.0143 -0.1757 -0.0860 -0.0282 -0.0149 

 
 

On the other side, as seen in Table 5.5., under the log-normal margins' data, the 
performance of RFA is better than or at least equal to GGM based on all measures 
except the false positive rate (FPR) which exhibits better results in GGM than RFA. 
Furthermore, under this condition, we observe that GGM cannot calculate most of the 
scores due to its zero true positive estimates. 

Finally, in the assessment of the mixture distributions whose margins come from 
exponential and log-normal distributions together with normal densities as presented in 
Table 5.6. and Table 5.7., it is found that RFA significantly performs better than GGM 
in all measures except false positive rate and, similar to previous analyses, GGM cannot 
be computed in most of these scores even under lower dimensional systems. 
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Table 5.5.: GGM and RFA results based on 1000 Monte Carlo runs under non-normally distributed data 
whose margins are fully log-normal with mean 10 and standard deviation 2; and whose number of nodes 
are 10, 20, 50 and 100. NC refers to the not-computable value. 

Margins are Log-normal 

 GGM RFA 

Perfection 
Level 

10 
Proteins 

20 
Proteins 

50 
Proteins 

100 
Proteins 

10 
Proteins 

20 
Proteins 

50 
Proteins 

100 
Proteins 

Precision 1 NC NC NC NC 0.0000 0.0000 0.0000 0.0000 

Recall 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

F-Measure 1 NC NC NC NC NC NC NC NC 

FPR 0 0.0000 0.0000 0.0000 0.0000 0.1463 0.0939 0.0275 0.0120 

FDR 0 NC NC NC NC 1.0000 1.0000 1.0000 1.0000 

MCC 1 NC NC NC NC -0.1730 -0.0988 -0.0333 -0.0155 

 

 

Table 5.6.: GGM and RFA results based on 1000 Monte Carlo runs under non-normally distributed data 
whose margins are half log-normal with mean 10 and standard deviation 2 and, half normal with mean 10 
and standard deviation 2; and whose number of nodes are 10, 20, 50 and 100. NC refers to the not-
computable value. 

Margins are Half Normal and Half Log-normal 

 GGM RFA 

Perfection 
Level 

10 
Proteins 

20 
Proteins 

50 
Proteins 

100 
Proteins 

10 
Proteins 

20 
Proteins 

50 
Proteins 

100 
Proteins 

Precision 1 NC NC NC NC 0.2000 0.0385 0.0000 0.0000 

Recall 1 0.0000 0.0000 0.0000 0.0000 0.2222 0.0526 0.0000 0.0000 

F-Measure 1 NC NC NC NC 0.2105 0.0444 NC NC 

FPR 0 0.0000 0.0000 0.0000 0.0000 0.1951 0.1381 0.0550 0.0143 

FDR 0 NC NC NC NC 0.8000 0.9615 1.0000 1.0000 

MCC 1 NC NC NC NC 0.0260 -0.0745 -0.0477 -0.0169 
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Table 5.7.: GGM and RFA results based on 1000 Monte Carlo runs under non-normally distributed data 
whose margins are half exponential with rate 5, and half normal with mean 10 and standard deviation 2; 
and whose number of nodes are 10, 20, 50 and 100. NC refers to the not-computable value. 

Margins are Half Normal and Half Exponential 

 

GGM RFA 

Perfection 
Level 

10 
Proteins 

20 
Proteins 

50 
Proteins 

100 
Proteins 

10 
Proteins 

20 
Proteins 

50 
Proteins 

100 
Proteins 

Precision 1 NC NC NC NC 0.1000 0.1053 0.0000 0.0248 

Recall 1 0.0000 0.0000 0.0000 0.0000 0.1111 0.1053 0.0000 0.0303 

F-Measure 1 NC NC NC NC 0.1053 0.1053 NC 0.0272 

FPR 0 0.0000 0.0000 0.0000 0.0000 0.2195 0.0939 0.0375 0.0241 

FDR 0 NC NC NC NC 0.9000 0.8947 1.0000 0.9752 

MCC 1 NC NC NC NC -0.1041 0.0113 -0.0390 0.0056 

 

5.6. Description of Real Data 

Even though the simulated data provide highly close representations of the real 
biological situations, it is still necessary to test the algorithms on the real observations to 
assess the real life problems.  

In this study, we use two real datasets. The first one belongs to JAK-STAT pathway 
controlling the mammalian immune system and consisting of 38 proteins (Ayyıldız, 
2013). On the other side, the second one is the cell signaling data consisting of 11 
proteins (Sachs et al., 2005).  

 

JAK-STAT Pathway 

JAK-STAT is a ligand-specific pathway that controls a biological process, gene 
expression, by enabling transcriptional regulation without a need for second messengers. 
In this pathway, information provided by the extracellular polypeptide signals is 
transferred directly to the target gene promoters in the nucleus by the intervention of 
transmembrane receptors (Aaronson & Horvath, 2002).  

In fact, due to the lack of real biological data, the data generated by the Gillespie 
algorithm is used in this study. The Gillespie algorithm (Gillespie, 1977) is one of the 
most common and practical exact stochastic simulation algorithms for the simulation of 
biological networks. In the simulation, all the initial numbers of molecules are set to 100 
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for all 38 proteins and the reaction rate constants are equal to the values given in the 
study of Maiwald et al., 2010, which are biologically validated. The list of totally 38 
proteins is presented in the Table 5.8 and the simple representation of the true JAK-
STAT system is shown in Figure 5.2. 

 

 

 

Figure 5.1.: Simple representation of the JAK-STAT pathway from Nature Reviews (Leonard, 2001). 

 

Outputs of both algorithms of the JAK-STAT pathway can be seen in Table 5.9. 

Considering these results and excluding the F-Measure values from the evaluation 
measures because of the undefined number obtained from the GGM analysis, it can be 
clearly observed that RFA provides better results than GGM with higher true positive 
rate denoted via the recall value. 
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Table 5.8.: List of proteins in the JAK-STAT pathway whose description is based on the study of 
(Maiwald et al., 2010). 

Molecule 
Symbol 

Molecule Name Molecule 
Symbol 

Molecule Name 

P1 Receptor IFNAR1 P20 IRF9n 
P2 TYK P21 Free TFBS 
P3 Receptor Tyk Complex P22 Occupied TFBS 
P4 Receptor IFNAR2 P23 mRNAn 
P5 JAK P24 mRNAc 
P6 Receptor Jak Complex P25 SOCS 
P7 IFN_Free P26 Stat2n_IRF9 
P8 IFNAR Dimer P27 STAT2n 
P9 Active Receptor Complex_Stat2c P28 CP 
P10 STAT2c_IRF9 P29 ISGF-3c_CP 
P11 Active Receptor Complex_STAT2c P30 Stat1c*_Stat2c*_CP 
P12 IRF9c P31 NP 
P13 STAT2c P32 Stat1n*_Stat2n*_NP 
P14 STAT1c P33 ISGF-3n_NP 
P15 Active Receptor Complex_STAT2c_STAT1c P34 Occupied TFBS_NP 
P16 STAT1c*_STAT2c* P35 PIAS 
P17 ISGF-3c P36 PIAS_ISGF-3n 
P18 ISGF-3n P37 STAT1n 
P19 STAT1n*_STAT2n* P38 IFN_influx 
 

Table 5.9.: GGM and RFA results on the JAK-STAT pathway. 

JAK-STAT Pathway 

 Perfection Level GGM RFA 

Precision 1 NC 0.1074 

Recall 1 0.0000 0.0611 

F-Measure 1 NC 0.0779 

FPR 0 0.0000 0.0502 

FDR 0 NC 0.8926 

MCC 1 NC 0.0141 
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Cell Signaling Pathway 

The cell signaling pathway consists of 11 proteins to describe the phosphorylation of the 
molecules listed in Table 5.10 under various experimental conditions of the human 
primary naive CD4T2 cells measured from 11672 red blood cells. The visual 
representation of this true cell signaling system can be seen in Figure 5.2.  

 

 

 

Figure 5.2.: Simple illustration of the true cell signaling pathway. 

 

In Figure 5.2, the molecules are represented by octagons, and the interactions among 
these molecules are denoted by arrows, where the size and the shape of the nodes are 
drawn as the same for each molecule, not indicating any difference in terms of the 
biological role of the molecules. 
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Table 5.10. List of species in the cell signaling pathway whose description is based on the study of Sachs 
et al., 2005. 

Measured 
Molecule 

Antibody Specificity 

Raf Phosphorylation at S259 
Erk1 and Erk2 Phosphorylation at T202 and Y204 
P38 Phosphorylation at T180 and Y182 
jnk Phosphorylation at T183 and Y182 
AKT Phosphorylation at S473 
Mek1 and Mek2 Phosphorylation at S217 and S221 
PKA substrates Detects proteins and peptides containing a phospho-Ser/Thr residue 

with arginine at the -3 position  
PKC Detects phosphorylated PKC-𝛼, -𝛽I, -𝛽II, -𝛿, -𝜖, -𝜂 and -𝜃 isoforms 

only at C-terminal residue homologous to S660 of PKC- 𝛽II 
PLC-𝛾 Phosphorylation at Y783 
PIP2 Detects PIP2 

PIP3 Detects PIP3 

 

 

Table 5.11.: Cell Signaling results from both GGM and RFA. 

Cell Signaling Pathway 

 Perfection Level GGM RFA 

Precision 1 NC 1.0000 

Recall 1 0.0000 0.0444 

F-Measure 1 NC 0.0851 

FPR 0 0.0000 0.0000 

FDR 0 NC 0.0000 

MCC 1 NC 0.1685 

 

Table 5.11 indicates the results of GGM and RFA in this cell signaling pathway. From 
the outputs, it is seen that RFA finds more accurate measures while GGM cannot 
calculate most of the measures. 
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Human Gene Expression Pathway 

The human gene expression pathway consists of 100 proteins in which each molecule 
constitutes 60 observations. Different from the Cell Signaling pathway, here, true 
precision of the gene expression pathway is unknown, causing us not to compute the 
accuracy measures for the comparison of GGM and RFA outputs. Therefore, for this 
human gene expression dataset, we run both GGM and RFA by excluding the 
calculation of the accuracy measures based on TP, TN, FP and FN, and instead, we only 
record the interactions that are found in the resulting precision matrices.  

The results exhibit that GGM poorly performs in this dataset by not catching even one 
interaction between molecules, whereas, RFA can detect the new interactions as well as 
capturing validated interactions validated from the databases STRING and 
GeneMANIA.  

Table 5.12 illustrates the interactions between proteins that are detected via RFA; and 
among these interactions, the interactions between HMOX1 and IL8, RPS4Y1 and 
EIF1AY, and between DDX3Y and KDM5D are validated based on the String Database.  

Table 5.12.: The list of interactions between molecules that are recorded as final results of RFA from the 
human gene expression data.  

Interactions Pair of Molecule Names 
 Molecule 1 Molecule 2 

Biologically Validated Interactions HMOX1 
 

IL8** 
*  RPS4Y1 

 
EIF1AY** 
  DDX3Y 

 
KDM5D** 
  TNFRSF19 

 
LEPREL1* 
 New Interactions   

Close Localization based on STRING DB EPS8 
 

STEAP1 
  G0S2 

 
IL8 
  ABCC6 

 
KDM5D 
  MOXD1 

 
LEPREL1 
 Others based on STRING DB EPS8 

 
RGS13 
  TCEAL2 

 
F13A1 
  STEAP1 

 
HLA-A 
 ** Validated interactions based on both STRING-DB and 

GeneMANIA-DB 
*Validated interactions based on GeneMANIA-DB 

 

In order to exhibit the true situation of PPIs among selected proteins via RFA, we 
convert the probe IDs into protein IDs. Figure 5.3 displays the true situation of the 
proteins and their true interactions based on String Database. Considering the 
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localization of the proteins in Figure 5.3, especially EPS8 and STEAP1, and also G0S2 
and IL8, ABCC6 and KDM5D, and MOXD1 and LEPREL1 seem close to each other, 
which can be considered as possible new biological pathways.  

 

 

Figure 5.3. The true representation of the selected proteins and their interactions based on the STRING 
Database at the end of the RFA analysis. The smaller nodes correspond to the proteins whose 3D 
structures are known, while the 3D structures of the bigger nodes are known. 

Afterwards, we display the true gene interactions among these captured nodes via RFA 
from the GeneMANIA database. Figure 5.4 exhibits the true gene interactions with co-
expression and Figure 5.5 illustrates the true gene interactions with co-localization and 
genetic interactions, in which blue edges refer to the co-localization of the genes, while 
green edges among genes indicate the genetic interactions.  

Similar to the STRING DB results, some of the nodes are observed close to each other 
including EPS8 and STEAP1, ABCC6 and KDM5D, which were highly close in 
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STRING-DB results, STEAP1 and HLA-A, and DDX3Y and KDM5D based on 
GeneMANIA.  

 

 

 

 

 

Figure 5.4.: The true gene interactions with co-expression of the selected genes based on GeneMANIA 
Database. The gray nodes with white lines in refer to the selected genes via RFA, while the fully gray 
nodes without white lines in correspond to the added genes by the GeneMANIA database. 

 

Considering these gene interactions with co-expression based on the GeneMANIA 
Database represented in Figure 5.4, it can be clearly said that RFA is strong enough to 
capture all these interactions from the data with no false positives in terms of co-
expressions. 

  



 
 

57 

 

Figure 5.5.: The true gene interactions with co-expression of the selected genes based on GeneMANIA 
Database. The gray nodes without white lines in refer to the selected genes via RFA, while the fully gray 
nodes without white lines in correspond to the added genes by the GeneMANIA database. 

 

Considering the true network based on the GeneMANIA Database in terms of co-
localization and genetic interactions of the detected genes via RFA, it can be seen that a 
green edge, a genetic interaction, is validated between TNFRSF19 and LEPREL1, which 
is signed with “*” in Table 5.12. 
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CHAPTER 6 

 

OUTLOOK, DISCUSSION AND CONCLUSION 

 

Outlook 

 

The first part of this thesis gives a brief introduction about the importance of biological 
network inference studies and how it becomes one of the most popular and promising 
research area in the bioinformatics. 

The second part consists of two independent subsections; one is the basic explanation of 
network, types of biological networks, and different approaches to infer the networks 
from the biological data. Among the alternatives, the differential equation is performed 
as the random forest algorithm. The second subsection is the CART methodology, which 
takes place into this thesis since it constitutes the basis of the random forest algorithm. 

In the third part, the detailed explanations of both algorithms are presented with their 
mathematical details. First, GGM is explained by providing a couple of approaches to 
infer GGM from the model. Among alternatives, the lasso based graphical approach 
with the penalized likelihood is chosen since it is the most suitable one due to its 
tendency to construct sparse models. Second, RFA is examined in terms of its basis, 
advantages and accuracy. 

In the fourth chapter, the basics of copulas and the description of different copula types 
are presented by implying their advantages and disadvantages and finally, the fifth 
chapter indicates the application steps and results. Here, the accuracy measures are 
illustrated via tabulated results of both GGM and RFA. 

Discussion 

In this study, it is aimed to infer the biological systems by applying both parametric and 
non-parametric algorithms and to evaluate the performances of the algorithms in terms 
of their accuracies in order to examine the biological network construction and the 
inference process from a different perspective.  

The Gaussian graphical model is one of the commonly used approaches due to its 
popular basis, Gaussian distribution. However, biological data most of the time are not 
normally distributed, causing problems during the network construction. Since the 
correct and accurate inference of the biological systems carries a huge importance in 
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exploring disease pathways and many other biological incidents, the choice of the 
algorithm is responsible for the flow of this interdisciplinary procedure.  

Since the basis of GGM is the Gaussian distribution, it is expected for GGM to perform 
most powerful and provide remarkably better results than any other non-parametric 
algorithm on the multivariate normally distributed data. However, the results exhibit that 
the suggested non-parametric algorithm, random forest, provides much better results 
than GGM in terms of all accuracy measures. On the other hand, with respect to its basic 
distribution, GGM is also expected to exhibit lower performance on the non-normally 
distributed data than RFA. Considering the results obtained from the analyses of both 
algorithms on non-normally distributed data whose marginal distributions are 
exponential, student-t and log-normal, which are generated by copula, GGM and RFA 
provide similar results, but still we observe improvement in the estimates of RFA 
regarding the output of GGM. One reason of this situation may arise from the use of the 
Gaussian copula. Even though the margins are chosen from exponential, student-t and 
log-normal distributions, still the basis of the Gaussian copula may cause some 
normality signs; therefore, it may provide an equal condition for both algorithms.  

In the real data simulations, RFA again provides much better results than GGM in all 
applicable accuracy measures. Additionally, since RFA is a nonparametric approach, it 
does not require the definition of any external value, such as thresholds used for 
rendering the precision matrices binary or penalty values directly controlling the 
structure of the network, i.e., sparsity level, can be regarded as one of the important 
issues in the model inference. 

Considering all these outputs and the advantages, it is obvious that RFA provides at least 
the same results, but mostly, it provides better accuracy measures than GGM. Therefore, 
it can be confidentially suggested as a strong and promising alternative of GGM. 

Conclusion and Future Work 

Modeling of protein-protein interactions is one of the most important issues in 
understanding disease pathways, thereby, personalized medicine. Constructing these 
interaction networks accurately enables biologists and physicians to make the best 
decision for their research or their patients. In this study, we have demonstrated that 
nonparametric models are easy and highly strong alternatives for inferring biological 
networks. Both the generated data and the real pathway have exhibited that without 
requiring external values, interactions can be modeled accurately by the nonparametric 
models.  

For the future studies, in order to overcome the normality assumption in the definition of 
the data used to evaluate the performance of both algorithms under the non-normality 
assumption, instead of using the Gaussian copula, the description may be extended by 
D-vine (Schirmacher & Schirmacher, 2008) copula. Additionally, some other 
nonparametric models, such as CART (Timofeev, 2004) and Hidden markov model 
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(Yoon, 2009) may be applied as alternatives to the Gaussian graphical models in an 
attempt to infer the biological systems. Finally, the performance of GGM can be 
improved by suggesting another model selection criteria in place of STARS and RIC, 
such as AIC (Akaike, 1973) and ICOMP for the selection of the optimal penalty value 𝜆. 
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