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ABSTRACT 

 

 

SIMILARITY RATIO BASED ALGORITHMS TO GENERATE SAR 

SUPERPIXELS 

 

AKYILMAZ, EMRE 

Ph.D., Department of Geodetic and Geographic Information Technologies 

Supervisor: Assoc. Prof. Dr. Uğur Murat Leloğlu 

 

April 2017, 106 pages 

 

Synthetic Aperture Radar (SAR) has the capability of working in all weather 

conditions during day and night that makes it attractive to be used for automatic 

target detection and recognition purposes. However, it has the problem of high 

amount of multiplicative speckle noise. Superpixel segmentation as a preprocessing 

step is an oversegmentation technique that groups similar neighboring pixels into 

regularly organized segments with approximately the same size. As boundaries of 

the objects are important elements to be traced, superpixels should adhere well to 

the edges. This can only be achieved by an algorithm robust to speckle noise. In 

this thesis, similarity ratio is first developed as a new metric that is robust to 

speckle noise. Secondly, Mahalanobis distance is used instead of Euclidian so that 

the superpixel can fit better to shapes in the real world. Thirdly, the constant 

determining the relative importance of radiometric and geometric terms is replaced 

with an adaptive function. The performance of combinations of similarity ratio 

with Euclidean distance (SREP), Mahalanobis distance (SRMP) and Mahalanobis 

distance with adaptive scheme (SRAMP) are evaluated by conducting experiments 

on real and synthetic images. The experimental results showed that similarity ratio 
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and adaptive Mahalanobis proximity (SRAMP) outperforms the other approaches 

in terms of uniformity, compactness and visual appearance. 

 

Keywords: Image Processing, Synthetic Aperture Radar (SAR), Segmentation, 

Similarity Ratio, Superpixels, Remote Sensing  
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ÖZ 

 

 

SAR SÜPERPİKSELLER ÜRETİMİ İÇİN BENZERLİK ORAN TABANLI 

ALGORİTMALAR 

 

AKYILMAZ, EMRE 

Doktora, Jeodezi ve Coğrafi Bilgi Teknolojileri Bölümü 

Tez Yöneticisi: Doç. Dr. Uğur Murat Leloğlu 

 

Nisan 2017, 106 sayfa 

 

Sentetik Açıklı Radar(SAR) sistemleri gece, gündüz ve tüm hava şartlarında 

çalışabilen aktif bir radar tipidir. Bu nedenle, SAR görüntüleri otomatik hedef 

tespiti ve otomatik hedef teşhisi işlemlerinde oldukça fazla kullanılmaktadır. Bütün 

bunların yanı sıra SAR görüntülerinin kalitesi ve anlaşılabilirliği sahip oldukları 

benek gürültü nedeni ile oldukça düşük düzeydedir. Bir görüntünün anlamlı 

parçalara ayrıştırılmasını temel alan ayrıştırma işlemi görüntüde bulunan 

piksellerin komşularına bakılarak, benzer komşu piksellerin birleştirilmesine 

dayanıyorsa, bu işlem sırasında süperpiksel olarak ifade edilen bölütlenmiş parçalar 

ortaya çıkmaktadır. Nesne ve bölgelerin sınırları takip edilmesi gereken yapılar 

oldukları için oluşturulan alanların nesne ve bölgelerin sınırlarına düzgün 

oturmaları gerekmektedir. Bu nedenle, SAR görüntülerinde bulunan benek 

gürültüye karşı gürbüz bir algoritmaya ihtiyaç duyulmaktadır. Bu çalışmada, ilk 

olarak benzerlik oranı benek gürültüye karşı yeni gürbüz bir metrik olarak 

geliştirilmiştir ve sonrasında bu metrik üretilen süperpiksellerin görüntü üzerindeki 

şekillere daha iyi oturması için Öklid uzaklığı yerine, Mahalanobis uzaklığı ile 

birlikte kullanılmıştır. Daha sonra radyometrik ve geometrik terimleri arasındaki 
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önemi belirleyen sabit değer, adaptif bir fonkisyon ile değiştirilmiştir. Benzerlik 

oranı ile birlikte kullanılarak geliştirilen Öklid (SREP), Mahalanobis (SRMP) ve 

adaptif Mahalanobis (SRAMP) algoritmalarının performansları, gerçek ve sentetik 

görüntüler üzerinde deneyler yapılarak literatürde bulunan benzer algoritmalar ile 

karşılaştırılmışlardır. Deneysel sonuçlar, benzerlik oranı ve adaptif Mahalanobis 

yakınlık (SRAMP) yönteminin diğer yaklaşımlara göre tek biçimlilik, kompaktlık 

ve görsel görünüm açısında daha iyi performans sergilediğini ortaya koymuştur. 

 

Anahtar kelimeler: Görüntü İşleme, Sentetik Açıklıklı Radar (SAR), Bölütleme, 

Benzerlik Oranı, Süperpiksel, Uzaktan Algılama 
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CHAPTER 1  

 

INTRODUCTION 

 

 

 

Segmentation is a widely-used technique that can be considered as one of the 

important tasks in automatic analysis of remote sensing images. If an algorithm 

partitions an image into non-overlapping homogeneous segments, many 

perceptually salient aspects of this complex imagery can be captured for further 

analysis. This type of segmentation groups pixels of an image into uniform 

regions that are called superpixels. In this introductory chapter, problems related 

with the superpixel algorithms are defined, then the major contributions of this 

thesis are stated and finally the organization of the thesis is presented.  

 

1.1. Problem Description 

Superpixelling has emerged as an oversegmentation approach over the last 

decade. This type of superpixel based segmentation transforms an image data 

from pixel based to segment-based data as opposed to nonsuperpixel-based 

segmentation. These segments are the elementary units of the superpixels rather 

than the pixels of the image. This process is fundamental for various applications 

of Synthetic Aperture Radar (SAR) image analysis since an effective 

segmentation can reduce image complexity and enhance interpretation and 

understanding of the segments by their defined boundaries.  

There are many superpixel segmentation algorithms for various applications of 

target detection and recognition. The major issue associated with these approaches 



 

2 
 

is the lack of robustness. They are not robust enough to produce reliable 

segmentation of SAR images due to the existence of multiplicative speckle noise. 

For amplitude SAR images, information is available in the form of intensities. If 

these intensities are clearly identified, a reliable evaluation of their similarities 

would be obtained to be used to group them for successful segmentation of the 

image. The speckle noise appearing on SAR images is multiplicative in nature. In 

the presence of such noise, the intensities cannot be clearly defined. In this case 

the algorithm not only reduces an analyst ability to resolve fine detail on the 

image but makes automatic segmentation much difficult. Alternative to existing 

superpixel segmentation approaches, effective and robust superpixel generating 

approaches are proposed in this thesis.  

 

1.2. Contributions of the Thesis 

In this thesis, the first contribution is the development of a radiometric distance 

metric as similarity ratio term which is robust enough for multiplicative speckle 

noise in SAR images. Secondly, this term is combined with Mahalanobis distance 

instead of Euclidean term for Similarity Ratio and Mahalanobis Proximity 

(SRMP) algorithm. The use of Mahalanobis distance term results superpixels with 

elongated shapes to fit the complex structure of the real world. This type of 

formulation leads to better performance on SAR images. Finally, the balancing 

parameter that determines the relative importance of geometric and radiometric 

similarity distance terms whose best value should be chosen for the image is 

considered. Instead of a predefined constant, its value is adaptively determined for 

each superpixel pair as a function of the average values of the superpixels means. 

This both improved the performance of the algorithm and made parameter free. 

To achieve these contributions, Similarity Ratio and Euclidean Proximity (SREP) 

and Similarity Ratio and Mahalanobis Proximity (SRMP) algorithms are 

formulated. In each formulation, similarity ratio and proximity terms are linearly 

combined and parameterized with a constant that controls the superpixel sizes and 
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their spatial extent. Since this parameter is kept constant for all clusters during the 

course of the algorithm, it might produce irregular shaped superpixels rather than 

compact ones within homogeneous regions. This is especially the case for heavily 

speckled SAR images. Therefore, the constant parameter needs to be determined 

during the course of the SRMP algorithm in an adaptive way. This is performed 

with a function developed and inserted into SRMP. In this way, the proposed 

similarity ratio based adaptive Mahalanobis proximity algorithm (SRAMP) adapts 

the intensity similarity and the spatial proximity for each pair of clusters. To 

explore the segmentation capabilities of the adaptive SRMAP as compared to 

SRMP, SREP and four other existing algorithms that are considered as state-of-

the-arts methods in the literature, experiments are conducted by using speckled 

synthetic images and real SAR images.  

 

1.3. Organization of the Thesis 

After the introductory chapter, some basic SAR imaging essentials are presented 

in Chapter 2 for those researchers who have no background in radar imaging. The 

sole purpose of this chapter is to acquaint such readers with SAR imagery. Since 

SAR image tone varies between very dark to very bright depending upon the 

target scanned, the material presented in this chapter will be useful for interpreting 

the images and the results presented in this thesis. 

An extensive literature review of the previous research efforts for nonsuperpixel- 

based and superpixel-based segmentation algorithms are presented in Chapter 3. 

As superpixel based segmentation algorithms are reviewed, a research outcome 

has clearly emerged: development of a robust superpixel segmentation algorithm 

to multiplicative speckle noise in SAR images that generates perceptually 

meaningful and representationally efficient superpixels. 

Alternative to Euclidean distance, Mahalanobis distance is recommended and 

developed as another proximity metric in Chapter 4. For the two different spatial 
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distance metrics, similarity ratio based algorithms are formulated in Chapter 5. 

These are named as similarity ratio and Euclidean proximity (SREP) and 

similarity ratio and Mahalanobis proximity (SRMP) algorithms, respectively. The 

derivation of the similarity ratio is also presented in this chapter. As a final task in 

this chapter, adaptive Mahalanobis proximity (SRAMP) algorithm that adapts the 

similarity ratio and the spatial distance for each cluster pair is presented.  

Segmentation performance of SRAMP as well as SREP and SRMP algorithms are 

evaluated and the results are presented in Chapter 6. For illustrative purposes, 

applications of superpixel-based clustering are given in Chapter 7. Finally, 

summary and conclusions with suggestions for further research are presented in 

Chapter 8.  
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CHAPTER 2  

 

SAR IMAGING ESSENTIALS  

 

 

 

In this chapter, some basic synthetic radar imaging essentials are presented. The 

purpose of this chapter is to acquaint the researchers who have no or little 

background in radar imaging with the basic concepts and definitions used in this 

thesis. 

 

2.1. Historical Background 

Airborne radar imaging has been available since 1960s. The lack of high spatial 

resolution in this type imaging prohibits obtaining coverage about spatial 

information and observations over a wide range of area.  

Fine spatial resolution remote sensing of the Earth’s surface was first 

accomplished from space by NASA in 1960s on military base using optical 

devices mounted on satellites. In 1973, NASA initiated a series of missions with 

LANDSAT to obtain fine resolution (in the standards of the day) optical images.  

The mission of Seasat as the first civilian satellite launched by NASA in 1978 

opened a new era for radar imaging. This satellite hosting a synthetic aperture 

radar (SAR) which has been designed for observing the oceans. The mission that 

lasted for three months concentrated on monitoring of oceanographic phenomena 

such as sea surface winds, temperature, wave heights, internal waves, sea surface 

features and ocean topography. Although lasted for a short period of time, the 

mission demonstrated the feasibility of using SAR to monitor timely 

oceanographic phenomena during day and night and in all weather conditions. 
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Since the launch of Seasat in 1978, many SAR satellites have been placed in orbit. 

Today, more than a dozen of satellites or satellite series such as ERS (Europe), 

JERS (Japan), TERRASAR (Germany), RADARSAT (Canada), ALOS (Japan), 

and ALMAZ (Russia) equipped with SAR sensors. It has been mentioned that 

while the systems has different configurations, the underlying operating principle 

for each system is similar (Mccandless and Jackson 2004) 

 

2.2. Imaging Essentials 

SAR differs from early imaging radars in its use of aperture synthesis to improve 

spatial resolution. Synthesized aperture is achieved by simulating the flight 

direction of the sensors as a large antenna. 

High resolution capabilities coupled with operational advantage make SAR an 

ideal remote sensing instrument for many applications of earth observation. Such 

remote sensing had been recognized as an important tool in collecting data during 

day and night and in all weather conditions for certain programs initiated by the 

various agencies around the world. Some examples of such programs are ISTOP ( 

Integrated Satellite Tracking of Pollution) program initiated by Canadian Centre 

for Mapping and Earth Observation agency of Canada, SEARCH (Study of 

Environmental Arctic Change) program initiated under the auspices of National 

Science Foundation of the U.S. and CORINE (Coordination of Information on the 

Environment) program initiated by European Environmental Agency of European 

Union. Among those CORINE program is worth to mention due to its recent use 

of SAR data. The data is collected via a SAR satellite launched in 2014 by the 

European Space Agency. The collected image data serve to map and monitor the 

land cover over the designated geographic areas of Europe. The satellite system 

made available to CORINE program is highly sophisticated in differentiating 

various land cover classes, surface deformation, disaster management and change 

detection. In a recent study (Baltzer et. al. 2015), it has been mentioned that 85 % 

accuracy is achieved in mapping five basic land cover classes over 75.000 km
2
 of 
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Belgium, Netherlands and Germany. The segmentation of SAR images at 

preprocessing step can be important to differentiate various land cover classes. 

This segmented image can reduce image complexity in extracting those classes. 

Superpixel techniques can efficiently be used to oversegment the SAR images 

without loss of information on the region boundaries. To achieve this, algorithms 

must be robust to speckle noise which inherently exists in SAR images. The 

robust similarity ratio based Mahalanobis algorithm developed in this thesis can 

effectively be used for this purpose. The CORINE program as well as the other 

programs benefit to a great extent from the use of this robust technique in 

segmenting SAR images. 

 

Figure 2.1 Geometry of SAR Imaging 

The Figure 2.1 shows a simplified geometric configuration of a typical SAR 

system. Basically such a system consists of a pulsed microwave transmitter, an 

antenna used both for transmission and reception, a receiver, a data collection 

system and a signal processor for the construction of the image. The imaging SAR 
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system is an active radar system that is mounted on an airborne or spaceborne 

moving platform. It operates in a side-looking geometry shown in Figure 2.2. The 

system illuminates the terrain with emitted pulses from the transmitter and 

receives signal backscattered from the illuminated terrain by the receiver. This 

type of an active imaging technology makes this kind of sensor independent of 

day and night conditions (Lee and Pottier, 2009). 

 

Figure 2.2 Synthetic Antenna along Flight Direction 

Referring to Figure 2.2, as the SAR imaging system moves with a velocity   

along a specified synthetic aperture length, it scans the area illuminated with radar 

pulses at a height   from the terrain. The antenna is aimed perpendicular to the 

flight direction referred to as azimuth and the antenna beam is directed slant-wise 

toward the ground with an angle of incidence. The radar line of sight is referred as 

slant range. The illuminated area in the terrain in the   and   directions is the 

antenna footprint which is scanned by the system. The area scanned by the 

antenna beam is the radar swath. The radar swath that covered by the reflected 
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pulses registered at all positions along the flight path are the essence for the 

construction of the image scene (Lee and Pottier, 2009). 

To get some idea about the SAR imaging process, consider a moving platform 

travelling with a speed of in excess of 2000 km/hr. This system transmits more 

than a thousand of pulses per second with a speed of light, illuminate tens of 

millions of resolution cells (pixels) in the radar beam at each pulse time and 

thousands of processor operations per cell to construct an image. 

The qualities of the constructed images are directly related with the ground range 

and spatial resolution. The spatial resolution in azimuth direction is directly 

related with the azimuth beam width of the antenna whereas spatial resolution in 

slant direction is directly related with the time resolution of different radar waves 

in the range direction. The quality of the constructed images are not much affected 

with the slant range but the projection of this onto the horizontal plane as ground 

range resolution is an important criterion (Curlander and McDonough, 1991). 

The microwave frequency of the SAR provides the penetration of the beam pulses 

through the clouds and other weather conditions such as rain and snow and this 

makes it usable in all weather conditions for the global scale earth monitoring 

except the cases of high frequency ranges combined with extreme weather events 

like heavy rain. These radar systems provide perfect operation conditions for the 

observation of the physical properties of the objects and geographic formations. 

Interpretation and understanding of a gray scale SAR image as shown in Figure  

2.6 requires the analysis of the intensities of the pixels that image represents the 

type and the interpretation of reflection of the backscattered microwave from the 

area on the ground. Hence, the reflection types directly affect the visible shape of 

the target to be imaged. Different reflection types and their resultant effects are 

shown in Figure 2.3 to Figure 2.5. 
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 Figure 2.3 Specular Reflection 

In case of specular reflection most of the microwave energy is reflected away so a 

very little or no energy is backscattered to the radar sensor as shown Figure 2.3. 

The resultant effect of such reflection is the appearance of the target area with 

dark image tone. 

 

Figure 2.4 Diffused Reflection 

Figure 2.4 is the case of reflecting radar pulses in all directions. Some of the radar 

energy is backscattered to the radar sensor. The resultant of such reflection is the 

appearance of the target area with medium gray image tone. 

 

Figure 2.5 Corner Reflection 
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If two surfaces are at right or nearly right angle facing the radar beam, the beam 

bounces to both of the surfaces and nearly all of the radar energy is scattered back 

to the radar sensor as shown in Figure 2.5. The resultant of such reflection is the 

appearance of the reflected area with a bright tone. 

The image tone (digital number) in a SAR image may vary between very dark to 

very bright depending on the type of the target scanned. Flat surfaces such as 

paved surfaces as road and runways, calm water surfaces as rivers and oceans 

normally appear as dark areas due to specular reflectance as most of the emitted 

radar energy is reflected away from the radar sensor. Vegetated surfaces such as 

forestry areas which are moderately rough surfaces appear as moderately bright 

areas due to diffused reflectance as some of the radar energy is backscattered to 

the radar sensor. Note that surface roughness is a function of not only the surface 

geometry but also the wavelength. Built-up areas and man-made structures appear 

as bright patches due to corner reflectance where most of the radar energy is 

scattered back to the radar sensor. 

Some SAR systems have the capability to send and receive radar energy with 

different polarizations. By emitting and receiving radar energy in combinations of 

polarizations setting, several images can be collected from the same series of 

pulses. Among those, HH (horizontal send-horizontal receive), HV (horizontal 

send-vertical receive) and VV (vertical send-vertical receive) are widely used in 

dual polarization systems. This polarimetric SAR imaging subject is beyond the 

scope of this thesis. 

SAR images are formed by coherent interaction of the transmitted waves with the 

targets. The coherent summation of the waves reflected from many elementary 

scatters distributed randomly within each resolution cell(pixel) manifest itself as 

pixel-to-pixel variation in the form of granular noise pattern known as speckle 

noise (Lee and Pottier, 2009). That is why a radar image typically appears noisier 

than an optical image as shown Figure 2.6. 
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For proper interpretation and understanding of a SAR image, it is essential to 

suppress this speckle noise. Speckle reduction approaches can fall into two basic 

categories known as multilooking and filtering. Multilook processing can be 

accomplished during the formation of the images by averaging   number of 

single look images. The number of single look images is obtained by dividing the 

synthetic aperture length into   parts where each part regarded as a look. Each 

part is independently processed yielding single look images. Reduction of speckle 

noise is directly proportional to the number of looks. As the look number 

increases, the degree of reduction increases but at the expense of the image 

resolution (Lee and Pottier, 2009). On the other hand, filtering process can be 

performed after the images are formed by any available noise suppression 

algorithm such as Frost, Lee and Kuan filters which are commonly used in SAR 

images (Lee, 1983; Frost et. al., 1982; Kuan, et. al.,1985). The newer algorithms 

such as SRAD (Yu and Acton, 2002), FPD (Okman, et. al, 2012), SAR-BM3D 

(Parrilli, et. al 2012) are also effectively used for noise suppression on SAR 

images. These filters as well as the others have tendency to reduce the noise but at 

the same time degrade the resolution of the images to a lesser or a greater degree. 
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Figure 2.6 Example of High Resolution Spot TerraSAR-X Image Which is Taken 

from Vishakpatnam / India.  
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CHAPTER 3  

 

BACKGROUND AND LITERATURE REVIEW  

 

 

 

The core of the image segmentation process is to subdivide an image into 

meaningful homogenous regions that are made up from connected similar pixels 

according to their features such as intensities and spatial attributes. This type of 

segmentation is an important step that provides meaningful and useful information 

at an early stage of a Synthetic Aperture Radar (SAR) image analysis. In SAR 

images, the need for a reliable segmentation is crucial due the existence of 

multiplicative noise called speckle noise that highly degrades the image quality. 

There are many ways that one can classify the segmentation techniques such as 

graph, nongraph, gradient, region, local and global based approaches some to 

mention. Since the work in this thesis is related with the superpixels, the 

segmentation algorithms can be broadly classified as superpixel and 

nonsuperpixel-based algorithms. In this chapter, following a brief review of the 

existing nonsuperpixel-based algorithms; the superpixel based algorithms are 

presented in detail to offset the stage for algorithms proposed in this thesis. 

 

3.1. Nonsuperpixel-Based Algorithms 

There are various approaches used for segmentation all of which can be 

considered as nonsuperpixel techniques. These can, further, be broadly classified 

as deterministic and stochastic models. In the deterministic approaches, the pixels 

intensities are used as discrete variables whereas in the stochastic models, they are 

used as random variables. In either case, the values of the entities are determined 

by the model parameters. Different variants of thresholding, graph-based 
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segmentation, region-based segmentation and k-means clustering are some widely 

used deterministic techniques in image analysis.  

Thresholding followed by connected component analysis is the simplest image 

segmentation technique that can be used either in global or local scale. While the 

global approach is based on the histogram of the entire image, the local scale 

approach is based on local information such as co-occurrence matrix (Gonzales 

and Woods, 2002) 

Graph-based methods partition an image into segments by minimizing an energy 

function. The approach is essentially a maximum flow problem where max-

flow/min cut solution over the images represented as graphs are the partitioned 

segments (Greig et al., 1989; Ford and Fulkerson, 1956). 

Region-based methods are another class of segmentation approaches all of which 

are local in nature. Among them, region growing is the best known. In this 

method, segmentation starts with a set of selected pixels as seed points and then 

the regions are grown from these seed points with a criterion on the correlation of 

pixels in that region (Gonzalez and Woods, 2002; Master and Franke, 1988).  

The k-means clustering is the process of grouping pixels of an image into a small 

number of clusters by minimizing an objective function which is in the form of 

Euclidean L2 norm. The objective function represents the sum-of-the-squares of 

the distances of each pixel to its assigned center pixel. At each iteration of the 

minimization scheme of the algorithm, the center pixel of the cluster is taken as 

the mean of all the pixels belonging to that cluster (MacQueen, 1967). 

Bayesian segmentation based on the Markov Random Field (MRF) is a stochastic 

technique that has been used extensively over the last couple of decades 

(Lankoande et. al., 2005; Besag, 1986; Li, 2009; Geman and Geman, 1984; 

Fujortoft et. al., 2003). This pixel labeling approach formulates a likelihood 

function about the given image data and a prior term based on spatial information 

of the pixels. In this type of formulation, information regarding the pixel 
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intensities as well as their locations are used to determine the label of the pixels. 

Specifically, the state of a given pixel is entirely determined by the states of its 

neighboring pixels. This local dependency is the basis of Markovian property. 

The stochastic models are not well suited for the cases where the features of the 

image are not well represented with a single distribution. The inconsistency 

between the image data and the single probability distribution can be avoided by 

using a linear combination of the distributions known as finite mixture models. 

Gaussian mixture model as one of these models is probably the most widely used 

one (McLachlan and Peel, 2000; Blekas et. al, 2005; Nguyen and Wu, 2012). The 

image segmentation can be performed after the determination of the model 

parameters.  Expectation-Maximization (EM) algorithm is a highly popular 

technique that is used for the estimation of mixture parameters (Dempster et. al., 

1977; Celeux et. al., 2003; Carsen et. al., 2002). In addition to the estimation of 

mixture parameters, EM can also be used as a stochastic framework for 

segmenting the images. 

 

3.2. Superpixel-Based Algorithms 

In clustering, a homogenous region can be obtained by merging subhomogenous 

regions which is more efficient than dividing a large region into smaller 

homogenous regions. Hence, the clustering algorithms utilizing superpixel-based 

algorithms as a preprocessing tool divide the image into oversegmented 

homogenous areas with high boundary adherence. For this reason, superpixelling 

has emerged as an oversegmentation approach over the last decade. Essentially, 

this type of segmentation is based on partitioning an image into subregions that 

are made up from set of connected similar pixels. These connected similar pixels 

are the elementary units of compact and uniform superpixels rather than the pixels 

of the image (Bugden et. al., 2004). This superpixelling process is fundamental for 

various applications of SAR image analysis since an effective segmentation can 

reduce image complexity and enhance interpretation and understanding of the 
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segments as shown in Figure 3.1. In this figure, the left most image is the original 

SAR image taken by TerraSAR satellite, middle image shows the boundaries of 

the superpixels and in the right most image superpixel with intensity means are 

shown. 

 

Figure 3.1 An Example of Superpixelling on SAR Images 

Since superpixels are groups of connected pixels with similar features, they are 

perceptually meaningful and representationally efficient segments. They are 

perceptually meaningful because they are multiple segments of the image where 

each is composed of uniform pixel intensities. They are representationally 

efficient because they are multiple segments of the image where each can be 

visualized as separate entities by their defined boundaries. As boundaries of the 

objects are important elements to be traced, superpixels should adhere well to the 

boundaries of the segmented objects. If a proper adherence of the boundaries can 

be achieved, such a superpixel based segmented image can reduce the complexity 

in understanding and interpretation of the subsequent tasks. Due to the boundary 

adherence property of the superpixels such as shown in Figure 3.2, they are 

widely used in recent years. If the generated superpixels are clustered as a further 

image processing task, a final segmentation of the image can obtained.  
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Figure 3.2 Boundary Adherence Example. Left image shows poor boundary 

adherence whereas right image shows better boundary adherence. 

There are various algorithms to generate superpixels. The state-of-the-art 

performance of the algorithms can be addressed by the evaluation of their 

properties and the quality of the segmented images (Zhang, 2014). Algorithmic 

complexity and efficiency are the two major attributes to evaluate their properties. 

While the complexity is very much related with the simplicity in understanding 

and implementing the algorithm, the efficiency depends on the computational 

requirement. The quality of the segmented images can be explored by subjective 

or objective measures. The subjective measures are based on visual comparison of 

the partitioned images. The objective measures are related with certain metrics to 

determine the degree of boundary adherence and compactness of the superpixels 

generated. The two standard metrics which are widely used are the boundary 

recall and the undersegmentation error. Detailed descriptions of these two metrics 

are presented at the end of this chapter. As a summary, we can list the measures to 

evaluate the segmentation performance of the algorithms as follows: 

• Boundary adherence and compactness, 

• Computational complexity and efficiency, 

• Visual appearance. 

The aim of superpixeling is to group neighboring pixels into uniform regions by 

considering compactness. If compactness is not considered, highly irregular 

shaped and sized superpixels would be obtained. 
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Similarity and proximity has long been recognized as the two important factors 

for perceptual grouping and organization of the pixels of an image (Shi and Malik, 

2000; Ren and Malik, 2003; Felzenshwalb and Huttenlocher, 2004; Wertheimer, 

1938; Sarkar and Boyer, 1992). According to Wertheimer (1938), pixels with 

similar properties will be perceived as belonging to a group and pixels that are 

close to each other will appear also as a group. As a result of this type of 

grouping, an image can be segmented into set of partitions where each set consists 

of similar and proximate pixels. To clarify the way that these terms are used in 

this research, the similarity is meant to be the pixels with similar intensities 

(radiometric similarity) and the proximity meant to be the closeness of the pixels 

defined in terms of the geometric distance, that is, the spatial proximity between 

the two pixels of interest. Since similarity and dissimilarity can be regarded as 

complements of each other, then it is appropriate to use any of these two terms 

based on the context. 

Among the early studies, it seems that the development of the normalized cut 

criterion by Shi and Malik (2000) is a significant advancement in generating 

perceptually grouped superpixels. This perceptual grouping algorithm is based on 

minimizing a “normalized cut” cost function to obtain optimal partitions of the 

image. The basis of this approach is graph partitioning method. In the graph 

partitioning methods, the image to be partitioned is represented as a weighted 

undirected graph consisting of pixels as nodes and boundaries as edges. Then the 

weight on each edge is formulated as a function of similarity between the nodes 

such as difference in intensities at those nodes. These edge weights are used to 

partition the image. In contrast to the use of the total edge weight connecting the 

two partitions in graph partitioning problem, the normalized cut algorithm 

computes the total cost defined as a function of edge connections over all the 

nodes in the graph. Optimal partitioning of the image is the one that minimizes 

this cut cost function. If the edge weight is defined as        between two pixels 

as nodes   and  , then the normalized cost function is obtained as the product of a 

similarity and spatial proximity terms that is formalized as,  
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 If                pixels 

                    
 
               

 
   

otherwise   

where   and   designates the pixel locations and their features respectively.  

The approach does not exhibit good boundary adherence and it is computationally 

slow in obtaining optimal partitions. However, it has been found that the results of 

the experiments on real and synthetic images are encouraging in extracting the 

objects from the image scenes. As a pioneering work in the area of superpixel 

segmentation, it does not include performance evaluation of the algorithm as 

compared with others. 

Veksler et.al, (2010) formulated the superpixel generation problem in an energy 

minimization framework. An energy function is expressed as a weighted sum of 

data and smoothness terms to be minimized with the graph cut algorithm. Data 

term is a unary constraint that imposes the label to be constrained to the pixels of 

the image and smoothness term is a binary constraint that encourages smoothness 

among the labels of the neighboring pixels. This type of segmentation is 

essentially similar as the energy formulation in Markov Random Field for pixel 

labeling which consists of a likelihood function and smoothness of the pixels. The 

coefficient        in the smoothness term for the nodes   and   is related to the 

gradient magnitude between pixels   and   which is formulated as 

        
             

 

              
 (3.1) 

The exponent term is the gradient magnitude between the pixels   and   where 

          is the intensity difference that can be regarded as the similarity term 

and           is the Euclidean distance that can be considered as the spatial 

proximity term for the neighboring pixels   and  . Explicit presentation of an 

energy function encourages regular superpixels obtained by means of placing 
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overlapping patches over the image and assigning each pixel to only one of those 

patches. In this work, two variants of the method are proposed as variable patch 

and constant intensity superpixel algorithms. The results of the experiments are 

compared in terms of boundary recall, undersegmentation error and computational 

efficiency. 

Turbopixel approach developed by Levinshtein et al. (2009) is essentially a curve 

evolution technique to obtain superpixel boundaries. This curve evolution is a 

progressive process implemented by dilating a given number of seeds in an image 

using level-set based geometric flow. Dilation of those given image seeds is one 

of the essential steps in the algorithm. The level set of a smooth and continuous 

function is evolved by embedding as Euclidean distance between each pixel in 

one region to closest point on the boundary of another region. The algorithm 

generates visually pleasing compact superpixels that are conformal to lattice-like 

structure of the regions in an image. Uniformity of the boundaries of the 

superpixels is achieved by “proximity-based boundary velocity” and “image 

based boundary velocity" terms and the compactness of the superpixels is secured 

by placing seeds in a lattice formation where the distances between lattice 

neighbors are all approximately equal. Although the turbopixel framework allows 

superpixels to be constrained to have uniformity and compactness, this can be 

achieved at the expense of reduced undersegmentation and high computational 

cost. The superpixels generated by the algorithm exhibit low adherence to 

boundaries and the algorithm is slow in practice. Segmentation performance of the 

algorithm is evaluated in terms of boundary recall and undersegmentation error 

metrics with emphasis on the computational requirements. 

Lattice approach proposed by Moore et al. (2008) is a method that produces 

superpixels conformal to a grid-like structure. Conformity of the superpixels to 

regular lattices is achieved by finding optimal paths that separates an image into 

vertical and horizontal regions. Regular lattice is guaranteed by finding optimal 

horizontal and vertical paths which cut the image. These optimal paths are 
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obtained from the given “boundary cost map” which is the major input to the 

algorithm. The superpixels are constructed incrementally by using these computed 

optimal paths. Edge weights in terms of features of those pairs of neighboring 

pixels are the basis of constructing optimal paths. The quality of the segmented 

image and the computational complexity of the algorithm are strongly affected by 

the pre-computed boundary cost maps. The algorithm is evaluated qualitatively 

and quantitatively. While qualitative evaluation is based on visual inspection, 

quantitative evaluation is based on an explained variation and accuracy as two 

metrics introduced by the authors. Based on these metrics the generated 

superpixels are conformal to a grid structure.  

The approach proposed by Felzenshwalb and Huttenlocher (2004) is a graph-

based method using a pairwise region comparison predicate. In graph partitioning 

methods, the image to be partitioned is represented as a weighted undirected 

graph consisting of pixels as nodes and boundaries as edges. Then, the weight 

       for each edge is based on the absolute difference between the pixels 

connected by that edge is formulated as  

                     (3.2) 

where      and      are the intensities of pixels   and  . This difference function 

intensities is the dissimilarity term for relevant pixels. These edge weights are 

used to partition the image. A predicate is defined to explore the existence of a 

boundary between the two regions in an image. This predicate is built upon 

pairwise comparison of the dissimilarities between these elements along the 

boundary of the two regions and the elements within those regions. For this 

purpose, maximum edge weight in the minimum spanning tree of the region and 

minimum edge weight of the two regions are combined to be used for pairwise 

comparison for clustering. This clustering is performed in an agglomerative 

manner that produces regions with highly irregular shapes and sizes. However, the 

approach is capable of finding segments that capture many perceptually important 
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aspects of complex imagery. As normalized cut, this algorithm can also be 

regarded as another grouping algorithm for superpixel segmentation.  

Mean shift (Comaniciu and Meer, 2002) is a nonparametric iterative mode 

seeking clustering approach. The essence of mode seeking technique is the 

convergence of all pixels to the same mode. In the mean shift algorithm, local 

maxima of a density function is aimed in a complex structured data space that 

delineates irregularly shaped clusters. As the pixels converge to the same mode, 

the superpixels are generated. In this approach, the number of clusters does not 

need to be known in advance. Since the structure of the generated superpixels may 

be arbitrary, the shapes of the superpixels are highly irregular with non-uniform 

sizes. The algorithm is evaluated qualitatively based on visual inspection. 

Quick shift (Vedaldi and Soatto, 2008) is also a mode seeking clustering 

algorithm as mean shift. In this work, medoid shift, which is another mode 

seeking clustering algorithm in pattern recognition, is used instead of the mean 

shift. It has been shown that medoid shift is computationally faster than the mean 

shift. Unlike the mean shift, the quick shift searches for the mode as each pixel 

moves to the nearest neighbor for which there is an increment in the Parzen 

density. In this respect, the quick shift differs than the mean shift where the 

increment in density estimate is determined by the gradient to locate its mode. The 

approach produces superpixels with relatively good boundary adherence. The 

algorithm is evaluated by comparing its efficiency with the mean shift procedure 

and its variant, mean-medoid shift.  

The simple linear iterative clustering (SLIC) algorithm proposed by Achanta et al. 

(2010) is based on searching for superpixels over a specified set of grids of sized 

  with the k-means algorithm. The basis of SLIC algorithm is a distance measure 

which is a linear combination of color and spatial proximities (actually 

dissimilarities) expressed in Euclidean norms formulated as  
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(3.3) 

where the first is the color difference term, the second is the spatial distance term 

and   is the “compactness parameter”. This distance measure imposes color 

dissimilarity as well as spatial distance in five dimensional space where two of 

them are Cartesian coordinates and three of them are CIELAB (lab) color space. 

In this sense, this algorithm, as normalized cut, can be regarded as another 

grouping algorithm. In this work, it has been demonstrated that it outperforms 

many of the above mentioned existing methods in terms of boundary adherence, 

segmentation speed, segmentation accuracy, control over superpixel compactness 

and control over the amount of superpixels. 

The iterative edge refinement algorithm (Zhu et. al., 2015) is based on initializing 

the superpixels as regular grids first and then refining them iteratively by 

relabeling the pixels on the edges. In the method, the edge pixels on the grids are 

divided into stable and unstable pixels according to a criterion. The stable pixels 

are considered to be unchanged in the subsequent iterations and only the unstable 

pixels are relabeled. In the core of this algorithm, distance measure of SLIC 

algorithm with the default values of the parameters is used. In this sense, it seems 

that it is a variant of the SLIC algorithm.  

The entropy rate superpixel segmentation (ERS) algorithm (Liu et. al. 2014) 

produces superpixels by optimizing an objective function which is linear sum of 

entropy rate of a random walk and a balancing term. Entropy rate defined over a 

graph is used as a criterion to obtain compact and homogeneous clusters. This rate 

is defined between the neighboring pixels of the image as nodes of the grid 

structure. The edge weights correspond to the similarities between the pair of 

pixels that can be represented as a similarity matrix. In case highly irregularly 
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shaped superpixels are generated and morphological algorithms are necessary to 

smoothen them.  

The SEEDS algorithm developed by Van den Bergh et al., (2012) uses a similar 

optimization based on an energy function. This function consists of color 

likelihood term that favors colors uniformity and boundary shape term that 

encourages smooth boundaries. Color density distribution and the boundary term 

are approximated from the histogram of the superpixel labels. The optimization 

uses a hill-climbing approach in which the superpixels are refined as the objective 

function increases. This approach suffers from high shape irregularity and the 

complicated control of the number of superpixels. 

In the last three algorithms, boundary recall and undersegmentation metrics are 

used to evaluate their segmentation performances. In Zhu et al. (2015), it has been 

found that iterative edge refinement and SLIC algorithms produce more compact 

and visually pleasing superpixels than those in Liu et al. (2014)  and Van den 

Bergh et al.(2012).  In addition, iterative edge refinement and SLIC algorithms 

exhibited similar segmentation performances. 

All the above mentioned algorithms use, in one way or other, the similarities (or 

dissimilarities) between pairs of the pixels. The normalized-cut algorithm, the 

algorithm proposed by Felzenshwalb and Huttenlocher, the algorithm of lattice 

superpixels and the entropy rate algorithm use edge weights defined as the 

intensity differences of the pixels. Whereas, the algorithm proposed by Veksler et 

al., mean shift and quick shift algorithms employ gradient functions expressed as 

the intensity differences of the pixels. However, SLIC and turbopixel algorithms 

are based on the similarities defined in terms of the difference in the intensities of 

the pixels which are expressed in Euclidean norms. On the other hand, spatial 

proximities between the pairs of pixels are utilized in the edge weight functions of 

normalized-cut, in the gradient functions of that proposed by Veksler, et al. and in 

the distance measure of the SLIC algorithm. Since similarity and spatial proximity 

as two factors of perceptual grouping are used explicitly in the last three 
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algorithms, then the generated superpixels with these algorithms would be 

expected to be perceptually meaningful and representationally efficient. 

From the above review of the existing superpixel based algorithms, it is evident 

that SLIC algorithm stands as the state-of-the-art superpixel segmentation 

algorithm in terms of boundary adherence and computational complexity. 

3.3. Segmentation Performance Evaluation Measures 

Boundary adherence and compactness, computational complexity and efficiency, 

and visual appearance are listed as the most commonly used segmentation 

performance measures in earlier in this chapter. Among those, the boundary 

adherence and compactness are related with how well the superpixels are adhered 

to the image boundaries in a regular and smooth manner; computational 

complexity and efficiency indicates how time and memory are used efficiently in 

understanding and implementing the algorithm. 

The quantitative evaluation of the segmentation performance of superpixel 

generating algorithms depends on the boundary adherence and compactness of the 

generated superpixels. For this purpose, there are two widely used standard 

metrics: boundary recall and undersegmentation error. These metrics are 

extensively used to compare the segmentation performance of the existing 

superpixel algorithms. In order to use these two metrics, an additional human 

segmented image is required besides the superpixel segmented image. This 

manually segmented ground truth is essential for detecting the tightness of 

superpixels to image boundaries. If this ground truth is not available, which might 

be the case in SAR imagery, heavy reliance on visual appearance is obvious. For 

example, SAR image in Figure 2.6 is a heavily speckled image in which one can 

hardly visualize the anchored ship at the port. For this type of image, ground truth 

is extremely difficult to obtain in absence of which performance evaluation can 

solely be based on visual comparison. 
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If used alone, boundary recall or segmentation error do not yield sufficient 

information for the performance of the algorithms. For example, a segment with a 

high boundary recall exhibiting good boundary adherence might have low 

segmentation error. Thus, the boundary recall, if applicable, should be used 

together with undersegmentation error in order to evaluate how well the 

superpixel boundaries are adhered to image boundaries with a reasonable 

segmentation error.  

When boundary recall and undersegmentation error used together with the other 

performance measures, the outperforming capabilities of the algorithms in 

generating the superpixels can be analyzed.  

 

3.3.1. Boundary Recall Metric 

To measure the extent of the adherence of the superpixel boundaries to image 

boundaries, the boundary recall is an appropriate standard metric to be used. This 

metric can be stated as the fraction of the ground truth edges falling within a 

prespecified, say e-pixels, strip along the superpixel boundary. Thus, it is the 

percentage of the ground truth border pixels within e-pixel vicinity of those 

superpixels. This measure as formulated by Neubert and Protzel (2013) as, 

    
  

       
 (3.4) 

where  

   = Boundary recall, 

   = True Positives as the number of ground truth edge pixels which are falling 

within e-pixel strip along superpixel boundary and, 

   = False Negatives as the number of ground truth edge pixels which are away 

from e pixel strip along the superpixel boundary. 
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The pixels which are true positives and true negatives are illustrated in Figure 3.3. 

                                                    e  Pixel                             Ground Truth Boundary                                                                                         

           Superpixel Boundary 

 

Fraction of Ground 

Truth Edges Falling 

Within e Pixel of 

Superpixel 

Boundary (True 

Positives) 

  

Fraction of Ground 

Truth Edges Falling 

Beyond e Pixel of 

Superpixel Boundary 

(False Negatives) 

                             

Figure 3.3 Illustration of Boundary Recall 

 

3.3.2. Undersegmentation Error Metric 

Undersegmentation error measures the extent of superpixel areas not overlapping 

the ground truth. Hence, it is an error that an algorithm makes in segmenting an 

image with respect to the ground truth of that image. Given ground truth segment 

areas as          and superpixel segment areas as         , this measure can 

be formulated as in Levinshtein, et al.  (2009): 

     
        

  
  (3.5) 

where          and UE is the undersegmentation error. 
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Figure 3.4 Illustration of Undersegmentation Error 

 

For the example given in Figure 3.4 where there are two superpixels and one 

ground truth segment, undersegmentation error can be calculated as 

    
          

 
 (3.6) 
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CHAPTER 4  

 

MAHALANOBIS SPATIAL PROXIMITY METRIC 

 

 

 

The way the similarity and the spatial proximity terms used within k-means 

clustering framework, SLIC algorithm generates perceptually meaningful and 

representationally efficient superpixels. To exploit the simplicity of k-means 

clustering, this approach is adapted in this work similar to SLIC algorithm.  

The authors of SLIC investigated the segmentation performance of the algorithm 

by replacing the distance term with adaptively normalized and geodetic distance 

measures as two variants of the algorithm. It has been found that the distance 

measure as in SLIC algorithm outperforms the above proposed variants. 

Due to its circular decision boundaries, the spatial Euclidean distance forces the 

superpixels to have a round shape. However, spatial Mahalanobis distance with 

elliptic decision boundaries adds more flexibility that lets the superpixels to fit to 

arbitrary shapes of the real world without undermining the regular distribution of 

the superpixels within the image.  

In this chapter, the segmentation performance of the SLIC algorithm would 

further be investigated by replacing the spatial Euclidean distance term with 

Mahalanobis distance (MSLIC). After an overview of the SLIC algorithm is 

presented, the formulation of MSLIC is described. In order to show the 

segmentation performance measures, the experiments are conducted on Berkeley 

Data Set whose results are presented in subsequent chapters.  
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4.1. A Brief Overview of the SLIC Algorithm 

Among superpixel generating existing algorithms in the literature that are 

discussed previously, SLIC stands out as the state-of-the-art superpixel generating 

algorithm. This algorithm is essentially an adaptation of k-means clustering 

algorithm. The basis of the objective function used in the k-means clustering is a 

linear combination of color dissimilarity and spatial distance terms.  The color 

difference in the form of Euclidean distance in Lab color space is  

 
 

                                  
(4.1) 

and the spatial  Euclidean distance term is 

 

 
                        

(4.2) 

To combine the two Euclidean distances into a single measure, the spatial distance 

term is normalized with the cluster size   whereas a normalizing constant m 

ranging between 1 and 40 is used instead of normalizing the color difference term 

with its respective maximum value that differs significantly from cluster to 

cluster. The resulting expression is  

        
      (4.3) 

to be used over the search area. 

In this formulation, 

   is the cluster center, 

   and   are the Cartesian coordinates, 

   is the pixel to be classified, 

           are the  colors in CIELAB color space, 
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   is the compactness parameter and 

   is the grid size. 

The constant   regulates the relative importance between the color and the spatial 

distances. For large values of  , highly regular and compact superpixels would be 

obtained. On the other hand for small values of  , irregular shaped superpixels 

with high boundary adherence are obtained. 

For SAR images, color difference term can be adapted as                

resulting a distance measure as 

 
                            

    
 
   

 
   

(4.4) 

In this equation, the first term is the intensity difference as pixel dissimilarity 

between the pixel to be labeled and the centroid of the cluster and the second term 

is the spatial distance between those pixels based on the Euclidean metric. The 

equation enforces color similarity and spatial proximity such that the spatial 

extents of the clusters are approximately equal. 

The above objective function should be minimized iteratively within the search 

areas of equally sized clusters to generate perceptually uniform superpixels. As 

the function is minimized, pixels based on the intensity similarity and the spatial 

proximity are clustered.  

 

4.2. The k-means Clustering as Adapted in SLIC 

The traditional k-means clustering is based on partitioning an image data into   

number of specified clusters so that the within-cluster sum of the squares is 

minimized (MacQueen, 1967). For an image with   number of pixels, the 

algorithm seeks the centroids that minimize 
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   j 

(4.5) 

where the within-cluster sum-of-squares for cluster j is  

            
 
    

2 (4.6) 

in which    is the mean intensity of  the cluster   and     is  the intensity of the 

pixel   to be clustered. In this case, each labelled pixel belongs to only one cluster 

with the nearest mean. 

The k-means clustering is probably the simplest and the widely used algorithm 

among those that are based on minimizing an objective function. Minimizing the 

sum of the distances to a nearest cluster centroid as an objective function is the 

essential step of the algorithm. Although there are no closed form solutions for the 

k-means problem to determine the local minima, an iterative minimization scheme 

is one popular heuristics to solve such problem. The main idea of this scheme is to 

classify the given data set through a predefined   number of clusters with one 

centroid for each cluster. In the iterative scheme, each point belonging to the 

given data set is associated to the nearest centroid. This type of procedure for 

finding the local minima turns the k-means clustering approach into an easy and 

well understood unsupervised classification algorithm. The basic steps of this 

heuristic approach consisting of an assignment and update steps to be followed 

iteratively can be summarized as follows: 

 Assign    to cluster   if          
           

  
  

for each pixel   of the 

image 

 Update    as   li / (number of pixels clustered as k). 

The way the k-means clustering approach adapted in SLIC algorithm differs from 

traditionally used ones in two respects. First, it incorporates a distance measure 

that can be regarded as an objective function that is a linear combination of color 
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difference term and spatial distance measure, and second, the minimization is 

performed over a search area of size 2Sx2S that is proportional to the cluster size 

 . This proportionality between the search area and its cluster can be illustrated as 

follows: 

 

Figure 4.1 The Search Area and the Cluster Size   

Searching the data set within the limited areas rather than the whole data set 

appears an attractive property of the SLIC algorithm. In this manner, the 

simplicity of the k-means algorithm is further expanded and the grid structure is 

preserved. 

In minimization sense, k-means clustering as adapted in SLIC is similar to the 

standard k-means clustering. The minimization of the objective function is over 

2Sx2S sized overlapped search areas rather than the whole grid of the image data. 

Since each cluster has 2Sx2S sized search area, it has eight partially overlapping 

search areas each of which belong to the eight neighboring clusters of that given 

cluster. 

At each step of the iterative minimization scheme, the pixels that have the 

minimum distance metrics to a given cluster center are assigned as that centroid. 

This can be summarized as, 
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 Assign    to cluster   if          
 
for each pixel   within the search area 

2Sx2S. 

In the way the distance measure is formulated as above, it can be considered as 

the k-means objective function. A similar minimization is performed until all the 

clusters with partially overlapping search areas are analyzed. This completes the 

first iteration of the algorithm. After the cluster centers are updated as     

         cluster size, the next iteration is continued. This minimization scheme 

given in SLIC is simplified as: 

Table 4.1 Algorithm Framework of SLIC 

Initialize cluster centers                by sampling at regular grid size  . 

Set all        and label         and label         for each pixel    

for     to number of iterations 

 for     to number of clusters, 

  compute    over 2Sx2S area around    

  if        , set         and       , then 

 update cluster centers and superpixel means 

 

4.3. Formulation of the MSLIC Approach  

As an alternative to the distance metric in SLIC, in this thesis another distance 

measure, Mahalanobis is proposed. This distance metric is also widely used in 

cluster analysis and classification techniques. In contrast to Euclidean, the 

Mahalanobis distance metric automatically scales the coordinate axes. As the axes 

are scaled, distances are also scaled which does not require any normalization. 

The scaled distance measures can be expressed as 
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(4.7) 

where                   and ∑
-1

 is the covariance matrix.  

Since the Euclidean metric is normalized with  , the magnitudes of the distance 

range between zero and   . To ensure the Mahalanobis distance values to be 

comparable with this range, these proximity values are need to be transformed to 

vary between zero and one. To ensure the proximity values to be less than the 

limiting values of the Euclidean distance metric, the magnitudes of the above 

Mahalanobis distance need to be transformed to vary between 0 and 1. This type 

of transformation can be done by first exponentiating Mahalanobis distances and 

then taking the inverses of the resulting expressions. Assuming equal color 

similarity terms at pixels   and  , the pixel   will be classified as pixel   if    

  where    and     are the distance measures for the pixels   and  , respectively. If 

both sides of the above inequality are exponentiated and then their inverses are 

taken, the resulting expression is obtained as 

               (4.8) 

Thus, the proximity measure to be incorporated into distance measure, more 

formally, objective function would be       . The objective function developed 

to be used for MSLIC algorithm is: 

                                        (4.9) 
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CHAPTER 5  

 

SIMILARITY RATIO BASED ALGORITMS FOR GENERATING 

SUPERPIXELS  

 

 

 

The essence of the SLIC and MSLIC algorithms is an intensity difference, more 

formally intensity similarity, term combined with the Euclidean distance and 

Mahalanobis distance metrics as spatial distance (proximity) terms. The intensity 

similarity term, which is another Euclidean function in the radiometric space, has 

been demonstrated to be robust to additive noise but not to multiplicative speckle 

noise (Feng. et al, 2011). Hence, intensity difference metrics used in the 

algorithms are not robust enough for multiplicative noise inherent in SAR 

imagery. The sensitivity of these algorithms to speckle noise degrades the 

segmentation accuracy by hampering correct extraction of segments boundaries. 

Also this directly limits the segmented regions use in understanding and 

interpretation of SAR images.  To avoid this drawback, a similarity ratio metric is 

proposed to be incorporated into the objective function. In this work, it has been 

demonstrated that the proposed approach is more robust to speckle noise in SAR 

images than those used in the SLIC and MSLIC algorithms.  

In this chapter,  

 the proposed similarity ratio is introduced,  

 functional forms of the spatial proximity terms are defined,  

 the way that these terms are formulated as an objective function is 

explained and  

 the algorithmic framework within the minimization scheme of the 

objective function to generate superpixels is described.  
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In this thesis, the words cluster and grid, and the words measure and metric are 

used interchangeably. 

 

5.1. Similarity Ratio  

In spite of their merits, SLIC and MSLIC algorithms suffer from the 

multiplicative speckle noise inherit in SAR images. This is due to the sensitivity 

of the intensity similarity term in Euclidean norm to speckle noise. A similarity 

ratio metric as a more robust approach is proposed. 

This metric has its basis on likelihood ratio. This ratio has been adopted for image 

segmentation by testing the hypothesis of the homogeneity of the segments within 

an image. In contrast the way the likelihood ratio adopted in this manner, the 

similarity ratio has no connection to any statistical testing and differs from those 

ratios used in image segmentation in two respects: its applicability in enhancing 

objective function and its suitability to measure the dissimilarity between clusters. 

The likelihood ratio can be derived by assuming that two samples are drawn from 

a population. Suppose a sample X is N(μ1 , σ1
2
), and another sample Y is N(μ2 , 

σ2
2
). Let (x1, …, xm) be a sample space of X and  (y1, …, yn) be a sample space of 

Y. If these two samples are drawn from population Z whose random space is (x1, 

…, xm, y1, …, yn), then Z is N(μ , σ
2
) as shown in Figure 5.1: 

 

 

Figure 5.1 Illustration of Sample X, Y and Population Z 
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Moreover, if all random variables are assumed mutually independent then the 

likelihood functions for X, Y and Z would be as: 
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(5.3) 

The maximum likelihood estimates can be computed from the above likelihood 

functions as: 

    
 

 
   

 
          

  
        

 

 
   (5.4) 

   

 
   

 

 
   

 
          

  
        

 

 
  

(5.5) 

   

   
          

   
           

    
      

 

   
 

   

(5.6) 

The likelihood functions are simplified by using the maximum likelihood 

estimates as: 
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(5.7) 
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(5.9) 

Since the two samples, X and Y, are drawn from the population Z, then their 

likelihood functions can be related as 

    
       

  
 (5.10) 

where λ is the likelihood ratio which is the basic quantity used in hypothesis 

testing. If the likelihood functions above are placed into likelihood ratio 

formulation, the following is obtained: 

 
   

      

   
    

  
 

(5.11) 

Since superpixels are a group of similar neighboring pixels, it can be assumed that 

such segments are composed of fairly homogeneous areas. For a given SAR 

image, if the standard deviation to mean is constant (Lee and Pottier, 2009), then 

 
       

(5.12) 

where k is constant. Substituting this equation into the likelihood formulation, the 

constant k cancels out from this equation and the following similarity ratio is 

obtained. 
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(5.13) 

Since maximum likelihood estimation for the population is, 

 
  

          

     
 

(5.14) 

Substituting this expression into Eq. 5.14, the final form of similarity ratio can be 

obtained as: 

 
  

 
          

     
 
   

           
 

(5.15) 

This ratio converges to unity from positive infinity as similarity between the 

means increases. Hence, it is a measure of the amount of deviation between the 

intensities of the superpixels, i.e., it is a measure of dissimilarity. 

 

5.2. Proposed Similarity Ratio Based Algorithms 

If the above similarity ratio for a pair of pixels is combined with the spatial 

distance terms denoted as P, the resulting distance measure would be 

                (5.16) 

where  

          
                    

 
 (5.17) 

for similarity ratio based Euclidean proximity algorithm (SREP), and 
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                (5.18) 

for similarity ratio based Mahalanobis proximity algorithm (SRMP) respectively. 

In these expressions, the pixel   is the centroid of the cluster and pixel   is the one 

to be clustered. The parameter   is a regularizing parameter that would evidently 

be different for SREP and SRMP algorithms. These algorithm specific parameters 

should be determined by the user prior the implementation of the algorithm. 

To exploit the simplicity of the k-means clustering algorithm, the above functions 

are used within reduced 2Sx2S sized search areas composed of   sized grids 

rather than over the whole grid of the data set. Within each search area all the 

pixels should be labeled at each iteration of the minimization scheme for k-means 

clustering to generate the superpixels. If regularizing parameters are properly 

defined, the boundary between the regions as well as the boundary between the 

grids are preserved during each iteration. The preservation of the boundaries 

around each grid is equivalent to the preservation of the structure of that grid. To 

illustrate the way the boundaries are preserved, let us consider the Figure 5.2. In 

this figure, assume that the pixel   will be classified either with cluster center   or 

  within the search area. Further, assume that the pixels   and   belong to the same 

region and pixels   and   belong to different regions separated by a region 

boundary. If pixel   is classified as pixel  , the region boundary is said to be 

preserved. Otherwise, the boundary between the grids of pixels   and   is said to 

be preserved so the structure of the grid of pixel    is preserved. 
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Figure 5.2 Boundary versus Cluster Centers 

This structural relation between pixels  ,   and   would be frequently referred 

throughout this thesis. 

 

5.3. Algorithmic Framework for Generating Superpixels 

The similarity ratio based algorithms proposed in the previous section can be used 

within 2Sx2S sized search areas composed of overlapping  -sized grids by 

utilizing k-means clustering approach. 

This is the essence of the algorithms for the generation of the superpixels. At each 

iteration of the algorithm, the center pixels of the search areas are kept fixed but 

updated at the end of that iteration. All other pixels within the search areas are 

investigated for labeling. For the similarity ratio to be adaptive to this type of 

minimization scheme, the center pixel of the grid is assumed as one segment 

consisting of a single pixel at the initial iteration and a group of pixels including 

the pixel to be labeled as another segment. This level of grouping makes the 

similarity ratio as robust to speckle noise since the extracted similarities would be 

more reliable than those obtained using pair of single pixels. For computational 

purposes, 3x3 window as a group of pixels seems adequate that can be illustrated 

as follows: 



 

46 
 

 

Figure 5.3 Window and 2Sx2S Search Area 

After the center pixel of the grid is updated in the subsequent iterations, the center 

pixel of the grid is no longer assumed as one segment but its actual size for   is 

used. 

The grids sized   are located within the search areas of size   . The similarity 

ratio Ri is computed for the center pixel of the cluster   and the center pixel of the 

window   within the search area. The ratio computed in this manner is linearly 

combined with spatial proximity term. This computation is continued for the next 

window by sliding it a pixel to the right. Once, all distance measures are 

computed, the superpixels can be generated for the overlapping grids. For an 

image of size  , the number of clusters to be considered would be   
 

  . The 

complete algorithm is presented Table 5.1. 
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Table 5.1 Algorithm Framework 

Initialize cluster centers            by sampling at regular grid size  . 

Set all                  

Set label image          and distance image        for all pixels 

for     to number of iterations 

 for     to number of cluster centers 

  for each pixel   in the 2Sx2S search area 

   compute    as the mean of 3X3 window 

   compute  ,   and         

    if          then set          and set        

 update cluster centers and superpixel means 

In this algorithm and in most of the existing approaches, the grid size S is a user-

specified parameter that would be constant throughout the course of the 

algorithms. Hence, the proper choice of this parameter has great importance. As 

mentioned in Chapter 2, the spatial resolution varying within the scanned area 

affects the quality of the results of segmentation process. Since imaging SAR 

system operates in a side-looking geometry, the actual resolution is not constant. 

If slant-range images are used instead of ground-range images, the performance 

can be different in near range and far range. One such example is that the cluster 

with a specified size might allow the superpixels to be adhere well to boundaries 

of the homogenous regions in the near range whereas the boundary adherence 

highly hampered in areas that are in the far range. This seems one of the 

limitations of the superpixel generating algorithms in remote sensing.  

The similarity ratios are in the form of exponentiated pixel intensities with the 

cluster sizes as exponents. The pixel intensities as well the cluster sizes are 

relatively large integer numbers. If not impossible, the calculation of the similarity 

ratios using these large integer numbers is extremely tedious and difficult task. 



 

48 
 

For example, pixel intensity of 150 raised to a power of 125 cannot be calculated 

in reasonable time. For this reason, it is more convenient to calculate the 

similarity ratios on logarithmic scale. 

Similarity ratios for various pair of pixel intensities are calculated and tabulated in 

Table 5.2. For clarity of illustration, the ratios higher than one are shown in red 

color whereas the ratios lower than one are shown in blue color. The entries in this 

table correspond to the ratios between   or   center pixels of the clusters with size 

of     and the   center pixels of 3x3 windows with size of    . The 

intensity values at eight bit format vary between 20 and 240 which is a typical 

range of values that can be experienced with a typical SAR image. 

Table 5.2 Similarity Ratios for Various Pixels k to be Clustered with Pixels   or   

i -j 

k 

20 40 60 80 100 120 140 160 180 200 220 240 

20 0 0.260 0.725 1.237 1.755 2.263 2.754  3.229 3.681 4.116 4.534 4.935 

40 0.180 0 0.082 0.260 0.481 0.725 0.979 1.237 1.497 1.755 2.011 2.263 

60 0.409 0.066 0 0.040 0.135 0.260 0.404 0.561 0.725 0.893 1.065 1.237 

80 0.607 0.180 0.035 0 0.024 0.082 0.164 0.260 0.367 0.481 0.601 0.725 

100 0.776 0.298 0.103 0.021 0 0.016 0.056 0.113 0.182 0.260 0.345 0.435 

120 0.922 0.409 0.180 0.066 0.014 0 0.011 0.040 0.082 0.135 0.194 0.260 

140 1.050 0.512 0.260 0.122 0.047 0.010 0 0.008 0.030 0.063 0.104 0.151 

160 1.164 0.607 0.335 0.180 0.088 0.035 0.008 0 0.006 0.024 0.050 0.082 

180 1.266 0.694 0.409 0.239 0.133 0.066 0.027 0.006 0 0.005 0.020 0.040 

200 1.360 0.777 0.478 0.298 0.180 0.103 0.052 0.021 0.005 0 0.004 0.016 

220 1.445 0.851 0.544 0.354 0.228 0.141 0.082 0.042 0.017 0.004 0 0.004 

240 1.524 0.922 0.607 0.409 0.274 0.180 0.113 0.066 0.035 0.014 0.03 0 

If contrast is regarded as an attribute that describes the difference between the 

intensity levels of the pixels, then we can define a contrasting pixel pair as a pair 

of low and high intensities. In case the deviation between low and high intensities 

of a pair is substantial, the pair can be regarded as a high contrasting pair 

otherwise a low contrasting pair. From this definition, it is clear that low and high 

intensity pixels of the pair belong dark and light regions in an image, respectively. 

For example, the pixels with 20 and 160 intensities as a high contrasting pair have 
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a ratio of 3.23 which indicates that the former pixel might belong to a dark region 

and the latter pixel might belong to a bright region. However the pixels having 

140 and 160 intensities which is a low contrasting pair have a ratio of 0.01 which 

indicates that they both might belong to a relatively homogeneous bright region.  

If only similarity ratio is used as a metric to generate superpixels, highly 

irregularly shaped superpixels are produced which exhibit a high boundary recall 

that results good boundary adherence. Although this is desirable over 

heterogeneous areas, over homogeneous areas preservation of the squared 

structure of the grids is essential for convenient clustering. This can be clearly 

illustrated with the aid of the figure given in Figure 5.2.  

If the pixel intensities for the points  ,   and   are 20, 140 and 160 respectively, 

then pair     is a high contrasting and     is a low contrasting pixel pair as 

defined above with similarity ratios 1.16 and 0.01 respectively. If only similarity 

ratio is used, it is most likely that the pixels   and   having intensities 140 and 160 

respectively are to be clustered since      . In this manner, the boundary 

between the pixels of the high contrasting pair is preserved. If the intensity of the 

pixel   would be 120 instead of 20, the pair     would be a low contrasting pair 

with ratio 0.03. Again, if only similarity ratio is used, clustering of the pixels   and 

  would be expected. In this case, the boundary is again preserved. Since these 

low contrasting pairs are within relatively homogeneous area, the preservation of 

the squared structure of the grid is more essential then preservation of the 

boundary for convenient clustering of the superpixels to obtain a proper 

segmentation to be used for further analysis. This can be achieved by augmenting 

the similarity ratio with a spatial distance measure so that the pixels are clustered 

depending upon their proximities to the cluster centers within homogeneous 

regions. Referring to the above example, if the ratio of the pixel pair     is 

augmented with a proximity measure, say 0.05, by virtue of           , it 

would be expected that the pixel   is clustered with the pixel  . In this case, the 

grid boundary shown as a solid line in the given in Figure 5.2 is preserved. 
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5.4. Similarity Ratio Based Adaptive Mahalanobis Proximity 

(SRAMP) Algorithm 

In SRMP approach, the parameter   is constant during the course of the 

algorithm. If the image is homogeneous in certain regions and heterogeneous in 

others, the parameter alpha being constant seems improper to produce compact 

superpixels in homogeneous regions and well boundary adhered superpixels in the 

heterogeneous regions. Since this value of alpha can be different for various parts 

of the image, a global parameter cannot be representative for all those parts. This 

is the main weakness of SRMP algorithm especially for the case of heavily 

speckled SAR images. For this purpose, a different value for each neighboring 

superpixel pair should be determined to obtain its optimum value from mean 

intensity values of the superpixels. 

If parameter alpha is properly determined then the number of pixels misclassified 

would be minimum. The pixels are misclassified if they are clustered with other 

neighboring pixels rather than the one to be clustered. Evidently, the number of 

pixels misclassified which are spread over a region of two clusters would be 

different for various alpha values. The two clusters can be differentiated with the 

intensity levels of their cluster centers. Therefore, the alpha values can be 

expressed in terms of the intensity differences of those two clusters. If these alpha 

values correspond to the minimum misclassified pixels, then the parameter alpha 

is said to be properly determined for the two neighboring clusters. 

To establish the relation between the two variables, namely parameter alpha and 

the intensity difference, an experiment is designed. For this design, a VV single 

polarized TerraSAR-X image and its manually derived ground truth shown in 

Figure 5.4 are divided into   sized grids.  
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Figure 5.4 The SAR Image and Its Groundtruth 

The grid pairs that have a boundary in the ground truth are cut out as 2SxS or 

Sx2S sized patches, so that the small images composed of two superpixels with a 

known boundary between them are obtained. For each patch, SRMP algorithm is 

applied for alpha values ranging between zero and one with increments of 0.01 

and the misclassified pixels are counted. The best alpha values are plotted against 

intensity differences as shown in Figure 5.5. The minimum number of 

misclassified pixels for each patch and its intensity difference is plotted as shown 

below:  
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Figure 5.5 Optimum Alpha Values for Various Intensity Differences 

This pattern can be expected, because, when the difference is very low, the 

algorithm should rely only on spatial proximity to have reasonable shape instead 

of following the borders. However, if the intensity difference is too large, the 

spatial term need to be increased as well to preserve the boundary of the shape. 

If a downward sloping function for those points on the left and an upward sloping 

function for those points on the right parts of the above figure are utilized, a 

reasonable smooth pattern for the variables would be obtained. Since sigmoid 

function is an S curve with finite limits varying from zero and one, it can properly 

be used as a downward or an upward sloping curve as the signs are reversed. The 

sum of two sigmoid functions with reverse signs shown below can be 

appropriately represents the alpha values as distributed in Figure 5.5.  
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 (5.19) 

To define a smooth function that follows this pattern, we have to specify the 

values for low and high intensity differences that may change from image to 

image. By analysis of the simulation results, it is found that that the values smaller 

than     are low intensity values whereas the values larger than     are high 

intensity values where μ is the mean intensity and σ is the standard deviation of 

the image. Therefore, the range is one standard deviation of the mean. 

Since the above sigmoid functions produce smoothly shaped transition between 

finite limits varying from zero and one, the sum of those two functions with 

opposite signs can appropriately represent the pattern. If one standard deviation 

range is inserted into the sum of the two sigmoids, the resulting adaptive function 

is: 

          
 

                      
 

 

                       
 (5.20) 

where    the intensity difference between cluster   and its neighboring cluster  ,   

is the mean and   is the standard deviation of the image. The graph of the 

function is given in Figure 5.6: 
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Figure 5.6 Optimum Alpha Values and the Estimated Function 

If the distribution is multimodal, it fails to determine the proper value of alpha 

parameter. Since in the multimodal probability density function the difference 

between the mean and variance of each class is different than that of the mean and 

variance of the image. This causes variations in the estimated low and high 

contrasting pairs. This can be a limitation of the SRAMP algorithm.  
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CHAPTER 6  

 

EXPERIMENTAL RESULTS 

 

 

 

In this chapter, the performing capabilities of the recommended approaches are 

investigated by conducting experiments on real images and synthetic images. The 

experiments are performed on MATLAB 2012a. The MATLAB codes for SLIC 

and morphological cleanups are adapted from Kovesi (2013) to be applicable to 

SAR images. For the boundary recall evaluation, the e-pixel neighborhood is 

prespecified as 1 pixel which is generally used in comparing of all state-of-the-art 

algorithms. 

 

6.1. Comparison of Mahalanobis and Euclidean Proximities 

Due to the limited capability of Euclidean proximity in capturing the proper 

classification of the pixels near or along the borders of the two pixels, 

Mahalanobis proximity is recommended as an alternative metric and inserted into 

SLIC algorithm. To evaluate the segmentation performance of Mahalanobis-SLIC 

(MSLIC) algorithm, it is compared with SLIC, Turbopixels, ERS and SEEDS 

algorithms whose codes are publicly available. For this purpose, experiments are 

conducted on twelve distinct images from Berkeley Data Set. Various grid sizes 

are chosen in all the calculations to obtain different number of superpixels. The 

parameter m is taken as equal to 10, the one used as default in Achanta et al 

(2010). 

Boundary recall and undersegmentation error are computed and plotted in Figure 

6.1 and Figure 6.2 respectively. 
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Figure 6.1 Boundary Recall Results for Berkeley Data Set 

 

Figure 6.2 Undersegmentation Error Results for Berkeley Data Set 
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The purpose of the experiments on optical images such as Berkeley Data Set is to 

illustrate the way the Mahalanobis distance proximity term is capable to capture 

those pixels which are sensitive to the liming value of the Euclidian metric using 

the groundtruth data of the images. 

As can be seen in Figure 6.1 and Figure 6.2, the proposed MSLIC algorithm has 

higher boundary recall and lower undersegmentation error than SLIC and the 

other three approaches. This implies that Mahalanobis distance proximity is 

capable of capturing those pixels where Euclidean distance proximity fails. Thus, 

it can be said that MSLIC has better segmentation performance than SLIC and the 

other three approaches.  

 

6.2. Visual Comparison of Mahalanobis and Euclidean Proximities 

Mahalanobis distance proximity is better suited to real world shapes than the 

Euclidean distance proximity. In the Figure 6.3, an example of MSLIC and SLIC 

algorithm results are shown. 

           

Figure 6.3 Visual Comparison of Mahalanobis and Euclidean Proximities, first 

shown MSLIC and then SLIC. (The image-250087- from Berkley Data Set) 
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A closer look at the areas that are enclosed by red rectangles show that the 

MSLIC algorithm fits better to all kinds of shapes from rectangle to elongated 

ones as shown in Figure 6.4. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6.4 Selected areas, (a) MSLIC, (b) SLIC, (c) MSLIC, (d) SLIC  

 

6.3. Performance Evaluation of SREP and SRMP on Synthetic 

Images 

For the two different spatial proximities, namely Euclidean and Mahalanobis 

similarity ratio based algorithms have been formulated as SREP and SRMP. To 

evaluate the segmentation performance of these algorithms, experiments are 

conducted on two distinct synthetic images. The reason for the choice of synthetic 

images is to use their ground truth data. The synthetic images are shown in Figure 

6.5.  
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Figure 6.5 Synthetic Images 

In both of the proposed approaches, the parameter α regulates the degree of 

compactness and the boundary adherence. When the parameter is large, spatial 

proximity is more important than intensity similarity ratio resulting more compact 

superpixels. In this case, the grid structure of the superpixels are preserved. When 

the parameter is small, intensity similarity ratio is more important than spatial 

proximity resulting superpixels adhered well to the boundaries. In this case, the 

boundary is preserved. In the calculations, α is determined as equal to 0.5 which 

yields the most visually pleasing superpixels. The purpose of the experiments on 

the synthetic images is to show the sensitivity of all the approaches, hence their 

robustness, to the speckle noise level. 

To evaluate boundary adherence, the boundary recall is computed on the synthetic 

image that are speckled at 0.05 noise level .As in the previous experimentation, 

same grid sizes are used. Computed results are plotted in Figure 6.6. In this figure, 

it can be seen that the boundary recall of the proposed SRMP approach is higher 

compared to others indicating that the proposed approach is less sensitive to noise 

than the other algorithms. Thus, it can be said that SRMP algorithm is capable of 

obtaining better boundary adherence than as compared to the other algorithms in 

noisy images. 
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To evaluate the compactness, the undersegmentation error is also calculated and 

plotted for the same noisy synthetic images as shown in Figure 6.7. In this figure, 

the undersegmentation error of SRMP approach is lower than the other algorithms 

implying that it is capable of generating more compact superpixels than the 

others.  

 

Figure 6.6 Boundary Recall Results for Synthetic Images 
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Figure 6.7 Undersegmentation Error Results for Synthetic Images 

6.4. Comparison of SRMP and SRAMP on Synthetic Images 

SRAMP algorithm is an adaptive version of SRMP approach where similarity 

ratio and Mahalanobis proximity are combined with an adaptively determined 

parameter. To evaluate the segmentation performance of SRMAP and SRMP 

algorithms, experiments are conducted for the same two synthetic images that are 

again speckled at 0.05 noise level by using the same grid sizes as in the previous 

experimentations. The boundary recall and undersegmentation error are computed 

and plotted in Figure 6.8 and Figure 6.9 respectively.  
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Figure 6.8 Boundary Recall Results for Synthetic Images 

 

 Figure 6.9 Undersegmentation Error Results for Synthetic Images  
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From these figures, it is evident that SRAMP has comparable boundary recall but 

lower segmentation error than SRMP implying it has high segmentation 

performance. 

 

6.5. Performance Evaluation of SREP and SRMP on Real SAR 

Images 

The experiments conducted on the speckled synthetic images indicated that SREP 

and SRMP approaches have higher segmentation performance in terms of 

boundary recall and undersegmentation error than those state-of-the-art methods. 

To evaluate the segmentation capability of these two approaches for SAR images, 

experiments are conducted on six distinct real SAR images shown in the 

Appendix A. For this purpose, ground truth of each SAR image is prepared 

manually and presented in Appendix B. In the computations, 0.5 is used for the 

balancing parameter α and same grid sizes are used as in the previous 

experimentations. The results for boundary recall and undersegmentation error are 

presented in Figure 6.10 and Figure 6.11 respectively. 



 

64 
 

 

Figure 6.10 Boundary Recall Results for Real SAR Images 

 

Figure 6.11 Undersegmentation Error Results for Real Images  
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As expected, SRMP has the highest boundary recall and lowest 

undersegmentation error than the other algorithms and SREP stands as the second 

best in terms of these metrics. 

 

6.6. Comparison of SRMP and SRAMP on Real SAR Images 

The segmentation capability of SRMP and SRAMP algorithms are compared by 

conducting experiments on the same real SAR images used in the previous 

section. The balancing parameter and the grid sizes are kept same as those in the 

previous calculations. The computed boundary recall and undersegmentation error 

results are plotted in Figure 6.12 and Figure 6.13 respectively. 

 

 

Figure 6.12 Boundary Recall Results for Real SAR Images 
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Figure 6.13 Undersegmentation Error Results for Real Images 

 

From these figures, it can be concluded that the boundary recall of SRAMP is 

comparable but its undersegmentation error is lower than that of SRMP. This 

result is similar to that one related with the speckled synthetic images. 

6.7. Comparison of Filtered SLIC and Similarity Ratio Based 

Algorithms  

The algorithms SREP, SRMP and SRAMP employ similarity ratios that utilize 8-

neighbours of the pixel to be labeled as the mean of the superpixels. This 

neighborhood grouping which is 3x3 window slided over each pixel within each 

search area sized 2S is the basis of the algorithmic computations. Although this 

type of local operation is similar to average filtering, the algorithms have no 

relation with that filtering. However, it raises the question of producing 

superpixels sensitive to speckle noise if an image is filtered first before the 

application of the SLIC, ERS, SEEDS and TURBOPIXELS algorithm. In this 
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section, the extent of boundary adherence of such superpixels are compared to 

those produced with the proposed algorithms. For this purpose, the two synthetic 

images are speckled at 0.05 noise level. As in the previous experimentations, 

same grid sizes are used. 

 

Figure 6.14 Boundary Recall Results for Similarity Ratio Based Algorithms and 

Filtered Superpixel Algorithms 
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Figure 6.15 Undersegmentation Error Results for Similarity Ratio Based 

Algorithms and Filtered Superpixel Algorithms 

It is known that filtering techniques reduce the noise but at the same time smooth 

away edges to a greater or a lesser degree. From Figure 6.14 and Figure 6.15, it is 

evident that the proposed algorithms produce superpixels with higher boundary 

recall and lower undersegmentation error than those produced by filtered 

superpixel algorithms. This result is expected due to the propagation of error 

resulted at the filtering state to the subsequent tasks of the algorithms used. 

Hence, a more reliable superpixel segmentation can be obtained by utilizing a 

single robust approach rather than employing a filter as a preprocessing tool for 

any superpixel algorithm. In this respect, it can be said that the local operation 

used for the computation of the similarity ratio has no resemblance to average 

filtering. 
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6.8. Visual Comparison of SAR Superpixel Segmented Images 

For visual comparison of the superpixels that are produced by the algorithms used 

in the previous sections, experiments are conducted on six real SAR images. The 

grid sizes chosen as 20 in all computations. The results are presented in from 

Figure 6.16 to Figure 6.21. For this figure, each page is allotted to one original 

image and seven other images showing superpixels produced by the various 

algorithms.  

As remotely sensed radar images, any SAR image contains different landcover 

classes such as urban areas, man-made structures, vegetated areas and others. 

These landcover classes can be visualized by analyzing the adherence of the 

superpixels to the boundaries of those regions. If explicit information is required 

about these areas, the superpixels should be clustered using them as elementary 

units rather than the pixels. This superpixel-based clustering is discussed later in 

Chapter 7. 

The aim of visual comparison of the images specific for this research can be 

twofold. First, the degree of robustness of the approach can be assessed by 

comparing the segmented image with the original one. If randomly spread highly 

irregular shaped superpixels are generated, then it can be said that the algorithm is 

not robust enough to speckle noise in the image. Second, boundary adherence and 

compactness can be determined by comparing the extent of the deviation of the 

superpixel boundaries from the edges of the objects.  
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Figure 6.16 SAR Image 1 and Its Superpixel Segmentations 
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Figure 6.17 SAR Image 2 and Its Superpixel Segmentations 
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Figure 6.18 SAR Image 3 and Its Superpixel Segmentations 
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 Figure 6.19 SAR Image 4 and Its Superpixel Segmentations 
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Figure 6.20 SAR Image 5 and Its Superpixel Segmentations  
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Figure 6.21 SAR Image 6 and Its Superpixel Segmentations   
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As it can be seen from the results, the superpixels adhere well to the boundaries of 

strong edges such as coastal line. The strong edges of man-made structures such 

as roads and bridges are also well preserved with the boundary adherence of the 

superpixels. In homogenous areas like sea, algorithms tend to produce more 

similar superpixels whereas in vegetated areas they produce more irregularly 

shaped superpixels. When the segmented images are compared to the original 

ones, it can be observed that SREP, SRMP and SRAMP approaches produce more 

robust images than those generated by the others. This is expected because of the 

similarity ratio employed by SREP, SRMP and SRAMP algorithms. When 

segmented images are compared among themselves, the superpixels produced by 

SRMP and SRAMP approaches look more uniform and compact than the SREP 

due to the well adherence of the superpixel boundaries to the image edges of 

objects. In addition, the superpixels produced by these approaches are more 

visually pleasing than the others. Although, the superpixels generated by adaptive 

SRAMP approach are comparable to those of SRMP with respect to uniformity 

and compactness, they are relatively more visually pleasing than those generated 

by SRMP. 
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CHAPTER 7  

 

APPLICATIONS OF SUPERPIXEL-BASED CLUSTERING ON SAR 

IMAGES 

 

 

 

The purpose of this chapter is to illustrate the way the preprocessed superpixels 

can be used in subsequent tasks of an image analysis. The task considered here is 

clustering of the SAR superpixels into larger segments. This superpixel-based 

clustering reduces the search space to be explored for high-level abstraction of the 

objects based on superpixels. One important benefit in the reduction of search 

space is the decrease in computational complexity of the task which makes it 

tractable thus providing timely allowances to explore many important aspects of 

complex imagery. On the other hand, as image complexity is reduced, the defined 

boundaries of clustered superpixels delineate the borders of the regions of interest 

which can be used to extract them. Such clustering can find wide applications in 

the area of remote sensing images to identify different land cover according to 

certain homogeneity-based criteria. Based on such criteria, the number of 

clustered superpixels is expected to be proportional to the land cover classes. In 

case the land cover over an image consists of limited number of classes such as 

sea and land, the number of clusters would be low as compared to that obtained 

from an image with large number of land cover classes. If specific land cover 

classes are aimed to be extracted from the image or to control the extent of 

clustering, the cluster number can be specified before the task. For example, if 

linear structures such as canals are of interest, then two or three can be used as the 

cluster number.  
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The k-means and the superpixel density-based spatial (SPDBSCAN) (Kovesi, 

2013) approaches are used in this application to cluster the generated superpixels. 

The former approach needs the specification of the cluster numbers while the 

latter do not need such requirement. This is the reason behind the choice and the 

comparison of these two approaches.  

The traditional k-means clustering have been briefly described in Chapter 4. There 

are various methods to determine the value of k which are all discussed in Pham 

et al. (2004). In this chapter,   is set as equal to number of land cover classes 

through visual inspection. 

SPDBSCAN is essentially a merging approach using density-based spatial 

clustering (DBSCAN) algorithm (Ester, M., 1996) which is efficient on large data 

bases and capable of capturing clusters with arbitrary shapes. In this approach, 

adjacent superpixels are merged to form clusters of superpixels using the distance 

of the means of those superpixels as the distance measure. 

Among the SAR images utilized in Chapter 6, three of them are chosen whose 

superpixels are to be clustered. The original images as well the superpixels of 

these images generated with SREP, SRMP and SRAMP algorithms in Chapter 6 

are once more shown here in Figure 7.1. To facilitate the comparison of these 

images, the superpixel-based clustered segments are all shown together in Figure 

7.2. The value of k is taken as two for the k-means clustering. 
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(a) 

   

(b) 

   

 (c) 

   

(d) 

Figure 7.1 Images Used for Applications. (a) Original images (b-d) Superpixels 

generated by SREP, SRMP and SRAMP respectively. 
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(a) 

 

   

(b) 

 

   

(c) 

 

Figure 7.2 Clustered Results with k-means of the Superpixels (a-c) generated by 

SREP, SRMP and SRAMP. 
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(a) 

 

   

(b) 

 

   

(c) 

 

Figure 7.3 Clustered Results with SPDBSCAN of the Superpixels (a-c) generated 

by SREP, SRMP and SRAMP. 
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As can be seen from these images, the edges are properly delineated between the 

land cover classes. If a number for land cover classes is specified, the edges for 

those classes are defined and the segments are extracted accordingly. As in the k-

means clustering, the images are segmented into two regions defined by the value 

of  . In the absence of any value for  , the superpixels are expected to be clustered 

according to the means of the adjacent superpixels. In any case, superpixel-based 

clustering is efficient in extracting the land cover classes by their defined 

boundaries. Therefore, superpixel segmentation as a pre-processing tool can be 

successfully used in the subsequent tasks of any SAR image analysis such as 

automatic target detection and recognition algorithms. 
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CHAPTER 8  

 

SUMMARY AND CONCLUSIONS 

 

 

 

In this thesis, similarity ratio based algorithms have been described as new 

superpixel generating algorithms for SAR images. The core of the proposed 

algorithms is a linear combination of similarity ratio and spatial proximity terms 

parameterized with a constant. This parameter regulates uniformity and 

compactness of the generated superpixels. Standard k-means clustering is a 

minimization scheme adapted to be used locally over reduced search area rather 

than the whole image. Among those proposed algorithms, it has been found that 

similarity ratio and adaptive Mahalanobis proximity (SRAMP) approach has 

relatively high segmentation performance.  

As the existing superpixel generating algorithms are reviewed, intensity similarity 

and spatial proximity are found to be the two important factors for perceptual 

grouping. As a result of this review, it has been concluded that the algorithms 

which group the pixels using those two factors produce perceptually meaningful 

and representationally efficient superpixels. 

If Euclidean distance metric is used for spatial proximity, the approach is regarded 

as similarity ratio-based Euclidean proximity algorithm designated as SREP. If 

Mahalanobis as another spatial proximity metric is used instead of Euclidean 

metric, the approach is referred as similarity ratio based Mahalanobis proximity 

algorithm designated as SRMP. 
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Among those grouping algorithms, SLIC is the simplest and the most efficient one. 

Its simplicity is due to the use of k-means clustering and its efficiency is due to the 

linear combination of intensity similarity and Euclidean proximity terms 

parameterized with a compactness parameter. This parameter regulates the degree 

of the boundary adherence and the extent of the compactness of the superpixels. To 

exploit the simplicity of k-means clustering, this approach is adapted in this thesis 

as in a manner similar to SLIC algorithm.  

In homogeneous areas, Euclidean proximity term negatively affects grouping of 

those pixels near or along the borders of the two superpixels. To avoid any possible 

misclassification of those pixels during the course of the algorithm, Mahalanobis 

distance is recommended and is used instead of Euclidean distance. The formulated 

Mahalanobis-SLIC (MSLIC) and SLIC are then tested by using the Berkley Data 

Set. It has been found that MSLIC produces superpixels with higher boundary 

recall and lower segmentation error than those of SLIC. 

Although Euclidean proximity is replaced with Mahalanobis proximity in the  

formulation of MSLIC, the intensity similarity term is still the essence of SLIC and 

MSLIC algorithms. The intensity distance term formulated as the sum-of-square 

differences of intensities has been demonstrated to be robust to additive noise but 

not to multiplicative speckle noise inherent in SAR imagery. To avoid this 

drawback of the intensity distance term, similarity ratio is developed. Combining 

this ratio with Euclidean and Mahalanobis distances separately, new superpixel 

generating algorithms are formulated as similarity ratio based Euclidean proximity 

(SREP) and similarity ratio based Mahalanobis proximity (SRMP). Although these 

approaches can effectively be used for single band single polarized images, one 

evident limitation is their applicability within multi polarized setting. 

To evaluate the segmentation performance of the above newly formulated methods 

as well as three additional popular algorithms, experiments are conducted on two 
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speckled synthetic and six real SAR images. These three are TURBOPIXELS, ERS 

and SEEDS algorithms whose codes are publicly available. The reason to include 

these three algorithms into comparison is due to their computational requirements 

that are all at a competitive level with SLIC. These experiments demonstrated that 

SRMP algorithm is more robust to speckle noise and capable of generating well 

boundary adhered and compact superpixels as compared to other four algorithms. 

In SRMP approach, similarity ratio and Mahalanobis proximity metrics are 

parameterized with a constant parameter that is kept constant for all clusters during 

the course of the algorithm. Even the constant parameter is properly determined, it 

might produce irregular shaped rather than compact superpixels within 

homogeneous regions. This is especially the case for heavily speckled SAR images. 

Therefore, the constant parameter needs to be determined during the course of the 

SRMP algorithm in an adaptive way. This is performed with a function developed 

and inserted into SRMP. The compactness parameter is determined as a function of 

the difference of the mean values of two neighboring superpixels. In this way, the 

proposed similarity ratio based adaptive Mahalanobis proximity algorithm 

(SRAMP) adapts the intensity similarity and the spatial proximity within each 

cluster. To explore the segmentation capabilities of this adaptive SRMAP and 

SRMP algorithms, experiments are conducted by using the same two speckled 

synthetic and six real SAR images. It has been found that SRAMP and SRMP are 

comparable in terms of boundary recall but SRAMP has lower segmentation error 

than SRMP implying that it has high segmentation performance. 

For visual comparison of the superpixels produced by SLIC, TURBOPIXELS, 

ERS, SEEDS, SREP, SRMP and SRAMP approaches, experiments are conducted 

on six different real SAR images. The comparison of the results indicates that the 

superpixels generated by SRMP and SRAMP approaches are more visually 

acceptable than those produced by the other algorithms. This result is expected 

based on the findings with the synthetic images. If only those produced by SRMP 
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and SRAMP are compared, it can be said that SRAMP generates more visually 

pleasing superpixels than that are produced by SRMP. This segmentation 

performance of SRAMP approach is due to the use of an adaptive parameter that 

regulates the compactness in homogeneous regions and boundary adherence in 

heterogeneous regions. Evidently, this outperforming capability of SRAMP is 

achieved at the expense of computational cost. This cost is relatively higher than 

that of SLIC, SREP and SRMP algorithms. 

Despite the efforts devoted towards the development of a robust superpixel 

generating algorithm for SAR images in this dissertation, there are several areas 

that still need to be researched. One area might be related with the size of grids to 

be used as search areas. The user specified grid sizes determine the number of 

superpixels    . For large values of  , the boundaries of the grid structure are 

properly preserved but not the region boundaries; on the other hand, for small 

values of  , the region boundaries are properly preserved but not the boundaries of 

the grid structure. Thus, searching for means to optimize this parameter 

automatically is one possible future research direction. The other area might be 

related with searching the ways to decrease the computational requirement. 

Although the proposed algorithm is simple to understand and implement, its 

computational cost can be considered as a drawback when compared to SLIC as the 

current state-of-the-art algorithm. Another possible area of future work is to 

investigate the use of nonlinear combination of similarity ratio and spatial 

proximity to explore the outperforming capabilities of such combination. 
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APPENDICES 

APPENDIX A  

DATA USED IN EXPERIMENTS 

 

In this appendix, the detailed information about real SAR images which are used in 

this thesis are given. Since it is not always easy to interpret SAR images, the 

images that are taken from Google Earth
TM

 are also provided. 

 

 

TerraSAR-X  

 

Image 2016 CNES/Astrium 

File Name:  

TSX1_SAR__GEC_SE___HS_S_SRA_20081012T123311_20081012T123312 

Location: Vishakpatnam / India 

Image Look Direction: Right 

Image Polarization: VV 

Coordinates: 

 Upper Left: (8528, 7106) Lower Right: (8790, 7386) 

Content: 

 Man made structure: Road 

 Sea, costline and vegetation 

Figure A.1 Original Image with Its Optical Correspondence 
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TerraSAR-X 

 

Image 2016 CNES/Astrium 

File Name:  

TSX1_SAR__GEC_SE___HS_S_SRA_20081012T123311_20081012T123312 

Location: Vishakpatnam / India 

Image Look Direction: Right 

Image Polarization: VV 

Coordinates: 

 Upper Left: (8077, 6285)  Lower Right: (8291, 6513) 

Content: 

 Man made structure: Road 

 Arid land 

Figure A.1 (continued) 
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TerraSAR-X 

 

Image 2016 CNES/Astrium 

File Name:  

TSX1_SAR__GEC_SE___HS_S_SRA_20081012T123311_20081012T123312 

Location: Vishakpatnam / India 

Image Look Direction: Right 

Image Polarization: VV 

Coordinates: 

 Upper Left: (3222, 5144) Lower Right: (3535, 5530) 

Content: 

 Man made structure: Airfield 

 Arid land 

Figure A.1 (continued) 
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TerraSAR-X 

 

Image 2016 CNES/Astrium 

File Name:  

TSX1_SAR__GEC_SE___HS_S_SRA_20081012T123311_20081012T123312 

Location: Vishakpatnam / India 

Image Look Direction: Right 

Image Polarization: VV 

Coordinates: 

 Upper Left: (5537, 8005) Lower Right: (5795, 8325) 

Content: 

 Man made structures  Road, Bridge 

 Vegetation and River 

Figure A.1 (continued) 
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TerraSAR-X 

 

Image 2016 CNES/Astrium 

File Name:  

TSX1_SAR__GEC_SE___HS_S_SRA_20081012T123311_20081012T123312 

Location: Vishakpatnam / India 

Image Look Direction: Right 

Image Polarization: VV 

Coordinates: 

 Upper Left: (10474, 6407) Lower Right: (5795, 8325) 

Content: 

 Arid Land, Mud / Swamp  

Figure A.1 (continued) 
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TerraSAR-X 

 

Image Landsat / Copernicus 

File Name:  

TSX1_SAR__GEC_RE___SM_S_SRA_20080201T235718_20080201T235726 

Location: Mississippi / USA 

Image Look Direction: Right 

Image Polarization: HH 

Coordinates: 

 Upper Left: (8113, 3217) Lower Right: (8674, 3714) 

Content: 

 River, Vegetation and Marsh 

Figure A.1 (continued) 
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APPENDIX B  

SAR IMAGE GROUNDTRUTHS  

The groundtruths of the SAR images that are used in this thesis are shown below. 

These groundtruths are manually preapared using optical correspondence of the 

SAR images.  

  

  

  

Figure B.1 Original Images with Their Groundtruths 
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Figure B.1 (continued) 
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APPENDIX C  

ALGORITHM RUN TIMES 

The run times for the similarity ratio based and SLIC algorithms for the generation  

of the various number of superpixels can be visualized from the following chart.  

 

Figure C.1 Algorithm Run Times 

The average of all those run times for each algorithm are shown in the table below. 

Table C.1 Averaged Algorithm Run Times 

  Average Min Max 

SRMP 0.2552 0.1654 0.9930 

SLIC 0.1229 0.0802 0.4498 

SREP 0.1847 0.1376 0.5190 

SRAMP 0.2762 0.1794 0.9937 

The run times are calculated on Intel(R) Core(TM) i7-4770 CPU @ 3.40 GHz 

processor with 8 GB DDR3 RAM.  
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