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ABSTRACT 

 

A BIG DATA ANALYTICS ARCHITECTURE FOR MULTI TENANT ENERGY 

OPTIMIZATION SYSTEMS  

 

Kartal, Oğuz Can 

M.S., Department of Computer Engineering 

Supervisor: Dr. Cevat Şener 

 

September 2017, 67 pages 

 

 Efficient energy consumption is a trending topic nowadays, which has serious 

effects both environmentally and financially. Commercial and industrial buildings 

waste huge amounts of energy because of lack of integrated optimization systems. In 

this thesis, a big data analytics architecture for large-scale multi-tenant energy 

optimization systems is proposed, which is capable of doing various near-real time 

analyses on sensor data with the help of machine learning models created from old 

sensor data.  

 In order to build big data analytics handling subsystem there are several steps 

during the flow of the sensor data. Raw data collected from the sensors in the field to 

the system is parsed and turned into meaningful data containing required features. 

This meaningful data is used for predicting the forth-coming energy consumption 

values. Prediction feature of the system is carried out with a machine learning model 

created from old sensor data. This meaningful data is also used for updating this 

machine learning model, to improve the accuracy and provide compatibility of model 

with live sensor data. Prediction and model update analyses are implemented on the 

streaming sensor data, without first storing it to a database or file system to provide 

near-real time feature of system. A very important feature of the system is 

scalability, which means adding new tenants or increasing the frequency of sensor 

data arrival is handled by system.  

 

Keywords: Big data analytics, Scalability, Internet of Things, Apache Spark 
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ÖZ 

 

ÇOK KULLANICILI ENERJİ OPTİMİZASYON SİSTEMLERİ İÇİN BÜYÜK 

VERİ ANALİZİ MİMARİSİ 

 

Kartal, Oğuz Can 

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü 

Danışman: Dr. Cevat Şener 

 

Eylül 2017, 67 sayfa 

 

Verimli enerji tüketimi çevresel ve mali açıdan ciddi etkilere sahip olan, her 

geçen gün önemi artmakta olan konulardan biridir. Ticari ve endüstriyel binalar, 

entegre optimizasyon sistemlerinin eksikliği nedeniyle büyük miktarda enerji 

harcarlar. Bu tezde, eski sensör verilerinden yaratılan makine öğrenme modelleri 

yardımıyla sensör verisi üzerinde çeşitli gerçek zamanlı analizler yapabilen büyük 

ölçekli çok kullanıcılı enerji optimizasyon sistemleri için bir büyük veri analiz 

mimarisi önerilmiştir.  

Büyük veri analitiği işleme alt sistemi oluşturmak için, sensör verisinin 

akışında birkaç adım vardır. Sahadaki sensörlerden sisteme gelen ham veriler 

ayrıştırılır ve gerekli özellikleri içeren anlamlı verilere dönüştürülür. Bu anlamlı 

veriler, ilerleyen süreçte gelecek olan enerji tüketim değerlerini tahmin etmek için 

kullanılır. Sistemin tahmin etme işlevi, eski sensör verilerinden yaratılan bir makine 

öğrenme modeli ile gerçekleştirilir. Bu anlamlı veriler, aynı zamanda kullanılan 

makine öğrenme modelinin güncellenmesini ve doğruluğun iyileştirilmesini 

sağlamak için de kullanılır. Tahmin ve model güncelleme analizleri, sistemin gerçek 

zamanlı özelliğini sağlamak için önce bir veri tabanı ya da dosya sistemine 

yazmadan akan sensör verileri üzerinde yapılır. Sistemin çok önemli bir özelliği 

ölçeklenebilirliktir; yani yeni kullanıcılar eklemenin veya sensör verilerini alma 

sıklığını artırmanın performans üzerindeki etkisi sistem tarafından ayarlanmalıdır. 

 

Anahtar sözcükler: Büyük veri analizi, ölçeklenebilirlik, nesnelerin interneti, Apache 

Spark 
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CHAPTER 1  

 

 

INTRODUCTION 

 

 

 

We are living in a world, where a large number and variety of data sources 

are available from various "smart" devices. These devices, which have the ability to 

collect and exchange data, together with their communication network form what is 

known as the "Internet of Things" (IoT). The Internet of Things creates opportunities 

for integrating physical world into computer based-systems by making collecting 

data from remote devices and controlling them across existing networking 

infrastructures possible. Thanks to rapid advances in underlying technologies, the 

Internet of Things is becoming increasingly prevalent in various domains of modern 

life, such as finance, telecommunications, surveillance, manufacturing, health-care, 

energy, network security and so on. According to Gartner, Inc. (a technology 

research and advisory corporation), there will be nearly 20.8 billion devices on the 

Internet of Things by 2020 [1]. Considering all these devices collecting and sending 

data, massive amount of data flows around the world. Such data withholds valuable 

knowledge, previously hidden because of the amount of work and computational 

resources required to extract it. In each of the IoT domains there is a need to gather, 

process and analyse this data, detect emerging patterns and outliers, extract valuable 

insights, and generate actionable results.  

 One of the largest subset of IoT network is energy domain. In the United 

States, commercial buildings account for nearly 20% of the nation’s energy usage, 

with more than half that figure being used simply for heating and lighting. However, 

the Environmental Protection Agency (EPA) estimates that the typical commercial 

facility wastes 30% of its energy [2]. The problem is getting more serious with more 

and more buildings getting constructed every day. In order to stop the energy waste, 

energy optimization systems should operate in buildings with the ability to handle 

the continuously increasing data. Good news is that innovations in data storage and 
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processing methodologies enable the processing of large amounts of data in a 

scalable manner, and generation of actionable insights in near real-time for a better 

operation and predictive maintenance of energy assets.  

 Electricity is not economically storable, and this in turn requires maintaining 

the supply/demand balance in real time by building a large-scale energy optimization 

system [3]. Currently the minimum interval of doing both baseline energy forecast 

and HVAC (Heating, Ventilating and Air Conditioning) set point regression analyses 

are an hour for most energy optimization systems. Decreasing this minimum interval 

and doing more frequent analyses has serious advantages over hourly analyses 

because nowadays, accurate energy consumption forecast for the upcoming few 

minutes for balancing sudden changes in demand against energy delivery has 

become a critical research field as a result of privatization and deregulation of the 

power industry [4]. Electricity distribution companies use baseline energy forecast 

for making a decision about how much electricity to produce, while building 

managers use baseline energy forecast for making a decision about how much 

electricity to consume. This decision-making process is currently working on hourly 

analyses, but more frequent analysis results will improve the precision of overall 

hourly analyses, and more precise results will help balancing demand response of the 

electricity. In times with the high demand for electricity, electricity distribution 

companies need to curtail some load from some of the customers. In such a case if 

the building manager has more frequent HVAC set point regression analysis results, 

consumption can be reduced by adjusting set points accordingly. 

 The concept of real-time pricing is surging nowadays. In this type of pricing, 

electricity rates fluctuate in very frequent intervals, like an hour, within a day. A 

signal for specifying the costs of generating electricity in the current time interval is 

transmitted to the customers for each interval. Real-time pricing gives the chance of 

having higher control over their electricity consumption to the consumers. Customers 

can use the opportunity of consuming electricity at cheaper prices as a result of using 

less electricity throughout times when it is costlier to produce electricity. Moreover, 

carbon emissions can be reduced with the help of electricity use timing by 

environmentally-conscious consumers [5]. In a scenario with real-time pricing both 

the amount of electricity consumed and produced affect the price of electricity in 
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spot market. So, the more precise results from baseline energy forecast analysis are 

profitable for both producers and consumers. Also in the scenario with real-time 

pricing, building manager would be able to consume less electricity in the time 

period where electricity prices are high and vice versa by adjusting set points 

accordingly if more frequent HVAC set point regression analysis results are used. 

 In this thesis, we propose a big data analytics architecture for multi-tenant 

energy optimization systems which builds machine learning models with batch 

accumulated sensor data, and use these machine learning models to predict 

consumption values in near real time by analysing streaming sensor data. Our 

architecture also updates the machine learning models on the fly by analysing 

streaming sensor data. Apache Spark is selected as the processing framework since it 

has support for both batch and streaming processing and also has a powerful, in 

terms of implemented algorithms, machine learning library. In this thesis, several 

variations and parameter changes are also analysed for better performance and 

accuracy of the energy optimization system. Performance of the system stands for 

analysing the data coming from multiple tenants in near-real time. Accuracy of the 

system stands for making better consumption predictions to determine the better state 

for devices managed by system from the analysed data for tenants. Proposed 

architecture supports multi-tenancy which means that system is expected to handle 

data coming from a number of tenants in parallel. To sum it up contribution of this 

thesis is proposing a big data analytics subsystem model for an energy optimization 

system with following features. System should be capable of doing above mentioned 

analyses like baseline energy forecast and HVAC set point regression more 

frequently than hourly intervals. System should support multi tenancy in a scalable 

manner. System should meet the timing requirements of a near real time system and 

also system should provide a reasonable accuracy rate.  

 Rest of the thesis is organized as follows: In Chapter 2, big data and big data 

analytics concepts are defined and several tools for handling big data analytics are 

described in technical details. In Chapter 3, previous researches related with this 

thesis are presented. What previous researches propose and what they have not 

achieved is given. The focus of this study is how the missing points can be achieved. 

Then, in Chapter 4 a reference energy optimization system is described and 
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requirements of it related with big data analytics are explained, in Chapter 5, the 

basic architecture of the proposed energy optimization system is described in detail. 

Also, several variations and parameter changes are mentioned. Then, in Chapter 6, 

first the testing environment is described and numerous tests are performed. Later, 

these tests and their results are presented and discussed in detail. Finally, the thesis is 

summarized and remaining works for the future are given in conclusion Chapter 7. 
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CHAPTER 2  

 

 

BIG DATA ANALYTICS 

 

 

 

There is not a clear or well-accepted definition for the concept "big data". 

Many organizations and research institutes use their own definition of big data but in 

general sense big data is a term used for a data collection which is so large or 

complex that is formidable to be stored and processed neither adequately nor 

efficiently by using traditional technology, hardware and software tools. Data sets 

are growing rapidly because the equipment that generates digital data gets cheaper 

and data sources get widespread. These data sources include information-sensing 

mobile devices, software logs, cameras, microphones, RFID readers and wireless 

sensor networks [6]. 

 Most of the prevalent definitions of the big data in the literature focus on the 

size of the data but a comprehensive definition is constituted by the three main 

attributes of big data: volume, variety and velocity also known as the three Vs of big 

data as it can be seen in Figure 1. 

 

Volume 

 The primary attribute of big data concept is clearly data volume which is the 

size of the gathered data. Data that is measured with the terabytes or petabytes is 

considered as big data. On the other hand, volume of the data can also be quantified 

by count of the records, transactions, tables, or files depending on the definition. 

Sensors are coming into use in various industries and also with higher sampling 

frequencies than before. Also with the social media becoming one of the main 

aspects of human life billions of messages, photos and tweets are added to data 

storages daily. By 2010 the global amount of information would rapidly up to 988 

billion GB. Experts predict that by 2020 annual data will increase 43 times [7]. It is 

obvious that regardless of the definition, each quantification of the big data is 
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growing continuously with the development of technology. It is safer to label the 

data as big data after the point when storing this data is not efficient with traditional 

data storage techniques. 

 

Variety 

 A considerable amount of big data specialists think that the main problem 

with the big data is not handling the scale of the data, but integrating the poorly 

structured data. The old traditional structured data was easier to store and analyse 

with the existing RDBMS (Relational Database Management Systems) even in large 

volumes. This structured data is now joined by semi-structured data like XML and 

RSS feeds and unstructured data which is coming from diverse data sources 

including various different sensors and also web sources like logs, clickstreams and 

mostly social media and also coming in various data types like texts, photos, videos 

and audio. Also, the IDC study predicts that unstructured information will account 

for 90% of all data created over the next decade [8]. Therefore, this big data neither 

can fit into predefined rectangular tables of RDBMSs nor can be analysed with 

existing technologies. 

 

Velocity 

 Velocity refers to the frequency of data generation or the frequency of data 

delivery. Data like temperature, sound and image is coming continuously from 

sensors, also data like posts, tweets and messages is generated in huge amounts every 

single second. Handling big data does not only mean retrieving and storing it, but 

also processing it. So, velocity also refers to the frequency of analysing the data. In 

many areas data's value is decreasing as the time passes like disaster prediction. In 

areas like these data have been requested to carry out in real-time or near-real-time 

processing. Depending on the design of how to utilize the data, performing batch 

analysis like daily or weekly is widespread. 

 

 There are also other substantial V-word attributes that are associated with Big 

Data. For example, veracity deals with the accuracy of the data generated. As the 

data sources increase and generates more data to use a fraction of this data is useless, 
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corrupted or incompatible. Volatility refers to time period of data considering as 

valid and storing in the system. As new data comes to the system the older data 

becomes less meaningful. Value means worth of the extracted information from the 

data. If data cannot be used for extracting something out of it or assigning a new 

mean to it, it does not have a value from the business point. Variability refers to data 

whose meaning is changing with respect to concept it is being used in. For example, 

in language processing field one specific word may define different values in 

different concepts. Visualization means the way of representing the big data or 

results extracted from it in a readable and accessible manner. 

 

 

Figure 1: Big Data Features 

 

 The bigger problem with big data is how to extract valuable information from 

it rather than how to store it. With the increase in data being received and stored, in 

every industry most of the leading companies wonder whether they are getting full 

value from the massive amounts of information they already have within their 

organizations [9]. This is the reason that significance of big data analytics improves 

every day. Big data analytics is about two things, big data and advanced analytics, or 

simply using advanced data analytics techniques on big data. Advanced analytics is a 

term used for collection of techniques and tools including data mining, statistical 

analysis, machine learning, artificial intelligence, natural language processing, data 
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visualization, complex SQL etc. These techniques are not recently discovered 

techniques, they are already being used for years with the structured data, but since 

most of these techniques adjust well with concept of big data too, big data analytics 

have emerged as one of the most popular concepts. Sensor data is becoming more 

relevant in all fields of daily life, memory storage capacity and processing power 

made big data analytics possible to reach out more and more. Big data analytics is 

common nowadays and clearly going to be used as the primary mechanism for many 

decisions as it increases accuracy and reduces irrelevant influences [10]. Big data 

analytics can be classified under two main categories, bulk data analytics and 

streaming data analytics. 

 

 Bulk Data Analytics 

Bulk data analytics is the sub-concept of big data analytics which is 

specialized on processing batch data. Most of the time bulk data analytics work on 

masses of structured and semi-structured historical data which are typically stored in 

database or file system. Bulk data analytics mostly involves several separate 

processes. First data is collected from the storage point, usually over a period of 

time. Then the data is processed by the implemented program. Finally, the results are 

obtained and output is stored. Bulk data analytics is not that time-sensitive at all. In 

fact, bulk data analytics can take hours, or perhaps even days depending on the 

volume of the data and the complexity of the desired analysis. Bulk data analytics are 

advantageous in the applications dealing with payroll and billing activities which 

occurs on cycles of wide time periods or deep analytics applications which does not 

require immediate decision making. There are different bulk data analytics tools, 

most common ones are Apache Hadoop and Apache Spark. 

 

 Streaming Data Analytics 

Streaming data analytics is the sub-concept of big data analytics which is 

specialized on processing streaming data. Most of the time streaming data comes 

from continuous data sources which means analytics has to be done on flowing data 

which can be either structured or unstructured. This is different than the traditional 

store and process systems. In the traditional systems input data is first stored in 
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database or file system or memory which can be based on the nature of the system. 

After the storage of the data is completed it is transmitted to units where processing 

take place and results are obtained, which is not practical when the results of the 

analytics is needed in real or near-real time. In the applications that deals with 

network monitoring, fraud detection, market data management and disaster 

prediction analysis have to be done on-the fly before the incoming data loses value, 

so streaming analytics is a crucial tool for applications like these. Since the data is 

not stored before processing, methods to replay the data are not usable when 

streaming analytics takes place so this kind of applications have to cope with issues 

such as data loss, corruption, and reordering.  

 The high-level architecture of a stream processor simply works like this: 

arriving data streams are clocked through a network of processing nodes, where an 

action or transformation like aggregation, analytics and filtering is performed on 

each of the nodes as data flows through it [11]. These nodes can perform either 

concurrently or parallel depending on the action. After the processing is completed 

data is stored with the help of this nodes in the desired system (file, database, disk, 

and memory). There are different stream processing tools most common ones are 

Apache Storm and Apache Spark. 

 In the following subsections, we discuss some of the relevant technological 

advancements that enable handling of the mentioned challenges of big data analytics. 

 

2.1 Map Reduce 

 Handling big data is not applicable with traditional systems and 

infrastructures since it is hard to predict the size of the data. An option for acquiring 

more power is adding more computers, more CPU cores, more memory and more 

hard disks, which has the disadvantage of having capacity limits. After some point 

this option fail to stand over the continuous data increase. Besides the cost of adding 

specialized hardware is lot more than general purpose hardware. Another option is, 

which is more favourable, using as many resources as required which are relatively 

powerless in terms of computing but working in parallel. Of course, handling 

processes working on different machines in a parallel manner is not an easy task 

from programming point of view. This is the part where MapReduce comes in.  
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Map reduce is a programming model that is based on two main functions. 

Map function processes a key/value pair and generates a set of intermediate 

key/value pairs while reduce function combines all intermediate values associated 

with the same intermediate key. All of the features like managing the required inter-

machine communication, handling machine failures, partitioning the input data and 

scheduling the program’s execution across a set of machines are taken care of by the 

run-time system in programs written by using map-reduce programming style. 

Furthermore, these programs are automatically parallelized by the run-time system 

[12]. The main advantage of the MapReduce programming model is its simplicity. 

Level of abstraction provided by this programming model ensures user focusing 

more on the algorithm than spending time with inner details like parallelization, task 

setup, fault tolerance and concurrent data access, which are all handled behind the 

scenes. Only task user has to do is specifying an implementation with a pair of map 

and reduce functionalities, which are conformed to the requirements of the 

programming model. This abstraction makes MapReduce programming model very 

advantageous for developing data-analysis algorithms which are highly scalable [13].  

 

2.2 Tools 

Big data analytics is one of the most trending topics nowadays as mentioned 

in previous sections. To successfully handle big data analytics several tools are 

available. Some of those tools concentrate on bulk data analytics while some of them 

concentrate on streaming data analytics, of course there are tools available which are 

both able to work with bulk and streaming data analytics. Tools with ability to work 

on bulk data analytics are tries to solve problems related with volume feature of big 

data, meanwhile tools with ability to work on streaming data analytics are tries to 

solve problems related with velocity feature of big data. 

 

2.2.1 Apache Hadoop 

 Hadoop is an open source framework for data analytics which uses 

MapReduce algorithm as primary mechanism of processing. Hadoop is designed for 

processing very large data sets using distributed storage systems on clusters. Hadoop 

stores data with the help of Hadoop Distributed File System (HDFS) and processes 
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data using MapReduce. Hadoop is a batch processing framework and have the 

mentality "Store first post-processing" while processing the data. This mentality and 

loading the data from disk while processing makes the velocity a feature Hadoop has 

problem to handle. HDFS supports various file formats so it is safe to say variety is 

handled by Hadoop and also volume is handled by Hadoop.  

 Apache Mahout is a package of implementations which contains the most 

popular and usable machine learning algorithms. Most of the implementations 

included in Apache Mahout are designed to work on Apache Hadoop to enable 

scalable and robust processing of huge datasets. Algorithms that are not available in 

a parallelizable form due to the nature of the algorithm can also take advantage of 

HDFS for suitable access to data in the Hadoop processing pipeline. Core algorithms 

of Apache Mahout are for clustering, classification and collaborative filtering are 

implemented on top of Apache Hadoop using the map/reduce paradigm. 

 

2.2.2 Apache Storm 

 Storm is a distributed real-time computation system for processing large 

volumes of high-velocity data [14]. Storm is designed for massive scalability, offers 

a strong guarantee that every tuple will be processed and supports fault-tolerance. 

For determining the flow of process of streaming data coming from the input sources 

users describe topologies. These topologies directed acyclic graphs. Program acts on 

how the topology is built when the data comes in. As it can be seen in Figure 2 storm 

topologies are based on two main components. Spouts are sources of streams, they 

bring data into the system and hand it to bolts. Bolts, on the other hand, are modules 

which process the input streams and constructs outputs. Spouts have the ability to 

transmit the input stream to one or more bolts in a parallel fashion, moreover bolts 

can handle the processing either concurrently or parallel. Storm ecosystem can 

receive data from a rich array of types of sources. Large range of spouts are available 

for reading data from the Twitter streaming API to Apache Kafka to JMS brokers to 

everything in between. Also, custom spouts for highly specialized applications can 

be implemented by users. This is an important advantage of the Storm ecosystem 

[15]. 
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Figure 2: Storm Spot/Bolt Architecture 

 

2.2.3 Apache Spark 

 Apache Spark is an open source data analytics framework which allows in-

memory computation on large distributed clusters with high fault-tolerance [17]. 

Spark’s primary abstraction is a distributed collection of items called a Resilient 

Distributed Dataset (RDD). An RDD is simply an immutable distributed collection 

of objects in Spark. RDDs take advantage of two different kinds of operations which 

are transformations and actions. Transformations convert previous RDDs to a new 

RDD. On the contrary actions, compute a result using a RDD. This result is either 

saved to an external storage system or returned to the driver program for further 

calculations [16]. The main difference between transformations and actions is that 

transformations don't make Spark compute. Spark computes RDDs only the first 

time they are used in an action. Spark handles scalability with the feature that RDDs 

can be split into multiple partitions, which may be computed on different nodes of 

the cluster.  

  Spark and Hadoop have their similarities and differences. Spark is similar to 

Hadoop in basic concepts like using MapReduce algorithm as primary mechanism of 

processing and also Spark is designed for processing very large data sets using 

distributed storage systems on clusters. Spark has of course its differences. The 

prominent difference is that Hadoop stores the data in disk, in the HDFS, while 

Spark stores the data in memory. The performance boost of Spark over Hadoop 

while processing data comes from this basic difference. Another important reason of 

the better performance is after each map task results are written to disk in Hadoop, 
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while in Spark results are stored in memory if not stated otherwise.  Spark also has 

the streaming implementation which helps Spark with handling velocity. Streaming 

implementation will be analysed in the ensuing chapter. Spark have the options like 

using NoSQL databases like Cassandra or using Spark SQL, when working with 

structured data, for distributed storage alongside with HDFS. 

 Apache Spark has also streaming implementation. Spark Streaming is also, 

like Storm, is a distributed real-time computation system for processing large 

volumes of high-velocity data and also provide massive scalability and fault-

tolerance. The main concept Spark Streaming built on is called DStreams or 

discretized streams. Spark Streaming uses a micro-batch technique which splits the 

input stream as a sequence of small batched chunks of data, which are DStreams. 

Each DStream is processed like batch and results of this process is sent to next batch 

process. Spark Streaming represents each DStream as a sequence of RDDs arriving 

at each time step which can be created from numerous input sources, such as Flume, 

Kafka, or HDFS. DStreams provide most of the operations available on RDDs. 

Besides new operations related to time, such as sliding windows are implemented in 

Spark Streaming [16]. 

 Apache Spark has also a library focused on machine learning named MLlib 

which aims to make practical machine learning scalable and easy. MLlib contains a 

variety of common machine learning algorithms such as classification, regression, 

clustering and collaborative filtering. It also provides featurization, pipelines and 

persistence to users at high level.  The main factor that differentiates MLlib from 

most of the other machine learning libraries is the ability to work on distributed 

datasets in parallel efficiently. Also, the bond with Spark makes MLlib more 

attractive since it has the key features for big data analytics like high-performance, 

scalability and fault-tolerance inherited from Spark core. Users can also use MLlib 

with other Spark libraries like Spark Streaming and SparkSQL which gives them the 

opportunity to use machine learning with streaming data and data-frame based data.  

 MLlib and streaming data can be integrated in two different manners. First 

one is creating a suitable machine learning model from the batch data and then 

predicting the results with the data from the stream by using the created model. Other 

one corresponds to online learning phenomena in machine learning world. It is 
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simply creating a machine learning model of which parameters can be updated with 

the data from the stream. This is achieved by implementing the same fitting 

algorithm that is performed offline on each batch of data, so that the model 

continually updates to reflect the incoming streaming data. Both of these two 

manners will be used in this thesis and more details about their working principles 

will be analysed in the oncoming chapters. 
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CHAPTER 3  

 

 

LITERATURE REVIEW 

 

 

 

There are plenty of both on-going and completed researches in the domain of 

IoT and sensor data. Most of these researches are focused on frameworks with the 

ability of gaining meaningful information from the incoming sensor data and mostly 

by using cloud computing. In this research, we will be focusing on an energy 

optimization system (EOS) which has the ability to analyse incoming sensor data in 

near real time and adjust the building's energy system in respect to results to use less 

energy. 

 Energy optimization systems and smart grid applications have their 

similarities and differences. In both of them, there are large number of sensors, large 

amount of data flows from these sensors and the goal to analyse this big data for 

adjusting the system for future. However, sensors in energy optimization systems are 

located on devices running in the building while in smart grids sensors are located 

over the electric lines. It is safe to say studies focused on smart grid are applicable to 

energy optimization systems with small modifications. Natasha Balac et al [18] 

studies a “big data” analytics platform with the ability of advanced forecasting is 

studied for utilizing smart grid. The goal of this study is to create highly accurate 

models predicting energy demand for the campus micro grid at multiple levels of 

granularity. Xiufeng Liu et al [19] also studies an energy optimization solution 

focused on "smart-grid". This paper proposes an innovative ICT-solution to 

streamline smart meter data analytics. The proposed solution offers an information 

integration pipeline for ingesting data from smart meters, a scalable platform for 

processing and mining big data sets, and a web portal for visualizing analytics 

results.  

 There are also studies related with building energy optimization systems 

rather than smart-grid energy optimization. Most of these researches are based on 
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analysing data in a batch process mode. Ioan Petri et al [20] studies on a framework 

based on Comet Cloud. In this paper, the use of cloud computing for efficiently 

running and deploying Energy Plus simulations with sensor data in order to fulfil a 

number of energy related objectives for buildings is described. W. Khamphanchai et 

al [21] also focuses on batch processing. This paper introduces the BEMOSS 

operating system aiming at improving sensing and control of equipment, reducing 

energy consumption and enabling demand response of small- and medium-sized 

commercial buildings. Vaclav Jirkovsky et al [22] is focused on demonstrating the 

computational power of big data by analysing time series data measured from a 

passive house with the goal of detecting specific events. Stampfli, J et al [23] is 

proposing novel alarm verification service which uses Apache Spark for comparing 

different machine learning algorithms. 

 Recent studies started focusing on real-time analytics for energy optimization 

systems as much as batch analytics. Mario L. Ruz et al [24] defines a tool which is 

used to estimate predicted mean vote (PMV) and predicted percentage dissatisfied 

(PPD) indices. The tool communicates remotely with the renewable system and 

proposes corrective control indications to maintain the indoor air conditions inside 

the optimal comfort range. Kanet Katchasuwanmanee et al [25] aims to create a 

simulation methodology and to investigate the modelling of thermal and energy 

management called e-ProMan across manufacturing site. In this article, a simulation-

based approach is presented to develop thermal and energy-management systems 

applied to SME manufacturing environments, supported by real-time ‘big data’, and 

the corresponding predictive control and optimisation analytics. Liehuo Chen et al 

[26] designs a new framework for real-time big data analytics and also implemented 

a prototype system and evaluated its performance using important data analysis 

benchmarks adapted to model real-time data analytics. Sunil Mamidi et al [27] 

implement a multi-modal sensor agent that is non-intrusive and low-cost, combining 

information such as motion detection, CO2 reading, sound level, ambient light, and 

door state sensing. It is shown that machine learning techniques can be used to 

estimate room occupancy using a set of simple sensors, and that similar techniques to 

learn agent models that predict occupant behaviour can be used. By using these agent 

models to predict room occupancy up to an hour in advance, the BLEMS system can 
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intelligently control the multi-agent HVAC system to minimize energy usage while 

maintaining occupant comfort. Mayet et al [28] proposes a programming model and 

data-parallel system architecture that allows real-time machine learning model 

training. In this study, incremental K-Means clustering and Markov model training in 

the context of anomaly detection in smart factories are focused on. Grolinger et al 

[29] investigates sensor-based forecasting in the context of event-organizing venues, 

which present an especially difficult scenario due to large variations in consumption 

caused by the hosted events. Two machine learning approaches were considered, 

neural networks and support vector regression, and four prediction models were 

explored with each. Each were considered together with three data granularities: 

daily, hourly, and 15 minutes. 

 Real time information derivation from sensors are not only studied on energy 

optimization field. Mohiuddin Solaimani et al [30] presents a novel, generic real-

time distributed anomaly detection framework based on Apache Spark for multi-

source stream data. The framework can monitor network traffics periodically and 

builds the training model. Later it can be used to identify suspicious or anomalous 

network traffics that potentially indicate Cyber-attacks. Yedu C. Nair et al [31] aims 

at performing real time big data analytics on vehicular data collected from a network 

of ECUs (Electronic Control Unit) in cooperated into the different automobiles. The 

analytics has been performed on big data frameworks like Hadoop and Spark. Batch 

processing model is developed using Hadoop map reduce and Hive. Real time stream 

processing has been achieved through Spark streaming and Storm streaming. Daesik 

Ko et al [32] proposes an application framework for smart cold chain management 

system based on Hadoop, Spark and IoT (Internet of Things) techniques. To satisfy 

the requirements to provide multi-tenancy of cold chain application and to develop 

with common component in cold chain management systems, system is designed 

based on Hadoop, Spark and Spark Streaming. Domann J. et al [33] present a highly 

scalable news recommender system optimized for the processing of streams built on 

Apache Spark framework. The use of Apache Spark enables running the 

recommender as a distributed system in a cluster ensuring the scalability of the 

approach. Lekha R. Nair et al [34] aims at developing a real time remote health 

status prediction system built around open source big data processing engine, the 
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Apache Spark, deployed in the cloud which focus on applying machine learning 

model on streaming big data. In this scalable system, the application receives the 

data with health attributes of user, extracts the attributes and applies machine 

learning model to predict user’s health status. 

 All of the researches above seek solution to big data storage and analytics 

problems in a high architectural perspective. Most of them speaks of a solution 

related with energy optimization systems. Some of this energy optimization systems 

are implemented for working in micro-grid while some of them are implemented for 

working in real-buildings. Some of the referred systems are based on batch analysis 

of the big sensor data and some of them are based on real time analysis of the big 

sensor data. There are also researches mentioned above which are not related with 

the building energy area but tries to analyse and process the sensor based big data 

either on real time or batch. This research aims to introduce a big data analytics 

architecture for large-scale multi-tenant energy optimization systems which is 

suitable for working on both historical and real-time sensor data in a multi-tenant 

manner and will be based on Apache Spark. This framework would be able to work 

with different machine learning algorithms and optimization models. 
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CHAPTER 4  

 

 

BIG DATA ANALYTICS IN AN ENERGY OPTIMIZATION SYSTEM 

 

 

 

Energy efficiency of buildings is vital because it helps to preserve finite 

resources, lowers costs for businesses and users, and can be accomplished relatively 

quickly. Hence, to move towards a low carbon economy, making “more intelligent” 

use of energy in buildings will fundamentally contribute to energy and cost savings. 

Existing buildings are responsible for more than 40% of the world’s total primary 

energy consumption [35]. Increase in global population and the tendency of modern 

generation spending more time in buildings leads to increase in number of buildings 

all around the world, which eventually leads to higher energy consumption overall. 

As these factors are not expected to change, energy efficiency in buildings represents 

a prime objective for energy policy at regional, national and international levels. 

  This is the part where energy optimization systems emerge. To make things 

clear energy optimization system in a building is handling electric energy. The main 

goal of an energy optimization system is reducing the energy consumption of the 

building while not affecting comfort level of people present in the building. It is not 

an easy task as it sounds, because of the volume and velocity of the data the systems 

have to handle. Sensor data have to be analysed real or near-real time in most of the 

cases to take precaution and adjust the system according to results. Also in other 

cases, which requested batch analysis huge amount of old sensor data have to be 

analysed. These two cases are issued with two important aspects of big data 

respectively, velocity and volume, which makes energy domain one of the most 

popular domains for using big data analytics.  

 In this chapter, first the overall structure of a subsystem which handles the 

big data analytics of a sample energy optimization system will be described. Then 

focused analyses in this subsystem and operations that subsystem will perform are 

described in detail. 
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4.1 Overall Structure of Big Data Analytics Handling Subsystem 

 The subsystem of an energy optimization system which is handling the big 

data analytics collects data from lots of sensors, mostly energy consumption data of 

devices running in the target building and the weather sensor data. This data has to 

be stored efficiently, which is a challenge but there is a bigger challenge for the 

system. Before this streaming data is migrated to the system's database, it has to be 

processed by the system. This streaming time-series data can be used in some of the 

analyses even before getting stored in the database. The subsystem must be able to 

carry out both batch analyses using the data stored in the database and real-time 

analyses using the streaming data. The workflow of a subsystem handling with big 

data analytics of an energy optimization system is shown in the Figure 3. 

 

 

Figure 3: Overall Structure of Big Data Analytics Handling Subsystem 



 21 

4.2 Big Data Analytics Operations 

This section will explain different kinds of operations system is capable to 

perform without providing technical details. 

 

4.2.1 Model Create 

Big data analysis handling subsystem creates machine learning models from 

batch data using the selected machine learning algorithm. In model creation old 

consumption, temperature and occupancy data are used. Model creation process is 

done for only once for every building. For every building in the system a different 

model is created using the data related with that building. 

 

4.2.2 Model Update 

Big data analysis handling subsystem updates the created machine learning 

models from streaming data using the selected machine learning algorithm. In model 

update live consumption, temperature and occupancy data are used. Also, the old 

model data (variable weights) is used for updating the models, however old data is 

not used again and again for every iteration of model update. For every building in 

the system the model of the building is updated using the data related with that 

building. 

 

4.2.3 Consumption Prediction 

Big data analysis handling subsystem predicts the consumption values from 

streaming data using related machine learning model. In consumption prediction 

current temperature, occupancy data and variable weights of related machine 

learning model are used. For every building in the system the consumption is 

predicted using the data and model related with that building. 

  

4.3 Focused Analyses 

 This section will explain different kinds of analyses implemented in the 

system in order to fulfil the listed operations above, without providing technical 

details. 
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4.3.1 Baseline Energy Forecast 

 Baseline energy forecasting is used to forecast an ideal energy consumption 

value for a specific forthcoming time slot based on the historical values of target 

building. Required input dataset for regression analysis consists of; 

 Energy consumption 

 Average outdoor temperature 

 Building operation schedule 

  A model is defined based on those historical data. As a result of the 

regression analysis, coefficients can be obtained for each independent variable. By 

using these coefficients, ideal energy consumption for desired forthcoming time slots 

can be generated with already known temperature and occupancy data. 

Baseline energy forecast models are updated in hourly, daily, weekly and 

monthly periods in most of the modern energy optimization systems. Increasing this 

updating frequency gives the system some serious advantages like improving the 

accuracy of predictions, making model more sensible to temperature changes in 

small time periods and making the system more compatible with real time pricing 

concept. Frequency of updating models for baseline energy forecast should be less 

than one hour, as a matter of fact it would be better to update the models in 10 or 20 

minutes. Predicting consumption values should be completed in at most 5 seconds if 

it is desired to near-real time property of the system to be meaningful. 

  

4.3.2 HVAC Set-Point Regression 

 Effect of set point temperature changing on total energy consumption can be 

determined with HVAC set-point regression analysis. Required input dataset for 

regression analysis consists of; 

 Energy consumption 

 Average outdoor temperature (Tout) 

 Indoor heating/cooling set point temperature (Tset) 

 Building operation schedule 

 Energy consumption and operation days of building are directly used in 

regression analysis. However, temperature difference between set point temperature 
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and average outdoor temperature values (Tset-Tout) is used as an independent variable 

in regression analysis.   

 As a result of the regression analysis, coefficients can be obtained for each 

independent variable. With using these coefficients energy consumption for different 

set point values can be generated. 

HVAC set-point regression models are updated in hourly, daily, weekly and 

monthly periods in most of the modern energy optimization systems. Increasing this 

updating frequency gives the system some serious advantages like improving the 

accuracy of predictions, making model more sensible to temperature changes in 

small time periods and making the system more compatible with real time pricing 

concept. Frequency of updating models for HVAC set-point regression should be 

less than one hour, as a matter of fact it would be better to update the models in 10 or 

20 minutes. Predicting consumption values should be completed in at most 5 seconds 

if it is desired to near-real time property of the system to be meaningful. 

 

4.3.3 Weather Normalization 

 Weather normalization is used to eliminate the effect of outdoor air 

temperature on building energy consumption in order to make comparison of 

building energy consumption for different time periods with different weather 

conditions. Required input dataset for regression analysis consists of; 

 Energy consumption 

 Average outdoor temperature 

 Cooling system starting temperature 

 Heating system closing temperature 

 Building operation schedule 

 After the regression analysis is performed and coefficients are determined, 

weather normalization can be implemented to data. To eliminate impact of weather, 

energy consumption for specific temperature is normalized according to the change 

point temperature.  

 Weather normalization models are updated in hourly, daily, weekly and 

monthly periods in most of the modern energy optimization systems. Increasing this 

updating frequency does not give the system any serious advantages. So, the 
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maximum model update frequency for weather normalization models is left at 1 

hour. For updating the models in periods of at least 1 hour using a real-time updating 

mechanism is not necessary, so this functionality is not implemented in this 

subsystem, it is accomplished by batch updates implemented with the help of outer 

subsystems. Predicting consumption values should be completed in at most 5 

seconds if it is desired to near-real time property of the system to be meaningful. 

 

4.4 Data Used for Operations 

Energy consumption is not the only required data for the system to operate. 

The system also uses weather and occupancy data to determine the working 

parameters for an efficient energy consumption model. Occupancy data is obtained 

by the help of other services and then stored in the database, and hence when the 

system makes a real-time analysis energy consumption data and weather data is 

obtained from the streaming data while occupancy data have to be obtained from the 

database. Furthermore, data of machine learning model is required to perform each 

real-time analysis and this data have to be obtained from the database. 
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CHAPTER 5  

 

 

PROPOSED SOLUTION 

 

 

 

For the described energy optimization system with the previously mentioned 

functionalities, an example software component architecture will be proposed in this 

section. Several different variations and parameters will also be proposed. These 

different variations are based on the basic architecture and use the same components 

but the functioning inside these components have differences among them. First the 

basic architecture with details will be explained. All the variation and parameter 

changes will be explained later. 

 

5.1 Basic Architecture  

 Apache Spark is used as the data processor in this architecture. Apache Spark 

runs on a cluster of computers, each of which is a worker. The driver program node 

does not have to retrieve the whole data from the database and distribute it over the 

cluster to the workers. Instead, since Spark supports HBase data sources, each 

worker connects to the database and retrieves the data of its own partition as RDDs 

and processes them. This functionality has the advantage of preventing the overhead 

of transmitting the whole data more than one time over the cluster.  

 Apache Spark also has the streaming and machine learning libraries which 

are two of the most crucial parts of this architecture. Sensor data is read as RDDs 

with the integration of Spark Streaming, so worker nodes have the ability to analyse 

this data with no significant difference from the analyses done by Spark core. Each 

worker node processes its data and writes the results to database on its own. One of 

the most important duties of energy optimization system is to predict the 

consumption outcome and adjust the system according to what was learned from the 

older batch data. This is accomplished with machine learning models and this is the 

part where Spark MLlib comes in. Spark MLlib has the advantage of having the 
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ability to work with both streaming and batch data. In our architecture machine 

learning models are created from batch data and updated with the streaming data 

with the help of both Spark Streaming and Spark MLlib. 

 Sensor data is processed before being written to database so it would bring 

overhead to the node that retrieves and writes the data and some of the data might 

have been lost while waiting for node to process previous data. To prevent data loss 

at the point where incoming data velocity exceeds the pre-processing velocity of the 

pre-processor node Apache Kafka service is used in this architecture. Kafka is a 

distributed streaming platform which lets the stream of records to be stored and 

processed in a fault-tolerant manner.   

 In this architecture, a column-based NoSQL database is used, more 

specifically HBase is chosen. Since Apache Spark has integration with HBase over 

third party libraries, it is a useful choice. The basic architecture of Spark and HBase 

is about getting an HBase connection object in every Spark Executor as it is shown 

in Figure 4. 

 

 

Figure 4: Spark HBase Connection Architecture 

 

At a high-level which is shown in Figure 5, each action is performed in the 

executors. The driver processes the query, aggregates queries on the region’s 
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metadata, and generates tasks per region. The tasks are sent to the preferred 

executors co-located with the region server, and are performed in parallel in the 

executors to achieve better data locality and concurrency. If a region does not hold 

the data required, that region server is not assigned any task. A task may consist of 

multiple queries, and the data requests by a task is retrieved from only one region 

server, and this region server will also be the locality preference for the task [36]. 

Since the driver is not involved in the real job execution except for scheduling tasks, 

driver being the bottleneck is avoided. 

 

 

Figure 5:  Spark HBase Query Architecture 

 

 In HBase two tables are used for this architecture. First one is prediction 

table. The primary key of prediction table is formed by the union of date of the data 

and id of the tenant. Date of the data consists of year, month, day, hour and minute 

columns, defined in this order. These columns will be used the keep data sorted. The 

data will be sorted by year first. Then will be sorted by month, then by day and goes 

on like this. The last column is the prediction value. In Figure 6 a high-level design 

of prediction process is visualized.  
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Figure 6: Prediction Process Overview 

 

 Second table is model table. The primary key of model data is id of the 

tenant. Other columns are weights of the machine learning model, interception value 

of the machine learning model and equal difference value obtained from the 
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analyses. Each model row in the table is created from batch data. In Figure 7 a high-

level design of model creation process is visualized.  

 

Figure 7: Model Creation Process Overview 

 

 Each model row in the table is updated by the analyses and machine learning 

algorithms from the incoming streaming data. In Figure 8 a high-level design of 

model update process is visualized.  
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Figure 8: Model Update Process Overview 
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5.2 Variations and Parameters 

Proposed energy optimization system is based on the basic architecture 

explained in the previous section. To increase the accuracy and performance of the 

proposed energy optimization system several variations and parameter changes are 

proposed in this section.  

Variations for handling the multi tenancy and parameter changes in 

partitioning mechanism of the system are related with increasing the performance of 

the system, while variations for the selected machine learning algorithm and 

parameter changes in analysis frequency are related with the accuracy of the system. 

 

5.2.1 Handling Multi Tenancy 

 Two variations for handling multi tenancy will be proposed. Used tools and 

implemented functionalities are same for each variation. The way system handles 

multi tenancy is the main distinction between these two variations.  

 First one is tenant-based variation. In this variation data coming from the 

sensors are written to separate Kafka topics with the name of tenant id. Spark jobs 

read data from these topics and analyse the data based on the tenant which means 

there are as many Spark jobs running on the cluster as the number of active tenants in 

the ecosystem. When a new tenant is registered to ecosystem a new Spark job is 

started which reads the incoming sensor data from a new Kafka topic with the name 

of new tenant id. Both the prediction and the update of the model are achieved with 

the analysis of incoming sensor data read from this topic. The overview of tenant 

based variation is shown in Figure 9. 
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Figure 9: Tenant Based Variation 

 

 Second one is pool-based variation. In this variation data coming from the 

sensors are written to the same Kafka topic. There is only one Spark job for all of the 

tenants in the ecosystem and that job reads data from this topic. Both the predictions 

and the update of the models are achieved with the analysis of incoming sensor data 

read from this topic. In this variation, first tenant info is recognized from the 

incoming sensor data then the corresponding model is updated and prediction is 

made with this model. This analysis over data with multi-tenant is achieved by pair 

wise functionality implemented in Spark. The overview of tenant based variation is 

shown in Figure 10. 
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Figure 10: Pool Based Variation 

 

5.2.2 Partitioning 

 For updating the machine learning models and for predicting the consumption 

values the sensor data is used by the proposed energy optimization system. 

Partitioning this sensor data will affect the performance of system. By using too few 

partitions system cannot utilize all resources available in cluster, on the other hand 

by using too many partitions system will face excessive overhead in managing many 

small tasks. Adjusting the parameter of partition size of the sensor data to an optimal 

value would result in a better system performance. 

A partition is a logical chunk of a distributed data set. Spark allows 

developers to run multiple tasks in parallel across machines in a cluster or across 

multiple cores on a desktop. The number of tasks will be determined based on 
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number of partitions [37]. Each partition will be executed in a different core in an 

executor in parallel as it can be seen in Figure 11, which means the maximum count 

of tasks running in parallel is equal to core per executor count times executor count. 

In Spark partitioning is done automatically without the need for 

programmer’s effort. However, there are times when programmer would like to 

adjust the partitioning scheme with respect to the needs of the application. Spark 

allows obtaining the partition count of a RDD, DStream or a DataFrame and 

adjusting it to desired value in number of ways. 

 

Figure 11: Visualization of RDD Being Partitioned 

 

 In the example code which is shown in Figure 12, first the sensor data is read. 

After the sensor data is read, the number of desired partitions is given as a parameter 

to the repartition function. Repartition function make partitions get redistributed 

among executors since it calls shuffle inside. The partition parameter will be applied 

to all further transformations and actions on this DStream and since remaining flow 

of the feature is based on this sensor data partition parameter will be applicable in 

every point of this feature. 
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Figure 12: Arranging Partition Count in Spark 

 

5.2.3 Prediction Frequency 

 For creating the machine learning models batch sensor data is used by the 

proposed energy optimization system. Creating this machine learning model with 

data with different measurement frequencies results in different machine learning 

models in terms of variable weights. Using different machine learning models in 

consumption prediction feature of the basic architecture while using the same 

streaming sensor data as input leads to different consumption prediction values. 

Adjusting the parameter of data measurement frequency to an optimal value would 

result in a better system accuracy. On the other hand, the parameter of data 

measurement frequency also affects the frequency of prediction and model updating 

features. If the model is created with data with measurements of N minutes, 

consumption prediction and model update can be carried out every N minutes at the 

highest frequency settings. Basic architecture provides carrying out the prediction 

and model update features every N x K minutes with lower frequency settings. Since 

carrying out prediction in the most frequent is the sensible choice for an energy 

optimization system measurement frequency is also equivalent to prediction 

frequency in the proposed system. Changing the measurement frequency of the data 

models are created from also effects the performance of the model creation 

functionality in the proposed system since the volume of the data processed in model 

creation phase is related with measurement frequency. 
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Figure 13: Feature Extraction Code for Different Sampling Frequencies 

With the change in measurement frequency, the feature extraction 

functionality also has changes. In the example code which is shown in Figure 13 the 

change of extraction of one feature is displayed with different measurement 

frequencies. Feature extraction affects both model update and consumption 

prediction features of the proposed system. 

 

5.2.4 Model Update Frequency 

For updating the machine learning models streaming sensor data is used by 

the proposed energy optimization system. Updating the model with different 

frequencies results in different machine learning models in terms of variable weights 

in certain time intervals. Using different machine learning models in consumption 

prediction feature of the basic architecture while using the same streaming sensor 

data as input leads to different consumption prediction values. Adjusting the 

parameter of model update frequency to an optimal value would result in a better 

system accuracy. Changing the model update frequency means changing the window 

size of data that is going to be processed in the current interval. To be clearer if 

measurement frequency is N minutes and model update frequency is N x K minutes 

window size is K for model update and in each model update K units of micro-

batches will be processed. 
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Figure 14: Arranging Model Update Frequency in Spark 

 

In the example code which is shown in Figure 14, sensor data is read in 

periods of “interval” seconds. All the newly arrived sensor data since last interval is 

read in current interval and model is updated with analysis of this data. In this way, 

old data does not have to be processed in every interval, model is updated with 

processing of newly arrived data only.  

  

5.2.5 Machine Learning Algorithms 

 All three main functionalities in the basic architecture are dependent on the 

selected machine learning model. While changing the machine learning algorithm 

does not affect the basic architecture, it changes the inside mechanisms like parsing 

raw sensor data to data which will be used in Spark MLlib functions like model 

creation, model update and consumption prediction. Changing the machine learning 

algorithm will affect the proposed energy optimization system’s both accuracy and 

performance. A more accurate machine learning model does not always mean a 

better fit for the proposed system since it can be worse in terms of performance or 

vice versa. Another important point for selecting the machine learning algorithm is 

the compatibility of the algorithm with Apache Spark’s streaming and batch 

functionality. Selected algorithm’s effect on model creation performance of the 

system is also taken into consideration. Three variations for the selected machine 

learning algorithm are proposed which are all implemented in Apache Spark MLlib.  

 First tested algorithm is logistic regression. Logistic regression is used to 

explain the relation between one dependent binary variable and one or more 

independent variables. Logistic regression is mostly referred as the most popular 

classification algorithms other than support vector machines. In Spark MLlib linear 

support vector machines support only binary classification, while logistic regression 

supports both binary and multiclass classification problems. Spark MLlib also has 

the support for logistic regression in streaming mode. Second tested algorithm is 

linear regression. Linear regression is a linear method for modelling the relation 
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between a dependent variable and one or more independent variables. Linear 

regression is the most commonly used and most popular regression algorithm. Spark 

MLlib also has the support for linear regression in streaming mode. The last tested 

algorithm is regression tree. Regression trees uses a predictive model to arrive at 

conclusions about the item’s target value from observations about this item. 

Regression trees are widely used since they are easy to interpret, do not require 

feature scaling, extend to the multiclass classification, handle categorical features 

setting, and are able to capture non-linearities and feature interactions. Spark MLlib 

does not have the support for regression trees in streaming mode.  

More complicated algorithms like neural networks are not tested because 

most important priority for our system is performance and more complicated 

algorithms have their respective performance issues in model creation and model 

update functionalities. 

 For comparing the accuracies of selected machine learning algorithms K-Fold 

Cross Validator implementation in Spark MLlib is used. At a high level comparing 

tool works as follows which is also shown in Figure 15. Input data is split into 

training and test datasets. Then, for each training-test pair selected algorithm is 

iterated through the set of parameters and fitted model is obtained using training 

dataset. In the last phase model’s performance is evaluated with the selected 

evaluator function using test dataset.  

 

 

Figure 15: Cross Validation Process in Spark 
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 On the other hand, effect of K-Fold is as follows. Cross Validator 

implementation splits the dataset into a set of folds which are used as separate 

training and test datasets. For example, with k folds, implementation will generate 3 

pairs of training-test datasets, each of which uses 2/3 of the data for training and 1/3 

for testing.  

 

5.3 Alternative Machine Learning Tools 

R is a language for statistical component which provides a wide variety of 

graphical and statistical techniques like linear and nonlinear modelling, time-series 

analysis, clustering, classical statistical tests, and classification and is greatly 

extensible. The R language is generally used among data scientists and statisticians 

for data analysis and developing statistical software. Spark has also an R package 

called SparkR which provides a distributed data frame implementation that supports 

operations like selection, filtering and aggregation however on large datasets. Since 

R is an open source programming language and has lots of statistical libraries to use 

and since it is popular among statisticians and data scientists, using it as the machine 

learning tool may have advantages. Another option to use Spark with R language is 

pipe functionality implemented in Spark. Pipe operator in Spark, allows developer to 

process RDD data using external applications. External application gets the input 

from Spark using stdin and returns the output produced to Spark using stdoud. 

External scripts which written in R language can be accessible from Spark with this 

pipe functionality. 
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CHAPTER 6  

 

 

IMPLEMENTATION & TESTING 

 

 

 

A typical IoT system consists of five main components which can be listed as 

IoT, data storage component, data processor component, visualization component 

and management system. IoT can be described as a cloud of sensors, which generates 

data continuously. Data storage component is where this IoT data is stored, it is 

mostly selected as a NoSQL data store. Data processor uses the stored data to do 

technical analyses and sends commands or data to visualization component and 

management system. Data visualization component is used to visualize incoming 

data in a human-readable format. Management system, manages a sensor network, 

for example a building management system (BMS). These components and 

communication and processing mechanisms between them are described in detail in 

Chapter V. 

 As described earlier, there are several researches testing reasonable solutions 

for storage and analysing problems of big data. Some of these previous researches 

like Natasha Balac et al [18] focus on testing micro-grid solutions, while our tests 

focus on building based solutions. Previous researches which are focused on building 

based solutions mostly run tests with batch analysis like Ioan Petri et al [20] and W. 

Khamphanchai et al [21] while our tests are run with both streaming and batch 

analysis. Also, some of the previous researches like Liehuo Chen et al [26] and Sunil 

Mamidi et al [27] focus on building based streaming solutions, but our tests are 

different from them in terms of our architecture which provides us to test both 

machine learning, batch and streaming analyses by using same structure. This thesis 

aims to test an energy optimization framework which is suitable for working on both 

historical and real-time sensor data in a multi-tenant manner and will be based on 

Apache Spark. In this chapter, a feasible subset of the proposed tools and 
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architectures will be tested and results will be presented. Testing and environment 

details will be described. 

 

6.1 Tested Variations and Parameters 

 The system has three main features to be tested. First feature is performance. 

System must have met the timing requirements of a real-near time system. Second 

feature is accuracy. Although selecting the best machine learning algorithms is not in 

the scope of this thesis, selecting a machine learning algorithm with reasonable 

success rate must be provided by the system. Scalability is also a key feature to be 

tested. Increase in tenant count or frequency of sensor data should be easily 

coverable with more resources supervened to the proposed system. 

 

6.1.1 Multi Tenancy Handling Tests 

 In this set of tests model update and consumption prediction functionalities of 

the system are tested with two variations based on the main architecture with similar 

structures but different handling mechanisms for multi tenancy. Performance and 

scalability of system are examined with each variation. 

 

6.1.2 Partitioning Tests 

 In this set of tests model update and consumption prediction functionalities of 

the system are tested with data with different partition counts. Performance and 

scalability of system while using different partition counts are examined. Also, 

performance and scalability of system are examined while using same partition 

counts but with different core and executor distribution in the cluster. 

 

6.1.3 Prediction Frequency Tests 

 In this set of tests model creation functionality is tested with data with 

different frequencies of data measurement. Accuracy of the system is examined with 

models created with data with different measurement frequencies. Also, performance 

of model creation functionality is examined when data with different measurement 

frequencies is processed. Measurement frequency of the data models are created with 

is also equivalent to the prediction frequency of the proposed system. 



 43 

6.1.4 Model Update Frequency Tests 

In this set of tests model update functionality is tested with different 

frequencies. Accuracy of the system is examined with models updated on different 

frequencies. Moreover, in the system model update frequency is related with the 

measurement frequency of data which related model is created with.  

 

6.1.5 Machine Learning Algorithm Tests 

 In this set of tests different kinds of machine learning algorithms are tested. 

Although selecting the best machine learning algorithms is not in the scope of this 

thesis, selecting a machine learning algorithm with reasonable success rate must be 

provided by the system. Accuracy of the system with different kinds of machine 

learning algorithms is examined. Also, the effect of the selected algorithm on model 

creation functionality is tested. 

 

6.2 Testing Environment 

 Testing environment is built on MapR Ecosystem. HBase is chosen as 

NoSQL service in the ecosystem. Spark Core, Spark Streaming and Spark MLlib is 

used for doing technical analyses. Tests are deployed on the cluster of Big Data and 

Innovation Laboratory at METU. Cluster consists of 7 nodes with following 

properties: 

 2 x Intel Xeon 10-core 2.40GHz CPU 

 8 x 6TB = 48TB NL-SAS Data Disk 

 8 x 16GB = 128GB RAM 

 2 x 240GB = 480GB SSD O/S Disk 

Tests are initiated from the web interface of MapR called HUE and displayed 

there. Therefore, data transmission is only in cluster's own system and performance 

measurements are performed for internal transmission only. Then only results are 

returned to the user by the web interface. 

The sensor data used in the tests is the sensor data of a real building. There is 

one year of data from this building and data is written with frequency of 5 minutes. 

This data consists of consumption, outside temperature, timestamp and tenant id 
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values. For executing tests in which different frequencies of analysis are tested, this 

data is modified accordingly, to be clearer when frequency of data measuring is 

decreased consumption values are summed and outside temperature values are 

averaged. 7 different features are extracted from this data. First one is related with 

timestamp and prediction frequency, for example if prediction frequency is 5 minutes 

the extracted feature is “5 minutes of week” variable, meanwhile if prediction 

frequency is 10 minutes the extracted feature is “10 minutes of week” variable. 

While calculating this variable working hours and working days of the relevant 

building is also taken in consideration. Other 6 features are related with the outside 

temperature. The difference between the highest and lowest outside temperature 

value is divided by 6 and the equal difference parameter is calculated. Then 

according to this equal difference value and the outside temperature value other 

features are extracted. For creating and updating the machine learning models, data 

with consumption values are processed. On the other hand, while predicting the 

consumption, values processed data does not have the consumption values 

intrinsically. For creating machine learning models %80 of the data is used, 

meanwhile for consumption prediction and model update features remaining %20 of 

the data is used. By not using the same data in both model creation and consumption 

prediction, accuracy of the models is tested more successfully.  

For executing the tests in which the accuracy of the system is tested, this real-

life data is used for obtaining reasonable accuracy rates. On the other hand, for 

executing the tests in which the performance of the system is examined, data 

replicated from this real-life data with random values with respect to examined 

tenant counts is used.  

 

6.3 Test Results and Comments 

Results of all tests are explained in details and comments on all the test 

results are given in this section. 

 

6.3.1 Multi Tenancy Handling Tests 

In this set of tests, two variations of basic architecture with different 

mechanisms for handling multi tenancy is examined in terms of performance. In both 
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of these variations two different features are tested, model update and consumption 

prediction.  

 

6.3.1.1 Model Update 

In this feature, model data is read from HBase and sensor data is read from 

relevant Kafka topic. Model data is read once when the application is first 

initializing, while sensor data is read at regular intervals determined by system. At 

each interval, model is updated with the analysis of weights of old model and newly 

read sensor data. Update of the machine learning model is carried out by selected 

algorithm from Spark MLlib. At each interval, updated model is written to HBase to 

let the system use the updated models in prediction test cases. 

 

 Tenant Based Variation Tests 

In this set of tests, different Spark jobs are run for each tenant. Also, data 

coming from sensors are read from different Kafka topics for each tenant. 

 

Table 1: Results of Tenant Based Variation Tests of Model Update Feature 

Tenant Count 5 10 20 50 

Execution Time(seconds)  2 2 - - 

 

 Pool Based Variation Tests 

In this set of tests, a single Spark job is run for every tenant. Also, data 

coming from sensors are read from a single Kafka topic for every tenant.  

 

Table 2: Results of Pool Based Variation Tests of Model Update Feature 

Tenant Count 5 10 20 50 100 200 

Execution Time(seconds)   2 2 2 6 13 25 
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Figure 16: Results of Multi Tenancy Handling Tests of Model Update Feature 

 

In pool based variation one mutual Spark job is running for update of all 

models. Parallelization of model update when tenant size increases must be managed 

programmatically. Parsing the raw data to a usable format for model updating is 

implemented in parallel by the Spark pair functionality. Unfortunately, due to the 

internal implementations in Spark, parallel update of models cannot be achieved with 

the proposed basic architecture. This leads to a not constant execution time of model 

update while tenant count is increasing. However, model update with pool based 

variation uses small amounts of resource. 

In tenant based variation a different Spark job is running for update of every 

separate model. This leads to a constant execution time of model update while tenant 

count is increasing, on the other hand this also leads to too much resource usage. 

Using our cluster at most 15-20 Spark jobs can be activated parallel.  

Results in the Figure 16 show that tenant based variation is practicable with 

small numbers of tenant count. For the systems with tenant count more than 15-20, 

pool-based variation is the reasonable selection. 

 

6.3.1.2 Consumption Prediction  

In this feature, model data is read from HBase and sensor data is read from 

relevant Kafka topic. Model data and sensor data is read at regular intervals 
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determined by system. Since model data is read at regular intervals and not only 

when the application is initializing, updated model data is used for prediction. At 

each interval, prediction on consumption values is carried out with the analysis of 

weights of model and newly read sensor data. Prediction of consumption values is 

carried out by selected algorithm from Spark MLlib. 

 

 Tenant Based Variation Tests 

In this set of tests, different Spark jobs are run for each tenant. Also, data 

coming from sensors are read from different Kafka topics for each tenant. 

 

Table 3: Results of Tenant Based Variation Tests of Prediction Feature 

Tenant Count 5 10 20 50 

Execution Time(seconds)   1 1 - - 

 

 Pool Based Variation Tests 

In this set of tests, a single Spark job is run for every tenant. Also, data 

coming from sensors are read from a single Kafka topic for every tenant. 

 

Table 4: Results of Pool Based Variation Tests of Prediction Feature 

Tenant Count 5 10 20 50 100 200 

Execution Time(seconds)   1 1 1 1 2 2 
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Figure 17: Results of Multi Tenancy Handling Tests of Consumption Prediction Feature 

 

In pool based variation one mutual Spark job is running for predicting 

consumption of all tenants. Parallelization of consumption prediction when tenant 

size increases must be managed programmatically. Parsing the raw data to a usable 

format for consumption prediction and predicting the consumption is implemented in 

parallel by the Spark pair functionality. This leads to a constant execution time of 

consumption prediction if resources are adjusted to tenant count while tenant count is 

increasing. Also, consumption prediction with pool based variation uses small 

amounts of resource. 

In tenant based variation a different Spark job is running for predicting 

consumption of every separate tenant. This leads to a constant execution time of 

model update while tenant count is increasing, on the other hand this also leads to too 

much resource usage. Using our cluster at most 15-20 Spark jobs can be activated 

parallel.  

Results in the Figure 17 show that pool-based variation has a scalable 

infrastructure thereby has the ability to handle multi-tenancy when resources are 

extended. It is safe to say that pool-based variation is the reasonable selection among 

these two variations independent of tenant size. 
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6.3.2 Partitioning Tests 

In this set of tests, effect of partition count over the performance of system is 

examined. Pool based variation from the above-mentioned variations is used in these 

tests. In the system two different features are tested, model update and consumption 

prediction.  

 

6.3.2.1 Model Update 

In this set of tests, data with 500 tenants are examined with different partition 

counts. Streaming data is acquired every 60 seconds. Testing environment has the 

available resource for supporting the parallelization of each case. 

 

Table 5: Results of Partitioning Tests of Model Update Feature with 500 Tenants 

Partition Count 1 2 5 10 50 100 

Execution Time(seconds)   40 28 29 91 115 115 

 

Model update functionality of the system is tested using data with 200 

tenants. While using too few partitions, benefits of parallelization in Apache Spark is 

not being used. Increasing the partition count gives the system the ability to handling 

the functionalities in parallel, but as it can be seen in the results using too many 

partitions bring excessive overhead to system since it will be managing many small 

tasks.  

When model update is done with data with 200 tenants the optimal partition 

count is 2-5 according to results. Results show that to stabilize the performance of 

the system partition count must be increased when tenant count or data arrival 

frequency is increased. 

 

6.3.2.2 Consumption Prediction 

In this set of tests, first data with 1000 tenants are examined with different 

partition counts. Streaming data is acquired every 30 seconds. Testing environment 

has the available resource for supporting the parallelization of each case.  
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Table 6: Results of Partitioning Tests of Prediction Feature with 1000 Tenants 

Partition Count 1 2 5 10 50 100 

Execution Time(seconds) 2.6 2 2 2.2 5.2 7 

 

 
Figure 18: Results of Partitioning Tests with Constant Core/Executor Distribution 

 

Consumption prediction functionality of the system is tested using data with 

1000 tenants. When prediction is done with data with 1000 tenants the optimal 

partition count is 2-5 according to results in Figure 18. While using too few 

partitions, benefits of parallelization in Apache Spark is not being used. Increasing 

the partition count gives the system the ability to handling the functionalities in 

parallel, but as it can be seen in the results using too many partitions bring excessive 

overhead to system since it will be managing many small tasks. 

In the last tests of this case, the effect of different numbers of core and 

executor distribution with same partition size on the performance is examined. Data 

with 20000 tenants are used in this set of tests with partition size 10. 

 

Table 7: Results of Partitioning Tests of Prediction Feature with Different Core/Executor Distribution 

Executor Count 10 5 4 3 2 

Core Per Executor Count 1 2 3 4 5 

Execution Time(seconds) 4 4 3.3 3.3 3.3 
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Figure 19: Results of Partitioning Tests of Prediction Feature with Different Core/Executor Distribution 

 

Test results in Figure 19 show that using more than 2 cores per executor 

improves the performance. After 2 cores per executor the performance of the system 

is not effected observably. In our tests memory is not a limiting factor, but in a 

scenario with the need of more memory usage improving the executor count will be 

reasonable since executors splits the system memory. 

 

6.3.3 Prediction Frequency Tests 

 In this set of tests, accuracy of system with different analysis frequencies are 

examined. Pool based variation from the above-mentioned variations is used in these 

tests. In this set of tests, machine learning models are created from batch sensor data 

containing one year of information. In each case this one year of data is measured in 

different frequencies. System uses linear regression algorithm as the selected 

algorithm in all of the cases. 

 

Table 8: Results of Model Creation Accuracy of Prediction Frequency Tests 

Model Sampling Frequency (minutes) 5 10 20 30 60 

Mean Squared Error 0.0519 0.1407 0.4031 0.9171 2.6683 

Root Mean Squared Error 0.2279 0.3752 0.6349 0.9576 1.6335 
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Figure 20: Results of Model Creation Accuracy of Prediction Frequency Tests 

 

As it can be seen in the results in Figure 20 as the measuring gets more 

frequent all metric values (mean squared error, root mean squared error and r square) 

gets lower. It is safe to say that with models created from more frequently measured 

data, our system becomes more accurate, of course this type of analyses provides 

more flexibility to the temperature changes in small time periods. Another advantage 

of creating models with data with more frequently measurements is the compatibility 

of system to real-time pricing which is mentioned in previous chapters. 

Creating models from more frequent measuring means using more data to 

create model, which may mean creating model takes more time but it is ignorable for 

our system since models are created only once when a new tenant is introduced to 

the system. Afterwards models are updated using their initial weights. Nevertheless, 

durations of model creation with different frequencies of measurement are examined. 

 

Table 9: Results of Model Creation Performance of Prediction Frequency Test 

Model Sampling Frequency (minutes) 5 10 20 30 60 

Model Creation Duration (seconds) 50 46 43 42 41 
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Figure 21: Results of Model Creation Performance of Prediction Frequency Test 

 

 As it can be seen in Figure 21 creating models from more frequent measuring 

and using more data to create models, has a very slight disadvantage in terms of 

performance for the proposed system and since model creation is executed once for 

each tenant this slight disadvantage is ignorable. 

 

6.3.4 Model Update Frequency 

In this set of tests, same machine learning model is updated with 10 minutes 

of frequency in one case and with 60 minutes of frequency in other case. Data arrival 

frequency is constant in this set of tests, which leads to models becoming identical 

when the frequencies intercept later on. Which means in each case model is identical 

after 60 minutes. However, within this period it is two different models in terms of 

variable weights which leads to different consumption prediction values.  

 

Table 10: Results of Model Update Frequency Tests 

Time (minutes) 10 20 30 40 50 60 

Mean Squared Error 0.17049 0.17049 0.17047 0.17037 0.17031 0.16995 

Root Mean Squared Error 0.41291 0.41290 0.41288 0.41276 0.41269 0.41225 
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Figure 22: Results of Model Update Frequency Tests 

As it can be seen in the results in Figure 22 accuracy of the system is 

increasing in every time the model is updated. On the other hand, as it can also be 

seen in the results the improvement in accuracy is very slight within 10 minutes of 

time intervals. Model updating functionality is the costliest functionality in the 

proposed energy optimization system since handling the multi-tenancy for this 

functionality has its’ problems. It is not safe to propose that updating the model in 

the most frequent manner is the optimal solution, since increasing the frequency can 

prevent the model update functionality from completing in time when the tenant size 

increases. There is a payoff in the system between the tenant count and the model 

update frequency. For handling more tenants successfully, the model update 

frequency can be decreased since the improvement in accuracy is very slight. 

 

6.3.5 Machine Learning Algorithm Tests 

In this set of tests, effect of different type of machine learning algorithms are 

examined on the accuracy and performance of the system. Pool based variation from 

the above-mentioned variations is used in these tests. In each test case models are 

created with 5 minutes of sampling frequency.  

For accuracy of the system metrics of models created with different machine 

learning algorithms are examined. For performance of the system two different 
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functionalities are tested, model update and consumption prediction with 1000 

tenants. 

 

Table 11: Results of Accuracy of Machine Learning Algorithm Tests 

Machine Learning 

Algorithm 

Linear 

Regression 

Logistic 

Regression 

Regression 

Tree 

Mean Squared Error 0.0519 0.3741 0.0469 

Root Mean Squared Error 0.2279 0.6116 0.2166 

 

 
Figure 23: Results of Accuracy of Machine Learning Algorithm Tests 

 

Three different machine learning algorithms that are implemented in Spark 

MLlib is used in these tests. Each algorithm is run with 5 minutes of input sampling 

frequency, to make analysis frequency not a factor in this set of tests. Results in the 

Figure 23 show that the model created with logistic regression algorithm has the 

highest mean squared and root mean squared error values, which makes it the worst 

option of these three algorithms for our system. Model created with regression tree 

algorithm has the lowest mean squared and root mean squared error values, which 

makes is the best option of these three algorithms for our system in case of accuracy, 

but since Apache Spark does not have the streaming support for regression tree 

algorithm streaming model update functionality of our system cannot be provided 

with this algorithm. Model created with linear regression algorithm has the second 
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lowest mean squared and root mean squared error values and since Apache Spark has 

the streaming support for this algorithm, linear regression is the best machine 

learning algorithm for our system in the selected ones. 

 

Table 12: Results of Performance of Machine Learning Algorithm Tests 

Machine Learning 

Algorithm 

Linear 

Regression 

Logistic 

Regression 

Regression 

Tree 

Model Creation Duration 

(seconds) 

50 47 43 

 

 
Figure 24: Results of Performance of Machine Learning Algorithm Tests 

 

It can be seen in the results in Figure 24 the model creation performance of 

the regression tree is the best one amongst the examined algorithms, meanwhile 

since model creation is executed for all tenants only once this case can be ignored. 

 

6.4 Overall Comments 

After performing the tests, the recommended variations and parameters of the 

basic architecture are explained in this chapter. 

Pool based variation is the preferred variation in almost all of the test cases 

over tenant based variation because of handling the multi-tenancy successfully with 
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the low resource usage. The only case tenant based variation is preferable is model 

updating functionality with a system with small number of tenants, because in this 

case tenant based variation handles parallelization better than pool based variation. 

Results show that pool-based variation has a scalable infrastructure thereby has the 

ability to handle multi-tenancy when resources are extended. 

Partition count is a key feature for handling the parallelization in Apache 

Spark and for improving the performance of the system. Increasing the partition 

count gives the system the ability to handling the functionalities in parallel, but using 

too many partitions bring excessive overhead to system since it will be managing 

many small tasks.  

 Creating the machine learning models with data with more frequent 

measurements gives the system a better accuracy. The disadvantage of creating 

models with data with more frequent measurements is the creation taking more time, 

but since the models are created once it is not a valid concern for the proposed 

system.  

Updating the models more frequently gives the system a slightly better 

accuracy also, on the other hand updating the models more often increases the load 

of the system heavily while tenant count is increasing. There is a payoff in the 

proposed system between the tenant count and the model update frequency.  

Linear regression algorithm is the best option from the tested algorithms for 

the proposed system, because linear regression has the second-best accuracy, slightly 

worse than decision tree, and also it is supported by Spark MLlib in both batch and 

streaming modes. 

Using Spark MLlib as the machine learning tool of the proposed system is the 

better fit. SparkR does not fit to our solution since streaming support is not provided 

in the meantime. Implementing batch analyses using SparkR while implementing 

streaming analyses not using SparkR means implementing same algorithms twice in 

different languages. It is not a reasonable solution since it increases the workload and 

also correlating input/output flow in different environments is not an easy task. 

Using R scripts from Apache Spark with pipe functionality solves the issue with 

streaming implementation problem, however this approach does not meet to the 

scalability requirement of the proposed system. Besides data exchange between the 
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external library and Apache Spark is handled by stdin and stdoud which makes it 

open to faults and hard to debug. 
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CHAPTER 7  

 

 

CONCLUSION 

 

 

 

In this thesis, we have analysed needs of a big data analytics architecture for 

large-scale multi-tenant energy optimization systems. Proposed system is capable of 

doing several near-real time analyses on streaming sensor data with the help of 

machine learning models created from old sensor data with batch analyses. Proposed 

system handles multi-tenancy in a scalable manner. After describing needs, a basic 

software architecture with different variations and parameter changes is 

recommended in order to fulfil the requirements of the system. Then, the basic 

architecture and different variations of this architecture is tested in a cluster 

environment. Then, test results are shared and comments on the results are presented. 

Pros and cons of all variations and parameter changes are explained. Finally, an 

architecture with best performing variations and parameters is proposed depending 

on the test results and previous architecture proposals.  

 According to results, there are several conclusions that can be made: 

 A tenant-based architecture for handling multi tenancy has high performance 

with small tenant sizes. When the tenant size increases tenant-based architecture 

needs to use unreasonable amount of resources to scale up, so using a pool-based 

architecture has the advantage when tenant size increases. Results show that pool-

based variation has a scalable infrastructure thereby has the ability to handle multi-

tenancy when resources are extended. 

 Optimal partition count is changing with tenant size and data arrival 

frequency, but both too few and too many partition counts have their disadvantages 

respectively. Using too few partitions prevents the benefits of parallelization in 

Apache Spark, while using too many partitions causes excessive overhead to system 

since it will be managing many small tasks. 
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 Creating machine learning models with data with more frequent 

measurements gives the system a better accuracy. The measurement frequency of 

data used in model creation affects the consumption prediction and model update 

frequency of the system. Consumption prediction frequency is reasonable to be the 

same as the measurement frequency of data used in model creation since 

consumption prediction performance of the system is sufficient. Model update 

frequency does not have to be the same as the other two since model update 

performance of the system is a little troubled with increasing tenant counts. Besides 

increasing the model update frequency gives the system a slight better accuracy. 

 Using linear regression as the selected machine learning algorithm is the best 

option for the proposed system. Since it is more accurate than most of other 

algorithms for our case and since it has both batch and streaming implementation in 

Spark MLlib. 

To sum it up, proposed system is capable of doing essential analyses of an 

energy optimization system like baseline energy forecast and HVAC set point 

regression more frequently than hourly intervals. System supports multi tenancy in a 

scalable manner. System meets the timing requirements of a near real time system 

and also system provides a reasonable accuracy rate. 

There are some parts in the need of improving and some future tests to be 

performed on this thesis. A major deficiency is the handling mechanism of multi-

tenant model update feature. Spark handles parallelization by using the inside 

functions of RDD and/or Data Frame concepts, but since these functions do not 

support fitting models, model update feature of each tenant in a multi-tenant 

architecture have to be done simultaneously. Finding a convenient way of 

overcoming this deficiency is the first task for the future work. In this thesis, basic 

energy forecast and HVAC set-point regression analyses are implemented. Another 

improvement for this study could be implementing more analyses to be used in a big 

data analysis subsystem of an energy optimization system. More analyses can be 

implemented using the footprints of already implemented analyses for the proposed 

energy optimization system. Examining the effect of feature selection and sampling 

of the data are also essential works to be implemented since both of them have the 
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potential of improving the performance of the system. Performance of the model 

update feature which is the most critical issue of the proposed system can be 

improved according to results of this examinations. Feature selection also has the 

potential of improving the accuracy of the system. 
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