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ABSTRACT

PREDICTION OF ENZYMATIC PROPERTIES OF PROTEIN SEQUENCES
BASED ON THE ENZYME COMMISSION NOMENCLATURE

Dalkıran, Alperen

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. M. Volkan Atalay

Co-Supervisor : Prof. Dr. Rengül Çetin-Atalay

September 2017, 74 pages

The volume of expert manual annotation of biomolecules is steady due to high costs
associated with it, although the number of sequenced genomes continues to grow
exponentially. Computational methods have been proposed in order to predict the
attributes of gene products. The prediction of Enzyme Commission (EC) numbers
is a challenging issue in this area. Enzymes have crucial roles in metabolic path-
ways, therefore they are widely employed in biotechnological and biomedical appli-
cations. EC numbers are numerical representations of enzymatic functions based on
chemical reactions that they catalyze. Due to the cost and labor extensiveness of in
vitro experiments EC classification annotation of catalytically active proteins are lim-
ited. Therefore, computational tools have been proposed to classify these proteins to
annotate them with EC nomenclature. However, the performance of existing tools
indicates that EC number prediction still requires improvement. Here, we present
an EC number prediction tool, ECPred, to obtain predictions for large-scale protein
sets. In ECPred, we employed hierarchical data preparation and evaluation steps
by utilizing the functional relations among the four levels of EC annotation system.
The main features that distinguish our approach from existing studies are the use of
a combination of independent classifiers, and novel data preparation and evaluation
methods. Totally, 858 EC classifiers are trained which consists of 6 main, 55 subfam-
ily, 163 sub-subfamily and 634 substrate EC class classifiers. The average F-score
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value of 0.99 is obtained for all EC classes using the validation datasets. Enzyme or
non-enzyme classification is incorporated into ECPred along with a hierarchical pre-
diction approach. To the best of our knowledge, this is the first study that predicts the
enzymatic function of proteins starting from Level 0 (enzyme/non-enzyme) going up
to Level 4 (substrate class). Finally, ECPred is compared with other similar tools on
independent test sets and ECPred obtained better results than existing tools, however,
the results show that there is still room for improvement.

Keywords: Enzyme, Enzyme Commision Number, Machine Learning, Sequence
Analysis
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ÖZ

PROTEİN SEKANSLARININ ENZİMATİK ÖZELLİKLERİNİN ENZİM
KOMİSYONU TERMİNOLOJİSİNE DAYALI TAHMİNİ

Dalkıran, Alperen

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. M. Volkan Atalay

Ortak Tez Yöneticisi : Prof. Dr. Rengül Çetin-Atalay

Eylül 2017 , 74 sayfa

Sekanslanan gen sayısı gün geçtikçe katlanarak artmaya devam ederken uzman yardı-
mıyla anlamlandırılan biyomolekül bu işlemin yüksek maliyet gerektirmesinden do-
layı sınırlı sayıda kalmaktadır. Gen ürünlerinin özelliklerini tahmin etmek için algo-
ritmaya dayalı yöntemler literatürde önerilmiştir. Enzim Komisyonu (EC) numarala-
rının tahmini bu alandaki zor bir konudur. Enzimler metabolik yolaklarda önemli rol
oynamaktadır ve bu nedenle biyoteknoloji ve biyomedikal uygulamalarında yaygın
olarak kullanılmaktadırlar. EC numaraları, katalize ettikleri kimyasal reaksiyonlara
dayalı enzimatik fonksiyonların sayısal temsilidir. Laboratuvar ortamında yapılan de-
neylerin maliyetinin yüksekliği ve çok fazla işgücü gerektirmesinden ötürü, katalik
olarak aktif olan proteinlerin EC sınıflandırması ile anlamlandırılması sınırlıdır. Bu
nedenle, bu proteinleri EC terminolojisiyle sınıflandırıp anlamlandırmak için algorit-
maya dayalı yöntemler önerilmiştir. Bununla birlikte, mevcut araçların performans
sonuçları, EC numarası tahmin alanının hala iyileştirilmesi gerektiğini göstermekte-
dir. Bu çalışmada, büyük ölçekli protein kümeleri için tahminler elde etmek için EC
numarası tahmini yapan bir araç, ECPred anlatılmaktadır. ECPred’de, dört seviyeli
EC anlamladırma sistemi arasındaki işlevsel ilişkileri kullanarak hiyerarşik veri ha-
zırlama ve değerlendirme aşamaları geliştirildi. Yaklaşımımızı mevcut çalışmalardan
ayıran başlıca özellikler, bağımsız sınıflandırıcıların bir kombinasyonunun kullanıl-
ması ve yeni veri hazırlama ve değerlendirme yöntemlerinin geliştirilmiş olmasıdır.
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Toplamda, 6 ana, 55 altfamilya, 163 alt-altfamilya ve 634 alt katman EC sınıfı sı-
nıflandırıcısından oluşan 858 EC sınıflandırıcısı eğitilmiştir. Doğrulama veri setlerini
kullanarak tüm EC sınıfları için 0.99’luk ortalama F-ölçütü elde edilmiştir. Enzim
veya enzim olmayan sınıflandırması, hiyerarşik bir tahmin yaklaşımı ile birlikte ECP-
red’e dahil edilmiştir. Bildiğimiz kadarıyla, Seviye 0’dan (enzim/enzim-olmayan)
başlayıp 4. Seviyeye (alt katman sınıfı) kadar proteinlerin enzimatik fonksiyonunu
tahmin eden ilk çalışma budur. Son olarak, ECPred bağımsız test setleri üzerinden
diğer benzer araçlarla karşılaştırıldı ve ECPred mevcut araçlardan daha iyi sonuçlar
elde etti, ancak sonuçlar iyileştirme için hala çalışma yapılabileceğini göstermektedir.

Anahtar Kelimeler: Enzim, Enzim Komisyonu Numarası, Makine Öğrenmesi, Sekans
Analizi
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CHAPTER 1

INTRODUCTION

Proteins are large biomolecules that play essential roles in living cells and they consist

of amino acids. Proteins perform a lot of functions such as catalyzing biochemical

reactions, replication of DNA, intracellular transport and protecting the body from

viruses and bacteria.

Ontological systems are defined by consortiums such as Gene Ontology (GO) and

Enzyme Commission (EC) Nomenclature in order to provide a vocabulary to repre-

sent the relationships among entities. GO and EC are the special type of biological

ontologies that annotate functions of proteins and enzymatic functions of proteins,

respectively. Protein functions are basically determined by experiments such as anal-

ysis of microarrays and RNA interference. The Universal Protein Resource (UniProt)

is a database which provides sequence and functional information of proteins. In

UniProt, curators search the literature and gather the information related to a protein

and introduce the information to the research community.

1.1 Problem Statement

Automated protein function prediction can be defined as a method that aims to assign

automatically one or more functions to a given protein. While the number of protein

sequences is increasing rapidly, manual annotation of functions to proteins cannot

catch up with this number. It is necessary to develop systems to predict automatically

protein functions since the manual annotation is both time-consuming and costly.

Several methods have been proposed in the literature to predict automatically func-
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tions of protein. Most of the methods use the protein sequence or protein structure to

detect functionality. Predicting enzymatic functions of proteins is one of the impor-

tant topics in bioinformatics since enzymes play important roles in the metabolism by

catalyzing biochemical reactions. Enzyme Commission (EC) numbers are ontology

terms in the form of numerical representations, describing enzymatic functions based

on chemical reactions that they catalyze. EC numbers consist of six main classes (i.e.

oxidoreductases, transferases, hydrolases, lyases, isomerases and ligases) and their

subclasses on four hierarchical levels in total [1]. One basic problem in this field is

predicting whether a protein is an enzyme or not and this subject is overlooked in

most of the studies. The information concerning a protein being an enzyme can then

be used to predict specific enzymatic activities of proteins in a hierarchical manner.

In this thesis, we pursue a machine learning approach and construct binary classifiers

in order to tackle the problem. Positive and negative datasets are necessary in order to

construct a binary classifier. Another basic problem in existing studies is about con-

structing negative datasets is to simply perform it by selecting proteins that are not

in the positive dataset and this approach has several problems . Enzymatic functions

are not popularly studied in the literature, however, the hierarchical structure of EC

is quite suitable for automatic function prediction. Most of the studies are limited to

predicting first two or three levels of the hierarchy. This topic was previously studied

by our group members [2] [3], however there weren’t any independent test set and

enzyme/non-enzyme discrimination wasn’t applied.

1.2 Approach

In this thesis, we present a novel method called ECPred to predict firstly, whether

a protein sequence is an enzyme or a non-enzyme by constructing six classifiers,

each corresponding to one of the six main EC classes, with a combinatorial machine

learning approach. The idea is that if all six classifiers give low prediction scores for

a given input protein sequence, it can be labeled as non-enzyme, whereas if the target

protein receives a prediction score higher than the class specific cut-off value, it is

predicted to be an enzyme with the corresponding basic enzymatic function. After

deciding main EC class of protein, its subfamily, sub-subfamily and substrate classes
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are predicted subsequently. We constructed positive and negative training datasets

using proteins which are annotated with an EC number and proteins that have not

been annotated with an EC number in UniProtKB/Swiss-Prot database, respectively.

ECPred combines three independent classifiers: SPMap, BLAST-kNN and Pepstats-

SVM that are based on subsequences, sequence similarities, and amino acid features,

respectively; similar to the method developed previously by our research group for

protein function prediction: GOPred [4]. For the training of the SPMap classifier,

fixed-length subsequences are extracted from protein sequences in the positive train-

ing data and the subsequences are clustered based on their similarities. Feature vec-

tors are then generated using profiles of subsequences. Proteins that are converted

into feature vectors are given as an input to Support Vector Machine (SVM) classifier.

BLAST-kNN is used to get k-nearest sequences from positive and negative training

datasets based on pairwise BLAST scores and a similarity score is calculated for each

input sequence. Pepstats-SVM converts protein sequences into 37-dimensional fea-

ture vectors by extracting their physicochemical peptide statistics. These converted

sequences are subsequently fed to the SVM classifier as an input. The proposed sys-

tem combines these three methods and it gives a weighted mean score for each EC

class.

Proteins available in UniProtKB/SwissProt database are used as the training data.

EC numbers which had more than 50 protein associations are chosen for training

byECPred. Totally, 858 EC class classifiers are trained: six main EC class classifiers,

55 subfamily classifiers, 163 sub-sub classifiers and 634 substrate classifiers.

1.3 Improvements

Major improvements brought by this thesis are as follows:

• Enzyme or non-enzyme classification is incorporated into ECPred along with

a hierarchical prediction approach. To the best of our knowledge, this is the

first study that predicts the enzymatic function of proteins starting from Level

0 (enzyme/non-enzyme) going down to Level 4 (substrate class).
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• ECPred has achieved an average F-score value of 0.99 on validation datasets.

In addition to the above mentioned major improvements, we describe a method to

construct positive and negative datasets such that they are balanced and their sizes

are reasonable for training. The number of trained EC class classifiers is 858. We

provide positive and negative cut-off values which are determined separately for each

EC class. In this study, the size of the independent test dataset is not huge, however,

comparisons are extensively made with available web-based tools.
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CHAPTER 2

BACKGROUND INFORMATION AND RELATED WORK

In this section, background information about enzyme is given. Totally, 20 existing

studies are examined.

2.1 Enzymes

Proteins are biomolecules that play important roles in the body. Proteins perform

functions such as: catalyzing biochemical reactions, DNA replication, transporting

molecules from one location to another within the cell. Enzymes are one type of pro-

teins which speed up biochemical reactions by lowering activation energy. Enzymes

have an active site, where the biochemical reaction happens. Substrates are specific

kinds of molecules that are bound to active sites of enzymes to initiate biochemical

reactions. When enzymes bind substrates, an enzyme-substrate complex is formed.

Finally, enzyme-substrate complex breaks into enzyme and products. Enzymes can

take place in more than one biochemical reactions because the structure of an enzyme

doesn’t alter after reaction. An illustration of an enzymatic reaction is given in Figure

2.1.
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Figure 2.1: An illustration of an enzyme-substrate relation. In the first step, a sub-
strate enters the active site of the enzyme. In the second step, an enzyme-substrate
complex is formed. In the final step, two products are created. Adopted from “En-
zymes Cont’d.” Biochem80p. biochem80p, Trinidad and Tobago, 12 March 2014.
Web. 18 July 2017.

2.2 Structure of Enzyme Commission Nomenclature

Nomenclature Committee of the International Union of Biochemistry classifies en-

zymes according to the reaction they catalyze. Enzyme Commission (EC) numbers

are the numerical representation of enzymes based on this classification. EC numbers

are represented as four elements separated by periods. The first digit indicates which

of the six EC classes it belongs, the second digit represents the subfamily class, the

third digit expresses the sub-subfamily class and the fourth digit shows the substrate

information of the enzyme in its sub-subclass [1]. For an EC Number, EC 4.2.3.1,

EC 4 represents EC class 4 (Lyases), EC 4.2 is carbon-oxygen lyases, EC 4.2.3 is

carbon-oxygen lyases that act on phosphates and EC 4.2.3.1 is carbon-oxygen lyases

that act on phosphates where threonine synthase is one of the substrates of this en-

zyme. The hierarchical tree structure of EC numbers is presented in Figure 2.2. EC

numbers are separated into six main classes according to the biochemical reactions

they catalyze. An EC number should carry functions of its parents because there is

an is-a relationship between the EC numbers. Some enzymes contain more than one

catalytic activities and annotated with more than one EC numbers. These enzymes
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called multi-functional enzymes.

Figure 2.2: Hierarchical tree structure representation of EC numbers.

2.3 Universal Protein Resource Knowledge Base (UniProtKB)

UniProtKB is a protein database for comprehensive protein information such as func-

tion, enzyme specific information, subcellular location, classification, etc. It consists

of two sections which are given in Figure 2.3. The first section is UniProtKB/Swiss-

Prot which is reviewed and manually annotated while the second section is UniPro-

tKB/TrEMBL which is automatically annotated and is not reviewed.

7



Figure 2.3: UniProtKB database consists of two parts. Swiss-Prot contains 555,100
proteins and TrEMBL contains 88,032,926 proteins. The screenshot is taken from
“UniProt” UniProt. UniProt, EMBL-EBI, 5 July 2017. Web. 18 July 2017.

2.4 Literature Survey on Enzyme Classification

There exist several studies on classifying enzyme functions based on the EC hierarchy

level. In this study, we denote the levels of enzyme function classifications as follows:

• Level 0: enzyme or non-enzyme;

• Level 1: enzyme main family;

• Level 2: enzyme subfamily class;

• Level 3: enzyme sub-subfamily class;

• Level 4: enzyme substrate family class.
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In this section, we present a non-comprehensive survey of the existing studies. All of

the studies were analyzed according to

• the computational method employed for classification,

• the level of enzyme function classifications and

• the input feature and dataset size.

As seen from Table 2.1 Support Vector Machines (SVM) and k-Nearest Neighbor

(kNN) are the most popular computational methods that are employed for enzyme

classification. There are also a few studies that use Artificial Neural Networks (ANN)

and Random Forests (RF). In most of the studies, only enzyme or non-enzyme dis-

crimination (Level 0) and identification of six main enzyme classes (Level 1) have

been studied. However, there are some studies that classified subfamily classes (Level

2) or sub-subfamily classes (Level 3). We have come across only two studies that

predicted the whole EC nomenclature. In general, the sequence information was

obtained from ENZYME database (http://enzyme.expasy.org/) and UniProtKB/Swis-

sProt database

(http://www.uniprot.org/uniprot). However, we observed that in some studies, PDB

(https://www.rcsb.org/pdb) and KEGG Ligand database

(http://www.genome.jp/kegg/ligand.html) have also been used to construct training or

test dataset.

Input feature extraction methods can be divided into four categories: homology-based

approaches, subsequence-based approaches, feature-based approaches and structural

based approaches. The assumption is that, since the homologous protein sequences

are similar to each other, they would have the same functions. Homology-based ap-

proaches use this assumption to detect similar enzyme functionalities. A high-level

sequence homology is usually considered to be a powerful sign of functional homol-

ogy. Subsequence-based methods focus on important regions of sequences such as

domains and motifs that are highly related to the functions of corresponding proteins.

When the annotations to be associated needs a certain motif or domain, these meth-

ods become quite effective. In feature-based methods, biological features such as the

number of residues, isoelectric point, charge and the further chemical features are
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calculated from the protein sequence. In general, structural similarity between two

proteins indicates similar functions because protein structure is usually better con-

served than the protein sequence. Therefore, structural based approach is one of the

most popular approaches in protein function prediction. The above mentioned meth-

ods are summarized in Table 2.1 In the rest of this Section, "success rate" is used as a

generic term to indicate the performance of a given system. However, the calculation

of success rate may be different from one study to another.

Jensen et al. [5] proposed a system to detect and classify enzymes from their se-

quence. Unlike the traditional methods, which uses similarity of sequence, they used

post-translational modifications and localization features such as subcellular location,

secondary structure and low complexity regions. Chromosomal gene locations were

taken from Online Mendelian Inheritance in Man (OMIM) database thorough Swis-

sProt reference links, UniProtKB/SwissProt database was used the extract the training

dataset. Totally, 5,658 protein sequences were firstly classified at Level 0 and then,

annotated with one of the six main EC classes (Level 1). An artificial neural network

(ANN) was used as the classifier. When sensitivity rate is below 40%, they obtained

low false-positive rate based on cross validation. The number of samples was not

sufficient and the authors discriminated input sequences at Level 0 and Level 1.

Dobson and Doig [6] proposed a system to discriminate Level 0 proteins without

using alignment. Training dataset consisted of 1,178 proteins which split into 691 en-

zymes and 487 non-enzymes. All proteins were taken from Protein Data Bank (PDB)

and represented by using 52 features such as secondary structure fractions, residue op-

tion, residue surface, existence of ligands and the size of the biggest surface pocket.

SVMs were used to classify the proteins at Level 0. 77% accuracy rate was reported

for enzyme or non-enzyme prediction. When the dimension of the feature vector was

reduced to 36, the accuracy rate was increased to 80%. The authors extended their

system to predict the Level 1 of a given protein based on the same method. In the ex-

tended study [7], called as Integrated Database Retrieval System (DBGet), ENZYME

and Astral SCOP databases were employed to construct the training and test datasets.

498 protein sequences were obtained in total. One-versus-all SVMs were combined

to obtain the predictions. According to the jackknife test results, 60% success rate

was achieved with top two ranks (the correct main class was in the top two highest
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Table 2.1: Summary of the methods mentioned in this section. Classifier Types;
SVM: Support Vector Machines, ANN: Artificial Neural Networks, kNN: k Nearest
Neighborhood, NB: Naive Bayes and RF: Random Forest. Level (Enzyme function
classification Level); 0: Enzyme or non-enzyme, 1: Main Class, 2: Subclass, 3: Sub-
subclass and 4: Substrate. Input Feature Extraction Methods; a: Homology based, b:
Feature based, c: Subsequence based and d: Structural based. Tool Availability; NA:
Not available, WT: Web-based tool and DT: Desktop tool.

Reference Classifier Level Performance Input Dataset Tool
(%) Feature Size Avail.

[5] ANN 0-1 40 b 5,658 WT
[6] SVM 0 77 d 1,178 NA
[7] SVM 1 60 d 498 NA
[8] NB 1 45 d 498 NA
[9] kNN 0-2 92 c 19,682 WT

[10] SVM 2 81 b 2,640 NA
[11] kNN 2 92 b 252,625 NA
[12] SVM 0-1 91; 95 c 7,329 NA
[13] kNN 1 99 b 1,200 NA
[14] SVM 0 97 b 2,400 NA
[15] RF 1-3 92 b 3,741 NA
[16] SVM 2 93 b NA NA
[17] SVM, kNN 0 86 d 1,177 NA
[18] SVM 2 98 b NA NA
[19] kNN 1-4 98 b 300,747 DT
[20] RF 1-3 98 b 7,131 NA
[21] ANN 1 96 d 6,081 NA
[22] SVM 3 99 d 5,643 DT
[23] RF 1-4 98 a,c 1,121 NA
[24] kNN 1 94 d 59,763 WT

ECPred SVM,kNN 0-4 99 a,b,c 245,209 NA
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scored predictions). These two studies were performed with a very low number of

protein sequences and they are limited to Level 0 and Level 1 of the EC hierarchy.

Furthermore, there is no available tool.

Borro et al. [8] proposed a system to predict Level 1 using Naive Bayes classifier.

In order to compare the methods, they used the same set of protein structures which

was employed by Dobson and Doig [7]. All of the structure information was taken

from PDB database and 498 proteins were selected in total for training dataset. Their

system consisted of three parts. Firstly, in order to obtain which features were the

most powerful, they calculated the correlation matrix amongst all protein features.

In the second step, they checked whether these features were also correlated in the

complete database. Finally, redundant features were removed to decrease the noise

in the data. After constructing features, they ran the Naive Bayes classifier using

Weka [25]. According to the ten-fold cross validation results, 45.3% accuracy was

achieved. This study was limited to predict only the Level 1 with a small dataset.

Shen and Chou [9] developed a web tool which predicted Level 1 and Level 2 of

the EC hierarchy using a top-down approach. Functional domain information was

used to construct Pseudo Position-Specific Scoring Matrix (Pse-PSSM). Each protein

was represented as an 8,958-dimensional vector. ENZYME database was used to con-

struct the dataset for enzyme main class (Level 1) and subfamily class (Level 2) while

the functional domain information was taken from Pfam database. Totally, 19,682

protein sequences were obtained, which consisted of 9,832 enzyme sequences and

9,850 non-enzyme sequences. The Optimized Evidence-Theoretic k-nearest neighbor

(OET-kNN) was used as the classifier which was previously applied to the subcellular

localization problem. According to the jackknife results, the overall success rate was

91.3% on discrimination of Level 0 and the overall success rate for identifying Level 1

was 93.7%. Finally, the average success rate for subfamily classes of oxidoreductase,

transferases, hydrolases, lyases, isomerases, and ligases were 86.7%, 95.8%, 95.9%,

94.4%, 93.3%, and 98.3%, respectively. They worked on Level 2 identification and

their set size is not too small but also not big enough for testing. A web-based tool is

available which gives a three level (level 0, level 1 and level 2) predictions for a given

protein sequence.
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Zhou, Chen, Li and Zou [10] developed a system to predict Level 2 using SVMs.

As an input feature, they used Chou’s amphiphilic pseudo-amino acid composition

(Am-Pse-AAC) [26] features which were the modified version of AAC. The differ-

ence was that Am-Pse-AAC used hydrophobic and hydrophilic values of amino acids.

The dataset was constructed from SWISSPROT database: 2,640 oxidoreductase se-

quences (Class 1) and 16 subfamily classes were obtained. Firstly, they compared

different kernel functions for SVMs. According to the 5-fold cross validation results,

linear kernel achieved 52.65% accuracy, polynomial kernel achieved 72.95% accu-

racy and finally, RBF kernel achieved 78.37% accuracy. The authors also compared

their methods with the existing studies: CDA [26] and AFK-NN [11], which were

also proposed based on Am-Pse-AAC. According to the jackknife test, the author’s

method obtained 80.87% which is 10% higher than CDA and 4% higher than AFK-

NN. This study comprised only oxidoreductase (Class 1) and the dataset is small for

testing.

Huang, Chen, Hwang and Ho [11] proposed a study to predict Level 2 of the EC

hierarchy using an adaptive fuzzy k-nearest neighbor (AFK-NN) classifier. 252,625

proteins were selected from ENZYME database and UniProtKB/SwissProt for train-

ing dataset. As the input features, the authors used amphiphilic pseudo-amino acid

composition (Am-Pse-AAC) which was the modified version of amino acid compo-

sition (AAC). In this version, hydrophobic and hydrophilic amounts were added to

AAC as new components. C5.0 decision tree algorithm and SVM were used to make

comparisons with the proposed method AFK-NN. Overall accuracy of 92.1% was

achieved according to the jackknife test which was slightly better than C5.0 (91.2%)

and SVM (91.7%) alone. The authors also compared their method with previous

studies of Chou and Elrod [27] and Chou [26] on the same dataset. According to

the jackknife test, Chou achieved 70.61% accuracy using CDA as the input feature,

AFK-NN achieved a better result with 74.88% accuracy. Although the dataset size

was sufficient, only Level 2 predictions were performed in this study.

Lu, Qian, Cai and Li [12] developed a web-based system which predicts first Level

0 of the EC hierarchy. The system then predicted which of the six EC main classes

(Level 1) it belonged to if it was an enzyme. For each input protein sequence, a

2,657-dimensional feature vector was generated using the protein’s functional domain
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information from Pfam database. The feature vectors were then input to a support

vector machine (SVM) classifier. The positive training dataset was constructed using

ENZYME database while the negative training dataset was generated based on the

UniProtKB/SwissProt database. 2,443 proteins were obtained among 70,573 proteins

after applying some filters in order to construct positive training dataset. 4,886 ran-

dom proteins were selected among 145,271 proteins for the negative training dataset.

According to the jackknife test, the authors classified proteins as enzymes or non-

enzymes with 86% success rate and the overall success rate was 91.32% for six main

EC classes. They developed a web-based tool, however, it is currently not available.

The drawbacks of this study are that the number of proteins for training (2,443) is low

and the predictions are given for only the first level of the EC hierarchy.

Nasibov and Kandemir-Cavas [13] made an efficiency analysis of kNN and the mini-

mum distance-based classifiers on the Level 1 prediction. 200 proteins were selected

for each class. In this study, the authors used training and test dataset with different

percentages and they achieved the maximum accuracy when 25% of the proteins are

kept as the test dataset. All protein sequences were taken from ENZYME database.

A protein sequence was encoded as 1 by 20 vector where each element of the vec-

tor represented the frequency of amino acids of the protein sequence. Two modified

versions of kNN were proposed. In the first one (method 1), the distance of the test

enzyme from the average frequency of amino acid of each class was computed and

the test enzyme class was assigned to the nearest one. In the second method, the

same distance was calculated by adding the amino acid frequency of test class. They

computed distance score between these added frequencies and previously calculated

frequencies (method 1) and the test enzyme was labeled with the class with mini-

mum distance score. According to the performance results, both approaches achieved

overall accuracy of 95% and kNN with k=6 achieved 99% of accuracy. Since there

is no ideal solution to find the value of k and it is calculated experimentally and by

the error rate, the execution time of kNN algorithm was much longer than the two

proposed methods. Although the dataset size was sufficient, only Level 1 predictions

were performed in this study.

Qiu, Luo, Huang and Liang [14] developed a system that used the discrete wavelet

transform based on the chemical features of residues as the features and SVMs to
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classify the proteins at Level 0. The authors employed the same dataset of 1,178 pro-

teins that Dobson and Doig [6] used which consisted of 691 enzymes and 487 non-

enzymes. In addition, they made use of a second dataset for testing which consisted

of 1,200 enzymes and 1,200 non-enzymes where all of the proteins have sequence

similarity less than 40%. 96.96% and 97.74% accuracy rates were achieved for en-

zyme and non-enzyme predictions, respectively. The dataset size was small compared

to the previous studies and only Level 0 prediction was performed.

Latino and Aires-de-Sousa [15] proposed a system to predict Level 3 using MOLecu-

lar Mapping of Atom-level Properties (MOLMAP) reaction descriptors applying RF.

MOLMAP reaction was obtained by the change between the product’s MOLMAP

and reactant’s MOLMAP. All the enzymatic reactions were taken from KEGG LIG-

AND database. Initially, they started with 6,810 reactions and after the elimination

process, they obtained 3,741 reactions (7,482 when represented in both ways). Self

Organizing Maps (SOM) were used to generate a molecular descriptor. After the cal-

culation of MOLMAP descriptors, RF was used classify Level 1, Level 2 and Level 3.

According to the independent test dataset results, they correctly assigned 95%, 90%

and 85% of enzyme main family class (Level 1), enzyme subfamily class (Level 2)

and enzyme sub-subfamily class (Level 3), respectively. This study was performed

with a low number of reactions and it was limited to classification of Level 3 of the

EC hierarchy. Moreover, there is no available tool.

Wang, Wang, Yang and Deng [16] proposed a system to predict Level 2 using two

modified versions of SVMs. The authors used Conjoint Triad Feature (CTF) to con-

struct input features which were the modified version of amino acid composition

(AAC). In CTF, 20 amino acids were divided into seven different classes based on

their dipoles and amount of the side chains. Each protein was represented as a 343-

dimensional vector (7*7*7) where each member of this vector was the density of the

CTF occurrence in the enzyme sequence. Totally, 43 enzyme subfamily classes were

trained for this study. Two adapted versions of SVMs; AdaBoost algorithm with SVM

with RBF kernel (RBFSVM) and SVM with arithmetic mean offset (AM-SVM) were

compared to investigate the performance of their studies. According to the ten-fold

cross validation result, AM-SVM achieved 92% for Matthew’s correlation coefficient

(MCC) and AdaboostSVM obtained 83% for MCC. They also compared features
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AAC and CTF using AM-SVM methods on oxidoreductases’ subfamily classes and

the results showed that except two subfamily classes AM-SVM with CTF obtained a

better result. There is no information about the dataset size in this study.

Davidson and Wang [17] developed a novel ensemble method to predict Level 1

which consisted of three SVMs and two kNN algorithms where they used the ma-

jority voting rule. A dataset of 697 enzymes and 480 non-enzymes was constructed

from the study of Dobson and Doig [6]. The authors employed the same 52 fea-

tures of Dobson and Doig which consisted of five main parts: residues percentage,

surface area percentage, heterogeneous number, secondary structure percentage and

others. They also used four more features: magnesium ions count, the total number of

residues, surface area and surface pocket counts. A success rate of 85% was achieved

in a ten-fold cross validation and 86% success rate in jackknife test. No tool is avail-

able for this study. The number of proteins in this study’s dataset was low and this

study was limited to the classification of Level 1 of the EC hierarchy.

Wang et al. [18] proposed another system, this time they predicted Level 3 using

a modified version of SVM which they extended from their previous study. CTF

was used again as the input feature. A dataset of proteins with sequence identity

less than 40% were constructed. EC sub-subfamily classes which contained at least

50 proteins were included in the training dataset. Six main classes and eighty five

sub-subfamily class were trained. The authors proposed a modified version of the

PMSVMHL (which is a different version of the Hierarchical Max-Margin Markov

[28] by employing zero-one loss) method called SVMHL which consumed less time

than PMSVMHL. SVMHL, PMSVMHL and the standard SVM were compared on

a simple dataset. PMSVMHL and SVMHL achieved better results than the standard

SVM and the training time was reduced 16 times in comparison to the PMSVMHL

method. The authors also compared their previous methods AM-SVM and SVMHL

on EC sub-family dataset. SVMHL outperformed AM-SVM method except for one

sub-class. According to the 10-fold cross validation results, 91% MCC and 98%

accuracies were obtained in predicting six main classes. 92% and 82% MCC values

were obtained in predicting subclasses and sub-subclasses, respectively. As in their

previous studies, there was no available tool and no information about dataset size,

but this time the authors worked on Level 3 of the EC hierarchy.

16



Ferrari, Aitken, Jano and Goryanin [19] developed a system called EnzML which

predicted multi-functional Level 4 of the EC hierarchy using InterPro signatures. The

protein sequences and their EC annotation was taken from UniProtKB/Swiss-Prot,

UniProtKB/TrEMBL, InterPro, KEGG and ExPASy ENZYME database. Each pro-

tein sequence was represented as the presence and absence of InterPro signatures.

They selected sequences from SwissProt and KEGG having the same annotation

on both databases. The final set contained 300,747 proteins, 55% were enzyme

sequences and 45% were non-enzyme sequences. They used Binary Relevance k-

Nearest Neighbor (BR-kNN) as classifier. According to the cross evaluation results,

they obtained 98% accuracy for the exact match of the all 4 levels.

Kumar and Choudhary [20] proposed a system to predict up to Level 2 of the EC

hierarchy using a Random Forest (RF) algorithm. In order to construct input features,

they used online tools EMBOSS-PEPSTAT [29] which computed 61 feature values

and ProtParams [30] that generated 36 feature values. These features were combined

and 73 input features were generated in total. 2,400 non-enzymes and 4,731 enzymes

were taken from SWISS-PROT database to construct the training dataset. Proposed

system consisted of two models. The primary model first predicted whether a se-

quence was an enzyme or not (Level 0); if it was an enzyme, the system classified

the main EC class (Level 1). Finally, the system predicted the sub-family class (Level

2). According to the ten-fold cross validation results, overall accuracies of 94.87%,

87.7% and 84.25% were achieved for the Level 0 classification, Level 1 classification

and Level 2 classification, respectively. In the second model, Level 2 of the EC hierar-

chy was directly predicted using the RF algorithm and an overall accuracy of around

87% was achieved. Finally, the authors ran an R package called Rattle to look for

the importance of the input features. Cysteine percentage and molecular weight were

found to be the top two most important attributes. This study was limited to predict

only the first three levels of the EC hierarchy and dataset size was smaller than some

of the previous studies.

Volpato, Adelfio and Pollastri [21] proposed a system to predict Level 1 of the EC

hierarchy using artificial neural networks (ANN). Each protein sequence was repre-

sented by the residue frequency which was obtained from multiple sequence align-

ments. They only selected animal taxonomy group for this study and the dataset was

17



constructed from ENZYME database which consisted of 6,081 protein sequences.

PSI-BLAST was run three times in order to determine amino acid-residue frequency.

The authors constructed two different datasets and they called these datasets Multi-

ple Sequence Alignment (MSA) and MSA+SS (Secondary Structure), respectively.

MSA+SS contained three additional input to the MSA dataset. The system was

trained by ten-fold cross validation using an n-to-1 neural network. According to

ten-fold cross validation results, they obtained MCC values 84% for MSA-dataset

and 83% for MSA+SS-dataset. This study was limited to classify only the level 1 of

the EC hierarchy with a small dataset.

Matsuta, Ito and Tohsato [22] developed a system to predict Level 3 using SVMs

called Enzyme COmmision number Handler (ECOH). The proposed system consisted

of three steps: in the first step, they extracted substructures from the substrates and

products using maximal common structure (MCS) algorithm. In the second step, they

calculated mutual information (MI) values from these extracted substructures. In the

final step, they predicted EC number of target reaction using SVM. They used KEGG

database to construct training dataset. Totally 5,643 reactions were obtained after

elimination and these reactions covered 162 EC sub-subfamily classes (Level 3). Ac-

cording to the jackknife test results, they achieved 86.1% sensitivity, 87.4% precision

and 99.8% accuracy. They also predicted multi-functional enzymatic reactions and

62.3% of reactions were correctly predicted. They developed a standalone tool, but

it works on only Windows 32-bit device. Their reaction set is small and they worked

on identifying Level 3 of the EC hierarchy.

Nagao, Nagano and Mizuguchi [23] developed a system for the first time for predict-

ing Level 4 of the EC hierarchy applying the RF algorithm. Sequence similarities and

residue similarities for active sites, ligand binding sites and conserved sites were used

as input features. Protein sequences were taken from UniProtKB/Swiss-Prot database

and their information about CATH domain region was taken from Gene3D database.

Totally 1,121 enzymes and corresponding 306 CATH super-families were used in the

dataset. They calculated the maximal test to training sequence identity (MTTSI) for

each query and 8 different MTTSI range was evaluated for benchmarking their sys-

tem. 80% of the dataset was randomly selected as the training dataset and remaining

20% of the dataset was used as the test set. According to the benchmark results, 0.98
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precision, 0.89 recall and 0.93 F-score values were achieved. The dataset used in this

study is small and there is no available tool.

Che, Ju, Xuan, Long and Xing [24] developed a web-based system to predict Level

1 of the EC hierarchy using kNN algorithm. Totally, 59,763 protein sequences were

selected from UniProtKB/Swiss-Prot database to construct the training dataset. They

used autocross covariance (ACC) as an input feature. Firstly, they constructed Po-

sition Specific Scoring Matrix (PSSM) matrix implementing PSI-BLAST for each

protein sequence, where each row of the matrix showed the corresponding residue

type of amino acid letter. Then, they transformed PSSM matrices into fixed-length

vectors by calculating the correlation between any two features. ACC resulted in the

combination of two variables. Correlation of the same feature between two residues

measured by autocross (AC) variable where cross covariance (CC) variable measured

the correlation of two different features between two residues. According to the five-

fold cross validation results, they achieved 94.1% overall accuracy on predicting six

main EC classes. They also performed multi-functional enzyme class prediction on a

small dataset which consisted of 1085 proteins. This time, they obtained 91.25% ac-

curacy. They developed a web-based tool and their training dataset size is sufficient.

However, they performed only Level 1 prediction.

Several methods and tools were proposed to classify EC hierarchy levels. When we

investigated the studies, we see that most of the studies were limited to classifying

first three level of the hierarchy (Level 0, Level 1 and Level 2). Only two of the

studies predicted Level 4 of the EC hierarchy. There is no available method that uses

a top-down approach to classify enzymes started from Level 0 to Level 4. All of the

studies were limited to use single input feature type, except one study. Most of the

studies performed on very small datasets. Finally, in most of the studies, there is no

available tool.

Yaman [2] who is one of the member of our research group, proposed a system to

predict Level 1-3 of EC hierarchy using SPMap [31]. However, this study was lim-

ited to Level 3 of EC hierarchy, only SPMap was used as a predictor and there wasn’t

any independent test set. Rifaioglu [3] who is also one of the member of our research

group developed a system to predict first 4 levels of EC hierarchy. He obtained av-
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erage F-score value 0.96, however, enzyme/non-enzyme classification wasn’t applied

and there were no independent test set.
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CHAPTER 3

DATASETS AND METHODS

3.1 Datasets in General

In this study, positive and negative datasets are divided into two: training dataset

and validation dataset. 90% of the initial dataset is used for training. The remaining

10% is employed for validation. The validation dataset is used to measure the perfor-

mance of the system and to determine the cut-off values for SVM parameters. Pro-

tein sequences and their EC Number annotations are taken from UniProtKB/Swiss-

Prot Release 2017_3. UniProtKB/Swiss-Prot is used for establishing the training and

validation dataset since it is manually annotated and more reliable than UniProtK-

B/TrEMBL. UniRef [32] clustering module is also used which clusters proteins from

the UniProtKB based on their sequence similarities. UniRef consists of three mod-

ules: UniRef100, UniRef90 and UniRef50. All identical sequences and fragment se-

quences from any living cell are combined into a single UniRef record in UniRef100.

UniRef90 and UniRef50 are constructed by clustering UniRef100 records at sequence

similarity 90% and 50%, respectively using CD-HIT algorithm [33]. Each UniRef90

cluster has one entry that represents sequences from UniRef100. Similarly, each

UniRef50 cluster has one record that represents sequences from UniRef90. UniRef50

cluster is used in order to balance the positive and negative training dataset sizes, since

the negative dataset size is initially bigger than the positive dataset size. Construct-

ing positive and negative dataset is one of the most important steps in classification

problems. Firstly, all proteins that are associated with any of the EC classes are

downloaded from UniProtKB/Swiss-Prot database. Subsequently, proteins that in-

clude fragment sequences and proteins that are associated with more than one EC
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Table 3.1: Total number of subfamily classes, sub-subfamily classes, substrate classes
and the number of proteins are given for each class.

Level 1 Total number of Total number of Total number of Total number
Level 2 classes Level 3 classes Level 4 classes of proteins

Oxidoreductases 20 56 96 32,203
Transferases 9 31 230 77,042

Hydrolases 9 39 149 52,496
Lyases 6 14 64 19,707

Isomerases 6 14 38 12,174
Ligases 5 9 57 26,254

Total 55 163 634 219,876

class are eliminated since these multi-functional enzymes may be confusing for train-

ing and we are not aiming to predict more than one class for a given protein. Then,

all annotations are propagated to the parents of the annotated EC class, since there

is an is-a relationship between EC classes. For example, if a protein is associated

with EC number 1.2.3.4, then, that protein is also associated with EC number 1.2.3.-,

EC number 1.2.-.- and EC number 1.-.-.-, respectively. Finally, EC classes that are

associated with at least 50 proteins are selected for training dataset. 10% of the class

dataset separated as a validation set and these proteins are never used in training pro-

cess. Totally, 858 EC classes (including six main EC classes) are obtained. Table

3.1 shows the detailed information and the number of proteins for each main enzyme

classes that are used in training dataset. More explanation about constructing positive

and negative training datasets are given in Section 3.1.1 and 3.1.2.

Totally, 6028 EC classes are available at ENZYME database (http://enzyme.expasy.org/).

Number of trained and number of existing class information at each EC Level is given

in Table 3.2. The coverage at Level 3 and Level 4 is low, since most of the EC classes

at those levels are associated with less than 50 proteins.

3.1.1 Positive Training Dataset Construction for EC Numbers

Constructing positive training datasets is relatively easy compared to constructing

negative datasets. For each EC class, proteins that are associated with that EC class

are added to the positive training dataset. Since Transferases and Hydrolases contain
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Table 3.2: Total number of trained and existing EC classes and coverage of ECPred.

EC Level Number of Number of Coverage (%)
trained class existing class

Main 6 6 100
Subfamily 55 69 80

Sub-subfamily 163 297 55
Substrate 634 5656 11

Table 3.3: The number of protein sequences after the application of UniRef50 for
Level 1 and non-enzymes.

Classes Total number of Total number of
proteins proteins after UniRef50

Oxidoreductases 36,577 8,596
Transferases 86,163 20,398

Hydrolases 59,551 16,550
Lyases 22,368 3,570

Isomerases 13,615 2,878
Ligases 29,233 4,466

Non-enzymes 292,589 100,459

significantly more proteins than the other classes, the positive training dataset sizes of

these two classes are decreased using UniRef50. The number of sequences after ap-

plying UniRef50 for each main enzyme classes are shown in Table 3.3. For each main

EC classes (except Transferases and Hydrolases, since they contain relatively more

proteins than other four EC classes), 10% of the UniRef50 proteins are removed from

all dataset as a validation set and remaining proteins are used in training datasets. For

Transferases and Hydrolases, all UniRef50 proteins are selected for positive training

dataset after removing 10% of them as a validation set. Then, randomly chosen pro-

teins are added to these selected positive training dataset proteins to round the training

dataset size to 36,000. Dataset sizes of six main EC classes in each elimination step

are given in Table 3.4. For the rest of 852 EC numbers, proteins that are associated

with that EC numbers are added to the positive training dataset.
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Table 3.4: Training dataset sizes of Level 1 classes before and after elimination of
multi-functional proteins and removing test set. (*For Transferases and Hydrolases
more detailed explanations are given above).

Total number of proteins
Before elim. of After elim. of Test set Training

Level 1 multi-functional multi-functional (10% of Dataset
proteins proteins UniRef50) Size

Oxidoreductases 40,883 36,577 860 35,717
Transferases 98,686 86,163 2,091 36,000*

Hydrolases 69,727 59,551 1,655 36,000*
Lyases 25,377 22,368 357 22,011

Isomerases 14,659 13,615 288 13,327
Ligases 29,961 29,233 447 28,786

3.1.2 Negative Training Dataset Construction for Level 1

Theoretically, if the protein is not annotated with a specific EC Number, that protein

can be included in the negative set for that EC class. Therefore, the negative set size

becomes very unbalanced compared to the positive dataset size, since negative sets

include more proteins than positive sets. In order to balance the sizes, negative data set

sizes are reduced using UniRef50 results. In UniProtKB, each entry has an annotation

score between 1 and 5. Annotation score of 5 means, the entry is well studied and

associated with best-annotated proteins while annotation score of 1 means that entry

with a basic annotation and not well studied. There are no proteins that we can say

that protein is 100% non-enzyme. In UniProtKB/Swiss-Prot, there are proteins that

have EC number annotations and proteins that have not been annotated with an EC

number yet. We assume that the proteins that have not been annotated with an EC

number can be treated as non-enzyme. Since we are not 100% sure that all of these

proteins are actually non-enzyme, only the proteins that have annotation score of 4

or 5 is used to include in the negative training dataset. For each annotation score, the

number of proteins are given in Table 3.5. 10% of these non-enzyme proteins is also

set aside for the validation set.

For each class, the proteins in the other five classes and non-enzyme proteins are

selected to construct negative training dataset. The same number of proteins in the
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Table 3.5: Number of proteins for each annotation score.

Annotation Score (out of 5) Number of non-enzyme Proteins
1 20,407
2 37,302
3 17,388
4 8,876
5 16,457

Table 3.6: Training dataset sizes of Level 1 classes before and after elimination of
multi-functional proteins and removing test set. (*For Transferases and Hydrolases
more detailed explanations are given above).

Enzyme 1.-.-.- 2.-.-.- 3.-.-.- 4.-.-.- 5.-.-.- 6.-.-.- Non Total
Class Enzymes
1.-.-.- - 2,600 2,600 2,600 2,600 2,600 23,000 36,000
2.-.-.- 2,600 - 2,600 2,600 2,600 2,600 23,000 36,000
3.-.-.- 2,600 2,600 - 2,600 2,600 2,600 23,000 36,000
4.-.-.- 2,600 2,600 2,600 - 2,600 2,600 9,000 22,000
5.-.-.- 1,500 1,500 1,500 1,500 - 1,500 6,000 13,500
6.-.-.- 2,600 2,600 2,600 2,600 2,600 - 16,000 29,000

positive dataset are selected for the negative dataset in order to make the training

dataset balanced. The positive and the negative training dataset construction is shown

in Figure 3.1. Classes, subfamily classes, sub-subfamily classes and substrates that

are colored with green are included in the positive training dataset, other five classes

and non-enzymes are colored with red for the negative training set. For each Level

1 class, total negative dataset size and how many samples are taken from the other

five classes and non-enzymes are given in Table 3.6. Non-enzymes are primarily

selected from the proteins that have annotation score of 5 and remaining non-enzymes

are selected from he proteins that have annotation score of 4, if necessary. Main

EC classes 1.-.-..-, 2.-.-..-, 3.-.-..-, 4.-.-..-, 5.-.-..-, 6.-.-..- stands for Oxidoreductases,

Transferases, Hydrolases, Lyases, Isomerases, and Ligases.
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Figure 3.1: Positive and negative training dataset construction for EC class 1.-.-.-.
Green color means that that class is used in the positive training set and red color
means that that class is used in the negative training dataset.

3.1.3 Negative Training Dataset Construction for Level 2, Level 3 and Level 4

Certain rules are applied for constructing negative training datasets for Level 2, Level

3 and Level 4. Positive and negative training dataset constructions for Level 2, Level

3 and Level 4 are illustrated in Figure 3.2, Figure 3.3 and Figure 3.4, respectively.

Green color means that that class is used in the positive training set, gray color means

that that class is used neither in the positive training dataset nor in the negative training

dataset and red color means that that class is used in the negative training dataset. The

rules are as follows.

• For each class that has negative training dataset size greater than 10,000, half

of its elements are taken from its siblings and their descendants, a quarter of its

elements are selected from other five classes and a quarter of its elements are

taken from non-enzymes for negative training dataset.

• For each class that has positive training dataset size between 1,000 and 10,000,

same number of proteins with positive training dataset size from its siblings

and their descendants, same number of proteins with positive training dataset

size from other five classes (equally) and same number of proteins with positive
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training dataset size from non-enzyme proteins are selected.

• For each class that has positive training dataset size less than 1,000, three times

the number of proteins in the positive training dataset are selected from its

siblings and their descendants, three times the number of proteins in the positive

training dataset size are selected from other five classes (equally) and three

times the same number of proteins in the positive training dataset size are taken

from non-enzyme proteins.

Figure 3.2: Positive and negative training dataset construction for EC class 1.1.-.-
. Green color means that that class is used in the positive training set, gray color
means that that class is used neither in the positive training dataset nor in the negative
training dataset and red color means that that class is used in the negative training
dataset.
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Figure 3.3: Positive and negative training dataset construction for EC class 1.1.1.-
. Green color means that that class is used in the positive training set, gray color
means that that class is used neither in the positive training dataset nor in the negative
training dataset and red color means that that class is used in the negative training
dataset.

Figure 3.4: Positive and negative training dataset construction for EC class 1.1.1.1.
Green color means that that class is used in the positive training set, gray color means
that that class is used neither in the positive training dataset nor in the negative training
dataset and red color means that that class is used in the negative training dataset.
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3.2 Methods

GOPred [4] has been previously developed and it consists of three methods; the first

method is BLAST k-nearest neighbor (BLAST-kNN) which is based on homology

and BLAST score of k-nearest neighbors is used for prediction. The second method

is PEPSTATS-SVM which is a feature based methods where peptide statistics are

used. The third method is Subsequence Profile Map (SPMap) which is based on sub-

sequence and proteins are classified based on their subsequences. All three methods

are re-implemented in Java for this study.

3.2.1 BLAST-kNN

In order to classify a target protein, the k-nearest neighbor algorithm is used. Simi-

larities between the target protein and proteins in the training dataset are calculated

using the NCBI-BLAST tool [34]. k-nearest neighbors with the highest k BLAST

score are extracted. The output of BLAST-kNN, OB for a target protein, is calculated

as follows:

OB =
Sp − Sn

Sp + Sn

, (3.1)

where Sp is the sum of BLAST scores of proteins in the k-nearest neighbors in the

positive training dataset. Similarly, Sn is the sum of scores of the k-nearest neighbor

proteins in the negative training dataset. Note that the value of OB is between -1

and +1. The output is 1 if all k nearest proteins are elements of the positive training

dataset and -1 if all k proteins are from the negative training dataset.

3.2.2 PEPSTATS-SVM

The Pepstats tool [29] which is developed by European Molecular Biology Open

Software Suite (EMBOSS) is used to extract the peptide statistics of the proteins.

Each protein is represented by a 37-dimensional vector. Features that are used in 37-

dimensional vector is shown in Figure 3.5. These features are scaled using LIBSVM
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[35] and subsequently fed to the SVM classifier as input.

Figure 3.5: Pepstats results for protein B8DHZ5 (MURI_LISMH). Totally, 37 peptide
statistics are chosen for feature vector.

3.2.3 SPMap

Saraç, Gürsoy-Yüzügüllü, Cetin-Atalay and Atalay [31] previously developed a subsequence-

based method to predict protein functions called Subsequence Profile Map (SPMap).
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SPMap consists of two main parts: Subsequence Profile Map Construction and Fea-

ture Vector Generation. Flow diagram of SPMap is given in Figure 3.6.

Figure 3.6: SPMap flow diagram.

3.2.3.1 Subsequence Profile Map Construction

Subsequence Profile Map Construction part consists of three modules:

• Subsequence Extraction Module

All possible subsequences for given length l are extracted from the positive

training dataset. Sliding window technique is used in order to extract all possi-

ble subsequences. For example, for a given string MSTNPKPQR, after extrac-

tion with l=5, all possible subsequences are obtained and they are:

MSTNPKPQR

MSTNP

STNPK

TNPKP

NPKPQ

PKPQR
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• Clustering Module

After obtaining all possible subsequences, all subsequences are clustered based

on their similarities. BLOcks SUbstitution Matrix (BLOSUM62) [36] is used

to calculate similarity score between two subsequences. BLOSUM62, which

is a substitution matrix, is used to align sequences and each entry represents a

similarity score between two amino acids. BLOSUM62 is used to compute the

similarity of two subsequences which is given in Figure 3.7. At a given instant

of time, a subsequence is compared with all existing clusters and assigned to

the cluster which gives the highest similarity score. Similarity score between

two subsequences is calculated as follows:

s(x, y) =
5∑

i=1

M(x(i), y(i)), (3.2)

where x(i) is the ith position of the amino acid x . M(x(i), y(i)) is the similarity

score in BLOSUM62 matrix for the ith position of x and y. For example, simi-

larity score is calculated as follows for a given two subsequences x = MSTNP

and y = STNPK,

s(x, y) = M(M,S) +M(S, T ) +M(T,N) +M(N,P ) +M(P,K)

= (−1) + 1 + 0 + (−2) +−1

= −3

(3.3)
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Figure 3.7: Blosum62 matrix is used to calculate the similarity score between amino
acids.

After calculating similarity score between a cluster c and a subsequence ss,

– If s(c, ss) ≥ 8, the subsequence is assigned to this cluster.

– If s(c, ss) < 8, a new cluster is created.

After all clusters are generated, a position specific scoring matrix (PSSM) is

created for each cluster which consists of 5 columns (l) and 20 rows (amino

acid count). The amino acid count for each position is stored in the PSSM.

Firstly, all columns on each row are initialized to 0. Then, the PSSM is up-

dated according to the first subsequence. For a given subsequence MSTNP,

M’s count is incremented in the first position, S’s count in the second posi-

tion and T’s count in the third position and so on. The first step of constructing

PSSM is illustrated in Figure 3.8. PSSM then is updated using all subsequences

belonging to that cluster.
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Figure 3.8: First step of constructing Position Specific Scoring Matrix (PSSM). In
each column, the associated amino acid count is incremented by 1.

• Probabilistic Profile Construction Module

After amino acid count is obtained with PSSM, each PSSM is converted to a

probabilistic profile. Sk is the total number of subsequences for a cluster.

– If the Sk is less than 10% of the positive training dataset size, that cluster
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is ignored as a profile.

– Otherwise, a probabilistic profile is generated. The probability of the

amino acid j to occur at the ith position of the subsequence is represented

by PPk(i, j). The amino acid count for the amino acid j at the ith position

of the subsequence is represented by Aacount(i, j).

PPk(i, j) = log
Aacount(i, j) + 0.01

Sk

, (3.4)

– Finally, the log of this result is taken and assigned to that position’s amino

acid. 0.01 is added to amino acid count for each position to avoid zero

probabilities. Conversion of the PSSM to a probabilistic profile is given

in Figure 3.9.

Figure 3.9: Converting the PSSM to a probabilistic profile.

3.2.3.2 Feature Vector Generation

We are looking for the probability of a subsequence to be generated by a profile and

the highest probability value is sought among the profiles for a subsequence. The

highest probability value is used as a member of the feature vector for that profile.

When we do this for all subsequences, the contribution of each cluster is determined

for the input sequence. A feature vector is calculated as follows, firstly, each subse-

quence ss is compared with all existing probabilistic profiles PPk and a probability
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is computed as

P (ss|PPk) =
5∑

i=1

PPk(i, ss(i)), (3.5)

The element of jth dimension of the feature vector V is determined as

V (j) = maxssi∈EP (ssi|PPk), (3.6)

The probability of subsequence with the highest score of protein E on PPk.

For example, for the subsequence MSTNP, all the elements of a profile are visited.

For each element of MSTNP the score of each amino acid is obtained and the sum of

these scores are calculated. Feature vector generation is shown in Figure 3.10.

Figure 3.10: Feature vector generation. Numbers on each column with color red
denotes the score of the amino acid for that position. All these scores are summed for
feature vector generation.

For each profile, the same operation is applied and a feature vector is generated.

Then, with each coming new subsequence another vector is generated. And all these

vectors for each profile are compared and the highest score for each profile is selected.

Constructing a feature generation is illustrated in Figure 3.11.
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Figure 3.11: Constructing a feature vector. The scores with color red are selected for
feature vector since their score is the highest score for that position. Each number on
columns represent the probabilistic profile. The first element of each row is one of
the possible subsequences.

After processing all subsequences, a feature vector corresponding to the input protein

sequence is generated. Each element of the vector is changed back its natural loga-

rithms (between 0 and 1), using exp function. For each positive and negative proteins

same operations are applied and finally, a training file is created. SVM light [37] is

used as a classifier.

3.2.4 Combining Ensemble Methods

5-fold cross-validation is applied for each method and area under the Receiver Oper-

ating Characteristic (ROC) score is calculated for BLAST-kNN, PEPSTSTATS-SVM

and SPMap. Using these ROC scores all three methods are combined and weighted

mean score for each method is calculated. Weighted mean score for method m where

m ∈ {BLAST − kNN,PEPSTSTATS − SVM,SPMap} is calculated as fol-

lows;

W (m) =
R4

m

R4
BLAST−kNN +R4

SPMap +R4
PEPSTATS−SVM

, (3.7)

where the weighted mean score for method m is represented by W (m), where m can

be either one of the methods that we applied. Rm stands for ROC score for method m.
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In order to see the effect of each method these weighted means scores are calculated.

For a target protein, a prediction score is given by each method and these prediction

scores are then multiplied by weighted means of methods and a final prediction score

is obtained by their sum. The method which has the highest weighted mean score

affects mostly the final score.

3.3 Determining The Optimal Cut-off Value for EC Classes

In this section, positive and negative cut-off values are determined and these cut-off

values are used to decide whether a given protein sequence is either positive or neg-

ative prediction. Determining cut-off value for EC classes is one of the crucial tasks

in this study. Since each EC class trained with its own data, cut-off values are cal-

culated for each EC class, separately. F-score statistics are used for calculating the

optimal cut-off value. F-score statistics are commonly employed in binary classifica-

tion problems. The harmonic mean between precision and recall is the F-score and

F-score measure calculated as follows,

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

F − score =
2× Precision×Recall

Precision+Recall
.

(3.8)

TP, FP, TN, and FN denotes true positive, false positive, true negative and false neg-

ative, respectively. Positive and negative cut-off values are calculated separately to

decide whether a given input sequence is either positive or negative prediction.

3.3.1 Determining Positive Optimal Cut-off Values for EC Classes

Positive and negative validation sets are used to determine positive optimal cut-off

values. Constructing positive validation sets are explained in Section 3.1.1, Section

3.1.2 and Section 3.1.3. Pseudocode of determining positive cut-off values are given

in Algorithm 1. If a protein from positive validation set gets prediction score above

the cut-off value, it is labeled as true positive. Otherwise, it is labeled as false neg-
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ative. Furthermore, if a protein from negative validation set gets prediction score

above the cut-off value, it is labeled as false positive. Otherwise, it is labeled as true

negative. After obtaining true positive, false negative, false positive and true negative

precision, recall and F-score values are calculated. The maximum cut-off value value

which gives the highest F-score is selected as the positive cut-off value for that EC

class. However, some of these cut-off values are too close to 1.0 so we decided to de-

crease these values using the rules in given Algorithm 2. For each EC class which has

F-score greater than 0.9 and has cut-off value greater than 0.9 the minimum and the

maximum cut-off values are determined. Subsequently, the average of the minimum

and the maximum cut-off values is calculated and determined as the positive cut-off

value for that EC class. Finally, in order to avoid false positives cut-off values, less

than 0.6 are fixed to 0.6.

3.3.2 Determining Negative Optimal Cut-off Values for EC Classes

Positive and negative validation sets are also used to determine negative optimal cut-

off values. Pseudocode of determining negative optimal cut-off values is given in

Algorithm 3. If a protein from positive validation set gets prediction score above the

cut-off value, it is labeled as true negative. Otherwise, it is labeled as false positive.

Furthermore, if a protein from negative validation set gets prediction score above the

cut-off value, it is labeled as false negative. Otherwise, it is labeled as true positive.

After obtaining true positive, false negative, false positive and true negative precision,

recall and F-score values are calculated. The minimum cut-off value which gives the

highest F-score is selected as the negative optimal cut-off value for that EC class. Af-

ter investigating negative F-score results for all EC classes, we found out that highest

F-scores are obtained between 0.25 and 0.35 so we decided to use cut-off value 0.3

as a global negative cut-off value for all EC classes. As an example, negative cut-off

values and their F-score values for EC class 1.1.1.94 are given in Table 3.7.
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Algorithm 1 Pseudocode of Determining Positive Cut-off Values for EC Classes
Require: positive_test_proteins: is a map where keys are EC Classes, val-

ues are proteins from positive validation set of corresponding EC classes,

negative_test_proteins: is a map where keys are EC classes and values are pro-

teins from negative validation set of corresponding EC classes, class_list: list of

trained EC classes

for all class ∈ class_list do

cutoff ← 1.00

while cutoff ≥ 0.0 do

for all pos_P ∈ positive_test_proteins[class] do

PSCORE holds prediction score of class for pos_P

if PSCORE ≥ cutoff then

TP ← TP + 1

else

FN ← FN + 1

end if

end for

for all neg_P ∈ negative_test_proteins[class] do

PSCORE holds prediction score of class for neg_P

if PSCORE ≥ cutoff then

FP ← FP + 1

else

TN ← TN + 1

end if

end for

cutoff ← cutoff − 0.011

end while

Calculate F − score according to the Equation 3.8

end for
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Algorithm 2 Pseudocode of Determining Optimal Positive Cut-off Values for EC

Classes
Require: positive_fscores: is a map where keys are cut-off values, values are F-

scores from positive F-score results, class_list: list of trained EC classes

for all class ∈ class_list do

optimal_cutoff ← 0.00,min_cutoff ← 1.00,max_cutoff ← 0.00

max_fscore← 0.00, cutoff ← 1.00, final_fscore← 0.00

final_cutoff ← 0.00

while cutoff ≥ 0.0 do

FScore holds F-score of current cut-off value

if FSCORE ≥ max_cutoff then

max_cutoff ← FSCORE

optimal_cutoff ← cutoff

end if

if FSCORE ≥ 0.90 and cutoff ≤ min_cutoff then

min_cutoff ← cutoff

else if FSCORE ≥ 0.90 and cutoff ≥ max_cutoff then

max_cutoff ← cutoff

end if

cutoff ← cutoff − 0.01

end while

if optimal_cutoff ≥ 0.90 and max_cutoff ≥ 0.90 then

final_cutoff ← (max_cutoff +min_cutoff)/2

final_fscore← fscore of final_cutoff

else

final_cutoff ← optimal_cutoff

final_fscore← max_fscore

end if

if final_cutoff < 0.60 then

final_cutoff ← 0.6

final_fscore← fscore of 0.6

end if

end for

41



Algorithm 3 Pseudocode of Determining Negative Cut-off Values for EC Classes
Require: positive_test_proteins: is a map where keys are EC Classes, val-

ues are proteins from positive validation set of corresponding EC classes,

negative_test_proteins: is a map where keys are EC classes and values are pro-

teins from negative validation set of corresponding EC classes, class_list: list of

trained EC classes

for all class ∈ class_list do

cutoff ← 1.00

while cutoff ≥ 0.0 do

for all pos_P ∈ positive_test_proteins[class] do

PSCORE holds prediction score of class for pos_P

if PSCORE ≥ cutoff then

TN ← TN + 1

else

FP ← FP + 1

end if

end for

for all neg_P ∈ negative_test_proteins[class] do

PSCORE holds prediction score of class for neg_P

if PSCORE ≥ cutoff then

FN ← FN + 1

else

TP ← TP + 1

end if

end for

cutoff ← cutoff − 0.011

end while

Calculate F − score according to the Equation 3.8

end for
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Table 3.7: Negative cut-off values and their F-score values for EC class 1.1.1.94.

Cut-off Value F-score
0.15 0.99
0.16 0.99
0.17 0.993
0.18 0.995
0.19 0.995
0.20 0.995
0.21 0.995
0.22 0.995
0.23 0.995
0.24 0.997
0.25 0.997
0.26 0.998
0.27 0.998
0.28 0.998
0.29 0.998
0.30 1.00
0.31 1.00
0.32 1.00
0.33 1.00
0.34 1.00
0.35 1.00
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3.4 Flowchart of ECPred

The flowchart of ECPred is given in Figure 3.12. For a given query sequence, firstly

we decide whether it is an enzyme or non-enzyme. if it is an enzyme, then its main

class is determined. Subsequently, the query sequence is input to the Level 2 clas-

sifiers. The EC subfamily class with the highest prediction score is determined. If

the highest prediction score is greater than the threshold of that EC subfamily class,

the query sequence is labeled with the EC subfamily class, otherwise, the algorithm

stops. For the Level 3 and Level 4 classifiers, same operations are applied. If the

prediction score is greater than the threshold, predictions are continued, otherwise,

predictions are stopped.
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Figure 3.12: The flowchart of ECPred. For a given query sequence, if its prediction
score sm greater than cut-off value cm where m is EC hierarchy Level, prediction is
continued otherwise prediction is stopped.

45



46



CHAPTER 4

RESULTS AND DISCUSSION

In this study, 6 main class classifiers, 55 subfamily classifiers, 163 sub-subfamily

classifiers and 634 substrate classifiers are trained. Performance measurement of the

classifiers is done using F-score statistics which is explained in Section 3.4.

In this chapter, Level 0-4 performance results are examined in Section 4.1 and 4.2.

Performance results of proteins that do not have functional domain information are

given in Section 4.3. ECPred is compared with three web-based tools and the perfor-

mance results are given in Section 4.4.

4.1 Level 0 and Level 1 Results

4.1.1 Enzyme/non-enzyme and Main Class Results

In order to determine the optimal positive threshold for six main EC classes, F-score

is calculated using the validation set. For each class, the protein sequences from the

other five main classes and the non-enzymes are selected in the negative validation

set. The positive F-score is calculated in order to determine positive cut-off values

for six main EC classes. The positive F-score plot for six main EC classes is given

in Figure 4.1. An average F-score value of 0.91 is obtained for six main EC classes.

Only an F-score which is less than 0.9 is obtained for Lysases. For each main EC

class, a cut-off value between 0 and 1 is selected that gives the highest F-score. Cut-

off values for six main EC classes are obtained as follows: 0.59, 0.52, 0.52, 0.63,

0.58 and 0.64 for Oxidoreductases, Transferases, Hydrolases, Lyases, Isomerases and
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Ligases, respectively.

Figure 4.1: Plot of main classes versus their positive F-scores. Green color means
that F-score is greater than 0.9. Red color means that F-score is less than 0.9.

Using ECPred we tried to predict which functions that a protein doesn’t have. Non-

enzymes are a specific example of these functions. To do this, negative F-scores

are calculated for six main EC classes and their results are given in Figure 4.2. In

the calculation of the negative F-scores, non-enzymes are treated as positives and

marked as true positive or false negative. On the contrary, main class proteins are

treated as negatives and marked as true negative and false positive. Results show

that six main EC classes can classify non-enzymes with average F-score of 0.98,

individually. However, six main classifiers give low prediction score at the same time

with F-score of 0.93 which is the actual performance result of ECPred for the non-

enzyme classification.
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Figure 4.2: Plot of main classes versus their negative F-scores. Overall label indicates
that six main classifiers give low prediction score at the same time.

4.2 Level 2, Level 3 and Level 4 Results

4.2.1 Subfamily Class Results

61 EC subfamily classes are trained and the average positive F-score is calculated as

0.98. The F-score plot for subfamily classes is given in Figure 4.3. Only F-score

values lower than 0.9 are obtained for EC subfamily classes of 1.2. and 3.7. Results

show that ECPred can predict sub-family classes with a high performance.
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Figure 4.3: Plot of subfamily classes versus their F-scores. Green color means that
F-score is greater than 0.9 while red color indicates an F-score less than 0.9.

4.2.2 Sub-subfamily Class Results

Totally, 163 EC sub-subfamily class is trained and average positive F-score is cal-

culated as 0.98. The F-score plot for sub-subfamily classes is given in Figure 4.4.

Except for two sub-subfamily classes, F-score values are higher than 0.9 for all sub-

subfamily classes.
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Figure 4.4: Plot of sub-subfamily classes versus their F-scores. Green color means
that F-score is greater than 0.9 while red color indicates an F-score less than 0.9.

4.2.3 Substrate Class Results

Totally, 634 EC substrate class is trained and average positive F-score is calculated as

0.99. The F-score plot for substrate classes is given in Figure 4.5. About 90% of the

substrate classes get F-score value of 1 and only for 5 EC classes F-score values are

less than 0.9. Results show that ECPred can classify substrate classes with perfect

performance.

51



Figure 4.5: Plot of substrate classes versus their F-scores. Green color means that
F-score is greater than 0.9 while red color indicates an F-score less than 0.9.

4.3 Protein Based Performance Results

Protein based performance is calculated for each EC Level. The results are given in

Table 4.1. Total number of TP, FN, TN and FP are calculated for proteins at a level and

precision, recall and F-score values are calculated according to these values. When

we go deeper at EC hierarchy, results are getting better since the subclasses are more

specific than their parents; therefore, the proteins in each class have more common

features.

4.4 Individual vs. Combined Classifiers

The comparison between individual classifiers and their combination is made in this

part of the study. The maximum F-scores are calculated for BLAST-kNN, SPMap
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Table 4.1: Protein based performance results.

EC Level Precision Recall F-score
Level 0 0.96 0.96 0.96
Level 1 0.96 0.90 0.93
Level 2 1.00 0.97 0.98
Level 3 1.00 0.98 0.99
Level 4 1.00 0.99 1.00

Average 1.00 0.97 0.98

and Pepstats-SVM. F-score values for trained 858 EC classes are sorted in descend-

ing order for three classifiers and the combined classifier. The plot for individual

and combined classifiers is given in Figure 4.6. The results show that combined

classifier performance results are better than three methods performance in most EC

classes, however, BLAST-kNN performance is better than the combined classifier per-

formance in a few number of EC classes. Additionally, performances of BLAST-kNN

and SPMap are better than Pepstats performance.

Figure 4.6: Performance results of individual and combined classifiers for 858 EC
classes.
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4.5 Weights of Three Independent Classifiers

In this part of the study, weights of BLAST-kNN, SPMap and Pepstats-SVM classi-

fiers are plotted. The plot for weights of three independent EC classifiers based on

BLAST-kNN for all EC classes is given in Figure 4.7. The results show that weights

of BLAST-kNN and SPMap are parallel to each other and weights of both methods

are higher than weight of Pepstats. The plots for weights of three independent EC

classifiers based on SPMap and Pepstats for all EC classes are given in Figure 4.7.

These results are also show that weights of BLAST and SPMap are close to each

other and weight of Pepstats-SVM is less than weights of these two methods.

The plot for weights of three independent EC classifiers for six main EC classes is

given in Figure 4.10. As it can be seen from figure, weight of BLAST-kNN is higher

than weights of other two methods and weight of SPMap is greater than weight of

Pepstats. The plots for weights of three independent EC classifiers for subfamily and

sub-subfamily classes are given in Figure 4.11, Figure 4.12. The results show that

weights of SPMap and BLAST-kNN are very similar to each other and weights of

both methods are higher than weight of Pepstats-SVM. Finally, the plot for weights

of three independent EC classifiers for six main EC classes is given in Figure 4.13.

As it can be seen from figure, for most of the EC classes weights of three methods are

close to each other. The plots are drown based on weight of BLAST-kNN for Figure

4.11, Figure 4.12 and Figure 4.13.
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Figure 4.7: Weights of three independent EC classifiers based on BLAST-kNN clas-
sifier.

Figure 4.8: Weights of three independent EC classifiers based on SPMap classifier.

55



Figure 4.9: Weights of three independent EC classifiers based on Pepstats classifier.

Figure 4.10: Weights of three independent EC classifiers for Level 1.
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Figure 4.11: Weights of three independent EC classifiers for Level 2.

Figure 4.12: Weights of three independent EC classifiers for Level 3.
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Figure 4.13: Weights of three independent EC classifiers for Level 4.

4.6 Predictions for Proteins That Have no Domain Annotation Information

Protein Families Database (Pfam) [38] uses functional domain information to assign

EC number to a protein. Pfam results for P38945 are given in Figure 4.14. P38945

has a Pfam domain and annotated with EC number 1.1.1.61. Pfam fails to assign an

EC number when the protein doesn’t have a functional domain information. For ex-

ample, Pfam result for protein E2JA32 is given in Figure 4.15. In UniProt, E2JA32

is annotated with EC number 6.3.2.46, however, it isn’t annotated with any EC num-

ber in Pfam since it doesn’t have Pfam domain information. To show that ECPred

can predict proteins that don’t have a functional domain information, a test set which

consists of 50 enzyme proteins and 49 non-enzyme proteins which are not used in

training datasets is constructed. For this set, 10 Oxidoreductases, 10 Transferases, 10

Hydrolases, 7 Lyases, 4 Isomerases and 9 Ligases are selected. Totally, 99 proteins

are tested and average precision, recall and F-score values are calculated as 0.80, 0.48

and 0.60, respectively. Results show that, ECPred can predict non-enzymes with no

Pfam domain information. ECPred can also predict main EC class of proteins, how-

ever, there is still room for improvement.
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Figure 4.14: Pfam domain results for P38945 which has a function domain informa-
tion and annotated with EC number 1.1.1.61.

Figure 4.15: Pfam domain results for E2JA32 which doesn’t have a function domain
information.

4.7 Comparisons with Other Tools

ECPred is compared with MecServer [24], ProtFun [5] and EzyPred [9] on enzyme/non-

enzyme and main class tests. Two different test sets are used to compare methods.

The first test set consists of 310 proteins that were initially non-enzyme and then,

annotated with EC number in latest UniProt release and 720 non-enzyme human pro-

teins that have an annotation score of 5 and which are never used in training. We

also constructed the second test in order compare our results with EzyPred since their
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Table 4.2: Enzyme or non-enzyme classification results of ProtFun and ECPred for
the whole test set.

Method Precision Recall F-score
ProtFun 0.39 0.95 0.56
ECPred 0.84 0.64 0.72

web-based tool accepts one input at a time and testing 1,030 proteins was not feasible

one by one. Therefore, 30 proteins are selected among 310 positive proteins and 30

proteins are selected from 720 non-enzyme proteins for the second test.

4.7.1 Enzyme/non-enzyme comparison

Enzyme/non-enzyme comparison is made with ProtFun and EzyPred separately. Mec-

Server results are not used in this set since MecServer only predicts enzyme main

class.

4.7.1.1 Whole Set comparison with ProtFun

Totally, 1030 proteins are classified as enzyme/non-enzyme for this comparison. Whole

set comparison results are given in Table 4.2. ProtFun is used for this comparison

since the tool accepts multiple sequences as input and it is classified as enzyme or

non-enzyme. ProtFun’s recall value is higher than ECPred since ProtFun labels pro-

teins mostly as enzyme, therefore the number of false positives increases and hence it

has low precision value. On the contrary, the precision value is high in ECPred since

we determined high threshold value in order to avoid FP. As a result, ECPred obtains

significantly better F-score than ProtFun. Since training datasets of ProtFun is older

than ECPred their performance is lower than ECPred.

4.7.1.2 Selected Proteins Comparison with EzyPred and ProtFun

30 enzyme proteins are selected from 310 positive test proteins and 30 non-enzyme

proteins are selected from 720 negative test proteins for this comparison. These posi-

tive and negative proteins are selected in order to reflect the whole set performance of
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Table 4.3: Enzyme or non-enzyme classification results of ProtFun, EzyPred and
ECPred for selected proteins.

Method Precision Recall F-score
ProtFun 0.72 0.88 0.79
EzyPred 0.37 0.37 0.37
ECPred 0.91 0.63 0.75

ECPred in this small test set. Performance results of these selected proteins for three

methods are given in Table 4.3. Both ProtFun and ECPred outperforms EzyPred in

this comparison. ECPred obtains significantly better results than ProtFun in the whole

set. However, because of the selected proteins, ProtFun precision value is increased

to 0.72, therefore, ProtFun’s F-score is slightly better than that of ECPred.

4.7.2 Main Class Comparison

4.7.2.1 Whole Set Comparison with MecServer and ProtFun

The same 1030 proteins are also used for main class comparison. In this set, the

flowchart which is given in Section 3.4 is followed. Firstly, a test protein is classified

as enzyme or non-enzyme. Subsequently, its main class is determined if it is an

enzyme. Whole set main class comparison results are given in Table 4.4. All three

methods are obtained similar recall values which means they could not predict the

proteins that annotated with an ECNumber in latest UniProt release. One important

point; since MecServer does not give a prediction for enzyme/non-enzyme they are

assigned whole non-enzyme proteins to one of the six main EC classes and therefore,

they obtained low precision value. For this reason, their overall performance is low

than ECPred. ProtFun is obtained similar performance results like MecServer. As a

result, ECPred performance is better than ProtFun and MecServer in whole set main

class comparison.
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Table 4.4: Main class performance results of ProtFun, EzyPred and ECPred for the
whole set.

Method Precision Recall F-score
ProtFun 0.07 0.10 0.08

MecServer 0.07 0.16 0.09
ECPred 0.51 0.13 0.40

Table 4.5: Main class performance results for selected proteins. Results for proteins
that ECPred obtained the highest performance in enzyme/non-enzyme prediction.

Method Precision Recall F-score
ProtFun 0.10 0.20 0.14
EzyPred 0.09 0.20 0.12

MecServer 0.23 0.90 0.38
ECPred 0.42 1.0 0.59

4.7.2.2 Selected Proteins Comparison with MecServer, EzyPred and ProtFun

Selected 30 proteins are divided into three sets in order to make a fair comparison

since all proteins are chosen subjectively. The first 10 positive test proteins are se-

lected from 310 positive test proteins that ECPred is predicted correctly with the

highest performance. 30 non-enzyme proteins are also added to this test set. Perfor-

mance results of this test set are given in Table 4.5. Both ProtFun and EzyPred obtain

very low precision and recall values and their F-score values are significantly lower

than MecServer and ECPred. On highest performance test, ECPred gets slightly bet-

ter recall values than MecServer and gets better precision results than MecServer as

expected since MecServer does not predict non-enzymes. As a result, ECPred gets

better results than ProtFun, EzyPred and MecServer.

The second 10 proteins are selected from 310 positive test proteins that ECPred gave

the average performance and the same 30 non-enzyme proteins are used in this test

set. Performance results of this test set are given in Table 4.6. ProtFun obtains the

lowest performance results among four methods. EzyPred and MecServer obtain

similar results which are slightly better than ProtFun. ECPred gets average recall

values as expected since the selected proteins are chosen among average performance

proteins. As a result, ECPred outperforms all three methods in average performance
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Table 4.6: Results for proteins that ECPred obtained average performance in
enzyme/non-enzyme prediction.

Method Precision Recall F-score
ProtFun 0.06 0.10 0.07
EzyPred 0.09 0.20 0.12

MecServer 0.09 0.30 0.14
ECPred 0.30 0.60 0.40

Table 4.7: Results for proteins that ECPred obtained the lowest performance in
enzyme/non-enzyme prediction.

Method Precision Recall F-score
ProtFun 0.0 0.0 0.0
EzyPred 0.0 0.0 0.0

MecServer 0.12 0.40 0.18
ECPred 0.0 0.0 0.0

test set.

10 proteins are selected from 310 positive test proteins that ECPred gave the lowest

performance and similarly, same 30 non-enzyme proteins are used in this test set.

Performance results of this test set are given in Table 4.7. ECPred, ProtFun and

EzyPred couldn’t predict correctly any of the positive proteins, however, MecServer

is predicted some of them correctly and got better results than other three methods.

ECPred performance results are expected since the test proteins are selected from

lowest performance proteins. EzyPred and ProtFun are also obtained the same results.

However, MecServer made correct prediction some proteins that ECPred couldn’t.

MecServer got different results since they used different input feature set.

Finally, all these three sets are combined and overall performance is calculated. Over-

all performance results are given in Table 4.8. We chose these 60 proteins intention-

ally to obtain average results, therefore, it is expected to ECPred obtains average per-

formance results. The important thing in here is the performance differences of other

three methods from ECPred. ProtFun and EzyPred obtain the lowest performance

results and MecServer obtains better performance results than these two methods.

However, ECPred gets better results than all three methods. As a result, ECPred

obtains the best performance results in main class comparison with selected proteins.
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Table 4.8: Main class performance results for selected 60 proteins.

Method Precision Recall F-score
ProtFun 0.15 0.10 0.12
EzyPred 0.16 0.13 0.15

MecServer 0.35 0.53 0.42
ECPred 0.53 0.53 0.53

4.8 Discussion

In this section, three proteins that are correctly predicted with ECPred are investi-

gated. These proteins are annotated with EC numbers in latest UniProt release and not

predicted correctly by ProtFun, MecServer and EzyPred. The first protein is Q96PB1

and annotated with EC number 2.3.1.45 which is defined as “N-acetylneuraminate

7-O (or 9-O)-acetyltransferase” at http://enzyme.expasy.org/EC/2.3.1.45. Q96PB1 is

also known as human gene CASD1 manually annotated with the EC number 2.3.1.45

with literature curation in UniProt. Baumann et al. [39] conducted a lab experiment

to prove that CASD1 is necessary for sialic acid 9-O-acetylation. The experiment

results show that CASD1 is a sialate O-acetyltransferase and acts as a key enzyme in

the biosynthesis of 9-O-acetylated sialoglycans .

The second protein is P31667 which is known as RPNA_ECOLI and annotated with

EC number 3.1.21.- which is defined as “Endodeoxyribonucleases producing 5’-

phosphomonoesters” at http://enzyme.expasy.org/EC/3.1.21.-. P31667 is also anno-

tated with literature curation in UniProt. Kingston, Ponkratz and Raleigh [40] stud-

ied DNA-mobilizing enzymes; the recombination-promoting nuclease (RPN) fami-

lies which belong to Pfam PF04754 and contains transposase_31 Pfam domain. Au-

thors conducted a lab experiment and show that RPNA demonstrated magnesium-

dependent, calcium- stimulated DNA endonuclease activity.

The third protein is A8LLX6 and annotated with EC number 4.2.1.- which is defined

as “Hydro-lyases” at http://enzyme.expasy.org/EC/4.2.1.-. A8LLX6 is automatically

annotated using the Unified Rule (UniRule): UR000031310. In this rule, a protein

must meet three conditions. The first condition is a protein shouldn’t contain fragment

data. The second condition is a protein should belong to one of the Actinobacteria,
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Firmicutes and Proteobacteria taxonomies. The third and most important condition

is a protein should match the High-quality Automated and Manual Annotation of

Proteins (HAMAP) signature MF_01830. HAMAP is a system which uses manually

curated family profiles to annotate proteins automatically. Since A8LLX6 meets all

these conditions it is automatically annotated with EC number 4.2.1.-.

The main, subfamily and sub-subfamily EC classes of Q96PB1 is predicted correctly

by ECPred, however, its substrate class is not predicted since we didn’t train EC

classes which are associated with less than 50 proteins. The main EC class of P31667

is predicted correctly by ECPred. The main and subfamily EC classes of A8LLX6 is

predicted correctly by ECPred.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this study, EC hierarchy is denoted as follows; Level 0: enzyme or non-enzyme,

Level 1: main class, Level 2: subfamily class, Level 3: sub-subfamily class and Level

4: substrate class. We developed a system called ECPred, which predicts automat-

ically the enzymatic functions of proteins using a top-down approach. Firstly, the

given sequence is classified as enzyme or non-enzyme. Subsequently, its subfamily

class is determined. Sub-subfamily and substrate classes are also determined for a

given sequence if the prediction scores for sub-subfamily and substrate classes are

above the cut-off values. Combination of subsequence based, feature based and ho-

mology based methods are used to give a prediction score for query protein sequence.

Totally, 858 EC classifiers are trained which consists of 6 main, 55 subfamily, 163

sub-subfamily and 634 substrate EC class classifiers.

Hierarchical data preparation is applied to each EC level and positive and negative

training datasets are constructed separately for each EC class. Positive and negative

optimal cut-off values are calculated for each EC class in order to give a positive and

a negative prediction for a given input sequence.

In this thesis, we used an ensemble approach that combines three different approaches;

homology based, subsequence based and feature based, respectively. This approach is

previously applied to GO based functions [4] and it is shown to be effective, however,

it is never applied to EC based enzymatic functions.

The average F-score value for validation dataset is calculated as 0.91, 0.98, 0.98 and

0.99 for EC main classes, subfamily classes, sub-subfamily classes and substrates
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classes, respectively. As a result, the average F-score value of 0.99 is obtained for

all EC classes for the validation dataset. To the best of our knowledge, this is the

first study that classifies 858 EC classes. According to the non-enzyme validation set

results, ECPred obtained an average F-score of 0.98. However, six main classifiers

predicted non-enzymes correctly at the same time with an F-score of 0.93 which is

the true performance result of ECPred for the non-enzyme prediction.

Results of individual and combination of three independent classifiers are investi-

gated. Results show that combination of three independent classifiers performance

is higher than those of individual classifier for most of the EC classes. Additionally,

weights of three independent classifiers are calculated. Results show that weights of

BLASTkNN and SPMap are parallel to each other and weight of Pepstats-SVM is

less than these two methods.

ECPred is compared with other similar tools on Level 0 and Level 1 tests: Mec-

Server, ProtFun and EzyPred. Two independent test sets are constructed for these

comparisons. Proteins that are annotated with an EC number in latest UniProt release

are selected for the positive test set. Human non-enzyme proteins with an annotation

score 5 from UniProt database is selected for the negative test set. Totally, 1030 test

proteins are included in the first test set which consists of 310 enzymes as positives

and 720 non-enzymes as negatives. For the second test, 30 proteins are selected from

310 test proteins that ECPred obtained average performance. 30 non-enzymes are

also added to this test set. On the overall performance results, ECPred and Mec-

Server get significantly higher F-score values than ProtFun and EzyPred and ECPred

obtained slightly better performance than MecServer. As a result, performance re-

sults are not good as the validation set performance results, because, this type of

rigorous test is never done in the past and usually, existing studies are measured their

performances on their validation sets. However, ECPred obtained better results than

existing tools on the independent test sets and the results show that there is still room

for improvement.

Three proteins that are annotated with an EC number are investigated. Q96PB1 and

P31667 are manually annotated using literature curation technique in UniProtKB.

A8LLX6 is automatically annotated using UniRule: UR000031310. Their main EC
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classes are predicted correctly by ECPred since there are similar sequences in training

datasets.

ECPred is used the protein sequence to obtain input features. There are other methods

that use the structure information of the protein to predict enzymatic functions and

their performance results are better than most of the existing studies. However, the

structure information is not available for each protein. In addition, structure based

methods are computationally intensive which means run times take too much time.

Therefore, these type of methods are not practical for large scale analysis. Instead

of structure based features, we used sequence based features since they are easy to

obtain and fast to process.

In the future, we plan to develop a web-based tool and a standalone tool which takes

a protein sequence and predicts whether the given protein is an enzyme or a non-

enzyme, and the exact enzymatic function if it is predicted as an enzyme. The tool

will follow the flowchart which is given Section 3.4, therefore, not all of the 858 EC

classifiers will be running for a query protein sequence. Since we only trained 858

EC classes we are planning to add more EC classes to ECPred in future. New input

feature can be added to the system.
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