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ABSTRACT

STATISTICAL DISEASE DETECTION WITH RESTING STATE
FUNCTIONAL MAGNETIC RESONANCE IMAGING

ÖZTÜRK, Ebru
M.S., Department of Statistics

Supervisor : Assoc. Prof. Dr. Özlem İlk Dağ

September 2017, 49 pages

Most of the functional magnetic resonance imaging (fMRI) data are based on a par-
ticular task. The fMRI data are obtained while the subject performs a task. Yet, it’s
obvious that the brain is active even when the subject is not performing a task. Rest-
ing state fMRI (R-fMRI) is a comparatively new and popular technique for assessing
regional interactions when a subject is not performing a task. This study focuses on
classifying subjects as healthy or diseased with the diagnosis of schizophrenia by an-
alyzing R-fMRI data. The resting state situation in the dataset of “UCLA Consortium
for Neuropsychiatric Phonemics LA5c Study” is used to extract brain signals in the
Region of Interest (ROI) analysis. The default mode network (DMN) ROIs were se-
lected since the DMN is a perception depending on an interconnected set of areas
displaying higher activity during rest than task related activity (Raichle and Snyder,
2007). Pre-processing of fMRI images is achieved with toolbox of Statistical Para-
metric Mapping version 8 (SPM8). ROI-based on brain signals are obtained from
Functional Connectivity (CONN). After brain signals are obtained, the disease status
is predicted by adjusting for the magnitude of brain signals, the demographic infor-
mation’s of subjects such as gender and age. Logistic regression model, marginal
model, random effect model and k-means clustering, hierarchical clustering and clus-
tering genes with replications (CGR) followed by logistic regression approaches are
conducted to classify the subjects in the UCLA data set by using R-Studio. Marginal
model with smoking status and k-means clustering algorithm followed with logistic
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regression model excluding smoking status give best results.

Keywords: Clustering, R-fMRI, Statistical Models, Statistical Disease Detection
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ÖZ

DİNLENİM DURUMU FONKSİYONEL MAGNETİK REZONANS
GÖRÜNTÜLEME İLE HASTALIK DURUMUNUN İSTATİSTİKSEL

OLARAK BELİRLENMESİ

ÖZTÜRK, Ebru

Yüksek Lisans, İstatistik Bölümü

Tez Yöneticisi : Doç. Dr. Özlem İlk Dağ

Eylül 2017 , 49 sayfa

Fonksiyonel manyetik rezonans görüntüleme (fMRI) verilerinin çoğu belirli bir gö-
revi temel alır. FMRI verileri, denek bir görevi yerine getirirken elde edilir. Ancak,
denek bir görevi yerine getirmediği zamanlarda bile beynin aktif olduğu açıktır. Din-
lenim durumu fMRI (R-fMRI), bir denek görev yapmadığında bölgesel etkileşimleri
değerlendirmek için kullanılan yeni ve popüler bir tekniktir. Bu çalışma, R-fMRI ve-
rilerini analiz ederek, çalışmaya katılan bireyleri sağlıklı veya hasta olarak sınıflandır-
maya odaklanmaktadır. "UCLA Consortium for Neuropsychiatric Phonemics LA5c
Study" veri setindeki dinlenim durumu, işlevsel bağlantısallık (ROI) beyin sinyalle-
rinin çıkarılması için kullanılmıştır. Varsayılan mod modeli ağları (DMN) dinlenim
süresince görevle ilişkili etkinlikten daha yüksek aktivite göstermektedir (Raichle ve
Snyder, 2007). Bu nedenle bu tezde DMN ağları üzerine çalıştık. fMRI görüntülerinin
ön işleme tabi tutulması, Statistical Parametric Mapping sürüm 8 araç kutusu (SPM8)
ile gerçekleştirilmiştir. Beyin sinyalleri Functional Connectivity araç kutusu kulla-
nılarak (CONN) elde edilmiştir. Beyin sinyallerinin elde edilmesinden sonra, beyin
sinyalleri, cinsiyet ve yaş gibi kişilerin demografik bilgileri ile birlikte kullanılarak
hastalık durumu sınıflandırılmıştır. UCLA veri setinde bulunan denekleri R-Studio
kullanarak sınıflandırmak için lojistik regresyon modeli, marjinal model, rastgele etki
modeli ve k-ortalama, hiyerarşik ve CGR kümelemesi yöntemleriyle birlikte lojis-
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tik regresyon yaklaşımı uygulanmıştır. Sigara içme durumu olan marjinal model ve
k-ortalama kümeleme algoritmasını takip eden sigara içme durumunu içermeyen lo-
jistik regresyon modeli en iyi sonucu vermektedir.

Anahtar Kelimeler: R-fMRI, İstatistiksel Modelleme, İstatistiksel Hastalık Durumu
Belirleme, Kümeleme
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CHAPTER 1

INTRODUCTION

1.1 Functional Magnetic Resonance Imaging

In spite of the fact that alterations in the neural activity in the human brain occur in

near real time, its non-invasive observation is enabled by an exhilarating magnetic

resonance imaging (MRI) technology, called Functional Magnetic Resonance Imag-

ing (fMRI) that leads researchers to study the structure and function of the brain. Its

impacts not only have led to the evolution in most of the neuroscience like cognitive

psychology and perception, the presence of the fields (social neuroscience, develop-

mental neuroscience, neuroeconomics, neuromarketing and the like) also proves that

its influences have catalyzed the emergence of sub-disciplines within this branch of

science (Ashby, 2011).

The use of fMRI as a technique for noninvasive mapping and analysis of cortical

activity in human brain due to its effectiveness to track the local alterations in cere-

bral blood volume, blood flow and blood oxygenation depending on the increased

neuronal activity have brought about a way to probe numerous matters that are once

assumed as unreachable. On the basis of measuring differences in the magnetic prop-

erties of certain molecules, MRI operates to comprehend the structure and function of

brain. In 1977, first human MRI has appeared, and its clinical use has been approved

by The Food and Drug Administration in 1985. In the following ten years, the number

of the MRI instruments installed across the United States has reached the thousands.

As it is completely noninvasive and poses less health risk, MRI have become one of

the routine medical procedures for diagnostic and scientific purposes. In comparison

with Computed Tomography (CT) that produces images by using x-rays and Positron
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Emission Tomography (PET) scanning that is applied through the injection of a ra-

dioactive drug, MRI can said to be a substantial innovation in neuroimaging (Ashby,

2011).

The observation of how human brain functions in real time with high spatial reso-

lution would be the ideal way of how fMRI works. However, the fact that a typical

fMRI experiment that reports a slow and indirect measurement with a temporal res-

olution of 1–3 seconds and a spatial resolution of 3–5 mm3 is the evidence that the

methodology that is currently used does not fulfill its ideal requirements. As stated

by the numerous publications on fMRI, in spite of its ineffectuality to reach its the-

oretical objectives, the great impacts of fMRI on the study of mind and brain cannot

be denied (Ashby, 2011).

It is postulated that the oxygen consumption in active areas of brain is more than

in inactive areas. Therefore, most of the fMRI studies measure blood oxygen level-

dependent (BOLD) signal. The reason behind is that oxygenated hemoglobin is trans-

ported to the area in which the increased neural activity ascending the metabolic de-

mand observed. The low BOLD signal level that is observed due to the increased

metabolic demand, rises after the oxygenated hemoglobin molecules are transferred

to the active brain area (Ashby, 2011).

1.2 Resting State

Recently, resting state fMRI (R-fMRI) method has been developed, which enables the

observation of regional interactions among different brain regions to be performed

without any involvement of the subject in external task. At state of rest, significant

correlations between distant grey matter regions are observed through low-frequency

(<0.1 Hz) BOLD fluctuations (Lee et. al 2013). Although dynamics behind the neu-

ral fluctuations in brain is still ambiguous, it is assumed that it is BOLD fluctuations

which cause the fluctuations in spontaneous neural activity. The spatial patterns of R-

fMRI correlations show resemblance with the correlations observed in the states such

as eyes-open, eyes-closed and fixation. As it is not task dependent, R-fMRI facilitates

experimental design, subject compliance, and training demands and is preferable for

studies of development and clinical populations(Components of the Human Connec-
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tome Project,2017).

1.3 Default Mode Network

Brain’s Default Mode Network (DMN) is deemed to be a group of brain structure that

display their highest level activity during resting state (Raichle et al., 2001). In the ab-

sence of attention demanding tasks, brain adjusts itself to a default mode of stimulus-

independent thought in which subject’s brain is stimulated by internally focused tasks

consisting of autobiographical memories, future envisioning, personal introspection

and the like (Buckner et al., 2008). Regarding that it supports self-referential mental

activities, Default Mode Network introduces a new aspect towards the spontaneous

human thoughts and feelings, and how they are formed in mental disorders such as

Alzheimer’s disease, autism, schizophrenia.

The Default Mode Network consists of interconnected brain regions functioning with

a strong temporal synchrony which are identified as the medial prefrontal cortex

(MPFC) [Brodmann area (BA) 10, 24, 32], posterior cingulate cortex (PCC) (BA

29/30, 23/31) and left and right inferior parietal lobules (LLP and RLP) (BA 39, 40).

Brodmann areas are illustrated in Figure 1.1. In addition to that core regions, there

are additional ones that can be considered as a part of the DMN, such as the medial

temporal lobe (MTL) (Buckner et al., 2008).

Figure 1.1: Default Mode Networks Regions
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1.4 The Focus of Thesis

The motivation of this study is diagnosing subjects as patient or healthy by using sta-

tistical methods. Moreover, we shorten time for modeling data set and diagnosing

subjects by keeping them less in the MRI device. This gives time and financial effi-

ciency to researchers and patients. The main focus of this thesis is to compare several

statistical methods for classifying patients diagnosed as schizophrenia and healthy

subjects. Some of these methods just use covariates, while others include longitudi-

nal BOLD signals as well. We aim to compare and show the contribution of BOLD

signals with covariates against modeling with only covariates.

In order to achieve the aim of this thesis,

• Logistic regression model is conducted with the covariates (such as age, gender,

religion...), but without BOLD signals,

• Marginal models are conducted with the covariates together with BOLD sig-

nals,

• Random effects model is conducted with the covariates and BOLD signals,

• Clustering approaches are conducted on BOLD signals; then by using the clus-

ter information of each subject, logistic regression model is conducted.

The plan of this thesis is as follows: In Chapter 2, information about the data set

is given. In Chapter 3,the methods and performance measures are discussed. In

Chapter 4, the results are demonstrated. Finally, the discussion and conclusion follow

in Chapter 5.
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CHAPTER 2

DATA SET

2.1 Data Set

Both healthy individuals (138 subjects) and individuals with neuropsychiatric dis-

orders including schizophrenia (58 subjects), bipolar disorder (49 subjects), and at-

tention deficit/hyperactivity disorder (45 subjects) have been selected as shared neu-

roimaging dataset by UCLA Consortium for Neuropsychiatric Phenomics, which is

a multidisciplinary team concentrating on the dimensional structure of memory and

cognitive control (response inhibition) functions.

A set of task-based fMRI assessments, resting fMRI, structural MRI, and high angu-

lar resolution diffusion MRI are included in the dataset which is shared on OpenfMRI

project, and put in a format based on the Brain Imaging Data Structure (BIDS) stan-

dard (Poldrack, et al., 2016).

In this thesis, we study only with healthy subjects and schizophrenia subjects in the

resting situation status (Poldrack, et al., 2016).

2.2 Participants

For the healthy adults, ages between 21-50, community advertisements from the

Los Angeles area; for the adults with ADHD, Bipolar and Schizophrenia, a patient-

oriented strategy including local clinics and online portals have been used to deter-

mine subjects. Each candidate have participated in a telephone interview prior to

an in-person interview. They were asked to identify themselves in either one of the
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NIH ethnic and racial categories: White but not Hispanic or Latino; or Hispanic or

Latino. Participants were also asked whether they fulfil the following inclusion cri-

teria: Primary language (as determined by verbal-fluency tests in both languages)

either English or Spanish; completed at least 8 years of formal education; no sig-

nificant medical illness by self-report; sufficiently willing to finish assessments; and

visual acuity not worse than 20/60. Moreover, urinalysis was checked to detect possi-

ble drug abuse. The subjects determined as drug abuse were excluded from the study

(Poldrack, et al., 2016).

2.3 MRI Data Acquisition

In this part, we give the technical features of the MR devices used in the experiment

for the preprocessing of the fMRI data since these features gain importance. For MRI

data acquisition, one of two 3T Siemens Trio scanners from Ahmanson Lovelace

Brain Mapping Center (Siemens version syngo MR B15) and the Staglin Center for

Cognitive Neuroscience (Siemens version syngo MR B17) at UCLA are. Data are

obtained with the use of a T2∗weighted echoplanar imaging (EPI) sequence with

the following parameters: slice thickness = 4 mm, 34 slices, TR = 2 s, TE = 30

ms, flip angle = 90◦, matrix 64 x 64, FOV = 192 mm, oblique slice orientation, in

addition to a T2∗ weighted matched bandwidth high resolution anatomical scan with

the parameters of 4mm slices, TR/TE=5000/34 ms, 4 averages, matrix = 128x128, 90
◦ flip angle (with the same slice prescription as the fMRI scan) and MPRAGE with

the parameters of TR = 1.9 s, TE = 2.26 ms, FOV = 250 mm, matrix = 256 x 256,

sagittal plane, slice thickness = 1 mm, 176 slices. To collect the diffusion weighted

imaging (DWI) data, an echoplanar sequence with the parameters of 64 directions,

2mm slices, TR/TE=9000/93 ms, 1 average, 96x96 matrix, 90◦ flip angle, axial slices,

b=1000 s/mm2, is used (Poldrack, et al., 2016).

In the resting fMRI, it was required from the participants to try to stay relaxed with

open eyes, not show any stimulation or respond for 304 seconds. To get the BOLD

signals, we used the Statistical Parametric Mapping software version 8 (SPM8). First

of all, we conducted the pre-process of fMRI data, including slice timing correction,

motion correction, coregistration and normalization and smoothing steps. Then, we
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used in the analysis of Voxel-based and ROI-based correlation the Functional Con-

nectivity (CONN) toolbox of SPM8.

2.4 Covariates

In the data set, the information recorded from all subjects are race, gender, smoking

status, civil status, education level of subject’s mother (in years), religion, education

level of subject’s father (in years) , education level of subject. The number of obser-

vations is low on some levels of the categorical variables. Therefore, some levels are

merged before the analysis. In order to clarify the data set, we share the coding sys-

tem of categoric variables in Table 2.1. The detailed information is in the Appendix.

Table 2.1: Labels of Categoric Variables
Variable Value Label

Race
1 White
2 Other

Smoking Status
1 No
2 Yes, current
3 Yes, past

Civil Status
1 Married
2 Separated/Divorced
3 Never Married

Religion
1 Christian
2 Not Affiliated
3 Other

Ethnicity
1 Hispanic
2 Other

Gender
1 Female
2 Male

In Table 2.2 we give a portion of the data set which combined BOLD signals and

demographic covariates. In Table 2.2, smoking status, civil status, education level of

subject’s mother, education level of subject’s father, education level of subject, chil-

dren number and diagnosis are represented with smoke, civil, sc_mother, sc_father,

sc, child_number and diag, respectively.
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CHAPTER 3

METHODOLOGY

In this chapter the methods that are used in this thesis namely logistic regression,

marginal model, random effects model and clustering algorithms are introduced. Next,

we touch briefly on the performance measures.

3.1 Preprocessing of fMRI Data

It is significant to reduce the influence of data acquisition and physiological artifacts

to a minimum, to verify statistical assumptions, and to determine the standardized lo-

cations of brain regions, which are obtained from different subjects to reach increased

validity and sensitivity in statistical analysis of fMRI data.To satisfy these objectives,

basically for the elimination of artifacts and validation of the following model as-

sumptions, fMRI data has to be preprocessed. Analysis of fMRI data essentially is

based on the assumptions of that all voxels in a specific brain volume are concurrently

procured, that each data point in a specific voxel’s time series only consists of a signal

from that voxel (i.e., that the participant did not move in between measurements), and

that all individual brains are registered to locate each voxel in the same anatomical

region (Lindquist,2008).

3.1.1 Slice-Time Correction

For the fMRI data analysis, it is important to acquire 3D fMRI data by eliminating the

temporal offset occurred between slices while measuring the whole brain. Although

9



it is assumed that the brain slices are concurrently measured in the data acquisition,

they are sampled sequentially at different time points. Therefore, the time difference

has to be compensated by temporally shifting the similar time courses from different

slices. Basically, slice timing correction is one of preprocessing fMRI data steps to

correct the temporal offsets between slices which uses either interpolation or Fourier

shift theorem (Lindquist,2008).

3.1.2 Motion Correction

For any fMRI study, it is essential to tackle subject movement, which can occur in data

acquisition process and result in errors in imaging, in the most proper way possible.

In the case of movement, the image that is rendered from a signal obtained from a

particular voxel will be disturbed due to the signal coming from neighboring voxel.

Moreover, an accurate estimation of the degree of motion and correction of the images

are critical. The first action to be taken regarding the motion correction is to provide

the best match between the input image and some target image (e.g., the first image or

the mean image), which aims at matching the input image to target image. We used

mean image as target image in this research. Through the use of a rigid transformation

that involves six parameters (three translations, three rotations) , the input image can

be translated (shifted in the x, y and z directions) and rotated (altered roll, pitch and

yaw). The minimization of the cost functions (e.g., sums of squared differences),

as a tool to evaluate the resemblance between the two images, enables the matching

process to be practiced properly. For the acquisition of the corrected voxel values, the

interpolation is used to resample the image when the parameters reach their optimal

realignment. To complete the study, motion correction procedure has to be iterated

for each brain volume. If the degree of motion is high, the subject should be removed

from study (Lindquist, 2008).

3.1.3 Coregistiration and Normalization

Since fMRI data has low spatial resolution that results in illustrating less anatomical

detail, it is practical to project the results of functional data on high resolution struc-
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tural MR image. Coregistration as one of the steps for the preprocessing fMRI data

is used for providing the alignment between structural and functional images, which

uses either a rigid body (6 parameters) or an affine (12 parameters) transformation.

Although each individual brain differs from the other in shape and feature, it is critical

for a group analysis to consider each voxel within the same brain structure. Therefore,

normalization in the preprocessing of data analysis is a way to register the anatomy of

each individual to a standardized stereotaxic space defined by a template brain (e.g.,

the Talairach or Montreal Neurological Institute (MNI) brain). Since each individ-

ual brain has an inherent structure, the use of a rigid body transformation would be

unsuitable for normalization procedure. Hence, to match the local features, nonlin-

ear transformations are commonly used. Normalization procedure is based on a high

resolution image warped onto a template image. To that end, a smooth continuous

map is constructed between the points in an input image and the ones in the target

image, which provides a normalized image comparing to the similarly normalized

images from other subjects. Due to the reduction in spatial resolution of the images,

errors can be encountered in normalization procedure. Yet, it enables to report and

interpret the spatial locations in a consistent manner, and to generalize the results for

a population with a greater number (Lindquist, 2008).

3.1.4 Spatial Smoothing

In addition to the preprocessing steps for fMRI data given above, spatial smoothing

is a widely used process in which a Gaussian kernel is employed to convolve the

functional images. Gaussian kernel is defined by the full width of the kernel at half

its maximum height (FWHM) with the common values varying between 4–12 mm

FWHM.

The common use of spatial smoothing of fMRI data is based on various reasons as en-

abling to improve inter-subject registration and to overcome the limitations observed

in the spatial normalization, of ensuring that the random field theory assumptions are

validated, which are facilitated for the correction of the multiple comparisons and

require a FWHM 3 times the voxel size for their validation (e.g., 9 mm for 3 mm

voxels). Furthermore, it provides a reduction in the noise in individual voxels and
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incline in the signal-to-noise ratio within the region (Lindquist, 2008). In this study,

we used 6mm Gaussian kernels for spatial smoothing.

3.1.5 Functional Connectivity Toolbox

The functional connectivity is used to demonstrate the correlations between spatially

different brain regions both in resting state and task dependent experiments. In this

experiment, the subjects were needed to stay in MR for 304 seconds. TR=2 implies

that the image and signal was record for every 2 seconds. Therefore, 152 images were

recorded in this fMRI experiment. Due to the irregularity of the MR signals in the

initial of the experiment, the first 6 TR were deleted. After the connectivity step was

implemented, consequently, in the data set, BOLD signals were recorded for 146 time

points.

3.2 Models

In the subsection of 3.2 the models are introduced shortly. The formulations and the

logic behind these models are given. For obtaining BOLD signals, we use MATLAB

(2012) version R2012b, SPM8 and CONN (Whitfield-Gabrieli and Nieto-Castanon,2012)

toolboxes. For modeling part, we use RStudio (2017) version 1.0.136.

3.2.1 Logistic Regression

Regression analysis is used to examine and model the relationship between a response

variable and explanatory variables. For the logistic regression analysis, the response

variable is categorical; it can take two or more possible values. In this thesis, the

response variable is the disease status, whether the subject is a healthy subject or di-

agnosed with schizophrenia. Therefore, the response variable can take either 0 or 1

values,which indicates response variable Y has a Bernoulli distribution with param-

eter π. Generally, the logit function is used as a link function in logistic regression.

Logit function is based on natural logarithm of odds. Odds represent the probabil-

ity of something happening to not happening. Mathematically, odds is the ratio of
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P (Y = 1|X) to P (Y = 0|X). The general form of binary logistic regression can be

written as the following:

log(
P (Yi = 1|Xi)

P (Yi = 0|Xi)
) = β0+β1xi1+...+βkxik, i = 1, 2, 3, ..., n and k = 1, 2, 3, ..., p.

(3.1)

The Equation 3.1 leads to the following probability:

P (Yi = 1|Xi) =
eβ0+β1xi1+...+βkxik

1 + eβ0+β1xi1+...+βkxik
, i = 1, 2, 3, ..., n and k = 1, 2, 3, ..., p.

(3.2)

The most frequent approach for the parameter estimation is based on Maximum Like-

lihood Estimation. The interpretation of the coefficients rely on estimated odds ratio.

For instance, in Equation 3.3, the odds ratio formulation is written for the x covariate

which have two categories such as 1 and 2. Equation 3.3 gives the change in odds

when the covariate x changes by one unit:

ÔR =

P (Y=1|X=2)
P (Y=0|X=2)

P (Y=1|X=1)
P (Y=0|X=1)

=
eβ̂0+β̂1(x=2)

eβ̂0+β̂1(x=1)
= eβ̂1((x=2)−(x=1)) = eβ̂1 . (3.3)

The logistic regression is commonly used in biological sciences especially in epi-

demiology, for instance to find the relationship between disease and the influencing

factors of the disease. In logistic regression by using the cut off point for the proba-

bility, one can construct a classification table. As a result, the success of models can

be decided via comparing with model selection criteria. The details about logistic

regression can be found in Montgomery et al. (2012). For logistic regression, we use

"stats" package (R Core Team, 2016) in RStudio.

3.2.2 Marginal Models

These models are also known as "population-average models". Suppose Yij be the

binary response (whether the subject is diagnosed with schizophrenia or healthy) at

time t, for the ith subject. In the marginal models, the marginal expectation, E(Yij),

of the response, which can be continuous or binary in general, is modelled via the

explanatory variables. Marginal expectation implies the average response over the

subpopulation that has common value of explanatory variables. The coefficients of

the marginal models, β, are interpreted like coefficients in cross-sectional analysis.
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However, the within subject correlation is taken into account in the marginal models.

Moreover, just like in logistic regression, in the marginal models, the link functions

are used such as logit function for binary response. The formulation of the marginal

model is given below.

log(
P (Yi = 1|Xi)

P (Yi = 0|Xi)
) = β0 + β1xit1 + ...+ βkxitk,

i = 1, 2, 3, ..., n, t = 1, 2, 3, ..., T and k = 1, 2, 3, ..., p.

(3.4)

Equation 3.4 leads to

P (Yi = 1|Xi) =
eβ0+β1xit1+...+βkxitk

1 + eβ0+β1xit1+...+βkxitk
. (3.5)

In this study, some of these covariates involve demographic information, others are

longitudinal BOLD signals. In Equation 3.6, we present marginal model formulation

adapted to the data set that we used.

log(
P (Yi = 1|Xi)

P (Yi = 0|Xi)
) = β0 + β1Agei + ...+ βkBOLDit,

i = 1, 2, 3, ..., n, and t = 1, 2, 3, ..., T

(3.6)

Since data for subject i is collected in a very short time period, age variable, for

instance, is not changing over time. Hence, we drop the index t for this variable in

Equation 3.6. The detailed information about marginal models can be obtained from

Diggle et al. (2013). For marginal models, we use "gee" (Carey et al., 2015) package

in RStudio.

3.2.3 Random Effects Models

They are also known as "subject-specific" models. In the random effects models, the

regression coefficients might vary from one subject to another. Therefore, in these

models, the individual heterogeneity is taken into account.

log(
P (Yi = 1|Xi)

P (Yi = 0|Xi)
) = β0 + β1xit + ...+ βkxitk + Ui,

i = 1, 2, 3, ..., n, t = 1, 2, 3, ..., T and k = 1, 2, 3, ..., p.

(3.7)

Equation 3.7 leads to

P (Yi = 1|Xi) =
eβ0+β1xit+...+βkxitk+Ui

1 + eβ0+β1xit+...+βkxitk+Ui
. (3.8)
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In Equations 3.7 and 3.8, Ui is known as the random intercept which is allowed to

be different for each subject. These intercepts are assumed to be independent and

follow normal distribution with mean 0 and variance D. This implies that the expected

response is just like the one in the marginal model. However, the variance is different

for each subject. This variance assures the individual heterogeneity for each subject.

The details of random effects model can be found in Diggle et al. (2013). For random

effects model, we use "lme4" package (Bates et al., 2015) in RStudio.

3.2.4 Logistic Regression with Clustering Algorithms

In this method, first, the BOLD signals are clustered by using clustering algorithms,

namely k-means, hierarchical and CGR (Cinar et al., 2017). After the cluster of each

subject is identified, by adding the cluster information as categorical variable to the

demographic information, the logistic regression model is conducted again.

3.2.4.1 k-means Algorithm

The k-means algorithm is one of the most popular and widely used partitioning meth-

ods. In k-means algorithm, first input parameter k is specified. Then, the objects in

the data set, say n, is divided to k clusters with respect to high similarity within clus-

ters and low similarity between clusters. Cluster similarity is evaluated according to

the mean value of the objects in a cluster that can be considered as the center of the

cluster. The k-means algorithm works as follows:

1. Choose randomly k of the objects, which primarily presents a cluster mean

2. Assign remaining objects to the most similar cluster based on distance between

the object and the cluster mean

3. Calculate new mean of each cluster

4. Return Step 1 and repeat each step until convergence is satisfied

The detailed information about clustering can be found in Han and Kamber (2006).

For k-means clustering, we use "stats" package (R Core Team, 2016) in RStudio.
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3.2.4.2 Hierarchical Clustering

A hierarchical method generates a hierarchical subdivision of given data set. Agglom-

erative and divisive are types of hierarchical clustering. Agglomerative hierarchical

clustering is based on bottom-up strategy. It begins by laying its own object to its

own cluster and then combines these small clusters into larger and larger clusters. It

stops when all objects are in one cluster or final termination condition is satisfied.

Divisive hierarchical clustering is based on top-down strategy. It does the opposite of

agglomerative hierarchical clustering. First, all objects are in one cluster then divided

into smaller and smaller clusters until final termination condition is fulfilled. In this

study we use agglomerative strategy. Moreover, the detailed information is in the Han

and Kamber(2006). We also use "stats" package (R Core Team, 2016) in RStudio for

hierarchical clustering.

3.2.4.3 CGR Algorithm

In the CGR algorithm, we aim to cluster BOLD signals considering similarities be-

tween their behavior through time. Due to time and behavior, two distance measures

are used. The first one is to detect magnitude differences in signals. The second one is

to capture the differences in trends. Moreover, CGR algorithm is also use hierarchical

clustering with agglomerative strategy. The details about this algorithm can be found

in Cinar at al. (2017). For clustering, we use "cgr" package (Cinar et al., 2015) in

R-Studio.

3.3 Model Selection Criteria

In the subsection of 3.2, the performance measures are given to compare models.

The cross-validation is applied to investigate how the models give results when a new

and independent data is given. Therefore, by cross-validation, we observe how the

models classify a new data set. In this thesis, 80% of the data set is allocated for

model building and 20% of the data is allocated for model prediction. The accuracy,

sensitivity, specificity, positive and negative predictive values are evaluated. For per-
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formance measures, we use "caret" (Max, 2008) package in RStudio. In Table 3.1 the

classification table is drawn due to the response with two categories. Here, 0 and 1

indicate healthy and patient diagnosed with schizophrenia, respectively.

Table 3.1: Classification Table
Predicted
0 (-) 1 (+)

Observed
0 (-) n11 (TN) n12 (FP)
1 (+) n21 (FN) n22 (TP)

According to Table 3.1, n11 represents the number of subjects who are healthy and

classified as healthy also by the model; n12 represents the number of subjects who are

healthy but classified as diseased by the model; n21 represents the number of subjects

who are diseased but classified as healthy by the model; n22 represents the number

of subjects who are diseased and classified also as diseased by the model. The cells

in Table 3.1, n11, n12, n21 and n22 are also known as "True Negative (TN)", "False

Positive (FP)", "False Negative (FN)" and "True Positive (TP)", respectively.

3.3.1 Accuracy Rate

Accuracy rate (ACC) gives the true classification rate. The formulation of accuracy

rate based on Table 3.1 is given in Equation 3.9. According to the this thesis, accuracy

rate gives the proportion of correctly classified healthy subjects and patients.

ACC =
n11 + n22

n11 + n12 + n21 + n22

=
TP + TN

TN + FP + FN + TP
. (3.9)

3.3.2 Sensitivity

Sensitivity is known as true positive rate, which is basically the rate of number of true

positive predictions to the total number of diseased subjects. In this thesis, sensitivity

is the proportion of the number of correctly classified diseased subjects diagnosed

with schizophrenia to the total number of those diseased subjects. The formulation

can be represented as in Equation 3.10.

Sensitivity =
n22

n21 + n22

=
TP

TP + FN
. (3.10)
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3.3.3 Specificity

Specificity is known as true negative rate, which means the rate of number of true

negative predictions to the total number of non-diseased subjects. Specificity is the

proportion of the number of correctly classified healthy subjects to the total number

of subjects observed as healthy. The formulation can be represented as in Equation

3.11.

Specificity =
n11

n11 + n12

=
TN

TN + FP
. (3.11)

3.3.4 Positive Predictive Value

Positive predictive value (PPV) is the proportion of diseased subjects among all of

those predicted as diseased. In other words, PPV is the proportion of diseased subjects

to the total number of diseased subjects predicted by the model. The formulation can

be represented as in Equation 3.12.

PPV =
n22

n22 + n12

=
TP

TP + FP
. (3.12)

3.3.5 Negative Predictive Value

Negative predictive value (NPV) is the proportion of healthy subjects to the total num-

ber of healthy subjects predicted by the model. The formulation can be represented

as in Equation 3.13.

NPV =
n11

n11 + n21

=
TN

TN + FN
. (3.13)

3.3.6 Akaike Information Criteria (AIC)

The most common model selection criteria is AIC. AIC is based on likelihood theory

to estimate Kullback-Leibler (KL) distance between the real and candidate model.

The aim of AIC is minimizing this distance as well as holding with simple model. In

AIC, if the number of parameters to estimate increases, then bias will also increase as

it can be seen in Equation 3.14.
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AIC = −2log(L) + 2p. (3.14)

According to Equation 3.14, p and L represent number of estimated parameters and

likelihood, respectively. The lower AIC offers better model. The more theoretical

detail about AIC can be found in Bozdagan (1987).
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CHAPTER 4

RESULTS

In this chapter,we first present the descriptive statistics for covariates and the plots

of BOLD signals in order to show the structure of the data set. After that, we dis-

cuss the results of the logistic regression, marginal model, random effects model and

clustering approach. Finally, the results of the performance measures are shared.

4.1 Descriptive Statistics

As we mentioned in Chapter 2.1, there are 138 healthy subjects and 58 patients diag-

nosed with schizophrenia in the study. However, in this thesis, we could only include

121 healthy subjects and 50 patients due to the lack of anatomical images or resting

state of some subjects. There exist missing values in 4 covariates, which are race, ed-

ucation level of subject’s father and mother and number of children that subject has.

The percentages of the missing values change between 1.17 % to 7.60 %. Since these

percentages are small, we applied mode or median imputations to those variables de-

pending on whether they are categorical or continuous variables. In Table 4.1, one

can see the characteristics of the sample with respect to health condition.
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Table 4.1: Descriptive Statistics of Covariates*
Healthy Controls (n=121)

Patient Group Diagnosed with
Schizophrenia (n=50)

Education level of
mother (years)

14 (12-16) 12 (12-14)

Education level of fa-
ther (years)

13 (12-16) 12.25 (12-16)

Education level (years) 16 (14-16) 12 (12-13.75)
Age 28 (24-39) 37.5 (29-43.75)
Number of children 0 (0-0) 0 (0-0)
Race, white (%) 76.86 70.00
Gender, female (%) 53.72 76.00
Religion (%)

Christian 73.56 78.00
Other (Jewish, Muslim, Other) 9.08 16.00

Not affiliated 17.36 6.00
Civil Status (%)

Never Married 72.73 90.00
Married 14.05 2.00

Separated/Divorced 13.22 8.00
Ethnicity, Hispanic (%) 35.54 58.00
Smoking

No 74.38 40.00
Yes (current) 9.09 40.00

Yes (past) 16.53 20.00
*Data represented are median (25th and 75th percentiles) or percentage of frequency

According to descriptive statistics, average education level of schizophrenia patients

seem to be lower than those of healthy subjects. Education level of subject’s father

and mother also show the same pattern with education level of subject. Average

age of schizophrenia patients is higher than healthy controls. Average number of

children are same for schizophrenia patients and healthy controls. For both groups,

the percentage of white subjects and the percentage of Christian subjects are similar.

However, the percentage of female subjects, Hispanic subjects and subjects who have

never been married are higher in schizophrenia patients than healthy controls. For

smoking status, the percentage of subjects who never smoked is higher in healthy

controls.
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4.2 BOLD Signals

In this part we give the connectivity results of 4 DMN regions for healthy subjects

and patients separately.

In Figure 4.1, the black points represent specific DMN regions, for instance, MPFC

in panels (a) and (b) . While the red points represent positive relation of specific

DMN region with the other regions, the blue points represent negative relationship.

Moreover, the size of red and blue points are related to the degree of connectivity.

This means the bigger the size is the higher the degree.
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(a) Connectivity of MPFC for control group (b) Connectivity of MPFC for schizophrenia patients

(c) Connectivity of PCC for control group (d) Connectivity of PCC for schizophrenia patients

(e) Connectivity of RLP for control group (f) Connectivity of RLP for schizophrenia patients

(g) Connectivity of LLP for control group (h) Connectivity of LLP for schizophrenia patients

Figure 4.1: Connectivity of DMN Regions for Healthy Subjects and Schizophrenia

Patients
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Figure 4.3: BOLD Signals for 4 DMN Regions with respect to Health Condition

In Figure 4.3, we show the BOLD signals for 4 DMN regions with respect to health

conditions. We draw the plots in Figures 4.3, 4.6 and 4.7 by using "ggplot2" pack-

age (Wickham,2009) in RStudio. In these figures, red line represents the mean of the

signals over time. The values of BOLD signals mostly change between -2 to 2 for

healthy controls and schizophrenia patients. Although the range is narrow, when the

time is taken account, the peak points and trends over time show some differences. In

the analysis part, we take into account first 30 second, which is highlighted with blue

in Figure 4.3 since when we model data set with 146 seconds, we face with some con-

vergence problems. Moreover, one of the motivation of this thesis is modeling data

set and diagnosing subjects by keeping them less in the MRI device. This satisfies

time and financial efficiency to researchers and patients.
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4.3 Results of the Models

In this subsection, we give the results of the parameter estimation from train data set.

After that we demonstrate and discuss the performance measures for both train and

test data sets.

4.3.1 Logistic Regression Model

In Chapter 3.2.1, we touched the logistic regression modeling briefly. For logistic

regression, the response is the health condition, whether the subject is healthy or

patient. The covariates of the logistic regression model is demonstrated in Table

4.1.We attempted different models starting from the full model and then applying

the backward elimination and forward selection approaches. When we represent the

results, we show only the best models. The only exception is about the smoking

status. Smoking status is statistically significant only in the logistic regression model.

For other models, the smoking status is not statistically significant. In order to see the

contribution of the smoking status and to compare the models, all of the models are

conducted with and without smoking.

In Table 4.1, it can be seen that race, gender, religion, civil status, ethnicity and

smoking status are nominal variables. To include these variables in the models, we

create dummy variables. In Table 4.2, the reference category of the nominal variables

are demonstrated.

Table 4.2: List of Reference Categories
Variables Reference Category
Race White
Gender Female
Religion Christian
Civil Status Never Married
Ethnicity Hispanic
Smoking No
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Table 4.3: Results of Logistic Regression with Smoking Status

Variables
Estimate
(β)

Std. Error exp(β)
95% of Confidence Interval

z value p-value
Lower Limit Upper Limit

(Intercept) 8.395 2.640 3.179 0.001
smoking(yes current) 1.347 0.669 3.846 1.037 14.269 2.014 0.044
smoking(yes past) -0.255 0.821 0.775 0.155 3.874 -0.311 0.756
civil(married) -1.620 1.299 0.198 0.016 2.523 -1.247 0.212
civil(divorced/separated) -4.994 1.345 0.007 0.000 0.095 -3.712 <0.001
school year -0.875 0.197 0.417 0.283 0.613 -4.440 <0.001
ethnicity -1.182 0.581 0.307 0.098 0.958 -2.033 0.042
age 0.111 0.034 1.117 1.045 1.194 3.246 0.001

The results of logistic regression with smoking status are presented in Table 4.3. The

interpretations of parameters follow:

• Subjects who are currently smoking have 3.85(=e1.347) times higher odds of

being diagnosed as patient compared to subjects who never smoked. Note that

in Table4.1, the percentage of subjects who are currently smoking is higher in

patient group compared to healthy group. In other words, the coefficient for

currently smoking variable is in the direction of what we expect.

• The odds of observing schizophrenia are 147 times higher for subjects who

have never been married as compared with subjects who are separated or di-

vorced. The percentage of subjects who have never been married is higher in

patient group as in descriptive statistics in Table 4.1.

• Subjects who are Hispanic have 3.26 times higher odds of being diagnosed as

schizophrenia with regard to subjects who have other ethnicities. This interpre-

tation is consistent with descriptive statistics in Table 4.1.

• When the education level of subject increases by one unit, the odds of being

diagnosed as patient have decreased by 58%. In Table 4.1, education level of

healthy subjects is higher than patients.

• When age is increased by one year, the odds of subjects being diagnosed as

patient have increased 1.12 times. Mean of age is higher in patient group as

stated in Table 4.1

• Confidence intervals for odds ratios (eβ) are also included in Table 3. One can

check whether confidence interval does not include 1 or p-value is smaller than
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0.05 to check if the corresponding variable is significant. For instance, one of

the dummy variables for smoking is insignificant with a p-value of 0.756 in

Table 3, while the other one is barely significant (p-value=0.044). Therefore,

we also fit a model by excluding the smoking status.

Table 4.4: Results of Logistic Regression without Smoking Status

Variables
Estimate
(β)

Std. Error exp(β)
95% of Confidence Interval

z value p-value
Lower Limit Upper Limit

Intercept 9.261 2.384 3.885 <0.001
civil(married) -1.635 1.322 0.195 0.015 2.601 -1.237 0.216
civil(divorced/separated) -4.473 1.218 0.011 0.001 0.124 -3.672 <0.001
school year -0.920 0.181 0.398 0.280 0.568 -5.096 <0.001
ethnicity -1.095 0.557 0.334 0.112 0.995 -1.968 0.049
age 0.111 0.033 1.117 1.047 1.192 3.348 0.001

The interpretations of the parameters have the same tendency in Table 4.4.

4.3.2 Marginal Model

In Chapter 3.2.2, we mentioned marginal models shortly. The response and the co-

variates are the same ones that we used in the logistic regression. Additionally, in

marginal models, the BOLD signals in DMN regions for 30 time points are included.

Furthermore, as a separate attempt, we model the response by only BOLD signals

to see its marginal effect. In this study, we only present the results of MPFC region

as the rest of three regions do not show the significant results. In Table 4.5, co-

Table 4.5: Results of Marginal Model with Smoking Status

Variables
Estimate
(beta)

Robust
Std. Error

exp(β)
95% of Confidence Interval

Robust z value
Lower Limit Upper Limit

(Intercept) 8.395 2.466 3.404*
smoking(yes current) 1.347 0.761 3.846 0.865 17.091 1.770
smoking(yes past) -0.255 0.745 0.775 0.180 3.337 -0.342
civil(married) -1.620 0.980 0.198 0.029 1.351 -1.653
civil(divorced/separated) -4.994 1.350 0.007 0.0005 0.096 -3.700*
school year -0.875 0.162 0.417 0.303 0.573 -5.392*
ethnicity -1.182 0.556 0.307 0.103 0.912 -2.124*
age 0.111 0.033 1.117 1.047 1.192 3.372*
MPFC 0.000016 0.000005 1.00002 1.00001 1.00003 2.967*

variates that are marked with "*" are statistically significant in 95% confidence level

(i.e. |z value| ≥ z0.05/2 = 1.96). Although the smoking status is not statistically

significant, we decide to keep this variable to compare with the results of logistic
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regression model. BOLD signals in MPFC region are statistically significant. The

covariates about demographic information have the same interpretations with logistic

regression. Additionally, 1 unit increase in MPFC signals increases the odds of being

diagnosed as patient by less than 1%.

Table 4.6: Results of Marginal Model without Smoking Status

Variables
Estimate
(β)

Robust
Std. Error

exp(β)
95% of Confidence Interval

Robust z
Lower Limit Upper Limit

(Intercept) 9.261 2.403 3.854*
civil(married) -1.635 0.963 0.195 0.030 1.287 -1.698
civil(divorced/separated) -4.473 0.968 0.011 0.002 0.076 -4.623*
school year -0.920 0.158 0.399 0.292 0.543 -5.827*
ethnicity -1.095 0.532 0.335 0.118 0.949 -2.058*
age 0.111 0.033 1.117 1.047 1.192 3.351*
MPFC 0.000013 0.000004 1.000013 1.000005 1.000021 2.916*

Removal of smoking status from the model causes slight changes in the coefficients as

presented in Table 4.6. BOLD signals in MPFC region are still statistically significant.

The interpretations of covariates have the same tendency with the former marginal

model.

Table 4.7: Results of Marginal Model with only BOLD Signals

Variables
Estimate
(β)

Robust
Std.Error

exp(β)
95% of Confidence Interval

Robust z
Lower Limit Upper Limit

Intercept -0.886 0.188 -4.714*
MPFC 0.000004 0.000001 1.000004 1.000002 1.000006 3.847*

BOLD signals in MPFC region are still statistically significant when the other covari-

ates are ignored in Table 4.7. Note that, the estimate of the coefficients are very small

in all of the marginal models. However, the effect of these small coefficients would

be much more clearer in performance measures.

4.3.3 Random Effects Model

In Chapter 3.2.3, we touch random effects model briefly. Here, we apply same pro-

cedure as in the marginal models. When we attempt to model data set via random ef-

fects, we face with some convergence problems. To overcome convergence problems,

first, we standardize numeric covariates which are education level and age. However,

just standardizing variables does not solve the convergence problem. Therefore, we
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decide to change the optimizer method via "optimx" package (Nash and Varadhan,

2011) in RStudio. Changing optimizer method as "bobyqa" solve our problem for

most of the models. Even though we try all optimizers, we cannot solve convergence

problem which including smoking status in the model. Consequently, random ef-

fects model with smoking status is not represented in this subsection. After solving

convergence problem, when we conduct the models with all covariates (except for

smoking status), some estimated standard errors of covariates are high, which lead

to suspicious results. To handle with these suspicious results, we also exclude some

covariates. In this subsection, the results we present are best results that solve con-

vergence and high standard error problems.

Table 4.8: Results of Random Effects Model with Demographic Covariates

Variables
Estimate
(β)

Std. Error exp(β)
95% of Confidence Interval

z value p-value
Lower Limit Upper Limit

Intercept -15.397 1.981 -7.774 <0.001
ethnicity -1.520 2.773 0.219 0.001 50.153 -0.548 0.584
age 0.672 1.325 1.958 0.146 26.285 0.507 0.612
MPFC 0.116 2.717 1.123 0.005 230.747 0.043 0.966

In Table 4.8, all of the covariates including BOLD signals in MPFC region are not

statistically significant. For comparison, we apply random effects model only with

BOLD signals in Table 4.9.

Table 4.9: Results of Random Effects Model with only BOLD Signals

Variables
Estimate
(β)

Std. Error exp(β)
95% of Confidence Interval

z value p-value
Lower Limit Upper Limit

Intercept -16.254 1.486 -10.937 <0.002
MPFC 0.129 2.844 1.138 0.004 299.837 0.045 0.964

Since we standardize continuous variables, interpretation of continuous variables has

changed. For instance, one standard deviation unit increase in age leads to 1.325 tines

unit increase in the odds of disease diagnosed as patient according to Table 4.8.

In both of the random effects models, BOLD signals are not statistically significant.

However, we still decide to examine results of random effects models. Furthermore,

we compare the performance measures of the random effects model with other mod-

eling. One of the reasons of examining results of random effects models is that the

individual heterogeneity is very high. As mentioned in Chapter 3.2.3, in random ef-
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fects modeling, Ui ∼ N(0, D), D represents the variance of individual heterogeneity.

When we explore the results of the these two models, we observe that the standard

deviation of random effects is high (Table 4.10).

Table 4.10: Standard Deviation of Random Effects

Random Effects Models
Standard Deviation
of Random Effects

With Demographic Covariates 125.300
Only BOLD Signals 129.600

4.3.4 Clustering Approach

We use in order of k-means, hierarchical and CGR algorithms to cluster the BOLD

signals of subjects. Then, by using cluster information of the subjects and other

covariates, we conduct logistic regression model.

4.3.4.1 k-means Algorithm

One of the main problems in cluster analysis is predicting how many clusters of data

set the researchers want to separate. We use "NbClust" (Malika et al., 2014) package

in R to decide on the number of clusters. Moreover, in NbCLust package, we choose

"ch" index which is proposed in 1974 since Milligan and Cooper (1985) showed "ch"

index is the best one based on their simulation studies. According to "ch" index

result, the number of cluster for our data set is found to be 3. Therefore, in k-means,

hierarchical and CGR algorithms, we decide to use 3 clusters.

In Table 4.11 and Table 4.12, we show the results of logistic regression with 3 clusters

we obtained from k-means algorithm included as covariate. Clusters are included

into the model as nominal variables. Therefore, we create 2 dummy variables and we

choose the Cluster 1 as a reference.
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Table 4.11: Results of Logistic Regression with Smoking Status with k-means Algo-
rithm Cluster Information

Variables
Estimate
(β)

Std. Error exp(β)
95% of Confidence Interval

z value p-value
Lower Limit Upper Limit

(Intercept) 9.492 3.098 3.064 0.002
smoking(yes current) 1.358 0.744 3.888 0.905 16.714 1.827 0.068
smoking(yes past) 0.311 0.982 1.365 0.199 9.353 0.317 0.751
civil(married) -1.896 1.401 0.150 0.010 2.340 -1.353 0.176
civil(divorced/separated) -6.130 1.577 0.002 0.000 0.048 -3.887 <0.001
school year -1.039 0.249 0.354 0.217 0.576 -4.169 <0.001
ethnicity -1.727 0.701 0.178 0.045 0.703 -2.465 0.014
age 0.133 0.040 1.142 1.056 1.235 3.355 0.001
Cluster 2 1.986 0.759 7.286 1.646 32.254 2.615 0.009
Cluster 3 -0.861 0.891 0.423 0.074 2.424 -0.967 0.333

Table 4.12: Results of Logistic Regression without Smoking Status with k-means
Algorithm Cluster Information

Variables
Estimate
(β)

Std. Error exp(β)
95% of Confidence Interval

z value p-value
Lower Limit Upper Limit

Intercept 10.887 2.872 3.791 <0.001
civil(married) -2.161 1.436 0.115 0.007 1.922 -1.505 0.132
civil(divorced/separated) -6.019 1.593 0.002 0.000 0.055 -3.778 <0.001
school year -1.137 0.239 0.321 0.201 0.512 -4.756 <0.001
ethnicity -1.584 0.653 0.205 0.057 0.738 -2.427 0.015
age 0.14 0.039 1.150 1.066 1.242 3.569 <0.001
Cluster 2 2.034 0.73 7.645 1.828 31.970 2.786 0.005
Cluster 3 -0.81 0.855 0.445 0.083 2.377 -0.947 0.344

The results of this approach show similar results with logistic regression models.

Moreover, some levels of variables related with cluster are statistically significant.
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4.3.4.2 Hierarchical Algorithm

As we mentioned in k-means algorithm, subjects are divided into 3 cluster according

to BOLD signals in MPFC region. In Figure 4.4, cluster dendrogram is presented.

We choose depth cutoff point as 14.

Figure 4.4: Dendrogram of Hierarchical Clustering

In this part, we follow the same path in k-means algorithm. We choose Cluster 1 as

reference category again.

Table 4.13: Results of Logistic Regression with Smoking Status with Hierarchical
Algorithm Cluster Information

Variables
Estimate
(β)

Std. Error exp(β)
95% of Confidence Interval

z value p-value
Lower Limit Upper Limit

(Intercept) 8.787 2.863 3.069 0.002
smoking(yes current) 1.452 0.726 4.272 1.029 17.725 1.999 0.046
smoking(yes past) 0.29 0.885 1.336 0.236 7.573 0.328 0.743
civil(married) -1.565 1.316 0.209 0.016 2.758 -1.189 0.235
civil(divorced/separated) -5.257 1.394 0.005 0.000 0.080 -3.771 <0.001
school year -0.851 0.207 0.427 0.285 0.641 -4.117 <0.001
ethnicity -1.325 0.633 0.266 0.077 0.919 -2.092 0.036
age 0.118 0.037 1.125 1.047 1.210 3.197 0.001
Cluster 2 -1.757 0.925 0.173 0.028 1.058 -1.9 0.057
Cluster 3 -0.393 0.911 0.675 0.113 4.025 -0.431 0.666
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Table 4.14: Results of Logistic Regression without Smoking Status with k-means
Algorithm Cluster Information

Variables
Estimate
(β)

Std. Error exp(β)
95% of Confidence Interval

z value p-value
Lower Limit Upper Limit

Intercept 10.119 2.653 3.814 <0.001
civil(married) -1.65 1.353 0.192 0.014 2.723 -1.22 0.223
civil(divorced/separated) -4.866 1.296 0.008 0.001 0.098 -3.753 <0.001
school year -0.943 0.194 0.389 0.266 0.570 -4.858 <0.001
ethnicity -1.221 0.602 0.295 0.091 0.960 -2.028 0.043
age 0.121 0.036 1.129 1.052 1.211 3.351 0.001
Cluster 2 -1.625 0.908 0.197 0.033 1.167 -1.79 0.074
Cluster 3 -0.174 0.899 0.840 0.144 4.894 -0.194 0.846

The results of this approach show similar results with logistic regression models.

Moreover, variables related with cluster are not statistically significant but cluster 2

variable is significant at 10% significance level.

4.3.4.3 CGR Algorithm

The number of clusters for BOLD signals is unknown in advance. Algorithm CGR

suggests two different validation methods to decide on the number of clusters. Both

methods make use of within and between distances among clusters, and take the ratio

of the descriptive statistics of these distances. Figure 4.5 presents the graphs of these

2 validation methods for our data set. We aim to choose the number of clusters which

provide the minimum ratio or the one which gives a significant decrease. In Figure

4.5, we plot the validation scores for a maximum number of clusters as 20.
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Figure 4.5: Two Validation Score Graphs

As a result, the minimum score is satisfied with 18 clusters. However, this number of

cluster is high for modeling.Therefore, we aim to decrease the number of clusters by

checking BOLD signals.

Figure 4.6: BOLD Signals for 18 Clusters

We merge clusters which have similar trends according to Figure 4.6:

• Cluster 1: Cluster 1, Cluster 11, Cluster 12, Cluster 14, Cluster 16 and Cluster

17

• Cluster 2: Cluster 3, Cluster 4, Cluster 7, Cluster 9, Cluster 13 and Cluster 19
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• Cluster 3: Cluster 2, Cluster 5, Cluster 6,Cluster 8, Cluster 10 and Cluster 15

Figure 4.7 presents the plot of BOLD signals with respect to 3 clusters.

Figure 4.7: BOLD Signals for 3 Clusters

Table 4.15 and 4.16 show the results of logistic regression models with 3 clusters we

obtained from CGR algorithm included as covariate. Clusters are included into the

model as nominal variables. Therefore, we create 2 dummy variables and we choose

the Cluster 1 as reference category.
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Table 4.15: Results of Logistic Regression with Smoking Status with CGR algorithm
Cluster Information

Variables
Estimate
(β)

Std. Error exp(β
95% of Confidence Interval

z value p-value
Lower Limit Upper Limit

(Intercept) 9.939 2.943 3.378 0.001
smoking(yes current) 1.512 0.678 4.536 1.201 17.131 2.230 0.026
smoking(yes past) -0.335 0.881 0.715 0.127 4.022 -0.381 0.703
civil(married) -2.048 1.370 0.129 0.009 1.891 -1.495 0.135
civil(divorced/separated) -5.894 1.592 0.003 0.000 0.062 -3.702 <0.001
school year -0.968 0.222 0.380 0.246 0.587 -4.359 <0.001
ethnicity -1.242 0.603 0.289 0.089 0.942 -2.061 0.039
age 0.135 0.039 1.145 1.060 1.235 3.419 0.001
Cluster 2 -1.066 0.78 0.344 0.075 1.589 -1.366 0.172
Cluster 3 -1.599 0.783 0.202 0.044 0.938 -2.041 0.041

Table 4.16: Results of Logistic Regression without Smoking Status with CGR Algo-
rithm Cluster Information

Variables
Estimate
(β)

Std. Error exp(β)
95% of Confidence Interval

z value p-value
Lower Limit Upper Limit

Intercept 10.416 2.610 3.990 <0.001
civil(married) -2.014 1.391 0.133 0.009 2.039 -1.447 0.148
civil(divorced/separated) -5.118 1.410 0.006 0.000 0.095 -3.631 <0.001
school year -0.982 0.196 0.375 0.255 0.550 -5.009 <0.001
ethnicity -1.123 0.576 0.325 0.105 1.006 -1.951 0.051
age 0.129 0.037 1.138 1.058 1.223 3.479 0.001
Cluster 2 -0.932 0.746 0.394 0.091 1.699 -1.249 0.212
Cluster 3 -1.304 0.736 0.271 0.064 1.149 -1.771 0.077

The results of this approach show similar results with logistic regression models. In

Table 4.15, some levels of variables related with cluster are statistically significant.

Additionally, some levels of variables related with cluster are barely significant in

Table 4.16

4.3.5 Performance Measures

In Chapter 3.2, performance measures that are used in this thesis are given. Moreover,

as we mentioned before, the data set is split in two parts as train data set and test data

set. In this chapter, the results of performance measures are supplied in Tables 4.17

and 4.18 for train and test data sets, respectively.
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Table 4.17: Results of Performance Measures for Train Data Set
Models Accuracy Sensitivity Specificity PPV NPV AIC
Logistic Regression Models

With Smoking Status 0.803 0.900 0.763 0.610 0.945 103.480
Without Smoking Status 0.788 0.925 0.732 0.587 0.960 104.640

Marginal Models
With Smoking Status 0.854 0.750 0.897 0.750 0.897 NA

Without Smoking Status 0.825 0.700 0.876 0.700 0.876 NA
Only BOLD Signals 0.292 1.000 0 0.292 NA NA

Random Effects Models
With Demographic Covariates 1.000 1.000 1.000 1.000 1.000 157.500

Only BOLD Signals 1.000 1.000 1.000 1.000 1.000 154.000
K-means Clustering+Logistic Regression Modelling

With Smoking Status 0.832 0.925 0.794 0.649 0.963 93.392
Without Smoking Status 0.839 1.000 0.773 0.645 1.000 92.982

Hierarchical Clustering+Logistic Regression Modelling
With Smoking Status 0.847 0.975 0.794 0.661 0.987 101.010

Without Smoking Status 0.810 0.950 0.753 0.613 0.973 101.260
CGR Clustering+Logistic Regression Modelling

With Smoking Status 0.832 0.950 0.784 0.644 0.974 102.970
Without Smoking Status 0.796 0.90 0.753 0.600 0.948 105.330

Table 4.18: Results of Performance Measures for Test Data Set
Models Accuracy Sensitivity Specificity PPV NPV
Logistic Regression Models

With Smoking Status 0.794 0.800 0.792 0.615 0.905
Without Smoking Status 0.765 0.800 0.750 0.571 0.900

Marginal Models
With Smoking Status 0.794 0.600 0.875 0.667 0.840

Without Smoking Status 0.765 0.600 0.833 0.600 0.833
Only BOLD Signals 0.294 1.000 0 0.294 NA

Random Effects Models
With Demographic Covariates 0.706 0 1.000 NA 0.706

Only BOLD Signals 0.706 0 1.000 NA 0.706
K-means Clustering+Logistic Regression Modelling

With Smoking Status 0.794 0.800 0.792 0.615 0.905
Without Smoking Status 0.794 0.900 0.750 0.600 0.945

Hierarchical Clustering+Logistic Regression Modelling
With Smoking Status 0.765 0.700 0.792 0.583 0.864

Without Smoking Status 0.702 0.700 0.708 0.500 0.850
CGR Clustering+Logistic Regression Modelling

With Smoking Status 0.794 0.800 0.792 0.615 0.905
Without Smoking Status 0.735 0.700 0.750 0.539 0.857

For all performance measures, the closest values to 1 indicate better model except for
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AIC values. The lower AIC value indicate better model. Since marginal model esti-

mation is based on generalized estimation equation, AIC values for marginal model

cannot be calculated. According to the results of performance measures in Tables

4.17 and 4.18 we can conclude that:

• For train data set, it is interesting to observe that both random effects models

classify the subjects as patient or healthy with 100% correctness. The model

conducted with only BOLD signals also discriminate subjects with 100% cor-

rectness. This implies that the heterogeneity among subjects is high. However,

for test data set, in both of the models, all subjects are classified as healthy. This

implies that instead of using only BOLD signals or demographic information,

using these information together contributes to classification more.

• For train data set, marginal models with smoking status and without smoking

status classify subjects as patient or healthy with 85.4% and 82.5% correctness,

respectively. The accuracy rate has increased approximately 5% compared to

logistic regression approaches although the estimates of BOLD signals are very

small in Tables 4.5 and 4.6. Moreover, in the model conducted with only BOLD

signals, all subjects are classified as patient. This implies instead of using only

BOLD signals or demographic information, using these information together

contributes to classification more. For test data set, accuracy rates for logistic

regression and marginal model with smoking status are same and accuracy rates

for logistic regression and marginal models without smoking status are same.

Although the accuracy rates are same, sensitivity is high in logistic regression

models while specificity is high in marginal models. Moreover, in the model

conducted with only BOLD signals, all subjects are classified as patient just as

in the train data set.

• Logistic regressions with k-means, hierarchical and CGR clustering approaches

give similar results in both train and test data sets. However, k-means clustering

algorithm proceeded with logistic regression model without smoking variable

is one of the best models according to AIC values and performance measures

in both test and train data sets.

• To sum up, random effects models perform best in train data set but do not per-
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form good in test data set according to performance measures. If we take into

account both train and test data sets, with all model diagnostics, two models

seem to give promising results. These are marginal model with smoking sta-

tus and k-means clustering algorithm followed with logistic regression model

excluding smoking status.

40



CHAPTER 5

CONCLUSION AND DISCUSSION

Discovering the brain function, structure and connectivity and their effects on atti-

tudes is one of the fascinating scientific progress in this century (Components of the

Human Connectome Project,2017). Furthermore, fMRI is non-invasive procedure to

work and map on brain functions. R-fMRI might offer new understandings on brain

connectivity.

Schizophrenia is a grave mental illness distinguished by multiple symptoms; posi-

tive symptoms such as hallucinations, delusions and racing thoughts; negative symp-

toms such as lack of enthusiasm and lack of interest, confusion and disorder; last but

not least cognitive deficits like lack of perception and lack of apprehension. Cogni-

tive deficiencies are often determined by neuropsychological tests yet the rest of the

symptoms are quite challenging to review and examine(National Institute of Mental

Health, 2017).

Neurological data can contribute in the scrutiny of a patient’s brain and shows us

where it would eventually drift off, therefore, it can contribute to perceiving and find-

ing the origins of the problems in a sick brain; furthermore schizophrenia is known to

disrupt proper DMN and the ability to focus on some tasks, this phenomenon is known

as hyperactivation. Note that this was discovered upon consecutive analysis of neuro-

logical data amongst schizophrenia patients, together with the auditory oddball task

(Garrity et al., 2007), working tasks(Meyer-Lindenberg et al., 2005, Pomarol-Clotet

et al., 2008, Whitfield-Gabrieli et al., 2009) including language tasks also known as

semantic priming (Jeong & Kubicki 2010).
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Furthermore, when working memory requests are parametrically raised, healthy peo-

ple display higher suppression of the DMN during working tasks. On the other hand

patients fail to show this sequence(Meyer-Lindenberg et al., 2005, Pomarol-Clotet et

al., 2008, Whitfield-Gabrieli et al., 2009). Whereas higher DMN activation is linked

with poor cognitive performance in healthy people(Whitfield-Gabrieli et al., 2009), it

can also be combined with cognitive deficits, working memory and language tasks in

schizophrenia.

Current examinations on DMN liveliness on schizophrenia implied medial prefrontal

cortical regions of the DMN grid disclosing abnormal integration or activeness, still

evidence is not focalized on this section and angles alter in every examination (Zhou

et al., 2007; Kim et al., 2009; Whitfield-Gabrieli et al., 2009; Ongur et al., 2010;

Woodward et al., 2011). Nonetheless, these researches highlight the association of

cognitive deficits and symptoms whichever connects them to the significant patho-

physiology of schizophrenia (Rotarska-Jagiela et al., 2010). In addition to that, other

research advocates corresponding detailed anomalies for schizophrenia (Calhoun et

al., 2008). Zhang et al. (2010) stated that damaging of DMN might has been con-

nected with depression, schizophrenia, Alzheimer’s disease and autism.

In the light of these information, in this study, we aim statistical disease detection

of patients diagnosed as schizophrenia and healthy subjects is investigated via de-

mographic covariates and BOLD signals of R-fMRI in DMN regions. To classify

subjects, first, we conducted logistic regression on demographic information of sub-

jects. Next, we obtained BOLD signals in DMN regions via connectivity of the brain.

Furthermore, by using these BOLD signals, we conducted marginal models, random

effects models and logistic regression models together with k-means, hierarchical and

CGR clustering methods. The reason of classifying with and without BOLD signals

is to see how BOLD signals contribute to classification.

To summarize all results, one should consider BOLD signals together with demo-

graphic information for diagnosing patients since better results are obtained from

those models. As we discussed in Chapter 4.4, random effects models give best re-

sults in train data set whereas they cannot give good results in test data set. For overall

evaluation of the all models, marginal model with smoking status and k-means clus-
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tering algorithm followed with logistic regression model excluding smoking status

gives best results.

Li and her friends (2007) suggested generalized sufficiency score and generalized

conditional score approaches for joint models. Both proposed scores need to satisfy

neither a distributional nor a covariance structural assumption. Authors of this paper

run algorithms of these scores in the SAS program. In future, we intend to work on

the datat set which we study on this thesis by transferring to RStudio.
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A Merged Categories of Demographic Information

Table A.1 Merged Categories of Demographic Information
Original Values Merged Values
Race Main Frequency Race Main Frequency
1: American Indian or Alaskan Native 36 1: White 128

2: Asian 3 2: Other 43
3: Native Hawaiian/Pacific Islander 0

4: Black/African American 3
5: White 128

6: More than one race 1
Civil Status Frequency Civil Status Frequency

1:Married 18 1:Married 18
2:Separated 2 2:Separated/Divorced 20
3:Divorced 18 5:Never married 133

5:Never married 133
Religion Frequency Religion Frequency

1:Catholic 86 1:Christian 128
2:Protestant 42 2:Not Affiliated 24

3:Jewish 11 3:Other 19
4: Muslim 1

5:Not Affiliated 24
6: Other 7
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