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ABSTRACT

AUXILARY RECOGNITION METHODS FOR HMM MODELLING

UNDER INSUFFICIENT TRAINING DATA

Malcy, Gokeen
M.S., The Department of Electrical and Electronics Engineering
Supervisor: Prof. Dr. Zafer Unver

January 2000, 75 pages

The study in this thesis can be considered within the general framework of
speaker dependent isolated word recognition using Hidden Markov Model (HMM). The
HMM structure used is left-to-right and has five states. Fach frame in the speech is
represented by a feature vector of subband cepstral coefficients. The specific matter of
concern is to improve the recognition performance when the training data is insufficient
for obtaining reliable model parameters. Some auxiliary methods to be used in
conjunction with HMM evaluations are proposed to achieve this purpose. As auxiliary

methods; feature elimination, variance modification, incorporation of state duration



probability, state distribution pattern with hybrid HVMM-DTW (Dynamic Time Warping)

and weighting the state probability contribution by genetic algorithm are used.

In feature elimination, those features that are identified as unimportant in

discriminating different words are eliminated.

In variance modification, very small covariance values which are caused by
insufficient training data are enlarged to prevent its destructive effect on the recognition

performance.

In incorporating state duration probability, state duration associated with each

state is modelled as a probability density function.

In the next method, state distribution pattern is combined with Dynamic Time

Warping (DTW), another recognition procedure.

As the last method, probability contribution of each state is multiplied by a set of

optimal coefficients to give relative importance to some states.

Keywords:  Speaker dependent, isolated word recognition, HMM, subband cepstral,

insufficient training data, feature elimination, state distribution.
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EGITIM VERILERININ YETERSIZLIGI DURUMUNDA SAKILIMARKOV

MODELLEMEYE DAYANAN YARDIMCI TANIMA YONTEMLERI

Malcy, Gékgen
Yiiksek Lisans, Elektrik ve Elektronik Mithendisligi Bélimi
Tez Yoneticisi: Prof. Dr. Zafer Unver

Ocak 2000, 75 sayfa

Bu tezdeki ¢alisma, kigiye bagimli Sakli Matkov Model (SMM)’1 kullanan yalitilmis
kelime tanima iglevinin genel taslap icinde ele alinabilir. Kullandan SMM yapist soldan
saga devinimli ve bes durumludur. Sesteki herbir cetceve altband kepstral katsayilardan
olusan bir 6znitelik vektdriiyle eslenir. Ozel olarak ilgilenilen nokta ise, giivenilir model
degiskenlerini elde etmek igin kullanilan editim verisinin yetersiz olmasi durumunda
tanima basaristnin artirdmasidir. Bu amaca ulagma dogrultusunda, SMM bulgularina
eklenecek yardimct tanima metodlar: iizerinde durulmustur. Yardimct metodlar olarak;

oznitelik azaltimy, vatyans diizenlemesi, durum siiresinin olasilik olarak katksi, durum



dagillm Orintiisinin karma SMM-DZS (Dinamik Zaman Katlanmast) ile bitrlesimi ve

durum olasiliklarinin katkisinmn genetik algoritma ile agirliklandirilmas: kullanilmigtir.

Oznitelik azaltiminda, kelimelerinin ayriminda &énemsiz gorillen &znitelikler

kaldirilr,

Varyans diizenlenmesinde, yetersiz efitim datast sonucu olusan ¢ok kiigik

varyans degerlerinin sisteme olumsuz etkisini gidermek i¢in geneigletilirler.

Durum zaman olasiliginin katilmasinda, her bir duruma ait durum zamanlari bir

olaslilik dagilim foknsiyonu ile modellenir.

Bir sonraki metodda, durum dagilim Orgiisii bir bagka tanima y6atemi olan

Dinamik Zaman Sarimi (DZS) ile bitlestirilir.

En son ele alinan metodda, bazi durumlarti géreceli olarak 6nemlendirmek igin,
her bir durumun olasilifa katkisinin genetik algoritmayla bulunan bir takim katsayilarla

agicliklandirlmast kullandds.

Anahtar kelimeler: Kigiye bagiml, yaltilmis kelime tanima, SMM, altband

kepstral, yetersiz egitim datasi, 6znitelik azaltimi, durum dagilimu.
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CHAPTER 1

INTRODUCTION

Isolated word recognition is the task of correctly recognizing a word utterance

belonging to a specific library.

1.1 Automatic Speech Recognition Techniques

Isolated word recognition and continuous speech recognition are the two main
branches of automatic speech recognition. In isolated recognition, input to the system is a
single speech unit; generally an isolated word. The aim is to find the best matching word
in the vocabulary of the system to the input utterance. In continuous recognition, input is
a sequence of words and the system utilizes its own vocabulary to form a sequence of

words that best matches the input.

The subject of this thesis is isolated word recognition. Isolated word recognition
systems can be classified according to the speaker dependency and the vocabulary size. In
speaker dependent systems, the system has the best performance with the user who trains
the system whereas speaker independent systems are optimized to have the similiar
performance with different users. If the recognizer works on a few dozen of words, it is

regarded as a small vocabulary system. A large vocabulary system works on several



hundred or more speech units. In this thesis, the vocabulary consists of 60 words which

can regarded as medium size.

Many techniques have been proposed for the solution of the automatic speech

recognition problem. We can classify these techniques as [1]:

1. Model based or pattern recognition approaches,
2. Acoustic-phonetic approaches,
3. Knowledge based approaches.

In model based approaches, a2 model of some kind is used to represent each
word. Usually these models or pattern structures are obtained by modelling human
speech production. As in most pattern recognition systems, the method has two steps:
training and testing. In the training part, the system is trained through different tokens of
each word and a specific model or pattern structure is assigned to each word. In the
testing part of the technique, a test word to be recognized is converted into the specific
pattern structure and the best matching model is found. Model based approaches are the
most commonly used ones in recogniton due to the facts: they are simple to use, to
understand and more robust and less sensitive to different speech vocabularies, users,
feature sets and above all it has been proven to have high performance [2]. Dynamic
Time Warping (DTW) and Hidden Markov Model (HMM) are the well-known

approaches in this area and the latter is used in this study.

Acoustic-phonetic approach is based on the idea that there are finite, distinct
phonetic units in the spoken language and they can be characterized from the speech
signal properties [3]. Based on this idea, speech is first segmented into discrete regions

with specific phonetic properties and one or two phonetic labels are assigned to each



segment according to the signal properties of the segment. Later, a valid word where the
string of these labels might have been produced is searched from the vocabulary and the

best matching one is chosen as the recognized word.

Knowledge based approaches aim to imitate the high level reasoning process of
human brain. They are the combination of the acoustic-phonetic approaches and the
pattern comparison approaches. Every possible source of knowledge is brought together

and the decision is made based on the rules specific to each knowledge source [4]:

*  acoustic knowledge; obtained from spectral or signal properties of speech units,

*  lexical knowledge; understanding the pattern of acoustic features where the word

might have come from,

* syntactic knowledge; analyzing the grammatical correctness of the word

combinations,
*  semantic knowledge; analyzing the sense produced by the word combinations.

* pragmatic knowledge; understanding the meaning of the sentence in an exact way.
With the cues obtained from the input, the decision is made based on the rules of
each knowledge source. However, this approach has gained limited success due to the
complexity of the system and the difficulty in modelling the human knowledge

processing in the form of rules.

1.2 A Simplified Overview of the System and the Qutline of the
Thesis

In this thesis, HMM pattern recognition technique has been implemented. The

overall process can be outlined as:

TC, Wm@@wﬁm KOROLE
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*  Preprocessing and feature extraction,
*  Training and modelling each word,

*  Testing and recognizing the word.

A simplified block diagram is shown in Figure 1.1.

Reference patterns obtained

from training

Pattern
Speech ' Paitern Extraction | _L oSt Fatern Comparison

!

Decision Rule

l

Recognized
Word

Figure 1.1 General diagram of the model based recognition system.

Speech data is assumed to be statistically stationary for 10-20 msec. Segments of
this length are called frames. Speech can be thought of as the concatenation of these
frames. In preprocessing, frames are spectrally shaped and then the spectral information
of each frame is stored in a feature vector. Therefore, a speech pattern is obtained as a

string of these feature vectors. The preprocessing stage and how these feature vectors are

obtained will be discussed in detail in Chapter 2.



During training, model parameters of each word are obtained to ensure that the
model is capable of representing the word for different utterances. This is achieved by
utilizing a number of different utterances. In this way the variations pertaining to the
different styles of saying the same word are taken into consideration. The way of

obtaining the model parameters is discussed in detail in Chapter 3.

In the testing part, the word utterance to be recognized is preprocessed and a
pattern (sequence of feature vectors) representing it is obtained. Later, this pattern is
compared to those of the words in the vocabulary via HMM formalism and the most

likely model comes out as the recognized word.

For the system implemented in this thesis, the training number is kept small to
avoid annoying, long training sessions. However, this brings out the problem that model
parameters obtained for each word are unreliable. This unreliability associated with model
parameters affects the recognition performance of the system in a negative manner.
Therefore, some auxiliary recognition methods must be used to increase the performance

of the system. These methods and their results are explained in detail in Chapter 4.

Chapter 5 will give the conclusions, suggestions about the isolated word

recognition.



CHAPTER 2

PREPROCESSING

Preprocessing and pattern extraction is the first stage in isolated word recognition
(ISR) system. In this stage, speech signal, which is described by a large number of
parameters, namely by its samples, is converted into a sequence of feature vectors with
less number of parameters. This kind of representation is useful in the sense that it
increases robustress against noise, variations in speech equipments and variations in

speaker [5].

Preprocessing mainly consist of four operations, namely endpoint detection,

spectral shaping, spectral analysis and parametric transform. A typical preprocessing

system is shown in Figure 2.1.
Speech
End point Spectral Spectral Parametric
detection shaping Analysis Transform
Feature
vectors

Figure 2.1 A typical preprocessing system.



2.1 Speech Production and Representation

Speech sounds are created by vibrations in huran vocal tract. Figure 2.2 shows a
typical speech waveform. Horizontal line in the center of the figure shows the resting
atmospheric pressure. In the waveform, any reading below the line means that the

pressure is lower than the resting atmospheric pressure at that time [6].

i r].ﬂ).n.'lmmmn“llh

l",HWHHHHHH“-

Figure 2.2 A typical speech waveform.

When someone speaks to microphone, these changes in pressure are converted
to proportional variations in electric voltage. Then computers convert these analog
variations to digital sound waveforms. Two operations are done through this process:
sampling and quantization. In this thesis, 8 kHz sampling rate is used and quantization
uses 16 bits giving 65536 quantization levels, which is commonly used in speech

applications.

Speech sounds can be classified in different ways. One of them is through the
state of the vocal cords. So, there are three states: silence meaning there is no speech; wiad,



where vocal cords are vibrating and the speech produced is quasi periodic in nature;
wmrewoiced where vocal cords are not vibrating and the speech produced is random in nature.
This classification leads to a simplified mathematical model of the human speech
production system, which consists of a time varying filter excited by a source, switching

between quasi-periodic and noisy states as shown in Figure 2.3.

Impulse
Train voiced
L Filter —— Speech
Random ’
Number unveoiced
Generator

Figure 2.3 The model of human speech production system.

For voiced sounds, the source is 2 periodic impulse train with periods called the
pitch period. For unvoiced sounds, the source is a random noise. One simple version of

this model assumes that the filter is a linear, all pole, finite order system which gives rise

to many preprocessing techniques [7].



Most of the time, we cannot segment the speech into silence, voiced and
unvoiced regions clearly. Another way of representing the information associated with
sounds is the speech spectrogram where the speech intensity in frequency bands over
time is represented. Spectral analysis is performed on 10-15 msec sections of the speech
waveform with advancing in 10 msec. This is in fact the two dimensional representation
of the time-series display of the waveform where the gray level values represent the

spectral intensity.

In Figure 2.4, a time-series display of the frequency domain function, ie.,
absolute values of FFT’s of the windowed frames are given. The associated spectrogram

shown in Figure 2.5

Figure 2.4 Time series display of magnitude spectrum.

In Figure 2.4, the x-axis shows frequency in logarithmic scale, the y-axis is the
time running and the z-axis shows the magnitude of the Fourier transform of the
window. The spectrogram is the projection of this figure into two dimensions with gray

levels showing the magnitude.




Figure 2.5 A typical spectrogram.

2.2 Endpoint Detection

The first step in preprocessing stage is the detection of the speech waveform
from the background silence and locating the beginning and endpoints of the waveform.
Fortunately, the recordings of the words are made in the laboratory environment where
the background noise was an easy one to overcome. The problem of locating the
beginning and end of a speech utterance in an acoustic background of silence is
important in many areas of speech processing. In particular, the problem of word
recognition is inherently based on the assumption that one can correctly locate the region
of the speech utterance [8]. For the endpoint detection problem, four algorithms are used

and the best working one is taken as the endpoint detector.

2.2.1 Energy and Zero Crossing Rate Algorithm

Zero crossing rate (ZCR) and energy of the speech signal are two most widely
used measures for locating the endpoints of the utterance. The enetgy is the basic
measure used to distinguish between speech or background silence. The ZCR provides a

rough spectral measure and very roughly shows the major energy concentration regions

10



in frequency and helps in discriminating voiced speech from unvoiced fricatives, stop

bursts and silence [12].

The endpoint algorithm should be simple, efficient to process, reliable to locate

significant acoustic events, and capable of being applied to varying background noises.

There are several problems associated with the endpoint detection task. These
include: weak fricatives (/1, th, h/) at the beginning or end of the utterance, weak plosive
bursts (/p, t, k/), final nasals, voiced fricatives at the end of the words which become
devoiced, trailing off of certain voiced sounds [9]. The algorithm proposed below is
simple and capable of catching most acoustical activities. The main outline of the

algorithm is described below.

*  First, the speech waveform is filtered with a highpass filter of cutoff frequency near

100 Hz to suppress 60 Hz hum.

* Second, the speech is divided into 10 msec duration of statistically stationary
segments called frames. The frames are not obtained by simply dividing the speech
into sharp distinct regions of 10 msec. As can be observed in Figure 2.6, for each

frame, an overlapping smoothing window is used to corporate temporal correlation.
In this thesis, the frame length T, is selected as 10 msec and the window length T,

is 15 msec.

* Third, two parameters are computed for each windowed frame: the energy and the
zero crossing rate of the frame. Let x,].] be the windowed signal belonging to the

framei. Then, the speech energy belonging to frame1 is defined as:

1
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Zero crossing rate is defined as the number of zero level crossings per frame.

Speech signal

Figure 2.6 A frame and its associated window.

* Fourth; three threshold values, namely erergy lower threshold (TL), energy upper threshold
(TU) and zerocrossing threshold (ZCT) are found. A typical energy and zero crossing

curves can be observed in Figure 2.7. To find the first two threshold values, the

energy level function E(f), is computed and then the minimum and the maximum of

the energy function are found. TL and TU are computed according to the following
rule [10]:

11=0.03* frax-min)+min
D=#mmn

TL=min (I1,12)
TU=5*TL

The ZCT is computed by finding the zero crossing rate of silence, ie. the

background noise: First 10 frames of the speech are assumed to be silence and the

12



average zero crossing rate izc and the standard deviation ozc are computed. Then below

formula is used to compute ZCT:

ZCT = min (25, piic +20%c)

where 25 is a constant assumed to be the highest ZCT value for indication of speech.

Figure 2.7 A typical energy and zero crossing level curves.

Zero crossing rate function, ZC(z) , shows the zero crossing rate of fuame.

* In the last step, the algorithm locates endpoints considering first, the energy function
and then modifying them by zero crossing rate function. The algorithm first searches
the point where the energy exceeds ITL and then exceeds ITU without falling below
ITL. This point is N7 as shown in Figure 2.7. In the same manner, the speech
utterance is searched from backwards to locate the endpoint initial guess namely, N2.
Then the interval from NI to N1-25 is searched; if the zero crossing threshold is
exceeded by at least three consecutive points following N7, the beginning point is

updated as this point. Such an update is done in Figure 2.7, and beginning point is

13



shifted to N'1. If this is not the case, then the beginning point is set as N'1. The same
idea applies to the determination of the endpoint. This algorithm is simple and uses

the energy and zero crossing rate measures for decision.
2.2.2 Energy Pulse Detection Method

Energy Pulse Detection algorithm is based on log energy measure assuming that
the speech mainly lies on the high-energy region. The energy function has the property
that during silence it fluctuates around 0-dB level, and during speech it is considerably
larger [11]. Therefore, the energy alone can be used for the endpoint detection. Differing

from the previous algorithm, the definition of energy is given as in Equation 2.2. Let
x,].] denote the speech signal of frame:. The energy of franei is defined as:

R0

E, =10log,, Y (x2[])-0 2.2)

where Q is the term for the background noise characteristics. Q is found through the

procedure given below:

First, the minimum energy frame is found as:

E,;, = min{E,} (2.3)
Then, a histogram is made using the energy values which are less then E_, +10dB.
Three consecutive values of the histogram are averaged and Q is chosen as the energy
level that corresponds to the peak of the histogram. After obtaining the modified energy

function for each frame, the previous method of locating the beginning and endpoint of

the utterance is used.
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2.2.3 Teager’s Energy Based Methods

The classical measures for energy definitions are either the summation of squared

samples or summation of absolute valued samples which can be expressed as:

E, = v—%,- Ix,[n] 2.4)

Lot
E; = [W;xi [n]] 2.5

th

wherex; [] is the n* sample of the i* frame.

In modelling speech production, Teager developed a new algorithm for
computing the energy of the signal; this algorithm is presented as Tesger’s Energy Algorithm

which is described as [13]:

2 x[n]-x,[n +1]x,[n - 1]. (2.6)

For a single tone, if x[n]= Acos(Qn + ®)where A is amplitude, €2 is the
frequency of the oscillation, and @ is the initial phase, this energy measure is capable of

responding rapidly to changes both in A and £2as can be seen in the formula below [14].
E = x*[n]- xjn + 1x[n - 1] = A%sin?(Q) =~ A2Q2.

Note that the classical energy is proportional to A2 only.

In our endpoint calculations, two forms of Teager’s energy are used for each
frame: one of them is obtained as above on sample based information called the sample
based Teager energy as described by Equation 2.6, the other one is obtained through the

insight gained by Teager energy. In the second method, first the power spectrum is

15



calculated, then it is weighted by the square of the frequency, and finally the square root
of the sum of the weighted spectrum is found as Teager energy. The formulation is given

below.

Let x,[.] denote the i*frame, and X,(k) denote the N point DFT of x,[n] at

frequencies %”VE . Then energy of the frame is defined as:

E, - \/%glx,-(k)lzkz e

This average energy is used to represent the energy of one frame called the frame
based Teager energy. After representing each frame with either sample based or frame based
Teager energy measure, the algorithm finds the upper and lower energy thresholds and
detects the beginning and end of the utterance as described in the first method.

2.2.4 Discussion on Endpoint Algorithms

To test the performance of the endpoint algorithms, each one is used as an
endpointer in HMM based word recognition system. HMMs will be explained later. The

recognition results for one of the test datasets worked on are given in Table 2.1.

Based on the overall performance of the system, the frame based teager energy method
based endpoint detector is used in implementing the isolated word recognition system. In

the remaining part of this chapter, feature extraction techniques will be discussed.
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Table 2-1 Performance of endpoint detection methods.

ENDPOINT DETECTION RECOGNITION
ALGORITHM PERCENTAGE
Energy and zero crossing rate method %96.67

Energy Pulse Detection method %96.67

Sample Based Teager Energy Method %94.33

Frame Based Teager Energy Method %98.8

2.3 Spectral Shaping

Before making any calculations on speech data, it is filtered through a

preemphasis filter with transfer function given below.

H(z)=1-az™ 2.8)
where 4 is a number close to 1. In this thesis,  is taken as 0.9375. The Preemphasis

filtering has two purposes.

First, it is used to suppress the effects due to the non-uniform frequency
responses of the equipments used in A/D conversion and even in signal acquisition
channels. Usually those frequency characteristics are approximated by lowpass filters, so

to compensate their effect, a high pass nature preemphasis filter is used.

Second, preemphasis filtering flattens the signal spectrally and makes it less

susceptible to finite precision effects later in signal processing [15].
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2.4 Spectral Analysis of Speech Data

2.4.1 Windowing

The first step in spectral analysis procedure is to divide the speech into sequence
of frames. As explained previously, the frame concept arises from the fact that the speech
varies slowly in time. Therefore, the speech signal is assumed statistically stationary for
10-15 msecs duration segments. The windowing procedure with overlapping is used to
corporate the temporal correlation between the frames. Usually, Hamming window is
used for this purpose. The shape of the window and its duration affect the feature vector
components. In this thesis, Hamming window of 1.5 times the frame length is used. The
frame length is chosen as 10 msec which corresponds to 80 samples in 8kHz sampling

rate, so the window length is 120 samples.
2.4.2 Feature Extraction Methods

For speech signals, there are a few different ways of extracting and representing
information of a frame. These can be classified in three main groups: digital filter banks,
Fourier Transform based methods, and Linear Prediction based methods [16]. Figure 2.8
is a schematic representation of the available techniques. In this thesis, the digital filter
bank method with a tree structure implementation is used. All the methods are shortly

explained below with an emphasis on the method used.

2.4.2.1  Digital Filter Banks

Digital filter banks are used to resemble human ear reception system. In Figure
2.9, we can see the simplified human auditory system. In the process of hearing a sound,

the speech wave vibrates the tympanic membrane, and this vibration is transmitted by
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mechanical means to the cochlea [17]. The cochlea is filled with a liquid and contains the
basilar membrane. The vibrations at the entrance of cochlea create standing waves in the
liquid. These waves cause the basilar membrane to vibrate. It is believed that the basilar
membrane has different resonance characteristics at different distances along it. As a
result of this, at a given place on the basilar membrane vibrations of only a particular
range of frequency are absorbed. This phenomenon resembles the action of filter banks.
The physiological studies have shown that the human perception of frequency content of
sounds does not follow a linear scale. This led to the definition of pergptinally meaningful
frequency. There are two popular scales called 72 and bark which are defined as [18]:

mel = 25951og(1+ f/700)
bark =13arctan(0.76 f /1000)+ 3.5arctan(f 2 /75007 )

Another observation in physiological experiments is that, frequencies of a
complex sound within a certain bandwidth cannot be individually identified. But if one of
the components of this sound falls outside of this bandwidth, then it can be individually
identified. This bandwidth is known as the aicd bandwidth [19]. The critical bandwidths

expressed in mel scale are nearly constant.

The above discussion about human aunditory system leads to the conclusion that
in designing the recognition system, we either change frequency into perceptually
meaningful ones through the mel (or bark) scales or take the critical bandwidth concept
into consideration and treat frequencies in the critical bandwidth in the same manner. In
this thesis, the critical bandwidth concept is taken into account and a tree structure filter

bank is designed as will be explained below.
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Figure 2.8 A general overview of feature extraction methods.
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Figure 2.9 Simplified human auditory system.
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a) Filter Bank Derived Cepstrum Coefficients

To simulate the human auditory system, the filter bank tree structure is used as

shown in Figure 2.13. The main building blocks of the filter bank tree are a lowpass and a

complementary highpass filter followed by a downsampler by 2 as shown in Figure 2.10.

Loawpass
Filter

Highpass
Filter

Af2

A/2

Figure 2.10 =~ Main building block of filter bank tree structure.

There can be many choices for the lowpass filter. One of the possible choices for

the lowpass filter is the 7 order Lagrange filter with the transfer function given below

[20]:

H,(z)= Y DA S R P Bt Y
32 32 2 32 32

The corresponding high pass filter is:

1 9 1 9 4, 1
HH(Z)=1—HL(Z)=3_223"3321*'5—73321+§£Z

2.9)

-3 2.10)
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The magnitude spectra of these filters in dB scale are shown in Figure 2.11. One
important thing about the design of the filter bank tree is that; the process of highpass
filtering and downsampling by 2 inverts the frequency spectrum. So while further
decomposing the highpass subband signals, the lowpass and high pass filters must be

switched in order to get the desired frequency decomposition structure.

Lowpass filter characteristics

T T

o

Magnitude in dB

N A A \
S o o O
© 6 o o

1

4000 3000 2000 -1000 G 1000 2000 3000 4000
Frequency in Hertz
Highpass iter tharadtoristics

(=]

Magnitude in dB

II\) L - ]
o [4)] o [4)]
o o o (=]
g
1

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000
Frequency in Hertz

Figure 2.11  Lowpass and highpass filter characteristics.

As a practical rule, if the number of high pass filters used in a branch is even,
then the lowpass and highpass filters are used without switching, However, if the number
of highpass filters used in a branch is odd, then the lowpass and highpass filters must be

switched to get the desired frequency decomposition.

The overall tree structure implemented is given in Figure 2.13. In this figure, the

output of each filter branch, which is a kind of energy measure, is indicated as s:.
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This three structure partitions the frequency scale as shown in Figure 2.12, which

is similar to the human ear reception structure.

SlucumemaS8  S9510 511 §12 513 814 S15516 S17  S18 S19 520 §21

Q 0.3 1 15 2 25
FREQUENCY IN kHZ

Figure 212 The frequency partitioning of the filter bank tree.

Each frame is represented by a vector whose components are calculated as below:

PO R
S, = Wﬂ;h []. @.11)

In this expression W;is the length of the i filter branch output sample sequence, si[.].

Note that §; can be considered as the power of the signal in the i branch. Applying

cosine transformation gives

o) - zil 21 log(gi )COS( 27(n + ;)1(1 - 0.5)) 2.12)

As a result of this discussion, to represent each frame 12 dimensional feature

vectors are used where each dimension component is found through Equation 2.13.

m L& (an) (27(n+1)fi-0.5)
F! lelog(si )cos( o1 ) 2.13)

23



L2
x-m,z—l
Ss

b2 12
speech —Hiz 2

framne

Figure 213 The filter bank tree implemented.

In Equation 2.13, m represents the frame number and 7 shows the index of the
corresponding element of the feature vector, 1= <12, and §/is the power value of

i" filter branch output of the m™ frame.
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b) Filter Bank Amplitudes

This formulation is quite similar to the Filter Bank Derived Cepstral Coefficients
method and is different only at the last step. Each element of the feature vector is

computed as below.

Let 5,(n) denote the n" sample of i* filter output of the m” speech frame,

where 0 <n < N. By calculating the power of the signal at the output of each filter

through the Equation 2.14, another representation is obtained

§ = Esf(n) (2.14)

Again we form feature vectors but this time using a different style.

2.4.2.2  Fourier Transform Techniques

Fourier transform based techniques uses the Fourier Transform of the signal as a
first step. After performing the Fourier analysis, there is a variety of ways of representing
the information. Generally the acoustic frequency scale (mel or bark) is used in these
operations. We will concentrate on the two most important techniques, namely the
Fourier transform based filter bank amplitudes and the Fourier transform based cepstral

coefficients.
a) Fourier Transform Based Filter Bank Amplitudes

The first step of the technique is to compute the DFT of the signal using,
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S(k) = §§(n)exp(— 3’;’{—’“’—) (2.15)

In this expression, K shows the total number of points over which DFT is taken. The

resulting spectrum $ (k) is filtered using the critical band filter bank. This operation is

carried out in the frequency domain and given by,

$,(0) = B, (K)S() .16

where H,(k) is the corresponding weight factor at frequencies % of the i* critical

band filter. ( It is also possible to use | . | instead of ()2 operation. ) Finally a single

parameter is obtained by averaging the outputs of filter bank tree.

n 1 K-1
Si=% S, (k) 2.17)

This averaging procedure enhances the robustness against spurious fluctuations of the

spectra, in addition to reducing the number of parameters.

b) Fourier Transform Derived Cepstral Coefficients

Let S, represent the energy measure value obtained for the i filter for the m"

frame and P show the number of filters. Equation 2.18 is used to obtain the Fourier

Transform Cepstral Coefficient based feature vectors:

c(n =— 3 Iog ( 2”(1 ;0 S)n) 2.18)

Usually, 7 is taken in the range 0 = n < P -1.
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2.4.2.3 Linear Prediction Coefficients

Derivation of Linear Prediction (LP) coefficients, or LPC analysis is based on the
simplified human speech production model, where the speech is assumed to be the

output of an all pole filter excited by white noise or periodic pulses. Thereafter, the power

spectral density of speech, I, (f) is obtained as:

L, (f)=H(FY o (2.19)

where o2, is the excitation noise variance and

H\(z)= = 2.20
) A(z) Ay +a.2" +...+a,z .20

is the transfer function of the all pole filter of vocal tract. It can be proved that the linear

prediction operation defined by,

§(n)= zﬁis(n i) @.21)

does exactly the opposite procedure and the prediction error can be written as:

o =T, (FYA(F) (2.22)

~L

where H(z)=d, + 8,z +....+d,z" and & is the variance of the prediction error.

The parameters that minimize the prediction error are a, =d;, 0 si < L, which yield

o2 =o' . This relationship makes it possible to evaluate parameters, @, and o, of the

speech production mode] through Linear Prediction. The LP model parameters are
directly related to the covariance of the speech signal by the so-called Yude-Walker

equations. These equations can be solved efficiently by Levinson-Dwrbmn algorithm [21].
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a) LPC Derived Filter Bank Amplitudes

This method is quite similar to the Fourier transform derived filter bank

amplitudes method. In Equation 2.16, |S(f Xz is replaced by the estimate of T (f),

which is more robust than the Fourier transform based estimate. Then we follow the
same procedure outlined in part 4 of 2.4.2.2. Since the method is computationally heavy,

alternative algorithms are proposed.
b) LPC Derived Cepstral Coefficients

As the name implies, the LPC derived cepstral coefficients are obtained by

calculating the cepstrum representation of the sequence of LPC coefficients. More

precisely, cepstrum coefficients c(r) are given by:
n-1 Q
c(n)=-a, - 2 (1— i)c(n ~jla, 2snsN, (23
= n

c(t) = -a, and c(0) is removed from the recursion due to its less reliability. N, shows

the number of cepstral coefficients to be taken.

The relationship is derived on the linear frequency scale. We can either use this
relationship or incorporate a nonlinear frequency scale and redefine the recursion

relationship.

2.5 Parameter Transforms

In this stage, a final modification is done on the feature vectors obtained through
the methods described previously. Generally M dimensional feature vectors are used to

represent each frame information. (/=12 in this thesis.) The intention of parameter
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transform is to further increase the desirable properties of the parameters such as

robustness and characterization of temporal behaviour [22]. Some operations involved in

parameter transformation are differentiation, weighting and averaging,

A parameter obtained by differentiating a measurement is called a deta parameter.
Even though a delta parameter represents the temporal behaviour in a better way, it can

be very sensitive to noise, because differentiation tends to amplify noise.

Another parameter transform averaging can reduce the noise, but it can smooth
out the useful temporal information. Weighting can be thought as a generalized process

of both averaging and differentiation.

In this thesis, differantiation is used as a parametric transform. The intention of
differentiation is to add first or higher order derivatives to the feature vector, so that the
dynamical behaviour is represented better. There are many ways of calculating the
approximate derivatives numerically. The procedures vary from very simple schemes such
as taking the differences to fairly sophisticated ones. In this thesis, differentiation is

implemented by the formula below:

d L &
5 /i=6* Y (2.24)

k==K
where f, denotes the 12 dimensional feature vector representing i" frame. In this

thesis, K is taken as 2; and G as 0.335 giving rise to:

d
= fi=2G.f,,,+G.f,-G.fi..-2G.f_, . (2.25)
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This derivative vector is appended to the 12 dimensional initial feature vector and a final

(i
24 dimensional feature vector is obtained in compact formas: f, =| d £l
dt '
As a result, speech is transformed into a pattern of 24 dimensional feature vector

sequence.

2.6 Conclusion

In this chapter, preprocessing techniques for isolated word recognition system
are discussed. Preprocessing answers the question of how a pattern is assigned to each
word to be recognized. Due to the human speech production system, speech can be
assumed statistically stationary for 10-15 msec duration segments called frames, so a
reasonable method of obtaining a pattern for speech is dividing the waveform into
frames and representing each frame by its properties. Mostly these properties are related

to the spectral characteristics of the frame.

There are some steps that must be taken to achieve this goal, namely, endpoint
detection, spectral shaping, signal analysis techniques for each frame and parameter

transformation. These topics are covered in detail in this chapter.



CHAPTER 3

PATTERN MODELLING

In this chapter, building models for the words to be recognized will be discussed.
This procedure is also known as traming. The problem associated with word recognition
comes from the fact that different acoustic renditions of the speech are seldom realized at
the same speaking rate [23]. So, the model should hold the property that it can represent
different tokens of the same word regardless of the speaker rate and duration variations.
Obviously, there is a strict need to overcome this problem before a decision is made.

Two methods have been commonly used to overcome this problem: dynamic time

warping (DTW) and Hidden Markov Model (HMM).

3.1 Dynamic Time Warping (DTW)

The name dynamic time warping comes from the fact that the technique warps
two speech patterns through the dynamic programming technique. The speech pattern is
a sequence of feature vectors and the way of obtaining it is obtained is discussed in detail
in Chapter 2. To obtain the model for word,, the i* word of vocabulary, the
recognizing system should be tramad through different tokens of the same word so that it
learns the properties specific to the word; irrespective of the duration and speaking rate

variations.
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The system is trained for theword; through N different tokens of the same
word. N is either taken as 5 or 3 in this thesis. DTW in a way finds an average optimal
sequence (model) to represent theword; which is smallest in distance to other utterances of

the same word.
3.1.1 DTW Structure in Detail

Consider two speech patterns X and Y associated with the different tokens of the

same word. Let (x1x2x3 ...... xTx) and (y1 7% 2y yn,) represent feature sequences of X
and Y. The notation, i, =1..T,, and i,=1... T, is used to represent time indices or

frame numbers of X and Y patterns, respectively. Usually T, = T, , - The dissimilarity of X
and Y is based on spectral distortion measures between the frames. The distance between
the i," frame of X and the i " frame of Y is denoted as d (ix,iy). There can be many

choices for the dissimilarity function and in [24] there is a long discussion about this

issue. The Euclidean measure is used in this thesis.

The DTW procedure involves a time warping function ¢ which relates indices of

two speech patterns, i, and i , as:

i, =9,(,) =1, T 3.1)

A time warping example is given in Figure 3.1.
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Figure 3.1 An example of 2 time warping function.

Note that i, is a monotonically increasing function starting at 1 and ending at T, .

This function can be considered as a path in two dimensional space as shown in Figure

3.2. Note that even for a small size problem quite a large number of paths are possible.

Figure 3.2 Time warping paths.

Thus the aim of DTW is to find an optimal time warping function or an optimal
path such that the dissimilarity of X and Y patterns which is defined in Equation 3.2 is
minumum:

Ty

Zd(¢,(k),¢,(k))m(k)

d,(x,Y)=E m
¢

(3.2)
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where m(k) is a nonnegative weighting coefficient, and M 4 1 a path normalizing

constant defined as the sum of m(k) over all k:

M, = Zm(k) (33)

3.1.2 DTW Algorithm

DTW algorithm is based on the dynamic programming concept for solving

sequential decision problems stated by Bellman [25] as:

The optzmdl path bas the property thai, whatever the initial state and decision are, the
remaining decisions starting from time k must constitute an optimal path with regard to the state at time
k.

To illustrate this idea, consider Figure 3.2. The aim is to find the best path that

minimizes the distance between a given sequence of T, number of test feature vectors
and T, number of reference feature vectors. Assume that, there is a nonnegative cost
B, j)associated with every point (i, j) that represents the difference between i*
reference vector and j” test vector. The problem is to find the total minimum distance
and the corresponding sequence of moves going from point (L1) to (T T, y). Let
@, (1, j)denote the minimum cost of going from point (1,1) to(i, j) in k steps. Then the

minimum cost @, (i +1,1) we are looking for is achieved through the point (i +1,)

with the following property:

(i +1,1) = minp, G, j)+ B +10)] (3.4
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Generalizing this idea for obtaining the minimum cost and sequence of moves from

(1,1) 10 (G, j), we have:

o(i, j)= minlp(i, k) + (&, j)] (3.5)
where @(i, j) is the minimum cost of reaching to (i, j) from (1,1) and y(k, j)is the
minimum cost going from (k, j)to (i, j). Equation 3.5 implies that any partial, cmsecutive
sequence of moves of the optimal sequence fram (L1) to(i, j) must also be optimal, and that any
mtermediate point must be the optimal point linking the optimal partial sequences before and after that
point [28]. This is the key idea of the DTW algorithm and the Viterbi Algorithm of the

HMM structure that will be described in Section 3.2.2.

The DTW problem may have some constraints on the paths. Figure 3.3 shows

some of them. All figures in Figure 3.3 indicate possible one step transitions. For example

in Figure 33.a, the feasible points that may come after the point (i, j)are

(+1,7).G, j+1) and ( +1, j +1). The other figures can be interpreted similarly. There
may be a lot of different type local constraints, and in Figure 3.3 only a few of them are

given.

?I. LR * *

%

* s 0 e ] + ¥ *
b 4 d

a

Figure 3.3 Possible one step transitions.
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Usually two more constraints are defined for local moves with paremeters Q__

and Q. showing the maximum and minimum expansions in time warping which are

defined as:

_ maximum Ay the constraint allows

3.6
Qo Ax for that Ay 6
0. = minimum Ay that the constraint allows 6.7)
in Ax for that Ay '

For example, Q, .. =2 and Q. =0.5 for Figure 3.3.b. These parameters put also a

global constraint on the time durations of the X and Y patterns as:

QmiuTx = Ty = QmaxTx (38)
So, the DTW algorithm works only for T, and T, values which satisfys the above
constraint. These parameters also specify the feasiable region where DTW is applicable.

In Figure 3.4 the feasible region for Q_,, =2 and Q_; = 0.5 is shown.

Another concept associated with the local constraint graph is path weighting.

Each possible path has a weight m(k) which is considered in dissimilarity measure

defined in Equation 3.2.

Figure 3.4 The feasible region.
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After choosing the local constraint graph, the distance measure between two

frames and a weighting schema, the DTW algorithm is applied as follows:
*  Step 1: Compute d(L1).
* Step 2: Increment x coordinate i, and forall i, = 1..T, do the following:

Check if (i i ) is in the feasible region; if it is in the feasible region, calculate the

X"y

mininum distance to reach (ix,iy). Store the distance value and the path direction that

has led to this decision in an array. If it is not in the feasible region, increment i, .

* Step 3: Increment i, by one and go to Step 2 if i, < T, Note that for calculating the

minimum distance, the previously stored mininum values are used.

The distance at (i [ )= (T "o T, y) divided by M gives the distortion between the two

x2%y
patterns X and Y. Note that, the optimal previous point is also indicated for each

intermediate point. Going backwards in these stored optimal points, the optimal path can

be obtained and M, is the summation of all incremental costs along the optimal path.

3.1.3 Building the Model

In the previous discussion, the DTW procedure to find the optimal path that

gives the minimum distance between X and Y patterns is explained. Here we will explain

how to build the reference model. Let X, ... Xy be the speech patterns associated with

N training utterances (or tokens) of the same word, say the i™ word of the vocabulary.

First, the optimal path between X, andX,, ie. the time warping function, is found.
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Then a new pattern X' with duration T, is formed by avareging the feature vectors
taking the optimal time warping function into account. Second, X' and X, is time
warped and a new optimal pattern sequence is found. This procedure goes on until all

training tokens are time warped. Finally, a last pattern obtained is used as a model pattern

to represent the word 7.

3.2 HMM Modelling

HMM uses the assumption that there are finite, distinctive phonetic units in the

spoken language called phonemes, and they can be characterized by their spectrum.

This idea helps to model the word independent of speaker rate and duration
variations. Consider the Turkish word “ bir “ /b-iy-r/ in terms of its phonemes. One can
associate each phoneme with a state with possibilities of going to another state or staying
at the same state as shown in Figure 3.5. So, long duration “bir”s can be handled with
long waitings at the states and the short ones with rapid state transitions. This idea led to
the design of HMM with the underlying assumption that the speech signal can be well
characterized as a parametric random process, and the parameters of the stochastic

process can be determined in a precise, well defined manner [26].

Figure 3.5 State representation of /b-iy-r/.
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3.2.1 HMM Parameters

A Markov Model is a finite state machine which goes from state 7 to state j at
every time unit with some probability, a,. In Figure 3.6, an example of a four state
Markov Model with transition probabilities is given. Transition probabilities associated
with Figure 3.6 is also expressed below in matrix form. Each entry of the matrix, p;,
gives the transition probability of going from state  to state .

05 04 0 0.1
0 08 02 O

0 03 03 04
06 0 01 03

Figure 3.7 shows two different Markov Model structures. In Figure 3.7.a, any
transition is possible for each state, while in Figure 3.7.b, the next state’s index can not be
less than the present state’s index. The Markov Model given in Figure 3.7.a is called

ergodic, while 3.7.b is left to right.

0.3 0.3

Figure 3.6 An example ot a tour state Markov Model.
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Figure 3.7 Two Markov Model examples.

A Hidden Markov Model is a stochastic process characterized by the following
parameters:
*  Number of states, N.
*  Transition probabilities.
*  Initial state distribution.
*  State dependent observation probability density function.

For the following discussions, let g, be a random variable that represents the

state at time ¢ and o, be the random variable that represents the speech vector produced
at time ¢. The initial state distrubution gives informatdon about the initial state and is
expressed as 7 = {z,} where 7, = Pr{g, =i}, and i is the state number. 1si<N.

Starting from a state i at #=1, the next state to be visited is governed by the transition
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probabilities a, or, in general, if 7 is the state at time ¢ and j is the state at time z+1,

a; = Pr{g,., = j|q, =i}. All transition probabilities can be expressed as a matrix

A= laijj.

At each state visited, HMM produces an output vector denoted by o, in a
probabilistic manner. The likelihood that o, is generated at state ; is given by b, (0,)

where b, () is the probability density function associated with state ;.

To model signals whose properties change over time in a successive manner like
speech, left to right Markov Model is the most appopriate one to use. It is assumed that
the sequence of observed feature vectors (speech pattern) corresponding to each word is

generated by a Markov Model. In Figure 3.8., an example of an otput sequence generated

by Markov Model is given. In this figure, o, is the feature vector generated at time z.

O =(0,...0,) is the output sequence, Q = (11233344) is the state sequence. Note that

for this example,

P (0’ Q|M)= b, (01 Jayb, (02 )alzbz (03 )azsbs (04 )assbs (05 Jasb, (06 )d34b4 (07 )a34b4 (08 )

where M is the model consisting of (7, 4,b).

In practice only the observation sequence is known and the state sequence is
unknown or hidden. This is why it is called the Hidden Markov Mode, so the problem is to

find the best matching state sequence and the maximum likelihood value.
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Figure 3.8 An example of an output sequence generated by the Markov Model.

As stated perviously, HMM is characterized by

¢ Number of states, N,

*  Transition probabilides, A = lal.]. J oy -

*  Observation vector probability distribution, 4,() ~ j=1,...N.

In this thesis, a left-to-right HMM model shown in Figure 3.8 is used. Number of states
is taken as 5. The probability of staying at the same state is taken as 0.8 so the probability

of transition to the next state becomes 0.2, i.e. 2., =0.8,4.,,,, = 0.2.
it 1(41)
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A single Gaussian is used as the observation probabilty density function for each
state. So, the likelihhod of observing the output feature vector at time ¢ in statej is given

by Equation 3.9.

b,(0,) = ——— eXP(—(Ol—”j)zz}l(o'_ﬂ’)T 69)

where 4, and X ; are the mean vector and the covariance matrix of state j, respectively;

iZ }.! and Z}I are the determinant and the inverse of matrix = It

3.2.2 Viterbi Algorithm

Viterbi Algorithm, the name of dynamic programming in speech literature, will
be used both to train the word models, i.e. to find the mean vector and covariance matrix

parameters of each state and also during testing to find the optimal state sequence.

* Training
Let X! ... X! be the speech patterns (observation vector sequences) associated
1 X P q

with K training utterances (or tokens) of the same word, the i word of the vocabulary.

First, each sequence is equally divided into N parts and the initial mean and

covariance estimates for each state are calculated as:

mekn=NT magn=NT
S (S er-mer-uy
y; =l — 2, = digg| 22— (3.10)
mley' ’ZN}” -1
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where ,uj. and Zijare the mean vector and the covariance matrix of the j* state of the

i" word, respectively; diag(X) represents a diagonal matrix with diagonal elements equal

to the entries of the matrix X; o] is the n* vector of the m” pattern; N7 is the
number of frames of the m™ pattern belonging to the state ;.

Next with these initial estimates the optimal state sequence distribution is found
for each utterance by the Viterbi Algorithm. Then, with these new state distrubitions, £,

and X are updated through Equation 3.10. This operation is carried out until state

distrubitions found by Viterbi Algorithm converge to some point.

state number
A

N

5 7T @ ¢ & ¢ ¢ 5 9 0 & 000

. 4 + 0 6 6 @ ¢ 0 4 6 0 0 seoe

3 T 00 0 @ & ¢ o900

2 19 6 0 9 0 ¢ 4 ¢ 6 ¢ b4

1 1 2 o ¢ ¢ 0 ¢ ¢ & ¢ ¢ 2 0
N B B L s B e B =
1 T

time index (frame number)

Figure 3.9 State-time space.

Given the mean and covariance matrix estimates for the state and the observation vector
sequence O =(0,...0; ), the optimal state sequence calculation is done by the Viterbi
Algorithm. Figure 3.9 shows the state and time space. The Viterbi algorithm determines
the optimum path which is most probable for the given data. The path must start at (1,1)
and end at(T',5). This path gives the state distribution of the observation sequence. Since

the left to right HMM model with one transition is used, the transition strategy schema is
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as shown in Figure 3.10. The feasible points are shown in the grey region, which are
imposed by the HMM structure. So, our calculations will include only the points in the
feasiable region. For each pioint in the feasible region, two numbers will be stored in an
array. One of them will show the maximum likelihood of being up to that point, the
other number will be 0 or 1 indicating the previous point in the optimal path. O denotes
the upper branch of the local transition schema, and 1 denotes the lower branch of the

local transition schema.

Local Transition Strategy

7

state number

W

time index (frame munber)

Figure 3.10  Transition moving starategy and the associated feasible region.

Let j=1.5 denote the state number, and i=1..T denote time index. Then (i, j) is
a feasible point in Figure 3.10. Let f;; denote the maximum likelihood of being up to that

pointand g, indicate the previous point that path has come from.
The Viterbi Algorithm is as follows:

*  First, compute fjand g, fori=1...(I'N+1), j=1 with g, =0 and for i=1LN ,

j=1.N with g, =1.These points have one option to be visited.
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*  Second, for the second row j=2 for lli in that row; compare f;_;; ;) *0.2 with

Ji-y; ¥0.8. If the former is larger, meaning that transition to next state is more probable,

then gt] = 1 and f;] =bl] * f(i-l)(j—1) * 0.2 5 else g‘) = 1 and -flj = bl} * f(i-—l)f * 0.8 B
. e . «th . - .
b, is the probability of observing i output vector at state j given by Equation 3.9.

*  Third, go to second step and do this procedure for all j up to N. (5 in our case).

e At j)=(T,N), f;will have the probability that the most likely path has and

starting from g, and going backwards in the directions g indicate, the optimal state

distrubition is obtained.
3.2.3 Building the Model

Let X, ... X be the speech patterns (observation vector sequences) associated

with N training utterances (or tokens) of the same word, say the i* word of the
vocabulary. As indicated, first an initial estimate is made on the mean vector and
covariance matrix of the states of HMM by assuming that the observation vector
sequences are distributed equally to all states. Then by the Viterbi Algorithm, the new
state distributions are obtained for each utterance, and the mean and covariance values
are updated. This procedure is applied until the state distributions imposed by the Viterbi
Algorithm converges. The method described above corresponds to maximum likelihood

estimation of the parameters, i.e. mean vectors and covariance matrices.
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CHAPTER 4

MODIFICATIONS FOR PERFORMANCE IMPROVEMENT

4.1 General Overview of the System

In this chapter, the recognition procedure and the discriminative techniques are
discussed. The aim is correctly recognizing an unknown utterance from a vocabulary
containing / words under insufficient training data case. In this thesis, we have worked

on 60-word vocabulary, which can be found in the Appendix.

To model the i * word, 1< i = M , in the vocabulary, a HMM model denoted by

M' is constructed. In this thesis, left-to-right 5-state HMM model with transition
probabilities of staying at the same state 0.8 and going to the next state 0.2 is used,
moreover, continuous Gaussian probability density function with a diagonal covariance
matrix is used as state dependent observation vector distribution. How a word is

modelled is discussed previously in Chapter 3 in a detailed way.

For a test utterance to be recognized, the processing shown in Figure 4.1 is

applied:

*  First, an observation or feature sequence O = (0,0, .......... 0,) is generated through

the feature extraction mechanism explained in Chapter 2.
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Second, this sequence is passed through all word models, and P(O | M i), the

probability that the observation sequence O is to be produced by model M'is

computed by the Viterbi Algorithm.

Third, the decision logic sets the recognized word as the word which yields the

largest probability.

OBSERVATION

FEATURE
ANALYSIS

SEQUENCE
— =

Figure 4.1

HMMFOR
WORD 1

‘ »{ PROBABILTY
COMPUTATION

PROBABILTY
COMPUTATION

HMM FOR
WORD M
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COMPUTATION

Raw HMM recognition system.
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LOGIC

>
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In this thesis, to model each word, five or less test utterances are used. This
insufficient data brings out an important problem, namely the model parameters are
unreliable. This unreliability directly affects the system performance in a negative manner.
Therefore, there is a need for post processing techniques to improve the recognition

performance.

Furthermore, as the size of vocabulary increases, the performance will surely
degrade. This is another motivation for the study on auxiliary modification techniques.

The techniques which are worked on can be grouped under three categories:
1)  Adjusting Model Parameters.

11) Feature Vector Reduction Techniques.

iti) Information Fusion Techniques.

These techniques and their results will be discussed in the subsequent parts of
this chapter.

4.1.1. Results of the Raw HMM Structure

Raw HMM structure is the one shown in Figure 4.1. Three data sets are used to
obtain the performance scores for this system. One of them is used for training the
system to model the word parameters. Five different utterances per each word are
recorded to be used in training. Two different training modes, 5 or 3 utterances per word,
are used during the tests. Number of training utterances is kept small to avoid long
training sessions. The other two data sets are used for testing. These are indicated as
dataset! and dataset2 in the tables showing recognition performances for different

techniques. Dataset] consists of 10 test utterances for each word and is recorded one day
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after the recording of the training data. Dataset2 consists of 10 test utterances for each

word and is obtained one month later than the recording of the training data. Since the

vocabulary consists of 60 words, dataset! and dataset2 each have a total of 600

utterances. The performance scores of this raw HMM structure is given in Table 4.1.

Table 4-1 Performance scores of raw HVMM structure.
NUMBER OF UTTERANCES
OF EACH WORD USED IN TRAINING 5 3
Datasetl %98.5 %96.3
Dataset2 %97.1 %93.6

Table 4-2 Percentage that the correct word is in the candidate set containing one, two or

three most likely words that HMM generated for testing dataset1

3

DATASET1 FIRST FIRST & SECOND | FIRST, SECOND
& THIRD

#0f utterances in training: | %98.5 | %99.3 %99.3

5

#of utterances in training: | %96.3 %98.0 %98.5

An observation associated with our experiments is that, in most of the incorrect

decisions, the correct word model has the second or third largest likelihood value. Based

on this observation, three candidates that are most likely to HMM evaluation undergo

50



additional evaluation, and the final decision is obtained after this evaluation. The results
in Table 4.2 and Table 4.3 show the percentage that the correct word is in the set of

candidates where this set contains the first, the first two, and the first three best words.

Table 4-3 Percentage that the correct word is in the candidate set containing one, two or

three most likely words that HMM generated for testing dataset2.

DATASET2 FIRST | FIRST & SECOND | FIRST, SECOND
& THIRD

#of utterances in training: | %97.1 | %98.8 %99.6

5

#of utterances in training: | %93.6 | %96.1 %97.1

3

4.2 Adjusting the Model Parameters

Since the decision is based on the HMM models, a logical way of improving the
recognition performance may be the modification of unreliable model parameters. The

model parameters are:
*  Number of states.
* Transition probabilities.

* Mean vectors and diagonal covariance matrices of states.
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1. Number of States

In Figure 4.2, the relationship between number of states and recognition
performance in terms of error percentage can be inspected. The graph is obtained from

dataset? where 5-utterance per word is used in training,

error percantage

1 L -
0 . 1 1 1 1 ]
4 6 8 10 12 14
Number of states
Figure 4.2 Relation between number of states and error percentage.

As seen, the error rate achieves a local minimum at N=7. However, the error is
somehow insensitive to number of states when this number is larger than 6. Also, it is an
important fact that this minimum might be specific to the vocabulary. So, under these

considerations N=35 is taken during all studies.
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1l Transition Probabilities

The probability of staying at the same state is taken as 0.8 and the probability of
visiting the next state is taken as 0.2 for all the modifications done in this chapter. It is
observed from the previous studies that changing this parameter does not affect the

performance seriously.
iii.  Mean Vector and Covariance Matrix

In this part, only the covariance matrix is modified. The small covariance values
with unreliable means may yield very small incorrect likelthood values even at points close

to the mean. To overcome this problem, the small covariance values are enlarged [27]. A

hard limiter is implemented on the values of the diagonal covariance matrix. If a,

denotes the i* element of a covariance matrix of any state with a value less than §,, or
greater than &,, a; is set to these thresholds. &,and &, are found experimentally.

Results of this modification are given in Table 4.4.

Table 4-4 Results of the hard-limiting covariance values.

NUMBER OF UTTERANCES PERWORD

USED IN TRAINING 5 3
Datasetl %99.3 %98.5
Dataset2 %98.5 %96.6
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4.3 Feature Reduction Techniques

The feature reduction technique is a feature modification method, which can be

expressed, in a general form as:

X=Vx. (4.1)
where x is the 24 dimensional feature vector, V is the 7x24 transformation matrix and %
is the modified feature vector with 7 elements. In this study, m < 24 and V consists of
rows with one 1 as the nonzero entry leading to removing the components of the feture
vector that are not discriminative. The dadsion logic used in this section is that: if the
probability difference between the two most probable outputs of HMM structure is less
than the threshold, apply feature reduction techniques to make the decision; else rely on the

decision according to the HMM evaluation.

4.3.1 Gauss Curves Method

Suppose the i word of vocabulary is confused with the j” word meaning that

the test utterances of the i word are recognized by the system as the j* word or vice

versa. To discriminate between these words, the method outlined below is used:

Take the models of i and j* words as indicated in Figure 4.3. In this figure, 2 and =}

are the mean vector and the diagonal covariance matrix of the k" state of i” word.
Diagonality of covariance matrix implies that the probability density function
corresponding to each state can be considered as a multiplication of probability density

functions of each element of the feature vector.
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Figure 4.3 Schematic diagram that shows the comparison of word i and word ;.

For each state of the two words, 1 and j, 24 scalar Gaussian density function pairs
can be formed with means and variances from the corresponding component of the
mean vector and the diagonal covariance matrix, respectively. For each component, the
area shown in Figure 4.4, S=A+B is computed and used as a confusion measure. This

area indicates the total probability of error:
Pr(errorintotal) = Pr(errod j is theactualword) + Prerror]; is theactual word) (4.2)

The components that yield large S values are thought to be the possible source of
recognition error; so these components are removed for that state and HMM evaluation

is repeated accordingly.
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Figure 4.4 A one dimensional gaussian pair.

The results of this approach are given in Table 4.5 and Table 4.6.

Table 4-5 Results of component elimination by the Gauss curve method (5 number of

utterances used in training)
NUMBER OF DIMENSION | DATASET1 | DATASET2
24 %99.3 %98.5
22 %99.0 %97.3
20 %99.0 %97.6
16 %98.5 %96.5
8 %98.5 %96.5

56



Table 4-6 Result of component elimination by the Gauss curve method (3 number

of utterances are used in training ).

NUMBER OF DIMENSION DATASET1 | DATASET2
24 %98.5 %96.6
22 %98.3 %96.5
20 %98.0 %96.2
16 %98.0 %95.8
8 %97.6 %95.6

4.3.2. Bhattcharyya Measure Method

In this method, the components to be removed are determined according to the

distance measure called the Bhastdaaryya measure which is defined as [28]:

2 g 1 AR
= (u, -, F (222 - loo] —2
d (/‘1 :uz) ( ) ) (/”1 /“2)"‘ 2108 121"22I (4.3)

In this definition, 4 and 4, are the mean vectors and Z, and =, are the covariance
matrices for that state of thei” and j* confusing words belonging to the state for which

the dimensions to be reduced for. Note that, if g, = g, and 2, =3, , i.e. the models are
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identical, then d=0 and also, if g, = g, then d is computed by the second term which

takes the covariance difference into account.

For each state, d is computed and then each component’s contribution to the
distance measure is found. The least contributing components are thought to be the
possible source of recognition error, and they are removed for that state and HMM

evaluation is repeated accordingly. The results of this reduction for different sizes are

tabulated in Table 4.7 and Table 4.8.

Table 4-7 Results of component elimination by the Bhattcharyya curve method (5

number of utterances used in training).

NUMBER OF DIMENSION | DATASET1 | DATASET?2
24 %99.3 %98.5
22 %99.0 %97.5
20 %99.0 %97.3
16 %99.0 %96.8
8 %98.8 %97.0

4.4 Information Fusion Techniques

There can be many ways of incorporating the information to make more reliable

decisions. Three methods which are studied in this thesis are:
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i.  Incorporating State Duration Probability.
ii.  State Distribution Pattern with Hybrid HMM-DTW.
iii. Weighting State Probability Contributions Through a Genetic Algorithm.

4.4.1 Incorporating State Duration Probability

The raw HMM structure relies on the “select maxamum” principle meaning that the
test utterance observation sequence is passed through all the models and the model index
producing the maximum likelihood is chosen as the recognized word index. The test
utterance has a state distribution pattern for each model showing how the frames are
distributed to each state. This information is not used in the raw HMM structure, and this

method is a way of incorporating this information.

Table 4-8 Results of component elimination by the Bhattcharyya curve method (3

number of utterances used in training)

NUMBER OF DIMENSION | DATASET1 | DATASET2
24 %98.5 %96.6
22 %98.0 %97.1
20 %98.3 %96.3
16 %97.8 %95.8
8 %97.6 %95.8
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The test observation sequence is passed through all models and the likelihood
value of the i model, P(M : IO) is obtained. Define d as number of frames assigned
to the j* state of the i” model by HMM j=1..5 and in compact form in can be
represented by a vector d’ = (dl' didid] d§) State duration function for the j*
state, p; (ix), is modelled with gamma distribution with parameters «;, 4 ; as given below:

Lot

p,(x)= e,) > x20 I‘(aj)=}e'yy“’ldy. (4.4)
0 , x<0 ‘

The a;, A, parameters are found previously in the training phase of the system.

As a result, the likelthood values are modified as:

P(M'|0)=PM'|0)+ 2 p,(d}). 4.5)

The recognized word is chosen as the model having the maximum modified likelihood

value. The results of this approach are given below in Table 4.9.

Table 49 Results of incorporating state duration probability.

NUMBER OF UTTERANCES PERWORD

USED IN TRAINING 5 3
Dataset! %99.3 %98.6
Dataset2 %98.5 %96.5
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4.4.2 State Distribution Pattern with Hybrid HMM-DTW

In this method, state duration information, the likelthood value given by HMM
and the distance measure given by DTW are combined to make a final decision. It has
been observed that HMM evaluation may point out a model that has an odd strange state
distribution such as accumulation of frames in one state. Most of the time such
distributions correspond to a wrong decision. Therefore, the information about state

distribution pattern must be taken into account to make decision.

Let ¢,,c, and ¢, be the indices of the three candidate words that are most likely

according to the HMM evaluation. Consider d”,d™ and d” vectors defined before

associated with these models. An “odd state distribution” measure used in this thesis for
word  is the number of d’s that are equal to one. So the procedure is to choose the best

model according to this criterion, i.e. eliminate the one with highest odd state distribution
measure. Considering the state distribution patterns, the number of states which are 1
frame distributed is counted for each candidate. Then the final decision is made between
two models having the least odd state distribution measure. The test utterance to be
recognized is passed through the HMM and DTW models of these chosen two

candidates and the probability of decision is found for each model as:

P

decision

17)
=0,P,, +—: 4.6
1* HMM D ( )

DTW

where §,,8, are weighting factors determined experimentally,P,,,,, is the likelihood
value generated by HMM and D, is the distance given by the DTW models. The
decided word is chosen as the one having the larger decision probability. The results of

this approach are given in Table 4.10.
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Table 4-10 Results of the hybrid DTW-HMM approach.

NUMBER OF UTTERANCES PERWORD

USED IN TRAINING 5 3
Dataset1 %99.1 %98.8
Dataset2 %99.3 %98.0

4.4.3 Weighting State Probability Contributions through Genetic
Algorithm

In this method, a Genetic Algorithm is used to discriminate between two models

by weighting the contribution of each state to the overall likelihood. A detailed discussion

on genetic algorithms can be found in [29]. As in the previous section, let ¢, and ¢, be
the indices of the two most likely models. The likelihood produced by the raw HMM

structure is the product of probability contributions of each states as:

P(M" |0)= BRPPP, 47)
In this method, each model likelihood value is modified by weighting the probability

contributions by some coefficients as:

P(M“|0)=wPw,Pw,PwPwpF;. wilsisSand0sw <1. (48
The aim is to find the best coefficients to help the discrimination of ¢, and ¢,. In the

implementation of the genetic algorithm, the population size is taken as 25 with mutation

rate 0.08 and crossover rate 0.7. Each member of population is a 5 dimensional
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coefficient array, (w,w,w,w,w, ), where each coefficient is represented by 10 bits. So,

each population member is a 50-bit array.

First, an initial population is created with 24 randomly generated coefficient
arrays and the last member of population is taken as w, i =1..5, (11111) coefficient

array to take the unmodified case into account.

Second, for each member of population, the fitness function value is evaluated.

The fitness function is calculated as:

1
f(w]:wzyw37w4yws)= fm_aZ 1+exp(~ a(P_P)) K and (4.9)

utterunces of
cland c2

where

K =1if all(P-P)>0
elseK =0

‘ (4.10)

In this calculation, P is the likelihood value obtained after passing the training utterance

from its own model after modification of coefficient array and P is the likelihood value

obtained after passing the training utterance from the other model. The aim is to enlarge

the difference between P and P so that the models can be discriminated better than the
raw HMM structure. K puts a constraint on the fimess function such that all utterances

are recognized truly.

Third, the members having the best fitness value are taken as parents and the

children obtained are replaced with the worst members of the previous population.
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Fourth, the second and the third steps are repeated 10 times to obtain the
optimum coefficient array w;,i =1..5 ,{w,w,w,w,w;). The likelihood values of most

likely models, ¢, and c,, are updated with these optimum coefficients and the decision
is made in favour of the one that yields the larger value. The results of this approach are

given in Table 4.11.

Table 4-11 Results of weighting by genetic algorithm.

NUMBER OF UTTERANCES PERWORD

USED IN TRAINING 5 3
Datasetl %99.2 %98.5
Dataset? %98.0 %95.6

4.5 Discussion on Results

The methods described can be grouped under three categories:

*  Adjusting Model Parameters

Basically, we have dealt with hard-limiting covariance matrix values only. It had a

significant effect on the performance of the system. Also it is a computationally easy

method.

*  Feature Vector Reduction Techniques

64



In this part, the feature reduction with Gauss curve and Bhattcharyya distance
measure are studied on. As the dimensions are reduced, the performance has not

increased.

* Information Gathering Techniques

Incorporating the state distribution in terms of probability has increased the
performance slightly. The best result is obtained with the State Distribution Pattern with
Hybrid HMM-DTW approach. Although, the genetic algorithm approach increases
performance, it is computationally heavy and does not increase as much as hard-limiting

approach does.
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CHAPTER 5

CONCLUSION

In this thesis, we have worked on the isolated word recognition, a sub area of the

automatic speech recognition with model based approach. As a model, the left to right
HMM with 5 states and transition probabilities (0.8,0.2) is used. The system consists of
three parts:

*  Preprocessing,
*  Training to obtain model parameters,
*  Testing and recognition.

In the preprocessing stage, the information about how a speech is produced and
perceived by ear is incorporated into the design of the recognition system. The speech is
divided into frames and each frame is represented by a feature vector. As a feature vector,
subband based cepstral coefficients are used to simulate the human ear reception system.

Different types of feature vectors are discussed in Chapter 2.

During training, each word in the vocabulary is modelled by a set of parameters.
However, in this thesis, the number of utterances to model each word is small; as a result
the model parameters are unreliable. Therefore, auxiliary methods for discrimination are

essential. The recognition system consists of three parts:
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* Input observation sequence,
*  Model parameters,
*  Decision logic.

For input vector modifications, the feature vector reduction methods are used.
As feature reduction methods, the Gauss curve and Bhatcharrya measure methods are
used. The reduction of dimensions through these methods did not yield positive solution.
They are based on the assumption that the dimensions are independent of each other.
This assumption might be misleading, or the methods proposed are not the right
reduction mechanisms. Focus is made on a reduction method, because it also decreases
the computational load of the system during testing. As a future work, a general

transformation like X = Vx might be used where V is the transformation matrix is. Also,
a nonlinear transformation such as £ = f(x) related with model parameters may help

the solution to the problem. However, they might be computationally heavier than the

feature reduction methods.

To modify model parameters, the covariance matrix values are hard limited.
Again this is an effective and computationally attractive solution. But for large
vocabularies, probably it will not help to the solution of the recognition improvement
problem. As a future work, other kinds of operations, related with model parameters in

some way can be used to modify the covariance matrices.

In decision logic part, various sources of information either from the HMM
model, like the state distribution, or from other sources like the DTW models are

incorporated to make the decision. In the state duration probability method, the gamma
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distribution function is used to model the state duration probability. It had a slight

improvement on the results but not as much as a variance limiting one.

It is observed that the odd state distribution patterns usually do not correspond
to the correct models. This insight is combined with another recognition procedure
DTW (Dynamic Time Warping) on to the base HMM evaluations. This hybrid approach
has proven good success. Weighting state probability contributions through the genetic
algorithm is a costly solution and has not brought success as the hybrid approach of
HMM and DTW. It has the intention of putting weight on the discriminative states. As
an alternative approach, using phonetic structures to locate regions of dissimilarity can

help the discrimination process.
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APPENDIX

This is the list of vocabulary that is used during my studies:

ac

bityiit

¢k

evet

gerl

git

gizle

haber

hayir

ileri

iptal

kapat
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13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

kiiciilt

posta

sag

se¢

sol

sonraki

tazele

tekrar

vazgeg

yazdir

yeni

ahmet

anne

baba

doktor

itfaiye
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30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

market

olcul

polis

sitket

kéroglu

kuzuogiu

kuzucuoglu

karakas

karakaya

glirkaya

glirkaynak

altintag

altinel

kiremitgi

kirazct

Oz
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47

48

49

50

51

52

53

54

55

56

57

58

59

ankara

canakkale

cankiri

nevsehir

kirgehir

lilleburgaz

gankaya

eskigehit
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