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ABSTRACT

AN APPLICATION OF INPAINTING-BASED STILL IMAGE
REANIMATION

Böncü, Ece Selin

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Gözde Bozda§� Akar

September 2017, 150 pages

A single-input system that converts still paintings into short video sequences

is developed. The system is composed of four separate blocks that are Digi-

tal Matting, Inpainting, Motion Modelling & Synthesis and Rendering Blocks.

Within the scope of this thesis, the performance analysis of all are realized and

the input images are restricted to paintings so as not to cope with the di�culty

of achieving photorealism that accompanies the usage of photographs.

The input image is partitioned into object-background layers in Digital Matting

Block. For the extraction of alpha channels the algorithm proposed in [135] is

used and it is tested for performance, especially on highly textured data, which

paintings mostly tend to be, coupled with di�erent trimap extraction methods.

Inpainting Block is used to cover up the holes in the background after object

removal. A detailed analysis and experimentation is done on image inpaint-

ing techniques and their performance in the image-to-video converter system
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is discussed. Within this literature review, a classi�cation based on which key

elements are preserved through inpainting is stated, and by experimental veri-

�cation, it is shown that the geo-texture preserving methods outperformed the

methodology based on texture-preservation and geometry-preservation. A fur-

ther comparison among geo-texture preserving method are made through visual

performance and timing analysis in object removal, as well as tests on reconstruc-

tion of the known regions of several images, where the abilities of the algorithms

in rebuilding the images are tested using several image quality metrics such as

PSNR, SNR and SSIM.

Motion Modelling & Synthesis Block is responsible for creating an arti�cial mo-

tion �eld for the object layers. This bi-step procedure involves the sculpting

the movement of certain group of objects into mathematical models that are

produced by spectral �ltering of random noise and generating time dependent

displacement maps for each pixel in the image frame. Besides, in order to pre-

serve the harmony within the image frame 2D adaptation of the 3D wind �eld

in [174] is realized. The models implemented within the framework is restricted

to passive objects, such as trees, clouds, bodies of water, etc. that move in

harmonic oscillations as a reaction to the external drag forces such as wind and

gravity.

In the ultimate step, Rendering Block, merges the layers back to create the

frames of the video by using the transparency maps so as to obtain seamless

composite images. The ordering of the frames in the temporal axis provides the

�ow of the video sequence as the �nal output.

Keywords: Inpainting, Reanimation, Object Removal, Motion Modelling
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ÖZ

SAYISAL ROTÜ� TABANLI B�R TABLO CANLANDIRMA UYGULAMASI

Böncü, Ece Selin

Yüksek Lisans, Elektrik ve Elektronik Mühendisli§i Bölümü

Tez Yöneticisi : Prof. Dr. Gözde Bozda§� Akar

Eylül 2017 , 150 sayfa

Sabit görüntüleri video dizilerine çeviren tek girdili bir sistem geli³tirilmi³tir.

Sistem Say�sal Tabakalama, Say�sal Rötu³, Hareket Modelleme & Sentezleme ve

Görsel Kaplama olmak üzere 4 ayr� bloktan olu³maktad�r. Bu tez kapsam�nda,

her bir blo§un performans analizi yap�lm�³t�r. Imge girdileri, foto§raf kullan�-

m�n�n beraberinde getirece§i foto-gerçeklik ilkelerinin ba³ar�m�n�n zorlu§unun

önüne geçmek ad�na tablo imgeleriyle s�n�rland�r�lm�³t�r.

Girdi imgesi Say�sal Tabakalama Blo§u'nda obje ve arkaplan olmak üzere ta-

bakalara ayr�l�r. Alfa kanllar�n�n hesaplanmas� s�ras�nda [135]'da önerilen metod

kullan�lm�³t�r. Metodun performans� özellikle tablo imgelerinin de ço§unlukla ait

oldu§u zengin dokulu imgeler grubunda farkl� tabaka haritas� olu³turma yöntem-

leri kullanarak test edilmi³tir.

Say�sal Rotü³ Blo§u objelerin görüntüden ç�kar�lmas�ndan dolay� olu³an bo³-

luklar�n doldurulmas�nda kullan�l�r. Say�sal rötu³ teknikleri üzerine detayl� bir
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inceleme sunulmu³, inceleme deneylerle desteklenmi³ ve sabit görüntüleri video

dizilerine dönü³türen bu sistemdeki performanslar� de§erlendirilmi³tir. Bu kay-

nak taramas� içerisinde, say�sal rötu³ yöntemlerinin uygulama s�ras�nda imgenin

hangi yap� ta³�n� muhafaza etti§ini baz alan bir s�n��and�rma yap�lm�³ ve de-

neysel do§rulamalarla yap�-doku muhafaza eden yakla³�mlar�n doku muhafaza

eden ve yap� muhafaza eden yöntemlere k�yasla say�lsal rötu³ta daha iyi sonuç-

lar verdi§i gösterilmi³tir. Yap�-doku muhafaza eden yöntemleri aras�nda obje yok

etme uygulamalar� kullan�larak görsel performans ve zaman analiz kar³�la³t�r�l-

mas� yap�lm�³t�r. Ek olarak, ayn� metodlar�n imgenin bilinen k�s�mlar�n� yeniden

olu³turma kabiliyetleri, Doruk Sinyal Gürültü Oran� (DSGO), Sinyal Gürültü

Oran� (SNR), Yap�sal Benzerlik Ölçütü (YBÖ) gibi baz� imge nitelik ölçütleri

kullan�larak kar³�la³t�r�lm�³t�r.

Hareket Modelleme & Sentezleme Blo§u obje tabakalar� için yapay hareket sen-

tezlemekten sorumludur. Bu iki basamakl� i³lem, rastgele gürültü alan�n�n spekt-

ral süzgeçlenmesiyle olu³turulan hareket modelinin matematiksel olarak ifade

edilmesini ve imge karesi içindeki her bir piksel için zamana ba§l� bir yerde§i³-

tirme haritas�n�n olu³turulmas�n� içerir. Bunun yan� s�ra, imge karesinde ahengin

sa§lanmas� ad�na [174]'de verilen 3 boyutlu rüzgar modelinin 2 boyuta uyarlan-

mas� sa§lanm�³t�r. Bu çal�³mada gerçekle³tirilen modeller a§aç, bulut, su kütlesi

gibi, harici bir çekim kuvvetinin etkisi alt�nda harmonik sal�n�mlar ³eklinde ha-

reket eden pasif objelerle s�n�rland�r�lm�³t�r.

Son a³amada, Görsel Kaplama Blo§u tabakalar�, alfa kanallar�n� da kullanarak

pürüzsüz bir ³ekilde tekrar bir araya getirerek video dizisinin karelerinin olu³-

turulmas�n� sa§lar. Bu karelerin zaman ekseninde s�ralanas�yla son ç�kt� olarak

video dizisi olu³turulur.

Anahtar Kelimeler: Say�sal Rotü³, Canland�rma, Obje Yok Etme, Hareket Mo-

delleme
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n′, ni, ni` N{A}
When n4 reaches in�nity...
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CHAPTER 1

INTRODUCTION

1.1 Introduction to Computer Animation

The earliest computer animation dates back to 1940s and 1950s that coincide

with the pioneering experiments on computer graphics, and hereafter, with the

outspread launch of the digital computers throughout the world, numerous in-

novatory �elds �ourished for the development of computer animation [81]. Even

though initially computer graphics and animation were mainly captured the

attention of the academic researches of the natural sciences or engineering up-

bringings, it did not take long for them to become the quintessence of artistic

purposes. Eventually, by the end of 70s, animated scenery had already come

to be frequent in public and mass media. From then on, there have been an

ever-growing interest to achieve more on this arti�cially created sequences.

The foremost emphasis on the amelioration of the computer graphics and anima-

tion, in genere, was the pursuit to achieve photo-realism. With the exponential

improvement of the computational power of the devices used in this industry,

further plausible visuals were possible to be produced. In the �rst place, basic

computer-aided special e�ects were started to be used in feature �lms, there blos-

somed the opportunities to generate movies in full animation out of no footage

at all, but with the computer aided techniques that has been developed so far.

It is also possible to claim that the gigantic empire of computer games has co-

evolved with computer animation. Nowadays, video games absolutely delicate

graphics and embody versatile motion of characters so as to make the player
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hallucinate the surrounding in a more intensive way. In nutshell, it is to be said

that, in the time being, that is to say, computer animation evolved from being

a short-length sequence of individually sketched black & white frames in to long

duration videos in which motion and the appearance of what is present in is

hard to distinguish from real world.

Throughout the journey of computer animation in accordance with photo-realism,

two fundamental aspects of a video footage play a huge role to imitate the real

world. First of which is to necessity to design the objects present in the scene,

from the human body, animals even to buildings, to household furniture, and

to pieces of nature, totally depending on the desired content of the animation

in a proper manner. Without loss of generality, each and every object in the

frame are expected to comply with the rudimentary features of their real life

archetypes, in terms of shape, colour, texture, etc. Additionally, these scene

objects are expected to be in a harmony with the rest of the objects, to obey

the principle of perspective, id est., each frame to form the animation sequence

are to be a separate realistic representation of a real life scene. Precisely, at this

very point here comes the second aspect to play the part, exactly in the transi-

tion between the animation frames that creates, indeed, the motion. The motile

objects of the animation, which will be called as �gures of action, are required

to replicate the authentic motion of their counterparts so that the animation

does not look unnatural. While modeling the motion of a �gure of action, its

physical properties, its body structure, motile and still parts of the body, the

type of motion and its interaction with the rest of the scene can be counted as

some items to be paid attention to.

Computer animation has its origins in cartoon animation in which only 2 dimen-

sional illustrations are utilized, however, as the computational powers increased

and the researches on the area broadened, as a means of increasing photo-realism

in the animated scenery, the 3rd dimension is introduced in the newer works.

From then on, instead of drawing the objects, the animators began to sculpt

them. Using 3D modeling on computer animation provided the scene to appear

more than a projection on the image frame, but rather fed the completeness of

each object present in the frame, with its enhanced geometry and shading.
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Although seeking photo-realism has whipped up the interest of the researchers

in the speci�c study, contributed to the procreation of astonishing animated vi-

suals in movies, computer games, augmented reality applications, etc. and hence

prompted computer animation to be involved in every part of the daily life. Re-

garding the diversity of the applications, some developers tend not to achieve

extremely realistic animation due to the limitations of media to broadcast or

display the output. Likewise, it may prefer to be eliminated in the output and

even additional special e�ects may be presented for merely artistic purposes.

Within the scope of this thesis, an application of single frame animation will

be discussed throughout the chapters. The main idea is to create short ani-

mated videos merely using single frame images as inputs and limit the human

interaction in the production procedure as much as possible.

The fundamental motive behind the application is to imitate the interaction be-

tween the human visual system and memory. For humans beings, the semantic

classi�cation of the images is done with further ease than the classi�cation of

than words [122]. When a single frame photograph is seen, although the im-

age stands still, displaying only a single instance of the plot of events in that

setting, the brain has the capability compensating for the missing information

using its past experiences. Brie�y, the human brain has the tendency to gather

the elements, namely objects, persons, environment, etc. that are present in a

scenery, draw a connection between these elements, �gure out the setting and

the occasion, hallucinate the motion that happen to be taking place and gener-

ate a short story out of all these material. For instance, when a glance is taken

of the photograph in Figure 1.1, one is prompted immediately to assume that

the woman is jogging on the edge of a cli� on a windy day. How this conclusion

is derived is quite trivial, indeed, the posture of the woman and the position of

her legs leads to the idea that she is running; however; she does not seem to be

terri�ed to be trying to escape from anything coming behind. Also, her clothes

suggest the fact that she is performing some branch of sports at the moment.

Moving on the environment, the way that the way that the trees and bushes are

bent allow the observer to do the weather forecast, it is windy out there!

Along with the entire e�ort devoted to seek photo realism, as computer ani-
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Figure 1.1: An illustration of perception

mation began to capture the eyes of the artists, computer animation was com-

menced to be incorporated into a multiplicity of branches of art. Reanimation of

still images can be counted as one of these artistic interests. A major and essen-

tial example was the exhibition that toured around Europe in 2015, which was

called Van Gogh Alive, where his paintings were digitally manipulated to turn

them into short animation pieces to be projected on the walls of the exhibition

hall.

Figure 1.2: An instance from the exhibition Van Gogh Alive in 2015

The Exhibition of Van Gogh Alive was one of the most prominent in�uences

to cater the idea behind this work, after observing how beautifully these works

of art can contribute to the birth of brand-new pieces of art. Immediately, it

sparked the idea that many other paintings could possibly be the domain for

reanimation.

Taking the story-telling characteristic of the human neural system as the basis,
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and the aforementioned exhibition as the main inspiration, a system that gen-

erates stories out of single images is tried to be developed. Nevertheless, this

goal is a tough one containing numerous problems to be attacked. Concerning

the fact that what is tried to be achieved is a single-input-single-output system,

it is almost impossible, unless one is bestowed with a magic wand, to animate

it at a step. The obstacles to prevent this are listed as follows:

An image is a whole entity, containing a number of objects both in the back-

ground and foreground, and these objects are required to be separated from the

rest of the image and from each other, since each and every object tends to obey

distinct motion characteristics. Even a certain number of them may be preferred

to be kept as still.

When the objects are layered individually, reminding the fact that these layers

will have motion inserted on them, there occurs the necessity of �lling the holes

that is left due to the removal of the objects in accordance with the remainder

image so that no blank pixels are apparent on the �nal output frames.

To create the animation, a motion model is needed to be synthesized for the

objects of interest, however; the type of motion and structure of the moving

body are to be considered while �tting the design to make the action in the video

realistic. The separated and animated layers of the image are to be juxtaposed

once again seamlessly so as to fake that they have never been layered.

In order to ful�ll the requirements of the problem, a converter model is used to

be used that consists of blocks, amending the stated concerns, respectively.

1.2 Scope and Outline

In this thesis, a system that converts still paintings into short video sequences

is developed. The block diagram of the system having four main steps, namely,

Digital Matting, Inpainting, Motion Modelling & Synthesis, and Rendering, is

given in Figure 1.3. A similar framework for 2D animation is proposed in [37];

however, in this research, we provide a detailed analysis on each block.
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Figure 1.3: The Block Scheme of the Still-Image to Video Conversion System

The input, namely the single frame image enters the converter system, is pro-

cessed initially by the Digital Matting Block. This very section is the part

that the image is converted into a layered representation of foreground and

background objects. In Chapter 2, the necessity of a layered representation is

discussed, a brief introduction to detailed image matting and its di�erence from

segmentation is given and the details of the used algorithm [135] is provided.

After matting of the image is completed, the individual layers enter the second

block,namely the Inpainting Block, where the image re�lling procedure takes

place. In this phase of the conversion, the blank parts of the background layers

are painted with a content aware means so that the newly generated regions ap-

pear to be coherent with the remainder image. The entanglement of inpainting

in reanimation applications is one of the core problems to be discussed through-

out the thesis. In the corresponding chapter, Chapter 3, primarily the problem is

de�ned properly and its vitality this image-to-video converter system is asserted.

This very chapter functions as a detailed survey on how inpainting approaches

have developed so far. The analysis also includes the implementation of a num-

ber of approaches in literature and experimentation on their performances based

on quantitative and qualitative metrics is provided.

The penultimate block,Motion Modelling & Synthesis Block of the system

is responsible for the bistep method for the creation of the sense of movement in

the video sequence. Within the MMS Block, modelling motion is done through

spectral �ltering and for the motion synthesis part, the generation of a motion

armature in the form of a 5D displacement map, DM(x, y, t, ∂x, ∂y), is ex-

plained. Chapter 4 is dedicated to the explaination of how these kinetic models
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are determined, and then the method how the motion is applied on the images.

Within the chapter, the approach to true modelling of motion and the repre-

sentational power of stochastic animation is discussed �rst. The implemented

models are explained and also this chapter includes the generalization of the

coherency preservation method of Zhang et al.'s algorithm in harmonious forest

animation in 3D [174], which is adapted to 2D animation to be used in the scope

of this thesis work.

TheRendering Block is the forth and the last of the blocks to be visited before

the conversion is completed. The layers that belong to the same animated

video frame is remerged to a single image frame that is seamless enough to

look unpartitioned and the procedure is repeated for each time instance in the

displacement map. When the entire group of video frames are tiled along the

time axis, they form the video sequence itself. Chapter 5 details the procedure

of rendering, both in formation of a single frame and then the frame ordering in

the video sequences as a whole.

Yet the overall setup is determined to achieve a conversion from still images to

video sequences, to facilitate the implementation, certain restrictions are needed

to be applied on the images that will be allowed as inputs to the system. As

the algorithm has the intention of making paintings come alive, the applica-

tion of reanimation on photographs is not taken into the scope of this thesis

work. Undoubtedly, the photographs in the input domain require detailed pro-

cessing and longer intervals of computation to achieve a desirable visual due to

the before explained concern of photo-realism. In addition to that, true mod-

eling of all types of motion that happen to exist in the world, and inevitably,

in images requires an utterly complicated algorithm and computational power.

Consequently, the �gures of action in this work are limited to the objects that

demonstrate movements in an oscillatory manner or in forms of simple trans-

lational and rotational motion. On the other hand, the application domain of

paintings are easier to animate in terms of motion, but hard to segments when

they are highly textured.
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CHAPTER 2

DIGITAL MATTING

Image segmentation involves the procedure of partitioning the digital image

into multiple layers of interest where pixels are allocated into clusters to form

pertinent image regions. The output of segmentation may be salient surfaces on

the image, objects or compact parts of the objects. Regardless of the type of

segmentation, a desirable result demands that the alike parts of the image are

grouped in a single connected component and separated from the reminder of

the image parts based on a some similarity criterion [38].

Image segmentation is a hotspot of image processing and computer vision re-

search, owing to the fact that a diversity of applications of these �eld depend

on the merits of segmentation. Evidently, segmentation simpli�es or alters the

image representation seeking to obtain more meaningful interpretation of the

data and ease in analysis.

In literature, image segmentation has been used in object detection [57], [58],

recognition [156] and tracking [120] algorithms along with many others. Many

image processing require image or video segmentation as a subproblem to be

attacked, and it is generally ill-posed and tend not to have a general solution.

In this thesis work, image segmentation is used to layer objects of interest to

animate, as well as still ones, into non-overlapping regions. As an image editing

application, the �rst step of the image to video converter highly depends on the

segmented layers of objects and object parts for further manipulation. By revis-

iting the block scheme of the system, it can be recalled that Digital Matting

Block is the �rst step of the converter system and it determines how the rest
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of the animation will proceed.

An image is merely an aggregate of pixels without any manipulation, fortunately

by means of segmentation, it is possible to obtain the object information in the

image. The coherency of an animated layer is crucial for a visually pleasing

output, in which the object boundaries are to be respected to keep the wholesome

look of each object, namely each �gure of action. As stated earlier in the problem

statement, each body in nature has diverse motion dynamics, that can be a result

of their physical state, structural properties, inherent behaviour or even due an

interaction with the other bodies or nature. Conclusively, it is vital to have a

well functioning segmentation methodology in this system.

Moreover, a proper layering is not necessary only because of object extraction

from the image, but also it plays a signi�cant part in rendering the video. When

all the animated layers make their way to the ultimate block for rendering,

(the procedure will be explained in the upcoming to chapters, Chapters 3 & 4),

they require region masks for a proper blending of layers in the �nal composite

image [37]. These masks are indeed the alpha channels that determine the

transparency levels of an image layer and can be obtained through a matting

procedure as an output of probabilistic procedure. Indeed this is the key point

where, the problem diverges from object segmentation to digital image matting.

Digital image matting is a term used for computing the transparency maps of the

objects to be used in composite images and videos for a seamless �nish. That's

why the focus is on the matting algorithms that can provide this gray-level maps

instead of black & white regions of interest.

In this thesis, after a brief introduction to the methodology of digital matting,

the details of the used algorithm, Weighted Colour and Texture Sample Se-

lection for Image Matting, [135] will be provided. It is chosen in this system,

thanks to its strength in layering textured images and its high ranking perfor-

mance in [128], a known database for quantitative comparison of digital matting

algorithms.
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2.1 Related Works

Let B denote the background and F, the foreground, on an image I then, the

alpha matte can be formulated in a closed form expression as follows:

Ipi = αpiFpi + (1− αpi)Bpi (2.1)

where pi denotes any pixel ∈ I, and the range for α is [0,1].

Similar to a segmentation problem, digital matting tends to be utterly ill-posed

as well, hence most of the application, especially in textured or crowded im-

ages, additional constraints are required to guide the algorithm to the region

of interest [135]. These limitations may be provided as marks on the image in

the form of a trimap, which is a 3-level mask drawn to indicate the foreground,

background and roughly the boundary within an error margin; user scribbles

that are smaller seed regions or pixels that indicate the presence of foreground-

background on that speci�c location, or a bounding box in which the region of

interest is encapsulated.

A main approach to the extraction of α is make local colour smoothness assump-

tions to compute the matte using the following equation:

αp =
(Ip −B)(F −B)

||F −B||2
(2.2)

The solution may include a parametric [130], [36] or non-parametric proposi-

tion. Without the parametrization, the selection of samples from the known

background and foreground and the credibility of the selection remains as a

tough challenge.

A secondary group exploits the local statistics of image and employs an a�nity

matrix based formulation [97], [146]. The solution for the matrix gives the α

values for the whole image and it enhances the propagation of information from

the known regions to the unknown. Another group of methodology adopts the

bene�ts of both of these two, such as robust matting [158], [127] and iterative

matting [157].

The above mentioned techniques have two common shortcomings:
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• In certain image domains, the background and the foreground may demon-

strate overlapping colour distributions, hence the alpha computed based

on colour turns out to be erroneous.

• In regions containing rich textures, barely a colour based representations

may fail to demonstrate the a�nity in the adjacent pixels, as the large

local gradients that are present in these regions may prevent the alpha

values to be propagated.

In [37], which has a similar animation framework to this research, employs

Bayesian Matting [36], a parametric method, assuming smooth colour distri-

butions, paired with Intelligent Scissors for trimap generation.

2.1.1 Intelligent Scissors

Intelligent Scissors [110] is a method for selecting a region of interest with the

aim to remain true to object contours, in general image edges and higher order

features of the image, as much as possible. The boundary de�nition, indeed

is a graph search problem, in which an initial seed node helps the algorithm

to �nd the optimal path to a group of candidate goal nodes, by minimizing a

cost function. In this algorithm the cost function to be minimized is the sum of

local edges, and inevitably the optimum patch is enforced to lie along the strong

gradients (edges). In implementation, edges are extracted by using Laplacian

zero-crossings and the solution is obtained via Dijkstra's algorithm.

2.1.2 Bayesian Matting

Proposed in [36], Bayesian Matting dedicated to solve for an alpha value to

extract the foreground from the background in a Bayesian framework, as the

name indicates. For the solution of the problem, a probabilistic modeling of

the background and foreground is assumed and they are taken to be distributed

by superpositions of spatially-varying Gaussians. For the calculation of the

unknown boundary region, a sliding window is used to get the neighbourhood
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information and the order computation is towards the boundary. That is, with

the apriori information given or computed values in the adjacency of the current

pixel, a MAP estimation is calculated to obtain the �nal opacity value.

Bayesian Matting is rather an old method and requires more strict trimaps,

such as the output of the Intelligent Scissors, compared to user scribbles for

its �nal outcome to be pleasing. Especially, in the domain of this thesis work

where images are highly textured, it is expected to perform poorly as mentioned

earlier. Indeed, it is intended to employ a method that will also decrease the

need for user-interaction with the converter to remain on the more automatic

side.

2.2 Used Method

The methodology that is employed in the the system is proposed by Shahrian

et al. in [135] to layer objects and compute alpha mattes. It promotes the

e�ectiveness of an additional texture-based representation along with colour-

based representation in image matting algorithms. The algorithm uses sampling

of these two feature spaces to optimize the foreground, F and background B,

values.

The main contribution of the paper [135] is the proposition of a texture feature

to compute a true alpha matte value and the motivation of selecting this method

in the thesis framework is its success in rough textured images.

2.2.1 Weighted Colour and Texture Sample Selection for Image Mat-

ting

2.2.1.1 Texture Feature

A 36-dimensional feature vector is de�ned as follows

VT = (A∇`,c, A
µ
`,c, A

σ
`,c, H

µ
`,c, V

µ
`,c, D

µ
`,c) (2.3)
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where A, H,V, D correspond to the approximate, vertical, horizontal and diag-

onal subimages obtained out of a 2-level Haar Wavelet Decomposition [45] and

the superscripts (?)∇, (?)µ, (?)σ stand for gradient, mean, variance and `,c for

level & colour channel indices, respectively. While extracting these features,

the subimages are resized to the initial resolution of the input image by using

bicubic interpolation.

Haar Wavelet Kernels

2D Haar Wavelet Transform allows the stair-case decomposition of an image

into layers of detail by downsampling and �ltering. In the discrete case, for an

image I, the diagram is as follows:

Figure 2.1: Schematization of 2D Haar Wavelet Decomposition.

In a more verbose explanation, it can be claimed that the decomposition gives

the base image and image details along the speci�ed directions. For the sake of

clarity an example decomposition is provided in Figure 2.2.

However, due to the computational complexity of handling a high dimensional

vector, 2-level dimensional reduction is applied using Principal Component Anal-

ysis (PCA) and Linear Discriminant Analysis.

Principal Component Analysis

It is a basis for multivariate data analysis, that provides the approximation of

the data while retaining a signi�cant amount of its energy. It can be used as

dimensional reduction technique to emphasize variation and bring out strong

14



(a) (b)

(c) (d)

(e) (f)

Figure 2.2: 2D Haar Wavelet Decomposition: (a) Input Image. (b) Input Image
in Grayscale. (c) Single Layer Decomposition Kernels. (d) Double Layer De-
composition Kernels. (e) Single Layer Decomposition Images. (f) Double Layer
Decomposition Images
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features in a data set by projecting the data on the axes where the distribution

is sparser. The components are obtained by the eigenvectors of the covariance

matrix of the raw data. The eigenvector corresponding to the largest eigen-

value indicates the orientation of the axis that most of the data energy can be

conserved.

(a) Raw Data (b) Dimensionally Reduced Data

Figure 2.3: An example illustration of obtaining dimensionally reduced data
using PCA. (a) Raw Data. (b) Dimensionally Reduced Data.

Linear Discriminant Analysis

LDA is a supervised data classi�cation method that computes the component

axes which maximize the class separation. The in-class, SW and between-class,

SB scatter matrices are computed for the training data and S−1
W SB is solved

as a generalized eigenvalue problem. The idea is to maximize the inter-spacing

between di�erent classes constrained on keeping the intra-class data spacing

minimum. The k eigenvectors that correspond to the largest eigenvalues are

the linear axes components for this separation. By the concatenation of these

eigenvectors, a transform matrix is obtained to apply on the data samples for

the classi�cation of the experiment data.
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2.2.1.2 Computing The Unknown Region Using Samples

In this methodology, the criterion for an unknown pixel to be labeled as a fore-

ground pixel is given as follows:

((||Ip − In|| ≤ ThT ) ∪ (||Ip − In|| ≤ ThC) ∩ (Dist(p, n) ≤ ThD) (2.4)

That is to say, the unknown spatial neighbours of foreground pixel, that sat-

isfy the distance condition ThD, and are below colour and texture similarity

thresholds ThC & ThD are eligible as foreground pixels. An analogous criterion

applies for the background as well. Henceforth, the pixels that are in the smaller

vicinities of the known regions are computed directly. The rest of the pixels that

cannot �t into either region, are the ones that require the α-value computation

which involve colour and texture sampling from both background and regions.

Inspired by [64], an information propogation method using the known back-

ground and foreground pixels is applied. Initially, the image is tiled into square

blocks each having vertices of v×v. Then, from each of these blocks, ` number of

lines are scattered towards several orientations phase di�erence 2π/` and these

rays are forced to hit the closest 6 blocks of known background and foreground

regions, 3 of each. These 6 blocks will function as the region samples to per-

form a best pair voting that determines the optimal separation of foreground

and background regions. Shahrian et al. state that it is critical to increase the

number of rays to augment the amount of alterations in the colour and texture

features [135],in the implementation for the thesis, a concentric growing circular

region of interest is used until the required amount of blocks are sampled. The

mean value of both texture and colour plays a part in the computation of alpha

values in the unknown region, therefore by making combinations in pairs, the

set PFB, composed of 9 (F,B) pairs, is obtained for each unknown block. The

procedure is illustrated in Figure 2.4.

Best (F,B) pair voting involves the maximization of the con�dence measure

de�ned as

Q = (Cα)ωc × (Tα)ωt (2.5)

where Cα determines the colour dissimilarity of an (F,B) pair and it is deter-
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Figure 2.4: Sampling of F-B Pairs

mined by manipulation of the closed form expression for composite images, as in

equation 2.5 and Tα denotes the compatibility of texture and colour of an alpha

value, provided in the following equation 2.6.

Cα = e

−||Ip−(α′Fp+(1−α′)Bp)||
1
C

∑
(Fp,Bp)∈PFB

||Ip−(α′Fp+(1−α′)Bp)|| (2.6)

where C is the cardinality of the block ı in PFB and α′ is computed for a speci�c

(F,B) using equation 2.1.

Tα = α′ × SF T
p + (1− α′)× SBT

p (2.7)

where

SF T
p = ||BT − Tp||/(||BT − Tp||+ ||FT − Tp||) (2.8)

SBT
p = ||FT − Tp||/(||BT − Tp||+ ||FT − Tp||) (2.9)

and FT ,BT are texture samples for the background and foreground regions.

Presumably, T demonstrates how reliable the colour information is for the alpha

estimation. That is, if the computed alpha out of colour information approaches

1, it is highly probable that it is a foreground pixel, and the compatibility is

incremented.
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2.2.1.3 Weight Coe�cients

In this algorithm, when the colour distributions of the two regions, F and B,

tend to behave similarly, texture features begin to have more contribution in

the alpha computation. The weighting coe�cients in the objective function are

computed by exploiting the colour histograms to measure any colour distribution

resemblance. The amount of overlap in histograms is computed as shown

O(HistF , HistB) =

∑n
ı Hist

F (ı)×HistB(ı)∑n
ı (HistF (ı)2 ×HistB(ı)2)/2

(2.10)

in which the normalized histograms of F & B, are given as HistF (ı) & HistB(ı),

respectively, and n is the number of bins in the histogram. Then, ωC and ωT

are formulated as

ωC = e
− OC

(OT+OC ) ωT = e
− 2×OT

(OT+OC ) , (2.11)

OC ,OT are the overlaps of F and B distributions of the colour and texture

features. When they are entirely overlapped in the colour space, ωC = e−1,

ωT = 1. In the other way round, when the complete overlap occurs in the

texture space, ωC = 1, ωT = e−2. It is to be remarked that, bare texture

representation is not credible since it is determined in block resolution.

2.2.1.4 Matte Re�nement

The alpha matte generation involves block processing, which means the val-

ues are kept constant block-wise in initial computation. In order to achieve

a smoother transition between the adjacent pixels, a re�nement procedure is

proposed so as to provide that neighbouring pixels with high con�dence values

reinforce coherency on the alpha values. One-step iteration of the re�nement

procedure is described as

αrefp =
1∑

n∈Np Up(n)

∑
n∈Np

Up(n)αn, (2.12)

in which αrefp is the re�ned version of the computed αp for some pixel p. Up(n)

is the contribution of the Np, the neighbourhood of p. The contribution Up(n),

Up(n) = Acp(n)× Atp(n)×Q(n) (2.13)
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and

Ap(n) = e
− ||Ip−In||

1
Card(Np)

∑
n∈Np ||Ip−In|| (2.14)

and Q(n) is the normalized number of known values in the neighbourhood of n

to its number of total numbers.

2.2.2 Test Results

The threshold values for the algorithm are �nely tuned for each segmentation.

The implementation includes a feature that the objects to be extracted can be

marked using a free hand drawing tool. An example result of the algorithm is

provided below in Figure 2.5

(a) Image (b) Trimap

(c) System Output-Layer (d) System Output-Layer

Figure 2.5: An example alpha extraction & layering as an output of the imple-
mentated algorithm [135].
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The comparison of the implemented method with di�erent trimap extractors

are provided in Figure 2.6. It has to be remarked that some morphological

operations are done to extract a region boundary from the Intelligent Scissors

(IS) output as it merely returns a binary output, where as the freehand tool,like

a paintbrush has its own adjustable thickness.

The comparative results of the two trimap extractors demonstrate that a free-

hand drawing tool is su�cient to extract a required quality alpha layer out

of the image. For the cases, where exact layering is not achieved, further re-

gional thresholding and morphological operations are applied in the Rendering

Block, to be discussed in Chapter 5.

21



(a) Image

(b) Trimap-FH (c) Layer-FH (d) Alpha Matte- FH

(e) Trimap-IS (f) Layer-IS (g) Alpha Matte-IS

Figure 2.6: Comparison of alpha extraction & layering with freehand drawing
tool and Intelligent Scissors [110] as an output of the implementated algorithm
[135].
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CHAPTER 3

INPAINTING

Inpainting is a term that dates back to Renaissance and is related to art restora-

tion and it refers to the a cumulation of activities to keep the medieval art pieces

to date [20]. This very term was �rst introduced to telecommunications area to

name the error concealment applications in making up for the corrupted data.

Later on, in last two decades, it has started to be used as the given name to

removal of foreground objects and handling of disocclusion by completing the

background pixels in digital images.

The main objective of using inpainting techniques in digital image processing is

to manipulate pixel data on a certain region X on an image such that this X of

interest has similar features and appear in accordance with the rest of the image.

Consequently, the reconstructed parts of the image are obtained in such a visual

continuation with the remainder image so that a random observer cannot grasp

the fact the images have been retouched by any arti�cial means. The motives

behind digital image inpainting include object removal, crack �lling, texture

synthesis and error concealment in general, however; concerning the entire work

devoted for this thesis, it is made use of as a means of depth enhancement on

the image. The procedure of depth enhancement will be explained in detail later

in this chapter.

An image may said to be composed of structure, which is the rough sketch of the

object boundaries; texture, the surface characteristic of the objects on the image

and; the colour information, and for certain, these are what to be �gured out

thoroughly and imitated while generating pixels for the undesired locations [161].
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(a) (b) (c)

Figure 3.1: (a) Original Image. (b) Region Mask X. (c) Inpainted Image.

Any of these three assets may have more strength in the representation of sepa-

rate images and clearly, needed to be prioritized among the others. Henceforth,

regarding this fact as a basis, numerous approaches have been developed to re-

alize inpainting goals, each taking one or two of the aforementioned assets to be

more vital.

3.0.1 Necessity of Inpainting

Inpainting, as mentioned beforehand, is employed in this application of ani-

mation for above anything else, for depth enhancement. To be broad on the

concept, the fundamentals of video animation and the experimental setup used

to achieve this are to be revisited. When an animation is considered regarding

the aspects of photorealism, perspective is an essentiality to be paid attention

to. Due to the structural and morphological di�erences of the motile objects, the

image is preferred to be partitioned into di�erent layers in the previous block of

the experimental setup. This partitioning outputs a number of layers in which

of each there exists an object that is supposed to show a certain type of motion

and the rest of the layer remains transparent. If the image frame is taken to

be the x-y plane, then extracted layers can be translated along the z-axis to

arrange the objects in foreground and the background, as shown in Figure 3.2.
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(a) Single Image

(b) Layering without Inpainting (c) Layering with Inpainting

Figure 3.2: The necessity of inpainting for perception of depth.

If the observation angle is taken as to be perpendicular to the image plane, from

where the frame will look as an unlayered image, when the observation point

is rotated around this plane, the separation between the layers will be visible.

Consequently, a rough perspective can be said to be introduced into the video

frame by the matting block of the setup.

For a complete perspective and perception of depth in the video frame, there

exists the obstacle of blank pixels that occur due to the motion of any layer.

Since these layers are formed of a group of pixels of a single image, even with

the slightest spatial dislocation of any pixel, with the arti�cially created motion,

brings forward the loss of data in its former position. More precisely, that

pixel information, once occluded by a foreground object will be disoccluded
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with unknown intensity values, and it is to be admitted that the larger the

motion is, the greater the dislocated blob becomes, as does the loss of pixel

data, inevitably, leading to the formation of vast blank blobs in the video frame.

The blank pixels/blobs do not only result in the deterioration of the seamless

video frame, but also weaken the notion of proximity-remoteness of the objects

with respect to the viewer. Hence, there rises the necessity of making up for

the now-disoccluded pixels by determining appropriate intensity values so as

to maintain the coherence of the image, through expanding the background

region of the image. By applying this method, a proper appreciation of depth

is obtained by the human visual system at the object boundaries.

Depth enhancement is a widely used concept in multi-view geometry, which has

many applications such as controller-free gaming [69], stereoscopic image prob-

lems [96], etc. used to obtain higher quality depth maps that are more accurate

on localizing objects and more eliminated in terms of system noise. Depend-

ing on the type of application, the desired accuracy of the depth may alter.

In this application rather than extracting a depth map from the image, which

is an ill-posed problem and computationally costly, the depth enhancement is

realized by �lling-in the aforementioned blank pixels/blobs directly, with the ex-

traction procedure skipped. Precisely, the inpainted layers function as cut-slices

of the x-y plane from di�erent z-values, and instead of using a continuous depth

map that is not obtained, these 'painted layers are used as its discrete samples,

sampled at di�erent z(depth).

3.1 Classi�cation of Inpainting Techniques

This classi�cation is based how the information of the region to inpainted and

its background is provided to the algorithm. Since [51] which is widely accepted

as one of the pioneers of image inpainting, although the name is fathered by

Bertalmio et al.'s paper [21], a vast variety of research has been devoted to the

area. Hence, it is not fair to classify all the work in terms of a single criterion,

but it would be wise to investigate them with respect to di�erent aspects.
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Figure 3.3: A classi�cation of Inpainting approaches from four di�erent aspects.

3.1.1 Point of View

This classi�cation is based on which core element of the image is tried to be

prioritized among the others for the speci�c in painting application and is one of

the most critical categorizations on how the algorithm is expected to behave [29].

Eventualy it is the most widely used in literature [50], [29], [41].

• Texture-Preserving

• Geometry-Preserving

• Geo-texture Preserving

There are other aspects to classify the inpainting techniques developed so far.

These classi�cations apart from the POV include the domain, region manipula-

tion and usage of information. For the sake of clarity they can be summarized

as follows:

Inpainting Domain
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Single Image Inpainting: This group refers to the algorithms that are devoted

to �lling region on an input image with no prior information or input.

Stereoscopic Image Inpainting: The input for painting is a stereoscopic image

pair.

Multi-view Inpainting: The region to be �lled and its background is provided

from many di�erent points of observation.

Video Inpainting: The input and (most often) the output are available in the

from of video frame sequences. May be used for error concealment.

Essentially is it to be clari�ed in the �rst place that, due to the single input

nature of the framework, stereoscopic [111], [80] or multi-view [119], [153], [10]

inpainting techniques and video inpainting applications [142], [163] are beyond

the scope of this thesis work.

Region Manipulation

Pixel-wise: In general, the pioneering methods tend to implement pixel-wise

processing algorithms. [51], [162], [5], [98] are works devoted to texture synthe-

sis by using individual pixel information from the image. [21], [32], [11], [19] are

variational approaches in image inpainting where pixel values are computed sep-

arately by solving a constrained equation. These methods are slower compared

to the other groups due to individual manipulation requirements.

Patch-wise: The retouching of the image is realized through copying or calculat-

ing of pixels in arbitrary but �xed sized groups. Patch-based processing enables

the reduction in number of the iteration of the algorithm; however, algorith-

mically patch based methods are more complex to allow parallel processing of

data.

Fragment-wise: In these methods, the information of pixel values is not con-

veyed in �xed sizes but rather in irregular chunks. Drori et al. propose copying

of data in the form of �peels� through a coarse-to-�ne image decomposition pro-

cedure [50], so does Lubin et. al in the improved version of the algorithm [102].

In [34], [92], [83], [100] employ segmentation prior to region �lling such that

fragments are �lled by using connected image regions.
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Usage of Information

Exemplar Based Methods: Examplar-based inpainting depends on the usage of

self-contained information from the valid part of the image to �ll one that is

unknown. [42], [41], [14], [15], [90]. The exemplars may be pixels, texture ele-

ments refers as texels, patches or even fragments of input image depending on

the application. Typically, the method includes an optional pre-processing of the

exemplar [90], [114], followed by a similarity search mechanism, brute-force [52],

KD-trees [162], hashing [90], [82], random search [14], [15] etc. or a global opti-

mization method [89], [91], [95] for pasting to provide pixel information.

Computation Based Methods: These approaches include mathematical model

�tting on the whole geometry of the image to make up for the missing pixel

information. In literature, the acclaimed modes are most often variational [21],

[18], [11] or describe natural phenomena [19], [105], [55]. The completion proce-

dure involves solutions of complex equations constrained on the image, that is to

say, the replication of the known values is eliminated and each pixel is computed

from scratch.

Hybrid Methods: This �nal bunch is the amalgamation of the former two groups,

where the provided information is directly employed in some regions accom-

panied with mathematical manipulation for correct propagation of the image

structure. Chaos mosaic [66] is one of those methods where small (in size) but

numerous (in quantity) patches are created out of an exemplar, then merged into

a single vast image. The merger of the small patches include inter-patch manip-

ulation in order to avoid blocking-e�ect in the output. [56], [3] treat the target

region as the weighted sums of the patches in the source region as a solution of

variational constraint. Segmentation based inpainting methods [83], [100], [34]

require interpolation methods for a seamless �nish in the output.

Although the mentioned classi�cations are important in understanding the na-

ture of the methods proposed, the literature analysis in this chapter will be

based on the Point of View criterion, therefore the development of Texture-

Preserving, Geometry-Preserving & Geo-Texture Preserving methods

will be explained in detail.
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3.2 Texture-Preserving Viewpoint

Counted as one of the core elements on an image, textures can describe a vast va-

riety of repeated surface characteristics with a degree of randomness to represent

natural or unnatural objects. Texturing is a core process for computer graphics

applications [161] where synthesized textures are commonly used to imitate the

real world objects and their features. Texture-preserving methods gather the

algorithms that are dedicated to synthesizing images out of a sample texture

or mapping a texture on a given image. The bene�ts of this texture-oriented

group of methods involve the capability to generate vast areas of images and/or

tileable textures out of a small sample inputs by straightforward techniques [5].

3.2.1 Inpainting with Texture-Oriented Methods

Particularly, the employment of texture-oriented in inpainting applications have

the common motive of extending the present texture models in the image to

cover up the undesired or damaged regions on the image. This extension is

realized by duplicating certain image regions to �t appropriately into target

region to be inpainted.

In a more broad explanation, it can be said that the intensity value of each

every pixel to be inpainted is copied from a matching pixel in the source image.

Finding the source-target match pairs involves sampling of the input source

image for data that is compatible with those in the location of their target

region correspondents.

Conclusively, the whole approach can be summarized as a similarity search,

which contains an assembly of objects represented with certain features located

in the high-dimensional space of image. With the queries provided, it is required

to �gure out the closest object to the desired query [44]. In texture synthesis,

modelling the image and sampling are the two crucial factors to be considered,

since the more accurate the model is, the more the visual �delity of the synthetic

images become compared to the raw image, and meanwhile yielding higher e�-

cacies during sampling will reduce the computational cost of the whole synthesis
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operation [161]. These emphasized concerns determine the evolution of texture-

oriented methods, id est., the decision on how these samples would be selected,

with respect to selection of candidates, neighbourhood size, search order and the

�likeliness measure� create the change in the texture synthesis algorithm.

Indeed, this approach is very compatible with the human visual system, which

has the potential to hallucinate the unknown information with what is already

available. Obviously, it is fair enough that synthesizing textures is one of the

pioneering techniques to be used not in only inpainting applications, but with

further processing for object detection, recognition application as well [71].

3.2.2 Texture-Oriented Approaches in Literature

In this section a brief overview of the previous work on texture-oriented meth-

ods, limited to 2D image textures, will be provided. An important notice is to

be made that, texture synthesis and texture-oriented inpaintings are separate

problem, but they can be formulated in a similar framework when the approach

is basic. In literature, it is possible to �nd the adaptations of the same method

for both problems with simple algorithmic changes.

3.2.2.1 Non-parametrical Texture Syntesis & Pixel-Based Evolution

[52] is one of the state-of-the-art texture synthesis methods to be used in in-

painting applications that outperformed its previous work visually and it is a

pioneer in this very speci�c �eld such that several new algorithms have been

developed taking it as the core idea of inspiration. The algorithm can be com-

prehended with ease; therefore, a broad explanation of the method worth the

e�ort for the reader to grasp the �ow in the development of ideas in time.

Markov Random Field

It is a widely proposed idea in the image processing and vision applications

that by using Markov Random Field, MRF, model the images are divided into

a collection of nodes, where nodes represent either pixels or agglomerations of
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Figure 3.4: Graph representation for a Random Markov Field (MRF) modelling
of an image using 3x3 neighbourhood.

pixes [23]. In [52], image textures are modelled as a MRF, to generate textured

large images by probability sampling.

Precisely, it has the key assumption that the probability distribution of pixel in-

tensity of a pixel, given those values of its spatial neighbourhood, is independent

of the remainder image. In other words, two pixels that share the same neigh-

bourhood information are expected to be the same. Based on this corollary, the

goal of texture synthesis can be formulated as follows: given an input texture,

synthesize an output texture so that for each output pixel, its spatial neigh-

bourhood is similar to at least one neighbourhood at the input. The solution to

satisfy the probability assumption is to seek the best matching neighbourhood

in the image.

Given in Figure 3.5, let image I be consisting of two regions, namely Λ, the

region to be inpainted and I − Λ, the region to be kept as it is. The pixels

belonging to the region Λ are �lled in by copying the pixel intensity values

of the I − Λ region in terms of similarity with respect to the adjacent pixels.

Precisely, the algorithm assumes that pixels that have alike neighbouring pixels

tend to have the same intensity values. Therefore, for each pixel in Λ the best

�tting pixel is searched in the I − Λ domain using the similarity metric of Sum

of Squared Distances, SSD,
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Figure 3.5: Filling Method proposed by Efros et al. [52]. The image, I is searched
for the candidates best matching the green pixel, in λ by comparing neighbour-
hood information. The most similar value in I − λ, that of the red pixel is
copied.

d(ψt, ψc) =
∑
k

∑
l

|ψt(k, j)− ψc(k, j)|2 (3.1)

where, ψt is the neighbourhood of pixel t, ψt ∈ Λ, ψc is the neighbourhood of

pixel c, ψc ∈ I − Λ,

that computes the normalized Euclidean distance between the neighbours of the

candidate pixels that are already retouched or desired to be kept unchanged.

The best match is constrained on:

c =argmin d(ψt, ψci) (3.2)

where ci is the candidates for t for i = 1, 2, ...N

Consecutively, then t is inpainted with the value of c.

The size of the neighbourhood is a user-speci�ed parameter and should be com-

patible with the largest unit repeated pattern in the image to keep the texture

energy within the neighbourhood. It is a rather computationally costly method,

nearly the whole image is searched for each pixel to be determined [52], reach-

ing the O(N2) complexity, due to the fact that sampling of the image can be

described as non-local, such that a single search is performed in the entire re-

mainder image.
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In order not to favour the gradients or object edges along any principle direction

in the image plane +/ − x or +/ − y, Λ region is not �lled using straight lines

of order. Instead, the boundary pixels are inpainted �rst in a concentric means

so as to propagate the texture towards the center of the lambda region. This

method of prioritization is called the onion-peel ordering that allows the features

to be continuous in all directions possible more e�ectively than a linear �lling

method. In a nutshell, the method is very simple but fundamental one to build

on with a single parameter to determine the neighbourhood size [161].

In [162], Markov Random Field assumption is kept and the texture synthesis

applications are regarded as realizations of a stationary and local random pro-

cesses. The major problems of textures synthesis are de�ned as the estimation

of the entire stochastic process of the image by a �nite sample and the challenge

to obtain a search method to be considered as e�cient. Starting from a random

noise �eld, to capture the randomness factor in the real patterns, each pixel is

manipulated by verbatim copying individually to make the output similar to the

input texture. The �rst problem is handled with the locality assumption, where

they mentioned the importance of neighbourhood similarity and preferred the

neighbourhood size to be arbitrary so as to provide �exibility on textures with

di�erent sizes of regular structure. Furthermore, to be loyal to the structure of

the input, a causality principal is adopted where an L-shaped neighbourhood

is searched, in a raster scan order, by comparing the similarity only with the

already assigned pixels using the typical SSD metric.

In texture synthesis, The WL algorithm [162], despite being successful in mim-

icking natural textures, especially smoother ones without well de�ned edges,

unfortunately, when sample textures that form the seed of texture synthesis ap-

pear to have sharper transitions or visually distinct features, its performance of

replication in the generated image is not that jaw-dropping as the edges appear

to be blurred. A similar visual degradation is evident in [66], where a bunch of

relatively small texture regions are generated and gathered via random pasting.

The post processing to ful�l the transition between the tiles impels the occur-

rence of blurry edges. This drawback is due to the utilization of the simple an

smooth norm L2, which fails to acquire the behaviour of edges, corners or higher
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Figure 3.6: Image blurring e�ect of the L2 norm illustrated in the synthesized
textures using [162]. Image retrieved from the corresponding paper.

order features [5]. Human visual perception is very conformal to edges [155]

and it can be deluded provided by characterization of the image by preserved

edges. [124] tackles with the blurriness issue with a trade-o� between the quality

and rapid computation that was achieved in [66].

3.2.2.2 Coherence and Region-Growing E�ect

Both [52] and [162] su�er from low-quality and speed as query methods. In term

of the quality of the output image, [162] gives noisy results and [52] irrelevantly

textured images. In [5], Ashikhmin et al. rely on the representational prowess

of WL and propose some modi�cations to prevail the smoothing e�ect of the

system. A critical observation that forms the basis of this novel algorithm is

that the computed pixels of the output image have neighbourhoods in the input

texture, which are the shifted versions of the neighbourhoods of the pixels yet

to be painted. In other words, the candidates for the current pixel to be painted

are the iso-positioned neighbours, in the original texture, of its already painted

neighbours in the output. A better explanation is provided visually in Figure

3.7.

As a consequence, by using the e�ect of coherency, instead of starting each search

for the best match from scratch, the vicinity information is further shifted from

the de�ned L-neighbourhood that is already �lled. This requires extra memory

to keep track of the input image coordinates for the output image duplicates,

but fortunately it e�ectively shortens the run-time of generation. During im-

plementation, a random initialization of these locations are preferred. Owing to

its information propagation property, the results demonstrate a visual region-
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Figure 3.7: Filling Method proposed by Ashikhmin [5]. The neighbourhood
information of the previous matches are propagated to the neighbours for a
faster implementation.

growing e�ect where the tiles are not formed as rectangular but in irregular

chunks, which makes the outcome look more seamless. Due to its straight scan-

line order, a toroidal neighbourhood treatment is evident, which is not much of a

consideration in horizontal tileability; however, depending on the input texture,

the algorithm may be trapped in distinct features located in the bottom section,

causing a more frequent show up of the feature. A random candidate assign-

ment method is proposed, to overcome this shortcoming, if applicable, during

implementation.

[5] allows user interaction to determine the general properties of the generated

texture. This �exibility ranges from the adjacency boundaries to the initial-

ization of the best match locations. Di�erent from [162] larger neighbourhood

only helps the algorithm in [5] to have more candidates in seeking the most

similar, whereas, it is vital for [162] mirror the low frequency characteristics of

the texture in output image. [5] is proposed to be not only a texture synthesis

method but rather a texture mapping method, in which a fractional blend of

the frequency characteristics of two separate images is achieved to produce im-

ages that demonstrate features belonging to both. The user-interaction in the

initialization phase for the best match location map leads to the production of
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Figure 3.8: K-Coherence Search: As an improvement to the method proposed in
in [5], the search domain is extended with the addition of k nearest neighbours
of the coherence candidates

amalgamated images.

3.2.2.3 Accelerations on the Search Methods

Other proposals to accelerate the search mechanism were [162] by tree-structured

vector quantization (TSVQ), [91] using kd-trees, [172] by jump maps. Inspired

by [5], [154] de�nes k-coherence where similarity information is propagated as

in [5] using k-best matches, as illustrated in Figure 3.8. A recent research is

devoted to the acceleration of the [52] algorithm using Principal Component

Analysis, namely PCA.

3.2.2.4 From Pixels to Patches

Due to timing considerations and the struggle to have higher quality output

images, the novel approaches, the unit of search and data transfer is altered

from pixels to patches. However, the introduction patches to the algorithm

domain introduced two problems. The former, indeed, being not necessarily a

problem but a clari�cation, is that although the required query iterations are

decreased to accelerate the algorithms, the parallel processing of within-patch

information is still a burden. Moreover, to state the latter problem, it is to be

admitted that patch pasting brings in the concern of overlapping patches.
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The solutions proposed to the latter concern have a diversity among the litera-

ture, where in [124] the patches are let to be overpainted, which causes blocking

artefacts on the output image due to mismatched features and in [98] weighted

blending of the regions is preferred. Unfortunately, the sharpness of the edges

is eventually lost and the �nal image comes in a blurred version of the sample.

3.2.2.5 Cut-primed Copying

Efros et al., in [51], so as to preserve the completeness of the image, prior to

insertion of a selected patch into the target region, compute the error of the

overlap between the already placed blocks and the current one. The boundary

of the two blocks for vertical overlapping is determine by the following error

function:

Err(k,l) = err(k,l) +min(Err(k−1,l−1), Err(k−1,l), Err(k−1,l+1)) (3.3)

where

err = (ψOV LPt − ψOV LPt )2 (3.4)

and ψOV LPt ,ψOV LPt are the overlapping regions that belong to patches centred at

pixels t & c, respectively.

A similar function can be formulated for horizontally oriented overlaps or both

by combination of the two. The dramatic increase in the E value determines

where the mismatch occurs between the patches and by tracing back the values

it is possible to �gure out where the cut between the patches is to be made. This

method is implemented with dynamic programming of Dijkstra's algorithm [49].

In [92], the extension of the idea of seam �nding is present. In this method,

image pixels are represented as the nodes in a graphical model and the similarity

measure between two adjacent pixels, t and c is de�ned as

C ′(t, c, ψα, ψβ) =
C(t, c, ψα, ψβ)

||Gradψα(t)||+ ||Gradψβ(t)||+ ||Gradψα(c)||+ ||Gradψβ(c)||
(3.5)
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Figure 3.9: Filling Method proposed by Kwatra et al. [92]. Overlapping regions
for the patches are cut using minimum− cut/maximum− flow approach.

||.|| standing for the norm operator and ψα, ψβ for the old and the new patches,

respectively and using

C(t, c, ψα, ψβ) = ||ψα(t)− ψβ(t)||+ ||ψα(c)− ψβ(c)|| (3.6)

where Grad(.) performs directional gradient computation.

Indeed [92] is the application of the minimum− cut/maximum−flow problem

[60], [134] on texture synthesis, and the solution determines the path to separate

the given nodes, namely pixels.

In [126] the energy function is restated the function by adding extra constraints

on the similarity of of the patch to be placed wth the already placed patches.

The main di�erence of the two cost functions, with [92], is that the latter involves

a patch placement cost where in the former all the patch placements are made

randomly. Eventually, the newer one eliminates the necessity of including query

& paste heuristics to preserve the overall structure of the input sample.

3.2.2.6 Texture Optimization

A texture, in terms of statistical description, is the outcome of a random process.

Hence, in [75] Heeger et. al modi�ed an initial random noise �eld to match

the histogram of the noise �eld to that of a texture sample image, by using

a pyramidal approach, where steerable Laplacian pyramids are used to extract
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information via subband transformations at multiple scales and orientations. [26]

is a recent extension to [75] to apply the method on coloured textures using

PCA. [46] has a similar approach to [75], but the algorithm initialized with the

down-scaled version of the input texture instead.

In [91], Kawatra et al. propose a joint optimization formulation for texture

synthesis that allow gradual re�nement and retouching on the generated texture.

The problem is de�ned as an energy minimization approach solved through

Expectation-Maximization [109].

Unlike the pixel growing techniques in literature [5], [154] to preserve coherence

solely in localities, this methodology gathers the neighbourhood based assump-

tions into a global measure to metricate the quality of the generated image.

Based on the premise that each neighbourhood on the synthesized image must

have a corresponding similar neighbourhood in the input sample, the energy to

be minimized is formulated as follows:

G(t, cp) =
∑
p∈T ∗
|tp − cp|2 (3.7)

where T ∗ refers to the active subset T, the output image.

Algorithm 1 TS with Global Optimization [91]

Initialization: c0
p = arbitrary c∗p in C, ∀p ∈ T∗

function EM(C, T )

for iterationτ = 1 to N do

tτ+1 ← argmintG(t, cτp)

cτ+1
p ← NN of tτ+1

p in C, ∀p ∈ T∗
if cτ+1

p == cτp,∀ ∈ T∗ then
break

end if

end for

end function

The E-step of the EM is where energy function E is computed, keeping the

candidate set of input neighbourhood �xed and in the M-step the set of com-
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patible neighbourhoods are found via tree search. The two interleaved steps are

reiterated until a convergence criterion is reached.

[70] ameliorated this method with respect to two-aspects of the output, e�ciency

and quality. The infamous L2 norm is utilized in the previous method [91], which

is empirically known to be one of the primal causes of blur, whilst [70] utilizes

k-coherence approach for both energy calculation (expectation-phase) and the

query of best matches (maximization-phase). Consequently, as the re�nement

on the image is omitted by direct copying of pixel values the formation blur is

prevented, and the operation speed is �xed to a constant value rather than being

O(log(N)).

3.2.3 Tests on Texture-Oriented POV

It has been discussed that texture synthesis methods are useful in completing

a region by replicating the features of a sample image. Object removal, how-

ever in most cases include more than replication of a single pattern, therefore

texture synthesis methods are not suitable for the completion of holes left after

large objects [50]. This fact will be illustrated by test results on this group of

methodology.

Synthesizing Natural Textures The selection of this method for testing owes

to the fact that it performs pixel-based synthesis as opposed to all the other

methods implemented within the scope of the research [5]. As explained in Sec-

tion 3.2.2.2, it has emphasis on coherency propagation in best match queries.

The test result for image completion using this method is provided in Figure

3.10. As observed the inpainted image contains chunks of pixel information

from irrelevant parts of the image as result of the image. This is due to two

reasons the neighbourhood size is not capable of capturing the true amount of

information and the coherence propagation increased the aftermath of propaga-

tion of incorrect information. Also the output is blurry due to the utilization of

a small unit of synthesis, namely a pixel.

Image Quilting Proposed by Efros et al. [51], this method is one of the pioneers
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(a) Original Image

(b) Region Mask X (c) Inpainting Results

Figure 3.10: Inpainting Result on 305x405 pixel image using Natural Texture
Synthesis [5]

of patch based synthesis and it allows the patches to be overlapped by calculating

an error tolerance on the overlap region. The methodology is explained in Section

3.2.2.4.

As the algorithm is formulated in raster scan for patch it requires elongated

time intervals, therefore in our implementation, the input texture is tiled into

distinct regions larger than the patch size. Hence, once match occurs, the tile

that the patch is located is saved. For the next searches, patch is compared with

the earlier patches, if the SSD is smaller than a threshold, the search space is

restricted to that tile. Indeed, the implementation is somewhere midway between

the k-d tree approach of pixel based synthesis in [162] and Image Quilting. For

the computation of boundary cut Dijkstra's algorithm is used.The similarity

threshold for the image is the tolerance value [51],taken to be 0.01 as indicated.

The result for image inpainting given in Figure 3.11, displaying a result with

blocking e�ects especially on the region boundaries. Even though, overlapping

of patches is allowed, the method fails to capture correct geometry in objects

boundaries.
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(a) Original Image

(b) Region Mask X (c) Inpainting Results

Figure 3.11: Inpainting Result on 305x405 pixel image using Image Quilting [51]

3.3 Geometry-Preserving Viewpoint

When the removal of objects in the foreground is considered, it is abundant

that the background objects are partially or completely occluded by the very

foreground object itself. In partial occlusion cases, the apparent parts of the

objects act as clues to be interpolated in continuum with the geometric shape

of the background objects [29]. Human visual system has the capability of

intuitively recognizing and hallucinating the disguised parts objects as complete

[121]. For digital inpainting problems, this merit is inspirational and there is

struggle mimic this well-functioning facility.

3.3.1 Inpainting Using Geometry-Oriented Methods

The methods that fall into this group try to complete the image using a conti-

nuity assumption, and �gure out the missing pixel values by solving for a partial

di�erential equations. A PDE can be derived based on the image minimizing a

variational cost function or by using a phenomenological modelling. The priority
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of variational inpainting is to preserve the global structure present in the image

while reconstruction the undesired/corrupted region [29].

With a geometry-based point-of-view, Partial Di�erential Equations, PDE-based

methods di�er from the techniques that attempt to �ll in the corrupted or de-

sired part of the image by using samples from the remainder image, but rather

compute for the pixel values regarding the model constraints. Therefore, pri-

marily the locating the prominent features of remainder image becomes crucial,

since the object contours are required to be completed for proper depiction of

background object. Then, how to formulate the continuation is to be decided,

which is the main criterion that determines the alterations between the varia-

tional image inpainting approaches.

3.3.2 Geometry-Oriented Approaches in Literature

3.3.2.1 Level Lines

Ogden et. al states an early example of interpolation based �lling of the miss-

ing pixels in the images. [115] proposes constructing a Gaussian pyramid that

denotes the image with varying spatial resolution values, from the coarsest to

the �nest, G0 and Gn, respectively. The method consists of passing the image

through a Gaussian �lter, and successively up and down sampling the image.

[107] is a yet another method for interpolation where the isophates (the adja-

cent same-intensity pixels) of the image are tried to be preserved. This basic

method, attacking the problem of disocclusion, has inspired the basis of plethora

of algorithms devoted to the area.

∫
[ξ,Ξ]

∫
C`

(α + |κC`|)dsd` (3.8)

The energy function in equation 3.8 that the image is constrained on is Euler's

elastic model, using L1 norm, which draws a parallelism between the disocclusion

problem and the brain's ability to extrapolate the cracked edges in its sight. The

range [ξ,Ξ] corresponds to the pixel intensity values that the inpainting domain
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λ in image I can have, C` is the non-crossing curves that are expected to coincide

with the image isophates in the ε-vicinity of the hole boundary. α, β are tunable

and context-dependant.

1

Figure 3.12: An illustration of the perception of incomplete edges by the human
visual system as a motivation to use elastica model. (a) The complete object.
(b) The occluded object. (c) Interpolation of the curve model to reform the
shape of the object.

3.3.2.2 PDE-based Methods

A di�erential equation consists of a function of single or multiple equations

and its derivatives, hence it is comprehensible that they are the epitome of

image inpainting, since most of the image features can be described by arbitrary

superpositions of its high order moments.

The inpainting is fathered by the work in [21] and Bertalmio et al. make signif-

icant de�nition of the inpainting problem, where no information for the target

region is provided, is not to be taken for a denoising problem, in which the data

values are present in corrupted manner.

What is tried to be imitated here is the means how the art restorators work. The

global appearance of the image is to be kept while, the gaps are needed to be

�lled in via prolonging the contour lines that arrive the region boundary. That

principle de�nes the nature of PDE-based or variational inpainting in attacking

the problem: Unlike the texture-oriented methods that were presented n the pre-

vious subsections, these methods are local, and only the boundary information

is considered during operation.
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Let ω be the region to be inpainted in the image I, on the domain ω then each

instance τ of the �lling algorithm can be modelled as in equation 3.9.

Iτ = ∇⊥I · ∇(4I), in ω (3.9)

where 4∗ de�nes a smoothness operator on I, the image. Under this operator,

the points that yield constant values on the orientation induced by the �eld ∇⊥I
are de�ned as stationary. The model is combined with the anisotropic-di�usion

equation to form

Iτ = ρ(x)|∇I|∇ · ∇I
|∇I|

, (3.10)

where ρ, a smooth cut-o� function, enforces the operation to be limited to the

boundary of the image hole ∂ω.

In order to account for the linearity-enforcing property, the BV model is sub-

stituted for the following one in another work by Chan et. al [31].

Iτ = ∇ · C(κ)
∇I
|∇I|

+ λ(I0 − I) (3.11)

where C : B ← [0,+∞) and B stands for to a bunch of curvature functions.

But it is easily comprehended from the λ coe�cient in the equation that large

curves upon image completion is penalized. To be precise, the conductivity

coe�cient must be examined. In the previous work, 1
|∇I| leads to the di�usion

to be only dependent on the strength of the gradient. The addition of C(κ)

obliterates strong curves and favours smaller ones. Hence, the CCD model

propagates information in a way that is perpendicular to the algorithm in [21]

where smoothness is prioritized along the isophates.

3.3.2.3 Introducing Fluid Dynamics

Bertalmio et al. developed the previous work in [19] by modelling a new di�usion

model. The reason behind is to be more strict on the boundary conditions

such that the �ow is kept within the target region. An optional solution is to

employ stronger boundary conditions [19]. In previous works on �uid dynamics
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demonstrate that time-dependent solutions of the Navier-Stokes equations with

isotropic viscosity exist and are unique [104].

Within this method, the �ow of a compressible �uid in 2D is used to formulate

the changes in the pixel intensities. The former expression of image smoothness

in [21] now relates to the vorticity of the �uid, and the isophates are consid-

ered as the riverbed and the di�usion function is the viscosity. Eventually, the

problem turns into an analogy of how a stream would �ll its basin and the so-

lution is reached by a variational approach. In this subsequent work, the model

includes two PDEs of second-order, corresponding to gradient orientations and

the grayscale intensities.

3.3.2.4 Euler's Elastica Model

As mentioned, Elastica Model was previously introduced in Masnou et al.'s

model for disocclusion [107]. In the subsequent works , [138], [137], [139] Chan

et al. propose a variational approach using Masnou et al.'s elastica assumption.

The motivation is derived from the previous mathematical approaches used for

image restoration and removal of noise.

Iτ = ∇ · ∇I
|∇I|

+ λ(f − I) (3.12)

where λ refers to a penalization term, and f is the corrupted image. The model

in can be interpreted as the joint minimization total variation, (TV) inside ω

and the �delity measure outside. Overall, it is a bounded variation, (BV) and

the existence of the solution comes inherently. That is, a BV model requires

the existence of data and the prior information. In this model, the data is

used from the known part of the image and the elastica-curves function high-

order (second) geometric information. The output images demonstrate straight

line connections of across the gap, which makes the model only feasible for

�lling small gaps. Indeed, this model further extends the model to exploit the

bene�ts of [21] and [30], however it su�ers from converging to forced linear

geometry [133].
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3.3.2.5 Active-Contours

Proposed by Esedoglu et al., [55] uses the variational Mumford-Shah-Euler

model, as a combination of the MS model [112] that is widely used for image

segmentation and the long-discussed elastica curves. This method is proposed

as an improvement to [139] due to its above mentioned shortcomings.

Th former MS object-line model

E[I,Γ] =
γ

2

∫ a

Ω\Γ
|∇I|2dx+ αlength(Γ) (3.13)

is optimal in simple image denoising and segmentation algorithm where the im-

age complexity is low, nevertheless, it lacks quality in inpainting applications,

such that yields solutions with shortest possible isophates such that the inpaint-

ing forced on linear structures and fails to incorporate curvi-linearities.

E(Γ) =

∫
Γ

(α + βκ2)ds = αlength(Γ) +

∫
Γ

βκ2)ds

+
γ

2

∫ a

Ω\Γ
|∇I|2dx+ αlength(Γ)

(3.14)

The MSE model is more successful in adapting to the curvilinear geometries of

the objects with the addition of the elastica model and its e�cient numerical

realization based on the Gamma-convergence approximations by [47].

3.3.2.6 Coherence Transport

PDE-based or variational methods are mostly infamous for their elongated op-

eration intervals and computational costs. This is the aftermath of the fact that

equations with high-order derivatives require more iteration for the correct solu-

tion, whereas low-orders are possible to be stabiized non-iteratively. To prevail

as a rapid method, Bornemann et al. [24] propose the utilization of coherence

transport in image inpainting applications. The core idea is based on the Telea

et al.'s algorithm to inpaint holes in a single pass [150] by Fast Marching Method

(FFM). Telea equation how to inpaint a pixel

I(x) =

∑
q∈Bε(x) w(x, q)[I(q) +∇I(q)(x− q)]∑

q∈Bε(x) w(x, q)
(3.15)
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Figure 3.13: Telea's ordering of pixels on D domain based on their distances to
the boundary.

where x is a pixel on the image I and Be is an open ball around x, representing

its known neighbourhood, and w(x, q) is a weighting function of the intensities

and local gradients.

In order to pain the whole region, the boundary between the source-and the

target is needed to be narrowed, by advancing the inpainting of pixels with an

ascending order with respect to their distance to the contour. By the employ-

ment of the Eikonal equation:

|∇T | = 1 on ω, with T = 0 on the boundary, ∂ω. (3.16)

the distance map is obtained. In [24], an extra constraint of coherence transport

is introduced. This �rst-order quasi-linear modelling enforces the propagation

of the outside-boundary information along the dominant edges and features on

the image, determined by the coherence �eld. The computation of the �eld

is done by taking the eigenvector corresponding to the minimum eigenvalue of

the image structure tensor. Similar to the Eikonal equation, the employment

Dirichlet constraint allow the FFM to be realized. Hence, the pixels, one at

a time, are �lled according to the closeness to the boundary, using again the

Euclidian distance. In this newer model, the weighing function is stated as

w(x, q) =
π

2

µ

|x− q|
e−

µ2

2ε2
|C⊥(x)·(x−q)|2 (3.17)

and the di�erential-equation is given by

It = −∇⊥4 Iσ · I, Iσ = GH ? I (3.18)
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where HG is a Gaussian heat kernel with standard deviation of σ. The structure

tensor for a grayscale image is given as

Jρ(∇Iσ) = GHρ ? (∇Iσ
⊗
∇Iσ) (3.19)

which is positive semi-de�nite 2x2 matrix at each point p of the image. The

eigenvector C(x) of the minimal eigenvalue, λ1(x) de�ne the �ow direction, and

the �eld strength is computed through

µ =

 1 if λ1(x) = λ2(x)

1 + κe
−δ4quant

(λ2(x)−λ1(x))2 otherwise
(3.20)

where δquant is the di�erence of two successive gray levels to stand for the reso-

lution quantization.

[105] is a subsequent work where the distance functions are adapted to a new

metric of harmonic interpolation for more visually desirable e�ects, and once

again the framework is improved by adding more strict constraints on the image

geometry as a whole for the sake of well-posedness of the problem with the

introduction a more recent work [106].

3.3.2.7 Other Works

Other studies on variational inpainting include methods based on joint inter-

polation of grayscale isophates [11], crack modelling with Neumann boundary

condition [9],heat transfer model [6], strong continuation [18]. More recent work

is focused on curvilinear structure propagation [175], nonlinear second order dif-

fusion [13], hybrid second-forth order di�usions [12] topological gradient analysis

and contour detection [7], [8].

3.3.3 Tests on Geometry-Oriented POV

The brief review on the geometry-based approaches demonstrated that even

if the modeled natural phenomena or the PDE model changes to capture the

continuum of the isophates and edges, one thing is common. They propagate
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known the pixel information and produce the novel pixel values for the unknown

by continuous smoothing and mathematical manipulation due to locality which

in case of large holes reaches an increased amount and results in extremely

blurred outputs. Though the literature results demonstrate that they are more

appropriate for crack and stain repairing approaches, for the sake clarity in this

research, some example methods will be tested for performance.

Bertalmio et al.'s Image Inpainting

Image Inpainting [21] is chosen for being a state-of-the-art method and father-

ing the name of the problem domain. The formulation of the partial di�erential

equation in the equation 3.9 is provided sequentially in the original paper. The

method, except for the image and the region mask, accepts no input for parame-

ter tuning. The only required user-speci�ed value is the number of iterations for

inpainting as in each iteration the values of the outside boundary pixels are prop-

agated inside to paint the missing pixels gradually. As it is an iteration-based

method, the inpainting operation takes elongated intervals. The performance of

the algorithm on one of the test images used in the system is provided in Figure

3.14.

The run time for the given image of 607x376 pixels is 15 minutes for nearly no

apparent coverage of the hole at all. Only a closer look reveals that a thin slice

close to the boundary is completed, with an apparent blur in the colours. It is

obvious that the method is not eligible for large object removal tasks.

Fast Coherence Transport Inpainting

The underlying reason for the selection of this algorithm is the non-iterative one

shot approach employed, even though it is a PDE based method. However, FCT

Inpainting has the shortcoming of the requiring very �ne tuning of its user-given

parameters, which are κ to determine the sharpness of the image, ε for data

propagation neighbourhood, σ and ρ for pre & post values for smoothing the

image. The usage of these parameters in the explanation of the algorithm in

3.3.2.6 and the inpainting result is in Figure 3.15.
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(a) Original Image (b) Region Mask

(c) 2000 iterations

Figure 3.14: (a) Original Image. (b) Region mask Λ. (c) Inpainted Image for
2000 iterations on 607x736 pixels using Bertalmio Image Inpainting [21]

3.3.4 Extra Results on Crack Filling

As explained in the literature anlaysis and demonstrated in the experimental

results, the pure geometry-oriented inpainting algorithms are infamous for blur-

ring the image signi�cantly, especially for object removal issues [50]. They are

more appropriate for crack �lling and stain removal applications and so as to

provide an optional feature to the image-to-video converter system in this thesis,

the autographs on the paintings are regarded as cracks. In these regions, the

ratio of Perimeter/Area is larger to allow the propagation of boundary data

more easily. The results of the application of the Bertalmio et al.'s Image In-

paiting on example images are provided in Figure 3.16 & 3.17 and the results of

the FCT Inpainting are illustrated in Figures 3.18 & 3.19.

In Figure 3.16, the region mask 3.16b is made to cross the image boundaries on

purpose to demonstrate how the inpainting model works. Without the isophate
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(a) Original Image (b) Region Mask

(c) ε = 25 κ = 5 ρ = 3 σ = 2

Figure 3.15: (a) Original Image. (b) Region mask Λ. (c) Inpainted Image for
2000 iterations on 607x736 pixels using Fast Coherence Image Inpainting [24].

information outside the mask, the image could not be completed. This one as

well as 3.17 demonstrates how this algorithm works slowly and blurs the image

even in smallers gaps.

The image completion lasts in a couple of second for test images acclaimed, but

the undesired blurring e�ect is still present although not that apparent as those

of Bertalmio Image Inpainting [21].
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(a) (b)

(c) 100 iterations (d) 1000 iterations (e) 7500 iterations

Figure 3.16: (a) Original Image. (b) Region mask Λ. (c-e) Inpainted Image
for di�erent numbers of inpainting iterations on 121x251 pixels using Bertalmio
Image Inpainting [21]

(a) (0.5) (b)

(c) 100 iterations (d) 1000 iterations (e) 7500 iterations

Figure 3.17: (a) Original Image. (b) Region mask Λ. (c-e) Inpainted Image
for di�erent numbers of inpainting iterations on 145x349 pixels using Bertalmio
Image Inpainting [21]

(a) (b) (c) κ = 22ε = 2ρ = 3σ = 2

Figure 3.18: (a) Original Image. (b) Region mask Λ. (c-e) Inpainted Image for
121x251 pixels using Fast Coherence Transport Inpainting [24]
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(a) (b) (c) κ = 25ε = 2ρ = 4σ = 2

Figure 3.19: (a) Original Image. (b) Region mask Λ. (c-e) Inpainted Image for
145x349 pixels using Fast Coherence Transport Inpainting [24]

3.4 Geo-texture Preserving Methods

It is discussed in the previous subsections that texture synthesis methods are

self-su�cient in retouching structured or stationary regions, and similarly, PDE

based methods are capable of handling partial occlusions through the use of ge-

ometric continuum assumptions in cases of corruption of the image, for instance

small scratches and stains [50]. On the other hand, when the removal of larger

objects is concerned, it is often the case that the background does not barely

consist of the repeated tiles of the same pattern or the geometry is not that

simple for basic modeling.

In real life scenery, most often the objects that have an increased degree of ran-

domness in the outline compared to tile-textured ones with the slightest changes

in the repeated pattern. De facto, in real world images, at least, composite

textures, that consist of a spatial blending of several textures, are present in

general [171], or at least distinct patterns are present in various regions of the

frame. In structure-wise thinking, the object contours are have irregularities, are

non-symmetrical and even the shapes of the objects may not be well de�ned.

Even in the simplest case, curvilinear bodies may be coupled with sharp edges

in the image frame as illustrated in Figure 3.20. Additionally, the di�usion pro-

cess or the other �ow mechanisms that the geometry-preserving methods obey

introduce blur to the restored image and it is most evident while �lling larger

regions.

Subsequently, direct assignment of a texture synthesis method or PDE based

model �tting for inpainting is mostly likely to end up with unnatural-looking

completion of the background regions. Geo-texture methods are mainly derived
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Figure 3.20: The diversity of real world object shapes.

from the both of these approaches [41], [42], exploiting its prowess on analysing

the texture component of the images and inserting emphasis on the structure as

well, allowing the algorithm to adapt the changes in the background, including

non-repeated or non-symmetrical object edges, corners, etc. The nomenclature

is trivial and as the name suggests puts an emphasis on the two signi�cant

elements of images, both the structure and the texture.

The methodology of this group is the thrive to remedy the de�ciencies of the

other groups of algorithms in inpainting applications by using self-information

chunks and the approaches that gather under this roof tend to realize the goal

by attacking two main problems of Ordering and Blending. [16].

3.4.1 Inpainting with Geo-Texture Preserving Techniques

Overall, it is possible to divide the geo-texture oriented methods into three

where exemplars (group of information retrieved from the source image) are

placed in an order based on pre-declared heuristics on orientation, by physical

a continuity model, or by direct computations on the geometry. Within this

chapter 4 algorithms that will be subjected to the major performance test will

be explained in detail along with brief mentions of some other methods that are

essential.
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3.4.1.1 Early Prominent Models

Entropy Metric for Filling Order

One the earliest methods in exemplar-based object removal is the work in [73],

where a metric of �texturedness� is de�ned in order to determine the �lling-order

of the pixels. This metric is modeled using the entropy of pixels and similarity

of the pixels makes use of a weighted version the Manhattan Distance:

Disp(s, t) = Γ|fα(s)− fβ(t)|+
∑
t+ε∈Ωt

κ(ε)dManh(I(s+ ε), O(t+ ε)) (3.21)

where I(s),O(t) denote two corresponding pixels in the source image, I and

target image, O, respectively. Ωt denotes the neighbourhood of pixel t; Γ, κ(ε)

are weighting coe�cients; and fα,fβ are uniform but arbitrary functions.

User-Aided Lines

In [147], the image completion is aided by the user-speci�ed curves to guide

the overall geometry. The provided curves are sectioned into graph nodes to

determine the priority of the hole regions to be �lled with priority by minimizing

the energy function given below:

Etotal(Ω) =
∑
m∈ϑ

(βsEs(pm) + βiEi(pm)) +
∑
m,n∈Φ

Ec(pm, pn) (3.22)

where

Es(pm) = d(Cm, Cpm) + d(Cpm , Cm) (3.23)

is a structural correspondence metric to measure the curvilinear similarity of

ψm, the source patch and the curve segment indexed with m, using

d(Cm, Cpm) =
∑

s ∈ Cm||dist(Cm(s), Cpm||2 and Ei(pm) computes the consistency

patch with the boundary pixels based on the overlapping region and lastly,

Ec(pm, pn) = |ψm − ψm|2 (3.24)

determines the coherency between to synthesized patches, ψm & ψn on the curve,

using the normalizes SSD metric.

The rest of the hole is �lled by using Belief Propagation. This method is ex-

tended for automatic detection of curves in [35] by Euler' Elastica. Interestingly,
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the method uses the priority metric in Criminisi [42] (a method to be explained

in detail) and graphcut textures [92] explained in 3.2.2.5 to �ll small gaps to

accomplish a high-blend of the state-of-the-art.

Irregular Patches

In [83], a two-step inpainting method is proposed, where unsupervised image

segmentation is succeeded by a tensor-voting step. The segmentation step pro-

vides the exemplars to be connected already for visual accuracy and the latter

voting for the seamless blending of the regions across the holes. Despite the

bene�t of having the advantage of transferring compact curved structures as

a hole, the algorithm is computationally costly and has little �exibility on the

decision of texture/object contours, which makes it challenging to decide on the

boundary of two textures.

The Emphasis on Sparsity

As being smaller components of the image and containing, at least partially,

the textural and structural, inevitably colour, properties of the entire image,

the patches are proved to be highly functional representative elements of an

image [20]. Hence, with the success of the texture synthesis and exemplar-

based methods, which are highly dependent on the use of patches, the idea of

constructing dictionaries out of image patches have been blossomed.

An image representataion method by decomposition using sparce coe�cients to

represent geometry and texture components of the image, which are converted

into an overcomplete dictionaries is put foward in [53]. It was also asserted that

this dictionary representation model could be taken granted for image inpainting.

According to the model,

I = Lgmg + Ltmt, (3.25)

where Lt and Lg represent the dictionaries for texture and geometry, composed

of elements with sizes ` × qg an ` × qt, respectively for an image I to be shown

in the vector form RM and mg ∈ Rqg and mt ∈ Rqt s a decomposition of the

image. Then,

min
(mg ,mt):I=Lgmg+Ltmt

||mg||p + ||mt||p, p = 0, 1. (3.26)

becomes a sparse representation of the image I.

58



In with the introduction of a total variation (TV) penalty function into the

image decomposition and by regularizing the dictionary components of the rep-

resentation, the model turns out to become a convex optimization problem.

min
(mg ,mt)

||mg||1 + ||mg||1 + λ||I − Lgmg − Ltmt||22 + γTV (Lgmg) (3.27)

where TV (?) denotes the total variation, λ, γ > 0. In this model, I−Lgmg−Ltmt

is interpreted as the image noise and λ as a penalty parameter that is inversely

correlated with the noise power. Inpainting problems are regarded equally as

image denoising problem to be attacked in many works in literature [22], there-

fore the undesired part may be regarded as a region where the magnitude of

the noise is extremely large. For an inpainting application, the cost function is

slightly altered with the introduction of brand-new variable, M

min
(mg ,mt)

||mg||1 + ||mg||1 + λ||M(I − Lgmg − Ltmt)||22 + γTV (Lgmg) (3.28)

to be taken binary, that could either be equal to 0 or 1, the ROI for inpaint-

ing and the remainder image that the data for completion to be retrieved are

determined.

The solution of the above explained network still requires more assumptions

on the model, yet the interested reader may refer to [53]. The above explained

model is adapted to model dictionaries that use image patches in [1], namely the

K-SVD method,where K-means clustering is merged dictionary training. The

method has numerous image processing applications beyond inpainting, such as

demosaicing and image denoising. Mairal et al. used a similar method inclusing

multi-scale dictionaries [103] for more quality in inpainting [20].

Other dictionary based inpainting techniques include [165] , [166] where as well

utilize sparse linear combinations of the image patches for inpainting, [168], [136],

[59] also exploit the sparse representations of the examplars. One of the most

recent dictionary based approaches using hand-crafted dictionaries is proposed

by Ogawa et al. in [114]. This method alters the similarity metric in [1] with one

that is more compatible with the human visual system, the structural similarity

index, or SSIM.
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3.4.1.2 Criminisi 's Method

[41] and its further detailed extension [42] form what is called to be the state-

of-art methodology of exemplar based inpainting, as well as in entire study on

inpainting itself. The algorithm has the driving force from texture synthesis

algorithms and inpainting techniques dedicated to smaller gaps (approximation

of the PDE based solutions). By exploiting strengths of both group of techniques

that precede, it formulates a well-de�ned merger of the two, and expectedly, it

does not only perform well on their application domain, but further prove to be

useful in an extended problem domain: removal of larger objects from the image

scene.

In [42], the approach can be summarized as the propagation of the textural

information along the given structure of the objects in the image. That is, the

pixel information is to be �lled in, as patch groups, uses a strict ordering method

which is de�ned by the con�dence values of the pixels coupled with the data

values. Notably, the rudimentary part of the modeling is the linear structures

on the image, also referred as isophates, which are the key elements used to

determine the �lling priority of the pixels. To be broad, the algorithm becomes

an exemplar-based texture synthesis method that is limited by the constraints

imposed by the isophates on the image.

There are two main claims of the algorithm, the former being that no extra

means other than exemplar-based synthesis is required, and the latter the �lling

order is crucial for image coherency preservation.

Figure 3.23 illustrates how a patch centered by a pixel c is �lled in [42]. The

pixels to be �lled lie adjacent to the boundary that separates the source, Λ

and the target region I − Λ, namely the �ll front. If the bounded box BBc,

centred by c is to be �lled, the most similar exemplar de�nitely will be found

along the edge, ψmatch, the region where the bounded box extends to the source

region, already located on a strong gradient. Following the �lling of BBc, it

can be observed that the orientation of the corresponding ishopate is preserved

as desired. Di�erent from the classic texture synthesis methods explained in
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Figure 3.21: Signi�cance of Filling Order: First row illustrates three arbitrary
�lling instances of the same image using the concentric �lling, a.k.a onion peel
method. The second row is the corresponding instances for a desired completion.

Sections 3.2.2.1,3.2.2.2,3.2.2.3, exemplars are arbitrary sized full patches, that is

instead of the usage of single pixels as texture building elements. This provides

the algorithm to be �exible on the synthesis procedure where single pixels may

more often fail to capture the whole features of the textures in complex scenes

[20].

Though it is possible to maintain the linear structures of the image as shown

above, the extent of preservation is dependent on how the prioritization of �lling

is determined. In order to achieve high quality in the completed image, the �lling

procedure is to give higher cardinality to the neighbourhoods on the linear con-

tinuum of the �ll front. Figure 3.22 illustrates how this prioritization produces

more robust operation against variations in the shape of the objects. For the

sake of clarity, the proposed �lling order is compared with the concentric-�lling.

As observed, the former shows more strength in the preservation the edges, as

the onion-peel method results in a more curvilinear �lling, contrary to what is

desired. Furthermore, the proposed algorithm is expected to prevent blocking-

e�ect artefacts that is caused by unnecessary protrusions, which is the case for

the concentric �lling of the image regions.
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Figure 3.22: Formation of Protrusions: The undesired region overgrowing due to
the onion-peel �lling order. (a) Initial Image & Gap. (b) An arbitrary iteration
instance in clock-wise concentric �lling.

Filling Algorithm

For each pixel in the image, two information is considered essential, initially for

prioritization and then the �lling procedure. Colour information is the exact

intensity value of that pixel, which is taken equal to 0 for the target region

and the con�dence information that is computed by a proposed metric that

determines the �lling order.

The �lling procedure is composed of two steps, that are iterated until all the

target region is �lled, in an interleaved manner: Priority Computation and Sam-

pling.

Priority Computation

Succeeding the determination of the �ll front, which is computed by the bi-

directional Gaussian �ltering of the mask, denoting the region to be �lled, the

prioritization of the candidate patches is realized. From the previous discussions

on the assumptions of the algorithm, it is evident that the pixels that lie along the

linear continuum of sharp edges that intersect the source-target region contour

are prioritized for the sake of the preservation of the image isophates, and so do

the ones that are located in the adjacency of the high-con�dence pixels, namely

the ones whose neighbourhood information is nearly complete.

Let ψx be a patch centred around the x, a pixel on I, then the priority metric
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(a) (b)

(c) (d)

Figure 3.23: Proposed Filling Method [42]: (a) Initial Image. (b) The priori-
tization of pixels on the boundary. (c) Computation of the Best Matches. (d)
Corresponding �lling iteration.
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to compute P(x) is de�ned as

P(x) = Dx ? Cx (3.29)

where Dx is the data and Cx is the con�dence term assigned for x and its

containing patch, ψx.

Dx =
|∇I⊥x · nx|

γ
(3.30)

Cx =

∑
ξ Cξ

Aψx

(3.31)

where ξ ∈ ψx ∩ (I − Λ), γ is constant or normalization, Aψx is the area of the

patch psix, and nx denotes the unit vector orthogonal to the �ll front, ∂Λ, at x.

The initialization of the con�dence terms at the very beginning of the algorithm

are realized as follows,

Cx = 0,∀x ∈ Λ, and Cx = 0,∀x ∈ I − Λ. Since each one the patches whose

centres are located on the source-target region contour are candidates to be

eligible to be inpainted �rst, the priority computation is done for all and then

they are sorted in a descending order.

If it is expected to comment to the functionality of the priority metric, it is

possible to state that the con�dence term, Cx inserts bias towards the presence

of solid data for further computation and Dx favours regions that coincide with

the pathway of high order features intersecting the �ll front. It provides mor-

phological closure and completion of image edges in accordance with �Principle

of Connectivity� [85]. When combined, the two measures subdue each other for

the desired equilibrium of constrained inward growth.

Sampling, Propagation & Update

Priority sorting of the candidate patches has demonstrated which one is to be

�lled before all the others. Let ψt be have the utmost priority, then data propa-

gation towards inpainting area is achieved by sampling the I−Λ region where an

exemplar patch, ψm is searched for in order to satisfy the following constraint:

ψm = argminψmı∈I−Λ = d(ψt, ψmı) (3.32)
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where the sum of squared distances is used as the similarity criterion. It is

important for the algorithm to function correctly that the entire exemplar must

be enclosed by the source region. The best exemplar in the source region is used

to copy the corresponding pixel information from the source to the target region.

Pixel data is copied in the form of rectangular blocks called texels as opposed

to single pixels as was the case in texture synthesis methods [52], [162], [5]

discussed, there occurs the possibility of overpainting a pixel for several pasting

instances. The overpainting is already time and memory consuming and its

results in a patchy, arti�cially �lled region due to visual blocking e�ect. So as

to prevent these shortcomings, only the pixels that belong to ψm, pı ∈ ψm ∩ Λ,

ı = 1, 2.., patchsize that overlap the target region is �lled.

Once the �lling is completed, con�dence map of the image is to be updated

for the processed pixels. During the priority computation phase, the patches

at the �ll front are assigned with temporary con�dence values; however, when

the �lling of any pixel is completed, the corresponding con�dence values are

�xed to be 1 until the whole procedure is completed. Precisely, it is the exact

same procedure of propagating the con�dence map patch corresponding to the

exemplar towards the patch to be �lled:

Ct = Cm, pı ∈ ψm ∩ Λ, ı = 1, 2.., patchsize (3.33)

Frankly, in order to rapid up the implementation, gradients to compute data

values may also be copied to the target region using an appropriate mask to

omit the pixels that are not �lled in this iteration.

The proposed two-fold �lling method proceeds until all the pixels in the target

region are �lled with appropriate information, or in other words, until no contour

separating the source and the target regions is evident. It is rudimentary to

notice that, in each instance of inpainting, the �ll front is to be recomputed,

since with the previous pasting instances the �ll front changes its orientation, so

do the data terms accordingly. In addition to that, the usage of bigger patches

prevents the direct employment of the onion-peel prioritization for the pixels in

the lambda region. Therefore, the algorithm adopts a distinct pasting method

that it skips the pixels that are already �lled.
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The method that is proposed by Criminasi et. al is such an acclaimed method in

inpainting �eld, a state-of-the-art, there is a plethora of work based on its core

idea, even algorithms named after it. The methods include, [113], [79] with new

metric, [170] metric watershed and segmentation, [72] fractional derivatives.

3.4.1.3 PatchMatch

PatchMatch [14] is indeed not an algorithm to be used as a sole image inpainting

method, but rather as an interactive tool to edit images to by rapidly determin-

ing the approximate nearest neighbours matches for the patches of an image.

The key advantage of the method is that it reduces the cost functions to be com-

puted such that it enables interactivity. The main motive behind the method is

the possibility of achieving proper matches in the image via random sampling

and propagating these matches to the areas that surrounds the initial one by

an assumption on the natural coherency of the image. Apart from inpainting,

it can be used for the high-level editing applications such as retargeting and

shu�ing [14].

The vitalities of image editing applications, as inpainting and image completion

are two of them, are the �exibility and rapidity. Patch sampling in the image is

known method to satisfy the �rst criterion as the result of the previous works,

[161], [77], [143] as they implement the dense sampling at various scales using

small image patches, and are capable of generating similar images to the input

with respect to structure and texture. Nevertheless, they are not eligible to

be used interactively due to their elongated computation intervals, which indeed

fails the latter criterion. PatchMatch is faster than these methods even in orders

of magnitude [14].

Non-parametric sampling [52] of the image includes searching the entire group

of target patches, in a repeated fashion, so as to reach the utmost similarity for

each and every patch in the group domain patches. Let S be the domain of

image patches and T be target region. For each patch ψs in the domain there is

a mapping to ψt , a patch in T , under some prede�ned metric M. In [52], this

one-by-one matching is named as the NearestNeighbourF ield, (NNF ).
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In non-parametric patch sampling methods, the search step is the phase that

slows down the operation, id est., the bottleneck. Attacking this problem with

di�erent search algorithms o�er di�erent complexity functions, such that brute

force is rather computationally costly, that reaches O(pP2) in time, where the

image has p pixels and is composed of patches of size P . Tree-based search accel-

eration structures, [162] tend to have at least O(M) utilization of the memory,

preventing these structures to be optimal on high-resolution image editing.

Due to that complexity in achieving a fast algorithm to compute NNF mapping,

Barnes et. al put forward three postulations to form the backbone of this search

method.

• Dimensionality of O�set Region: Unlike, what precedes in literature, this

very method spans the 2-D region of patch o�sets, still yielding to be highly

rapid and memory-e�cient, whereas many related previous work include

handle with the lack of speed in operation by manipulating the dimension-

ality of the domain of patches by employing tree structures, such as K-d

trees or by direct dimensional reduction methods, Principal Component

Analysis, etc.

• Natural structure of images: Pixel-wise search methods fail to grasp the

coherency properties of the image, however; texture synthesis algorithms

that are based on patch-sampling produce output images that have ad-

herent lumps of information retrieved form the original image itself [5].

Hence, it is bene�cial to assume continuity in the neighbouring patches,

such that more reasonable mapping are obtained by seeking the matches

in the adjacency of the corresponding pixels.

• The law of large numbers: As the image dimension is increased, the

probability of achieving reasonable matches diminishes, hence, some non-

arbitrary initial assignment may be useful for better results.

Approximate Nearest Neighbour Search

The overall output of the search algorithm is the approximate nearest-neighbour

�eld (ANNF) that is mapping from the patches ψs of the domain image, S, to
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the corresponding best matches ψt in the target image, T . Precisely, ANNF

may be regarded as a mapping function, Φ

Φ : T → <2 (3.34)

where Φ(ψs) is the o�set of the nearest-neighbour patch centre, namely centre of

ψt, with respect to the centre of ψs , making Φ(ψs) = Centre(ψs)−Centre(ψt).
Therefore, Φ(S) refers to a matrix that gives the distances of ∀ψs to the ∃ψt for
the de�ned metric. The algorithm to obtained the �nal mapping is 3-fold and

can be explained as follows:

Initialization

The initialization is accepted to be performed by either random value assign-

ment to the Approximate Nearest-Neighbourhood Field, or by inclusion of some

apriori information. It is to be noted that when it is the case to make use of

random values, it may be accompanied with a pyramidal gradual processing of

the images.

Iteration: Propagation & Query

The latter step of the algorithm is the repeated iterations performed to amelio-

rate the Approximate Nearest Neighbour Field. For satisfying correspondence

values in ANNF , propagation towards the adjacent pixels is applied, and it is

succeeded by random search so that the best match among these could be taken

as the update value for the corresponding ANFF entry. The reason behind

propagation of the data is to take advantage of the coherent nature of the im-

age in matching and to yield higher computational e�ciency, whilst the random

query is used to increase the probability of a better match with a diversity of

candidates and to prevent the matches being trapped in local extrema. In the

iteration phase, for each patch ψs` , P` and Q` steps are handled in an interleaved

manner such the given order is followed until all the patches are processed: P1

Q1 P2 Q2 . . . .. P` Q` . . . . . . .. PL QL. The default scanning order is from left to

right, from top to bottom.
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Algorithm 2 PatchMatch

function PM(S, T,M) . S, T images, M NNF from S to T

2: InitializeM0: randomly or use apriori mapping

while M τ ! = M τ−1 do

4: for ` = 1 : L do

Propogate :

6: if τ 7→ odd then

Φ(ψ`
′x−1
s , ψ`t), Φ(ψ`

′y−1
s , ψ`t) are propagated to Φ(ψ`

′
s , ψ

`
t)

8: dist(`) = argmin(Φ(ψ`
′x−1
s , ψ`t),Φ(ψ`

′y−1
s , ψ`t)),Φ(ψ`

′
s , ψ

`
t)

M τ (`) = dist(`)

10: end if

if τ 7→ even then

12: Φ(ψ`
′x+1
s , ψ`t), Φ(ψ`

′y+1
s , ψ`t) are propagated to Φ(ψ`

′
s , ψ

`
t)

dist = argmin(Φ(ψ`
′x+1
s , ψ`t),Φ(ψ`

′y+1
s , ψ`t)),Φ(ψ`

′
s , ψ

`
t)

14: M τ (`) = dist(`)

end if

16: . (Please note that propagation is realized in the reverse direction in the

even iterations)

Query :

18: ν = dist(`)

while ωγβ ≤ 1 do

20: υ = ν + ωγβ . ω determines the

upper limit for the search radius, γ is used to shrink the search window in

successive queries with a �xed ratio, and β stands for the shift value which

is uniformly distributed in [-1,1]×[-1,1]
dist = Φ(ψ`s, ψ

`+υ


t )

22: if dist < ν then

M τ (`) = dist(`)

24: end if

end while

26: end for

τ + +

28: end while

end function
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The method to use PatchMatch in inpainting problems will be explained in

section 3.5.1.

3.4.1.4 Coherency Sensitive Hashing

[90] is a merger of [44], Locality-Sensetive Hashing, LSH, an approach to the

computation of Approximate Nearest Neighbour Fields and the well-functioning

patch-matching algorithm in [14], PatchMatch, to propose a novel method for

estimating ANNFs between two images. Though it is not stated explicitly as

an inpainting method, in this thesis work it is further extended to be used in

region-�lling.

Coherency-Sensitive Hashing (CSH), replaces the traditional tools, such as KD-

trees [4] or hashing algorithms with a novel approach to compute the similarity

between two patches in close accuracy to these methods but in more rapid means.

In the query mechanism, it exploits the functionality of LSH method, hence it

will be wise to take a brief look on how it is formulated.

Revisiting Locality-Sensitive Hashing

Let U represent the sample space of objects. A similarity metric can be de�ned

as in relation with U as

S : U× U← [0, 1] (3.35)

An example of LSH for S is a probability distribution over a set H of hash

functions

Ph∈Hrob [h(x) = h(y)] = S(x, y) (3.36)

where for ∀x, y ∈ U

In other words, the probability of elements x and y being hashed in to the same

hash-bin is de�ned to be equal to the similarity between x & y, with respect

to the given similarity function, S. Therefore, the hash collision instances occur

proportionately to element similarities. A further de�nition can be made on

both similarity and dissimilarities to make a �gap de�nition�:
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(r, R, π,Π)LSH with respect to S on H can be de�ned as

S(x, y) ≥ R⇒ Ph∈Hrob [h(A) = h(B)] > Π (3.37)

S(x, y) < ρ⇒ Ph∈Hrob [h(A) = h(B)] < π (3.38)

for each x, y ∈ U, where r < R and Π > π

LSH method is used ANNF computation in [65], [44], [27] in literature and

the implementation consists of a bi-step procedure with stages dedicated to

indexing and query. The details of both of these steps will be provided through

the explanation of CSH algorithm.

CSH for Approximate Nearest Neighbour Neighbourhood Computa-

tion

The algorithm is bi-folded as in the case of LSH based computation, the mother

algorithm where the search elements, namely the non-overlapping patches of size

`− by − ` are regarded as `2 in Euclidean space.

Indexing

Projection: The primary phase of indexing step of the algorithm may also be

referred as the dictionary-building phase, where the image patches are manip-

ulated by selected functions to form sparse projection dictionaries out of them.

In CSH [90], these functions are speci�ed as 2D Walsh-Hadamard [17] functions

that have the following kernels:

WH0 = 1,WH1 =

 1 1

1 −1

 ,WH2 =


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 1 −1

 , · · ·

WHn =

 WHn−1 WHn−1

WHn−1 −WHn−1


The work in [17], [76] prove that the projections on 2D WH kernels are incred-

ibly potent in representing the image, when arranged in an order of ascending

frequency. This representational power owes to the fact that when they are ar-

ranged optimally to form a projection line [129], the scattering of the projected

patches are maximized. The dispersion is a critical measure in determining the
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Figure 3.24: A visual of the ordered 2D Walsh-Hadamard Kernels up to 2nd

order.

patch similarities since, the fundamental thrive is enlarge the gap between the

related patches and unlike ones.

Hashing: The eigenvalues of the covariance matrix, containing each image

patch, is computed and the largest one is taken. The bins are generated by

repeating the procedure for kernels concatenated in increasing frequency. Hence,

image patches that are contained in the same hash-bin are indicated with an

identical index value. These bins form what is called as the hash table for the

searching algorithms.

2D WH kernels are a substitute for primitive hash functions in LSH, which are

apt to a linear form de�ned as:

hα,β(x) =
αx+ β

ρ
(3.39)

where ρ is an arbitrary integer, β ∈ [0, ρ] and a is a p-dimensional vector

consisting of random samples from a Gaussian distribution. However, this basic

model is not satisfyingly e�ective in ampli�cation of scattering in separate bins.

Query:

Although hashing the patches using modi�ed-LSH method provides candidates

for the image patches to be matched, their diveristy is very limited. In order to

pro�t from the spatial arrangement and principle of coherency via data propa-

gation [14], the generation of brand-new candidates on these bases is required.
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Figure 3.25: The three group of candidates, Cand(ψs) generated based on the
observations. (a)CIand: LSH driven candidates. (b)CIIand: PatchMatch driven
candidates. (c)CIIIand: CSH driven candidates.

Candidate Selection: Once the hashing of each patch in both images are

completed, certain observations on the matching patches are made. For image

patches ψs & ψt in images S & T respectively, under the hash function H

provides the following:

1. HS(ψs) = HT (ψt), then ψt ∈ Cand(ψs)

2. ψt is a candidate for ψ′s and HS(ψs′) = HS(ψs′′), then ψt ∈ Cand(ψs′′)

3. ψt′ is a candidate for ψs and HT (ψt′) = HT (ψt′′), then ψt′′ ∈ Cand(ψs)

4. This observation is two-fold:

• If ψt is a candidate for Left(ψs), then Right(ψt) is a candidate for

ψs and vice versa

• If ψt is a candidate for Top(ψs), then Bottom(ψt) is a candidate for

ψs and vice versa

Figure 3.25 illustrates the candidate set,Cand(ψs), corresponding to the source

patch, ψs can be partitioned into 3 groups. CIand is what LSH based query

enforces, where candidates are only limited to the ones that are hashed into the

same bin, manipulating direct similarity between patches in di�erent images.

CIIand has its inspiration from [14] in which image coherency through propagation

is the core element to build ANNFs. Last but not the least, CIIIand is a proposition

of this method, and it examines the possibility of �nding best matches in terms

of hash collisions.
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Candidate Elimination: In order to avoid the shortcomings of the widely

used L2 basis [5] in direct utilization and due to the necessity of processing

an increased number of candidates with timing considerations, [90] uses the

following ranking method among the candidates proposed in [76]. A secondary

projection of candidates on the 2D WH kernels realized, with the constraint that

in this step are the used ones are the �rst few kernels to be able to preserve most

of the patch energy. Finally, the candidates are discarded one at a time if their

projected SSDs with patch ψs fail decrease the lower bound for the corresponding

ANNF entry.

The application of CSH to inpainting problem will be discussed in secton 3.5.1.

3.4.1.5 Image Melding

Proposed by Dabari et al. [43], Image Melding is a more generalized method

devoted to not only to inpainting but also to other image editing applications.

However, for the sake of precision, the explanation will merely focus on the

image completion algorithm. The superiority of this current method over the

other focus algorithms is that this exemplar-based method takes the deformation

incidents of patches into consideration, which is indeed an inherent means to

involve the structure element within image inpainting applications.

Let S and T be the source and the target images, the joint energy function to

be minimized is de�ned as follows:

En(S, T ) =
∑
t∈T

mins∈S(dist(ψs′, ψt) + λdist(∇ψs′,∇ψt) (3.40)

where ψs,ψt are patched located in S,T images with center pixels s & t, respec-

tively and ψs′ corresponds to the deformed version of ψs obtained by exposing

ψs geometric and/or photometric transformations. Denoted by D, these trans-

formations involve translation as was in the other methods, along with rotation,

re�ection and scaling with non-uniform ratio. Conclusively, the query for the

best match involves the restricted deformation of the source patches to �t onto

the target.
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The implementation is on the Cie-Lab colour space where spatial uniformity is

assumed. In equation 3.40 the derivative terms, namely, ∇ψs′,∇ψt stand for the

gradients of the luma channel, L in the selected colour space, to emphasize the

local features on the patches in the energy function, with a penalty term λ. This

enhances the algorithm in a way that the it becomes more robust in capturing

high frequency representations and embodying the local geometry continuum.

A inpainting method similar to [14], [90] is implemented in a coarse-to-�ne ap-

proach where in each scale the algorithm performs two interleaved operations:

Query

The search algorithm is similar to [14] in coherence propagation and random

search; however the similarity of the deformed patches under the aforementioned

set of transformations, D is also tested using the SSD similarity metric. It is

important to remind that the search in the algorithm uses sliding windows for

query instead of distinct patch divisions to prevent overlaps.

Additionally, so as to make the algorithm more versatile to adjust the slight

changes in exposure and illumination, a con�dence interval is obtained. This

method originates from [68] that discusses image enhancement metrics. The

interval is obtained by computing two terms, bias β ,and gain γ.

γ(ψs′ı) = min{max{σ(ψıt)− σ(ψs′ı), g}, G} (3.41)

β(ψs′ı) = min{max{µ(ψıt)− γ(ψs′ı)µ(ψs′ı), b}, B} (3.42)

where the prede�ned range for γ and β are [g,G] and [b, B], respectively, ı stand

for each of the channels L,a,b in the colour space, and µ, σ de�ne the mean and

the standard deviation moments. The con�dence adjustment is by γ and β:

ψs′adj = γ(ψs′)ψs′+ β(ψs′) (3.43)

Voting

Output image is obtained by solving the optimization problem de�ned on the

energy function in 3.44. In more formulated manner,

O = argminS(dist(S, T ) + λdist(∇S,∇T ) (3.44)
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where

T (m,n) =
∑

ı≤patchHeight

∑
≤patchWidth

NN(ψm−ı,n−t )(ı, )

Area(ψt)
, (3.45)

∇T (m,n) =
∑

ı≤patchHeight

∑
≤patchWidth

∇NN(ψm−ı,n−t )(ı, )

Area(ψt)
(3.46)

In 3.45 NN(?) corresponds to the best match for the corresponding pixel. In-

deed, the minimization of energy is realized not by direct pasting of patch in-

formation but by sampling pixel information in overlapping patches to achieve

a weighted average to be used as the new channel values in the output image.

3.4.1.6 Other Methods to Mention

Other important inpainting techniques include inpainting with Shift-Map [125],

an image editing tool that utilizes a labelling method to compute how each pixel

is changed after a transformation operation.

The work in [3], [56] merge the variational approach and exemplar based inpaint-

ing to solve the mapping of patches on the new image as a bounded variation

problem.

The most recent approaches to inpainting generally include learning based ap-

proach which are mostly based on deep architecture [88], [117], [169], [99], [140],

however these methods are kept out of the scope of this thesis due to the single-

input nature of the system and adopt a hand-crafted generation scheme.

3.5 Implementation & Test Results

3.5.1 Object Removal

The still image to video converter mainly requires the objects to be removed from

the foreground so as to allow the separate animation of the background. The

literature analysis demonstrated that the most e�ective means to object removal

is to utilize geo-texture preserving methods. Therefore, within this part of the
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experiments, the implementation of 4 methods are realized: Criminisi's Method

[42], PatchMatch [14] based inpainting, inpainting using Coherency Sensitive

Hashing [90] and inpainting using Image Melding [43].

Results for Criminisi

(a) (b)

(c)

Figure 3.26: (a) Original Image. (b) Region Mask Λ. (c) Inpainted Image for
11x11 patch size on 607x736 pixel image using Criminisi [42] Method.

Since Criminisi is a straight-forward approach, it does not require too much

parameter tuning. Indeed, as the �lling order and sampling is well-de�ned, the

only parameter that a�ects the inpainting is the patch size. As stated before,

patch size is an essential parameter that determines how the energy of the initial

image is transferred to the inpainted, as seen in Figure 3.29.

Criminisi involves naïve brute-force search for the best match query to paste the

exemplars in the appropriate locations. Indeed, this also rapids up the inpainting

procedure, compared to pixel based methods, as a whole since, from then on the

requirement to make a search for each and every missing or undesired pixel in the

Λ region is eliminated. Nevertheless, it is essential to remark that as the patches

tend to grow, the similarity check for each patch requires an increased number of
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(a) (b)

(c)

Figure 3.27: (a) Original Image. (b) Region Mask Λ. (c) Inpainted Image for
9x9 patch size on 347x580 pixel image using Criminisi [42] Method.

(a) (b)

(c) 5x5 patch size (d) 13x13 patch size (e) 25x25

Figure 3.28: (a) Original Image. (b) Region Mask Λ. (c-e) Inpainted Image for
di�erent patch sizes on 439x600 pixel image using Criminisi [42] Method.

computations for the neighbouring pixels. In extreme cases, the patches begin to

contain information more than necessary that will prevent the correct samples

from the I − Λ region to be selected. It may result in blocking artefacts on

the image, as seen in Figure 3.30. Eventually, this becomes a trade-o� between
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(a) (b)

(c) 5x5 (d) 25x25 (e) 41x41

Figure 3.29: (a) Original Image. (b) Region Mask Λ. (c-e) Inpainted Image for
di�erent patch sizes on 751x564 pixel image using Criminisi [42] Method.

faster inpainting and more accurate �lling of pixels and in certain cases the user

is required to repeat the procedure with a variety of patch sizes to obtain visually

pleasing results.

It is a method that prioritizes the strong high order features and inherently prop-

agates �lling order along their continuum. Therefore, such undesired results as

illustrated in Figure 3.30 are likely to occur, especially when the region of inter-

est is not properly chosen and contains traces from the object to be removed.

Results for Inpainting using PatchMatch

PatchMatch [14] is proposed as a fast match �nder algorithm, and the paper
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(a) (b) (c)

Figure 3.30: (a) Original Image. (b) Region Mask Λ with traces from the
boundary of the object (c) Inpainted Image for 21x21 patch size on 751x564
pixel image using Criminisi [42] Method.

implements a method for inpainting based on guidance curves to initiate the

NNF map. In this thesis work, the main approach is to minimize the user-

interaction in each block, therefore a coarse-to-�ne image completion method,

which includes upscaling and down scaling the input and the generated texture

using Gaussian pyramids, as in Figure 3.31, is used by starting with random

seeds.

Figure 3.31: Image processing in a coarse to �ne manner by using Gaussian
Pyramids.
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The image and the mask are downscaled to the coarsest level, and the boundary

information is dilated to take the geometry into account by favouring the largest

gradients crossing the boundary. ANNF randomly initialized by selecting from

the dilated boundary of the image and the mask. For the coarsest level, in

order to have more room for an accurate match, the ANNF is pre-iterated for

convergence via increasing the number of random searches. At each level of

the pyramid, in each EM iteration, for each pixel, the best matching patches

are placed and averaged on the overlaps, using the normalized similarity on the

patch using L2 norm as a weight for each value. The best match searches are

iterated until a maximum number is reached, then the images, the mask and

ANNF is upscaled to a �ner level until the �nest is reached and processed.

(a) (b)

(c)

Figure 3.32: (a) Original Image. (b) Region Mask Λ. (c) Inpainted Image for
11x11 patch size on 305x405 pixel image using coarse-to-�ne inpainting with
PatchMatch [14] Method.

Indeed by implementing an inpainting method with PatchMatch equals to limit-

ing the search domain to smaller area and accelerates the matching time interval,
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but since this is realized in multiple-scales a single run of inpainting lasts de�-

nitely longer than matching the patches of two images.

(a) (b)

(c) 3 level (d) 5 level (e) 8 level

Figure 3.33: (a) Original Image. (b) Region Mask Λ. (c-e) Inpainted Image
for di�erent levels of detail and 5x5 patch size on 523x371 pixel image using
inpainting with PatchMatch [14] Method.

Figure 3.33 illustrates the fact that the level of pyramids is crucial when the

method of completion is formulated as a coarse to �ne method. With the same

patch size on all the levels, the reduction of the number of pyramids results in

re-utilization of the same limited source location to cover a large area, therefore

the image is blurred and the completion looks unrealistic.

Figure 3.34 demonstrates the output under the change of patch size parameter

once again for this algorithm. It is possible to grasp that with the use of smaller

patch size than the available texture results the best matches to be trapped in
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(a) (b)

(c) patchsize 5x5 (d) patchsize 11x11 (e) patchsize 15x15

Figure 3.34: (a) Original Image. (b) Region Mask Λ. (c-e) Inpainted Image for
di�erent patchsizes using an image pyramid of 8-levels on 523x371 pixel image
using inpainting with PatchMatch [14] Method.

local minima, and as the pyramids are upscaled for a �ner resolution the corre-

sponding ANNF �elds start to account for unfavourable matches. As the patch

size increases, the staircase e�ect on the hole is lessened; however this results

in replication of nearby objects in the covered region. Visually the completion

is not undesirable, can even be considered to be functional especially in this

converter system implementation; nevertheless it is odds on to imagine any wa-

terlily standing on top of a tree on its own.

Inpainting Using Coherency Sensitive Hashing Similar to PM, CSH is

again an ANNF building method that can be applied to di�erent image pro-
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cessing applications. In [90] that the method was proposed, neither the mention

of its utilization in inpainting applications , nor the approach for it is present.

Therefore, in this work, an appropriate algorithm for its involvement in the �eld

is provided. Based on the general idea of a coarse-to-�ne approach which is

used in many previous studies, [5], [51], [50], [115] is used for its adaptation on

the inpainting problem domain. Also, the selection of a gradual processing is to

provide a compatibility with the roughly explained inpainting approach in [14],

and the hole �lling method in [43] throughout the experiments.

Algorithm 3 CSH-Inpainting

1: function I − CSH(S, T,M) . S - Target Image with Hole (0 valued), B

-Source Image , M -Region Mask X

2: Let O be the number of scales, and d be the number of iterations

3: Downscale A,B & M to the coarsest level

4: A(M) = w(µ, σ)

5: for i = 1 to O do

6: for j = 1 to d do

7: CSH(A,B,M)

8: Let P [1...t] be the best patch matches to �ll A

9: A[M ] = P [1...t] by voting and normalize the e�ect

10: end for

11: Upscale A,B,M to a �ner level

12: end for

13: Return A

14: end function

Within this method, the best match is not determined by the L2 norm, but

re�ltering on the less strict WH kernels by a applying a rejection method in a

sliding manner. However, in order to paste the best matches on the target image

seamlessly, similarity metric is necessary as well. Therefore, a voting method is

employed, where each pixel in a patch has a say in the �lling. That is, brie�y,

at each level of the pyramid, the ANNF is re-built for a maximum number of

iterations or until a convergence criterion is reached so that the image to indicate

that the image is no longer changed signi�cantly within consecutive iterations.
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For each pixel c, separately, the corresponding best match is checked for SSD

with L2 norm. The blending is realized as follows:

ψoutput(c) = ψoutput(c) + ω ∗ ψinput(c′) (3.47)

where

ω = e−[SSDL2
(ψoutput(c),ψoutput(c))2)/σ2

(3.48)

, σ is a regularization term taken to be 0.1.

Patch size is yet the parameter that determines the fate of the inpainted output,

as was the case in the previous implementations. Interestingly, in this method,

the patch size selection is limited to the orders of 2, due to the ordering of

WH Kernels therefore, in certain cases this limitation may result into subop-

timal �llings as illustrated in Figure 3.35. Since patches tend to contain more

information than required in certain cases the completed region features from

irrelevant locations of the image. When it is �xed to a small value to retain in

a local neighbourhood, the �lling appears to be blurred.

As the name suggest, CSH provides the propagation of coherency within the

image in an increased way, especially when the number of k-nearest-neighbours

are increased. Figure 3.36 illustrates this fact, the lines are more properly prop-

agated for a smoother completion even the patch size is small in a less featured

image. However, when combined with an incorrect patch size on a more di-

versely featured image, the completion may not be that pleasing. Figure 3.37

demonstrates the e�ect of k in K-NN with larger than requires patch size for

larger patch size than necessary. It is possible to realise that when k may diverge

the image from a truer completion if combined with not �nely tuned parameters.

In the original paper [90] where CSH is proposed, the implementation was real-

ized on the YCbCr colour domain. The motive behind is to represent the image

in a more robust fashion to capture the change in luma and chroma colours

separately. The hashing bins for the luma channel is 8 times more than the

chroma channels. Regarding the methods shortcoming on the limited patch size

to capture the energy, this ratio is changed for the experiments illustrated in

Figure 3.38.
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(a) (b)

(c) patchsize 4x4 (d) 8x8

(e) 16x16

Figure 3.35: (a) Original Image. (b) Region Mask Λ. (c-d) Inpainted Image for
6 levels of pyramid with di�erent number of k nearest neighbours on 679x768
pixel image using inpaing via CSH [43] Method.
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(a) (b)

(c) k=1 (d) k=2 (e) k=3

Figure 3.36: (a) Original Image. (b) Region Mask Λ. (c-e) Inpainted Image for
6 levels of pyramid with di�erent number of k nearest neighbours on 978x736
pixel image using inpaing via CSH [43] Method.

87



(a) (b)

(c) k=1 (d) k=2

(e) k=3

Figure 3.37: (a) Original Image. (b) Region Mask Λ. (c-e) Inpainted Image for
6 levels of pyramid with di�erent number of k nearest neighbours on 607x736
pixel image using inpaing via CSH [90] Method.
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(a) (b)

(c) Y/CbCr HashBin=8 (d) Y/CbCr HashBin=4 (e) Y/CbCr HashBin=1

Figure 3.38: (a) Original Image. (b) Region Mask Λ. (c-d) Inpainted Image for
6 levels of pyramid with di�erent ratio for luma/chroma hashbins in YCbCR
colourspace on 846x564 pixel image using inpaing via CSH [90] Method.

Overally, I-CSH implemented here is a method that requires very �ne parameter

tuning for an e�ective performance on image completion.

Inpainting with Image Melding

It is another image editing tool that that will be applied to image inpainting.

Dabari et. al. has proposed the usage of discrete screened Poisson equation [163]

for pixel voting as explained in Section 3.4.1.5. It is again implemented in a

coarse to �ne fashion for a better comparison with inpainting using PatchMatch

[14] and inpainting using CSH [90]. For the sake of clarity, the e�ect on number

pyramidal levels on image quality is illustrated in Figure 3.39.
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(a) (b)

(c) 2-level (d) 5-level (e) 7-level

Figure 3.39: (a) Original Image. (b) Region Mask Λ. (c-e) Inpainted Image
for levels of pyramids with �xed patch size (10x10) and levelwise EM iterations
751x564 pixel image using inpainting with Image Melding [43] Method.

As the method includes patch comparisons with a range of scaling, rotation and

refection based transformations, the test cases are built upon them. Also, the

inclusion of gain and bias terms are also manipulated to overcome the variation

in the patterns due to brush strokes and colourings in the paintings. .

The second result in Figure 3.41 illustrates the removal of two distinct objects

from the same image sequentially. Compared with the inpainting output of

the Criminisi Method in Figure 3.30, it is to be deduced that the erroneous

selection of ROI of the object (to an extent) is not crucial for an Image Melding

operation, as the �lling order which is omni-directional and iterative, it can omit

the existence of the contour traces in the scene, unlike its isophate following,

single query&paste driven rival [42].

The result demonstrates that I-IM is quite e�ective in �lling the image holes in

a visually plausible way however; its operation time is inevitably longer than

those of the others due to more detailed computations on each patch.
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(a) (b)

(c) no scale (d) [0.9-1.2] scale range (e) [0.5-2] scale range

(f) no rotation (g) [−π/4,+π/4] range (h) [−π/2,+π/2] range

Figure 3.40: (a) Original Image. (b) Region Mask ΛI . (c-e) Inpainted Image for
ΛI with di�erence allowances on the patch scaling. (f-h) Inpainted Image for ΛI

with di�erence allowances on the patch rotation. Operation is completed with
�xed patch size (10x10) and �xed number of EM iterations (30 at coarsest) on
each level on 487x634 pixel image using inpainting with Image Melding [43].

3.5.1.1 Comparative Results for Object Removal

These experiments provide the a visual comparison of how the methods behave

on the same object removal cases. The comparison will be based on their visual

quality, timing and memory requirements and functionality in the this image-

to-video converter system.

Figure 3.42 illustrates a toy example where the image scene contains a similar

pattern in the entire I − Λ domain. Therefore, the visual performance of all
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(a)

(b) (c)

(d) (e)

Figure 3.41: (a) Original Image. (b) Region Mask ΛI . (c) Inpainted Image for
ΛI . (b) Region Mask ΛII . (c) Inpainted Image for ΛII for patch size 10x10 with
image pyramid of 7-levels on 751x564 pixel image using inpainting with Image
Melding [14] Method.
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(a)

(b) CM (c) I-PM

(d) I-CSH (e) I-IM

Figure 3.42: (a) Original Image. (b-e) Object Removal Results for di�erent
inpainting techniques on 487x634 pixel image.

four of the algorithms is satisfying. The timing-wise analysis points out that

inpainting with I-CSH in 3.42c is the fastest choice for such an image.

Moving onto another image, Figure 3.43 exempli�es a more complex case. The
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image has this time, more signi�cant texture and colour information di�erent

parts of the image. The CM in 3.43a performed, nicely without blurring, but

with minimal protrusions to the irrelevant parts of the image due isophate con-

tinuum. In this application the output image can still be used if the object

removed will be kept immotile or move slightly. The visual quality of I-IM in

3.43d outperforms the others, where no blurring is present, and it is followed

by I-PM in which a slight blur is observed. I-CSH in 3.43c, though not blurred

at all, has an undesired image part in the central region. Though this image is

supervised, as explained in Section 3.4.1.4, with boundary information, I-CSH

when used with increased number of k-neighbourhoods, it becomes stronger on

the regional continuum hence the region corresponding to the sky popped in the

center of Λ region. A highly blurred version using the hay patches is possible,

with di�erent sets of parameters, in Figure 3.37c; however the latter result is

more acceptable to be used in the video generation.

The example in Figure 3.45 is a case where the removal of an object from the

junction of two regions is the issue. The CM is successful in completing the

edges of the shadow into a closed form as seen in 3.44b. The coherency-insisting

completion of I-CSH is useful in such a boundary of regions and provided a

plausible completion. I-PM in 3.44c and I-IM in 3.44e are plausible, they are

computationally more costly.

The �nal comparison is on o bi-step removal of objects where a group is ini-

tially removed, and then using the completed image another completion task is

handled for the latter group. Concurrent removal is a more facile task for these

exemplar based methods since as the number of candidates to use are more lim-

ited; however in sequential removal it is more probable to observe the formation

of undesirable blobs in the ΛI and ΛII regions. Figure 3.45a is the initial image

(C. Monet's Argentuil) where �rst, the vegetation(trees) and the boats will be

deleted from the scene.

These illustrations indeed prove once again the ill-posedness of an inpainting

problem. In 3.45b shows the replication of small image elements, the houses

etc. within the inpainted region. This is a similar occurrence to the example
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(a)

(b) CM (c) PM

(d) CHS (e) IM

Figure 3.43: (a) Original Image. (b-e) Object Removal Results for di�erent
inpainting techniques on 607x736 pixel image.

where the e�ect of incomplete selection of the region of interest; nevertheless

in this case the boundaries of other objects leads to the formation of partial
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(a)

(b) CM (c) PM

(d) CHS (e) IM

Figure 3.44: (a) Original Image. (b-e) Object Removal Results for di�erent
inpainting techniques on 800x649 pixel image.
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(a)

(b) CMI (c) CMII

(d) I − PMI (e) I − PMII

(f) I − CSHI (g) I − CSHII

(h) I − IMI (i) I − IMII

Figure 3.45: (a) Original Image. (b-e) Object Removal Results for di�erent
inpainting techniques on 487x634 pixel image.
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replicas of the image features. Eventually, these isthmuses are transferred to

the latter image in 3.45c as well. For I-PM, the replication of undesired image

features is not that evident. The sincerest concern is the sincerest concert is

the selection of patch size. As the object to be removed in the latter step in

3.45g has an asymmetrical geometry, the ropes of the boat are replaced with

more blur whilst the hull is completed as sharp as the initial image. This is due

to the fact that I-PM only accounts for regional weighted averaging of features

on the boundary regions. It is apparent that some of the blur is actually is not

created but directly pasted from the former completion in 3.45g which result in a

cumulative blur. For a desirable completion, �ne parameter tuning is required for

the two distinct region by I-CSH due to the initial assumption of not interfering

with the building of the ANNF table. As the initial step requires the completion

to be kept in a local area, the k-NN neighbourhoods are decreased by setting

k=1 and patch size is lessened for the matches to be trapped in local minima.

Therefore, the �rst completion is again on the blurrier side, where as the second

needs more coherency propagation between di�erent textures the aforementioned

parameters are both increased for a plausible e�ect. Finally, I-IM eliminated all

the shortcoming of the diversely featured image regions by employing the scale

and rotation and discrete Poisson voting on the global image not on edges but

on the entire image.

3.5.1.2 Quality Analysis on Reconstruction

In this group of experiments, the strength of the inpainting methods in recon-

structing the known parts of the image will be analysed. In contrast to what

has been tried before, which is guessing the background, that is never known

exactly, the methods are forced to rebuild what is available already. On a group

of images rectangular blank patches are placed to obtain the initial image. This

blank patch is the region mask Λ that has been long discussed. The resulting

images are undergone quality measurements using widely used metrics such as,

P(SNR) and SSIM. The image results for two examples are found in Figures

3.46, 3.47 and the numerical results in the following �gures.
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(a) Test Image. Mask Size:

74x100

(b) CM (c) I-PM

(d) I-CSH (e) I-IM

Figure 3.46: The strength of inpainting methods to reconstruct a known part of
the image. (a)Test Image (b-d) Reconstruction results.
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(a) Test Image: Mask Size: 90x55

(b) CM (c) I-PM

(d) I-CSH (e) I-IM

Figure 3.47: The strength of inpainting methods to reconstruct a known part of
the image. (a) Test Image (b-d) Reconstruction results.

The test images have a diversity in the availability for construction where in

Figure 3.46 it is harder to construct Λ due to the its location, which is residing

near a complex geometrical surface, whereas the high order features in Figure

3.47 make an incorrect completion highly indetectable due to the increased tex-

turedness of the region. Indeed, that is why the qualitative tests are utilized.

The metrics are capable of measuring what the human visual system ignores.

The �rst metric is the Peak Signal-to-Noise Ratio, or PSNR.

PSNR = 10log10(peakval2/MSE) (3.49)
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where MSE is the mean square error, and peakval for the digital images is 255.

PSNR is expressed in decibels and SNR is

SNR = 10log10(
Psignal
Pnoise

), (3.50)

where P(·) denotes power. Figure 3.48 illustrates the PSNR and SNR analysis

of the 4 methods to test the reconstruction strengths on RGB colour scale.

Figure 3.48: PSNR and SNR analysis on the reconstructed images in RGB
colourspace.

The reconstruction by I− IM maximizes the PSNR in most test cases, followed

closely by I−PM , which means that the image is reconstructed in higher quality

with these methods compared to the other ones.

In literature, indeed it is common to apply the PSNRmeasurement in colourspaces

other than RGB, on the ones which seperate the chroma and luma information

from each other based on the fact that they are more compatible with the hu-

man visual system. [42]. Therefore, the tests are repeated on the YCbCr colour

space using only the luma channel, Y. Both of the results demonstrated using

I − IM and I − PM promises higher quality results.
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Figure 3.49: PSNR analysis on the reconstructed images on the luma channel
of YCbCr colour space.

Another image quality metric that is proposed to be compatible with human vi-

sual system in perceiving information is Structural Similarity Metric, also known

as SSIM. This metric is made use of for building dictionarities in the inpainting

algorithm proposed in [114]. It is calculated as

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ (3.51)

where

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

, c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

s(x, y) =
σxy + C3

σxσy + C3

(3.52)

corresponding to the luminance, contrast and structural respectively, with µ?

and σ? representing the local mean and standard deviations. In this metric, the

choice of α, β and γ are arbitrary but within these tests they are taken to be 1.

Figure 3.50 demonstrates the quality test results using SSIM. Similar to those

with the other metrics, I − IM outperformed all the other methods in quality

and I −CHS gave the least quality images as expected from the image results.

The mean results for each of the tested metric is illustrated in Table 3.1 .
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Figure 3.50: SSIM Image Quality analysis on the reconstructed images.

Method PSNRRGB SNRRGB PSNRY SSIM

CM 34.625 27.936 40.166 0.98939
I-PM 37.021 30.332 42.719 0.99012
I-CSH 33.845 27.156 39.387 0.98624
I-IM 37.928 31.239 43.704 0.99228

Table3.1: Mean results for each quality metric for the implemented algorithms.

3.5.1.3 Timing Analysis on Reconstruction

Another important criterion that determines the success of image inpainting is

the operation duration of the methods. Timing is dependent on many param-

eters such as the size of the image, size of the missing region, the number of

iterations, one-step �ll amount, the scale(multi or single) of the method. There-

fore, the mean �lling durations of each algorithm on di�erent test images are

provided in Figure 3.51.
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Figure 3.51: Mean results for a number of images with di�erent pixel numbers.

As it is observed from the graphic that slowest performing result is I− IM , due

to increased number of operations by using geometric transformations on the

image patches and using additional computations during voting by also adding

the gradient terms. The I − PM without all these extra constraints operates

much faster than I − IM as trade of for the quality. Although, PM acts as

faster computational method in NNF computation than brute force scan used

CM , in a single scale, when the problem is domain is inpainting, the coarse-to-

�ne pyramidal method used in I − PM causes the whole approach to be slower

or sometimes equal. CM applies brute force search; however the fact that it

is non-iterative, which means no blending patches is involved, and it is a single

scale may result in faster completion of images. The reason behind the rapid

operation of I − CSH is that it highly depends on hash collisions and reduces

the need for reiteration for random searches that are done in I−PM and I−IM
and it also eliminates eliminates the computation of SSD during NNF tables.
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3.5.1.4 Usage in the System

As discussed in the analysis, each algorithm has its own bene�ts and drawbacks

with regard to some criteria. For the inpainting applications in this system, for

the objects that are highly motile and reveal background in a signi�cant amount,

or the image captures a diversity of di�erent textures and high order features

locally, I−IM is preferred to be used based on quality considerations. However,

when the background is plain and the object movement is slight I − CSH is a

better option for faster operation. Therefore, in the �ow of the the converter

system, the user is allowed select the algorithm to be used for inpainting.
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CHAPTER 4

MOTION MODELLING & SYNTHESIS

4.1 Introduction to Motion Modelling

The old-school virtual environments were surrounded by barely static objects

such as buildings and mountains [84] but; hopefully, nowadays motion modelling

is an increasingly popular area in the computer graphics and animation society,

focusing on regenerating the movement of many �gures of action in the real

world, especially taking the human motion modelling as a core element. The

analysis and implementation of human motion is a subject that has been the in-

terest of researchers since 1960s [33] since it has its applications on a diversity of

areas ranging from �lm industry to training activities for sports, from computer

games to physical rehabilitation treatments, and recently the human-robot inter-

action has become a hot topic that make use of the human movements. Human

motion is a�ected by several factors including the setting of the action, physical

properties of the body, even cultural upbringing and the state of emotions at

the course of the action [33]. It is interesting to note that the very same motion

may be performed by the same individual in distinct ways each time. Hence,

concerning the vast range of body types that exist and the complexity of the

human actions, let alone modeling humans as �gures of action, even recognition

of motion is a tough challenge.

Along with human motion modelling, there exist billions of other motion models

and the analysis of these active �gures are also challenging, they possess similar

di�culties such as the increased number of degrees of freedom and independent

107



parts of the motile body. Animating these �gures requires representational an-

imation, which is a hardtask [159]. For instance, let's imagine the �ight of a

bird. In general, the motion consists of a translation with the �apping action

of the wings; nevertheless when considered in detail to achieve more accurate

visuals, one has to take more elements into account. Admittedly, the anatom-

ical knowledge is indispensable for the utmost accuracy [123]. Although, the

�apping action is done using the wings, the muscles of the wings are hinged

to the body of the bird such that each �ap results in synchronous contraction

and relaxation of the chest as well. Moreover, the translational motion is not

always on a straight trajectory, a bird may tend to have di�erent postures on

the take-o�, during the �ight and while landing. Some �uctuation in the air is

observable, along with the changes in its �ying pace due to obstacles, such as

trees, hills, etc. The birds rotate their bodies around their trajectories such that

they look inclined towards the direction that they are making a turn. Concisely,

the brief action of �ying is hard to model without paying attention to a bunch

of morphological and behavioural criteria.

4.2 Speci�cations of the Block

As the penultimate block, the Motion Modeling and Synthesis Block is

where the simulations of the objects are realised. The overall system lacks

an object recognition capability to animate the layers automatically, due to

complexity considerations therefore, the user is expected to specify the motion

types to be applied to each layer. This block handles a bi-step procedure of

reanimation, the former is responsible for sculpting the model and the latter for

and creating a 5D motion armature to allow �ltering the still image with the

function generated by the armature. The limitations and the capabilities of the

motion representations are provided in the upcoming subsections.
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4.3 Motion Modelling Domain

4.3.1 Object Motion

In this application of animated video generation, the �gures of action that obey

complex rules of motion are omitted from modeling, since they require more

interaction from the user for a smooth visual �ow. The image domain to enter

to the system is therefore restricted to objects that show a full body motion, with

no separate parts involved and only having limited degrees of freedom. Motion

modeling and synthesis part of the system, henceforth, is focused on the objects

with harmonic patterns, clearly, the motion present is a repeated oscillatory

movement of the objects. These models are easy to �gure out and applied to

the image layers such that the required continuity in the frame sequences is

automatically achieved, with very minimal user inputs where necessary.

Harmonic motion is abundant in nature especially in passive bodies, such as

clouds, trees and vegetation, bodies of water, boats, etc., namely the masses

that does not demonstrate an active motion of their own, but move due to being

exposed to the drag forces that are present in nature, namely wind, gravitation

etc.

4.3.2 Weather E�ects

Some weather conditions, such as rain, snow etc. can be visually applied onto

the video frames with addition random of noise, simple �ltering or some basic

transformations of the image regions, without seeking a deep sense of photo

realism.

4.3.3 Modeling Approach

In [148] Sun et. Al. assert that it is quite often that the natural motion models

are observed to be harmonic oscillations. In early applications of computer

graphics for especially in computer games, natural phenomena was preferred to
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be roughly modelled by arbitrary superposition sinusoid functions, the complete

depiction of the whole motion requires a very �ne tuning of the parameters or

synthetic looking visuals are obtained [37].

Despite the name suggests, these reacting motion groups never occur in full pe-

riods, rather they avoid strict repetition. Every non-synthetic repeated pattern

has an inherent degree of randomness, as a result of being part of a conjoined

network of things, nature!, whose elements are, signi�cantly or insigni�cantly,

correlated with the remainder. As a result of this butter�y e�ect, it is pre-

dictable that any swaying tree branch under the howling wind will diverge from

its course, even in the slightest manner, when an eagle �ies over it, let alone the

cases where the weather conditions are rapidly changing. Trivially, it is assumed

that modeling natural �ow requires the principal of arbitrariness.

Likewise, in signal processing, an analogous randomness is the case due to the

presence of any type of noise. In [37], it is proposed that the irregularity of

the natural phenomena can be imitated by the introduction of noise term in

the motion model. It is further stated that, instead of the spatio-temporal

domain, where the arti�cially produced noise has the aftermath of abnormal and

unrealistic outcome, the optimal approach is to insert noise in to the frequency

domain, such that the system model is molded to mimic the inherent frequency

responses and intrinsic periodical behaviours of the real-life counterparts.

This methodology is referred as spectral �ltering in literature, where distinct

domain-speci�c spectral �lters contribute to the generation of models for various

applications. Spectral methods are the-state-of-the-art techniques in stochastic

animation. The synthesis of the stochastic �eld to be used in motion model

generation for natural phenomena is three-folded and is described as follows:

• Generate a complex random noise �eld, preferably Gaussian, in the fre-

quency domain

• Pass the signal through a domain-speci�c spectral �lter system

• Take inverse Fourier Transform to obtain the spatio-temporal representa-

tion
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4.4 Motion Models

4.4.1 Trees & Flora

4.4.1.1 Related Works

Trees and branched plants cannot be quite easily modeled due to their inher-

ent geometrically complex nature [149], that is composed of a main trunk,

branches that divide into uncountable more and the leaves that are attached

to them. The methods to render swaying motion on trees have three general ap-

proaches. Simulation-oriented methods exploit the area of �uid dynamics [101]

to visualize the interaction between the drag-force and the object. [2] employs

Navier-Strokes, [131] independently animate tree segments in the form of rigid

sticks, [160] develops a streamlined-mechanics basis for modelling and [48] uses

wind-projections for faster implementation. However, these methods are com-

putationally costly and too detailed for our framework.

The second approach is stochastic modelling where a spectral-formulation of

wind is used. First proposed by [141], and implemented in [37], [67], [174] for

di�erent domains, ranging from large forest modelling to 3D-animation applica-

tions. In [116] the wind turbulence e�ect is modeled by Perlin noise by incorpo-

rating a mass spring model. [145] preferred white noise to be synthesized in the

frequency domain and computed a displacement map for the tree particles. [118]

is a model that mimics Lissajous curve model in spatio-temporal domain with

randomness inserted by three-dimensional 1/fβ noises. Finally, motion capture

methods [101], [48], [167] collect data using video input or direct capturing to

collect movement and position data to reconstruct tree geometry and motion.

These techniques are not applicable to this system due to input restrictions to

single image and the requirements of additional hardware.
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4.4.1.2 Motion Model - Sway

The motion model used for animating trees and �ora is a blend of Zhang et.

al's algorithm [174], and the simpli�ed version of the method in [148] that was

implemented in [37] by Chuang et al. The reason behind the utilization of

both is to generate a model that is simple to be implemented in fast-rendering

framework, as well as to be capable of re�ecting a realistic swaying motion. The

method of Zhang will be used to generate the entire wind �eld in the scene so

that the motion models can be build upon it. Therefore, it will be used water

modeling as well.

Sculpting a tree motion is composed of three main steps in this implementation

• Modeling The Wind

• Modeling The Motion of The Branch Tip

• Modeling the Whole Body

For the sake of clarity, the methodology will be explained in a reverse order.

Modelling the trunk of a piece of �ora can be considered analogous to modelling

the branches on it [37], [148], and they can be regarded mechanical systems that

have motion behaviours determined by their mass along with other properties

like sti�ness and damping. This physical system and its inherent motion can be

described as follows:

Each trunk/branch on a trunk is pivoted to a non-oscillatory surface from which

the trunk/branch grows and elongates until the tip of the trunk/branch. The

swaying motion is roughly the motion of an inverse pendulum that is hinged

to that surface. Unlike an inverse pendulum, the tip of a branch is far thin-

ner and more �exible than the branch root, hence the motion is visually more

evident along the stem from the root to towards the tip. In a simpler geomet-

rical interpretation, it can be concluded that the parts near to the branch root

draw in�nitesimally small arcs, whilst the tip creates vaster arcs in a concentric

fashion. In [148], the simpli�ed version for this observation is modelled as
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disp(`, t) = [
1

3
`4 − 4

3
`3 + 2`2]dBTisp (t) (4.1)

where dBTisp (t) determines the movement of the branch tip in the spatio-temporal

domain. Revisiting the assumption that the fundamental reason behind the

motion trees begin the drag-force applied by the wind, a damped harmonic

oscillator formulation is adopted. The steady state equation is given as

d̈BTisp (t) +
c

m
ḋBTisp (t) + 4π2f 2

0d
BT
isp (t)− ϑ(t)

m
= 0 (4.2)

The conversion to the frequency domain by applying the Fourier Transform and

the solution is given respectively in equations:

4π2f 2DBT
isp (f)− 2π c

m
fDBT

isp (f)− 4π2f 2
0D

BT
isp (f)− V (f)

m
= 0 (4.3)

DBT
isp (f) =

V (f)e2πθ

2πm[[2π(f 2 − f 2
0 )]2 + (c/m)2f 2]1/2

(4.4)

where f0 = σ/m corresponds to the natural frequency of the oscillator deter-

mined by the aforementioned sti�ness property, σ, of the system and c is the

damping factor. θ is explicitly computed as

θ = tan−1 =
cf/m

2π(f 2 − f 2
0 )

(4.5)

to include the phase-shift.

V (f) corresponds to the spectral approximations of the wind. From this point

on, the the computation of the wind �eld using Zhang's method [174]. This

formulation provides more spatial coherency for wind formulation in the image

scene, instead of assuming a constant velocity at each point. The method is

actually proposed is devoted to 3D applications, henceforth, a 2D truncation

will be provided for the speci�ed framework.

Zhang et al. partitions the wind �eld to have three orthogonal components,

namely longitudinal, lateral and elevation vectors. The lateral components is

kept out of consideration to model 2D wind velocities. Hence, the formulation is

focused on the computation of modeling L = Lm +Lf corresponding to the DC
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and the �uctuating parts the longitudinal wind vector and E, the elevational

vector �eld with no DC part.

Modeling the wind �eld starts with the computation of the Cross-Spectral Power

Density for each direction. The �uctuating parts of the velocity �elds are re-

garded as the outputs of a Gaussian process. CSPD is formulated as a matrix

as shown with the used of allowing equations:

S(f) =



sα1α1(ω) sα1α2(ω) sα1α3(ω) · · · sα1αn(ω)

sα2α1(ω) sα2α2(ω) sα2α3(ω) · · · sα2αn(ω)

sα3α1(ω) sα3α2(ω) sα3α3(ω) · · · sα3αn(ω)
...

...
...

. . .
...

sαnα1(ω) sαnαn(ω) sαnα3(ω) · · · sαnαn(ω)


where sαmαl =

√
sαmαm(ω)sαlαl(ω)Cω(ϑm, ϑl) and using the formulation in [144]

sαmαm =
ν2
∗καµ

(ω/2π)[1 + Γα]5
(4.6)

and the coherence function Cω,

Cω(ϑm, ϑl) =
ω
∑

r(Cr|rm − rl|)
2πLm

(4.7)

in which κ,Γ being arbitrary coe�cients, ν∗ denoting the shear velocity, and µ

representing the Monin metric to be calculated as µ = ωyLm/2π. Cr corresponds

to a decay factor, where r are the image frame coordinates. The parameters are

�xed to the values as indicated in the original paper [174].

The wind �eld is calculated using the the Cholesky [164] decomposition of the

CPSD matrix,assuming that the generated matrix is mostly real and symmetric.

S(ω) = A(ω)A∗(ω)T (4.8)

Using the fact that A(ω) is a lower-triangular matrix, evaluating A(ω),  =

1, 2, ..N , Lf can be evaluated in the spatial domain as

Lf =
∑


ı∑
k=1

aık(ω)
√
∇ω (4.9)

and E in a similar manner by decomposing the CPSD for the vertical direction.

L is computed for the main wind direction, and �nally an a�ne transformation
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is applied using the orientation of the mean velocity vector to obtain the velocity

values for the image coordinates.

Now that the wind velocity at each pixel is present, this velocity maps,Vx & Vy

will be used to animate not only the �ora but all the objects on the image. For

the trees, the sway motion modeling will be proceeded by using corresponding

velocity value in the map to be the mean velocity, vav for that object. This

mapping provides a visual harmony within the video frame.

The V (f) �eld obtained by using domain-speci�c �lter, T (f)

V (f) = N(f)T (f) (4.10)

where T (f) is de�nes as

T (f) =

√
vav

(1 +Bf/vav)5/3
(4.11)

and the multiplication by a random Gaussian noise �eld N(f) in temporal fre-

quency for the aforementioned desire of arbitrariness. Going back to equation

4.3 the computed velocity �elds in the frequency domain are inserted to com-

pute for the motion �eld of the tip in the frequency domain and it is succeed

by the inverse Fourier transformation that yields the displacement map in the

spatio-temporal domain.

The procedure is �nalized by the propagation of the displacement values for all

the pixels along the branch/trunk. If the skeleton [48] of the branch is taken

to be the line that connects the pivot and the tip, the pixels that lie along the

same orthogonal line with respect to the skeleton are taken to have the same

displacement values to keep the layer compact.

4.4.2 Bodies of Water

4.4.2.1 Related Works

Modelling bodies of water is another tough challenge due to its non-rigid struc-

ture and �uidity. However, owing to its omnipresence in the impressionist paint-

ings, it is a must have model to be implemented within this framework. However,
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the independent �uid animation is kept out of the scope of the thesis work due

to the degree of freedom [54], [87] and the shallow/coastal waves [132], [173] are

not considered due to their complex interaction with the shores [108]. This the-

sis focuses on the modeling of deep water waves, such as ocean waves and river

�ows that are created in the presence of natural drag forces, the gravitation and

the wind.

Since the superposition of sinusiods to represent ocean waves in [62], a great

deal of contribution has been made to this animation �eld. A certain group of

modeling methods are based on the laws of �uid mechanics [61], [40] or its numer-

ical applications [86], [39], [93]. Other methods are based on yet again spectral

�ltering, where Mastin et al. [108] make use of Pierson-Moskowitz Spectrum,

Thon et al. employ ocean waves spectrum [152] and Tesseldorf et al. propose

the utilization of Phillips Spectrum [151]. More recent spectral models include

Texel, Marson and Arsole(TMA) in [25], [94] and JONSWAP in [74]. Addition-

ally, [63], [78] rely on geometrical modelling of waves using meshes.

4.4.2.2 Motion Model - Ripple

The model chosen for the animation of surfaces on the bodies of water is based on

the application Philips Spectrum that was proposed in [151], in which a spatial

random noise �eld is �ltered by the ocean-wave generating �lter to create the

animation.

OP (σ) =
e−1/(σκ)2

σ4
|σ′ · vav′| (4.12)

D0 = Γ
√
Op(σ)N(σ)/

√
2 (4.13)

where N(σ) = Nre(σ) + Nim(σ), κ = v2
av/g acts as a gravitational term and

σ′,vav′ correspond to normalized 2D matrices. It is be recalled that vav is taken

from the velocity map calculated for the animation of trees from the spatial

location of the approximate centre of the �uid body on the image.

The computed D0 corresponds to the initial 2D height-map of the water surface

and by making use of the following expression this initial surface state is turned

into time-varying �eld to simulate the �uctuations on the surface. By taking

116



the inverse FFT in 2D, the height map in the time domain is obtained. The

procedure proceeds mathematically as in equation 4.14.

D(σ, t) = D0(σ)e
√
gσt +D∗0(−σ)e−

√
gσt (4.14)

where the exponential term refers to the dispersion function between spatial

frequency & phase velocity.

disp(x, y, t) = IFFT2DD(σ, t) (4.15)

4.4.3 Boats

4.4.3.1 Motion Model - Heaving

For the animation of the boats, when the boat is anchored, which means it

remains the same location; however it performs a heaving motion due to the

water surface ripples,the model is made selection of two points (a line) on below

the boat hull and rotating the boat depending on the change in the orientation

of the line. If the motion includes an active movement as well, then the initial

selected line is translated towards the boats trajectory. In this manner, the it is

provided that the boat show a heading and heaving motion at the same time.

4.5 Motion Synthesis

When the models are generated, which are time dependent complex functions,

it is time to synthesize the motion out of these models by building a motion

armature. This armature is indeed a 5D �eld DM(x, y, t, ∂x, ∂y) that guides all

the pixels of the image in the spatio-temporal domain to displace them in the

correct amount and orientation to achieve expected visual changes. In order to

build the map, the given spectral �lters and eventually the �lter outputs are

discretized in spatial coordinates for within frame displacement and in temporal

axis to determine the displacement of each pixel in time. This manifold will

be applied on the image, as well as the alpha matte layers to produce the �nal
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output.

4.6 Results & Implementation Details

There is an important remark to be made before diving into the subject, which

is, the results shown within this chapter do not only contain to not show a single

object moving in void but rather a scene that the object is contained in. Indeed,

these results are the outputs of the ultimate block, namely the Rendering

Block. Nevertheless, the illustration of motion without the surrounding would

look incomplete, that is why the complete animation scenes are provided within

the scope of this chapter.

4.6.1 Trees & Flora

For each tree or branch that is required to be animated, the orientation is either

drawn by the user, if not the body is assumed to be perpendicular to the to the

y-axis of the image frame, and the bounding box extraction is used to determine

the parallel lines of motion. Then the mentioned �lter in subsection 4.4.1 is

applied. The controllable (meaningful) parameters are sti�ness, dampness which

are �xed for this application, and the wind which e�ects the entire system is used

from the generated wind �eld. Figure 4.1 illustrates the e�ect of vav, average

wind velocity on the motion of a single tree. For large trees the mass parameter

m is taken to be 500 and for small trees it is 100.

4.6.2 Bodies of Water

A height map is generated by using the spectral �ltering method for the motion

water bodies. Nevertheless, this height map cannot be embedded to the 5D

motion armature to synthesize the sequence of frames. This is because of the

fact that, the water surface is plane that does not lie parallel on the image frame.

The proposed solution in [37], [174] is to manipulate the water pixels, wp2 to

be located in a 3D-domain by using an a�ne transformation determined by a
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(a) vav = 5

(b) vav = 20

Figure 4.1: E�ect of average velocity on the motion of tree, with sti�ness and
damping parameters are kept �xed.

user-speci�ed horizon.

Tform =


1 0 0

0 1 0

α β γ


Using the horizon-line αx+ βy + γ = 0 obtain the 3D coordinates, wp3 as

wp3 = Tformw
p
2 (4.16)

On this map the pixels are added as the vertical dimension as the elevation

information and re-projected to the image frame using the inverse transforma-

tion. It is be cleared that for more vivid look, the water surface is �ltered in the

frequency domain by using a Gaussian High Pass �lter. Figure 4.2 illustrates an

example animation of the surface of water.

4.6.3 Boats

The heaving line of the boats may be taken as a user-provided parameter, but it

is also not illogical to use the bounding box information, obtain in the Digital

Matting Block, to act as the rim of the boat hull. An example heaving is

illustrated in Figure 4.3.
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(a) frame 2 (b) frame 4

(c) frame 7

Figure 4.2: An example animation of a water surface by Phillips Spectrum [151].

4.6.4 Other Objects and E�ects

The study of augmenting still images with motion can be regarded as a means

to capture the dynamics of an instance. Hence, for further enhancement of the

images for better visuals, there are occasional additions of animating active ob-

jects. The implementation of these objects contain more heuristic manipulation

of the image layer such as combinations of translational and rotational motion

models that are implemented with trial and error. Hence, for the visuals the

reader is kindly invited to refer animation results in Chapter 5. Also for extra

motion in the background, especially in the sky and clouds, one of the imple-

mented texture synthesis methods for the tests on texture-oriented point of view

is used.
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(a) frame 2 (b) frame 4

(c) frame 7

Figure 4.3: An example animation of an anchored boat showing the heaving
motion
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CHAPTER 5

RENDERING & ANIMATION RESULTS

Rendering Block is the ultimate block of the system before the �nal output is

reached. The purpose of the block is very straightforward and simple, that is to

apply the 5D motion armature DM(x, y, t, ∂x, ∂y) synthesized in the preceding

block. 5D provides the information of how each current pixel would behave

directly.

5.0.1 Synthesis of a Single Frame

The reason for keeping this block separate is beacuse of the fact that this arma-

ture cannot be directly applied to the image. The layering that is done in the

second block is to be respected to prevent the boundary violation of di�erent

layer pixels. Therefore, while processing the image under the motion armature,

the extracted alpha mattes are also processed similarly. The alpha value at a

speci�c image point guides the fractional blending of the intensity values at that

location by using the foreground information with the new background. This

provides the production of composite images with a seamless �nish. Addition-

ally, it also discards the necessity of user-supervision to order the layers with

respect to the perspective information when the motion is slight.

When the motion is large, and the layer overlaps are signi�cant that foreground

pixel values,(with large alpha values) end up in the same pixel, a priority assis-

tance is needed. This is the case especially when a translation is present, for

instance in the clouds. The user provided information of the perspective helps
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the conservation of visual coherence in the scene during synthesis.

During the rendering process, it is frequent that some pixels reach spatial coor-

dinates that are outside the image frame. The gap that is created by the absence

of this pixel information is �lled by interpolating its spatial neighbours in any

synthesized frame.

5.0.2 Synthesis Along the Time Axis

The output of this �nal block, which is also those of the entire system, is a video

sequence that is composed of image frames. Apart from all the parameters

that have been discussed on the animation, the quality of motion is also very

correlated with the frame rate.

Single frame synthesis was realized by keeping the value of t �xed. Now, it is

time to produce frames with di�erent t's, which is a parameter of the motion

armature, DM . Then, these separate frames are written to video �le in the

order of chronology. An important remark is to be made that, for a �xed frame

rate in the video production, if the step size between each t, namely 4t is taken
to be large, the motion apparent on the video will be faster, in extreme cases

resulting in an e�ect similar to fast forward mode in multi-media players.

5.0.3 Animation Results

In this subsection, the video results are presented by displaying some frames that

belong to the videos and explaining how they are animated. Also a comparison

table is provided at the end of the example video results to provide timing

information.

Monet's Boatstudio It is one of the simplest animation examples generated

within the system. Includes 2 layers of animation, heaving and ripple, a long

with a still layer. The results are given in Figure 5.1.
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(a)

(b) frame 7 (c) frame 15

Figure 5.1: (a) Original Image. (b-c) 2 Frames of the Animated Video

A Tree with a Friend This example is rather di�erent than the other ones as

it includes arti�cially replicated objects of interest. After the layering and the

inpainting procedures are completed, the background layer undergoes a texture

synthesis operation to enlarge the image frame. The tree, the object of interest in

this example, is duplicated, and well as its alpha matte to have a more crowded

scene, even a forest can be generated by increasing the number of trees. In the
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motion model,the essential idea to apply is initializing each of the trees using

di�erent noise �elds to provide the o�-phase look as visible in 5.2.

(a) (b) frame 5

(c) frame 12

Figure 5.2: (a) Original Image. (b-c) 2 Frames of the Animated Video

Monet's Argentuil The importance of this example is the complexity of the
scene for each and every block within the system. Image contains 9 large trees,
3 boats, a river and clouds to be animated. Therefore, in the synthesis of this
video, layering and inpainting parts take signi�cant amount of time. As layering
is repeated for the increased number of objects, the inpainting method not only
plays a role in object removal but also disocclusion, and it is repeated for the
removal of each boat separately. Since the boats do heave at the presence of
waves, and their motion is to be again o�-phase with each other. The generated
frames are given in Figure 5.3.
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(a) (b) frame 35

(c) frame 42

Figure 5.3: (a) Original Image. (b-c) 2 Frames of the Animated Video

Van Gogh's Wheat Field This animation is based on experimentation of the
adaptability of the motion models to di�erent objects that the models are not
intended for. For this, once again a level inpainting for disocclusion is used, �rst
to remove the couple,then the foreground wheat layer in front of them. The
sway motion model is manipulated in this animation to replicate the the look
of shiver in the wheat�eld. Also, a very �nely tuned version of the same model
again is used to model the in-sleep quiver of the human body. The hay stack
near the feet of the couple is anchored to the shivering wheat for shivering e�ect
on the stack as well. The translational motion of the clouds are enhanced by
enlarging the region using texture synthesis. The frames are given in 5.4.
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(a) (b) frame 4

(c) frame 16

Figure 5.4: (a) Original Image. (b-c) 2 Frames of the Animated Video

The Scarecrow This model includes many foreground objects of motion; how-
ever the inpainting is realized in a single-shot. The motion of the scarecrow is
modelled as a swaying motion and the bats are made rotate slowly around an
out of boundary reference point as observed in 5.5.
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(a)

(b) frame 13 (c) frame 62

Figure 5.5: (a) Original Image. (b-c) 2 Frames of the Animated Video

The Zen Garden The motion of the ivy is regarded as the sway motion that

is pivoted to a point above as contrary to the trees which are pivoted below.

Also, the motion of the leaves on the surfaces of the shallow water mimics those

of the boats heaving on water, as shown in 5.6.
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(a)

(b) frame 10 (c) frame 21

Figure 5.6: (a) Original Image. (b-c) 2 Frames of the Animated Video

The results in 5.1 demonstrate that after the completion layering and inpainting

problems the creation of the animated scenes is quite rapid. The animations

that are signed with ∗ demonstrate that texture synthesis is also included in the

inpainting part. The changes in the frame generation rate owes to the di�erence
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Animation Comparison
Image Segmentation

Layers
Segmentation
Duration(m)

Inpainting
Layers

Inpainting
Duration(m)

Motion Syn-
thesis& Ren-
dering Rate
(sec/frame)

Argentuil 15 20 4 35 2.5
BoatStudio 3 4 1 11 0.8
Scarecrow 6 9 1 15 1.3
TwoTrees 2 1.3 2∗ 7 0.7
Wheat
Fields

6 8 3∗ 22 1.3

Zen 6 12 1 16 1.7

Table5.1: Animation details of example produced video sequences.

in the number of layers to be merged as well as the size of the initial image.
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CHAPTER 6

CONCLUSION

In this thesis, the main goal was two-fold, one of which was to implement a

framework for semi-automatic still image animation. The fundamental steps of

producing animation with such an approach included four consecutive tasks of

image matting, image inpainting, motion modeling & synthesis and rendering.

The latter goal of this thesis was to analyse the image inpainting techniques &

evaluate their performance within the context of still image inpainting.

Primarily, focusing on the synthesis task as a whole, it is concluded that image-

to-video animation is not an easy task to ful�ll such that it demanded the

implementation of distinct operational blocks. The domain of animation was

limited to paintings to avoid the necessity of retouching for the seek of photo-

realism and the motion domain was mostly restricted to passive objects in nature

for the sake of ease.

For the image matting step, the implemented method had been proposed by

Shahrian et al. [135] which proved to be e�ective in computing alpha channels

to allow the composition of seamless images even in textured regions. This

emphasis was essential for our focus domain of paintings that was likely to feature

highly textured areas. The inclusion of a texture feature in accompaniment with

the colour vector allowed the extraction of the foreground from the background

even though the colour histograms were overlapping. The experimental results

proved that the algorithm had the required strength in extracting satisfying

transparency maps without the usage of too strict guidance.
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Besides, focusing on the second goal in the thesis work, it was realised that

quality of a proper image inpainting is essential in this framework for increasing

the perspective and perception of depth. A wide research was conducted on dif-

ferent the inpainting methodology, and a main classi�cation of approaches was

made based on the point of view to preserve the image elements. As an image is

composed of texture, structure and colour information, texture-preserving meth-

ods favoured the replication of the texture whilst geometry-preserving methods

prioritized the continuum of structure above all. Within this classi�cation the

research had shown that the geo-texture preserving methods outperformed the

others in the applications of object removal.

Therefore, 4 di�erent geo-texture preserving methods was implemented and

tested for their performance in object removal and region reconstruction. The

�rst one that is known as Crimini's Method [42] employed heuristic on the order

of �lling to preserve the continuum of image isophates and performed single shot

patch-wise �lling of the image hole using exemplars from the known region. The

experiments demonstrated that this method is highly e�ected by the selection

of patchsize for a visually plausible �lling as it may be trapped in local minima

if it is too small due to not being able to encapsulate the energy of the image

features, or may cause blocking e�ects if the selection is larger than required.

In addition to that, the other 3 methods were indeed proposed to be ANNF

building methods but were utilized in a coarse-to-�ne approach to be adapted

to image inpainting. The initialization of the NNFs in all methods depended

on the interpolation of the boundary to take the image gradients and geometry

into account. The adaptations were similar in general, only small changes were

included. The application of inpainting via PatchMatch [14] is dependent on

again the selection of patch sizes as well as the number of logarithmic scales and

number of random iterations. It was observed that since it does not search the

whole image in a brute for manner, as the number of random searches through

iterations were increased, the matches began to converge to more accurate values.

As the implementation depends on weighted averaging of the patch values, if the

NNF is trapped in local minima the output appears to be signi�cantly blurred.
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Moreover, inpainting with CSH depends on the patch similarities using the pro-

jections on 2D Walsh Hadamard kernels, both in candidate selection and re-

jection. The inpainting application provided sharp completion of the image;

however, as it is highly dependent of hash similarities and coherence propaga-

tion, if it is not �nely tuned for correct parameters the completion may result

in undesired results. Number of logarithmic scales is an important parameter,

as well as the patch size, but within this method the patch size selection is re-

stricted to orders of 2 due to the utilization of WH kernels as bases. Throughout

the experiments, the number hashbins in the chroma and luma channels e�ected

the performance of the completion algorithm where edge information was not

strong, and increased in the number of k-nearest neighbours led the inpainted

region to have information from di�erent parts of the image frame.

Furthermore, hole �lling with image melding involves the preservation of struc-

ture inevitably by employing geometric and photometric transformations on the

image patches while query phase. Additionally, while pasting through the dis-

crete screened Poisson equation, the minimization on the gradient of the luma

channel is also employed so as to put more emphasis on the geometry. Results

showed that presumably, the visual performance of the method is a�ected by

the patch size, number of logarithmic scales and number of iterations, that are

similar to other methods, along with the changes in the ranges of scaling and ro-

tation, inclusion of re�ection and image enhancement parameters that augment

the plausibility of the completion. In visual comparison, I-IM proved to give the

best results in image completion.

Precisely, for the comparison of these methods, certain cases of object removal

were tested, also for the sake completeness in quantitative analysis of perfor-

mance, the known parts of the images were masked and the 4 methods were

tested for their ability to reconstruct these known regions using PSNR, SNR

and SSIM metrics, where for each I-IM outperformed its rivals and I-CSH scored

the lowest quality values on average. On the other hand, the timing analysis

revealed that the slowest inpainting was realized by I-IM, whilst I-CSH achieved

a rapid �lling rate. The experimental results demonstrated that depending on

the expectation of the outcome each method tested had their own bene�ts and

135



drawbacks. In order to solve this ill-posed problem, it is required to prioritize ex-

pectations very clearly as the task becomes a trade-o� between faster operation

and higher quality outputs.

In the motion modeling & synthesis part, the restrictions in the modeling re-

lieved the system from the burden of modeling utterly complex motion models.

The problem is approached by expressing harmonic motion domain via spec-

tral �ltering methods that produced satisfying visuals without the requirement

extreme parameter tuning and user-interaction. The inclusion of the random

noise �eld captured the required arbitrariness that is present in nature and the

conversion of the models was realized with ease by discretization of the models

in the spatial and temporal axes.

The rendering was done through emerging of the layers by using the transparency

information produced in the matting block. The usage of these alpha channels

proved to be signi�cant in a seamless blending within the animated video frames.

For temporal arrangement of the video frames, the frame rate and the time step

parameters were signi�cant to obtain a high quality �ow in the arti�cial motion.

To conclude, the framework provided the synthesis of high quality short videos

out of single images. However, it was observed that the quality of the output

animation video is inter-dependent on each of these blocks. The experiments

demonstrated that an incomplete matting procedure may result in undesirable

inpainting and an incomplete inpainting layer may look worse than before when

animated, that is to say, the error here is cumulated and multiplied at each

block. Clearly, it is necessitated to improve the performance of all the subsystems

within the still-image to video converter so as to achieve satisfying �nal output

videos.

For future work, it is expected to transform the framework into one with deep

architecture that is capable of automatically recognizing a group of objects and

animate them. With the employment of this methodology, it is also expected to

work with vaster variety of motion models and it is believed that photo-realistic

results even with the usage of photograph will be achieved.
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