
ADAPTIVE STRUCTURED AND UNSTRUCTURED ROAD
DETECTION USING LIDAR AND DOME-CAMERA

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

SİNAN ÖZGÜN DEMİR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

MECHANICAL ENGINEERING

SEPTEMBER 2017

Approval of the thesis:

ADAPTIVE STRUCTURED AND UNSTRUCTURED ROAD

DETECTION USING LIDAR AND DOME-CAMERA

submitted by SİNAN ÖZGÜN DEMİR in partial fulfillment of the requirements for
the degree of Master of Science in Mechanical Engineering Department, Middle
East Technical University by,

Prof. Dr. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Mehmet Ali Sahir Arıkan
Head of Department, Mechanical Engineering

Assoc. Prof. Dr. Erhan İlhan Konukseven
Supervisor, Mechanical Eng. Dept., METU

Assist. Prof. Dr. Ahmet Buğra Koku
Co-Supervisor, Mechanical Eng. Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. Yiğit Yazıcıoğlu
Mechanical Eng. Dept., METU

Assoc. Prof. Dr. Erhan İlhan Konukseven
Mechanical Eng. Dept., METU

Assist. Prof Dr. Ahmet Buğra Koku
Mechanical Eng. Dept., METU

Assist. Prof. Dr. Ali Emre Turgut
Mechanical Eng. Dept., METU

Assist. Prof. Dr. Bülent İrfanoğlu
Mechatronics Eng. Dept., Atılım University

Date: 06.09.2017

iv

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

Name, Last name : Sinan Özgün Demir

Signature :

v

ABSTRACT

ADAPTIVE STRUCTURED AND UNSTRUCTURED ROAD
DETECTION USING LIDAR AND DOME-CAMERA

Demir, Sinan Özgün

M.Sc., Department of Mechanical Engineering
Supervisor: Assoc. Prof. Dr. Erhan İlhan Konukseven

Co-Supervisor: Assist. Prof. Dr. Ahmet Buğra Koku

September 2017, 83 pages

Robotic ground vehicles are widely used in different road conditions to perform

various tasks under semi- or fully-autonomous operation. To accomplish the given

tasks, the vehicle should detect road regions accurately. Also, for a successful

operation, the mobile robot requires a quick adaptation for changing road conditions.

The objective of this study was developing an adaptive road detection algorithm for a

semi-autonomous mobile platform (GOAT). For that purpose three different methods

were developed for a robust classification of road regions ahead of the vehicle in

both constructed and unconstructed environments. In the first method, LIDAR sensor

was used to detect road regions by utilizing the data with adaptive parameter sets,

which were estimated by utilizing discriminative learning approach. The experiments

in structured environment showed that accuracy (ACC) of the output increased,

while the false positive rate (FPR) decreased compared to the constant parameter

vi

approach. However, for the tests conducted in unstructured environment desired

results were not obtained. Therefore, the second road detection algorithm based on

visual and range measurement data needed to be developed. By this algorithm,

approximately 50% decrease in the FPR values for both structured and unstructured

road conditions was observed by filtering the segmented point cloud based on the

hue color channel values. In the third road detection method, an online supervised

learning algorithm was developed, which used the outputs of the second road

detection algorithm to create and/or update visual road models. In the conducted

experiments, it was shown that road regions and general road boundary behaviors

can be detected both in front and back directions of the vehicle independent from the

road shape.

Keywords: Adaptive road detection, discriminative learning, online supervised

learning, semi-autonomous mobile platform, structured and unstructured roads

vii

ÖZ

LIDAR VE KÜRESEL KAMERA KULLANILARAK
ADAPTİF YAPILI VE YAPISIZ YOL BULMA

Demir, Sinan Özgün

Yüksek Lisans, Makina Mühendisliği Bölümü
Tez Yöneticisi: Doç. Dr. Erhan İlhan Konukseven

Ortak Tez Yöneticisi: Yar. Doç. Dr. Ahmet Buğra Koku

Eylül 2017, 83 sayfa

Robotik kara araçları bir çok farklı amaç doğrultusunda, değişen yol şartlarında yarı

ve tam otonom olarak sıklıkla kullanılmaktadırlar. Verilen görevleri başarıyla

gerçekleştirmek için aracın yol bölgelerini yüksek doğruluk oranıyla bulması

gerekmektedir. Ayrıca mobil robot değişen yol şartlarına hızlıca adapte olabilmelidir.

Bu çalışmanın amacı, yarı-otonom mobil araç için değişen ortam koşullarına

uyarlanabilen bir yol bulma algoritmasının geliştirilmesidir. Bu amaçla mobil aracın

yapılı ve yapısız çevre şartlarında yol bölgelerini sürerlik içerisinde bulmasını

hedefleyen üç farklı yöntem geliştirilmiştir. İlk yöntemde yol bölgeleri LIDAR

sensöründen elde edilen verilerin ayırt edici öğrenme tekniğiyle adaptif olarak

işlenmesiyle elde edilmiştir. Yapılı ortamlardaki testlerin sonuçlarına göre, algoritma

parametrelerinin sabit tutulduğu yaklaşıma kıyasla, önerilen yöntemin sonuçlardaki

doğruluk oranını arttırırken, yanlış pozitiflik oranında düşüş sağladığı

viii

gözlemlenmiştir. Fakat yapısız ortamlarda yapılan testlerde beklenen sonuçlar elde

edilememiştir. Bu sebeple, ortam görsellerini ve mesafe ölçüm verilerini kullanan

ikinci bir yol bulma algoritması geliştirilmiştir. Geliştirilen bu ikinci algoritmada,

seçilen nokta bulutunun renk tonuna göre filtrelenmesiyle yanlış pozitiflik oranında

yaklaşık yarı yarıya bir düşüş gözlemlenmiştir. Önerilen üçüncü yöntemde ise,

ortamdaki yol çevrimiçi denetimli öğrenmeye dayalı bir algoritma kullanılarak

bulunmuştur. Bu yaklaşımda, ikinci yol bulma yönteminin çıktıları görsel yol

modellerinin yaratılmasında ve/veya güncellenmesinde kullanılmıştır. Yapılan testler

sonucunda, önerilen metot ile aracın ön ve arkasında yer alan yolun ve yol

sınırlarının genel davranışlarının, yolun şeklinden bağımsız olarak bulunabildiği

gösterilmiştir.

Anahtar Sözcükler: Adaptif yol bulma, ayırt ederek öğrenme, çevrimiçi denetimli

öğrenme, yarı-otonom mobil araç, yapılı ve yapısız yollar

ix

DEDICATION

To My Father

x

ACKNOWLEDGMENTS

I would first like to express my sincere appreciation and gratitude to my supervisors

Assoc. Prof. Dr. E. İlhan Konukseven and Asst. Prof. Dr. A. Buğra Koku for their

continuous support, criticism and invaluable guidance throughout my thesis study.

For their comments and criticism, I would also like to thank to the examining

committee members; Assoc. Prof. Dr. Yiğit Yazıcıoğlu, Asst. Prof. Dr. Ali Emre

Turgut, and Asst. Prof. Dr. Bülent İrfanoğlu.

I am gratefully indebted to my collegues and friends, Tayfun Efe Ertop, Onurcan

Kaya, Musab Çağrı Uğurlu, Sedat Pala, Cenk Çetin and Gizem Şencan for their

supports and collaborations throughout my thesis study. I appreciate the members of

İmge Harita for sharing their technical knowledge. Moreover, I would also like to

thank my fellow riders and sailors for their companion and our refreshing trips.

I would like to extend my heartfelt thankfulness and best wishes to Saadet Fatma

Baltacı for her support, continuous effort to motivate me, sharing all my happiness

and grief since we have met, and most importantly for her love and warm friendship.

I would like to state my grateful appreciation to my parents Hülya – Sadık Demir,

and my brother Ulaş Eren Demir for their endless love and support. They have

always been encouraging, patient and helpful to me throughout my years of study

and in my life. Words cannot express my feelings and gratitude to you and your love.

Lastly, I would like to thank the Scientific and Technological Research Council of

Turkey (TUBITAK) for their financial support with grant code 111M580.

xi

TABLE OF CONTENTS

ABSTRACT ... v	

ÖZ ... vii	

DEDICATION .. ix	

ACKNOWLEDGMENTS .. x	

TABLE OF CONTENTS .. xi	

LIST OF TABLES .. xiv	

LIST OF FIGURES ... xvi	

LIST OF ABBREVIATIONS .. xx

CHAPTERS

 1.	INTRODUCTION ... 1	

1.1.	 Mobile Robotics ... 1	

1.2.	 Semi-Autonomous Operation ... 2	

1.3.	 Road Detection Methods .. 3	

1.4.	 Scope of the Thesis .. 7	

1.5.	 Outline of the Thesis .. 9	

 2.	MATERIAL AND METHOD ... 11

	

xii

2.1.	 Mobile Robotic Platform Overview ... 11	

2.2.	 Localization .. 15	

2.2.1.	 Odometry Based Motion Model .. 15	

 2.2.1.1.	Mathematical Model for Linear Motion 16	

 2.2.1.2.	Mathematical Model for Curvilinear Motion 17	

 2.2.1.3.	Covariance Matrix Determination .. 19	

2.3.	 Registration of LIDAR Points to Images Captured By Dome-camera 21	

2.4.	 Conversion of Rectified Pixel Locations to Raw Pixel Locations 23	

2.5.	 Road Detection ... 27	

2.5.1.	 Adaptive Road Detection Using 2D LIDAR Sensor 27	

 2.5.1.1.	Breakpoint Detection .. 28	

 2.5.1.2.	Line Segment Extraction .. 30	

 2.5.1.3.	Line Segment Selection .. 32	

 2.5.1.4.	Adaptive Parameter Selection ... 32	

2.5.2.	 Adaptive Road Detection Using 2D LIDAR Sensor and Visual

Data .. 34	

2.5.2.1.	Preprocessing and Color Space Conversion Of The Captured

Image .. 34	

2.5.2.2.	Filtration Of The Selected Line Segment Based On Hue Color

Channel Value ... 35

xiii

2.6.	 Adaptive Road Detection Using Online Supervised Learning
 Approach ... 37	

2.6.1.	 Generation Of Training Data ... 37	

2.6.2.	 Updating Previously Learned Road Models 38	

2.6.3.	 Road Regions Detection .. 39	

2.7.	 Experiments .. 39	

 3.	RESULTS AND DISCUSSION .. 45	

3.1.	 Localization .. 45	

3.2.	 Conversion of Pixel Locations Between Rectified and Raw Images ... 49	

3.3.	 Road Detection ... 54	

3.3.1.	 Adaptive Road Detection Using 2D LIDAR Sensor 54	

3.3.2.	 Adaptive Road Detection Using 2D LIDAR Sensor And Visual

Data .. 60	

3.3.3.	 Adaptive Road Detection Using Online Supervised Learning

Approach.. 65	

 4. CONCLUSION & FUTURE WORK .. 71	

REFERENCES ... 75

APPENDICES

 A. ROS NODE USED FOR THE DEFINITION OF SENSORS’ POSITIONS

 AND ATTACHED COORDINATE FRAMES ... 81	

xiv

LIST OF TABLES

TABLES

Table 2-1 Standard deviation and variance values for MinIMU-9 in [rad] 20	

Table 2-2 Standard deviation and variance of motion model in [mm] 20	

Table 2-3 Pseudo code of breakpoint detection algorithm ... 29	

Table 2-4 Pseudo code of line segment extraction algorithm 31	

Table 3-1 Parameter sets used for the experiments conducted in SR environment ... 56	

Table 3-2 ACC and FPR values for three different parameter sets computed on two

different sections of SR .. 57	

Table 3-3 Parameter sets used for the experiments conducted in UR environment .. 58	

Table 3-4 ACC and FPR values for three different parameter sets computed for

unstructured road .. 59	

Table 3-5 Mean process times for one cycle of road detection algorithm (for

N ≈ 7500 LIDAR measurement sets) ... 60	

Table 3-6 ACC and FPR values calculated for the proposed adaptive road detection

algorithms on SR Section 2 .. 61	

Table 3-7 ACC and FPR values calculated for the proposed adaptive road detection

algorithms on UR Section 1 ... 62	

Table 3-8 ACC and FPR values calculated for the proposed adaptive road detection

algorithm throughout the entire structured environment .. 64	

xv

Table 3-9 ACC and FPR values calculated for the proposed adaptive road detection

algorithm throughout the entire unstructured environment 64	

Table 3-10 Parameter set used for the experiments in SR and UR environments 65	

xvi

LIST OF FIGURES

FIGURES

Figure 1-1 Automated material transporter [2] .. 2	

Figure 1-2 a) Tesla's autopilot system [3], b) Ford’s self-parking system [4] 2	

Figure 1-3 Actual road boundaries and statistical road model with road-edge

confidence intervals [8] .. 4	

Figure 1-4 Steps of road detection algorithm proposed in [18], a) raw image of the

environment, b) training image for the long range road detection algorithm, where

green pixels shows the close range road area found by using surface roughness, c)

output of the long range road detection algorithm, where green pixels shows the road

region .. 6	

Figure 2-1 Picture of UGV platform, GOAT ... 11	

Figure 2-2 Schematic view of GOAT .. 12	

Figure 2-3 Schematic view of GOAT with coordinate frames attached to the sensors,

where x-, y- and z-axes shown in red, blue, and green, respectively 13	

Figure 2-4 Example LIDAR readings taken by the sensors mounted to the front

surface, red points measured by SICK and blue points measured by Hokuyo 14	

Figure 2-5 Successive positions of the mobile robot while rotating on a plane - 1 ... 17	

Figure 2-6 Successive positions of the mobile robot while rotating on a plane - 2 ... 18	

Figure 2-7 Schematic view of LIDAR point conversion steps 21

	

xvii

Figure 2-8 Visual representation of bilinear interpolation ... 23	

Figure 2-9 Captured image by the camera, a) raw image, b) rectified image 24	

Figure 2-10 Camera images used in Camera Calibrator App of Matlab 25	

Figure 2-11 Sample LIDAR measurements for structured environment (left) and

unstructured environment (right) ... 28	

Figure 2-12 Schematic view of breakpoint detection and Dmax determination 29	

Figure 2-13 IEPF step of line segment extraction .. 31	

Figure 2-14 Terrain labeling for discriminative learning step, LIDAR points labeled

as road region are shown in blue .. 33	

Figure 2-15 Raw images captured by the camera (a,c) and preprocessed images (b,d)

 .. 35	

Figure 2-16 Hue channel values of the points in line segment before and after

contrast adjustment ... 36	

Figure 2-17 Hue channel values of the points forming the line segment and the

average hue values of each point group after increasing contrast 37	

Figure 2-18 Test path driven by the vehicle, red path shows the structured road and

blue path shows the unstructured road ... 40	

Figure 2-19 Sample images for structured road (a) and unstructured road (b) 40	

Figure 2-20 Raw image of checkerboard captured by the Ladybug 42	

Figure 2-21 Effect of the radial distortion to the image [42] 43	

Figure 2-22 Sample ground truth data generation by labeling road region manually 44	

Figure 3-1 Travelled path by the mobile platform to test localization methods in a)

structured environment and b) unstructured environment. .. 46	

xviii

Figure 3-2 A sample section view of the computed path ... 47	

Figure 3-3 Close-view of the estimated path. Data points generated by using GPS

data are shown as circle, and data points generated by using IMU and OBMM data

are shown as cross. ... 48	

Figure 3-4 Traveled route by GOAT computed by EKF localization algorithm 48	

Figure 3-5 Undistorted image by using the rectifying function of Ladybug API 50	

Figure 3-6 Undistorted image obtained by using equations (2.28), (2.29) and (2.30)

with the parameters found by Matlab Camera Calibrator App 51	

Figure 3-7 Undistorted image obtained by using equations (2.28), (2.29) and (2.30)

including the tangential distortion parameters found by Matlab Camera Calibrator

App ... 52	

Figure 3-8 Undistorted image obtained by using equations (2.28), (2.29) and (2.30)

with the parameters estimated by PSO ... 53	

Figure 3-9 Measured points on SR by LIDAR shown on the ground truth image a)

raw point cloud, b) point cloud after breakpoint detection and line segment extraction

by utilizing Fully-adapted PS for SR, c) point cloud forming the line segments

labeled as road are by utilizing Fully-adapted PS for SR .. 55	

Figure 3-10 Image of SR Section 2, a) raw image of the scene, b) LIDAR points

labeled as road where TP and FP results shown in cyan and red, respectively 57	

Figure 3-11 Points labeled as line segment shown on the ground truth image of UR

section, a) Predefined PS, b) Fully-adapted PS for SR, and c) Fully-adapted PS for

UR .. 59	

Figure 3-12 Measured points on SR Section 2, a) image of the scene, b) raw point

cloud on image, c) point cloud labeled as road region after running road detection

algorithm based on LIDAR and visual data, where TP and FP results shown in cyan

and red, respectively ... 62	

xix

Figure 3-13 Measured points on UR Section 1, a) raw point cloud on image, b) point

cloud labeled as road region after running road detection algorithm based on LIDAR

only, c) point cloud labeled as road region after running road detection algorithm

based on LIDAR and visual data, where TP and FP results shown in cyan and red,

respectively .. 63	

Figure 3-14 Raw images of the scene on the top row, and detected road regions on

the bottom row for SR Section 3. Images on the left-most column were taken by the

front facing camera, whereas other images on the remaining columns were taken by

rear facing cameras. ... 66	

Figure 3-15 Raw images of the scene on the top row, and detected road regions on

the bottom row for SR Section 2. Images on the left-most column were taken by the

front facing camera, whereas other images on the remaining columns were taken by

rear facing cameras. ... 66	

Figure 3-16 Raw images of the scene on the top row, and detected road regions on

the bottom row for SR Section 4. Images on the left-most column were taken by the

front facing camera, whereas other images on the remaining columns were taken by

rear facing cameras. ... 67	

Figure 3-17 Raw images of the scene on the top row, and detected road regions on

the bottom row for SR Section 5. Images on the left-most column were taken by the

front facing camera, whereas other images on the remaining columns were taken by

rear facing cameras. ... 68	

Figure 3-18 Raw images of the scene on the top row, and detected road regions on

the bottom row for UR Section 2. Images on the left-most column were taken by the

front facing camera, whereas other images on the remaining columns were taken by

rear facing cameras. ... 69	

xx

LIST OF ABBREVIATIONS

ACC Accuracy

API Application Programming Interface

ATV All-Terrain Vehicle

BP Breakpoint

EKF Extended Kalman Filter

FP False Positive

FPR False Positive Rate

FN False Negative

GPS Global Positioning System

HSV Hue Saturation Value Color Space

IEPF Iterative End Point Fit Algorithm

IMU Inertial Measurement Unit

IRC Instantaneous Rotation Center

LIDAR Light Detection and Ranging

METU Middle East Technical University

OBMM Odometry Based Motion Model

PS Parameter Set

PSO Particle Swarm Optimization

RGB Red Green Blue Color Space

ROS Robotic Operation System

SR Structured Road

TN True Negative

TP True Positive

TPR True Positive Rate

UGV Unmanned Ground Vehicle

UR Unstructured Road

1

CHAPTER 1

1. INTRODUCTION

In this section of the thesis, firstly mobile robotic systems and semi-autonomous

operation are explained. As next, road detection algorithms in the literature are

covered. Lastly, scope of the thesis and the outline of this report are given.

1.1. Mobile Robotics

Robotic technology has been an important research topic since 1960s. In the

beginning, main usage area of the robots was limited to the industrial applications, to

replace manpower in hazardous operations in production, such as welding and

handling hot parts coming from die casting [1]. The common point in these early

applications of the robotic systems was that their working environments were

structured, which could be mathematically modeled, possible events could be

foreseen, and at worst the environment could be adapted according to the working

conditions and requirements of the robots. Improvements in the areas of image

processing, pattern recognition, machine learning, artificial intelligence and control

theory made it possible to adapt robotic systems themselves to the dynamic

environment. As a result of this, usage area of the robotic technology has expanded

to the mobile systems. Similar to robotic arm manipulators, mobile robots are

commonly used in repetitive works, such as, transportation and delivery of materials

in structured environments as shown in Figure 1-1, to minimize the human effort and

prevent the possible failures caused by human operators. In addition to their

industrial usage, mobile robotic systems are also utilized in accomplishing given

2

tasks or collecting information about the environments, such as search and rescue

operations, surveying in hazardous regions and patrolling. Moreover, mobile robotic

technology has recently started being used in daily life for human comfort. Self-

parking and self-driving vehicles are some of the examples for their application

areas.

Figure 1-1 Automated material transporter [2]

Figure 1-2 a) Tesla's autopilot system [3], b) Ford’s self-parking system [4]

1.2. Semi-Autonomous Operation

Mobile robotic systems may be divided into three subgroups based on their control

strategies. These are fully autonomous, semi-autonomous and manual systems. Fully

autonomous systems are expected to operate in their working environments without

any need for human intervention. In manual systems, on the other hand, all the tasks

are done by human operation only, including moving the robot in environment.

Different than fully autonomous and manual systems, semi-autonomous applications

3

aim accomplishing given tasks by a collaborative work done by the robot and the

human operator, [5]. In these systems, mobile platform may be controlled either by

the robot itself or the user based on the definition of given tasks. The decision on the

task sharing can be done manually by the user or autonomously by the robot.

1.3. Road Detection Methods

Extraction of traversable areas and road characteristics is extremely vital for robust

performance of fully autonomous and semi-autonomous UGVs in an unknown

environment. Therefore, different approaches for the road detection and following

are proposed in literature.

In [6], proposed solutions in the literature are grouped under model based, feature

based and machine learning based methods. In model based methods, road

boundaries are tried to be expressed with a mathematical equation. Although simple

models may be robust and computationally cheap, their working environments are

very limited and they may not provide accurate results. Even though complex models

may be applicable for a wider range of road types, they can be more easily affected

by the disturbances. Also, their computational load increases as the complexity of the

model increases [7]. In [8], Aufrère et al. proposed a model based algorithm to detect

and follow the road boundaries in the image. In this method, captured image was

divided into several strips and a statistical model was formed to define the edge

coordinates and the corresponding confidence levels on each of these strips, which

can be seen in Figure 1-3. Based on the computed edge coordinates in continuously

captured images, road model was updated recursively and the confidence level

increased. Thus the statistical model converges to the actual lane edges.

4

Figure 1-3 Actual road boundaries and statistical road model with road-edge

confidence intervals [8]

Feature based methods, on the other hand, are insensitive to the road shapes and

requires less a priori knowledge about the environment. Though, the success rate of

these type of approaches strongly depends on choosing a proper feature descriptor

[6]. Based on the utilized feature type, methods presented in the literature are divided

into three main groups, which are methods based on color features, geometrical

features and hybrid features obtained by integration of visual and geometrical

features. In order to obtain actionable road feature information, various sensors and

sensor fusion strategies are developed for both structured and unstructured roads.

Some of the commonly used sensors for this purpose are cameras, radars and

LIDARs.

Cameras are among the most preferred sensors in robotic applications due to their

low cost, low power consumption and high information content. Therefore, a wide

variety of solutions are available in the literature. In [9], a road detection algorithm

using images captured by the monocular camera was presented to model the road

boundaries. The developed algorithm was based on the assumption that the road

boundaries were two parallel lines, which can be modeled by second-degree

polynomials. The road area was labeled using gray levels and texture information

obtained by applying Robert operator to the captured images, which was also utilized

to update the parameters of the road model. In [10], on the other hand, the road area

5

was assumed to have a trapezoidal shape, and the rectangular area in front of the

vehicle was always defined as road. Based on the average HSV color channel values

obtained from this rectangular area, captured images are filtered to extract road area.

In their studies [11] and [12], Rasmussen et. al. applied Gabor filters to obtain texture

features from the images. The extracted data was used to determine the position of

vanishing point. Based on the found vanishing points in successive images, road

boundaries were defined. In another study, Rasmussen et al. [13] used the extracted

features obtained by color camera and LIDAR sensor to train a two-layer neural

network, which was later used as road classifier. Utilized features were color, texture

and geometrical features. Color features consisted of joint histograms of image

patches, whereas the texture features were obtained by applying Gabor filters to the

same image patches. Variance in the height was selected as geometrical feature due

to its robustness to noise. Alternative to previous approaches, in [14], a near-to-far

self-supervised traversable road and obstacle detection algorithm using stereovision

data for natural terrains was proposed. Because the reliability in stereovision depth

measurements are limited up to around 12 meters, generated 3D point clouds were

used to detect ground, obstacle and footline classes close to the vehicle. Then these

features were used to train the online classifier, which was responsible for long-range

road detection based on visual data from images [15], [16] and [17]. A similar

approach was also utilized in [18], which could successfully estimate long range road

region for changing lighting conditions after training the road detection algorithm

using the close range stereovision data. An example result of this method is shown in

Figure 1-4 together with the raw input image and created training image. Some of the

other successful examples for visual data based road detection solutions are RALPH

[19], GOLD [20], autonomous driving system of Universität der Bundeswehr

München [21], VIRTUOUS [22], and the study by Jansen et al. [23]. In [24],

obtained successful results in the literature for road detection algorithms using visual

data are linked to their high information content and absence of sweep time while

capturing data. However, it is also stated that the performance of a camera based

system is strongly dependent on lighting condition of the environment and may

6

decrease drastically in case of shadow or direct light coming to the camera, as well as

high noise in the acquired images due to poor lighting conditions.

Figure 1-4 Steps of road detection algorithm proposed in [18], a) raw image of the

environment, b) training image for the long range road detection algorithm, where

green pixels shows the close range road area found by using surface roughness, c)

output of the long range road detection algorithm, where green pixels shows the road

region

Alternative to camera based systems, radars can capture a high-quality picture of the

environment even under extraordinary weather conditions, such as snow and rain,

with a range up to 200m [25]. However, their high-cost, slow scanning speed,

possibility of interference with other closely positioned radars and dependence of

their performance on the material and geometry of the driving environment makes

them less favorable for autonomous UGV applications [26], [27].

Although the working environments for LIDAR sensors are limited compared to

radar sensors, as stated in [28], continuous increase in resolution, ability to measure

geometric properties of the environment directly, and their feasibility make LIDARs

a well suited option for detection of road characteristics. In [29], Morales et al. used

LIDAR measurements to detect traversable areas, which were assumed to be always

flat and bounded by trees, grass and bushes. Due to this assumption, the working area

of the algorithm was limited to a specific structured environment only. Similarly,

[30], [31] and [32] used LIDAR measurements for road boundary detection purposes

limited to structured environments. Alternatively, Siegemund et al. used curb model

to detect and follow the road boundaries in [33] and updated the model parameters

7

based on the data obtained by classifying 3D point cloud using conditional random

field. In [34], Stückler et al. presented a localization algorithm using LIDAR data for

a known environment with accurate road map. In this method, LIDAR points were

first converted to the height images and then by applying oriented edge filters to

these images, position of the curbs was calculated. As next, position of the vehicle

was estimated by matching the calculated curb positions with the actual values

obtained from the road network model. In [35], on the other hand, position of the

roadside curbs was calculated based on a probability threshold mechanism. Extracted

results were used for decision-making by the autonomous mobile robot to navigate in

urban areas with unreliable GPS measurements. Similarly, Jian et al. proposed a curb

detection algorithm in [36] using raw 3D point cloud generated by a velodyne

LIDAR sensor to detect road area. In this approach, straight and curved road curbs

were found by utilizing an adaptive threshold, which made using the algorithm for

changing road conditions possible. Although the system was proved to be robust for

the environments with continuous curb structure, decrease in the success rate was

observed in case of discontinuous environments. In [37] and [38], change in the

distribution of collected LIDAR points were used to detect surface changes and road

was detected based on the surface roughness and size of the point cloud segments.

This algorithm was proved to be applicable to both structured and unstructured

environments. In [39], LIDAR and monocular camera data were fused for long

distance adaptive road detection. In this proposed algorithm laser readings were

utilized to find drivable areas and obstacles in close range to the vehicle and to train

the developed self-supervised long-range road detection algorithm as described in

[40].

1.4. Scope of the Thesis

Primary objective of this study is developing an adaptive road detection algorithm

using a single 2D LIDAR sensor and a dome-camera. The proposed algorithms are

expected to operate robustly both in structured and unstructured environments

assuming that the road boundaries are covered either by curb, berm or vegetation.

8

For road detection, three different approaches were proposed in this thesis. The first

method detects road area based on only geometrical features generated by 2D

LIDAR data and consists of three main steps, namely breakpoint detection to

differentiate changes in surfaces, line segment extraction to label possible road

regions, and line segment selection to decide on drivable area. Alternative to similar

approaches in the literature, an adaptive approach is utilized to estimate algorithm

parameters by using discriminative learning approach. This allows the robotic system

respond to changes in road properties easily. The second method utilizes both 2D

LIDAR data and the images captured by the front facing lens of the dome-camera.

Following the line segment selection step, LIDAR points forming the line segment

are registered to the captured and preprocessed image. Then, corresponding pixel’s

HSV color space values are read and integrated to the point cloud data. As next,

selected line segment is filtered based on discontinuity in the hue color channel value

and the area corresponding to the road is selected. The third and last road detection

method is based on online supervised learning approach, which uses the outputs of

the secondly proposed road detection algorithm as training data in order to generate

visual road models. As next, previously learned and/or null road models are updated

using these training data. Lastly, road regions in the front and rear images captured

by the dome-camera are found by using learned and updated visual road models.

In the secondary and last road detection algorithms, geometrical features are fused

with the color features by registering the range measurement points to the

preprocessed images captured by the camera. Moreover, evaluation of the obtained

results from road detection algorithms are made by comparing the corresponding

pixel positions of the points, which are classified as road region, with the manually

labeled road images. Therefore a simultaneous localization algorithm is designed to

estimate the relative position of the vehicle, when LIDAR measurements are taken,

with respect to its location, when the images are captured by the camera. Developed

localization algorithm employs GPS, IMU and OBMM readings and these sensor

data are fused by using EKF algorithm.

9

1.5. Outline of the Thesis

The rest of the thesis is constructed as follow.

In Chapter 2, following the explanation of hardware and software structure of the

mobile robotic system used in this study, proposed localization algorithm is

explained in detail. Then, registration procedure of LIDAR points to the images

captured by the camera and conversion of rectified pixel locations to raw pixel

locations are presented. Afterwards, theories and working steps of the proposed road

detection algorithms are described. Lastly, the procedures of the conducted

experiments are explained.

In Chapter 3, visual and numerical results of the experiments are presented at first.

As next, performances of the designed localization, point registration and road

detection algorithms are evaluated by comparing their results with the methods

presented in the literature.

In Chapter 4, a conclusion on this study is given and suggestions for the future work

are presented.

10

11

CHAPTER 2

2. MATERIAL AND METHOD

In this chapter, first hardware and software structure of the mobile robotic system

used in this study is described. As next, registration process of LIDAR points to the

captured images and conversion of pixel positions from undistorted image to the raw

image are explained. Afterwards, proposed localization and adaptive road detection

algorithms are presented in detail. Lastly, by covering the experiments conducted to

evaluate the performance of the proposed algorithms, this section is concluded.

2.1. Mobile Robotic Platform Overview

The UGV used in this study is a renovated electrical ATV for semi-autonomous

usage in the scope of 111M580 numbered TÜBİTAK project. This mobile platform

was named as ‘GOAT’, and its picture is presented in Figure 2-1.

Figure 2-1 Picture of UGV platform, GOAT

12

GOAT had a distributed control architecture consisting of one main computer and

two auxiliary onboard computers. The main computer had an Intel i7 type CPU with

3.2 GHz processing speed and 8 GB ram. It was responsible for running programs

with high computational loads, such as, localization, road detection, image

processing and machine learning. On the other hand, the auxiliary computers with

1.0 GHz CPU and 512 MB ram were responsible for low level processing, such as,

sensor measurements and interfacing with the actuators attached to GOAT.

Communication between these separate computers was established by utilizing ROS

environment. Moreover, all the developed algorithms were running under ROS.

The mobile robotic platform was capable of performing autonomous tasks on its own

as well as manual operation through long-range user intervention. This allowed a

hybrid task control scheme to be realized in which the user might choose the amount

of autonomy in the operation. In other words, during operation, user can step in at

any point and take the control of the robotic platform partially or fully. The opposite

case was also valid, in which the robot may stop working autonomously and wait for

manual operation if the uncertainty about the current state of the system prevents

completing the given tasks.

The GOAT had three separate LIDAR sensors (one URG-04LX Hokuyo, JAPAN

and two LMS291-S05 SICK, GERMANY), a dome-camera (Ladybug-5 PointGrey,

CANADA), two IMUs (one IMU-440 Xsens, USA and one MinIMU-9 v3 Pololu,

USA), a GPS module and six encoders (four of them on the rear wheels and two of

them on the front wheels) for localization and mapping purposes. Positions of all

sensors are schematically shown on the mobile robotic platform in Figure 2-2.

Figure 2-2 Schematic view of GOAT

13

All three LIDAR sensors were placed on the robotic platform making a specific

angle with the horizontal plane as shown in Figure 2-2. Two of LIDARs (LMS291-

S05 SICK, GERMANY) on the front and back surfaces of the robotic platform were

utilized for long-range road boundary detection. These sensors were positioned at a

height of 559.72 mm from the road surface and tilted by 2° around the z-axis with

respect to the sensor’s coordinate frame shown in Figure 2-3. Thus, the distance from

LIDARs to the measurement line was set to be 16 m while the mobile platform

moves on a planar road surface. On the other hand, the LIDAR, which was mounted

on the front surface with 15° pitch angle relative to its coordinate frame shown in

Figure 2-3, was used for short-range road detection as well as obstacle, bump and

hole avoidance. While determining the pitch angle of this sensor, first turning radius

of the GOAT was found by testing the vehicle in both structured and unstructured

roads. Although the results were different for turning left and turning right, the

highest turning radius value was found as 1 m. Considering the turning radius and the

width of the GOAT, the distance from sensor to incident line of laser points for close

range measurements were decided to be 1.5 meters in order to allow the vehicle

escape from any kind of obstacles on its route. As a result, the height of the third

LIDAR was determined to be 417.33 mm from the road surface with a pitch angle of

15° . Example LIDAR readings taken by the sensors mounted to the front surface is

shown in Figure 2-4 as integrated to the camera image.

Figure 2-3 Schematic view of GOAT with coordinate frames attached to the sensors,

where x-, y- and z-axes shown in red, blue, and green, respectively

14

Figure 2-4 Example LIDAR readings taken by the sensors mounted to the front

surface, red points measured by SICK and blue points measured by Hokuyo

The dome-camera was centered on top of the robotic platform in order to maximize

its field of view and cover the measurement range of LIDAR sensors.

The first IMU sensor, IMU-440, was mounted at the center of GOAT’s bottom

surface to minimize the magnification effects of base excitations. The other IMU

sensor was planned to be a secondary measurement unit, and it might be used in the

case of a disturbance in IMU-440 readings, which could be caused by noise in the

system generated by the batteries and/or actuators. Therefore, the secondary IMU is

placed on one side of the dome-camera at the top.

The GPS module was mounted on the opposite side of the secondary IMU at the top

to have a clear and unobstructed view of sky.

Two encoders were mounted on each rear wheel to measure angular speed and

direction of rotation. Additional encoders were placed on the non-actuated front

15

wheels to measure angular speeds, in order to minimize inaccuracy in the

measurements due to the slippage in the rear wheels.

ROS node used for the definition of sensor positions and attached coordinate frames

relative to the mobile robotic platform is given in APPENDIX A.

2.2. Localization

In order to localize the vehicle precisely, outputs of GPS, IMU and odometry based

motion model were combined and used together. The first localization method was a

GPS sensor for absolute positioning, which was operated at 1 Hz. The second

method was based on double integration of linear acceleration and single integration

of angular speed values read by IMU-440 at 10 Hz for incremental localization. The

last positioning method was odometry based motion model explained in Section

2.2.1. In this model, linear and angular distances travelled by the vehicle were

calculated at 10 Hz by using encoder and digital compass data without any

integration. To combine the outputs of these three methods, Extended Kalman Filter

algorithm was used, which was provided in the ROS environment.

2.2.1. Odometry Based Motion Model

The aim of the odometry based motion model is predicting the linear and angular

distances traveled by the vehicle based on encoder and digital compass readings.

This model was developed assuming that GOAT has an ideal Ackerman steering

system, and it consists of two sub-models, which are linear and curvilinear motions

in 3D space. The equations were derived with respect to the world fixed coordinate

frame, whose x-axis points magnetic east, y-axis points magnetic north and z-axis

points upwards. At the end, the outputs of the algorithm were transformed to the

mobile robot fixed coordinate frame, whose x-axis points forward, y-axis points left

and z-axis points upwards taking the GOAT’s center as origin.

16

Before calculating the traveled distance by the vehicle, it is necessary to decide on

whether the vehicle moves linearly or not. For that purpose, a simple threshold

mechanism was employed in the proposed algorithm. In this approach, if the change

in the heading angle between two successive readings was smaller than the user

defined threshold value, the vehicle was assumed to make a linear motion. This

threshold value was determined based on the distribution of collected compass

readings when GOAT was stationary.

2.2.1.1. Mathematical Model for Linear Motion

In this part, equations for linear motion on a plane were derived in world fixed

coordinate frame at first and then pitch angle reading was integrated to the equations

to model the linear motion in 3D space.

Linear distances travelled by a ground vehicle on x and y-axes are given in (2.1) and

(2.2) in terms of distance travelled by the rear axle’s center, Δcr , and heading angle

of the vehicle at previous time instance, ψc()t−1 . Due to linear motion, the variable

Δcr is equal to the distance travelled by the front axle’s center, Δcf , and it depends

on Δ fl and Δ fr , which are read from the front wheel encoders by one of the

auxiliary computers. The same computer is also responsible for reading heading

angle ψc()t from secondary IMU sensor MinIMU-9.

Δxp = Δcr sin ψc()t−1 (2.1)

Δyp = Δcr cos ψc()t−1 (2.2)

Δcr = Δcf =
Δ fl +Δ fr

2
(2.3)

Linear displacement in 3D space is defined in (2.4), (2.5) and (2.6) by adding the

pitch angle αc()t−1 reading into (2.1) and (2.2).

Δx = Δxp cos αc()t−1 (2.4)

Δy = Δyp cos αc()t−1 (2.5)

17

Δz = Δx()2 + Δy()2 sin αc()t−1 (2.6)

2.2.1.2. Mathematical Model for Curvilinear Motion

In this part, derivation of governing equations for curvilinear motion with respect to

the world fixed coordinate frame are presented. Figure 2-5 and Figure 2-6 visualizes

all the variables used in the equations schematically for two successive positions of

the vehicle while making planar curvilinear motion. These two positions are also

referred as initial and final positions of the vehicle’s motion step throughout the

derivation stages.

Figure 2-5 Successive positions of the mobile robot while rotating on a plane - 1

18

Figure 2-6 Successive positions of the mobile robot while rotating on a plane - 2

Δxp = δx()t − δx()t−1 (2.7)

Δyp = δy()t − δy()t−1 (2.8)

Δψc = ψc()t − ψc()t−1 (2.9)

Variables δx and δy in (2.7) and (2.8) represents the horizontal and vertical

distances between GOAT and IRC. These variables are calculated using (2.10) and

(2.11).

δx()t = rcr cos βc()t (2.10)

δy()t = rcr sin βc()t (2.11)

βc()t = π − ψc()t (2.12)

Same as the linear motion case, the heading angle ψc()t is read from the secondary

IMU. The turning radius of rear axle’s center, rcr , utilized in (2.10) and (2.11) is

calculated by (2.13).

19

rcr = rcf
2 − l2 (2.13)

rcf =
Δcf

γ (2.14)

Δcf =
Δ fl +Δ fr

2 (2.15)

γ = ψc()t − ψc()t−1 (2.16)

3D curvilinear motion is obtained by integration of pitch angle αc() into (2.10) and

(2.11).

Δx = Δxp cos αc()t (2.17)

Δy = Δyp cos αc()t (2.18)

Δz = Δx()2 + Δy()2 sin αc()t (2.19)

2.2.1.3. Covariance Matrix Determination

Following the derivation of mathematical models for linear and curvilinear motions

in 3D space, covariance matrices were determined. For this purpose, uncertainties

and reading errors in the encoders and digital compass sensors were taken into

consideration.

At first, the encoders attached on the front wheels were examined. Although it was

necessary to include both lateral and longitudinal slippages for more accurate model,

they were assumed to be negligible considering that the vehicle was moving with a

low speed. To detect whether there was a measurement error or noise in the

encoders, front wheels were rotated 50 full cycles with varying speeds. After testing

each wheel for 15 times, total number of impulses read from the encoders was

compared with the calculated ones, and it was seen that both of the encoders work

properly and does not miss any pulses.

20

As next, the uncertainty of MinIMU-9 was evaluated by positioning GOAT in the

environment with changing poses and recording sensor readings for 1 minute at each

of these poses. Normal distribution was used to model the sensor noise. Standard

deviation and variance values for roll, pitch and yaw angles were calculated in MS

Excel and the result are presented in Table 2-1.

Table 2-1 Standard deviation and variance values for MinIMU-9 in [rad]

 Roll Pitch Yaw
Number of
Collected Data 3226 3226 3226

Standard
Deviation of Data 0.008074 0.010924 0.012700

Variance of Data 0.000065 0.000119 0.000161

After modeling the uncertainties of the sensors utilized in motion model, the

uncertainty of the motion model itself was found by using sampling method. In this

method, the vehicle’s displacement was simulated 1.000.000 time by using randomly

generated sensor data, whose mean values were taken as the real sensor readings and

standard deviation values were equalized to the previously determined values. At

last, a Gaussian distribution was fitted to the generated data and the following results

in Table 2-2 were obtained for linear and curvilinear motions.

Table 2-2 Standard deviation and variance of motion model in [mm]

Linear Motion Curvilinear Motion

X Y Z X Y Z
Standard
Deviation 12.963 10.382 14.237 24.706 32.325 11.835

Variance 168.032 107.790 202.684 610.391 1044.890 140.060

21

2.3. Registration of LIDAR Points to Images Captured By Dome-camera

As mentioned in the former chapters, LIDAR measurements were registered to the

image captured by the camera to be used in road detection algorithm and the

evaluation of its outputs. The procedure of converting LIDAR points measured in

polar coordinates to the raw pixel locations on the ith camera is schematically shown

in Figure 2-7.

Figure 2-7 Schematic view of LIDAR point conversion steps

To start with, the measured range points were converted from polar coordinates to

Cartesian coordinates using (2.20), where ‘LI’ stands for the coordinate frame

attached to the LIDAR, and ρn and ψn are the range and the corresponding yaw

angle values for the nth LIDAR measurement. Since the utilized LIDAR was taking

only planar measurements, position of the points in z-axis with respect to the LIDAR

attached coordinate frame was always 0.

xn
yn
zn

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

LI()

= ρn
cos ψn()
sin ψn()
0

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥ (2.20)

As next, obtained LIDAR points were transformed from LIDAR attached coordinate

frame to dome-camera attached coordinate frame using built-in function of ROS,

tf.TransformListener().transformPointCloud(). Since the working frequencies and the

time of measurements were different for camera and LIDAR, before transforming the

ρn
ψn

�
��

�
��

(LI) xn
yn
0
1

�

�

�
�
�

�

�

�
�
�

LI() xn
yn
zn
1

�

�

�
�
�

�

�

�
�
�

La()

xn
yn
zn
1

�

�

�
�
�

�

�

�
�
�

i()

Polar to Cartesian
Conversion (2.20)

Coordinate frame
transformation

Coordinate frame
transformation

tf.transformPointCloud()

Using camera extrinsic
parameters

Rectified Pixel
Location Calculation

Pin-hole camera
model

un,rect
vn,rect
�
��

�
��

un,raw
vn,raw
�
��

�
��

Pixel Conversion

22

point cloud, 3D position of the LIDAR attached coordinate frame relative to the most

recent position of the camera was calculated by using the built-in function

tf.TransformListener().waitForTransform(). Afterwards, the point cloud was

transformed one more time from dome-camera coordinate system to the ith lens 3D

coordinate system using the transformation matrix defined by the camera specific

extrinsic parameters, which were retrievable for each camera attached to the

Ladybug from the Ladybug API. Following the transformation of all LIDAR points

to the ith lens 3D coordinate system, direction vectors between local origin and scan

points, which were redefined in the form of (2.21), were calculated using (2.22).

Using the calculated direction vector, corresponding pixel locations on the rectified

image, cn, rn() , were found by (2.23) and (2.24), which were obtained by pinhole

camera model as explained in [41].

Pn
i() = xn, yn, zn,1[] i()

T

 (2.21)

!vn
i() =

xn
zn
, yn
zn
,1

⎡

⎣
⎢

⎤

⎦
⎥

i()

 (2.22)

un = fi
xn
i()

zn
i() = cn − c0 → cn = fi

xn
i()

zn
i() + c0 (2.23)

vn = fi
yn
i()

zn
i() = rn − r0 → rn = fi

yn
i()

zn
i() + r0

(2.24)

Lastly, pixel positions of the LIDAR points on the raw image were found by

converting the obtained rectified pixel locations. Utilized algorithm for this

conversion is explained in Section 2.4.

If the calculated pixel positions were non-integer values, then the color values for

these pixels were estimated by using bilinear interpolation, which is represented in

Figure 2-8 visually. In this interpolation method, four pixel positions with integer

values, which covered the pixel in interest and shown as red in Figure 2-8, were

found first. After reading the pixel values, Q11 , Q12 , Q21 and Q22 respectively,

values R1x and R2 x were estimated by doing a linear interpolation in x-axis using

23

(2.25) and (2.26). As next, by doing a secondary linear interpolation in y-axis using

(2.27), the value of the pixel in interest was estimated as Pyx .

Figure 2-8 Visual representation of bilinear interpolation

R1x ≈
x2 − x
x2 − x1

Q11 +
x − x1
x2 − x1

Q12 (2.25)

R2 x ≈
x2 − x
x2 − x1

Q21 +
x − x1
x2 − x1

Q22 (2.26)

Pyx ≈
y2 − y
y2 − y1

R1x +
y− y1
y2 − y1

R2 x (2.27)

2.4. Conversion of Rectified Pixel Locations to Raw Pixel Locations

In Section 2.3, it was explained in detail, how to calculate the measured LIDAR

points’ position on the rectified image. However, raw captured image by the camera

is a distorted version of the actual scene as it is shown in Figure 2-9. In the figure,

the image on the left is the raw image captured by the camera and is a barrel type

distorted visual representation of the real scene. Hence, in order to read the color

values for the LIDAR data, it was necessary to rectify the raw image or to transform

y1

y

y2

x1 x x2

Pyx

Q11

Q21

Q12

Q22

R1x

R2x

24

the calculated pixel locations from the undistorted image to the raw image. Since

total number of pixels in the raw image was around 9800 times higher than the

number of generated LIDAR points per cycle, and only a small portion of the whole

image was used in the algorithms, it was decided to convert calculated rectified pixel

locations to the raw pixel locations to minimize the computational load. Although a

function to convert pixel values between raw and rectified images was available in

Ladybug API, it was functional only on Windows OS, whereas all the algorithms and

programs used in this study were running on UBUNTU OS. Therefore, five different

methods for pixel conversion were developed and tested.

Figure 2-9 Captured image by the camera, a) raw image, b) rectified image

The first method was expressing the distortion in the raw image mathematically. As

explained in [42], distorted images containing radial and tangential lens distortions

can be modeled using (2.28), (2.29) and (2.30), where k1 , k2 and k3 are radial

distortion parameters, p1 and p2 are tangential distortion parameters, and urect , vrect ,

udist and vdist are the column and row coordinates in rectified and distorted images.

To determine these parameters, Matlab Camera Calibrator App was used, which

25

estimated the parameters based on set of images captured by the camera. In all of

these images, a distinct checkerboard with known square size was placed at different

positions with changing rotation on the camera’s field of view. The set of images

used for the calibration process is given in Figure 2-10.

udist = urect 1+ k1r
2 + k2r

4 + k3r
6()+ 2p1urectvrect + p2 r2 + 2u2rect()

(2.28)

vdist = vrect 1+ k4r
2 + k5r

4 + k6r
6()+ 2p2urectvrect + p1 r2 + 2v2rect()

(2.29)

r2 = u2rect + v
2
rect

(2.30)

Figure 2-10 Camera images used in Camera Calibrator App of Matlab

The remaining methods utilized the pixel conversion table, which formed of both

rectified-to-raw and raw-to-rectified conversions for each pixel in the image. This

table was created by using the available function in Ladybug API, which can be used

only on Windows OS.

In the second method, similar to the first one, the distortion in the image was

expressed mathematically using (2.28) and (2.29), whose parameters were estimated

based on the obtained pixel conversion table by using particle swarm optimization

(PSO) technique. As explained in [43], PSO is an evolutionary optimization method,

which uses particles and their motion to find their optimal positions and the

corresponding optimal solution for the given problem. At the beginning of the PSO

algorithm, a finite number of particles representing the parameter sets are generated

with random positions and velocities. As next, fitness values of each of these

26

particles are calculated according to the defined cost function. Following the

calculation of fitness values at the end of each iteration, best fitness value, pbest , for

each particle is selected, and then the global best, gbest , is selected among them.

Based on gbest , particles are updated and a new iteration starts till the maximum

iteration number or the convergence is achieved. At the end, the parameter set

corresponding to gbest is selected as the solution of the given problem. The success of

this approach strongly depends on a well-defined cost function, which was taken in

this study as the mean of the Euclidean distances between calculated and actual raw

pixel positions for each pixel in the rectified image. The mathematical expression of

the cost function is given in (2.31).

c = 1
N

xi,raw,calc − xi,raw,act()2 + yi,raw,calc − yi,raw,act()2
i=1

N

∑

(2.31)

The third approach was reading the conversion file, in which the pixel conversion

table was stored, and assigning this data to a variable at the beginning of the

program. Then, required pixel conversions would be read from this variable during

operation. However, this approach could never be tested, since reading the whole

conversion table took more than a half hour and the ram usage reached to very high

levels so that it slowed down other running processes.

The next method was writing the whole pixel conversion table to a file and reading

the corresponding lines of it to convert the pixel locations at each LIDAR

measurements’ registration step.

The last method was storing the conversion table into a gray scale image instead of a

text based file, where the rectified image pixels were used as pixel location in the

generated gray scale image and the color value of the image was set to be equal to

the output of pixel conversion, i.e. raw pixel position.

In the third and fourth pixel conversion methods, non-integer rectified pixel positions

were estimated by using bilinear interpolation, which was explained at the end of

Section 2.3.

27

2.5. Road Detection

In this study, three different adaptive road detection algorithms are proposed for a

robust classification of road regions ahead of the vehicle in both constructed and

unconstructed environments. The first proposed road detection algorithm utilized

only one 2D LIDAR sensor attached to the front surface of the vehicle. The second

approach, on the other hand, was based on using hybrid features, which consists of

range measurements taken by the 2D LIDAR and the visual data coming from the

camera. The third and the last algorithm used online supervised machine learning

approach for road detection purpose. In the following sections, at first the working

principle of single 2D LIDAR based adaptive road detection algorithm is explained.

As next the second adaptive road detection algorithm using sensor fusion is covered

in detail. At last, working mechanism of the machine learning based road detection

algorithm is described.

2.5.1. Adaptive Road Detection Using 2D LIDAR Sensor

Proposed adaptive road detection algorithm consists of three main steps, namely

breakpoint detection to differentiate changes in surfaces, line segment extraction to

label possible road regions, and line segment selection to decide on drivable areas.

Alternative to the similar studies in literature, to make the robotic system

dynamically respond to the alterations in the road environment, an adaptive approach

was utilized to estimate algorithm parameters by using discriminative learning

approach. Moreover, all the calculations in the implemented road detection method

were done using polar coordinates, which is the convention used by LIDAR sensors.

Thus, the high computational cost of the coordinate conversion operation was

avoided.

28

2.5.1.1. Breakpoint Detection

The aim of the breakpoint detection is determining the change in the road surface by

looking any discontinuity in a range measurement. Furthermore, it prevents the line

extractor from connecting two adjacent, linearly distributed point clouds in case of a

presence of large discontinuity. A sample view of LIDAR points’ distribution for

structured and unstructured roads are given in Figure 2-11.

Figure 2-11 Sample LIDAR measurements for structured environment (left) and

unstructured environment (right)

The method utilized for breakpoint detection in this study was based on the algorithm

proposed by [38]. In this algorithm, at first the longest possible distance between

current scan point pn and previous scan point pn−1 was estimated. To calculate this

distance, a virtual line passing through the scan point pn−1 making an angle λ with

the scanning direction ψn−1 was defined and a hypothetical scan point pn
h was

assumed to be on the intersection of this virtual line with the scanning direction ψn .

The distance between pn−1 and pn
h was taken as the threshold distance Dmax , whose

mathematical expression was given in (2.32). Scan points pn−1 and pn were labeled

as breakpoints, if pn was outside of the threshold circle, which was centered at pn−1

with a diameter of Dmax . Figure 2-12 visualizes the procedure followed for

29

breakpoint detection schematically, and the working steps are given as a pseudo code

in Table 2-3. In Table 2-3, parameter Nlp stands for the total number of points

scanned by the LIDAR in each cycle and BP is the cluster of detected breakpoints.

Dmax = rn−1
sin Δψ()

sin λ −Δψ()
 (2.32)

Figure 2-12 Schematic view of breakpoint detection and Dmax determination

Table 2-3 Pseudo code of breakpoint detection algorithm

01 BP = { } // Cluster of detected breakpoints

02 p0 ∈ BP

03 for n=1 to Nlp −1() do

04 calculate Dmax by (2.32)

05 if d pn, pn−1() > Dmax then

06 pn ∈ BP

07 pn−1 ∈ BP

08 else
09 pn ∉ BP

Considering (2.32), calculation of Dmax depends on the range measurement rn−1 of

pn−1 , angular increment between two consecutive LIDAR readings Δψ and λ . Only

30

adjustable variable in this equation is λ and the rest depends on the sensor

specifications and environment. In this study, selection of λ was automated,

whereas it was determined based on user experience in [25] and [38] The method

used for automated selection of λ is explained in detail at Section 2.5.1.4.

2.5.1.2. Line Segment Extraction

The next step of adaptive road detection algorithm is extraction of line segments, in

other words possible road regions. In order to extract line segments, point

distribution along a candidate point set was compared with the ideal range image of a

flat ground using a similar algorithm proposed in [24] and the iterative end point fit

algorithm (IEPF) presented in [25] and [38].

In the utilized algorithm, at first a hypothetical line representing the ideal range

image of a flat surface between two consecutive breakpoints is defined by using

(2.33) and (2.34). Next, distance of each measured point located between these

breakpoints to the defined hypothetical line was calculated by (2.35) and compared

with the threshold distance value dth . If one or more of the points was found to be

located in a farther position than dth , the outermost scan point was labeled as a new

breakpoint and the point set was split into two separate line segment candidates. This

iteration was repeated until the distance criteria was satisfied for each point in the set

and the set was selected to be a line segment, or the number of points in the set

became less than the required minimum number of points, Nmin , to represent a line

segment and all the points were discarded at the end. The pseudo code of the

algorithm is given in, and the IEPF step is visually presented in Figure 2-13.

ρ flat ψn() = zlidar
cos ψn()α − sin ψn()β

 (2.33)

α
β

⎡
⎣⎢

⎤
⎦⎥=

1
1

− tan ψns()
− tan ψne()

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1
zlidar / cos ψns()ρ ψns()
zlidar / cos ψne()ρ ψne()
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 (2.34)

dn = ρ ψn()− ρ flat ψn() (2.35)

31

Table 2-4 Pseudo code of line segment extraction algorithm

01 ne = 0
02 LS = { } // Cluster of extracted line segments

03 while ne ≤ Nlp do

04 ns = ne

05 ne = ns +1

06 while ne ∉ BP and ne < Ns do

07 ne = ne +1

08 while ne − ns ≥ Nmin

09 for n = ns to ne do

10 calculate d pn, pn, flat()

11 if max dn() > dth

12 ne = index max dn()()

13 else
14 lnsne ∈ LS

Figure 2-13 IEPF step of line segment extraction

Considering line segment extraction algorithm, determining whether a set of point

was a line segment depends on the parameters Nmin , dth and the height of the

LIDAR sensor zlidar . Parameter zlidar is a physical design parameter and cannot be

changed during the operation. However, parameters Nmin and dth can be used to

dn

32

dynamically control the output of the line segment extraction algorithm. In [25],

these variables were set to be constant and same for different road types

Nmin = 24 and dth = 60mm() . Alternative to [25], determination of Nmin and dth was

automated in this study, which is explained in detail at Section 2.5.1.4.

2.5.1.3. Line Segment Selection

The last step of the proposed adaptive road detection algorithm is selection of line

segment corresponding to the road area. For that purpose, at first central position of

each line segment was calculated with respect to the GOAT. As next, the nearest line

segment was selected and labeled as road among others based on the horizontal

distance, in order to minimize the number of maneuvers.

2.5.1.4. Adaptive Parameter Selection

As mentioned in the previous parts of this chapter, deciding on the values of

parameters used in road detection algorithm was automated. These parameters are λ ,

dth and Nmin . This made the proposed road detection algorithm adaptable for

changing road conditions.

Parameters λ and dth were determined using a discriminative learning approach

based on a labeled training data set. By LIDAR collected data is labeled as road

regions using the path followed by mobile platform under manual operation, similar

to [19] and [44]. In Figure 2-14, LIDAR points corresponding to the area passed over

by GOAT were labeled as road and shown in blue, whereas the remaining points are

colored with respect to their z values.

33

Figure 2-14 Terrain labeling for discriminative learning step, LIDAR points labeled

as road region are shown in blue

To tune the parameter λ , Euclidean distance between each adjacent point pn−1 and

pn in the training data set was calculated at first and followed by determining the

corresponding λn using (2.36). As next, optimum λ value is selected as the lowest

peak value of the obtained distribution of λn .

λn = sin
−1 rn−1

sin Δψ()
d pn, pn−1()

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟+Δψ (2.36)

To tune the parameter dth , distance dn of each point labeled as road in the training

data set to the virtual line representing the ideal range image of a flat surface was

calculated using (2.35). Then the highest peak value in the obtained distance

distribution was chosen to be dth .

Different than the parameters λ and dth , Nmin was dynamically adapted throughout

the motion of mobile platform, since the distance between the platform and the

incident line may change, as the mobile platform passes on a bump and/or a hole. For

that purpose, Nmin was calculated depending on the width of the vehicle, wGOAT , and

the range measurement for ψ = 0 , r0 . The mathematical expression used to

calculate Nmin is given in (2.37).

34

Nmin = 2
tan−1 wGOAT

2r0()
Δψ

 (2.37)

2.5.2. Adaptive Road Detection Using 2D LIDAR Sensor and Visual Data

Proposed adaptive road detection algorithm, which uses hybrid features, consists of

five main steps. First three stages of this algorithm, namely breakpoint detection, line

segment extraction and line segment selection are same as in the previous method.

Following the selection of line segment, remaining point cloud is registered to the

preprocessed image and HSV color space values of the pixels matching with the

range measurements are fused. At last, points, which form the selected line segment,

are filtered based on discontinuity in their hue color channel values, to differentiate

changes in surfaces with similar surface roughness.

One of the differences of this algorithm from the first approach is utilizing the visual

data coming from the dome-camera to filter the point cloud. The other dissimilarity

is conversion of the range measurement points from polar coordinate system to

Cartesian coordinate system, in order to register them on the captured image.

2.5.2.1. Preprocessing and Color Space Conversion Of The Captured Image

In parallel to the road detection steps using LIDAR data only, captured image by the

camera was first preprocessed in order to decrease the effect of noise and sharpen the

color information. Afterwards its color space was converted from RGB to HSV to

make the visual data less susceptible to the changing lighting conditions.

Application of the noise filter to the captured image was the first step of the

preprocessing. In this step, a 3x3-averaging filter given in (2.38) was convolved with

the raw image in order to remove grain noises due to poor lighting condition and

high ISO values.

f = 1
9

1 1 1
1 1 1
1 1 1

⎡

⎣
⎢

⎤

⎦
⎥ (2.38)

35

Following the noise filtering, histogram equalization was applied on each color

channels of the color image, in order to reduce the adverse effects of the unbalanced

illumination and improve the contrast of the image. Although histogram equalization

causes deformation in the color content, it was shown in [18] that utilization of

histogram equalization improved the performance of color based road detection

algorithms by decreasing the FP rate. Outputs of the preprocessing steps are

presented together with the raw images in Figure 2-15.

Figure 2-15 Raw images captured by the camera (a,c) and preprocessed images (b,d)

After the preprocessing steps, image’s color space was converted from RGB to HSV.

2.5.2.2. Filtration Of The Selected Line Segment Based On Hue Color

Channel Value

After registering the selected line segment to the preprocessed image by following

the methodology explained in Section 2.3, points were filtered based on the

discontinuity in their hue color channel values to differentiate changes in surfaces

with similar surface roughness.

The first step of the filtration was increasing the contrast in hue color channel by

mapping color values to the interval of 0-255. Hue channel values of the points

before and after contrast adjustment are plotted in Figure 2-16

36

Figure 2-16 Hue channel values of the points in line segment before and after

contrast adjustment

As next, mean and standard deviation values, µH and σ H , in hue channel were

calculated for all of the points in the line segment and upper and lower threshold

values were defined as, µH +σ H and µH −σ H . Following that, local average hue

values for each 10 points in the line segment were calculated separately and

compared with the threshold values. If average hue value of any point groups was

found to be higher or lower than the threshold values, such as points between pixel

positions 320-350 in Figure 2-17, those points were labeled as non-road region,

assuming that the points corresponding to the actual road area has similar color

distribution in hue channel and their ratio to the points on non-road area is higher. At

last, if the line segment was divided into two or more parts, then central position of

each line segment was calculated with respect to the GOAT. Next, the nearest line

segment was selected and labeled as road among others based on the horizontal

distance, in order to minimize the number of maneuvers.

37

Figure 2-17 Hue channel values of the points forming the line segment and the

average hue values of each point group after increasing contrast

2.6. Adaptive Road Detection Using Online Supervised Learning Approach

Proposed adaptive road detection algorithm consists of three main stages, which are

generating training data, updating previously learned road models based on color

properties and detecting road regions by using these road models and evaluating the

images captured by the dome-camera.

2.6.1. Generation Of Training Data

For training data generation, road regions in front of the vehicle are detected by using

adaptive road detection algorithm discussed in Section 2.5.2. As next, by following

the procedure defined in Section 2.3 as road labeled LIDAR points are registered to

the image, which is captured by the front facing lens of the dome-camera. By using

the corresponding pixels’ color values in HSV color space, visual model of the road

region is generated as a mixture of Gaussians model. Similar to [18] and [39], these

38

Gaussian models are defined by their mean values, µ , covariance matrices, Σ and

mass values, m, which are calculated by using k-means clustering. The mass value is

equal to the number pixels forming the trained road model. While generating these

models, different than [39], hue and saturation color channel values are used instead

of RGB color space values, in order to make the models less susceptible to the

changing light conditions.

2.6.2. Updating Previously Learned Road Models

After generating the k-many visual road models using training data, they are used

either to update or to replace previously learned road models or to replace the null

models. In order to decide on, whether these new models will be used for update or

replacement, condition (2.39), which was proposed in [39], is used to compare new

models with each of previous models.

1≥ µL −µT()T ΣL +ΣT()−1 µL −µT() (2.39)

If one or more of the newly generated model(s) fulfill the condition given in (2.39),

then it/they are used to update the matching previously learned model(s) using

(2.40), (2.41) and (2.42).

µL =
mLµL +mTµT
mL +mT

 (2.40)

ΣL =
mLΣL +mTΣT
mL +mT

 (2.41)

mL =mL +mT (2.42)

In case new models match none of the previously learned models, then they are used

to replace null models, if there is any, or previously learned ones. If the number of

null models is less than the number of new ones or equal to zero, then previously

learned model with the lowest mass value is replaced.

39

2.6.3. Road Regions Detection

Following the update step, visual road models are used for road detection purpose. In

order to do that, firstly pixels on the image captured by one of the lenses on the

dome-camera are scored by the road models. For the calculation of these scores,

Mahalanobis distance from pixel to the center of visual road models is used, which

was shown to be most efficient distance measure compared to Manhattan, Euclidian,

Chebyshev and Hellinger distances, [18]. The equation of Mahalanobis distance is

given in (2.43).

dM p() = p−µL()T ΣL
−1 p−µL() (2.43)

After calculating the scores for each pixel in the visual field, image is binarized by

applying a threshold value equal to 3σ and drivability of each pixel is obtained.

Before deciding on the road region, dilation and erosion filters with a kernel given in

(2.44) are applied to the binary image to eliminate noises and impurities. At last,

connected components in the binary image are found and the largest one is chosen as

the road region.

f =
1 1 1
1 1 1
1 1 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(2.44)

2.7. Experiments

Proposed localization and road detection algorithms were tested on the path shown in

Figure 2-18, which consisted of structured and unstructured road regions, labeled as

red and blue, respectively. The performance of the proposed localization method was

observed throughout the whole route. On the other hand, two test areas for structured

road (a road section bounded by sidewalks and another road section bounded by

plants) and one test area for unstructured road conditions were selected for the

evaluation of adaptive road detection algorithm. Figure 2-19 shows photos of the

experiment sites for structured and unstructured road cases.

40

Figure 2-18 Test path driven by the vehicle, red path shows the structured road and

blue path shows the unstructured road

Figure 2-19 Sample images for structured road (a) and unstructured road (b)

In order to compare the results of the developed algorithms objectively and to reduce

the number of field tests, for each of which at least one hour needs to be spent

excluding the data post-processing, the mobile platform was manually driven through

41

the path shown in Figure 2-18 with an average speed of 3 km/h, and whole sensor

readings were recorded using the ROS environment. Later, the developed algorithms

were run offline in the laboratory. By using the feature of playing recorded data in

ROS, sensor readings were fed to the written programs like in real time, and made it

possible to run and test all of the developed algorithms with the same inputs.

Moreover, it made possible comparing the performances of each algorithm

objectively.

The performance of the proposed localization algorithm was evaluated based on

three different parameters. The first evaluation is done based on the coarse behavior

of the mobile platform, where the calculated paths of the vehicle in structured and

unstructured environments are visually compared with the aerial images published by

ArcGIS. So that, it is checked whether the computed motion of the vehicle shows

similar characteristics to the actual road. As next, the computed positions are

evaluated in detail by considering the distances between two consecutive positions.

The last evaluation criterion is the distance between estimated and actual final

positions of the vehicle. To compare the final positions, the robotic platform was

driven through a path, at the end of which the displacement of the vehicle was zero.

So the distance between starting and ending positions gives the deviation between

estimated and actual final positions of the vehicle.

Pixel conversion methods were evaluated both visually and quantitatively using the

image presented in Figure 2-20.

42

Figure 2-20 Raw image of checkerboard captured by the Ladybug

Due to the distortion in the images, geometric features with linear shapes, such as

straight edges of a cube, are bended. This effect is visualized using a mesh of squares

in Figure 2-21 for negative and positive radial distortion cases together with the

undistorted image. As the object gets closer to the boundaries, the effect of this

phenomenon increases. The adverse effect of distortion caused by the camera’s lens

can be reversed by rectification, which was used to evaluate the visual performance

of the proposed pixel conversion algorithms based on the straightness of the linear

shaped geometrical features in the corrected images. In order to see the effect of

rectification clearly, a checkerboard was chosen as the object in the image. Although

the proposed method for visual evaluation is the inverse of the converting rectified

pixels to raw pixels, rectification by using the same parameters with the distortion

process gives the same input output pixel couples with the reverse order. Therefore it

can be used for visual inspection.

43

Figure 2-21 Effect of the radial distortion to the image [42]

The quantitative analysis was made based on the mean value of the Euclidean

distances between the raw pixel positions obtained from Ladybug API and the

calculated raw pixel positions by the proposed methods for each pixel location in the

rectified image. The equation used for quantitative evaluation is given in (2.45).

µ =
1
N

xi,raw,calc − xi,raw,act()2 + yi,raw,calc − yi,raw,act()2
i=1

N

∑

(2.45)

Performance of the proposed road detection algorithms was evaluated based on ACC

and FPR values of the outputs. To determine the ACC and FPR, line segments

collected during the experiments and labeled as road area were compared with the

ground truth data using (2.46) and (2.47). The ground truth data was generated by

manual labeling of the road edges on the images, which were captured by the dome-

camera. A sample view from the manual labeling process is given in Figure 2-22 for

structured environment. FPR was used for comparison, however true negative and

false negative results were not considered for the evaluation of algorithm’s

performance. This is due to that a false negative result can only make the robot

deciding to halt and wait for manual operation, at worst. False positive output, on the

other hand, may cause the vehicle under autonomous operation decide on going out

of the road, and can lead to damaging the UGV platform. In addition to ACC and

FPR, computational speeds of the proposed adaptive parameter approaches were

compared against each other using the mean computational time required by them.

 (2.46) ACC =TP +TN
Σp

44

(2.47)

Figure 2-22 Sample ground truth data generation by labeling road region manually

FPR = FP
Σpnegative

45

CHAPTER 3

3. RESULTS AND DISCUSSION

In this chapter of the thesis, results of the conducted experiments are presented to

evaluate the performance of the developed algorithms for localization, pixel

conversion and road detection. Then the performance of the overall system is

evaluated in detail based on these results.

3.1. Localization

In this section, first, the driven path for the evaluation of localization algorithm is

virtually presented attached to the aerial images published by ArcGIS. This path was

estimated by using the outputs of three different approaches, namely, GPS only,

OBMM only and Extended Kalman Filter that combines GPS, OBMM and IMU

sensor readings. Following the visual result, performance of the algorithm is

evaluated numerically with respect to the criteria discussed in Section 2.7.

Visual results of the travelled path computed based on GPS only, OBMM only and

EKF are shown in Figure 3-1 for structured and unstructured road environments. As

it can be seen in Figure 3-1-a and -b, output of the localization method based on only

GPS data visually agrees with the actual road area shown on ArcGIS World Aerial

Images. Results of the OBMM, on the other hand, deviates from the actual path as

expected, because small errors in the measurements cause cumulative increase in the

final positioning error due to relative localization approach. However, considering

46

the general behavior of the computed path, it is seen that obtained results by OBMM

based localization method is similar to GPS based method. Visual results of the

estimated path by EKF algorithm also agree with the road area shown in ArcGIS

World Aerial Images, and for the unstructured road case shown in Figure 3-1-b it

coincides with the path computed by GPS data.

Figure 3-1 Travelled path by the mobile platform to test localization methods in a)

structured environment and b) unstructured environment.

As next, the motion of the vehicle is inspected more closely. In Figure 3-2, a small

portion of the path computed by EKF localization algorithm is shown. As it can be

seen in the right most visual, generated path has a shape of sawtooth. Although it is

rarely observed throughout the path, it occurred because of the difference in the

working frequencies and the uncertainty values of the localization methods combined

47

by EKF algorithm. A sample close-view of the computed path is shown in Figure

3-3. As it can be seen in the figure, number of positions calculated by GPS data is

less than the number of positions calculated by other two methods due to low

working frequency. Between two successive GPS readings, localization is done

based on IMU and OBMM data. Since these two methods are incremental

localization methods, the error in the positioning increases cumulatively, whereas

GPS is an absolute positioning sensor and its error in positioning only depends on the

number of connected satellites, but not former measurements. Therefore, the relative

localization error between two positions estimated by an incremental localization

method, pt−1 and pt−2 , is smaller than the relative localization error between

positions pt and pt−1 , where pt is estimated based on GPS data. As a result of this,

some parts of the path have the sawtooth shape. While going through the sawtooth

shaped sections of the path, it was seen that this fact only occurred when the vehicle

made sharp and sudden turns. In other words, the reason for why the sawtooth shape

is observed is that in these parts of the path the neglected lateral and longitudinal

slippage values affect the motion more drastically, and cause increasing the error in

pose estimation of OBMM.

Figure 3-2 A sample section view of the computed path

48

Figure 3-3 Close-view of the estimated path. Data points generated by using GPS

data are shown as circle, and data points generated by using IMU and OBMM data

are shown as cross.

The third and last evaluation criterion for the localization method is the distance

between estimated and actual final positions of the mobile platform. To calculate this

distance, the mobile platform was driven through the path shown in Figure 3-4,

where the starting and ending positions of the path are on the left center of the image.

Although the final position of the GOAT was actually the same with the starting

position, computed values by the EKF localization algorithm differs. The distance

between these two positions is calculated as 1.014 m after completing the 1.98km

length path. In other words, the error in the final position relative to the total traveled

distance is found to be 0.051%.

Figure 3-4 Traveled route by GOAT computed by EKF localization algorithm

49

Considering both the visual and numerical results, it was seen that the proposed

localization algorithm, which fuses GPS, OBMM and IMU data, could be used both

in structured and unstructured environments. However, since an increase in the

positioning error was observed when the vehicle made sharp and sudden turns, speed

of the vehicle should be controlled carefully to minimize the lateral and longitudinal

slippages.

3.2. Conversion of Pixel Locations Between Rectified and Raw Images

In this section, pixel conversion methods explained in Section 2.4 are evaluated both

visually and quantitatively.

To start with, the output image of the rectification function in the Ladybug API was

visually interpreted to check the accuracy of the calibration file supplied by the

PointGrey. As explained in the Section 2.7, visual evaluation of the algorithms was

made based on the straightness of the lines in the rectified image, which is given in

Figure 3-5. As it can be seen in Figure 3-5-a, correction of the curved lines in the raw

image were successfully undistorted, even though the inspected area was

considerably affected from the lens distortion due to its close position to the image’s

corner. In the second sub-image shown in Figure 3-5-b, on the other hand, a slight

deviation was observed between one of the edges of the corrected squares and the

ideal straight line. However, this deviation only occurred on one of the edges and this

edge was close to the lower part of the checkerboard, which was deformed due to the

weight of the board itself. So, it was concluded that this difference was due to the

physical deformation in the board instead of any inaccuracy in the rectification

algorithm. Since the result shown in Figure 3-5, which was obtained by using the

rectification function of the Ladybug API, were visually accurate and successful, it

was used to evaluate the performance of the proposed algorithms’ outputs.

50

Figure 3-5 Undistorted image by using the rectifying function of Ladybug API

The first method for pixel conversion was expressing the distortion in the image

mathematically using equations (2.28), (2.29) and (2.30), whose parameters were

estimated using Matlab Camera Calibrator App. Conversion equations with the

estimated parameter values are given in (3.48), (3.49) and (3.50). As it can be seen in

Figure 3-6, mathematical model with Matlab estimated parameters could restore the

distortion in the middle area of the image. However, performance of the algorithm

decreased in the regions close to the image boundaries, which can be seen through

Figure 3-6-a and Figure 3-6-b. In the quantitative analysis, the mean value of the

Euclidian distances between actual and calculated raw pixel positions was found as

5.06 pixels.

uraw = urect 1− 0.2315r
2 + 0.0393r4() (3.48)

51

vraw = vrect 1− 0.2315r
2 + 0.0393r4() (3.49)

r2 = u2rect + vrect
2

 (3.50)

Figure 3-6 Undistorted image obtained by using equations (2.28), (2.29) and (2.30)

with the parameters found by Matlab Camera Calibrator App

Although the proposed model initially included the tangential distortion, it was

omitted from the final version of the equations, since the calibration toolbox could

not estimate them correctly. After trying estimation of the parameters with different

image sets for several times, the best visual result obtained with tangential distortion

added model is given in Figure 3-7. One of the reasons for the unsuccessful

rectification result was the small number of calibration images close to the edges.

52

Another reason was small coverage area of the checkerboard in the calibration

images, which was suggested to be around 20% of the whole image. However, due to

camera’s large field of view and the necessity of capturing images at a distance close

to the working distance, which is from the camera to the object of interest during the

real usage of the setup, it was not possible to add extra calibration images, where the

checkerboard was positioned close to the top edge of the image while covering at

least 20% of the camera’s field of view.

Figure 3-7 Undistorted image obtained by using equations (2.28), (2.29) and (2.30)

including the tangential distortion parameters found by Matlab Camera Calibrator

App

In the second proposed method, similar to the first one, the pixel conversion was

made by using the mathematical expressions given in equations (2.28), (2.29) and

(2.30). Parameters of these equations were estimated by using PSO with 50 particles

after running 50 iterations and are given in the conversion equations (3.51), (3.52)

and (3.53). As it can be seen in Figure 3-8, estimated parameters could only restore

top right corner of the image locally with a poor performance. As expected, mean

value for the distance between actual and calculated raw pixel positions was found

higher than the first method, which was 23.99 pixels for the whole image.

53

uraw = urect 1− 0.3567r
2 + 0.1348r4 −1.0150×10−14r6() (3.51)

vraw = vrect 1− 0.3567r
2 + 0.1348r4 −1.0150×10−14r6() (3.52)

r2 = u2rect + vrect
2

 (3.53)

Figure 3-8 Undistorted image obtained by using equations (2.28), (2.29) and (2.30)

with the parameters estimated by PSO

The next method was writing the whole pixel conversion table to a file and reading

the corresponding lines of it to convert the pixel locations at each LIDAR

measurements’ registration step. Visual result of this algorithm was same as the

Figure 3-5. Average Euclidian distance was calculated as 0.19 pixels. Although the

outputs of the algorithm agree with the actual data both visually and quantitatively,

54

the conversions lasted around 2 seconds per cycle. Since the algorithm needed to

operate at 10 Hz at least, it could not be utilized in this study.

The last method was saving the pixel conversion table as a gray scale image, where

the color value of the pixels were set to the output of pixel conversion, in other words

to the raw pixel locations. Similar to the previous method, the visual result of this

algorithm was same as the Figure 3-5. Also, the average Euclidian distance was

calculated as 0.19 pixels, which is equal to the previous one. The most important

advantage of this algorithm was decreasing total time of pixel conversion and color

reading steps to 0.0171 seconds while keeping accuracy of the results constant.

Moreover, file size for storing the conversion data was reduced from 300 MB to 685

kB. As a result of these, it was decided to utilize this method for the conversion of

rectified pixel locations to raw pixel positions.

3.3. Road Detection

In this section of the thesis, sample outputs from different steps of the adaptive road

detection algorithms are presented at first. Secondly, performance of the proposed

road detection algorithms are evaluated based on ACC and FPR values as discussed

in Section 2.7.

3.3.1. Adaptive Road Detection Using 2D LIDAR Sensor

Point cloud captured by the LIDAR is shown at different stages of the road detection

algorithm in Figure 3-9. In Figure 3-9-a, raw measured point cloud is attached on the

ground truth image captured by the dome-camera after manual labeling. The cyan

points correspond to the road area, whereas the magenta points correspond to the

non-road area. Figure 3-9-b visualizes the resultant point cloud after the breakpoint

detection and line segment extraction steps of the road detection algorithm.

Breakpoints are given as red and the rest of the points forming the line segments are

colored as cyan. In Figure 3-9-c, only as road labeled points are shown on the ground

truth image, in which the blue color stands for TP and red color stands for FP results.

55

Figure 3-9 Measured points on SR by LIDAR shown on the ground truth image a)

raw point cloud, b) point cloud after breakpoint detection and line segment extraction

by utilizing Fully-adapted PS for SR, c) point cloud forming the line segments

labeled as road are by utilizing Fully-adapted PS for SR

For the evaluation of adaptive road detection algorithm using 2D LIDAR sensor

only, different parameter sets (PS) with changing levels of adaptation were tested for

the same data sets obtained from SR and UR experiments. For constructed road case,

three different parameter sets shown in Table 3-1 were used. Predefined PS consisted

of predetermined parameter values, as the name suggests. Parameter values of

Predefined PS were taken the same with the values specified in previous studies [38]

and [25]. It was implemented as a baseline to compare adapted parameter sets. In

Semi-adapted PS, parameter adaptation was performed for only λ and dth during

the learning period. Nmin was left out from the adaptation process on purpose for this

PS to single out the effects of surface based parameters. For Fully-adapted PS,

adaptation process was extended to cover all three parameters as explained in Section

2.5.1.4.

56

Table 3-1 Parameter sets used for the experiments conducted in SR environment

 λ °[] dth mm[] Nmin

Predefined PS 10.00 60.00 24.00

Semi-adapted PS for SR 11.77 35.00 24.00

Fully-adapted PS for SR 11.77 35.00 66.00

Results of the experiments for SR Sections 1 and 2 are given in Table 3-2. The

results of Predefined and Semi-adapted parameter sets indicated that using an

adaptive approach for the estimation of the surface dependent parameters, λ and dth
, can reduce the FPR up to 6.60%. Moreover, comparing the results for Semi-adapted

and Fully-adapted parameter sets for SR showed that adaptive estimation of Nmin

could enhance the decrease in FPR up to 6.16% for one case and 14.91% for the

other case. Although 1.33% relative drop for SR Section 2 was observed in ACC,

when Fully-adapted PS was utilized, decrease in the FPR would improve the

performance of the overall system by decreasing the chance of directing vehicle out

of the road as explained in Section 2.7. In Figure 3-10-a, the image of the SR Section

2 is given. As it can be seen in the figure, surface elevations and roughness properties

of the road and the start of the stairs next to the sidewalk were similar. Considering

the visual result of the adaptive road detection algorithm shown in Figure 3-10-b,

change in the surface type for this region cannot be detected by the algorithm using

LIDAR data only, which caused a higher FPR value for SR Section 2.

57

Table 3-2 ACC and FPR values for three different parameter sets computed on two

different sections of SR

 SR Section 1 SR Section 2

 FPR ACC FPR ACC

Predefined PS 6.95% 89.65% 26.74% 96.13%

Semi-adapted PS for SR 6.60% 89.87% 19.11% 94.35%

Fully-adapted PS for SR 6.16% 95.37% 14.91% 94.80%

Figure 3-10 Image of SR Section 2, a) raw image of the scene, b) LIDAR points

labeled as road where TP and FP results shown in cyan and red, respectively

In unstructured road experiment, again three different parameter sets were utilized

which are given in Table 3-3. The same Predefined PS used in the SR case was also

used as a baseline for UR experiments. Secondly, Fully-adapted PS for the

constructed road case was selected to observe the effect of change in the environment

58

to the performance of an estimated parameter set. At last Fully-adapted PS for UR

was determined based on adaptation process covering all the three parameters and

tested.

Table 3-3 Parameter sets used for the experiments conducted in UR environment

 λ °[] dth mm[] Nmin

Predefined PS 10.00 60.00 24.00

Fully-adapted PS for SR 11.77 35.00 66.00

Fully-adapted PS for UR 2.00 110.00 66.00

Results of tests made in UR environment Section 1 are shown in Table 3-4.

According to these results, unlike in the constructed road case, using Fully-adapted

PS for SR could only decrease the FPR by 0.33%. Moreover, ACC of the output

decreased by 0.56% and as it can be seen in Figure 3-11, the algorithm could not

detect left half of the road area in the environment. On the other hand, Fully-adapted

PS for UR caused an increase in the FPR by 1.72%, while improving ACC from

66.36% to 86.04%. The reason of this increase in the FPR is due to that the algorithm

could only detect one half of the road region when Fully-adapted PS for SR was

utilized whereas it could find the whole road area when Fully-adapted PS for UR was

used. The improvement in the detection rate is also led to an increase in the FPR by

adding false positive results on the left hand side of the road. Moreover, the visual

results pictured in Figure 3-11 support these numerical data. Comparing Figure 3-11-

b and c shows that determining the parameter set specific to road condition improves

the performance by increasing the number of truly labeled LIDAR points

corresponding to road area, which agrees with the change in ACC presented in Table

3-4.

59

Table 3-4 ACC and FPR values for three different parameter sets computed for

unstructured road

 UR Section 1

 FPR ACC

Predefined PS 17.67% 66.36%

Fully-adapted PS for SR 17.34% 64.92%

Fully-adapted PS for UR 19.39% 86.04%

Figure 3-11 Points labeled as line segment shown on the ground truth image of UR

section, a) Predefined PS, b) Fully-adapted PS for SR, and c) Fully-adapted PS for

UR

In Table 3-5, mean process times for one cycle of road detection algorithm with

indicated parameter sets are shown for both structured and unstructured roads. In

addition to the improvements made in the algorithm’s outputs in terms of ACC and

FPR, the result for the SR case presented in Table 3-5 shows that using an adapted

parameter set can enhance the performance of the overall road detection algorithm by

decreasing the average process time by 50.93% relatively. This decrease in the

process time is due to the less number of iterations made in the line segment

60

extraction step, which is because of more accurate extraction of breakpoints at the

first step of the algorithm. On the other hand, the mean process time for the UR

increased by 63.29% relatively, when the Fully-adapted PS for UR was utilized. The

main reason for the increase in the process time is because of the increased number

of breakpoints and iterations made in line segment extraction step due to higher

surface roughness. However, the increase in the process time of the algorithm can be

neglected considering that the successful detection of road regions is more important

for navigation of the mobile platform in an unknown environment, and Fully-adapted

PS for UR could detect road area with a 86.04% accuracy, which is 19.68% higher

than the Predefined PS.

Table 3-5 Mean process times for one cycle of road detection algorithm (for

N ≈ 7500 LIDAR measurement sets)

Road Type Parameter Set
Mean process time

per scan [sec]

Decrease in

process time

Constructed Road

Predefined PS 0.0088204

Fully-adapted PS for

SR
0.0043281 50.93%

Unstructured Road

Predefined PS 0.0059070

Fully-adapted PS for

UR
0.0096454 -63.29%

3.3.2. Adaptive Road Detection Using 2D LIDAR Sensor And Visual Data

In order to evaluate the performance of adaptive road detection algorithm utilizing

geometrical and visual data, it was tested using the Fully-adapted PS in the structured

and unstructured environments. Then, its results were compared with the previous

findings.

61

The first road detection algorithm using LIDAR data only could not detect the

change in the surfaces with similar geometrical properties, such as in the case of SR

Section 2, where the algorithm could not separate the road area from the start of the

stairs next to the sidewalk shown in Figure 3-10-b. Therefore, in order to observe the

improvements in the algorithm’s performance more clearly, proposed approach

based on geometrical and visual data was firstly tested in SR Section 2. Result of the

test together with the previous finding is given in Table 3-6. Considering these

results, it is shown that using visual data together with geometrical data improved the

performance of the algorithm by decreasing the FPR from 14.91% to 6.24%.

Although 7.56% relative drop was observed in ACC, decrease in the FPR would

improve the performance of the overall system by reducing the chance of directing

vehicle out of the road as explained in Section 2.7. However, by inspecting the image

of the road in Figure 3-12-a and the visual result in Figure 3-12-c, it can be seen that

some of the line segments’ end points correspond to the continuous road boundary

line on the right hand side. Since this line defines the formal boundary of the road,

the decrease in ACC can be neglected.

Table 3-6 ACC and FPR values calculated for the proposed adaptive road detection

algorithms on SR Section 2

 SR Section 2

 FPR ACC

Based on LIDAR data only with

Fully-adapted PS for SR
14.91% 94.80%

Based on LIDAR and visual data

with Fully-adapted PS for SR
6.24% 87.24%

62

Figure 3-12 Measured points on SR Section 2, a) image of the scene, b) raw point

cloud on image, c) point cloud labeled as road region after running road detection

algorithm based on LIDAR and visual data, where TP and FP results shown in cyan

and red, respectively

The second test for the proposed algorithm was made in unstructured road

environment. As shown in Figure 3-13, the algorithm could separate the road region

from the surrounding plants more successfully compared to the first road detection

algorithm. Considering the numerical results given in Table 3-7, the integration of

visual data caused a 10.76% drop in the FPR values relative to the first proposed

approach. Moreover, ACC increased from 86.04% to 89.23%.

Table 3-7 ACC and FPR values calculated for the proposed adaptive road detection

algorithms on UR Section 1

 UR Section 1

 FPR ACC

Based on LIDAR data only with

Fully-adapted PS for UR
19.39% 86.04%

Based on LIDAR and visual data

with Fully-adapted PS for UR
8.63% 89.23%

63

Figure 3-13 Measured points on UR Section 1, a) raw point cloud on image, b) point

cloud labeled as road region after running road detection algorithm based on LIDAR

only, c) point cloud labeled as road region after running road detection algorithm

based on LIDAR and visual data, where TP and FP results shown in cyan and red,

respectively

Lastly, proposed road detection algorithm was tested throughout the entire path both

in structured and unstructured environments, each of which were around 1 km long.

Obtained test results with different parameter sets are given in Table 3-8 and Table

3-9. After comparing these results with the previously presented ones, it can be seen

that they agree with each other. According to these findings, increase in the TPR

shows that using adaptive approach for determination of the road detection algorithm

parameters improves the road detection rate in unstructured environment. Moreover,

integrating visual data to the geometrical features enhances the performance of the

road detection algorithm by decreasing the FPR value.

64

Table 3-8 ACC and FPR values calculated for the proposed adaptive road detection

algorithm throughout the entire structured environment

 FPR ACC

Based on LIDAR data only with

Predefined PS
47.58% 88.83%

Based on LIDAR data only with

Semi-adapted PS for SR
38.11% 93.05%

Based on LIDAR data only with

Fully-adapted PS for SR
32.95% 91.86%

Based on LIDAR and visual data

with Fully-adapted PS for SR
17.69% 88.23%

Table 3-9 ACC and FPR values calculated for the proposed adaptive road detection

algorithm throughout the entire unstructured environment

 FPR TPR ACC

Based on LIDAR data only with

Predefined PS
29.78% 82.55% 78.29%

Based on LIDAR data only with

Fully-adapted PS for SR
23.22% 82.25% 80.36%

Based on LIDAR data only with

Fully-adapted PS for UR
58.66% 96.67% 77.56%

Based on LIDAR and visual data

with Fully-adapted PS for UR
31.40% 87.15% 80.73%

65

3.3.3. Adaptive Road Detection Using Online Supervised Learning Approach

Proposed road detection algorithm using online supervised learning approach was

tested both in structured and unstructured environments, and its performance was

evaluated based on visual results. In the experiments, algorithm parameters, namely

number of models learned, nl , and maximum number of learned models, nml , were

chosen according to the previous studies [18] and [39]. In these studies, parameter

values presented in Table 3-10 were shown to be effective.

Table 3-10 Parameter set used for the experiments in SR and UR environments

Parameter # of Models Learned nl() Max. # of Models Learned nml()

Value 3 10

Proposed adaptive road detection algorithm using online supervised learning

approach was firstly tested in SR environment and visual outputs are given for

different road conditions in Figure 3-14, Figure 3-15, Figure 3-16 and Figure 3-17. In

Figure 3-14 and Figure 3-15, visual results obtained by the proposed algorithm for

winding and straight road sections are shown. According to these results, it can be

concluded that the proposed road detection algorithm can successfully find road

regions and general road boundary behavior independent from the road shape.

However, as it can be seen in Figure 3-14-d, road detection rate decreases under non-

uniform lighting condition. Moreover, due to the similarity between color

distributions of the road area and the camera-carrying frame, frame-structure was

also classified as road region in all of the tests. Although the proposed algorithm can

successfully separate the start of the stairs next to the sidewalk from the road area in

Figure 3-15-c, the algorithm cannot distinguish road region from sidewalk in Figure

3-15-d and -f.

66

Figure 3-14 Raw images of the scene on the top row, and detected road regions on

the bottom row for SR Section 3. Images on the left-most column were taken by the

front facing camera, whereas other images on the remaining columns were taken by

rear facing cameras.

Figure 3-15 Raw images of the scene on the top row, and detected road regions on

the bottom row for SR Section 2. Images on the left-most column were taken by the

front facing camera, whereas other images on the remaining columns were taken by

rear facing cameras.

67

In Figure 3-16 and Figure 3-17, two successive visual results obtained by the

proposed road detection algorithm are presented. As it can be seen in Figure 3-16,

the algorithm could only detect a small portion of the actual road area, whereas it

could successfully classify the entire road region in the following time instance, as

shown in Figure 3-17. The reason for low road detection rate in the first frame was

due to the quick change in the lighting condition and lack of knowledge about the

new visual properties of the road area. However, by collecting new training data

from this area, visual road models were updated in the next frame, and road detection

performance was improved in all directions, which can be seen in Figure 3-17.

Figure 3-16 Raw images of the scene on the top row, and detected road regions on

the bottom row for SR Section 4. Images on the left-most column were taken by the

front facing camera, whereas other images on the remaining columns were taken by

rear facing cameras.

68

Figure 3-17 Raw images of the scene on the top row, and detected road regions on

the bottom row for SR Section 5. Images on the left-most column were taken by the

front facing camera, whereas other images on the remaining columns were taken by

rear facing cameras.

After testing the proposed road detection algorithm in structured environment, its

performance was examined one more time in unstructured environment. A sample

output of the algorithm is given in Figure 3-18. As it can be seen in the figure,

proposed algorithm can successfully find road regions and general road boundary

behavior in unstructured environment. Unlike in the structured road case, algorithm

can successfully distinguish the camera-carrying frame from the road regions in

unstructured environment, due to different visual properties. However, the algorithm

could not detect the road boundaries as accurate as in the structured road tests,

because of the irregular and porous structure of the plants at the sides of the road.

69

Figure 3-18 Raw images of the scene on the top row, and detected road regions on

the bottom row for UR Section 2. Images on the left-most column were taken by the

front facing camera, whereas other images on the remaining columns were taken by

rear facing cameras.

Unlike the previous study presented in [18], proposed method in this thesis can

operate in real-time without down-sampling the captured images, decreasing the

resolution of color space values or using parallel processing. In the conducted

experiments, average time required to complete each iteration, which includes

generating training data, updating visual road models and detecting road regions, was

found as 0.57 seconds. Although this result satisfies the working requirements, it can

be further decreased by optimizing the program.

70

71

CHAPTER 4

4. CONCLUSION & FUTURE WORK

In this study, three different adaptive road detection algorithms were developed for a

semi-autonomous mobile platform in order to be used in both structured and

unstructured environments. The first algorithm detected road region by using the

range measurements, which was collected by the LIDAR sensor mounted to the front

surface of the vehicle. In this algorithm, discriminative learning approach was

utilized to estimate the algorithm parameters, unlike the previous studies, which used

constant parameter sets tuned according to the working environment, specifically.

The second algorithm was based on LIDAR measurements and the visual data

acquired from the camera. As a beginning, segmented point cloud was registered to

the captured and preprocessed image. Then, the point cloud was filtered based on

discontinuity in the hue color channel values in order to detect road regions. The

third and last road detection algorithm used online supervised learning approach. In

this method, firstly road regions were detected by using the secondly proposed road

detection algorithm. As next, these range measurements were registered to the

preprocessed image of the scene. Corresponding pixels’ color values were used as

training data to update visual road models by k-means clustering. Following that,

road regions were found by using these visual road models based on Mahalanobis

distance between pixel color values and the mean color values of the learned models.

In parallel to the implementation of the proposed road detection algorithms, the

mobile robotic platform was renovated, which was firstly designed and constructed

72

in the scope of 111M580 numbered TÜBİTAK project. During the renovation stage,

steering and breaking systems were repaired, electrical system was renewed, sensor

positions were updated according to the need and missing libraries of the utilized

sensors were written. After that, implemented road detection algorithms’ individual

performances were quantified according to ACC and FPR values for structured and

unstructured environments.

Based on the results of the current study, the following conclusions can be drawn.

• Estimation of the parameter sets using discriminative learning approach

simplified the tuning process and improved the performances of the algorithms in

terms of false positive rate, accuracy and process time.

• Utilization of an adaptive approach for parameter estimation enabled application

of the developed road detection algorithms to the changing environments easily.

• Integration of visual data to the geometrical features improved the performance

of the road detection algorithm by increasing the detection rate of surface

changes with similar geometrical properties.

• Using a dome-camera allowed detection of road regions both in front and back

directions.

The present study can be further improved in the following ways:

• Revision of the erosion and dilation steps applied at the last stage of the thirdly

proposed road detection algorithm may improve the road boundary detection

accuracy.

• Revision of threshold value determination step in binarization stage of the thirdly

proposed road detection algorithm may improve the road boundary detection

accuracy.

73

• Integration of remaining LIDAR sensors mounted to the front and rear surfaces

of the vehicle may decrease response time and improve the performance of

proposed road detection algorithm using online supervised learning approach by

increasing the number of training data.

• Integration of remaining LIDAR sensors mounted to the front and rear surfaces

of the vehicle into the road detection algorithm for long-range road detection

purpose may improve the road following and motion control algorithms’

performance.

• Including the lateral and longitudinal slippages into the OBMM may increase the

accuracy of localization algorithm and minimize the amount of saw-tooth shaped

path sections.

• Development of an optic flow based localization technique, which uses images

captured by the dome-camera, may increase the accuracy of vehicle’s position.

• Replacement of the LIDAR sensors and integration of laser intensity values to

the road detection algorithm may improve the road detection performance by

increasing the surface distinguishing rate.

74

75

REFERENCES

[1] P. Mickel, “1961: A peep into the automated future.” [Online]. Available:

http://www.capitalcentury.com/1961.html. [Accessed: 06-Aug-2017].

[2] MILVUS, “SEIT Automated Material Transport.” [Online]. Available:

http://www.milvusrobotics.com/products/seit#seit100. [Accessed: 06-Aug-

2017].

[3] D. Matthew, “Tesla Autopilot wasn’t created so cars could drive themselves,”

2016. [Online]. Available: http://www.businessinsider.com/tesla-autopilot-

wasnt-created-so-cars-could-drive-themselves-2016-7. [Accessed: 06-Aug-

2017].

[4] A. Turpen, “How self-parking car technology works: the first step to

autonomous vehicles,” 2016. [Online]. Available: http://newatlas.com/how-

self-parking-works/46684/. [Accessed: 06-Aug-2017].

[5] A. B. Koku, E. İ. Konukseven, A. Hacınecipoğlu, H. Ölmez, Y. M.

Nazarabad, M. Ghaziani, M. K. Gönüllü, M. Lahroodi, and K. B. Özütemiz,

“Uzaktan Kullanıcı Etkileşimli Yarı - Otonom İnsansız Kara Aracı

Platformu,” Ankara, 2014.

[6] E. Shang, X. An, L. Ye, M. Shi, H. Xue, and H. He, “Unstructured road

detection based on hybrid features,” no. Iccia, pp. 926–929, 2012.

[7] Qiang Chen and Hong Wang, “A Real-time Lane Detection Algorithm Based

on a Hyperbola-Pair Model,” 2006 IEEE Intell. Veh. Symp., pp. 510–515,

2006.

76

[8] R. Aufrere, R. Chapuis, and F. Chausse, “A model-driven approach for real-

time road recognition,” Mach. Vis. Appl., vol. 13, no. 2, pp. 95–107, 2001.

[9] M. Ekinci, F. W. J. Gibbs, and B. T. Thomas, “Knowledge-based navigation

for autonomous road vehicles,” Turkish J. Electr. Eng. Comput. Sci., vol. 8,

no. 1, pp. 1–29, 2000.

[10] Z. Li, B. Dai, and H. He, “A Novel Fast Segmentation Method of

Unstructured Roads,” 2006 IEEE International Conference on Vehicular

Electronics and Safety. pp. 53–56, 2006.

[11] C. Rasmussen, “Texture-Based Vanishing Point Voting for Road Shape

Estimation,” Procedings Br. Mach. Vis. Conf. 2004, vol. 1, p. 7.1-7.10, 2004.

[12] C. Rasmussen, “Grouping dominant orientations for ill-structured road

following,” Proc. 2004 IEEE Comput. Soc. Conf. Comput. Vis. Pattern

Recognition, 2004. CVPR 2004., vol. 1, p. I–470, 2004.

[13] C. Rasmussen, “Combining laser range, color, and texture cues for

autonomous road following,” Proc. 2002 IEEE Int. Conf. Robot. Autom. (Cat.

No.02CH37292), vol. 4, no. May, pp. 1–6, 2002.

[14] R. Hadsell, P. Sermanet, J. Ben, A. N. Erkan, M. Scoffier, and K.

Kavukcuoglu, “Learning Long-Range Vision for Autonomous Off-Road

Driving,” J. F. Robot., pp. 120–144, 2009.

[15] R. Hadsell, P. Sermanet, A. N. Erkan, J. Ben, J. Han, B. Flepp, U. Muller, and

Y. LeCun, “Online Learning for Offroad Robots : Using Spatial Label

Propagation to LearnLong-range Traversability,” Robot. Sci. Syst., vol. 11, p.

32, 2007.

[16] R. Hadsell, A. N. Erkan, P. Sermanet, J. Ben, K. Kavukcuoglu, U. Muller, N.

Technologies, and Y. Lecun, “a Multi-Range Vision Strategy for Autonomous

Offroad,” Robotics, 2007.

77

[17] A. N. Erkan, E. Raia, H. Pierre, J. Ben, U. Muller, and Y. Lecun, “Adaptive

Long Range Vision in Unstructured Terrain,” vol. 1, no. 1, pp. 2421–2426,

2007.

[18] K. B. Özütemiz, “GPU-Accelerated Adaptive Unstructured Road Detection

Using Close Range Stereo Vision,” Middle East Technical University, 2013.

[19] D. Pomerleau and T. Jochem, “Rapidly adapting machine vision for automated

vehicle steering,” IEEE Expert, vol. 11, no. 2. pp. 19–27, 1996.

[20] M. Bertozzi and A. Broggi, “GOLD: a parallel real-time stereo vision system

for generic obstacle and lane detection,” IEEE Transactions on Image

Processing, vol. 7, no. 1. pp. 62–81, 1998.

[21] R. Gregor, M. Lützeler, M. Pellkofer, K.-H. Siedersberger, and E. D.

Dickmanns, “A Vision System for Autonomous Ground Vehicles with a Wide

Range of Maneuvering Capabilities,” in Computer Vision Systems: Second

International Workshop, ICVS 2001 Vancouver, Canada, July 7--8, 2001

Proceedings, B. Schiele and G. Sagerer, Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2001, pp. 1–20.

[22] M. A. Sotelo, F. J. Rodriguez, and L. Magdalena, “VIRTUOUS: vision-based

road transportation for unmanned operation on urban-like scenarios,” IEEE

Transactions on Intelligent Transportation Systems, vol. 5, no. 2. pp. 69–83,

2004.

[23] P. Jansen, W. Van Der Mark, J. C. Van Den Heuvel, and F. C. A. Groen,

“Colour based off-road environment and terrain type classification,”

Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005. pp. 216–

221, 2005.

[24] L. B. Cremean and R. M. Murray, “Model-based estimation of off-highway

road Geometry using single-axis LADAR and inertial sensing,” Proc. - IEEE

Int. Conf. Robot. Autom., vol. 2006, pp. 1661–1666, 2006.

78

[25] J. Han, D. Kim, M. Lee, and M. Sunwoo, “Road Boundary Detection and

Tracking For Structured And Unstructured Roads Using a 2D Lidar Sensor,”

Int. J. …, vol. 13, no. 2, pp. 293–300, 2012.

[26] W. S. Wijesoma, K. R. S. Kodagoda, and A. P. Balasuriya, “Road-Boundary

Detection and Tracking Using Ladar Sensing,” IEEE Trans. Robot. Autom.,

vol. 20, no. 3, pp. 456–464, 2004.

[27] T. Kim and B. Song, “Detection and Tracking of Road Barrier Based on Radar

and Vision Sensor Fusion,” J. Sensors, vol. 2016, no. Imm, pp. 1–9, 2016.

[28] K. Peterson, J. Ziglar, and P. E. Rybski, “Fast feature detection and stochastic

parameter estimation of road shape using multiple LIDAR,” 2008 IEEE/RSJ

Int. Conf. Intell. Robot. Syst. IROS, pp. 612–619, 2008.

[29] Y. Morales, E. Takeuchi, A. Carballo, W. Tokunaga, H. Kuniyoshi, A.

Aburadani, A. Hirosawa, Y. Nagasaka, Y. Suzuki, and T. Tsubouchi, “1Km

autonomous robot navigation on outdoor pedestrian paths ‘Running the

Tsukuba Challenge 2007,’” 2008 IEEE/RSJ Int. Conf. Intell. Robot. Syst.

IROS, pp. 219–225, 2008.

[30] Y. Shin, D. Kim, H. Lee, J. Park, and W. Chung, “Autonomous navigation of

a surveillance robot in harsh outdoor road environments,” Adv. Mech. Eng.,

vol. 2013, 2013.

[31] X. Yuan, C. X. Zhao, Y. F. Cai, H. Zhang, and D. B. Chen, “Road-surface

abstraction using ladar sensing,” 2008 10th Int. Conf. Control. Autom. Robot.

Vision, ICARCV 2008, no. December, pp. 1097–1102, 2008.

[32] A. Hervieu and B. Soheilian, “Road side detection and reconstruction using

LIDAR sensor,” 2013 IEEE Intell. Veh. Symp., no. Iv, pp. 1247–1252, 2013.

[33] J. Siegemund, U. Franke, and F. Wolfgang, “A Temporal Filter Approach for

Detection and Reconstruction of Curbs and Road Surfaces based on

Conditional Random Fields.”

79

[34] J. Stückler, H. Schulz, and S. Behnke, “In-lane localization in road networks

using curbs detected in omnidirectional height images,” VDI Berichte, no.

2012, pp. 151–154, 2008.

[35] Y. Kang, C. Roh, S.-B. Suh, and B. Song, “A Lidar-Based Decision-Making

Method for Road Boundary Detection Using Multiple Kalman Filters,” IEEE

Trans. Ind. Electron., vol. 59, no. 11, pp. 4360–4368, 2012.

[36] J. Liu, H. Liang, and Z. Wang, “A framework for detecting road curb on-line

under various road conditions,” 2014 IEEE Int. Conf. Robot. Biomimetics,

IEEE ROBIO 2014, pp. 297–302, 2014.

[37] J. Han, D. Kim, M. Lee, and M. Sunwoo, “Road Boundary Detection and

Tracking For Structured and Unstructured Roads Using a 2D LIDAR Sensor,”

Int. J. Autom. Technol., vol. 15, no. 4, pp. 611–623, 2014.

[38] G. A. Borges and M. J. Aldon, “Line extraction in 2D range images for mobile

robotics,” J. Intell. Robot. Syst. Theory Appl., vol. 40, no. 3, pp. 267–297,

2004.

[39] H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G. Bradski, “Self-

supervised Monocular Road Detection in Desert Terrain,” Proc Robot. Sci.

Syst. RSS, 2006.

[40] S. Thrun, M. Montemerlo, and A. Aron, “Probabilistic Terrain Analysis For

High-Speed Desert Driving.,” Proc. Robot. Sci. Syst. Conf., pp. 16–19, 2006.

[41] Point Grey Coop., “Geometric Vision Using Ladybug Cameras, Technical

Application Not TAN20122009,” 2016.

[42] Mathworks, “What is camera calibration?,” 2017. [Online]. Available:

https://www.mathworks.com/help/vision/ug/camera-calibration.html.

[Accessed: 13-Aug-2017].

80

[43] Z. Bingül and O. Karahan, “A Fuzzy Logic Controller tuned with PSO for 2

DOF robot trajectory control,” Expert Syst. Appl., vol. 38, no. 1, pp. 1017–

1031, 2011.

[44] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P.

Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. Palatucci,

V. Pratt, P. Stang, S. Strohband, C. Dupont, L. E. Jendrossek, C. Koelen, C.

Markey, C. Rummel, J. van Niekerk, E. Jensen, P. Alessandrini, G. Bradski,

B. Davies, S. Ettinger, A. Kaehler, A. Nefian, and P. Mahoney, “Stanley: The

robot that won the DARPA Grand Challenge,” Springer Tracts Adv. Robot.,

vol. 36, pp. 1–43, 2007.

81

APPENDIX A

A. ROS NODE USED FOR THE DEFINITION OF SENSORS’ POSITIONS

AND ATTACHED COORDINATE FRAMES

#include	<ros/ros.h>	
#include	<tf/transform_broadcaster.h>	
#include	<math.h>	
	
#define	PI	(3.141592653589793)	
	
int	main(int	argc,	char**	argv){	
		ros::init(argc,	argv,	"robot_tf_publisher");	
		ros::NodeHandle	n;	
	
		ros::Rate	r(100);	
	
		tf::TransformBroadcaster	broadcaster;	
		tf::StampedTransform	tf_base_to_center_;	
		tf::StampedTransform	tf_center_to_enc_;	
		tf::StampedTransform	tf_center_to_gps_;	
		tf::StampedTransform	tf_center_to_imu_;	
		tf::StampedTransform	tf_center_to_front_;	
		tf::StampedTransform	tf_front_to_laserfront_;	
		tf::StampedTransform	tf_front_to_laserurg_;	
		tf::StampedTransform	tf_front_to_laserback_;	
					
		//	lower	center	of	the	vehicle	is	31.5	cm	higher	than	ground	
		//	projection	of	vehicle's	center	on	the	ground	is	defined	as	base_link	
		//	front	lidar	is	50	cm	higher	than	ground	
					
		//	set	up	parent	and	child	frames	
		//	set	up	base_link	center	relation	

82

		tf_base_to_center_.frame_id_	=	std::string("base_link");	
		tf_base_to_center_.child_frame_id_	=	std::string("center");	
		tf_base_to_center_.setOrigin(tf::Vector3(0.0,	0.0,	0.315));	
		tf_base_to_center_.setRotation(tf::Quaternion(0.0,	0.0,	0.0));	
	
		//	set	up	center	encoder&compass	relation	
		tf_center_to_enc_.frame_id_	=	std::string("center");	
		tf_center_to_enc_.child_frame_id_	=	std::string("odom_enc");	
		tf_center_to_enc_.setOrigin(tf::Vector3(-0.60800,	0.0,	0.0));	
		tf_center_to_enc_.setRotation(tf::Quaternion(0.0,	0.0,	0.0));	
	
		//	set	up	map	odom	relation	
		tf_center_to_gps_.frame_id_	=	std::string("center");	
		tf_center_to_gps_.child_frame_id_	=	std::string("odom_gps");	
		tf_center_to_gps_.setOrigin(tf::Vector3(0.0,	0.0,	1.0));	
		tf_center_to_gps_.setRotation(tf::Quaternion(0.0,	0.0,	0.0));	
	
		//	set	up	center	imu	relation	
		tf_center_to_imu_.frame_id_	=	std::string("center");	
		tf_center_to_imu_.child_frame_id_	=	std::string("odom_imu");	
		tf_center_to_imu_.setOrigin(tf::Vector3(0.0,	0.0,	0.0));	
		tf_center_to_imu_.setRotation(tf::Quaternion(0.0,	0.0,	0.0));	
	
		//	set	up	center	front_head	relation	
		tf_center_to_front_.frame_id_	=	std::string("center");	
		tf_center_to_front_.child_frame_id_	=	std::string("front_head");	
		tf_center_to_front_.setOrigin(tf::Vector3(0.7851076,	0.0,	0.2907035));	
		tf_center_to_front_.setRotation(tf::Quaternion(0,	0,	0));	
	
		//	set	up	front_head	laser_front	relation	
		tf_front_to_laserfront_.frame_id_	=	std::string("front_head");	
		tf_front_to_laserfront_.child_frame_id_	=	std::string("laser_front");	
		tf_front_to_laserfront_.setOrigin(tf::Vector3(0.1031436,	 0.0,	 -
0.0319805));	
		tf_front_to_laserfront_.setRotation(tf::Quaternion(0.034907,	0,	0));	
	
		//	set	up	front_head	laser_urg	relation	
		tf_front_to_laserurg_.frame_id_	=	std::string("front_head");	
		tf_front_to_laserurg_.child_frame_id_	=	std::string("laser_URG");	
		tf_front_to_laserurg_.setOrigin(tf::Vector3(-0.0024205,	0,	-0.1743725));	
		tf_front_to_laserurg_.setRotation(tf::Quaternion(0.261799,	0,	0));	
	
		//	set	up	front_head	laser_back	relation	
		tf_front_to_laserback_.frame_id_	=	std::string("front_head");	
		tf_front_to_laserback_.child_frame_id_	=	std::string("laser_back");	

83

		tf_front_to_laserback_.setOrigin(tf::Vector3(-1.736,	0.0,	0.005));	
		tf_front_to_laserback_.setRotation(tf::Quaternion(0,	0,	PI));	
	
			 while(n.ok()){	
	
				tf_base_to_center_.stamp_	=	ros::Time::now();	
				broadcaster.sendTransform(tf_base_to_center_);	
	
				tf_center_to_enc_.stamp_	=	ros::Time::now();	
				broadcaster.sendTransform(tf_center_to_enc_);	
	
				tf_center_to_gps_.stamp_	=	ros::Time::now();	
				broadcaster.sendTransform(tf_center_to_gps_);	
	
	
				tf_center_to_imu_.stamp_	=	ros::Time::now();	
				broadcaster.sendTransform(tf_center_to_imu_);	
	
				tf_center_to_front_.stamp_	=	ros::Time::now();	
				broadcaster.sendTransform(tf_center_to_front_);	
	
				tf_front_to_laserfront_.stamp_	=	ros::Time::now();	
				broadcaster.sendTransform(tf_front_to_laserfront_);	
	
				tf_front_to_laserurg_.stamp_	=	ros::Time::now();	
				broadcaster.sendTransform(tf_front_to_laserurg_);	
	
				tf_front_to_laserback_.stamp_	=	ros::Time::now();	
				broadcaster.sendTransform(tf_front_to_laserback_);	
	
				r.sleep();	
		}	
}	

