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ABSTRACT 

 

 

ADAPTIVE STRUCTURED AND UNSTRUCTURED ROAD 
DETECTION USING LIDAR AND DOME-CAMERA 

 

 

 

Demir, Sinan Özgün 

M.Sc., Department of Mechanical Engineering 
Supervisor: Assoc. Prof. Dr. Erhan İlhan Konukseven 

Co-Supervisor: Assist. Prof. Dr. Ahmet Buğra Koku 
 

September 2017, 83 pages 

 

Robotic ground vehicles are widely used in different road conditions to perform 

various tasks under semi- or fully-autonomous operation. To accomplish the given 

tasks, the vehicle should detect road regions accurately. Also, for a successful 

operation, the mobile robot requires a quick adaptation for changing road conditions. 

The objective of this study was developing an adaptive road detection algorithm for a 

semi-autonomous mobile platform (GOAT). For that purpose three different methods 

were developed for a robust classification of road regions ahead of the vehicle in 

both constructed and unconstructed environments. In the first method, LIDAR sensor 

was used to detect road regions by utilizing the data with adaptive parameter sets, 

which were estimated by utilizing discriminative learning approach. The experiments 

in structured environment showed that accuracy (ACC) of the output increased, 

while the false positive rate (FPR) decreased compared to the constant parameter  
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approach. However, for the tests conducted in unstructured environment desired 

results were not obtained. Therefore, the second road detection algorithm based on 

visual and range measurement data needed to be developed. By this algorithm, 

approximately 50% decrease in the FPR values for both structured and unstructured 

road conditions was observed by filtering the segmented point cloud based on the 

hue color channel values. In the third road detection method, an online supervised 

learning algorithm was developed, which used the outputs of the second road 

detection algorithm to create and/or update visual road models. In the conducted 

experiments, it was shown that road regions and general road boundary behaviors 

can be detected both in front and back directions of the vehicle independent from the 

road shape. 

Keywords: Adaptive road detection, discriminative learning, online supervised 

learning, semi-autonomous mobile platform, structured and unstructured roads 
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ÖZ 

 

 

LIDAR VE KÜRESEL KAMERA KULLANILARAK 
ADAPTİF YAPILI VE YAPISIZ YOL BULMA 

 

 

 

Demir, Sinan Özgün 

Yüksek Lisans, Makina Mühendisliği Bölümü 
Tez Yöneticisi: Doç. Dr. Erhan İlhan Konukseven 

Ortak Tez Yöneticisi: Yar. Doç. Dr. Ahmet Buğra Koku 
 

Eylül 2017, 83 sayfa 

 

Robotik kara araçları bir çok farklı amaç doğrultusunda, değişen yol şartlarında yarı 

ve tam otonom olarak sıklıkla kullanılmaktadırlar. Verilen görevleri başarıyla 

gerçekleştirmek için aracın yol bölgelerini yüksek doğruluk oranıyla bulması 

gerekmektedir. Ayrıca mobil robot değişen yol şartlarına hızlıca adapte olabilmelidir. 

Bu çalışmanın amacı, yarı-otonom mobil araç için değişen ortam koşullarına 

uyarlanabilen bir yol bulma algoritmasının geliştirilmesidir. Bu amaçla mobil aracın 

yapılı ve yapısız çevre şartlarında yol bölgelerini sürerlik içerisinde bulmasını 

hedefleyen üç farklı yöntem geliştirilmiştir. İlk yöntemde yol bölgeleri LIDAR 

sensöründen elde edilen verilerin ayırt edici öğrenme tekniğiyle adaptif olarak 

işlenmesiyle elde edilmiştir. Yapılı ortamlardaki testlerin sonuçlarına göre, algoritma 

parametrelerinin sabit tutulduğu yaklaşıma kıyasla, önerilen yöntemin sonuçlardaki 

doğruluk oranını arttırırken, yanlış pozitiflik oranında düşüş sağladığı  
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gözlemlenmiştir. Fakat yapısız ortamlarda yapılan testlerde beklenen sonuçlar elde 

edilememiştir. Bu sebeple, ortam görsellerini ve mesafe ölçüm verilerini kullanan 

ikinci bir yol bulma algoritması geliştirilmiştir. Geliştirilen bu ikinci algoritmada, 

seçilen nokta bulutunun renk tonuna göre filtrelenmesiyle yanlış pozitiflik oranında 

yaklaşık yarı yarıya bir düşüş gözlemlenmiştir. Önerilen üçüncü yöntemde ise, 

ortamdaki yol çevrimiçi denetimli öğrenmeye dayalı bir algoritma kullanılarak 

bulunmuştur. Bu yaklaşımda, ikinci yol bulma yönteminin çıktıları görsel yol 

modellerinin yaratılmasında ve/veya güncellenmesinde kullanılmıştır. Yapılan testler 

sonucunda, önerilen metot ile aracın ön ve arkasında yer alan yolun ve yol 

sınırlarının genel davranışlarının, yolun şeklinden bağımsız olarak bulunabildiği 

gösterilmiştir. 

Anahtar Sözcükler: Adaptif yol bulma, ayırt ederek öğrenme, çevrimiçi denetimli 

öğrenme, yarı-otonom mobil araç, yapılı ve yapısız yollar 
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CHAPTER 1 

 

 

1. INTRODUCTION 

 

 

 

In this section of the thesis, firstly mobile robotic systems and semi-autonomous 

operation are explained. As next, road detection algorithms in the literature are 

covered. Lastly, scope of the thesis and the outline of this report are given. 

1.1. Mobile Robotics 

Robotic technology has been an important research topic since 1960s. In the 

beginning, main usage area of the robots was limited to the industrial applications, to 

replace manpower in hazardous operations in production, such as welding and 

handling hot parts coming from die casting [1]. The common point in these early 

applications of the robotic systems was that their working environments were 

structured, which could be mathematically modeled, possible events could be 

foreseen, and at worst the environment could be adapted according to the working 

conditions and requirements of the robots. Improvements in the areas of image 

processing, pattern recognition, machine learning, artificial intelligence and control 

theory made it possible to adapt robotic systems themselves to the dynamic 

environment. As a result of this, usage area of the robotic technology has expanded 

to the mobile systems. Similar to robotic arm manipulators, mobile robots are 

commonly used in repetitive works, such as, transportation and delivery of materials 

in structured environments as shown in Figure 1-1, to minimize the human effort and 

prevent the possible failures caused by human operators. In addition to their 

industrial usage, mobile robotic systems are also utilized in accomplishing given  
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tasks or collecting information about the environments, such as search and rescue 

operations, surveying in hazardous regions and patrolling. Moreover, mobile robotic 

technology has recently started being used in daily life for human comfort. Self-

parking and self-driving vehicles are some of the examples for their application 

areas. 

 

Figure 1-1 Automated material transporter [2] 

 

Figure 1-2 a) Tesla's autopilot system [3], b) Ford’s self-parking system [4] 

1.2. Semi-Autonomous Operation 

Mobile robotic systems may be divided into three subgroups based on their control 

strategies. These are fully autonomous, semi-autonomous and manual systems. Fully 

autonomous systems are expected to operate in their working environments without 

any need for human intervention. In manual systems, on the other hand, all the tasks 

are done by human operation only, including moving the robot in environment. 

Different than fully autonomous and manual systems, semi-autonomous applications  
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aim accomplishing given tasks by a collaborative work done by the robot and the 

human operator, [5]. In these systems, mobile platform may be controlled either by 

the robot itself or the user based on the definition of given tasks. The decision on the 

task sharing can be done manually by the user or autonomously by the robot. 

1.3. Road Detection Methods 

Extraction of traversable areas and road characteristics is extremely vital for robust 

performance of fully autonomous and semi-autonomous UGVs in an unknown 

environment. Therefore, different approaches for the road detection and following 

are proposed in literature. 

In [6], proposed solutions in the literature are grouped under model based, feature 

based and machine learning based methods. In model based methods, road 

boundaries are tried to be expressed with a mathematical equation. Although simple 

models may be robust and computationally cheap, their working environments are 

very limited and they may not provide accurate results. Even though complex models 

may be applicable for a wider range of road types, they can be more easily affected 

by the disturbances. Also, their computational load increases as the complexity of the 

model increases [7]. In [8], Aufrère et al. proposed a model based algorithm to detect 

and follow the road boundaries in the image. In this method, captured image was 

divided into several strips and a statistical model was formed to define the edge 

coordinates and the corresponding confidence levels on each of these strips, which 

can be seen in Figure 1-3. Based on the computed edge coordinates in continuously 

captured images, road model was updated recursively and the confidence level 

increased. Thus the statistical model converges to the actual lane edges. 
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Figure 1-3 Actual road boundaries and statistical road model with road-edge 

confidence intervals [8] 

Feature based methods, on the other hand, are insensitive to the road shapes and 

requires less a priori knowledge about the environment. Though, the success rate of 

these type of approaches strongly depends on choosing a proper feature descriptor 

[6]. Based on the utilized feature type, methods presented in the literature are divided 

into three main groups, which are methods based on color features, geometrical 

features and hybrid features obtained by integration of visual and geometrical 

features. In order to obtain actionable road feature information, various sensors and 

sensor fusion strategies are developed for both structured and unstructured roads. 

Some of the commonly used sensors for this purpose are cameras, radars and 

LIDARs.  

Cameras are among the most preferred sensors in robotic applications due to their 

low cost, low power consumption and high information content. Therefore, a wide 

variety of solutions are available in the literature. In [9], a road detection algorithm 

using images captured by the monocular camera was presented to model the road 

boundaries. The developed algorithm was based on the assumption that the road 

boundaries were two parallel lines, which can be modeled by second-degree 

polynomials. The road area was labeled using gray levels and texture information 

obtained by applying Robert operator to the captured images, which was also utilized 

to update the parameters of the road model. In [10], on the other hand, the road area  
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was assumed to have a trapezoidal shape, and the rectangular area in front of the 

vehicle was always defined as road. Based on the average HSV color channel values 

obtained from this rectangular area, captured images are filtered to extract road area. 

In their studies [11] and [12], Rasmussen et. al. applied Gabor filters to obtain texture 

features from the images. The extracted data was used to determine the position of 

vanishing point. Based on the found vanishing points in successive images, road 

boundaries were defined. In another study, Rasmussen et al. [13] used the extracted 

features obtained by color camera and LIDAR sensor to train a two-layer neural 

network, which was later used as road classifier. Utilized features were color, texture 

and geometrical features. Color features consisted of joint histograms of image 

patches, whereas the texture features were obtained by applying Gabor filters to the 

same image patches. Variance in the height was selected as geometrical feature due 

to its robustness to noise. Alternative to previous approaches, in [14], a near-to-far 

self-supervised traversable road and obstacle detection algorithm using stereovision 

data for natural terrains was proposed. Because the reliability in stereovision depth 

measurements are limited up to around 12 meters, generated 3D point clouds were 

used to detect ground, obstacle and footline classes close to the vehicle. Then these 

features were used to train the online classifier, which was responsible for long-range 

road detection based on visual data from images [15], [16] and [17]. A similar 

approach was also utilized in [18], which could successfully estimate long range road 

region for changing lighting conditions after training the road detection algorithm 

using the close range stereovision data. An example result of this method is shown in 

Figure 1-4 together with the raw input image and created training image. Some of the 

other successful examples for visual data based road detection solutions are RALPH 

[19], GOLD [20], autonomous driving system of Universität der Bundeswehr 

München [21], VIRTUOUS [22], and the study by Jansen et al. [23]. In [24], 

obtained successful results in the literature for road detection algorithms using visual 

data are linked to their high information content and absence of sweep time while 

capturing data. However, it is also stated that the performance of a camera based 

system is strongly dependent on lighting condition of the environment and may  
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decrease drastically in case of shadow or direct light coming to the camera, as well as 

high noise in the acquired images due to poor lighting conditions. 

 

Figure 1-4 Steps of road detection algorithm proposed in [18], a) raw image of the 

environment, b) training image for the long range road detection algorithm, where 

green pixels shows the close range road area found by using surface roughness, c) 

output of the long range road detection algorithm, where green pixels shows the road 

region 

Alternative to camera based systems, radars can capture a high-quality picture of the 

environment even under extraordinary weather conditions, such as snow and rain, 

with a range up to 200m [25]. However, their high-cost, slow scanning speed, 

possibility of interference with other closely positioned radars and dependence of 

their performance on the material and geometry of the driving environment makes 

them less favorable for autonomous UGV applications [26], [27]. 

Although the working environments for LIDAR sensors are limited compared to 

radar sensors, as stated in [28], continuous increase in resolution, ability to measure 

geometric properties of the environment directly, and their feasibility make LIDARs 

a well suited option for detection of road characteristics. In [29], Morales et al. used 

LIDAR measurements to detect traversable areas, which were assumed to be always 

flat and bounded by trees, grass and bushes. Due to this assumption, the working area 

of the algorithm was limited to a specific structured environment only. Similarly, 

[30], [31] and [32] used LIDAR measurements for road boundary detection purposes 

limited to structured environments. Alternatively, Siegemund et al. used curb model 

to detect and follow the road boundaries in [33] and updated the model parameters  
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based on the data obtained by classifying 3D point cloud using conditional random 

field. In [34], Stückler et al. presented a localization algorithm using LIDAR data for 

a known environment with accurate road map. In this method, LIDAR points were 

first converted to the height images and then by applying oriented edge filters to 

these images, position of the curbs was calculated. As next, position of the vehicle 

was estimated by matching the calculated curb positions with the actual values 

obtained from the road network model. In [35], on the other hand, position of the 

roadside curbs was calculated based on a probability threshold mechanism. Extracted 

results were used for decision-making by the autonomous mobile robot to navigate in 

urban areas with unreliable GPS measurements. Similarly, Jian et al. proposed a curb 

detection algorithm in [36] using raw 3D point cloud generated by a velodyne 

LIDAR sensor to detect road area. In this approach, straight and curved road curbs 

were found by utilizing an adaptive threshold, which made using the algorithm for 

changing road conditions possible. Although the system was proved to be robust for 

the environments with continuous curb structure, decrease in the success rate was 

observed in case of discontinuous environments. In [37] and [38], change in the 

distribution of collected LIDAR points were used to detect surface changes and road 

was detected based on the surface roughness and size of the point cloud segments. 

This algorithm was proved to be applicable to both structured and unstructured 

environments. In [39], LIDAR and monocular camera data were fused for long 

distance adaptive road detection. In this proposed algorithm laser readings were 

utilized to find drivable areas and obstacles in close range to the vehicle and to train 

the developed self-supervised long-range road detection algorithm as described in 

[40]. 

1.4. Scope of the Thesis 

Primary objective of this study is developing an adaptive road detection algorithm 

using a single 2D LIDAR sensor and a dome-camera. The proposed algorithms are 

expected to operate robustly both in structured and unstructured environments 

assuming that the road boundaries are covered either by curb, berm or vegetation. 
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For road detection, three different approaches were proposed in this thesis. The first 

method detects road area based on only geometrical features generated by 2D 

LIDAR data and consists of three main steps, namely breakpoint detection to 

differentiate changes in surfaces, line segment extraction to label possible road 

regions, and line segment selection to decide on drivable area. Alternative to similar 

approaches in the literature, an adaptive approach is utilized to estimate algorithm 

parameters by using discriminative learning approach. This allows the robotic system 

respond to changes in road properties easily. The second method utilizes both 2D 

LIDAR data and the images captured by the front facing lens of the dome-camera. 

Following the line segment selection step, LIDAR points forming the line segment 

are registered to the captured and preprocessed image. Then, corresponding pixel’s 

HSV color space values are read and integrated to the point cloud data. As next, 

selected line segment is filtered based on discontinuity in the hue color channel value 

and the area corresponding to the road is selected. The third and last road detection 

method is based on online supervised learning approach, which uses the outputs of 

the secondly proposed road detection algorithm as training data in order to generate 

visual road models. As next, previously learned and/or null road models are updated 

using these training data. Lastly, road regions in the front and rear images captured 

by the dome-camera are found by using learned and updated visual road models. 

In the secondary and last road detection algorithms, geometrical features are fused 

with the color features by registering the range measurement points to the 

preprocessed images captured by the camera. Moreover, evaluation of the obtained 

results from road detection algorithms are made by comparing the corresponding 

pixel positions of the points, which are classified as road region, with the manually 

labeled road images. Therefore a simultaneous localization algorithm is designed to 

estimate the relative position of the vehicle, when LIDAR measurements are taken, 

with respect to its location, when the images are captured by the camera. Developed 

localization algorithm employs GPS, IMU and OBMM readings and these sensor 

data are fused by using EKF algorithm. 
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1.5. Outline of the Thesis 

The rest of the thesis is constructed as follow. 

In Chapter 2, following the explanation of hardware and software structure of the 

mobile robotic system used in this study, proposed localization algorithm is 

explained in detail. Then, registration procedure of LIDAR points to the images 

captured by the camera and conversion of rectified pixel locations to raw pixel 

locations are presented. Afterwards, theories and working steps of the proposed road 

detection algorithms are described. Lastly, the procedures of the conducted 

experiments are explained. 

In Chapter 3, visual and numerical results of the experiments are presented at first. 

As next, performances of the designed localization, point registration and road 

detection algorithms are evaluated by comparing their results with the methods 

presented in the literature. 

In Chapter 4, a conclusion on this study is given and suggestions for the future work 

are presented. 
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CHAPTER 2 

 

 

2. MATERIAL AND METHOD 

 

 

 

In this chapter, first hardware and software structure of the mobile robotic system 

used in this study is described. As next, registration process of LIDAR points to the 

captured images and conversion of pixel positions from undistorted image to the raw 

image are explained. Afterwards, proposed localization and adaptive road detection 

algorithms are presented in detail. Lastly, by covering the experiments conducted to 

evaluate the performance of the proposed algorithms, this section is concluded. 

2.1. Mobile Robotic Platform Overview 

The UGV used in this study is a renovated electrical ATV for semi-autonomous 

usage in the scope of 111M580 numbered TÜBİTAK project. This mobile platform 

was named as ‘GOAT’, and its picture is presented in Figure 2-1. 

 

Figure 2-1 Picture of UGV platform, GOAT 
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GOAT had a distributed control architecture consisting of one main computer and 

two auxiliary onboard computers. The main computer had an Intel i7 type CPU with 

3.2 GHz processing speed and 8 GB ram. It was responsible for running programs 

with high computational loads, such as, localization, road detection, image 

processing and machine learning. On the other hand, the auxiliary computers with 

1.0 GHz CPU and 512 MB ram were responsible for low level processing, such as, 

sensor measurements and interfacing with the actuators attached to GOAT. 

Communication between these separate computers was established by utilizing ROS 

environment. Moreover, all the developed algorithms were running under ROS. 

The mobile robotic platform was capable of performing autonomous tasks on its own 

as well as manual operation through long-range user intervention. This allowed a 

hybrid task control scheme to be realized in which the user might choose the amount 

of autonomy in the operation. In other words, during operation, user can step in at 

any point and take the control of the robotic platform partially or fully. The opposite 

case was also valid, in which the robot may stop working autonomously and wait for 

manual operation if the uncertainty about the current state of the system prevents 

completing the given tasks. 

The GOAT had three separate LIDAR sensors (one URG-04LX Hokuyo, JAPAN 

and two LMS291-S05 SICK, GERMANY), a dome-camera (Ladybug-5 PointGrey, 

CANADA), two IMUs (one IMU-440 Xsens, USA and one MinIMU-9 v3 Pololu, 

USA), a GPS module and six encoders (four of them on the rear wheels and two of 

them on the front wheels) for localization and mapping purposes. Positions of all 

sensors are schematically shown on the mobile robotic platform in Figure 2-2. 

 

Figure 2-2 Schematic view of GOAT 
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All three LIDAR sensors were placed on the robotic platform making a specific 

angle with the horizontal plane as shown in Figure 2-2. Two of LIDARs (LMS291-

S05 SICK, GERMANY) on the front and back surfaces of the robotic platform were 

utilized for long-range road boundary detection. These sensors were positioned at a 

height of 559.72 mm from the road surface and tilted by 2°  around the z-axis with 

respect to the sensor’s coordinate frame shown in Figure 2-3. Thus, the distance from 

LIDARs to the measurement line was set to be 16 m while the mobile platform 

moves on a planar road surface. On the other hand, the LIDAR, which was mounted 

on the front surface with 15°  pitch angle relative to its coordinate frame shown in 

Figure 2-3, was used for short-range road detection as well as obstacle, bump and 

hole avoidance. While determining the pitch angle of this sensor, first turning radius 

of the GOAT was found by testing the vehicle in both structured and unstructured 

roads. Although the results were different for turning left and turning right, the 

highest turning radius value was found as 1 m. Considering the turning radius and the 

width of the GOAT, the distance from sensor to incident line of laser points for close 

range measurements were decided to be 1.5 meters in order to allow the vehicle 

escape from any kind of obstacles on its route. As a result, the height of the third 

LIDAR was determined to be 417.33 mm from the road surface with a pitch angle of 

15° . Example LIDAR readings taken by the sensors mounted to the front surface is 

shown in Figure 2-4 as integrated to the camera image. 

 

Figure 2-3 Schematic view of GOAT with coordinate frames attached to the sensors, 

where x-, y- and z-axes shown in red, blue, and green, respectively 
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Figure 2-4 Example LIDAR readings taken by the sensors mounted to the front 

surface, red points measured by SICK and blue points measured by Hokuyo 

The dome-camera was centered on top of the robotic platform in order to maximize 

its field of view and cover the measurement range of LIDAR sensors. 

The first IMU sensor, IMU-440, was mounted at the center of GOAT’s bottom 

surface to minimize the magnification effects of base excitations. The other IMU 

sensor was planned to be a secondary measurement unit, and it might be used in the 

case of a disturbance in IMU-440 readings, which could be caused by noise in the 

system generated by the batteries and/or actuators. Therefore, the secondary IMU is 

placed on one side of the dome-camera at the top. 

The GPS module was mounted on the opposite side of the secondary IMU at the top 

to have a clear and unobstructed view of sky. 

Two encoders were mounted on each rear wheel to measure angular speed and 

direction of rotation. Additional encoders were placed on the non-actuated front  
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wheels to measure angular speeds, in order to minimize inaccuracy in the 

measurements due to the slippage in the rear wheels. 

ROS node used for the definition of sensor positions and attached coordinate frames 

relative to the mobile robotic platform is given in APPENDIX A. 

2.2. Localization 

In order to localize the vehicle precisely, outputs of GPS, IMU and odometry based 

motion model were combined and used together. The first localization method was a 

GPS sensor for absolute positioning, which was operated at 1 Hz. The second 

method was based on double integration of linear acceleration and single integration 

of angular speed values read by IMU-440 at 10 Hz for incremental localization. The 

last positioning method was odometry based motion model explained in Section 

2.2.1. In this model, linear and angular distances travelled by the vehicle were 

calculated at 10 Hz by using encoder and digital compass data without any 

integration. To combine the outputs of these three methods, Extended Kalman Filter 

algorithm was used, which was provided in the ROS environment. 

2.2.1. Odometry Based Motion Model 

The aim of the odometry based motion model is predicting the linear and angular 

distances traveled by the vehicle based on encoder and digital compass readings. 

This model was developed assuming that GOAT has an ideal Ackerman steering 

system, and it consists of two sub-models, which are linear and curvilinear motions 

in 3D space. The equations were derived with respect to the world fixed coordinate 

frame, whose x-axis points magnetic east, y-axis points magnetic north and z-axis 

points upwards. At the end, the outputs of the algorithm were transformed to the 

mobile robot fixed coordinate frame, whose x-axis points forward, y-axis points left 

and z-axis points upwards taking the GOAT’s center as origin. 
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Before calculating the traveled distance by the vehicle, it is necessary to decide on 

whether the vehicle moves linearly or not. For that purpose, a simple threshold 

mechanism was employed in the proposed algorithm. In this approach, if the change 

in the heading angle between two successive readings was smaller than the user 

defined threshold value, the vehicle was assumed to make a linear motion. This 

threshold value was determined based on the distribution of collected compass 

readings when GOAT was stationary. 

2.2.1.1. Mathematical Model for Linear Motion 

In this part, equations for linear motion on a plane were derived in world fixed 

coordinate frame at first and then pitch angle reading was integrated to the equations 

to model the linear motion in 3D space. 

Linear distances travelled by a ground vehicle on x and y-axes are given in (2.1) and 

(2.2) in terms of distance travelled by the rear axle’s center, Δcr , and heading angle 

of the vehicle at previous time instance, ψc( )t−1 . Due to linear motion, the variable 

Δcr  is equal to the distance travelled by the front axle’s center, Δcf , and it depends 

on Δ fl  and Δ fr , which are read from the front wheel encoders by one of the 

auxiliary computers. The same computer is also responsible for reading heading 

angle ψc( )t  from secondary IMU sensor MinIMU-9. 

Δxp = Δcr sin ψc( )t−1  (2.1) 

Δyp = Δcr cos ψc( )t−1  (2.2) 

Δcr = Δcf =
Δ fl +Δ fr

2  
(2.3) 

Linear displacement in 3D space is defined in (2.4), (2.5) and (2.6) by adding the 

pitch angle αc( )t−1  reading into (2.1) and (2.2). 

Δx = Δxp cos αc( )t−1  (2.4) 

Δy = Δyp cos αc( )t−1  (2.5) 
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Δz = Δx( )2 + Δy( )2 sin αc( )t−1  (2.6) 

2.2.1.2. Mathematical Model for Curvilinear Motion 

In this part, derivation of governing equations for curvilinear motion with respect to 

the world fixed coordinate frame are presented. Figure 2-5 and Figure 2-6 visualizes 

all the variables used in the equations schematically for two successive positions of 

the vehicle while making planar curvilinear motion. These two positions are also 

referred as initial and final positions of the vehicle’s motion step throughout the 

derivation stages. 

 

Figure 2-5 Successive positions of the mobile robot while rotating on a plane - 1 
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Figure 2-6 Successive positions of the mobile robot while rotating on a plane - 2 

Δxp = δx( )t − δx( )t−1  (2.7) 

Δyp = δy( )t − δy( )t−1  (2.8) 

Δψc = ψc( )t − ψc( )t−1  (2.9) 

Variables δx  and δy  in (2.7) and (2.8) represents the horizontal and vertical 

distances between GOAT and IRC. These variables are calculated using (2.10) and 

(2.11). 

δx( )t = rcr cos βc( )t  (2.10) 

δy( )t = rcr sin βc( )t  (2.11) 

βc( )t = π − ψc( )t  (2.12) 

Same as the linear motion case, the heading angle ψc( )t  is read from the secondary 

IMU. The turning radius of rear axle’s center, rcr , utilized in (2.10) and (2.11) is 

calculated by (2.13). 
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rcr = rcf
2 − l2  (2.13) 

rcf =
Δcf

γ  (2.14) 

Δcf =
Δ fl +Δ fr

2  (2.15) 

γ = ψc( )t − ψc( )t−1  (2.16) 

3D curvilinear motion is obtained by integration of pitch angle αc( )  into (2.10) and 

(2.11). 

Δx = Δxp cos αc( )t  (2.17) 

Δy = Δyp cos αc( )t  (2.18) 

Δz = Δx( )2 + Δy( )2 sin αc( )t  (2.19) 

2.2.1.3. Covariance Matrix Determination 

Following the derivation of mathematical models for linear and curvilinear motions 

in 3D space, covariance matrices were determined. For this purpose, uncertainties 

and reading errors in the encoders and digital compass sensors were taken into 

consideration. 

At first, the encoders attached on the front wheels were examined. Although it was 

necessary to include both lateral and longitudinal slippages for more accurate model, 

they were assumed to be negligible considering that the vehicle was moving with a 

low speed. To detect whether there was a measurement error or noise in the 

encoders, front wheels were rotated 50 full cycles with varying speeds. After testing 

each wheel for 15 times, total number of impulses read from the encoders was 

compared with the calculated ones, and it was seen that both of the encoders work 

properly and does not miss any pulses. 
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As next, the uncertainty of MinIMU-9 was evaluated by positioning GOAT in the 

environment with changing poses and recording sensor readings for 1 minute at each 

of these poses. Normal distribution was used to model the sensor noise. Standard 

deviation and variance values for roll, pitch and yaw angles were calculated in MS 

Excel and the result are presented in Table 2-1. 

Table 2-1 Standard deviation and variance values for MinIMU-9 in [rad] 

  Roll Pitch Yaw 
Number of 
Collected Data 3226 3226 3226 

Standard 
Deviation of Data 0.008074 0.010924 0.012700 

Variance of Data 0.000065 0.000119 0.000161 

After modeling the uncertainties of the sensors utilized in motion model, the 

uncertainty of the motion model itself was found by using sampling method. In this 

method, the vehicle’s displacement was simulated 1.000.000 time by using randomly 

generated sensor data, whose mean values were taken as the real sensor readings and 

standard deviation values were equalized to the previously determined values. At 

last, a Gaussian distribution was fitted to the generated data and the following results 

in Table 2-2 were obtained for linear and curvilinear motions. 

Table 2-2 Standard deviation and variance of motion model in [mm] 

  
Linear Motion Curvilinear Motion 

X Y Z X Y Z 
Standard 
Deviation 12.963 10.382 14.237 24.706 32.325 11.835 

Variance 168.032 107.790 202.684 610.391 1044.890 140.060 
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2.3. Registration of LIDAR Points to Images Captured By Dome-camera 

As mentioned in the former chapters, LIDAR measurements were registered to the 

image captured by the camera to be used in road detection algorithm and the 

evaluation of its outputs. The procedure of converting LIDAR points measured in 

polar coordinates to the raw pixel locations on the ith camera is schematically shown 

in Figure 2-7. 

 

Figure 2-7 Schematic view of LIDAR point conversion steps 

To start with, the measured range points were converted from polar coordinates to 

Cartesian coordinates using (2.20), where ‘LI’ stands for the coordinate frame 

attached to the LIDAR, and ρn  and ψn  are the range and the corresponding yaw 

angle values for the nth LIDAR measurement. Since the utilized LIDAR was taking 

only planar measurements, position of the points in z-axis with respect to the LIDAR 

attached coordinate frame was always 0. 
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As next, obtained LIDAR points were transformed from LIDAR attached coordinate 

frame to dome-camera attached coordinate frame using built-in function of ROS, 

tf.TransformListener().transformPointCloud(). Since the working frequencies and the 

time of measurements were different for camera and LIDAR, before transforming the 

 

ρn
ψn

�
��

�
��

(LI ) xn
yn
0
1

�

�

�
�
�

�

�

�
�
�

LI( ) xn
yn
zn
1

�

�

�
�
�

�

�

�
�
�

La( )

xn
yn
zn
1

�

�

�
�
�

�

�

�
�
�

i( )

Polar to Cartesian
Conversion (2.20)

Coordinate frame
transformation

Coordinate frame
transformation

tf.transformPointCloud()

Using camera extrinsic
parameters

Rectified Pixel
Location Calculation

Pin-hole camera
model

un,rect
vn,rect
�
��

�
��

un,raw
vn,raw
�
��

�
��

Pixel Conversion



22 

 

point cloud, 3D position of the LIDAR attached coordinate frame relative to the most 

recent position of the camera was calculated by using the built-in function 

tf.TransformListener().waitForTransform(). Afterwards, the point cloud was 

transformed one more time from dome-camera coordinate system to the ith lens 3D 

coordinate system using the transformation matrix defined by the camera specific 

extrinsic parameters, which were retrievable for each camera attached to the 

Ladybug from the Ladybug API. Following the transformation of all LIDAR points 

to the ith lens 3D coordinate system, direction vectors between local origin and scan 

points, which were redefined in the form of (2.21), were calculated using (2.22). 

Using the calculated direction vector, corresponding pixel locations on the rectified 

image, cn, rn( ) , were found by (2.23) and (2.24), which were obtained by pinhole 

camera model as explained in [41]. 

Pn
i( ) = xn, yn, zn,1[ ] i( )

T

 (2.21) 

!vn
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, yn
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 (2.22) 
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i( )
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i( ) + c0  (2.23) 

vn = fi
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yn
i( )
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(2.24) 

Lastly, pixel positions of the LIDAR points on the raw image were found by 

converting the obtained rectified pixel locations. Utilized algorithm for this 

conversion is explained in Section 2.4. 

If the calculated pixel positions were non-integer values, then the color values for 

these pixels were estimated by using bilinear interpolation, which is represented in 

Figure 2-8 visually. In this interpolation method, four pixel positions with integer 

values, which covered the pixel in interest and shown as red in Figure 2-8, were 

found first. After reading the pixel values, Q11 , Q12 , Q21  and Q22  respectively, 

values R1x  and R2 x  were estimated by doing a linear interpolation in x-axis using 
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(2.25) and (2.26). As next, by doing a secondary linear interpolation in y-axis using 

(2.27), the value of the pixel in interest was estimated as Pyx . 

 

Figure 2-8 Visual representation of bilinear interpolation 

R1x ≈
x2 − x
x2 − x1

Q11 +
x − x1
x2 − x1

Q12  (2.25) 

R2 x ≈
x2 − x
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x − x1
x2 − x1

Q22  (2.26) 

Pyx ≈
y2 − y
y2 − y1

R1x +
y− y1
y2 − y1

R2 x  (2.27) 

2.4.  Conversion of Rectified Pixel Locations to Raw Pixel Locations 

In Section 2.3, it was explained in detail, how to calculate the measured LIDAR 

points’ position on the rectified image. However, raw captured image by the camera 

is a distorted version of the actual scene as it is shown in Figure 2-9. In the figure, 

the image on the left is the raw image captured by the camera and is a barrel type 

distorted visual representation of the real scene. Hence, in order to read the color 

values for the LIDAR data, it was necessary to rectify the raw image or to transform  
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the calculated pixel locations from the undistorted image to the raw image. Since 

total number of pixels in the raw image was around 9800 times higher than the 

number of generated LIDAR points per cycle, and only a small portion of the whole 

image was used in the algorithms, it was decided to convert calculated rectified pixel 

locations to the raw pixel locations to minimize the computational load. Although a 

function to convert pixel values between raw and rectified images was available in 

Ladybug API, it was functional only on Windows OS, whereas all the algorithms and 

programs used in this study were running on UBUNTU OS. Therefore, five different 

methods for pixel conversion were developed and tested. 

 

Figure 2-9 Captured image by the camera, a) raw image, b) rectified image 

The first method was expressing the distortion in the raw image mathematically. As 

explained in [42], distorted images containing radial and tangential lens distortions 

can be modeled using (2.28), (2.29) and (2.30), where k1 , k2  and k3  are radial 

distortion parameters, p1  and p2  are tangential distortion parameters, and urect , vrect , 

udist  and vdist  are the column and row coordinates in rectified and distorted images. 

To determine these parameters, Matlab Camera Calibrator App was used, which  
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estimated the parameters based on set of images captured by the camera. In all of 

these images, a distinct checkerboard with known square size was placed at different 

positions with changing rotation on the camera’s field of view. The set of images 

used for the calibration process is given in Figure 2-10.  

udist = urect 1+ k1r
2 + k2r

4 + k3r
6( )+ 2p1urectvrect + p2 r2 + 2u2rect( )

 

(2.28) 

vdist = vrect 1+ k4r
2 + k5r

4 + k6r
6( )+ 2p2urectvrect + p1 r2 + 2v2rect( )

 

(2.29) 

r2 = u2rect + v
2
rect

 
(2.30) 

 

Figure 2-10 Camera images used in Camera Calibrator App of Matlab 

The remaining methods utilized the pixel conversion table, which formed of both 

rectified-to-raw and raw-to-rectified conversions for each pixel in the image. This 

table was created by using the available function in Ladybug API, which can be used 

only on Windows OS. 

In the second method, similar to the first one, the distortion in the image was 

expressed mathematically using (2.28) and (2.29), whose parameters were estimated 

based on the obtained pixel conversion table by using particle swarm optimization 

(PSO) technique. As explained in [43], PSO is an evolutionary optimization method, 

which uses particles and their motion to find their optimal positions and the 

corresponding optimal solution for the given problem. At the beginning of the PSO 

algorithm, a finite number of particles representing the parameter sets are generated 

with random positions and velocities. As next, fitness values of each of these  
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particles are calculated according to the defined cost function. Following the 

calculation of fitness values at the end of each iteration, best fitness value, pbest , for 

each particle is selected, and then the global best, gbest , is selected among them. 

Based on gbest , particles are updated and a new iteration starts till the maximum 

iteration number or the convergence is achieved. At the end, the parameter set 

corresponding to gbest  is selected as the solution of the given problem. The success of 

this approach strongly depends on a well-defined cost function, which was taken in 

this study as the mean of the Euclidean distances between calculated and actual raw 

pixel positions for each pixel in the rectified image. The mathematical expression of 

the cost function is given in (2.31). 

c = 1
N

xi,raw,calc − xi,raw,act( )2 + yi,raw,calc − yi,raw,act( )2
i=1

N

∑
 

(2.31) 

The third approach was reading the conversion file, in which the pixel conversion 

table was stored, and assigning this data to a variable at the beginning of the 

program. Then, required pixel conversions would be read from this variable during 

operation. However, this approach could never be tested, since reading the whole 

conversion table took more than a half hour and the ram usage reached to very high 

levels so that it slowed down other running processes. 

The next method was writing the whole pixel conversion table to a file and reading 

the corresponding lines of it to convert the pixel locations at each LIDAR 

measurements’ registration step. 

The last method was storing the conversion table into a gray scale image instead of a 

text based file, where the rectified image pixels were used as pixel location in the 

generated gray scale image and the color value of the image was set to be equal to 

the output of pixel conversion, i.e. raw pixel position. 

In the third and fourth pixel conversion methods, non-integer rectified pixel positions 

were estimated by using bilinear interpolation, which was explained at the end of 

Section 2.3. 
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2.5. Road Detection 

In this study, three different adaptive road detection algorithms are proposed for a 

robust classification of road regions ahead of the vehicle in both constructed and 

unconstructed environments. The first proposed road detection algorithm utilized 

only one 2D LIDAR sensor attached to the front surface of the vehicle. The second 

approach, on the other hand, was based on using hybrid features, which consists of 

range measurements taken by the 2D LIDAR and the visual data coming from the 

camera. The third and the last algorithm used online supervised machine learning 

approach for road detection purpose. In the following sections, at first the working 

principle of single 2D LIDAR based adaptive road detection algorithm is explained. 

As next the second adaptive road detection algorithm using sensor fusion is covered 

in detail. At last, working mechanism of the machine learning based road detection 

algorithm is described. 

2.5.1. Adaptive Road Detection Using 2D LIDAR Sensor 

Proposed adaptive road detection algorithm consists of three main steps, namely 

breakpoint detection to differentiate changes in surfaces, line segment extraction to 

label possible road regions, and line segment selection to decide on drivable areas. 

Alternative to the similar studies in literature, to make the robotic system 

dynamically respond to the alterations in the road environment, an adaptive approach 

was utilized to estimate algorithm parameters by using discriminative learning 

approach. Moreover, all the calculations in the implemented road detection method 

were done using polar coordinates, which is the convention used by LIDAR sensors. 

Thus, the high computational cost of the coordinate conversion operation was 

avoided. 
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2.5.1.1. Breakpoint Detection 

The aim of the breakpoint detection is determining the change in the road surface by 

looking any discontinuity in a range measurement. Furthermore, it prevents the line 

extractor from connecting two adjacent, linearly distributed point clouds in case of a 

presence of large discontinuity. A sample view of LIDAR points’ distribution for 

structured and unstructured roads are given in Figure 2-11. 

 

Figure 2-11 Sample LIDAR measurements for structured environment (left) and 

unstructured environment (right) 

The method utilized for breakpoint detection in this study was based on the algorithm 

proposed by [38]. In this algorithm, at first the longest possible distance between 

current scan point pn  and previous scan point pn−1  was estimated. To calculate this 

distance, a virtual line passing through the scan point pn−1  making an angle λ  with 

the scanning direction ψn−1  was defined and a hypothetical scan point pn
h  was 

assumed to be on the intersection of this virtual line with the scanning direction ψn . 

The distance between pn−1  and pn
h  was taken as the threshold distance Dmax , whose 

mathematical expression was given in (2.32). Scan points pn−1  and pn  were labeled 

as breakpoints, if pn  was outside of the threshold circle, which was centered at pn−1

with a diameter of Dmax . Figure 2-12 visualizes the procedure followed for  
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breakpoint detection schematically, and the working steps are given as a pseudo code 

in Table 2-3. In Table 2-3, parameter Nlp  stands for the total number of points 

scanned by the LIDAR in each cycle and BP  is the cluster of detected breakpoints. 

Dmax = rn−1
sin Δψ( )

sin λ −Δψ( )
 (2.32) 

 

Figure 2-12 Schematic view of breakpoint detection and Dmax  determination 

Table 2-3 Pseudo code of breakpoint detection algorithm 

01      BP = { }       // Cluster of detected breakpoints 

02      p0 ∈ BP  

03      for n=1 to Nlp −1( )  do 

04            calculate Dmax  by (2.32) 

05            if d pn, pn−1( ) > Dmax  then 

06                  pn ∈ BP  

07                  pn−1 ∈ BP  

08            else 
09                  pn ∉ BP  

Considering (2.32), calculation of Dmax  depends on the range measurement rn−1  of 

pn−1 , angular increment between two consecutive LIDAR readings Δψ  and λ . Only  
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adjustable variable in this equation is λ  and the rest depends on the sensor 

specifications and environment. In this study, selection of λ  was automated, 

whereas it was determined based on user experience in [25] and [38] The method 

used for automated selection of λ  is explained in detail at Section 2.5.1.4.  

2.5.1.2. Line Segment Extraction 

The next step of adaptive road detection algorithm is extraction of line segments, in 

other words possible road regions. In order to extract line segments, point 

distribution along a candidate point set was compared with the ideal range image of a 

flat ground using a similar algorithm proposed in [24] and the iterative end point fit 

algorithm (IEPF) presented in [25] and [38]. 

In the utilized algorithm, at first a hypothetical line representing the ideal range 

image of a flat surface between two consecutive breakpoints is defined by using 

(2.33) and (2.34). Next, distance of each measured point located between these 

breakpoints to the defined hypothetical line was calculated by (2.35) and compared 

with the threshold distance value dth . If one or more of the points was found to be 

located in a farther position than dth , the outermost scan point was labeled as a new 

breakpoint and the point set was split into two separate line segment candidates. This 

iteration was repeated until the distance criteria was satisfied for each point in the set 

and the set was selected to be a line segment, or the number of points in the set 

became less than the required minimum number of points, Nmin , to represent a line 

segment and all the points were discarded at the end. The pseudo code of the 

algorithm is given in, and the IEPF step is visually presented in Figure 2-13. 

ρ flat ψn( ) = zlidar
cos ψn( )α − sin ψn( )β

 (2.33) 

α
β

⎡
⎣⎢

⎤
⎦⎥=

1
1

− tan ψns( )
− tan ψne( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1
zlidar / cos ψns( )ρ ψns( )
zlidar / cos ψne( )ρ ψne( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 (2.34) 

dn = ρ ψn( )− ρ flat ψn( )   (2.35) 
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Table 2-4 Pseudo code of line segment extraction algorithm 

01      ne = 0  
02      LS = { }       // Cluster of extracted line segments 

03      while ne ≤ Nlp  do 

04            ns = ne  

05            ne = ns +1  

06            while ne ∉ BP  and ne < Ns  do 

07                  ne = ne +1 

08            while ne − ns ≥ Nmin  

09                  for n = ns  to ne  do 

10                        calculate d pn, pn, flat( )  

11                  if max dn( ) > dth  

12                        ne = index max dn( )( )  

13                  else 
14                        lnsne ∈ LS  

 

Figure 2-13 IEPF step of line segment extraction 

Considering line segment extraction algorithm, determining whether a set of point 

was a line segment depends on the parameters Nmin , dth  and the height of the 

LIDAR sensor zlidar . Parameter zlidar  is a physical design parameter and cannot be 

changed during the operation. However, parameters Nmin  and dth  can be used to  

 

dn
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dynamically control the output of the line segment extraction algorithm. In [25], 

these variables were set to be constant and same for different road types 

Nmin = 24 and  dth = 60mm( ) . Alternative to [25], determination of Nmin  and dth  was 

automated in this study, which is explained in detail at Section 2.5.1.4. 

2.5.1.3. Line Segment Selection 

The last step of the proposed adaptive road detection algorithm is selection of line 

segment corresponding to the road area. For that purpose, at first central position of 

each line segment was calculated with respect to the GOAT. As next, the nearest line 

segment was selected and labeled as road among others based on the horizontal 

distance, in order to minimize the number of maneuvers. 

2.5.1.4. Adaptive Parameter Selection 

As mentioned in the previous parts of this chapter, deciding on the values of 

parameters used in road detection algorithm was automated. These parameters are λ , 

dth  and Nmin . This made the proposed road detection algorithm adaptable for 

changing road conditions. 

Parameters λ  and dth  were determined using a discriminative learning approach 

based on a labeled training data set. By LIDAR collected data is labeled as road 

regions using the path followed by mobile platform under manual operation, similar 

to [19] and [44]. In Figure 2-14, LIDAR points corresponding to the area passed over 

by GOAT were labeled as road and shown in blue, whereas the remaining points are 

colored with respect to their z values. 
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Figure 2-14 Terrain labeling for discriminative learning step, LIDAR points labeled 

as road region are shown in blue 

To tune the parameter λ , Euclidean distance between each adjacent point pn−1  and 

pn  in the training data set was calculated at first and followed by determining the 

corresponding λn  using (2.36). As next, optimum λ  value is selected as the lowest 

peak value of the obtained distribution of λn . 

λn = sin
−1 rn−1

sin Δψ( )
d pn, pn−1( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟+Δψ  (2.36) 

To tune the parameter dth , distance dn  of each point labeled as road in the training 

data set to the virtual line representing the ideal range image of a flat surface was 

calculated using (2.35). Then the highest peak value in the obtained distance 

distribution was chosen to be dth . 

Different than the parameters λ  and dth , Nmin  was dynamically adapted throughout 

the motion of mobile platform, since the distance between the platform and the 

incident line may change, as the mobile platform passes on a bump and/or a hole. For 

that purpose, Nmin  was calculated depending on the width of the vehicle, wGOAT , and 

the range measurement for ψ = 0 , r0 . The mathematical expression used to 

calculate Nmin  is given in (2.37). 
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Nmin = 2
tan−1 wGOAT

2r0( )
Δψ

 (2.37) 

2.5.2. Adaptive Road Detection Using 2D LIDAR Sensor and Visual Data 

Proposed adaptive road detection algorithm, which uses hybrid features, consists of 

five main steps. First three stages of this algorithm, namely breakpoint detection, line 

segment extraction and line segment selection are same as in the previous method. 

Following the selection of line segment, remaining point cloud is registered to the 

preprocessed image and HSV color space values of the pixels matching with the 

range measurements are fused. At last, points, which form the selected line segment, 

are filtered based on discontinuity in their hue color channel values, to differentiate 

changes in surfaces with similar surface roughness. 

One of the differences of this algorithm from the first approach is utilizing the visual 

data coming from the dome-camera to filter the point cloud. The other dissimilarity 

is conversion of the range measurement points from polar coordinate system to 

Cartesian coordinate system, in order to register them on the captured image. 

2.5.2.1. Preprocessing and Color Space Conversion Of The Captured Image 

In parallel to the road detection steps using LIDAR data only, captured image by the 

camera was first preprocessed in order to decrease the effect of noise and sharpen the 

color information. Afterwards its color space was converted from RGB to HSV to 

make the visual data less susceptible to the changing lighting conditions. 

Application of the noise filter to the captured image was the first step of the 

preprocessing. In this step, a 3x3-averaging filter given in (2.38) was convolved with 

the raw image in order to remove grain noises due to poor lighting condition and 

high ISO values. 

f = 1
9

1 1 1
1 1 1
1 1 1

⎡

⎣
⎢

⎤

⎦
⎥  (2.38) 
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Following the noise filtering, histogram equalization was applied on each color 

channels of the color image, in order to reduce the adverse effects of the unbalanced 

illumination and improve the contrast of the image. Although histogram equalization 

causes deformation in the color content, it was shown in [18] that utilization of 

histogram equalization improved the performance of color based road detection 

algorithms by decreasing the FP rate. Outputs of the preprocessing steps are 

presented together with the raw images in Figure 2-15. 

 

Figure 2-15 Raw images captured by the camera (a,c) and preprocessed images (b,d) 

After the preprocessing steps, image’s color space was converted from RGB to HSV. 

2.5.2.2. Filtration Of The Selected Line Segment Based On Hue Color 

Channel Value 

After registering the selected line segment to the preprocessed image by following 

the methodology explained in Section 2.3, points were filtered based on the 

discontinuity in their hue color channel values to differentiate changes in surfaces 

with similar surface roughness. 

The first step of the filtration was increasing the contrast in hue color channel by 

mapping color values to the interval of 0-255. Hue channel values of the points 

before and after contrast adjustment are plotted in Figure 2-16 
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Figure 2-16 Hue channel values of the points in line segment before and after 

contrast adjustment 

As next, mean and standard deviation values, µH  and σ H , in hue channel were 

calculated for all of the points in the line segment and upper and lower threshold 

values were defined as, µH +σ H  and µH −σ H . Following that, local average hue 

values for each 10 points in the line segment were calculated separately and 

compared with the threshold values. If average hue value of any point groups was 

found to be higher or lower than the threshold values, such as points between pixel 

positions 320-350 in Figure 2-17, those points were labeled as non-road region, 

assuming that the points corresponding to the actual road area has similar color 

distribution in hue channel and their ratio to the points on non-road area is higher. At 

last, if the line segment was divided into two or more parts, then central position of 

each line segment was calculated with respect to the GOAT. Next, the nearest line 

segment was selected and labeled as road among others based on the horizontal 

distance, in order to minimize the number of maneuvers. 
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Figure 2-17 Hue channel values of the points forming the line segment and the 

average hue values of each point group after increasing contrast 

2.6.  Adaptive Road Detection Using Online Supervised Learning Approach 

Proposed adaptive road detection algorithm consists of three main stages, which are 

generating training data, updating previously learned road models based on color 

properties and detecting road regions by using these road models and evaluating the 

images captured by the dome-camera. 

2.6.1. Generation Of Training Data 

For training data generation, road regions in front of the vehicle are detected by using 

adaptive road detection algorithm discussed in Section 2.5.2. As next, by following 

the procedure defined in Section 2.3 as road labeled LIDAR points are registered to 

the image, which is captured by the front facing lens of the dome-camera. By using 

the corresponding pixels’ color values in HSV color space, visual model of the road 

region is generated as a mixture of Gaussians model. Similar to [18] and [39], these  
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Gaussian models are defined by their mean values, µ , covariance matrices, Σ  and 

mass values, m, which are calculated by using k-means clustering. The mass value is 

equal to the number pixels forming the trained road model. While generating these 

models, different than [39], hue and saturation color channel values are used instead 

of RGB color space values, in order to make the models less susceptible to the 

changing light conditions. 

2.6.2. Updating Previously Learned Road Models 

After generating the k-many visual road models using training data, they are used 

either to update or to replace previously learned road models or to replace the null 

models. In order to decide on, whether these new models will be used for update or 

replacement, condition (2.39), which was proposed in [39], is used to compare new 

models with each of previous models. 

1≥ µL −µT( )T ΣL +ΣT( )−1 µL −µT( )  (2.39) 

If one or more of the newly generated model(s) fulfill the condition given in (2.39), 

then it/they are used to update the matching previously learned model(s) using 

(2.40), (2.41) and (2.42). 

µL =
mLµL +mTµT
mL +mT

 (2.40) 

ΣL =
mLΣL +mTΣT
mL +mT

 (2.41) 

mL =mL +mT  (2.42) 

In case new models match none of the previously learned models, then they are used 

to replace null models, if there is any, or previously learned ones. If the number of 

null models is less than the number of new ones or equal to zero, then previously 

learned model with the lowest mass value is replaced. 
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2.6.3. Road Regions Detection 

Following the update step, visual road models are used for road detection purpose. In 

order to do that, firstly pixels on the image captured by one of the lenses on the 

dome-camera are scored by the road models. For the calculation of these scores, 

Mahalanobis distance from pixel to the center of visual road models is used, which 

was shown to be most efficient distance measure compared to Manhattan, Euclidian, 

Chebyshev and Hellinger distances, [18]. The equation of Mahalanobis distance is 

given in (2.43). 

dM p( ) = p−µL( )T ΣL
−1 p−µL( )  (2.43) 

After calculating the scores for each pixel in the visual field, image is binarized by 

applying a threshold value equal to 3σ  and drivability of each pixel is obtained. 

Before deciding on the road region, dilation and erosion filters with a kernel given in 

(2.44) are applied to the binary image to eliminate noises and impurities. At last, 

connected components in the binary image are found and the largest one is chosen as 

the road region. 

f =
1  1  1
1  1  1
1  1  1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 
(2.44) 

2.7. Experiments 

Proposed localization and road detection algorithms were tested on the path shown in 

Figure 2-18, which consisted of structured and unstructured road regions, labeled as 

red and blue, respectively. The performance of the proposed localization method was 

observed throughout the whole route. On the other hand, two test areas for structured 

road (a road section bounded by sidewalks and another road section bounded by 

plants) and one test area for unstructured road conditions were selected for the 

evaluation of adaptive road detection algorithm. Figure 2-19 shows photos of the 

experiment sites for structured and unstructured road cases. 
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Figure 2-18 Test path driven by the vehicle, red path shows the structured road and 

blue path shows the unstructured road 

             

Figure 2-19 Sample images for structured road (a) and unstructured road (b) 

In order to compare the results of the developed algorithms objectively and to reduce 

the number of field tests, for each of which at least one hour needs to be spent 

excluding the data post-processing, the mobile platform was manually driven through  
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the path shown in Figure 2-18 with an average speed of 3 km/h, and whole sensor 

readings were recorded using the ROS environment. Later, the developed algorithms 

were run offline in the laboratory. By using the feature of playing recorded data in 

ROS, sensor readings were fed to the written programs like in real time, and made it 

possible to run and test all of the developed algorithms with the same inputs. 

Moreover, it made possible comparing the performances of each algorithm 

objectively. 

The performance of the proposed localization algorithm was evaluated based on 

three different parameters. The first evaluation is done based on the coarse behavior 

of the mobile platform, where the calculated paths of the vehicle in structured and 

unstructured environments are visually compared with the aerial images published by 

ArcGIS. So that, it is checked whether the computed motion of the vehicle shows 

similar characteristics to the actual road. As next, the computed positions are 

evaluated in detail by considering the distances between two consecutive positions. 

The last evaluation criterion is the distance between estimated and actual final 

positions of the vehicle. To compare the final positions, the robotic platform was 

driven through a path, at the end of which the displacement of the vehicle was zero. 

So the distance between starting and ending positions gives the deviation between 

estimated and actual final positions of the vehicle. 

Pixel conversion methods were evaluated both visually and quantitatively using the 

image presented in Figure 2-20.  
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Figure 2-20 Raw image of checkerboard captured by the Ladybug 

Due to the distortion in the images, geometric features with linear shapes, such as 

straight edges of a cube, are bended. This effect is visualized using a mesh of squares 

in Figure 2-21 for negative and positive radial distortion cases together with the 

undistorted image. As the object gets closer to the boundaries, the effect of this 

phenomenon increases. The adverse effect of distortion caused by the camera’s lens 

can be reversed by rectification, which was used to evaluate the visual performance 

of the proposed pixel conversion algorithms based on the straightness of the linear 

shaped geometrical features in the corrected images. In order to see the effect of 

rectification clearly, a checkerboard was chosen as the object in the image. Although 

the proposed method for visual evaluation is the inverse of the converting rectified 

pixels to raw pixels, rectification by using the same parameters with the distortion 

process gives the same input output pixel couples with the reverse order. Therefore it 

can be used for visual inspection. 
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Figure 2-21 Effect of the radial distortion to the image [42] 

The quantitative analysis was made based on the mean value of the Euclidean 

distances between the raw pixel positions obtained from Ladybug API and the 

calculated raw pixel positions by the proposed methods for each pixel location in the 

rectified image. The equation used for quantitative evaluation is given in (2.45). 

µ =
1
N

xi,raw,calc − xi,raw,act( )2 + yi,raw,calc − yi,raw,act( )2
i=1

N

∑
 

(2.45) 

Performance of the proposed road detection algorithms was evaluated based on ACC 

and FPR values of the outputs. To determine the ACC and FPR, line segments 

collected during the experiments and labeled as road area were compared with the 

ground truth data using (2.46) and (2.47). The ground truth data was generated by 

manual labeling of the road edges on the images, which were captured by the dome-

camera. A sample view from the manual labeling process is given in Figure 2-22 for 

structured environment. FPR was used for comparison, however true negative and 

false negative results were not considered for the evaluation of algorithm’s 

performance. This is due to that a false negative result can only make the robot 

deciding to halt and wait for manual operation, at worst. False positive output, on the 

other hand, may cause the vehicle under autonomous operation decide on going out 

of the road, and can lead to damaging the UGV platform. In addition to ACC and 

FPR, computational speeds of the proposed adaptive parameter approaches were 

compared against each other using the mean computational time required by them. 

 (2.46) ACC =TP +TN
Σp
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(2.47) 

 

Figure 2-22 Sample ground truth data generation by labeling road region manually  

FPR = FP
Σpnegative
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CHAPTER 3 

 

 

3. RESULTS AND DISCUSSION 

 

 

 

In this chapter of the thesis, results of the conducted experiments are presented to 

evaluate the performance of the developed algorithms for localization, pixel 

conversion and road detection. Then the performance of the overall system is 

evaluated in detail based on these results. 

3.1. Localization 

In this section, first, the driven path for the evaluation of localization algorithm is 

virtually presented attached to the aerial images published by ArcGIS. This path was 

estimated by using the outputs of three different approaches, namely, GPS only, 

OBMM only and Extended Kalman Filter that combines GPS, OBMM and IMU 

sensor readings. Following the visual result, performance of the algorithm is 

evaluated numerically with respect to the criteria discussed in Section 2.7. 

Visual results of the travelled path computed based on GPS only, OBMM only and 

EKF are shown in Figure 3-1 for structured and unstructured road environments. As 

it can be seen in Figure 3-1-a and -b, output of the localization method based on only 

GPS data visually agrees with the actual road area shown on ArcGIS World Aerial 

Images. Results of the OBMM, on the other hand, deviates from the actual path as 

expected, because small errors in the measurements cause cumulative increase in the 

final positioning error due to relative localization approach. However, considering  
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the general behavior of the computed path, it is seen that obtained results by OBMM 

based localization method is similar to GPS based method. Visual results of the 

estimated path by EKF algorithm also agree with the road area shown in ArcGIS 

World Aerial Images, and for the unstructured road case shown in Figure 3-1-b it 

coincides with the path computed by GPS data.  

 

Figure 3-1 Travelled path by the mobile platform to test localization methods in a) 

structured environment and b) unstructured environment. 

As next, the motion of the vehicle is inspected more closely. In Figure 3-2, a small 

portion of the path computed by EKF localization algorithm is shown. As it can be 

seen in the right most visual, generated path has a shape of sawtooth. Although it is 

rarely observed throughout the path, it occurred because of the difference in the 

working frequencies and the uncertainty values of the localization methods combined  
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by EKF algorithm. A sample close-view of the computed path is shown in Figure 

3-3. As it can be seen in the figure, number of positions calculated by GPS data is 

less than the number of positions calculated by other two methods due to low 

working frequency. Between two successive GPS readings, localization is done 

based on IMU and OBMM data. Since these two methods are incremental 

localization methods, the error in the positioning increases cumulatively, whereas 

GPS is an absolute positioning sensor and its error in positioning only depends on the 

number of connected satellites, but not former measurements. Therefore, the relative 

localization error between two positions estimated by an incremental localization 

method, pt−1  and pt−2 , is smaller than the relative localization error between 

positions pt  and pt−1 , where pt  is estimated based on GPS data. As a result of this, 

some parts of the path have the sawtooth shape. While going through the sawtooth 

shaped sections of the path, it was seen that this fact only occurred when the vehicle 

made sharp and sudden turns. In other words, the reason for why the sawtooth shape 

is observed is that in these parts of the path the neglected lateral and longitudinal 

slippage values affect the motion more drastically, and cause increasing the error in 

pose estimation of OBMM. 

 

Figure 3-2 A sample section view of the computed path 
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Figure 3-3 Close-view of the estimated path. Data points generated by using GPS 

data are shown as circle, and data points generated by using IMU and OBMM data 

are shown as cross. 

The third and last evaluation criterion for the localization method is the distance 

between estimated and actual final positions of the mobile platform. To calculate this 

distance, the mobile platform was driven through the path shown in Figure 3-4, 

where the starting and ending positions of the path are on the left center of the image. 

Although the final position of the GOAT was actually the same with the starting 

position, computed values by the EKF localization algorithm differs. The distance 

between these two positions is calculated as 1.014 m after completing the 1.98km 

length path. In other words, the error in the final position relative to the total traveled 

distance is found to be 0.051%. 

 

Figure 3-4 Traveled route by GOAT computed by EKF localization algorithm 
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Considering both the visual and numerical results, it was seen that the proposed 

localization algorithm, which fuses GPS, OBMM and IMU data, could be used both 

in structured and unstructured environments. However, since an increase in the 

positioning error was observed when the vehicle made sharp and sudden turns, speed 

of the vehicle should be controlled carefully to minimize the lateral and longitudinal 

slippages. 

3.2. Conversion of Pixel Locations Between Rectified and Raw Images 

In this section, pixel conversion methods explained in Section 2.4 are evaluated both 

visually and quantitatively. 

To start with, the output image of the rectification function in the Ladybug API was 

visually interpreted to check the accuracy of the calibration file supplied by the 

PointGrey. As explained in the Section 2.7, visual evaluation of the algorithms was 

made based on the straightness of the lines in the rectified image, which is given in 

Figure 3-5. As it can be seen in Figure 3-5-a, correction of the curved lines in the raw 

image were successfully undistorted, even though the inspected area was 

considerably affected from the lens distortion due to its close position to the image’s 

corner. In the second sub-image shown in Figure 3-5-b, on the other hand, a slight 

deviation was observed between one of the edges of the corrected squares and the 

ideal straight line. However, this deviation only occurred on one of the edges and this 

edge was close to the lower part of the checkerboard, which was deformed due to the 

weight of the board itself. So, it was concluded that this difference was due to the 

physical deformation in the board instead of any inaccuracy in the rectification 

algorithm. Since the result shown in Figure 3-5, which was obtained by using the 

rectification function of the Ladybug API, were visually accurate and successful, it 

was used to evaluate the performance of the proposed algorithms’ outputs.  
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Figure 3-5 Undistorted image by using the rectifying function of Ladybug API 

The first method for pixel conversion was expressing the distortion in the image 

mathematically using equations (2.28), (2.29) and (2.30), whose parameters were 

estimated using Matlab Camera Calibrator App. Conversion equations with the 

estimated parameter values are given in (3.48), (3.49) and (3.50). As it can be seen in 

Figure 3-6, mathematical model with Matlab estimated parameters could restore the 

distortion in the middle area of the image. However, performance of the algorithm 

decreased in the regions close to the image boundaries, which can be seen through 

Figure 3-6-a and Figure 3-6-b. In the quantitative analysis, the mean value of the 

Euclidian distances between actual and calculated raw pixel positions was found as 

5.06 pixels. 

uraw = urect 1− 0.2315r
2 + 0.0393r4( )  (3.48) 
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vraw = vrect 1− 0.2315r
2 + 0.0393r4( )  (3.49) 

r2 = u2rect + vrect
2

 (3.50) 

 

Figure 3-6 Undistorted image obtained by using equations (2.28), (2.29) and (2.30) 

with the parameters found by Matlab Camera Calibrator App 

Although the proposed model initially included the tangential distortion, it was 

omitted from the final version of the equations, since the calibration toolbox could 

not estimate them correctly. After trying estimation of the parameters with different 

image sets for several times, the best visual result obtained with tangential distortion 

added model is given in Figure 3-7. One of the reasons for the unsuccessful 

rectification result was the small number of calibration images close to the edges. 
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Another reason was small coverage area of the checkerboard in the calibration 

images, which was suggested to be around 20% of the whole image. However, due to 

camera’s large field of view and the necessity of capturing images at a distance close 

to the working distance, which is from the camera to the object of interest during the 

real usage of the setup, it was not possible to add extra calibration images, where the 

checkerboard was positioned close to the top edge of the image while covering at 

least 20% of the camera’s field of view. 

 

Figure 3-7 Undistorted image obtained by using equations (2.28), (2.29) and (2.30) 

including the tangential distortion parameters found by Matlab Camera Calibrator 

App 

In the second proposed method, similar to the first one, the pixel conversion was 

made by using the mathematical expressions given in equations (2.28), (2.29) and 

(2.30). Parameters of these equations were estimated by using PSO with 50 particles 

after running 50 iterations and are given in the conversion equations (3.51), (3.52) 

and (3.53). As it can be seen in Figure 3-8, estimated parameters could only restore 

top right corner of the image locally with a poor performance. As expected, mean 

value for the distance between actual and calculated raw pixel positions was found 

higher than the first method, which was 23.99 pixels for the whole image. 
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uraw = urect 1− 0.3567r
2 + 0.1348r4 −1.0150×10−14r6( )  (3.51) 

vraw = vrect 1− 0.3567r
2 + 0.1348r4 −1.0150×10−14r6( )  (3.52) 

r2 = u2rect + vrect
2

 (3.53) 

 

Figure 3-8 Undistorted image obtained by using equations (2.28), (2.29) and (2.30) 

with the parameters estimated by PSO 

The next method was writing the whole pixel conversion table to a file and reading 

the corresponding lines of it to convert the pixel locations at each LIDAR 

measurements’ registration step. Visual result of this algorithm was same as the 

Figure 3-5. Average Euclidian distance was calculated as 0.19 pixels. Although the 

outputs of the algorithm agree with the actual data both visually and quantitatively,  
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the conversions lasted around 2 seconds per cycle. Since the algorithm needed to 

operate at 10 Hz at least, it could not be utilized in this study. 

The last method was saving the pixel conversion table as a gray scale image, where 

the color value of the pixels were set to the output of pixel conversion, in other words 

to the raw pixel locations. Similar to the previous method, the visual result of this 

algorithm was same as the Figure 3-5. Also, the average Euclidian distance was 

calculated as 0.19 pixels, which is equal to the previous one. The most important 

advantage of this algorithm was decreasing total time of pixel conversion and color 

reading steps to 0.0171 seconds while keeping accuracy of the results constant. 

Moreover, file size for storing the conversion data was reduced from 300 MB to 685 

kB. As a result of these, it was decided to utilize this method for the conversion of 

rectified pixel locations to raw pixel positions. 

3.3. Road Detection 

In this section of the thesis, sample outputs from different steps of the adaptive road 

detection algorithms are presented at first. Secondly, performance of the proposed 

road detection algorithms are evaluated based on ACC and FPR values as discussed 

in Section 2.7. 

3.3.1. Adaptive Road Detection Using 2D LIDAR Sensor 

Point cloud captured by the LIDAR is shown at different stages of the road detection 

algorithm in Figure 3-9. In Figure 3-9-a, raw measured point cloud is attached on the 

ground truth image captured by the dome-camera after manual labeling. The cyan 

points correspond to the road area, whereas the magenta points correspond to the 

non-road area. Figure 3-9-b visualizes the resultant point cloud after the breakpoint 

detection and line segment extraction steps of the road detection algorithm. 

Breakpoints are given as red and the rest of the points forming the line segments are 

colored as cyan. In Figure 3-9-c, only as road labeled points are shown on the ground 

truth image, in which the blue color stands for TP and red color stands for FP results. 
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Figure 3-9 Measured points on SR by LIDAR shown on the ground truth image a) 

raw point cloud, b) point cloud after breakpoint detection and line segment extraction 

by utilizing Fully-adapted PS for SR, c) point cloud forming the line segments 

labeled as road are by utilizing Fully-adapted PS for SR 

For the evaluation of adaptive road detection algorithm using 2D LIDAR sensor 

only, different parameter sets (PS) with changing levels of adaptation were tested for 

the same data sets obtained from SR and UR experiments. For constructed road case, 

three different parameter sets shown in Table 3-1 were used. Predefined PS consisted 

of predetermined parameter values, as the name suggests. Parameter values of 

Predefined PS were taken the same with the values specified in previous studies [38] 

and [25]. It was implemented as a baseline to compare adapted parameter sets. In 

Semi-adapted PS, parameter adaptation was performed for only λ  and dth  during 

the learning period. Nmin  was left out from the adaptation process on purpose for this 

PS to single out the effects of surface based parameters. For Fully-adapted PS, 

adaptation process was extended to cover all three parameters as explained in Section 

2.5.1.4. 
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Table 3-1 Parameter sets used for the experiments conducted in SR environment 

 λ °[ ]  dth mm[ ]  Nmin  

Predefined PS 10.00 60.00 24.00 

Semi-adapted PS for SR 11.77 35.00 24.00 

Fully-adapted PS for SR 11.77 35.00 66.00 

Results of the experiments for SR Sections 1 and 2 are given in Table 3-2. The 

results of Predefined and Semi-adapted parameter sets indicated that using an 

adaptive approach for the estimation of the surface dependent parameters, λ  and dth
, can reduce the FPR up to 6.60%. Moreover, comparing the results for Semi-adapted 

and Fully-adapted parameter sets for SR showed that adaptive estimation of Nmin  

could enhance the decrease in FPR up to 6.16% for one case and 14.91% for the 

other case. Although 1.33% relative drop for SR Section 2 was observed in ACC, 

when Fully-adapted PS was utilized, decrease in the FPR would improve the 

performance of the overall system by decreasing the chance of directing vehicle out 

of the road as explained in Section 2.7. In Figure 3-10-a, the image of the SR Section 

2 is given. As it can be seen in the figure, surface elevations and roughness properties 

of the road and the start of the stairs next to the sidewalk were similar. Considering 

the visual result of the adaptive road detection algorithm shown in Figure 3-10-b, 

change in the surface type for this region cannot be detected by the algorithm using 

LIDAR data only, which caused a higher FPR value for SR Section 2. 
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Table 3-2 ACC and FPR values for three different parameter sets computed on two 

different sections of SR 

  SR Section 1 SR Section 2 

  FPR ACC FPR ACC 

Predefined PS 6.95% 89.65% 26.74% 96.13% 

Semi-adapted PS for SR 6.60% 89.87% 19.11% 94.35% 

Fully-adapted PS for SR 6.16% 95.37% 14.91% 94.80% 

 

Figure 3-10 Image of SR Section 2, a) raw image of the scene, b) LIDAR points 

labeled as road where TP and FP results shown in cyan and red, respectively 

In unstructured road experiment, again three different parameter sets were utilized 

which are given in Table 3-3. The same Predefined PS used in the SR case was also 

used as a baseline for UR experiments. Secondly, Fully-adapted PS for the 

constructed road case was selected to observe the effect of change in the environment  
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to the performance of an estimated parameter set. At last Fully-adapted PS for UR 

was determined based on adaptation process covering all the three parameters and 

tested. 

Table 3-3 Parameter sets used for the experiments conducted in UR environment 

 λ °[ ]  dth mm[ ]  Nmin  

Predefined PS 10.00 60.00 24.00 

Fully-adapted PS for SR 11.77 35.00 66.00 

Fully-adapted PS for UR 2.00 110.00 66.00 

Results of tests made in UR environment Section 1 are shown in Table 3-4. 

According to these results, unlike in the constructed road case, using Fully-adapted 

PS for SR could only decrease the FPR by 0.33%. Moreover, ACC of the output 

decreased by 0.56% and as it can be seen in Figure 3-11, the algorithm could not 

detect left half of the road area in the environment. On the other hand, Fully-adapted 

PS for UR caused an increase in the FPR by 1.72%, while improving ACC from 

66.36% to 86.04%. The reason of this increase in the FPR is due to that the algorithm 

could only detect one half of the road region when Fully-adapted PS for SR was 

utilized whereas it could find the whole road area when Fully-adapted PS for UR was 

used. The improvement in the detection rate is also led to an increase in the FPR by 

adding false positive results on the left hand side of the road. Moreover, the visual 

results pictured in Figure 3-11 support these numerical data. Comparing Figure 3-11-

b and c shows that determining the parameter set specific to road condition improves 

the performance by increasing the number of truly labeled LIDAR points 

corresponding to road area, which agrees with the change in ACC presented in Table 

3-4. 
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Table 3-4 ACC and FPR values for three different parameter sets computed for 

unstructured road 

  UR Section 1 

  FPR ACC 

Predefined PS 17.67% 66.36% 

Fully-adapted PS for SR 17.34% 64.92% 

Fully-adapted PS for UR 19.39% 86.04% 

 

Figure 3-11 Points labeled as line segment shown on the ground truth image of UR 

section, a) Predefined PS, b) Fully-adapted PS for SR, and c) Fully-adapted PS for 

UR 

In Table 3-5, mean process times for one cycle of road detection algorithm with 

indicated parameter sets are shown for both structured and unstructured roads. In 

addition to the improvements made in the algorithm’s outputs in terms of ACC and 

FPR, the result for the SR case presented in Table 3-5 shows that using an adapted 

parameter set can enhance the performance of the overall road detection algorithm by 

decreasing the average process time by 50.93% relatively. This decrease in the 

process time is due to the less number of iterations made in the line segment  
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extraction step, which is because of more accurate extraction of breakpoints at the 

first step of the algorithm. On the other hand, the mean process time for the UR 

increased by 63.29% relatively, when the Fully-adapted PS for UR was utilized. The 

main reason for the increase in the process time is because of the increased number 

of breakpoints and iterations made in line segment extraction step due to higher 

surface roughness. However, the increase in the process time of the algorithm can be 

neglected considering that the successful detection of road regions is more important 

for navigation of the mobile platform in an unknown environment, and Fully-adapted 

PS for UR could detect road area with a 86.04% accuracy, which is 19.68% higher 

than the Predefined PS. 

Table 3-5 Mean process times for one cycle of road detection algorithm (for

N ≈ 7500 LIDAR measurement sets) 

Road Type Parameter Set 
Mean process time 

per scan [sec] 

Decrease in 

process time 

Constructed Road 

Predefined PS 0.0088204  

Fully-adapted PS for 

SR 
0.0043281 50.93% 

Unstructured Road 

Predefined PS 0.0059070  

Fully-adapted PS for 

UR 
0.0096454 -63.29% 

3.3.2. Adaptive Road Detection Using 2D LIDAR Sensor And Visual Data 

In order to evaluate the performance of adaptive road detection algorithm utilizing 

geometrical and visual data, it was tested using the Fully-adapted PS in the structured 

and unstructured environments. Then, its results were compared with the previous 

findings. 
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The first road detection algorithm using LIDAR data only could not detect the 

change in the surfaces with similar geometrical properties, such as in the case of SR 

Section 2, where the algorithm could not separate the road area from the start of the 

stairs next to the sidewalk shown in Figure 3-10-b. Therefore, in order to observe the 

improvements in the algorithm’s performance more clearly, proposed approach 

based on geometrical and visual data was firstly tested in SR Section 2. Result of the 

test together with the previous finding is given in Table 3-6. Considering these 

results, it is shown that using visual data together with geometrical data improved the 

performance of the algorithm by decreasing the FPR from 14.91% to 6.24%. 

Although 7.56% relative drop was observed in ACC, decrease in the FPR would 

improve the performance of the overall system by reducing the chance of directing 

vehicle out of the road as explained in Section 2.7. However, by inspecting the image 

of the road in Figure 3-12-a and the visual result in Figure 3-12-c, it can be seen that 

some of the line segments’ end points correspond to the continuous road boundary 

line on the right hand side. Since this line defines the formal boundary of the road, 

the decrease in ACC can be neglected. 

Table 3-6 ACC and FPR values calculated for the proposed adaptive road detection 

algorithms on SR Section 2 

  SR Section 2 

  FPR ACC 

Based on LIDAR data only with 

Fully-adapted PS for SR 
14.91% 94.80% 

Based on LIDAR and visual data 

with Fully-adapted PS for SR 
6.24% 87.24% 
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Figure 3-12 Measured points on SR Section 2, a) image of the scene, b) raw point 

cloud on image, c) point cloud labeled as road region after running road detection 

algorithm based on LIDAR and visual data, where TP and FP results shown in cyan 

and red, respectively 

The second test for the proposed algorithm was made in unstructured road 

environment. As shown in Figure 3-13, the algorithm could separate the road region 

from the surrounding plants more successfully compared to the first road detection 

algorithm. Considering the numerical results given in Table 3-7, the integration of 

visual data caused a 10.76% drop in the FPR values relative to the first proposed 

approach. Moreover, ACC increased from 86.04% to 89.23%. 

Table 3-7 ACC and FPR values calculated for the proposed adaptive road detection 

algorithms on UR Section 1 

  UR Section 1 

  FPR ACC 

Based on LIDAR data only with 

Fully-adapted PS for UR 
19.39% 86.04% 

Based on LIDAR and visual data 

with Fully-adapted PS for UR 
8.63% 89.23% 
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Figure 3-13 Measured points on UR Section 1, a) raw point cloud on image, b) point 

cloud labeled as road region after running road detection algorithm based on LIDAR 

only, c) point cloud labeled as road region after running road detection algorithm 

based on LIDAR and visual data, where TP and FP results shown in cyan and red, 

respectively 

Lastly, proposed road detection algorithm was tested throughout the entire path both 

in structured and unstructured environments, each of which were around 1 km long. 

Obtained test results with different parameter sets are given in Table 3-8 and Table 

3-9. After comparing these results with the previously presented ones, it can be seen 

that they agree with each other. According to these findings, increase in the TPR 

shows that using adaptive approach for determination of the road detection algorithm 

parameters improves the road detection rate in unstructured environment. Moreover, 

integrating visual data to the geometrical features enhances the performance of the 

road detection algorithm by decreasing the FPR value. 
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Table 3-8 ACC and FPR values calculated for the proposed adaptive road detection 

algorithm throughout the entire structured environment 

  FPR ACC 

Based on LIDAR data only with 

Predefined PS 
47.58% 88.83% 

Based on LIDAR data only with 

Semi-adapted PS for SR 
38.11% 93.05% 

Based on LIDAR data only with 

Fully-adapted PS for SR 
32.95% 91.86% 

Based on LIDAR and visual data 

with Fully-adapted PS for SR 
17.69% 88.23% 

Table 3-9 ACC and FPR values calculated for the proposed adaptive road detection 

algorithm throughout the entire unstructured environment 

  FPR TPR ACC 

Based on LIDAR data only with 

Predefined PS 
29.78% 82.55% 78.29% 

Based on LIDAR data only with 

Fully-adapted PS for SR 
23.22% 82.25% 80.36% 

Based on LIDAR data only with 

Fully-adapted PS for UR 
58.66% 96.67% 77.56% 

Based on LIDAR and visual data 

with Fully-adapted PS for UR 
31.40% 87.15% 80.73% 
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3.3.3. Adaptive Road Detection Using Online Supervised Learning Approach 

Proposed road detection algorithm using online supervised learning approach was 

tested both in structured and unstructured environments, and its performance was 

evaluated based on visual results. In the experiments, algorithm parameters, namely 

number of models learned, nl , and maximum number of learned models, nml , were 

chosen according to the previous studies [18] and [39]. In these studies, parameter 

values presented in Table 3-10 were shown to be effective. 

Table 3-10 Parameter set used for the experiments in SR and UR environments 

Parameter # of Models Learned nl( )  Max. # of Models Learned nml( )  

Value 3 10 

Proposed adaptive road detection algorithm using online supervised learning 

approach was firstly tested in SR environment and visual outputs are given for 

different road conditions in Figure 3-14, Figure 3-15, Figure 3-16 and Figure 3-17. In 

Figure 3-14 and Figure 3-15, visual results obtained by the proposed algorithm for 

winding and straight road sections are shown. According to these results, it can be 

concluded that the proposed road detection algorithm can successfully find road 

regions and general road boundary behavior independent from the road shape. 

However, as it can be seen in Figure 3-14-d, road detection rate decreases under non-

uniform lighting condition. Moreover, due to the similarity between color 

distributions of the road area and the camera-carrying frame, frame-structure was 

also classified as road region in all of the tests. Although the proposed algorithm can 

successfully separate the start of the stairs next to the sidewalk from the road area in 

Figure 3-15-c, the algorithm cannot distinguish road region from sidewalk in Figure 

3-15-d and -f. 
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Figure 3-14 Raw images of the scene on the top row, and detected road regions on 

the bottom row for SR Section 3. Images on the left-most column were taken by the 

front facing camera, whereas other images on the remaining columns were taken by 

rear facing cameras. 

 

Figure 3-15 Raw images of the scene on the top row, and detected road regions on 

the bottom row for SR Section 2. Images on the left-most column were taken by the 

front facing camera, whereas other images on the remaining columns were taken by 

rear facing cameras. 
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In Figure 3-16 and Figure 3-17, two successive visual results obtained by the 

proposed road detection algorithm are presented. As it can be seen in Figure 3-16, 

the algorithm could only detect a small portion of the actual road area, whereas it 

could successfully classify the entire road region in the following time instance, as 

shown in Figure 3-17. The reason for low road detection rate in the first frame was 

due to the quick change in the lighting condition and lack of knowledge about the 

new visual properties of the road area. However, by collecting new training data 

from this area, visual road models were updated in the next frame, and road detection 

performance was improved in all directions, which can be seen in Figure 3-17. 

 

Figure 3-16 Raw images of the scene on the top row, and detected road regions on 

the bottom row for SR Section 4. Images on the left-most column were taken by the 

front facing camera, whereas other images on the remaining columns were taken by 

rear facing cameras. 
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Figure 3-17 Raw images of the scene on the top row, and detected road regions on 

the bottom row for SR Section 5. Images on the left-most column were taken by the 

front facing camera, whereas other images on the remaining columns were taken by 

rear facing cameras. 

After testing the proposed road detection algorithm in structured environment, its 

performance was examined one more time in unstructured environment. A sample 

output of the algorithm is given in Figure 3-18. As it can be seen in the figure, 

proposed algorithm can successfully find road regions and general road boundary 

behavior in unstructured environment. Unlike in the structured road case, algorithm 

can successfully distinguish the camera-carrying frame from the road regions in 

unstructured environment, due to different visual properties. However, the algorithm 

could not detect the road boundaries as accurate as in the structured road tests, 

because of the irregular and porous structure of the plants at the sides of the road. 
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Figure 3-18 Raw images of the scene on the top row, and detected road regions on 

the bottom row for UR Section 2. Images on the left-most column were taken by the 

front facing camera, whereas other images on the remaining columns were taken by 

rear facing cameras. 

Unlike the previous study presented in [18], proposed method in this thesis can 

operate in real-time without down-sampling the captured images, decreasing the 

resolution of color space values or using parallel processing. In the conducted 

experiments, average time required to complete each iteration, which includes 

generating training data, updating visual road models and detecting road regions, was 

found as 0.57 seconds. Although this result satisfies the working requirements, it can 

be further decreased by optimizing the program. 
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CHAPTER 4 

 

 

4. CONCLUSION & FUTURE WORK 

 

 

 

In this study, three different adaptive road detection algorithms were developed for a 

semi-autonomous mobile platform in order to be used in both structured and 

unstructured environments. The first algorithm detected road region by using the 

range measurements, which was collected by the LIDAR sensor mounted to the front 

surface of the vehicle. In this algorithm, discriminative learning approach was 

utilized to estimate the algorithm parameters, unlike the previous studies, which used 

constant parameter sets tuned according to the working environment, specifically. 

The second algorithm was based on LIDAR measurements and the visual data 

acquired from the camera. As a beginning, segmented point cloud was registered to 

the captured and preprocessed image. Then, the point cloud was filtered based on 

discontinuity in the hue color channel values in order to detect road regions. The 

third and last road detection algorithm used online supervised learning approach. In 

this method, firstly road regions were detected by using the secondly proposed road 

detection algorithm. As next, these range measurements were registered to the 

preprocessed image of the scene. Corresponding pixels’ color values were used as 

training data to update visual road models by k-means clustering. Following that, 

road regions were found by using these visual road models based on Mahalanobis 

distance between pixel color values and the mean color values of the learned models. 

In parallel to the implementation of the proposed road detection algorithms, the 

mobile robotic platform was renovated, which was firstly designed and constructed  
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in the scope of 111M580 numbered TÜBİTAK project. During the renovation stage, 

steering and breaking systems were repaired, electrical system was renewed, sensor 

positions were updated according to the need and missing libraries of the utilized 

sensors were written. After that, implemented road detection algorithms’ individual 

performances were quantified according to ACC and FPR values for structured and 

unstructured environments. 

Based on the results of the current study, the following conclusions can be drawn. 

• Estimation of the parameter sets using discriminative learning approach 

simplified the tuning process and improved the performances of the algorithms in 

terms of false positive rate, accuracy and process time. 

• Utilization of an adaptive approach for parameter estimation enabled application 

of the developed road detection algorithms to the changing environments easily. 

• Integration of visual data to the geometrical features improved the performance 

of the road detection algorithm by increasing the detection rate of surface 

changes with similar geometrical properties. 

• Using a dome-camera allowed detection of road regions both in front and back 

directions. 

The present study can be further improved in the following ways: 

• Revision of the erosion and dilation steps applied at the last stage of the thirdly 

proposed road detection algorithm may improve the road boundary detection 

accuracy. 

• Revision of threshold value determination step in binarization stage of the thirdly 

proposed road detection algorithm may improve the road boundary detection 

accuracy. 
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• Integration of remaining LIDAR sensors mounted to the front and rear surfaces 

of the vehicle may decrease response time and improve the performance of 

proposed road detection algorithm using online supervised learning approach by 

increasing the number of training data. 

• Integration of remaining LIDAR sensors mounted to the front and rear surfaces 

of the vehicle into the road detection algorithm for long-range road detection 

purpose may improve the road following and motion control algorithms’ 

performance. 

• Including the lateral and longitudinal slippages into the OBMM may increase the 

accuracy of localization algorithm and minimize the amount of saw-tooth shaped 

path sections. 

• Development of an optic flow based localization technique, which uses images 

captured by the dome-camera, may increase the accuracy of vehicle’s position. 

• Replacement of the LIDAR sensors and integration of laser intensity values to 

the road detection algorithm may improve the road detection performance by 

increasing the surface distinguishing rate. 
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APPENDIX A 

 

 

A. ROS NODE USED FOR THE DEFINITION OF SENSORS’ POSITIONS 

AND ATTACHED COORDINATE FRAMES 

 

 

 

#include	<ros/ros.h>	
#include	<tf/transform_broadcaster.h>	
#include	<math.h>	
	
#define	PI	(3.141592653589793)	
	
int	main(int	argc,	char**	argv){	
		ros::init(argc,	argv,	"robot_tf_publisher");	
		ros::NodeHandle	n;	
	
		ros::Rate	r(100);	
	
		tf::TransformBroadcaster	broadcaster;	
		tf::StampedTransform	tf_base_to_center_;	
		tf::StampedTransform	tf_center_to_enc_;	
		tf::StampedTransform	tf_center_to_gps_;	
		tf::StampedTransform	tf_center_to_imu_;	
		tf::StampedTransform	tf_center_to_front_;	
		tf::StampedTransform	tf_front_to_laserfront_;	
		tf::StampedTransform	tf_front_to_laserurg_;	
		tf::StampedTransform	tf_front_to_laserback_;	
					
		//	lower	center	of	the	vehicle	is	31.5	cm	higher	than	ground	
		//	projection	of	vehicle's	center	on	the	ground	is	defined	as	base_link	
		//	front	lidar	is	50	cm	higher	than	ground	
					
		//	set	up	parent	and	child	frames	
		//	set	up	base_link	center	relation	
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		tf_base_to_center_.frame_id_	=	std::string("base_link");	
		tf_base_to_center_.child_frame_id_	=	std::string("center");	
		tf_base_to_center_.setOrigin(tf::Vector3(0.0,	0.0,	0.315));	
		tf_base_to_center_.setRotation(tf::Quaternion(0.0,	0.0,	0.0));	
	
		//	set	up	center	encoder&compass	relation	
		tf_center_to_enc_.frame_id_	=	std::string("center");	
		tf_center_to_enc_.child_frame_id_	=	std::string("odom_enc");	
		tf_center_to_enc_.setOrigin(tf::Vector3(-0.60800,	0.0,	0.0));	
		tf_center_to_enc_.setRotation(tf::Quaternion(0.0,	0.0,	0.0));	
	
		//	set	up	map	odom	relation	
		tf_center_to_gps_.frame_id_	=	std::string("center");	
		tf_center_to_gps_.child_frame_id_	=	std::string("odom_gps");	
		tf_center_to_gps_.setOrigin(tf::Vector3(0.0,	0.0,	1.0));	
		tf_center_to_gps_.setRotation(tf::Quaternion(0.0,	0.0,	0.0));	
	
		//	set	up	center	imu	relation	
		tf_center_to_imu_.frame_id_	=	std::string("center");	
		tf_center_to_imu_.child_frame_id_	=	std::string("odom_imu");	
		tf_center_to_imu_.setOrigin(tf::Vector3(0.0,	0.0,	0.0));	
		tf_center_to_imu_.setRotation(tf::Quaternion(0.0,	0.0,	0.0));	
	
		//	set	up	center	front_head	relation	
		tf_center_to_front_.frame_id_	=	std::string("center");	
		tf_center_to_front_.child_frame_id_	=	std::string("front_head");	
		tf_center_to_front_.setOrigin(tf::Vector3(0.7851076,	0.0,	0.2907035));	
		tf_center_to_front_.setRotation(tf::Quaternion(0,	0,	0));	
	
		//	set	up	front_head	laser_front	relation	
		tf_front_to_laserfront_.frame_id_	=	std::string("front_head");	
		tf_front_to_laserfront_.child_frame_id_	=	std::string("laser_front");	
		tf_front_to_laserfront_.setOrigin(tf::Vector3(0.1031436,	 0.0,	 -
0.0319805));	
		tf_front_to_laserfront_.setRotation(tf::Quaternion(0.034907,	0,	0));	
	
		//	set	up	front_head	laser_urg	relation	
		tf_front_to_laserurg_.frame_id_	=	std::string("front_head");	
		tf_front_to_laserurg_.child_frame_id_	=	std::string("laser_URG");	
		tf_front_to_laserurg_.setOrigin(tf::Vector3(-0.0024205,	0,	-0.1743725));	
		tf_front_to_laserurg_.setRotation(tf::Quaternion(0.261799,	0,	0));	
	
		//	set	up	front_head	laser_back	relation	
		tf_front_to_laserback_.frame_id_	=	std::string("front_head");	
		tf_front_to_laserback_.child_frame_id_	=	std::string("laser_back");	
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		tf_front_to_laserback_.setOrigin(tf::Vector3(-1.736,	0.0,	0.005));	
		tf_front_to_laserback_.setRotation(tf::Quaternion(0,	0,	PI));	
	
			 while(n.ok()){	
	
				tf_base_to_center_.stamp_	=	ros::Time::now();	
				broadcaster.sendTransform(tf_base_to_center_);	
	
				tf_center_to_enc_.stamp_	=	ros::Time::now();	
				broadcaster.sendTransform(tf_center_to_enc_);	
	
				tf_center_to_gps_.stamp_	=	ros::Time::now();	
				broadcaster.sendTransform(tf_center_to_gps_);	
	
	
				tf_center_to_imu_.stamp_	=	ros::Time::now();	
				broadcaster.sendTransform(tf_center_to_imu_);	
	
				tf_center_to_front_.stamp_	=	ros::Time::now();	
				broadcaster.sendTransform(tf_center_to_front_);	
	
				tf_front_to_laserfront_.stamp_	=	ros::Time::now();	
				broadcaster.sendTransform(tf_front_to_laserfront_);	
	
				tf_front_to_laserurg_.stamp_	=	ros::Time::now();	
				broadcaster.sendTransform(tf_front_to_laserurg_);	
	
				tf_front_to_laserback_.stamp_	=	ros::Time::now();	
				broadcaster.sendTransform(tf_front_to_laserback_);	
	
				r.sleep();	
		}	
}	

 


