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ABSTRACT

CLUSTERING OF MANIFOLD-MODELED DATA BASED ON TANGENT
SPACE VARIATIONS

GÖKDOĞAN, GÖKHAN
M.S., Department of Electrical and Electronics Engineering

Supervisor : Assist. Prof. Dr. Elif Vural

September 2017, 60 pages

An important research topic of the recent years has been to understand and analyze
data collections for clustering and classification applications. In many data analysis
problems, the data sets at hand have an intrinsically low-dimensional structure and
admit a manifold model. Most state-of-the-art clustering methods developed for data
of non-linear and low-dimensional structure are based on local linearity assumptions.
However, clustering algorithms based on locally linear representations can tolerate
difficult sampling conditions only to some extent, and may fail for scarcely sampled
data manifolds or at high-curvature regions. In this thesis, we consider a setting where
each cluster is concentrated around a manifold and propose a manifold clustering al-
gorithm that relies on the observation that the variation of the tangent space must be
consistent along curves over the same data manifold. We argue that the non-linear
geometric structure of manifold-modeled data sets can be better handled by taking
into account the global data geometry via the change in the tangent space over the
whole manifold. We first theoretically characterize some properties of manifolds of
bounded curvature. We then use these observations to develop a geometry-based
clustering approach. Finally, we evaluate the performance of the presented method
with experiments on synthetic and real data sets and the results show that the pro-
posed method outperforms the manifold clustering algorithms in comparison based
on Euclidean distance, geodesic distance and sparse representations in some kind of
data sets. Our study suggests that geometry-based dissimilarity measures can provide
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promising tools for the clustering of intrinsically low-dimensional data sets.

Keywords: Manifold Clustering, Dimensionality Reduction, Tangent Space, Unsu-
pervised Classification
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ÖZ

MANİFOLD MODELLİ DATANIN TANJANT UZAYI DEĞİŞİKLİKLERİNE
DAYALI KÜMELENMESİ

GÖKDOĞAN, GÖKHAN
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Elif Vural

Eylül 2017 , 60 sayfa

Son yılların önemli bir araştırma konusu, kümeleme ve sınıflandırma uygulamaları
için veri kümelerini anlamak ve analiz etmektir. Birçok veri analizi probleminde, el-
deki veri setleri özünde düşük boyutlu bir yapıya sahiptir ve bu yapı manifold modeli
olarak kabul edilir. Doğrusal olmayan düşük boyutlu yapılar için geliştirilen en geliş-
kin kümeleme yöntemlerinden çoğu yerel doğrusallık varsayımlarına dayanır. Ancak,
yerel doğrusal gösterimlere dayalı kümeleme algoritmaları, örnekleme koşullarının
kötü olduğu durumları sadece bir dereceye kadar tolere edebilir ve az örneklenen
manifoldlarda veya yüksek eğimli bölgelerde başarısız olabilir. Bu tezde, her bir kü-
menin bir manifold etrafında yoğunlaştığı ve tanjant uzayı değişiminin aynı manifold-
daki eğriler boyunca tutarlı olması gerektiği gözlemine dayanan bir manifold küme-
leme algoritması öneriyoruz. Manifold modelli veri kümelerinin doğrusal olmayan
geometrik yapısının, bütün manifold üzerindeki tanjant alan değişimini gözleyerek
elde ettiğimiz verinin küresel geometri bilgisini dikkate alarak daha iyi kavranabi-
leceğini savunuyoruz. İlk olarak, sınırlı bir eğime sahip manifoldların bazı özellik-
lerini teorik olarak karakterize ettik. Daha sonra bu gözlemleri, geometri temelli bir
kümeleme yaklaşımı geliştirmek için kullandık. Son olarak, önerdiğimiz yöntemin
performansını, gerçek ve sentetik veri setleri ile yapılan deneyler ile değerlendirdik.
Sonuçlar, bazı tür veri kümelerinde yöntemimizin Öklit uzaklık, jeodezik uzaklık ve
seyrek gösterime dayalı yöntemlerden daha başarılı olduğunu gösterdi. Çalışmamız,
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geometri tabanlı benzerlik ölçütlerinin, temelinde düşük boyutlu bir yapıya sahip olan
veri kümelerinin kümelenmesi için umut verici olduğunu önermektedir.

Anahtar Kelimeler: Manifold Kümeleme, Boyut Düşürme, Tanjant Uzayı, Denetim-
siz Sınıflandırma
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"Mutability is our tragedy, but it is also our hope."
Boethius
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CHAPTER 1

INTRODUCTION

1.1 Motivation

A large amount of visual data is captured every day and the analysis of the content of

these data is an important research area. With the progress of the technology, there

has been a significant increase in the amount of data obtained and the resolution of

these data. High resolution means that the dimension of the data is also high. Besides

the difficulty of analyzing a large number of data, the high computational cost caused

by the high dimension of these data also presents a new problem.

One of the important machine learning approaches is clustering. Classification with-

out the knowledge of priorly assigned class labels is called clustering or unsupervised

learning. All clustering methods need a restriction about data distribution to achieve

reasonable results. An important problem in clustering is the determination of the

similarity between data samples. With this similarity, some intuition about the distri-

bution of the data can be developed and data collections can be separated into groups

by suitably processing the information of similarity.

Figure 1.1: Given face images of multiple people (top), the aim is to find images that
belong to same person (bottom) [17].
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Figure 1.2: Clustering with the k-means algorithm (left), clustering with the spectral
clustering method (right) [18].

One of the first developed methods was the k-means algorithm taking the Euclidean

distance as a dissimilarity measure. However, the human perception and the Eu-

clidean distance does not always match. This situation led to the development of

algorithms such as spectral clustering. In Figure 1.2, the difference between the k-

means algorithm and the spectral clustering algorithm can be observed. The k-means

algorithm clusters data samples based on the Euclidean distance between them, while

the spectral clustering algorithm takes into account the connections between the data

samples over a graph. Then, the low-dimensional structure of the data and the con-

nections between the data samples began to be addressed increasingly in clustering

research.

It has been observed in the recent years that the data we deal with in many real

world problems, such as feature trajectories of a rigidly moving object in a video

[64],[41],[21],[69], face images of a person under varying illumination [[2],[28]],

and multiple instances of a handwritten digit with different rotations, translations,

and thicknesses [26], have a low-dimensional structure although they reside in a high

dimensional ambient space. This discovery opens the way for improvements in the

assessment of similarities between data points, as well as innovations for overcoming

computational cost problems caused by the high-dimensionality of the data which is

referred to as the “curse of dimensionality” [4].

We are particularly interested in low-dimensional data collections that are generated

with respect to a small number of parameters that capture the main variations in data.
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For example in Figure 1.1 , the same face images illuminated by different light inten-

sities from different angles have an intrinsic dimension of 9 [17], which is the number

of angle and brightness parameters required to model the data.

For another example in Figure 1.3, there are the images of an object from the COIL-20

data set obtained from different angles that change with a certain continuity. We select

5 objects from this data set, which is shown in Figure 1.4 and reduce their dimensions

to 3 by the PCA method in order to have a visualization of the data set. The new

coordinates of the data samples after dimensionality reduction are plotted in Figure

1.5, where the images of each object are plotted with a different color. In Figure 1.5,

we observe that these object images actually have a low-dimensional structure.

Figure 1.3: Given the images of an object from the COIL-20 data set obtained from
different angles [47].

Also in video data, we can observe this low dimensional structure [66]. Figure 1.6

shows some points randomly selected in a video sequence. While some of these points

will be on moving objects, others will be in stationary regions. Consider the x and

y coordinates of each point along different frames in the video and suppose we align

them as a vector to get the value of that point in the high dimensional space. Since the

coordinates of the points on the same moving object change in a similar way, these

points lie in the same low-dimensional structure in a high-dimensional space.
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Figure 1.4: Twenty objects from the COIL-20 database [47].
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Figure 1.5: Five objects whose dimension is reduced to 3 by PCA method.

The low dimensional structures we learn from these data are made up of non-linear

surfaces called “manifolds”. Many works have been devoted to the analysis of the

intrinsic structures of data sets, which are called manifold learning methods. The

analysis of the low-dimensional structures in data sets has also led to new approaches

in clustering.

Most of the state-of-the-art clustering methods developed for data of non-linear and

low-dimensional structure are based on local linearity assumptions. However, clus-

tering algorithms based on locally linear representations can tolerate scarce sampling

conditions only to some extent, and may fail for scarcely sampled data manifolds or

at high-curvature regions.
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Figure 1.6: Given feature points on multiple moving objects tracked in consecutive
frames of a video (top), the aim is to separate the feature points according to the
moving objects (bottom) [17].

In this thesis, we consider a setting where each cluster is concentrated around a man-

ifold and propose a manifold clustering algorithm that relies on the observation that

the variation of the tangent space must be consistent along curves over the same data

manifold. In order to achieve robustness against challenges due to noise, manifold

intersections, and high curvature, we propose a progressive clustering approach. Ob-

serving the variation of the tangent space, we first detect the non-problematic man-

ifold regions and form pre-clusters with the data samples belonging to such reliable

regions. Next, these pre-clusters are merged together to form larger clusters with re-

spect to constraints on both the distance and the tangent space variations. Finally,

the samples identified as problematic are also assigned to the computed clusters to

finalize the clustering.

1.2 Thesis Outline

The goal of this study is to develop a progressive manifold clustering approach in

order to achieve robustness to challenging conditions caused by noise, intersecting

manifolds, etc.

For this purpose, we first present a brief overview of the manifold clustering meth-

ods. In Chapter 2, we summarize some dissimilarity measures commonly used in

clustering and the methods based on these dissimilarity measures.

In Chapter 3, we first overview some basic concepts to provide a better insight of our

proposed algorithm. Then we mention some theoretical findings that motivate our

work. Finally we describe our proposed algorithm.

5



Then we present experimental results to evaluate the performance of our method in

Chapter 4. We compare our method to some classical and state-of-the-art methods.

Finally in Chapter 5, the thesis is concluded in the light of the experimental findings

and the issues to be improved further are discussed.
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CHAPTER 2

RELATED WORK

2.1 A Global Overview of Data Clustering Methods

In this chapter, we present a brief overview of the manifold clustering methods. These

clustering methods differ from each other according to the dissimilarity measure they

use.

Traditional clustering methods such as the k-means algorithm uses the Euclidean dis-

tance as a dissimilarity measure [25], [5], [31], so the clusters need to be sufficiently

distant from each other in Euclidean sense in order to perform well. Therefore, this

approach fails in data clouds that contain clusters having a non-linear structure and

high variation.

During the past two decades, spectral clustering methods [48], [44], [52], [59], [75]

have aimed to handle such data sets. They make use of an affinity matrix that con-

tains the similarity between pairs of data samples, so that the similarity is essentially

assessed based on the connections between the data samples over the data graph. In

Figure 1.2, the difference between the k-means algorithm and the spectral clustering

algorithm can be observed. However, the performance of spectral clustering highly

depends on the construction of the data graph, and may suffer from erroneous con-

nections between different clusters due to noise and insufficient sampling.

After discovering the low-dimensional inner structure of the high-dimensional data,

the works in this area tended to analyze the manifold structure of the data. Many

works have been devoted to the analysis of the intrinsic structures of data sets, which

7



are called manifold learning methods [63], [53], [13], [3], [73],[57] ,[58]. Most man-

ifold learning methods find a mapping that projects the data to a low-dimensional

space, which preserves the intrinsic geometric structure of the data. The analysis of

the low-dimensional structures in data sets has also led to new approaches in cluster-

ing [68].

Following the k-means and the spectral clustering algorithms, several multi-manifold

clustering methods are proposed in [24], [1], [45], [22], [36] that handle data sets that

consist of manifolds with different intrinsic dimensions and densities. Some other

similar approaches are [10], [6], [9], which, however, assume that the data has a

linear structure, and may not perform sufficiently well on data sets with a non-linear

structure.

There are also some methods relying on non-linear representations. The k-manifold

[61] method does multi-manifold clustering with an iterative approach similar to k-

means based on the geodesic distance. However, due to erroneous connections, the

geodesic distance as a dissimilarity measure may also fail for intersecting or critically

close manifolds. The method in [72] uses the information of the local tangent space in

addition to the Euclidean distance with the purpose of improving the performance of

spectral clustering at intersecting manifold regions. The algorithm proposed in [29]

is also based on computing the variation of the local tangent spaces. This however

addresses the different problem of approximating a given manifold as a combination

of flat local planes, rather than the manifold clustering problem.

Most of the recent manifold clustering methods attempting to cope with such chal-

lenges tend to exploit the self-expressiveness property of the data. Some of these

methods are based on locally linear or sparse representations [16], [15], [60], [14],

[51],[50], [17], while some others also include low rank assumptions [38], [40], [74],

[39], [19]. Such methods yield quite favorable performance on data sets that admit

nearly linear representations, e.g., when each cluster can be well approximated with

a single subspace. However, the performances of these methods degrade when the

data set at hand has a highly non-linear structure due to the high curvature of the

underlying data manifolds or when the sampling of the manifold is not sufficiently

dense.
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Table 2.1: The types of information employed in basic clustering methods and our
proposed algorithm.

Euclidean dist. Graph Linear rep. Geometric
K-means X X X X

Spectral cl. X X X X
SSC, LLR X X X X
Proposed X X X X

A summary of the types of information employed in basic clustering methods and our

proposed algorithm is given in Table 2.1. Some dissimilarity measures commonly

used in clustering are elaborated below.

2.2 Methods Taking Euclidean Distance As Similarity Measure

We now overview some methods that assess the similarity between data samples

based on the Euclidean distance. They vary according to the way they use the simi-

larity information.

2.2.1 K-Means Algorithm

The k-means algorithm is a simple method. The input to the algorithm consists of

points X = {x1, . . . , xn} and the number of clusters k.

In the first step, the algorithm randomly chooses the cluster centers µj , for j =

1, . . . , k. In the second step, all points in the dataset X = {x1, . . . , xn} are in-

cluded in the clusters S = {x1, . . . , xk} according to the closest cluster center µj ,

for j = 1, . . . , k, relative to the Euclidean distance.

arg min
S

k∑
j=1

∑
x∈Sj

‖x− µj‖2

In the third step, by using this clustering information we have obtained, we update the

vectors µj . We update each cluster center as the mean value of the points that belong

to that cluster.
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µj =
1

nj

∑
x∈Sj

x

where nj is the number of points belonging to the j-th cluster. The second and third

steps are iterated as long as the cluster assignments change for any point. Since the

method is based on the Euclidean distance as the dissimilarity measure, the k-means

algorithm performs well only if the clusters are sufficiently separated from each other.

Therefore, such methods fail in data sets of an intricate geometric structure, with

highly non-linear variations in a cluster. It is also a handicap that the performance of

k-means is quite dependent on the initialization of the cluster centers.

In the following years some methods which are derived from the k-means algorithm

were developed. One of these methods is the geodesic k-medoids algorithm. It ex-

tends the k-means algorithm to use the geodesic distance and finds the geodesic dis-

tances between all sample pairs via the Dijkstra’s algorithm. The geodesic k-medoids

algorithm uses the concept of "medoid" when initializing and updating the cluster

centers. If the cluster center, which is based on the average of the distances to the

cluster members, is selected from the cluster members, this point is called "medoids".

Although using the geodesic distance as a dissimilarity measure provides an advan-

tage, it may also fail in case of intersecting or critically close manifolds because of

erroneous connections between sample pairs belong to different clusters.

2.2.2 Fuzzy C-Means Algorithm

The fuzzy c-means (FCM) algorithm allows points to belong to several clusters. Ac-

cording to the fuzzy logic principle, each point belongs to each one of the clusters

with a membership value varying between 0 and 1. The sum of the all membership

values of a point must be "1". The FCM algorithm aims to minimize the following

objective function,

arg min
C

n∑
i=1

k∑
j=1

wmij ‖xi − cj‖2 .

Given a set of vectors X = {x1, . . . , xn}, wij indicates the membership value of

10



point xi to cluster j. The vector cj , for j = 1, . . . , k, is the center of the cluster

j. The parameter m is any real number greater than or equal to 1 and indicates the

degree of cluster fuzziness. A large m value causes a large fuzziness , therefore the

clusters become blurred. The elements tend to belong to all clusters with the close

memberships. On the contrary, if the parameter m is close to 1, the elements are

assigned to one cluster and the memberships to other clusters are negligible. So the

fuzzy c-means algorithm behaves like the k-means algorithm [65].

With this function, if the point is closer to the any cluster center, then the membership

value of that cluster will be larger than the membership value of the other clusters.

The algorithm is initialized by assigning membership values wij randomly. In the

second step, the center vectors are calculated according to the following equation,

cj =

∑n
i=1w

m
ij xi∑n

i=1 w
m
ij

.

In the third step, according to the calculated cluster centers, the membership values

wij are updated using the following equation,

wij =
1∑k

l=1(
‖xi−cj‖
‖xi−cl‖

)
2

m−1

.

Then it goes back to the second step again and the second and third steps are repeated

iteratively. The iterations are terminated when,

max
ij

(|w(t+1)
ij − w(t)

ij |) < ε

where ε is a termination criterion and t is the iteration number. Like the k-means al-

gorithm, the fuzzy c-means algorithm also fails in data which has complex geometric

structure and the results depend on the choice of the initial membership values.

11



2.3 Graph-Based Methods

In graph-based clustering methods, the similarity between the pairs of data samples

is established via the connections over the data graph. The differences between these

methods are based on the similarity measure that they prefer when constructing the

affinity matrix.

2.3.1 Spectral Clustering

The spectral clustering (SC) method approaches the data clustering as a graph par-

titioning problem. It makes no assumptions about the distribution of data clusters.

There are different ways to construct a graph that indicates the similarities between

data points. If all the pairs of data samples are connected to each other, it is called

a complete graph. In another approach, each point is connected to points falling in-

side the ball of radius r centered at the point, where r is a real value that must be

set to capture the local structure of the data. In the last method, each point is con-

nected to its k-nearest neighbor points. The r-neighborhood graph and the k-nearest

neighbor graph can be used together. Another important parameter in constructing a

graph is the similarity measure to be used. One of the most commonly used similar-

ity measures is the Gaussian type similarity and we used this type of similarity in our

comparative tests. The Gaussian type similarity is defined by

w(xi, xj) = exp

(
−‖xi − xj‖

2

2σ2
)

)
(2.1)

where ‖xi − xj‖ is the Euclidean distance between xi and xj . Distances and affini-

ties have an inverse relationship. If there is a low distance between two points, the

similarity is high. After constructing the graph and the affinity matrix, we need to

form the Laplacian matrix. The unnormalized graph Laplacian matrix , L, is defined

as L = D −W . The entries of the Laplacian matrix are obtained as

12



Figure 2.1: Dataset which exhibits complex cluster shapes (left). In the embedded
space given by two leading eigenvectors (right) [18].

Lij =

Dij if i = j

−Wij if i 6= j

where W is the affinity matrix whose off-diagonal entries are obtained according to

(2.1). The diagonal elements are zero, while the off-diagonal elements represent the

similarities of points with each other. D is the diagonal degree matrix with the di-

agonal elements representing the total affinity value established by the corresponding

data point, i.e., the degree of the node. Considering that n is the number of data

points, the entries of D are given by

Dii =
n∑
j=1

wij .

The unnormalized graph Laplacian matrix L satisfies the following properties [43],

[44];

1−) L is symmetric and positive semi-definite.

2−) The smallest eigenvalue of L is 0, the corresponding eigenvector is a vector

whose elements are all 1.

3−) L has n non-negative, real-valued eigenvalues 0 = λ1 ≤ λ2, . . . ,≤ λn.

The eigenvalues and the eigenvectors of the L matrix are found in order to complete

the clustering. Then, the k eigenvectors (u1, . . . , uk) of L are chosen corresponding to

the k smallest eigenvalues. Let U ∈ Rnxk contain the vectors u1, . . . , uk as columns

13



such that each row corresponds to a data point yi ∈ Rk. Taking each yi as the new

coordinates of the data sample xi, the samples are thus mapped to a new domain via

the eigenvectors of the graph Laplacian. Lastly, the points yi, for i = 1, . . . , n, are

clustered into k clusters with the k-means algorithm. See Algorithm 1 for a summary

of spectral clustering.

Spectral clustering handles non-linear data sets under certain contidions, which can

also be seen in Figure 2.1.

However, for this method to be successful, it is necessary to have sufficiently large

gaps between the clusters. In the case of clusters intersecting or critically approaching

each other, erroneous connections contaminate the graph structure and lead to failure.

Algorithm 1 Spectral Clustering [70]
1: Input: n point dataset X = {x1, . . . , xn} to be segmented into k clusters.

2: Construct weight matrix W ∈ Rnxn

3: Compute the Laplacian matrix L = D −W
4: Compute the first k eigenvectors u1, . . . , uk of L

5: Construct U ∈ Rnxk matrix using u1, . . . , uk as columns

6: Let yi ∈ Rk be the vector corresponding to the i-th row of U

7: Cluster the points (yi)i=1,...,n into clusters C1, . . . , Ck via the k-means algorithm

8: Assign point xi to cluster-j if yi was assigned to Cj

2.3.2 Spectral Clustering on Multiple Manifolds

The spectral multi-manifold clustering (SMMC) method extends the spectral cluster-

ing method to construct a more robust method for intersecting manifolds. The basic

idea is the following: The SC method is successful only when the affinity value be-

tween the points belonging to different clusters is relatively low. The classical SC

method can not be successful at intersection areas or close manifolds as it uses the

Euclidean distances between points as a dissimilarity measure. Because, in these

regions, the points in different clusters have a high affinity value as the distance be-

tween them is small. Since this erroneous information will diffuse across different

14



clusters, SC can not achieve a reasonable result [23]. Therefore, SMMC adapts SC

for regions where points from different clusters are close. Even if the data is globally

lying on or close to multiple non-linear manifolds, if the manifolds are sampled ad-

equately, each data point and its neighbors locally construct an approximately linear

structure [53], [56]. The local tangent space at any point provides the best linear ap-

proximation around this point and this approximation gives us information about the

geometric structure of the manifold locally [76]. According to this information, at the

intersection areas of different manifolds, the points belonging to the same manifold

have similar local tangent spaces, while the points belonging to different manifolds

have dissimilar tangent spaces. In addition to the Euclidean distance information used

by the classical SC, SMMC also uses local geometric information from local tangent

space similarities. Therefore, SMMC uses two functions while obtaining the affinity

value between two points xi and xj . One of these functions (qij) uses the Euclidean

distance between these points, while the other (pij) uses the local tangent space in-

formation of these points. Using the values coming from these two functions, the last

affinity value is obtained as

wij = f(qij, pij) .

The tangent space at (xi)i=1,...,N is Θi. Using the local tangent space information

between xi and xj , the parameter pij is defined as

pij = P (Θi,Θj) =

(
d∏
l=1

cos(θl)

)o

.

Here o ∈ N+ is an adjustable parameter, d is the dimension of the manifolds and P

is a function of the tangent spaces Θi and Θj related to the principal angles as above.

0 = θ1 ≤ θ2, . . . ,≤ θd ≤ π/2 are the principal angles between the two tangent spaces

Θi and Θj , formulated as

cos(θ1) = max
u1∈Θi,ν1∈Θj

(uT1 ν1) subject to ‖u1‖ = ‖ν1‖ = 1

and for l = 2, . . . , d ;
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cos(θl) = max
ul∈Θi,νl∈Θj

(uTl νl) subject to ‖ul‖ = ‖νl‖ = 1

where ul
Tui = 0, νlTνi = 0, i = 1, . . . , l − 1.

Using the Euclidean distance information between xi and xj , qij is defined as

qij =

1 if xi ∈ Knn(xj) or xj ∈ Knn(xi),

0 otherwise.

Here Knn(x) indicates the k-nearest neighbors of x. Finally, these two functions are

multiplied to obtain the following affinity value,

wij = pijqij =


(∏d

i=1 cos(θl)
)o

if xi ∈ Knn(xj) or xj ∈ Knn(xi),

0 otherwise.

Although this method is especially developed for the problem of intersection areas,

the tangent space approximations obtained in those regions are often not sufficient.

Because the faulty neighborhood selection, which has already caused the problem,

also negatively affects the local tangent space approximation. Therefore, even though

this approach is more successful than spectral clustering, a small erroneous similarity

information can lead to big errors on the graph, as the method is based on spectral

clustering.

2.4 Methods Based On Linear Representations

Several clustering methods construct the affinity matrix based on the self-expressiveness

property of the data, which argues that each data point can be effectively represented

as a linear or affine combination of the other points.
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2.4.1 Sparse Subspace Clustering

Sparse subspace clustering (SSC) is a sparsity-based approach that attempts to express

the data as sparse linear combinations of the other points as the data representation

[17]. The basic assumption here is that in a well-sampled data set, the points will

have a locally linear structure.

Consider N data points (yi)i=1,...,N that lie in the union of n subspaces. The matrix

containing all the data points can be shown as follows,

Y = [ y1 . . . yN ] .

The SSC algorithm uses the following objective function ,

min ‖C‖1 subject to Y = Y C, diag(C) = 0 (2.2)

where C = [ c1 . . . cN ] ∈ RNxN is the matrix whose i-th column corresponds to the

sparse representation of yi, ci. The C matrix allows each point in the Y data set to

be written as a linear combination of the other points. The first term of the objective

function, `1-norm of ci ∈ RN , is defined as

‖ci‖1 =
N∑
j=1

|cij| subject to cii = 0 .

Hence, the minimizing this expression allows the C matrix to use a small number of

terms when expressing the data points as linear combinations of the others. There are

some consequences of the forcing the C matrix to be sparse. In order to express a

point as a linear combination of a small number of points, the selected points must be

close to a plane passing through that point. Consequently, the other selected points

are both forced to be close to this point and forced to be in the same subspace with

this point. Because, as mentioned in section 2.3.2 , even if the data is globally lying

on or close to multiple non-linear manifolds, if the manifolds are sampled adequately,

each data point and its neighbors locally construct an approximately linear structure.
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In order to obtain the similarity matrix, firstly the C matrix is normalized, then it is

summed with its transpose and made symmetrical. Algorithm 2 summarizes the SSC

algorithm.

Algorithm 2 Sparse Subspace Clustering [17]
1: Input: A set of points (yi)i=1,...,N lying in a union of n linear subspaces

(Si)i=1,...,n .

2: Solve the sparse optimization program (2.2).

3: Normalize the columns of C as ci← ci
‖ci‖∞

4: Form a similarity graph with N nodes representing the data points. Set the

weights on the edges between the nodes by W = |C|+ |C|T

5: Apply spectral clustering 1 to the similarity graph.

6: Output: Segmentation of the data: Y1, Y2, . . . , Yn.

SSC is a method based on linear representations, which aims to capture the global

non-linear data structure via locally linear representations. Although this may be

possible in favorable sampling conditions, the representations learned by SSC may

fail to capture the global geometry under more challenging sampling conditions.

2.4.2 Low Rank Representations For Subspace Clustering

Another approach for obtaining the affinity matrix using the self-expressiveness prop-

erty of the data is to use low rank representations (LRR). The LRR methods [38],

[40],[74],[39],[19] try to find the lowest rank representation of all data jointly. In

this way, each data point can be represented as a linear combination of certain basis

vectors.

LetX = {x1, . . . , xn} be a set of data points lying in the union of multiple subspaces.

Each of these points can be represented as the linear combination of some vectors in

a “dictionary”. The data X itself is used as the dictionary and thus the following

objective function is obtained as

min
Z
rank(Z) subject to X = XZ .
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This optimization problem is difficult to solve because of the discrete nature of the

rank function and since its solution may not be unique. [8],[32],[7] suggest the follow-

ing optimization problem which provides a good surrogate for the above optimization

problem,

min
Z
‖Z‖∗ subject to X = XZ .

Here ‖Z‖∗ denotes the nuclear norm of Z, defined as the sum of all singular values of

Z [20]. This approach argues that if the lowest rank representation matrix is searched,

the data in the same cluster will be forced to be spanned with the same basis vectors.

However, it is hard for this method to obtain accurate representations when a sufficient

number of data can not be observed and the amount of noise is high. The latent low

rank representation (LatLRR) methods [40],[74] are developed to overcome these

challenges, which try to obtain the low rank matrix not only for the columns but also

for the rows. The LatLRR minimizes the following objective function,

min
Z,L
‖Z‖∗ + ‖L‖∗ subject to X = XZ + LX .

Thus, the loss of information due to noise is solved by approaching the matrix from

the other viewpoint, “the points of row view”. Minimizing the rank of the L matrix

allows the data coordinates to be written using a few selected coordinates. Therefore,

we can think of these selected coordinates as the learned features. In addition, thanks

to this point of view, the data cloud, which was previously examined only as ambient

space (column vectors ), is now considered in a feature space (row vectors), so that

we can learn new information about the geometric structure of data cloud from the

information that the feature space provides. However, in these low-rank approaches,

as in sparsity-based approaches, the ability to grasp the geometric structure of the

manifold globally is not achieved. This is because in all these approaches the global

geometric information of data is tried to be obtained only from the generated graphs.
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CHAPTER 3

PROPOSED MANIFOLD CLUSTERING ALGORITHM

In this chapter, we will first overview some basic concepts in order to provide a better

insight of our proposed algorithm. Then we will mention some theoretical findings

that motivate our work. Finally we will describe our proposed algorithm.

3.1 Basic Concepts

Some basic concepts will be discussed in this section to provide a better insight of

our proposed algorithm, such as, subspaces, non-linear manifolds, the local linearity

on manifolds, tangent spaces and their estimation, the principal component analysis,

the difference between the geodesic and the Euclidean distances and the Dijkstra’s

algorithm.

3.1.1 Subspaces

A subspace is a vector space that is a subset of another higher-dimensional vector

space. Therefore, a subspace W must satisfy the following conditions [33];

1−) W contains the zero vector, 0.

2−) For each u and v which are elements of W , u + v is an element of W . It is said

that W is closed under vector addition.

3−) For each u which is an element of W and each scaler c, cu is an element of W .

It is said that W is closed under scalar multiplication.
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The above conditions tell us that, if the points of a cluster lie on a subspace and are

sampled sufficiently, these points can be expressed in terms of each other, as shown

in Figure 3.1. As mentioned in Section 2.1, there are some earliest multi-manifold

methods [10],[6],[9], which assume that the data has a linear structure like in Figure

3.1. Since these methods are based on linearity, they fail when the clusters have

non-linear manifold distributions. In next section, we will discuss these manifold

structures.

Figure 3.1: There are three 1-dimensional subspaces and they span the 3-dimensional
space (left). There are two 2-dimensional subspaces and they span the 3-dimensional
space (right). Adapted from [17],[61].

3.1.2 Manifolds

A manifold is a topological space M which has the following property [62]: "If x ∈
M , then there is some neighbourhood U of x and some integer n ≥ 0 such that U is

homeomorphic to Rn."

In the simplest terms, a manifold is a topological space that locally looks like some

Euclidean space Rn near each point, and on which one can do calculus [35]. A

topological space is assumed to be a set that has adequate structure to meaningfully

describe continuous functions on it [54].

In order to illustrate this concept, consider the ancient belief that the Earth was flat.

This misbelief results from the fact that the Earth indeed looks flat on the small scales

that we see. In general, any object that is nearly "flat" on small scales is a manifold,

just as in the case of the "Earth".
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We can summarize as follows, if all points in a set can be represented as linear com-

binations of each other, the points in this set are distributed on a subspace. If these

points have linear characteristics only locally, which can also be observed in Figure

3.2, these points lie in a non-linear manifold. The tangent space of a point provides

the best linear approximation of the manifold around that point. In next section, we

will discuss these tangent spaces.

Figure 3.2: Locally linearity of non-linear manifold. Adopted from [46].

3.1.3 Tangent Spaces

In differential geometry, each point x of a differentiable manifold has a tangent space.

This space is a real vector space that contains the possible directions in which one can

tangentially pass through x. So, the tangent vectors, which pass through x, are the

elements of the tangent space at x. The dimension of the tangent space at each point

of this differentiable manifold is the same as the dimension of the manifold.

In Figure 3.3, The tangent space TpM at the point p on the manifold M ∈ RN

is illustrated. Tangent spaces are critical to our proposed algorithm. In manifold

learning, another important issue is the accurate estimation of tangent spaces. In our

proposed method, we estimated the tangent spaces using the principal component

analysis (PCA), as mentioned in [67],[30]. To find the tangent space of a point, firstly

we obtain a set of points which contains the point and its neighbors. Then, this set of

points is analysed via the PCA method. The first critical decision here is how many

neighbors we should choose. Choosing fewer points than necessary prevents us from

having enough knowledge about that region of the manifold. However, choosing more
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Figure 3.3: The tangent space TpM at the point p on the manifoldM∈ RN [49].

points than necessary makes the effects of curvature prominent, and the local linear-

ity fails. Figure 3.4 illustrates the effect of choosing different neighborhood sizes in

order to estimate a tangent space. The effect of noise can be observed in the estima-

tion of tangent spaces using small neighborhood along all surface. If the manifold

curvature is sufficiently small, the tangent spaces are estimated more accurately from

large neighborhood. Another important decision is how many principal components

are chosen for projection. In our work, we aim to choose values close to the intrinsic

dimensions of the manifolds. We obtain the closest values to the intrinsic dimensions

of manifolds by trial and error. There are some significant works [37] on the estima-

tion of the intrinsic dimensions of data sets. In next section, we will discuss the PCA

method, which is critical for our algorithm.

3.1.4 Principal Component Analysis

In the simplest form of expression, the principal component analysis (PCA) is a basis

vectors replacement method. For this purpose, the PCA method takes a set of data as

an input. Then the covariance matrix of these samples is estimated. This covariance

matrix has the correlation information between the coordinates of the data samples.

Finally, the eigenvectors of the covariance matrix and their associated eigenvalues

are analysed. The eigenvectors are sorted according to the magnitude of their corre-
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Figure 3.4: The angles between estimated and actual tangent spaces at each point of
a noisy two-dimensional data set in R3. The tangent spaces are estimated (a) from
small fixed neighborhood; (b) from large fixed neighborhood. Adopted from [30].

sponding eigenvalues. The eigenvectors of the covariance matrix define a new basis

for the data set, which decorrelates the coordinates of data samples. The stages of the

PCA method are summarized in Algorithm 3.

Algorithm 3 Principal Component Analysis
1: Input: m point dataset X = {x1, . . . , xm} ∈ Rn.

2: Find the covariance matrix C ∈ Rnxn of the dataset.

3: Find the eigenvectors and the eigenvalues of C using the eigendecomposition.

4: Output: The eigenvectors V = {v1, . . . , vn} ∈ Rn as the new basis vectors

sorted according to the magnitude of their eigenvalues D = {d1, . . . , dn} ∈ Rn.

What is the point of this basis vectors replacement? For example, we have a data set

which lies in an n-dimensional space and we need to express the points in the data set

with k dimensions, subject to k < n. The question we have to ask is, which directions

should be chosen as the basis vectors to keep the maximum information about the data

set? It is certain that there is a loss of information as long as k < n. However, this

loss can be reduced to a minimum level by choosing the right directions.

During this process, the important point is to identify the directions along which the

dataset is distributed with higher variances. To put it more clearly, the directions along

which the points on the data set differ the most are the directions that capture the most

information. The variances of the data along different directions are illustrated in
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Figure 3.5. For instance, if all data points have the same coordinate in some direction,

the information in that direction has no distinguishing feature and it is pointless to

choose this direction as a basis vector.

Figure 3.5: A random Gaussian distribution (left), the principal components of the
data (right) [71].

Another important point is that the new basis vectors are uncorrelated. We can think

of this as follows; if there is a common information along more than one basis vector,

there is a redundancy of information here. So, as seen in the Figure 3.6, the new basis

vectors do not carry common information.

Figure 3.6: The data which lie in correlated basis vectors (left), the data which lie in
uncorrelated basis vectors (right) [71].

The PCA method orders the basis vectors (eigenvectors) that span the space in which

the data lie, according to the amounts of information which they carry (the magnitudes

of their eigenvalues). When we need the directions with the highest variance for a

specific purpose, we can make a choice among these ordered eigenvectors according
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to the magnitudes of their eigenvalues. Thus we can reduce the dimension of our data

set by projecting it onto the matrix constructed with these selected eigenvectors.

An important parameter is the number we will reduce the dimension to. One of

the preferred methods is to select as many eigenvalues as to retain 95% of the total

amount of the energy which can be defined as the sum of all eigenvalues. Another

method is to determine the point where the eigenvalues suddenly decrease and reduce

the dimension according to this eigenvalue.

In our work, we use the PCA method to estimate the tangent space around a point.

As we mentioned in section 3.1.3, we create a matrix consisting of a point and its

neighbors. By analysing the covariance matrix of this matrix via PCA, we can think

of the space spanned by the most dominant eigenvectors as the tangent space of that

point, provided that the neighborhood is suitably chosen and the manifold curvature

is sufficiently small.

3.1.5 Geodesic Path and Geodesic Distance

The geodesic path is the shortest path between any two points along a curved surface.

The total distance travelled along this path is called the geodesic distance. As men-

tioned in Section 3.1.2, the surface of the Earth is a good example of a manifold. So

the geodesic distance is needed in many real-world problems.

An example of the use of geodesic distance is to determine the shortest distance be-

tween any two cities for the flight path of an airplane. The maps are topologically

fallacious, as the three-dimensional Earth is reduced to the two dimensions. In fact,

they depict a curved surface, which we can define as a manifold, as a flat surface. As

a result of this, when we observe the flight path of an airplane over the map, we see

that the airplane follows a curved path instead of going straight. When we follow the

curved path on the Earth, this line is actually a geodesic path which has the shortest

distance between these two points.

This concept is also very important for our work. As mentioned in 1.1, the data sets

we deal with are distributed over a manifold surface. Thus, while defining the re-
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lationships between the points of the data set, using a non-linearity based geodesic

distance instead of a linearity based Euclidean distance allows us to obtain better re-

sults. The difference between these distance measurements can be observed in the

Figure 3.7. There are a number of methods that can be used to determine these short-

est paths and their distance. One of these methods is the Dijkstra’s algorithm that we

use in our work. We summarize this algorithm in the following section.

Figure 3.7: The blue solid line illustrates the geodesic distance and the red dashed
line illustrates the Euclidean distance [27].

3.1.6 Dijkstra’s Algorithm

The Dijkstra’s algorithm is a method used to find the shortest paths and the distances

over these paths between the nodes in a graph. The algorithm constructs the tree of

shortest paths from the starting point to all other points in the graph. This is applied to

all starting points in order to find the shortest paths and the distances between all pairs

of the data samples. In the ideal case, the Dijkstra’s algorithm connects the sample

pairs in the same manifold by following the surface of this manifold, when applied to

the data sets with a non-linear structure.

The graph G is defined over all data points by connecting the points i and j if they

are closer than ε or if one of them is among the k-nearest neighbor points of the other.

If i and j are connected, an Euclidean distance is defined between them, if they are

not, the distance between them is assigned as infinity. Then, for each pair of the data

samples, it is checked whether there is a shorter connection that can be established

over another point in the data set. See Algorithm 4 for a summary of the Dijkstra’s

28



Algorithm.

Algorithm 4 Dijkstra’s Algorithm
1: Input:

X: The collection of N data points.

d(xi, xj): The Euclidean distance between i and j; for i, j = 1, . . . , N .

2: Initialization: Initialize the distance function F :

3: if xj ∈ N (xi) or d(xi, xj) < ε then

4: F (xi, xj)=d(xi, xj)

5: else

6: F (xi, xj)=∞
7: end if

8: Compute similarities via shortest paths:

9: for k = 1, . . . , N ; i, j = 1, . . . , N do

10: if F (xi, xk) + F (xk, xj)<F (xi, xj) then

11: F (xi, xj)=F (xi, xk) + F (xk, xj)

12: end if

13: end for

14: Output:

F : Distance function

3.2 Theoretical Insights For Our Proposed Algorithm

Before presenting our method, we first give a brief theoretical analysis of the variation

of the tangent space over Riemannian manifolds, which will provide a basis for the

proposed manifold clustering algorithm. In particular, our purpose here is to show

that the change in the tangent space between two nearby points on the same manifold

of bounded curvature is also bounded.

LetM be a Riemannian manifold of dimension d and let TpM and TqM denote the

tangent spaces of the manifold respectively at the points p, q ∈ M. We consider

an immersionM → M ofM into a higher dimensional Riemannian manifoldM
[12]. Let U(t) be the parallel transport [12] of a tangent vector u ∈ TpM along the

arc-length parameterized geodesic curve γ(t) joining p and q, such that γ(0) = p,
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γ(`) = q (` being the geodesic distance), and U(0) = u. Let us denote by u and U(t)

respectively the extensions of u and U(t) onM.

We base our analysis on the following definition of the curvature κ(p) of the manifold

at point p:

κ(p) = sup
q∈M, u∈TpM, t∈[0,`]

∥∥∥∥dU(t)

dt

∥∥∥∥ .
Intuitively, the entity κ(p) represents the maximum possible rate at which the parallel

transport of a tangent vector at p may vary along all possible geodesics starting from

the point p. Hence, κ(p) provides a measure of curvature. If the overall curvature of

the manifoldM is bounded, then we can find a curvature upper bound K such that

K = sup
p∈M

κ(p).

Let {u1, . . . ud} be an orthonormal basis for the tangent space TpM. We first propose

the following lower bound on the inner product between the extension of the tangent

vector ui and its parallel transport U i(`) at q:

Proposition 1. 〈U i(`), ui〉 ≥ 1−K` for all i = 1, . . . , d.

Proof.

〈U i(`), ui〉 = 〈ui +

∫ `

0

dU i(t)

dt
dt, ui〉 = 1 + 〈

∫ `

0

dU i(t)

dt
dt, ui〉

≥ 1−
∫ `

0

|〈dU i(t)

dt
, ui〉| dt ≥ 1−

∫ `

0

∥∥∥∥dU i(t)

dt

∥∥∥∥ dt
≥ 1−K`.

The result in Proposition 1 states that when the curvature of the manifold is bounded,

for two nearby points p, q on the manifold having a small geodesic distance, a tangent

vector at p is close to its parallel transport to q. This could be used to check whether

two nearby points p and q are likely to belong to the same manifold or not. However,

the parallel transport is not easy to estimate numerically when the manifold is not

known and only data points sampled from the manifold are available. For this reason,

in the sequel we extend this result to obtain a bound in terms of the angle between
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the tangent spaces at two manifold points, which is easy to estimate numerically with

classical methods such as PCA.

TpM and TqM are subspaces of Rd, so that the proximity between them can be

characterized via the principal angles between them [42]. In practical data analy-

sis problems, the manifold M resides in an ambient space Rn, hence, we consider

that the immersion of M is into the space M = Rn. Let Vp and Vq be matrices

whose columns are orthonormal bases for TpM and TqM. Then the principal angles

θ1, . . . , θd are such that cos θi = σi, where σ1 ≥ · · · ≥ σd are the singular values of

V T
q Vp [42]. Then a commonly used similarity measure between the subspaces is the

sum of the cosines of the principal angles, which corresponds to tr(V T
p VqV

T
q Vp) [42].

In the following proposition, we present an upper bound on the dissimilarity between

the tangent spaces at two points based on the principal angles.

Proposition 2. Let the geodesic distance between the manifold points p, q ∈ M be

` ≤ 1/K, where the curvature of the manifold is bounded by K. Then we have

1− tr(V T
p VqV

T
q Vp)/d ≤ 2K`.

Proof. Remembering that the principal angles do not depend on the choice of the

orthonormal bases, and that the parallel transport preserves inner products, without

loss of generality, we can pick Vp and Vq such that the i-th column of Vq is the parallel

transport U i(`) of the i-th column ui of Vp. Let PTqM(ui) denote the orthogonal

projection of ui onto the tangent space TqM. Noticing that the i-th column of VqV T
q Vp

gives the projection of the i-th column of Vp onto TqM, we have

tr(V T
p VqV

T
q Vp) =

d∑
i=1

〈ui,PTqM(ui)〉.

Here

〈ui,PTqM(ui)〉 = 〈ui,
d∑
j=1

〈ui, U j(`)〉 U j(`) 〉

=
d∑
j=1

|〈ui, U j(`)〉|2 ≥ |〈ui, U i(`)〉|2 ≥ (1−K`)2

where the last inequality follows from Proposition 1. Using this in the previous equal-

ity, we get

tr(V T
p VqV

T
q Vp) ≥ d(1−K`)2
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which yields

1− tr(V T
p VqV

T
q Vp)/d ≤ 1− (1−K`)2 = 2K`−K2`2 ≤ 2K`.

Proposition 2 can be interpreted as follows: When two nearby points p and q belong

to the same manifold of bounded curvature, if the geodesic distance between them

is sufficiently small, the entity 1 − tr(V T
p VqV

T
q Vp)/d is also expected to be small.

Hence, we can regard

C(p, q) = 1− tr(V T
p VqV

T
q Vp)/d (3.1)

as a geometry-based dissimilarity measure or distance between two neighboring points.

Assuming that the data manifolds to be clustered are of bounded curvature, C(p, q)

needs to be small when the nearby points p and q belong to the same manifold, while

it is likely to be larger if p and q come from different manifolds. Hence, we use

this measure to assess the dissimilarity between pairs of data samples in the manifold

clustering algorithm proposed in the next section.

3.3 Proposed Manifold Clustering Algorithm

In this thesis, we propose a manifold clustering method that aims to estimate a cluster-

ing robust to the sampling conditions and the high-curvature geometry of data mani-

folds. We consider a setting where the samples from each cluster belong to a different

manifold. Unlike the aforementioned clustering methods based on linear representa-

tions, our algorithm is based on tracing the variation of the tangent space over the

data manifolds; hence, takes into account the geometry of the data globally rather

than locally. In order to achieve robustness to difficult conditions caused by noise,

intersecting manifolds, etc., we propose a progressive clustering scheme.

In the first stage of the algorithm, we find the nearest neighbors of each data sample,

estimate the tangent space around each sample and compute shortest paths between

pairs of samples. We define a distance measure based on the variation of the tangent

space between neighboring points and obtain an initial pre-clustering such that each
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pre-cluster consists of samples connected by paths over which the tangent space varies

smoothly.

This initial pre-clustering groups the data set into smooth and connected manifold

regions. However, due to the noisy nature of the data or because of abruptly increasing

manifold curvatures, several of these pre-clusters, which are disconnected from each

other, may in fact belong to the same manifold. Hence, in the second stage of our

method, we merge these pre-clusters by first reducing the dimension of the data by

globally applying PCA to all data in order to reduce the effect of noise and normal

components that are dominant in high curvature manifold regions. The pre-clusters

are then combined with each other with respect to an affinity measure that represents

the agreement of the tangent space between pairs of pre-clusters.

Finally, in the third and last stage of our method, we finalize the clustering by as-

signing the most problematic data samples to the computed clusters, again according

to the agreement of the local tangent space computed at these points to those of the

clusters.

The proposed three-stage clustering scheme that begins with the smoothest manifold

regions and progressively moves on to more problematic regions can successfully

handle difficult data geometries and sampling conditions.

We now present the proposed manifold clustering algorithm, which is motivated by

the analysis in Section 3.2. Let X = {x1, . . . , xN} ⊂ Rn be a set of N data samples

belonging to M clusters, such that the samples from each cluster are drawn from a

distribution concentrated around a manifoldMm ⊂ Rn of intrinsic dimension d, for

m = 1, . . . ,M . We then consider the problem of grouping the samples in X into M

clusters Y1, . . . YM , each of which is concentrated around a different low-dimensional

manifold, such that X = ∪mYm.

LetN (xi) denote the set of theK nearest neighbors of the sample xi inX . Motivated

by the findings of Section 3.2 and the dissimilarity measure in (3.1), ideally we would

like to find M clusters such that the maximum change in the tangent space between
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neighboring manifold samples is minimal:

min
Y1,...,YM

max{C(xi, xj) : xj ∈ N (xi),

xi, xj ∈ Ym for some m = 1, . . . ,M}.
(3.2)

However, there are some complications of the minimization of the above objective:

Due to noise and the possible uneven sampling of the manifolds, the numerical es-

timation of the tangent space will be erroneous at some of the manifold samples in

practice. Hence, the minimization of the objective in (3.2) will often not give a robust

estimate of the clusters.

Due to these reasons, we propose the following constructive clustering solution that

consists of three stages. We explain these stages in the following subsections:

3.3.1 Shortest path algorithm based on the variation of the tangent space

In the first stage of clustering, our purpose is to find a set of pre-clusters, each of

which is constructed such that the tangent space varies smoothly among neighboring

points in the cluster. For this reason we first define a distance F between neighboring

samples such that

F (xi, xj) = C(xi, xj) for xj ∈ N (xi),

where the tangent space at a data sample can be numerically estimated with PCA.

Note that in order to estimate the tangent spaces, the intrinsic dimensions of the man-

ifolds should be known; nevertheless, even if the dimension is not known, it can be

estimated with methods such as [37]. We then would like to extend this distance

function F (xi, xj) to the rest of the data samples, such that for any two samples xi,

xj , the distance F (xi, xj) gives the maximum change in the tangent space between

any two neighboring samples along the best possible path connecting xi and xj . That

is, if P = (xk1 , xk2 , xk3 , . . . , xkL) is a path of length L connecting xi and xj with

xkm ∈ N (xkm−1) and xi = xk1 , xj = xkL , the distance function F (xi, xj) is given by

F (xi, xj) = min
P=(xk1 ,xk2 ,...,xkL )

max{C(xkm−1 , xkm)}.

We obtain this distance function F (xi, xj) by applying a modified version of the Di-

jsktra’s algorithm as described in Algorithm 5. We then continue by inspecting the
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values of the distance function F for all sample pairs and obtain a pre-clustering of

the data samples such that each pre-cluster consists of samples connected by paths

and the distance F does not exceed a certain threshold value τ along these paths.

In the ideal case, F must yield M connected components, where each component

corresponds to one of the desired clusters. However, because of noise and uneven

sampling of data, there may be some discontinuities in the manifolds as illustrated in

Figure 3.8(a), which may lead to the presence of more than one connected compo-

nent associated with the same manifold. Therefore, this procedure typically yields a

pre-clustering with more pre-clusters than the desired number of clusters M . Finally,

in order to prevent the noisy points from affecting the performance of clustering in

the next stages of the algorithm, we check the number of samples in each pre-cluster

and discard the pre-clusters whose cardinalities are smaller than a threshold. The

points in these pre-clusters are identified as problematic “noisy” points, and these

“noisy” pre-clusters are excluded from the merging procedure in the second stage of

our method to achieve robustness. The formation of the pre-clusters in the first stage

of the clustering is illustrated in Figure 3.8(b).

(a) (b) (c)

Figure 3.8: (a) Variation of the tangent space between neighboring points on a sin-
gle noisy manifold (b) First stage of the proposed method. Pre-clusters are formed
according to the connected components based on the distance F (c) Second stage of
the proposed method: Pre-clusters are merged until the desired number of clusters is
obtained

3.3.2 Merging the pre-clusters

In the second stage of our method, we merge the pre-clusters Y1, Y2, . . . , YM+L formed

in the first stage towards obtaining the final clustering. In this step of merging, in order
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Algorithm 5 Shortest path algorithm based on variation of the tangent space
1: Input:

X: Collection of N data points

M : Number of clusters

2: Initialization: Initialize the distance function F at nearest neighbors:

3: if xj ∈ N (xi) then

4: F (xi, xj)=C(xi, xj) according to (3.1)

5: else

6: F (xi, xj)=∞
7: end if

8: Compute similarities via shortest paths:

9: for k = 1, . . . , N ; i, j = 1, . . . , N do

10: if max(F (xi, xk),F (xk, xj))<F (xi, xj) then

11: F (xi, xj)=max(F (xi, xk),F (xk, xj))

12: end if

13: end for

14: Output:

F : Distance function based on the variation of tangent spaces

to reduce the effects of noise and the normal components of the manifolds dominant in

high curvature manifold regions, we first map all samples in the data setX to a lower-

dimensional domain by applying PCA globally to all data. Let X = {x1, . . . , xN}
be the low-dimensional embedding of the data samples obtained via PCA. We merge

the pre-clusters in view of the objective (3.2) based on the following observation: If

two pre-clusters belong to the same manifold, then for a pair of points from these

pre-clusters that are close to each other, the tangent spaces at these points should not

be too dissimilar.

In order to make use of this observation, we first estimate the geodesic distance

DG(xi, xj) in the low-dimensional space between all pairs (xi, xj) of data samples,

which we compute with the classical Dijkstra’s shortest path algorithm [11] based on

the Euclidean distance between nearest neighbors. The geodesic distances are thus

computed such that DG(xi, xj) < ∞ if there is a path connecting the points xi and

xj , and DG(xi, xj) =∞ otherwise.
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We then define an affinity measure A(Yk, Ym) for each pair of pre-clusters Yk, Ym ∈
{Y1, . . . , YM+L} as

A(Yk, Ym) =
1

|Skm|
∑

(xi,xj)∈Skm

exp (−H(xi, xj)) (3.3)

where

Skm = {(xi, xj) : xi ∈ Yk, xj ∈ Ym, DG(xi, xj) <∞}

and H(xi, xj) is the maximum change in the tangent space

H(xi, xj) = max
m=2,...,L

{C(xkm−1 , xkm)}

along the shortest path (xi = xk1 , xk2 , . . . , xkL = xj) between xi and xj .

Thus, the affinity measure A(Yk, Ym) represents the average similarity between the

tangent spaces of all pairs of samples connected via a path between the clusters Yk,

Ym. We merge the pre-clusters iteratively such that in each iteration we identify the

two clusters having the highest affinity A(Yk, Ym) and merge them into a new cluster.

We continue the iterations until the number of clusters is reduced to the desired num-

ber of clusters M . The merging process is described in Algorithm 6 and illustrated in

Figure 3.8(c).

3.3.3 Assignment of noisy points to clusters

In the third and last stage of our method, we finalize the clustering by assigning the

“noisy” data samples discarded in the first stage of clustering, which were identified

as problematic points. Let Xd denote the set of points discarded in the first stage. In

order to assign each point in Xd to one of the clusters Y1, . . . , YM , we first extend the

affinity measure defined in Section 3.3.2 to define the affinity a(xi, Ym) between each

point xi ∈ Xd and each cluster Ym as

a(xi, Ym) =
1

|Ym|
∑
xj∈Ym

exp (−H(xi, xj)) . (3.4)

The affinity measure a(xi, Ym) thus represents the average similarity between the

tangent spaces at the sample xi and at each one of the samples in the cluster Ym.
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Algorithm 6 Merging the pre-clusters
1: Input:

X: Collection of N data points

Y = { Y1, . . . , YM+L }: Pre-clusters

M : Number of clusters

2: Initialization: Reduce the dimension of data via PCA

3: Find geodesic distances DG(xi, xj) with Dijkstra’s algorithm

4: Merge pre-clusters:

5: while Number of clusters is greater than M do

6: for k,m do

7: Find A(Yk, Ym) as defined in (3.3)

8: end for

9: Merge: Yk′ = Yk′ ∪ Ym′ for k′,m′ maximizing A(Yk, Ym)

10: end while

11: Output:

Y = {Y1, . . . , YM}: Merged clusters

Algorithm 7 Assignment of noisy points to clusters
1: Input:

Xd: Excluded data points in the first stage

Y = {Y1, . . . , YM}: Clusters

2: for xi ∈ Xd do

3: for m = 1, . . . ,M do

4: Find a(xi, Ym) as defined in (3.4)

5: end for

6: end for

7: Clustering: Add xi to cluster Ym′ maximizing a(xi, Ym).
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We then finalize the clustering by identifying the cluster that has the highest affinity

to xi and assigning xi to that cluster, for each sample xi ∈ Xd. This procedure is de-

scribed in Algorithm 7. We call the proposed manifold clustering method consisting

of these three stages as Progressive Geometric Manifold Clustering (PGMC).
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CHAPTER 4

EXPERIMENTAL RESULTS

We now present experimental results to evaluate the performance of the proposed

clustering method. We compare the proposed progressive geometric manifold cluster-

ing (PGMC) method to the k-means algorithm, the spectral clustering (SC) algorithm

[48], the geodesic k-medoids algorithm, the sparse manifold clustering and embed-

ding (SMCE) method [16] and the sparse subspace clustering (SSC) method [17].

We evaluate the performances of the clustering algorithms with respect to the two

following common measures:

1. Clustering error in percentage: The one-to-one mapping giving the best match

between the computed clusters and the true clusters is found. Then the clustering

error is taken as the percentage of data points that are assigned to a wrong cluster.

2. Normalized Mutual Information (NMI): The NMI between the true clustering and

the computed clustering is found, which is a widely used evaluation metric. The NMI

between a clustering Y = {Y1, . . . , YM} and the true clustering Z = {Z1, . . . , ZM}
is given by

1

max(H(Y ), H(Z))

∑
k,m

p(Yk, Zm) log2

p(Yk, Zm)

p(Yk)p(Zm)

where p denotes the probability that a randomly selected point would lie in a cluster

or a pair of clusters and H is the entropy of the clustering defined as [34]

H(X) = −
∑
m

p(Xm) log2 p(Xm) according to Xm ∈ X.

The NMI varies between 0 and 1, where higher values of the NMI closer to 1 indicate
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that the estimated clustering is closer to the true clustering.

Some experiments with synthetic and real datasets are presented below.

4.1 Synthetic Data Set
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Figure 4.1: 4 concentric ellipsoids of dimension d = 2.

We first test the clustering methods on a synthetic data set, that consists of M con-

centric ellipsoids of dimension d = 2 residing in the ambient space R10, as shown in

Figure 4.1. 200 samples are drawn from each ellipsoid so that the data set contains

a total of N = 200M samples. The samples from each ellipsoid are regarded as a

different cluster. The data set is grouped into M clusters with the compared cluster-

ing methods. In Figures 4.2(a) and 4.2(b), the clustering error and the NMI obtained

with the compared algorithms are plotted with respect to the number of clusters M .

The proposed PGMC method outperforms the other clustering algorithms in compar-

ison, as it yields a perfect clustering with 0% of clustering error and an NMI value

of 1 on this synthetic data set. It can also be observed that the geodesic k-medoids

algorithm and the spectral clustering algorithm yield a better performance than the

other algorithms. Because there are enough space between different clusters in this

data set, these graph-based clustering methods can make well connections between
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sample pairs belonging to same clusters.
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Figure 4.2: Clustering error and the NMI obtained on the synthetic data set

4.2 The COIL-20 Data Set

Next, we test the algorithms on the COIL-20 image data set [47]. The data set consists

of the images of 20 different objects captured under varying viewpoints (Figure 1.4 ),

with 72 images for each object (Figure 1.3 ). The images of each object are considered

as a different cluster. We convert the images to greyscale and downsample each image

to a resolution of 32× 32 pixels.

As seen in Figure 1.5, it is observed that these object images actually have a low-

dimensional structure. However, there are some challenges due to discontinuities

along the points of some objects. Along these points, not only the angle of view,

but also the scale of the object image may vary (Figure 4.3 ). This leads to the

presence of several unconnected surfaces within the same cluster. One of the most

significant challenges about the COIL-20 data set is that some of these problem-

atic regions, which belong to different objects, are very close to each other with re-

spect to the Euclidean distance in ambient space as shown in Figure 4.3 . Therefore,

neither the methods using only the information coming from the Euclidean metric

[25][48], nor the methods using the information coming from the tangent spaces

in addition to Euclidean metric [72], nor methods based on linear representations

[17],[16],[38],[40],[74],[39],[19] can give reasonable performance on such data sets

of an intricate geometric structure, as reported in [72],[74] and our experimental re-
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sults below. The proposed method we have elaborated above can successfully handle

these problematic regions progressively.

Figure 4.3: Images of three similar objects that are very close to each other according
to Euclidean metric in ambient space.

Figures 4.4(a) and 4.4(b) show the clustering errors and the NMI values of the al-

gorithms with respect to the number of clusters M . The results are obtained as the

average of 6 trials where the M clusters are chosen randomly among the 20 object

classes in each trial. The results show that the proposed PGMC method outperforms

the other clustering algorithms in comparison, with respect to both the clustering er-

ror and the NMI measures. It can also be observed that the SSC method [17] and the

SMCE method [16], which are based on sparse representations of data, yield a better

performance than the traditional clustering algorithms. As the number of clusters in-

creases, the clustering errors of all algorithms tend to increase, and their NMI values

tend to decrease. The occasional drops in the clustering errors despite the increase in

the number of clusters is due to the random choice of the objects in each repetition of

the experiment and the presence of some particularly challenging objects in the data

set, which may affect the clustering performance. Compared to the other algorithms,

the proposed PGMC method seems to be less affected by the change in the number of

clusters, as it can successfully make use of geometric priors related to the manifold

model of data.

4.3 The VidTIMIT Data Set

Finally, we test the algorithms on the VidTIMIT image data set [55]. The data set

consists of the images of 43 different people captured under varying viewpoints. The
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Figure 4.4: Clustering error and the NMI obtained on the COIL-20 data set

images of a subject from the VidTIMIT data set are given in Figure 4.5 . The im-

ages of each person are considered as a different cluster. We convert the images to

greyscale and downsample each image to a resolution of 24×32 pixels from 384×512.

Table 4.1 show the clustering errors and the NMI values of the algorithms with respect

to the number of clusters M . The results are obtained as the average of 5 trials where

the M clusters are chosen randomly among the 43 object classes in each trial. The

results show that the proposed PGMC method and the SSC method [17] outperforms

the other clustering algorithms in comparison, with respect to both the clustering error

and the NMI measures. It can also be observed that the recent SMCE method [16]

yields a better performance than the traditional clustering algorithms.

Figure 4.5: Given the images of a person obtained from different angles.
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Table 4.1: Clustering error and the NMI obtained on the VidTIMIT data set

Measurement Methods Clustering Error (%) NMI
Number of Clusters (M) 3 5 7 10 3 5 7 10

PGMC 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000
SSC 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000

SMCE 0.000 0.000 0.500 2.200 1.000 1.000 0.997 0.962
Geodesic K-Medoids 0.000 7.200 18.21 37.75 1.000 0.930 0.900 0.760

SC 8.930 22.50 33.00 46.50 0.910 0.840 0.760 0.670
K-Means 17.81 34.00 40.00 47.00 0.760 0.680 0.640 0.630

4.4 Analysis of Algorithm Parameters

Our proposed algorithm has some parameters that need to be set in order to work

well. One of these is the number of neighbors K used in constructing the data graph

and the estimation of the local tangent spaces. The other one is the estimated value d

of the intrinsic dimension of the manifolds and the last parameter of our method is the

threshold value τ that separates the sub-manifolds in the first stage of the algorithm.

In this section, we study the effects of these parameters on the clustering performance.

4.4.1 Sensitivity to the Choice of "K"

We study the effect of the neighborhood size parameter on the clustering performance.

We experiment on the COIL-20 data set and study the variation of the clustering

accuracy with the number of neighbors K used in constructing the data graph and

the estimation of the local tangent spaces. The results given in Table 4.2 show the

clustering error in percentage and the NMI obtained at differentK values for different

numbers of clusters. The results show that the best performance is obtained at the

rather small number of neighbors K = 2. This can be explained with the fact that,

due to the one-dimensional rotational motion of the camera and the scale of the object

image which sometimes varies, the intrinsic dimension of this data set is about two,

hence, increasing of the number of neighbors introduces some error in the tangent

space estimation. Nevertheless, the increase in the clustering error is not dramatic

and the proposed method seems to tolerate non-optimal choices of the number of
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neighbors reasonably well. We refer the reader to [67] for further results on how the

estimation of the tangent space is affected by parameters such as the intrinsic and

ambient space dimensions, the neighborhood size, and the sampling density of data.

Table 4.2: The variation of the clustering performance with the number of neighbors

Cluster
Number

Clustering error (%) NMI
K=2 K=3 K=4 K=2 K=3 K=4

4 0,3 4,9 4,5 0,994 0,956 0,960
6 3,5 10,1 15,2 0,956 0,906 0,908
8 6,3 16,0 20,0 0,951 0,910 0,888

10 3,0 12,4 18,1 0,977 0,932 0,908

4.4.2 Sensitivity to the Choice of "d"

Secondly, we study the effect of the estimated intrinsic dimension value d of the

manifold on the clustering performance. We experiment on the COIL-20 data set

again and study the variation of the clustering accuracy with the estimated value d

used in the estimation of the local tangent spaces. The results given in Table 4.3

show the clustering error in percentage and the NMI obtained at different d values for

different numbers of clusters. The results show that the best performance is obtained

at d = 2. As in the preceding experiment, this can be explained with the fact that

the intrinsic dimension of the data set is 2; hence, the best estimates of the tangent

space are given by the first two most significant principal components. It is observed

that the clustering error increases as the choice of d diverges from its optimal value

especially when the number of clusters gets larger. Nevertheless, the increase in the

clustering error does not seem to be dramatic.

4.4.3 Sensitivity to the Choice of "τ"

Lastly, we study the effect of the threshold value τ on the clustering performance.

We experiment on the COIL-20 data set and the VidTIMIT data set. We study the

variation of the clustering accuracy with the threshold value τ applied to the dis-

tance function F that separates the sub-manifolds in the first stage of the algorithm
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Table 4.3: The variation of the clustering performance with the intrinsic dimension d

Cluster
Number

Clustering error (%) NMI
d=1 d=2 d=3 d=4 d=1 d=2 d=3 d=4

4 0,3 0,3 3,8 9,6 0,973 0,994 0,948 0,927
6 10,0 3,5 14,7 20,0 0,907 0,956 0,842 0,768
8 11.2 6,3 18,4 22,8 0,893 0,951 0,791 0,746

10 9,6 3,0 15,2 18,3 0,948 0,977 0,850 0,793

Table 4.4: The variation of the clustering performance with the threshold τ on the
COIL-20 data set

Cluster
Number

Clustering error (%) NMI
τ=0,5 τ=0,6 τ=0,7 τ=0,8 τ=0,9 τ=0,5 τ=0,6 τ=0,7 τ=0,8 τ=0,9

4 0,3 0,3 0,3 10,6 13,5 0,994 0,994 0,994 0,885 0,873
6 3,5 3,5 3,5 15,0 17,7 0,956 0,956 0,956 0,862 0,858

as discussed in Section 3.3.1 . The results given in Table 4.4 and Table 4.5 show the

clustering error in percentage and the NMI obtained at different τ values for different

numbers of clusters.

The threshold value τ can vary between 0 and 1, because the distance F varies be-

tween 0 and 1. It has not been possible to obtain a pre-clustering at very low threshold

values as the choice of very low threshold values causes even good connections be-

tween points to be ignored. Therefore, we have not been able to test the threshold

values below τ = 0.5. The results given in Table 4.4 and Table 4.5 show that the val-

ues in which the best performance is obtained are spread over a wide range. The best

choice of τ is seen to lie within the rather intermediate range of values [0.5, 0.7]. Even

at very high threshold values, the increase in the clustering error is rather limited. The

exclusion of the pre-clusters obtained in the first step, if their cardinalities are smaller

than a certain value, contributes to this result. This is because the pre-clusters that are

connected erroneously due to the high threshold values usually consist of the points

identified as problematic.
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Table 4.5: The variation of the clustering performance with the threshold t on the
VidTIMIT data set

Cluster
Number

Clustering error (%) NMI
τ=0,5 τ=0,6 τ=0,7 τ=0,8 τ=0,9 τ=0,5 τ=0,6 τ=0,7 τ=0,8 τ=0,9

3 0 0 0 0 1,2 1 1 1 1 0,986
5 0 0 0 5,8 7,3 1 1 1 0,966 0,957

4.5 Conclusions Based on Experiments

The results of the first two experiments (synthetic data set and the COIL-20 data

set) show that the proposed geometry-based manifold clustering algorithm outper-

forms reference clustering solutions relying on the assessment of dissimilarity via the

Euclidean distance, the geodesic distance or sparse linear representations. In the Vid-

TIMIT data set, the methods based on linear representations such as SSC and SMCE

also get successful results. Because, unlike the COIL-20 data set, the rotation of ob-

jects is restricted in the VidTIMIT data set. This causes the data set to have a more

linear structure. So SSC and SMCE give reasonable performance in the VidTIMIT

data set.

In the synthetic data set, when the radial magnitudes of the concentric ellipsoids are

chosen so as to prevent the ellipsoids from being too far apart relative to one another,

the geodesic k-medoids algorithm and the spectral clustering algorithm establish con-

nections between data pairs belonging to different clusters. These connections cause

some members belonging to different clusters to have a relatively high affinity value.

In addition, SSC and SMCE yield unsatisfactory results due to the fact that points

from different clusters can be located in the same subspace. Because of the fact that

the data set is non-convex, the k-means algorithm does not perform well as expected.

Next, in the COIL-20 data set, in the regions where some manifolds are close (for ex-

ample the three very similar objects 3, 6 and 19 in Figure 4.3 ), the spectral clustering

method determines high similarity values between the points belonging to different

clusters as distances between them are small. Since this erroneous information is dif-

fused across different clusters, SC can not achieve a reasonable result for the COIL-

20 data set. Inasmuch as the k-means algorithm also uses the Euclidean distance as
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a dissimilarity measure, this approach fails in the COIL-20 data set, which contains

clusters having a non-linear structure and high variation. Because of this highly non-

linear structure due to the high curvature of the underlying data manifolds, it does not

admit well linear representations, e.g., in contrast to data sets where each cluster can

be well approximated with a single subspace. For this reason, SSC and SMCE do

not give a reasonable performance. The geodesic k-medoids algorithm also can not

achieve a reasonable result for the COIL-20 data set because of erroneous geodesic

connections between sample pairs belonging to different clusters. These connections

cause some members belonging to different clusters to have a relatively high affinity

value.

Finally, the analysis of algorithm parameters shows that the correct choice of these

parameters is important for our proposed algorithm. All of them have an optimal

value in order to perform well and these optimal values are consistent with the intrin-

sic dimension of the manifold and the geometric structure of the data set. Therefore,

the performance degradation due to the deviation from these values is a result of the

geometric structure of the data.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Summary and Conclusions

We have presented a clustering method developed for data sets of intrinsic low dimen-

sion. We have considered a setting where the samples of each cluster are distributed

around a low-dimensional manifold, and proposed to cluster the data by making use

of some geometric priors respected by manifolds of bounded curvature. We have first

proposed a theoretical analysis of the variation of the tangent space on Riemannian

manifolds of bounded curvature. Then, motivated by these theoretical findings, we

have presented a manifold clustering algorithm that is based on the observation that

the change in the tangent space must be limited between two nearby data points sam-

pled from the same manifold. We have proposed a three-stage progressive clustering

solution that intends to identify problematic data samples and exclude them from the

initial stages of the clustering to in order to achieve better robustness against noise

and inconvenient sampling conditions.

What led us to this progressive clustering solution is the observation that the change

in the tangent space over the same manifold can be inconsistent in some cases such

as noise, uneven sampling of data, intersecting manifolds. This caused us to develop

a greedy algorithm. Thus, we achieve robustness against challenges due to disconti-

nuities in the manifolds, noise, manifold intersections, and high curvature.

An important observation in this thesis is that different approaches may be favor-

able for the clustering of different data sets. As can be seen in our synthetic data

set experiment, graph-based methods such as the geodesic k-medoids algorithm and

51



the spectral clustering method achieve reasonable results in data clouds that contain

clusters having a non-linear structure. However, these clusters need to be sufficiently

distant from each other. In linear structured data sets such as the VidTIMIT data set,

the methods based on linear representations such as SSC and SMCE get successful

results. Our proposed algorithm also gets successful results in these two kinds of data

sets. In addition, our method is more favorable in the data sets which have a highly

non-linear structure due to the high curvature of the underlying data manifolds such

as the COIL-20 data set.

5.2 Future Directions

The data sets used in this thesis have a well-defined low-dimensional structure such

that each cluster is highly concentrated around a manifold. The aim of this thesis has

been to show that one may efficiently employ the information of the geometric struc-

ture of data in order to improve the clustering performance for such low-dimensional

data collections. However, in several real problems, the data at hand might not be

so well-structured. One important question is then how the ideas proposed in this

thesis can be extended to data collections captured under rather uncontrolled environ-

ments, with irregular background, large within-class variability, etc. The extraction

of the relevant features from such data sets of large variability to permit the analysis

of its essential characteristics is an active research problem. In the future, new feature

extraction methods may be developed for better and more efficient extraction of the

meaningful low-dimensional structures constituting the essence of data. The fusion

of such learning algorithms with some of the ideas proposed in this thesis may lead

to exciting new directions.

We have worked on a greedy algorithm in this thesis. A possible handicap of the

proposed method is that the erroneous estimates made in one of the stages may be

propagated to other stages and may affect negatively the overall result. As future

work, again based on geometric insights (such as tangent space), it may be possible

to achieve better results by expressing the clustering problem with a more global

optimization problem.
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Another possible work is to develop a method based on both tracing the variation of

the tangent space and making use of linear representations. Thus, erroneous affinities

due to incorrect tangent space estimations can be improved using linear approaches

and reasonable results can be obtained by observing the variation of the tangent space

in the data sets with a non-linear structure, where linearity-based approaches fail.

In addition, this combination may also allow clustering by solving an optimization

problem over a single objective function.
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