
ISSUES IN SELECTING A REPRESENTATIVE SET FOR MULTI-OBJECTIVE
INTEGER PROGRAMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY
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ABSTRACT

ISSUES IN SELECTING A REPRESENTATIVE SET FOR
MULTI-OBJECTIVE INTEGER PROGRAMS

ÖZARIK, Sami Serkan

M.S., Department of Industrial Engineering

Supervisor : Assist. Prof. Dr. Banu Lokman

Co-Supervisor : Prof. Dr. Murat Köksalan

September 2017, 67 pages

Multi-objective Integer Programs (MOIPs) have many areas of application in real
life since it allows the decision makers to consider conflicting objectives simulta-
neously. However, the optimal solution is not unique for MOIPs and the number
of nondominated points of multi-objective integer programs increases exponentially
with the problem size. Therefore, finding all nondominated points is computationally
hard and not practical for the decision maker. Instead of generating all nondominated
points, it is reasonable to generate a set of points that represents the nondominated
set with a desired quality level. In this thesis, we develop algorithms to generate rep-
resentative sets for different MOIPs using a new quality measure that considers the
distribution of points over the nondominated set. We first introduce a density mea-
sure and analyze typical distributions of nondominated points for different MOIPs.
We then develop an approach that approximates the nondominated set, categorizes
the approximate nondominated set into regions based on their estimated densities and
generate distribution-based representative sets.

Keywords: Nondominated point, representative point, quality measures, multi-objective
integer programs, distribution-based representative set, density-based quality measure
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ÖZ

ÇOK AMAÇLI TAM SAYI PROBLEMLERİNDE TEMSİLCİ KÜMESİ
SEÇİMİ

ÖZARIK, Sami Serkan

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Banu Lokman

Ortak Tez Yöneticisi : Prof. Dr. Murat Köksalan

Eylül 2017 , 67 sayfa

Karar vericilere birbiri ile çelişen farklı amaçların birlikte değerlendirebilinmesini
sağlayan Çok Amaçlı Tamsayı Programları (ÇATP), gerçek yaşamda birçok uygu-
lama alanına sahiptir. Bununla birlikte, ÇATP’ler için optimal çözüm tek değildir ve
çok amaçlı tamsayı programlarındaki baskın noktalarının sayısı, problem büyüklüğü
ile birlikte üssel olarak artmaktadır. Bu nedenle tüm baskın noktaların bulunması, ka-
rar verici için hesaplanması zor ve pratik olmayan bir yöntemdir. Tüm baskın nokta-
ları üretmek yerine, belirli kalite ölçütlerini sağlayan baskın noktalar kümesi üretmek
uygulanabilir bir yöntemdir. Bu tezde, baskın noktaların uzaydaki dağılımını da dik-
kate alan yeni bir kalite ölçüsüne göre, baskın nokta kümesini iyi temsil edecek baskın
noktalar üreten algoritmalar geliştirilmektedir. Bu kapsamda, öncelikle yoğunluk öl-
çüsü tanımlanmakta ve farklı ÇATP’ler için baskın noktaların tipik dağılımları analiz
edilmektedir. Ardından, baskın noktaların bulundukları bölgeleri yaklaşık olarak ta-
nımlayan, yoğunluk ölçüsüne göre kategorilere ayıran ve buna göre temsilci baskın
noktalar üreten bir yaklaşım geliştirilmektedir.

Anahtar Kelimeler: Baskın nokta, temsili baskın nokta, kalite ölçüleri, çok amaçlı
tamsayı programları, dağılım temelli temsilci kümesi yoğunluk temelli kalite ölçütü
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CHAPTER 1

INTRODUCTION

In real life problems, Decision Makers (DMs) are usually faced with multiple objec-

tives while solving problems. Most of the time, there is a trade-off between these

objective that is to say, in order to gain more from one of the objectives, the DM

should sacrifice from another. This situation in multi objective decision making prob-

lems, leads to a set of solutions which provide almost equal benefits without being

able to definitely dominate any other solution in the set. These points in the solution

space are called as "nondominated points" and the set generated by them is called

"efficient frontier".

In general a MOIP problem can be defined as follows:

"Max"z = f(x), subject to x ∈ X (1.1)

where f(x) = (z1(x), z2(x), ..., zm(x)) is in m dimensions, x is a decision variable

vector and X is the feasible decision space, X ⊆ Zp.

A feasible decision point xi is said to be an “efficient solution” if there is not any xj

which satisfies;

• zk(xj) ≥ zk(xi) ∀k and zk(xj) > zk(xi) for at least one k.

The image of xi in the objective space, f(xi), is said to be “nondominated point”. If

there exists any , xj which satisfies the above condition, the point xi is said to be an

“inefficient solution” and f(xi) is said to be “dominated point”.

An "ideal point", zIP = (zIP1 , zIP2 , ..., zIPm ) , consists of the best values which a point

can take at each objective separately. Here the term "best" is variant according to the

nature of the problem. Minimum or maximum values at each objective in the efficient

set may be preferred for different problems. With other words, the ideal point can be

found by;
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• either maximizing

e.g., zIPi = max
x∈X

(zi(x)), i = 1, 2...,m for a maximization type problem,

• or minimizing

e.g., zIPi = min
x∈X

(zi(x)), i = 1, 2...,m for a minimization type problem each

objective individually with respect to the problem type.

Unlike the ideal point, "nadir point" zNP = (zNP1 , zNP2 , ..., zNPm ), comprises the worst

objective values in the efficient set, XE . That is;

• for a maximization type problem, zNPi = min
x∈XE

(zi(x)), i = 1, 2...,m

• for a minimization type problem, zNPi = max
x∈XE

(zi(x)), i = 1, 2...,m.

As the size of the problem increases in the MOIPs, it is difficult to find any non-

dominated solution. For this reason, many intuitive, metaheuristic and heuristic ap-

proaches have been developed for MOIPs. Ehrgott and Gandibleux (2004) [8] ex-

amine these algorithms developed specifically for Multi-Object Combinatorial Opti-

mization (MOCO) problems, which are special types of MOIPs, while Ruzika and

Wiecek (2005) [24] provide an overview of multi-objective optimization problems.

Recently, effective algorithms have been developed to find all nondominated points;

but it is both difficult and impractical to find all the nondominated points and present

them to the DM. In all of the studies done by Lokman and Köksalan (2013) [15],

Mavrotas and Florios (2013) [18], Kırlık and Sayın (2014) [11], Özlen et al. (2014)

[20] and Dächert and Klamroth (2015) [4] it is stated that as the number of objectives

increase, computational complexity when identifying the nondominated set increases

substantially too. The number of nondominated points may be exponential in the

problem size and in this case, finding all nondominated points may become highly

difficult. Therefore, instead of finding all the nondominated points, finding a subset

that best represents the entire nondominated set of points based on certain quality

measures is important for MOIPs.

In this thesis, we develop algorithms to generate representative sets for different

MOIPs using a new quality measure that considers the distribution of points over
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the nondominated set. Working with a representative set for the nondominated points

set might be an easier and practical approach since it is usually very time and effort

consuming to generate and work on all nondominated points of a MOIP. So far, there

have been some algorithms developed in order to form representative point sets that

ensure certain quality measures. It is observed that many alternative representative

sets may satisfy existing performance measures equally well with these algorithms.

Thus, we first introduce a density-based quality measure and analyze typical distri-

butions of nondominated points for different MOIPs. We then develop an approach

that approximates the nondominated set and categorizes the points in the approxi-

mate nondominated set into regions based on their estimated densities and generate

distribution-based representative sets.

In Chapter 2, we will review the exact and heuristic approaches in the literature to

solve MOIP problems. In Chapter 3, we introduce a density measure and analyze the

distribution properties of MOIPs. In Chapter 4, we present an approach that estimates

the distribution of the points on the nondominated set. We develop an algorithm to

generate distribution-based representative sets and present the results of our experi-

ments in Chapter 5.
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CHAPTER 2

LITERATURE REVIEW

MOIPs are very useful for many areas of application such as capital budgeting, facil-

ity location, scheduling, transportation and network design problems. However, the

literature is rather limited when compared with the MOLPs since the introduction of

discrete variables make these problems hard to solve. Although there exists supported

nondominated points that could be obtained using a weighted sum problem, Ehrgott

and Gandibleux (2000) [7] note that there is an exponential increase in the number of

unsupported nondominated points for MOCO problems, special MOIPs. They exhibit

a thorough survey of exact and heuristic techniques to tackle MOCO problem issues.

In the literature, most of the studies that generate the whole nondominated point set

focus on the bi-criteria case. There are very few studies which identify all nondomi-

nated points for a MOIP with more than two objectives. The method proposed by

Sylva and Crema (2004) [26] identify a nondominated point at each iteration by

adding binary variables and linear constraints to the model for each non- dominated

point found in the previous iterations when number of objectives in the problem can

be more than two. In this way, calculation of the following nondominated point tends

to be considerably harder as the number of nondominated points discovered increases.

Ehrgott (2006) [6] examines scalarization strategies for MOIP problems and brings

up that it can be computationally hard to create all nondominated points by utilizing

the current scalarization strategies. In light of this study, he proposes the method with

elastic constraints that consolidates the benefits of weigted sum and epsilon constraint

scalarization methods. With this, one can decrease the computational efforts to solve

scalarized problems and identify all the points in nondominated point set.

Laumans et al. (2006) [14] develops an algorithm based on methods for generating

or approximating the Pareto set of multi-objective optimization problems by solving

a sequence of constrained single-objective problems. They discuss the drawbacks
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of the original epsilon-constraint methods by showing that the running times of the

original epsilon-constraint method is exponential in the problem size, although the

size of the Pareto set is growing only linearly.

Özlen and Azizoğlu (2009) [19] propose an improvement (by reducing the number

of models solved) over the classical epsilon-constraint method which can generate all

nondominated points for any number of objectives. The method reduces the number

of models solved significantly compared to the classical epsilon-constraint method.

Özlen et al. (2014) [20] introduces an improved recursive algorithm to generate the

set of all nondominated objective vectors for MOIPs. Improvement is done by storing

a list of already solved subproblems and making a search in this list before solving any

new subproblem. This way it is possible to further reduce the number of IP models to

be solved. As their experiments show, the improvement becomes more significant as

the problems grow larger in terms of the number of objectives.

Identifying all supported nondominated points is not simple for more than two ob-

jectives as it is for bi-objective problems. Özpeynirci and Köksalan (2010) [21] and

Przybylski et al. (2010) [23] develop algorithms based on changing weights system-

atically to generate all extreme supported nondominated points for multi-objective

mixed integer programming problems with more than two objectives.

Lokman and Köksalan (2013) [15] develop an exact algorithm to generate all non-

dominated points of MOIPs. The algorithm iteratively identifies the nondominated

points and exclude the regions that are dominated by the previously-identified non-

dominated points. They provide an algorithm which generates new points by solving

models with additional binary variables and constraints. The other algorithm employs

a search procedure and solves a number of smaller models to find the next point with-

out using any additional binary variables or constraints. Both algorithms guarantee

to find all nondominated points for any MOIP. Computational experiments show that

the algorithm performs better compared to Sylva and Crema (2004) [26].

Kırlık and Sayın (2014) [11] suggest an algorithm which generates the entire nondom-

inated set for multi-objective discrete optimization problems. The algorithm uses two

stage epsilon-constraint formulation to generate nondominated points. The method

conducts searches in rectangles and later on updates them. The comparison of the

6



algorithm to previous studies is also given for MOKPs and MOAPs.

As a recent approach, Dächert and Klamroth (2015) [4] propose a search algorithm.

They present a procedure for finding the entire nondominated set of tri-criteria opti-

mization problems for which the number of sub-problems to solve is bounded linearly

depending on the number of nondominated points. The approach updates iteratively

the search region that, given a subset of nondominated points, describes the area in

which additional nondominated points may be located.

In spite of the fact that there exist effective exact techniques to solve MOIPs, they are

often not practical when the size of the problem gets larger. Hence, approximation

techniques for multi-objective problems are employed most of the times. Ehrgott and

Gandibleux (2004) [8] present a review of approximate methods for MOCO prob-

lems.

Different performance measures have been defined in evaluating the quality of the

representative set (Sayın, 2000 [25]; Wu and Azarm, 2001 [1]; Zitzler et al., 2003

[28]). Sayın (2000) [25] proposes coverage, uniformity and cardinality measures.

While coverage measure should be decreasedin order to represent all parts of the ef-

ficient frontier, larger value for the uniformity measure is also wanted not to generate

the nondominated representative points close to each other in the objective space.

Faulkenberg and Wiecek (2009) [9] evaluate quality measures that could be used for

general multi-objective optimization problems in three different groups, as suggested

by Sayın (2000) [25].

Sylva and Crema (2007) [27] and Masin and Bukchin (2008) [17] propose algorithms

that find representative sets for nondominated points in MOIPs and MOMIPs. In

these algorithms, at each step the worst represented nondominated point is found.

With other words, the nondominated point which has the largest representation error

is found. Both algorithms use similar mathematical models in order to find new non-

dominated points such that the distance from the yet-known nondominated point set

is maximized.

Boland et al. (2016) [2] use a different measure to evaluate the distribution of the

nondominated points represented. They present a new criterion space search method,
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the L-shape search method, for finding all nondominated points of a tri-objective in-

teger program. After that in order to assess the performance of representative sets, the

closest representative for each yet unknown nondominated point is determined. Then,

the number of nondominated points represented by each representative is found, and

the average number of points represented and the deviation from the average are cal-

culated. As a measure of quality, a distribution measure is used, and when this ratio

is small, it is said that the representative cluster has better distribution.

Ceyhan (2014) [3] proposes computational improvements from Sylva and Crema

(2007) [27] and Masin and Bukchin (2008) [17] by employing decomposition meth-

ods and search alghorithms. In none of these studies, distribution characteristics of

nondominated point sets are considered. Therefore, in this thesis firstly distribution

characteristics of nondominated point sets are taken into consideration for further

analysis. Afterwards, a new density based performance measure is going to be pre-

sented in order to assess the performance of representative points sets.
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CHAPTER 3

DISTRIBUTION PROPERTIES OF MULTI-OBJECTIVE INTEGER
PROGRAMS

In this chapter, a brief information about existing performance measures will be pro-

vided. The results of several mathematical models used during experiments will show

the pitfalls of existing performance measures and create a basis for a density based

performance measure.

Before starting any further analysis, the method that nondominated points are gener-

ated with will be provided. We conduct experiments on MOKP, MOAP, MOSPP, and

MOSTP problems for which all nondominated points are generated using the algo-

rithm of Lokman and Köksalan (2013) [15] for comparison purposes. The instances

are generated as it is in Köksalan and Lokman (2009) [12]. Mathematical models

that generate the nondominated points in three objective space for MOKPs, MOAPs,

MOSPPs and MOSTPs are provided in Appendix A with the values of parameters

used.

3.1 Representing Nondominated Set with Existing Quality Measures

All efficient solutions of a problem must be well represented in order to improve

coverage measures. This study mostly focuses on the quality measures which include

"coverage error," "uniformity" and "cardinality" proposed by Sayın (2000) [25] or

"diversity measure" proposed by Masin and Bukchin (2008) [17].

At the coverage gap calculations, unlike Sayın (2000) [25], we ignore the differences

in the objective values for which the nondominated point is worse than its represen-

tative point. Thus, for a nondominated set S and a representative set R ⊆ S the

9



coverage gap α of a maximization type MOIP problem can be calculated as follows,

α = max
x∈S

(min
y∈R

( max
1≤i≤M

(xi − yi))) (3.1)

Here, the model assigns a representative point, y ∈ R, to each nondominated point,

x ∈ S, based on a Tchebycheff-based distance metric. Therefore, coverage gap, α,

corresponds to the distance of the worst represented point to its representative. In an

objective, if a representative point is better than the nondominated point it represents,

then the difference in this objective value should not be considered in the calculation

of the representation error.

In order to analyze the properties of the representative sets, we initially solve models

using existing quality measures. For comparison purposes, we find optimal repre-

sentative sets of problems (for which all nondominated points are available to us)

according to different performance measures. The following mathematical model

(which will be called as, Model-Gap, for the rest of the thesis) can be used in order to

select K representative points from the set of all nondominated points that minimize

the coverage gap. The objectives for Model-Gap should be maximization type (the

larger the better).

Indices:

i,j = number of points in nondominated point set (1,2,...,N)

p = number of objectives of the problem (1,2,...,M)

Decision Variables:

xi =

 1, if point i is selected to be representative point

0, otherwise

yij =

 1, if point j is represented by point i

0, otherwise

Parameters:

zip = the p’th objective value of point i

K = number of representative points

10



Model-Gap:

min α (3.2)

s.t. α ≥ (zjp − zip)yij ∀i, j, p (3.3)

Nxi ≥
N∑
j=1

yij ∀i (3.4)

N∑
i=1

yij = 1 ∀j (3.5)

N∑
i=1

xi = K (3.6)

xi, yij ∈ {0, 1} ∀i, j (3.7)

Model-Gap finds the optimal subset that represents the nondominated set with mini-

mum coverage gap value. In this model, we scale the objectives such that all objective

values are to be between 0 and 100.

In Model-Gap, only coverage gap measurement has been taken into account. This

means there might be some alternative solutions to the model that may give better

solutions in terms of different performance measures while keeping coverage gap as

the same.

In order to take the other performance measures into consideration, density-based

mathematical models that take the distribution properties into account are developed.

For each representative point to be selected, we define an upper bound for the number

of nondominated points it will represent. This way, from the dense parts of nondom-

inated solution sets, more representative points can be selected and more information

from dense parts of the set can be generated to present to the decision maker.

Here, the definition of “density” implies “the percentage of all nondominated solu-

tions that are represented by a representative point”. To illustrate; let’s assume a

nondominated points set with cardinality 100, if any representative point represents

15 nondominated points, the density around the representative point is said to be 15

percent.

By setting an upper limit for all representative points, Model-Gap can be improved

11



in terms of other performance measures. Model-Gap can be modified easily by just

changing the Constraint 3.4 as stated below in order to set a density based upper limit;

dNxi ≥
N∑
i=1

yij ∀i (3.8)

where d is an upper density limit for any representative point (i.e. 18%) and N is

cardinality of the nondominated points set. The new model,Model-Gap-Cap , finds

the optimal representative set that minimizes the coverage error when the number of

nondominated points that can be represented by any representative point is limited.

If d is not large enough, Model-Gap-Cap turns out to be infeasible since some non-

dominated points will not be represented due to the capacity restriction. When d gets

closer to 1 (i.e. 100%), Model-Gap-Cap behaves like there is no upper limit. Then

Model-Gap-Cap would work in the same way as Model-Gap. Because of that, d

should be chosen a small number without violating the condition mentioned above.

Both original and modified models are run with the same nondominated points set

and some of the results are as follows:

Table 3.1: Comparison of two suggested models

Coverage Gap Values

Number of
Model-Gap Model-Gap-Cap

Representative Points

K=10 9.26

d=12 12.61

d=14 10

d=16 9.26

d=20 9.26

From Table 3.1 it can be seen that as d increases, Model-Gap-Cap starts to behave

like Model-Gap. Also it can be said that the number of represented points per repre-

sentative point can be decreased at the expense of an increase in the coverage gap.

Both Model-Gap and Model-Gap-Cap need number of representative points as an

input parameter. However, we observe that there are instances for which the cover-
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age gap value does not change with small decreases in the number of representative

points. Therefore, it may sometimes be a wise idea to let the model to find the num-

ber of representative points since we would prefer to have small representative sets to

save computational effort and make it practical for the DM. We next develop a new

model, (Model-Rep-Gap-Dens) as follows:

Indices:

i,j = number of points in nondominated point set (1,2,...,N)

p = number of objectives of the problem (1,2,...,M)

Decision Variables:

xi =

 1, if point i is selected to be representative point

0, otherwise

yij =

 1, if point j is represented by point i

0, otherwise

r = number of representative points

d = density around the most dense representative point

Parameters:

zip = the p’th objective value of point i

gap = maximum accepted coverage gap value

wgap = the weight of coverage gap in the objective function

wrep = the weight of number of representative points in the objective function

wden = the weight of density in the objective function

Model-Rep-Gap-Dens:

min wrepr + wgapα + wdend (3.9)
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s.t. α ≥ (zjp − zip)yij ∀i, j, p (3.10)

Nd ≥
N∑
i=1

yij ∀i (3.11)

Nxi ≥
N∑
i=1

yij ∀i (3.12)

N∑
i=1

yij = 1 ∀j (3.13)

N∑
i=1

xi = r (3.14)

α ≤ gap (3.15)

xi, yij ∈ {0, 1} ∀i, j (3.16)

Model-Rep-Gap-Dens aims to find the optimal representative set that minimizes the

number of representative points that satisfy the maximum coverage gap value. Cov-

erage gap value is also included in the objective function as a secondary objective

since it is possible to find different values of coverage measure for a specific value

of cardinality measure. Among the alternative optimal representative sets with mini-

mum cardinality value and coverage gap value, we favor the ones that minimize the

maximum number of points to be represented by a single representative point. It al-

lows the DM to have representative points for each of which the number of points

they represent are similar. To achieve these goals, we choose an objective function as

in 3.9 where the weight parameters are selected as follows:

wrep � wgap � wden (3.17)

In order to show the effect of density in terms of better representation, two versions of

Model-Rep-Gap-Dens will be compared. Comparison has been done with the same

nondominated solution set that is used for previous models. The first version of the

model takes the weight of the density measure as 0. That is to say that, densities

around the representative points are not taken into the consideration. The weights of

each measure in the objective function can be seen in Table 3.2.

Model-Rep-Gap-Dens is run for 15 times for both of the versions. At each run the
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Table 3.2: Weight parameters of Model-Rep-Gap-Dens

Model-Rep-Gap-Dens

Weights Version 1 Version 2

wrep 106 106

wgap 103 103

wden 0 1

parameter gap is updated with previous run’s coverage gap minus an ε value (0.001).

Then, the minimum number of representative points to satisfy the upper level of ac-

cepted coverage gap measure is found.

The first thing that needs attention for both versions on Table 3.3 is the number of

representative points on runs 8 and 9. It shows that in order to gain from coverage

gap at run 9, one additional representative point is not enough. So in order to come up

with a coverage gap value better than “10”, two additional representative points are

needed. This is where Model-Rep-Gap-Dens is more useful rather than Model-Gap

and Model-Gap-Cap.

We also observe that the same coverage gap value obtained with 11 representative

points can also be obtained with 10 representative points. When two versions are

compared, it is easy to see there are some alternative solutions to the model for cer-

tain coverage gap and number of representative points. Both versions find the same

coverage gap and number of representative points when inputed with the same gap

parameter. The only difference between the versions is that, Version 2 tries to lower

the maximum number of represented points for any representative point, whereas Ver-

sion 1 does not. The difference of both versions can be understood better with Figure

3.1.

In Figure 3.1, numbers placed below the bars show the number of representative

points at each run. The portions in the bars show the percentages of all nondominated

points represented by each representative point. The largest portion (the maximum

number of points represented by any representative point, defined as d) is placed at

15



Table 3.3: Comparison of two versions of Model-Rep-Gap-Dens

No of Runs
Version 1 Version 2

Number of
Coverage Gap Max d

Number of
Coverage Gap Max d

Representatives Representatives
1 1 37.83 52 1 37.83 52

2 2 28.52 27 2 28.52 26

3 3 23.04 22 3 23.04 20

4 4 16.30 18 4 16.30 15

5 5 14.81 18 5 14.81 12

6 6 12.88 24 6 12.88 11

7 7 12.61 30 7 12.61 10

8 8 10 24 8 10 12

9 10 9.26 8 10 9.26 8

10 11 9.15 8 11 9.15 8

11 12 8.89 14 12 8.89 6

12 13 7.83 14 13 7.83 9

13 14 6.67 15 14 6.67 7

14 15 6.52 13 15 6.52 5

15 16 5.76 10 16 5.76 6

the bottom of the bar and the smallest portion is placed at the top of the bar. Since we

minimize the maximum number of points to represent, each representative point rep-

resents almost equal number of nondominated points, and hence the more equal sized

portions obtained at each bar the better it is. This shows using a density based quality

measure can improve the representation of nondominated points by assigning each

representative point similar number of nondominated points. This can be interpreted

as "equal representation" of each nondominated point.

Figure 3.1 and Table 3.3 show that; despite of the use of different quality measures

(cardinality and coverage gap), alternative solutions may still exist. To break the ties

and represent the nondominated point set better, a new quality measure is needed.

3.2 Distribution Properties of Multi-Objective Integer Programs

The existing quality measures do not consider the distribution properties of the non-

dominated points. Furthermore, our experiments show that there may have alternative

16



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 10 10 11 11 12 12 13 13 14 14 15 15 16 16

V1 V2 V1 V2 V1 V2 V1 V2 V1 V2 V1 V2 V1 V2 V1 V2 V1 V2 V1 V2 V1 V2 V1 V2 V1 V2 V1 V2 V1 V2

Model-Rep-Gap-Dens Version 1 vs Version 2

Figure 3.1: Model-Rep-Gap-Dens Version 1 vs. Version 2 - nondominated point

distributions with respect to number of representatives

optimal subsets that minimize the coverage gap value and the number of representa-

tive points. In order to produce representative sets that also reflect the distribution

characteristics of the nondominated set, we employ a density metric that is proposed

by by Parzen (1962) [22]. We estimate the density function around any point us-

ing "Parzen Windows" which is a very commonly used non-parametric classification

method. It is also used in pattern recognition, classification and identification appli-

cations (see Duda (1973) [5]).

Parzen Windows approach estimates the distribution of points in the space by calcu-

lating each point’s contribution to the density measure around a point, ”x”, with a

given kernel function. In fact, kernel function is used for interpolation to calcute the

contribution of each nondominated point to the density measure around ”x”. Each

point’s contribution is consistent with its distance or Lp−norm to ”x”. In order to

find the parzen windows estimate around the point ”x” following formula is used:

P (x) =
1

Nh

N∑
i=1

K

(
||xi − x||q

h

)
(3.18)

where h is the windows size (the window width or bandwidth parameter that corre-

sponds to the width of the kernel), q is the norm of the distance vector and K(x) is a

kernel function in p dimensional space.
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Figure 3.2: Available Kernels

Definition: A Kernel is a non-negative real-valued integrable function, K(u), such

that:

∫ +∞

−∞
K(u)du = 1 (3.19)

For most of the applications it is desirable to define the function to satisfy Equation

3.20.

K(u) = K(−u) ∀u (3.20)

Commonly used Kernels can be found in Figure 3.2.
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CHAPTER 4

DENSITY ESTIMATION FOR MULTI-OBJECTIVE INTEGER
PROGRAMS

4.1 Application of Parzen Windows in Multi-Objective Integer Programs

In this section, we will employ Parzen Windows method to analyze the distribution

properties of MOIPs. As we did in our previous experiments, we scale the objec-

tive values such that the minimum and the maximum values of each objective is the

same (i.e. objective values lie between 0 and 1). This not only allows comparison

of distribution properties for different objectives in the same problem or compari-

son of distribution properties for two different problems but also is required for the

calculations to make sense.

In the calculations of this study, K(u) represents a point’s contribution to the density

measure according to its distance, u, to the reference point. The distance u can be

calculated with p−norm distance functions. In general, the length of the distance

vector between any two points in the M-dimensional real vector space is given by

Euclidean norm. In preference based calculations of MCDM problems, Tchebycheff

distance (L∞ or Lp while p→∞) is also being used quite often. Simply, p−norm or

Lp−norm between points X(x1, x2, ..., xM) and Y (y1, y2, ..., yM) in M dimensional

space can be calculated as follows:

||X − Y ||p =

(
M∑
i=1

(|xi − yi|)p
)1/p

||X − Y ||rec =

(
M∑
i=1

(|xi − yi|)1
)1

(4.1)

19



||X − Y ||euc =

(
M∑
i=1

(|xi − yi|)2
)1/2

||X − Y ||tch = lim
p→∞

(
M∑
i=1

(|xi − yi|)p
)1/p

= max (|x1 − y1|, |x2 − y2|, ..., |xM − yM |)

(4.2)

For certain values of q, distance functions are called with special names. These are;

• 1-norm is the norm that corresponds to the rectilinear distance,

• 2-norm is the norm that corresponds to the euclidean distance,

• maximum norm or L∞−norm is the norm that corresponds to the Tchebycheff

distance.

The most basic Kernel function that can be used in any of MOIP problems is Uniform

(Boxcar) function. Uniform function is zero except for a single interval where it is

equal to a constant other than zero (see the plot at Figure 3.2.(C)). In general, Uniform

function as a Kernel function can be shown as follows:

K

(
||zi − z||p

h

)
=

 1, ||zi−z||p
h
≤ 1/2

0, otherwise
(4.3)

Equation 4.3 indicates whether zi is inside the window area (centered at z with width

h) or not. If the point is closer to the reference than the distance of h/2, it contributes

1 unit, otherwise it does not contribute at all. Summing over all possible values of zi

as in the Equation 3.18, gives the density estimate around point z.

As an example, let’s consider the case shown in Figure 4.1 and calculate each point’s

contribution to the reference point R(0.50, 0.50). Large circle around R shows the

border of 0.20 unit Euclidean distance. It represents a window centered atR(0.50, 0.50)

with width 0.4 units.

Points A(0.55, 0.65) and C(0.40, 0.45) lie in the circle, so according to Equation 4.3,

both contribute 1 unit to the density measure around R. This result can also be seen
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Figure 4.1: Kernel Example

when the Euclidean distances of both points are calculated as below:

||A−R||2 =
(
(|xA − xR|)2 + (|yA − yR|)2

) 1
2

=
(
(|0.55− 0.50|)2 + (|0.65− 0.50|)2

) 1
2

≈ 0.158

||A−R||2
h

≈ 0.158

0.40
≤ 1

2

||C −R||2 =
(
(|xC − xR|)2 + (|yC − yR|)2

) 1
2

=
(
(|0.40− 0.50|)2 + (|0.45− 0.50|)2

) 1
2

≈ 0.112

||C −R||2
h

≈ 0.112

0.40
≤ 1

2

(4.4)

Now let’s consider the point outside of the window,B(0.30, 0.75), and do the distance
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calculations:

||B −R||2 =
(
(|xB − xR|)2 + (|yB − yR|)2

) 1
2

=
(
(|0.30− 0.50|)2 + (|0.75− 0.50|)2

) 1
2

= (0.1025)
1
2

≈ 0.320

||B −R||2
h

≈ 0.320

0.40
≥ 1

2

(4.5)

As seen in the calculations above,B does not contribute to the density measure around

R. So far, the distance calculations between two points are done according to Eu-

clidean distances. Tchebycheff distance calculations for the same points are as fol-

lows:
||A−R||∞ = max (|xA − xR|, |yA − yR|)

= max (|0.55− 0.50|, |0.65− 0.50|)

= 0.15

||A−R||∞
h

=
0.15

0.40
≤ 1

2

||B −R||∞ = max (|xB − xR|, |yB − yR|)

= max (|0.30− 0.50|, |0.75− 0.50|)

= 0.25

||B −R||∞
h

=
0.25

0.40
≥ 1

2

||C −R||∞ = max (|xC − xR|, |yC − yR|)

= max (|0.40− 0.50|, |0.45− 0.50|)

= 0.10

||C −R||∞
h

=
0.10

0.40
≤ 1

2

(4.6)

If Tchebycheff distance was preferred in the calculations, then the window border

in Figure 4.1 would look like a square with the length of each side equal to h. The

corners of that square would be at {(0.3, 0.3), (0.7, 0.3), (0.3, 0.7), (0.7, 0.7)}. Again

with Tchebycheff distance, one could say A and C contribute 1 unit to the density
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measure around R, whereas B does not lie in the window area, so it does not con-

tribute to the density measure.

So far, Uniform function is used in the calculation of each point’s contribution to the

density measure around the reference point. One other mostly used Kernel Function is

Triangular Kernel. The shape of the Triangular Kernel can be seen in the right bottom

corner of Figure 3.2. Triangular Kernel allows nondominated points with different

distances to have different contributions to the reference point’s density measure. The

contribution of each point on the density is linearly decreasing as the distance from

the reference point increases. In general, Triangular function as a Kernel function is

shown in Equation 4.7:

K

(
||zi − z||p

h

)
=

 1− ||zi−z||p
h/2

, ||zi−z||p
h
≤ 1/2

0, otherwise
(4.7)

Now, let’s check the difference between Triangular Kernel and Uniform Kernel with

the example previously shown in Figure 4.1:

||A−R||∞
h

=
0.15

0.40
≤ 1

2

K

(
||A−R||∞

h

)
=

 1− ||A−R||∞
h/2

, ||A−R||∞
h

≤ 1/2

0, otherwise

= 1− ||A−R||∞
h/2

= 1− 0.15

0.80
= 1− 0.1875 = 0.8125

(4.8)

||C −R||∞
h

=
0.10

0.40
≤ 1

2

K

(
||C −R||∞

h

)
=

 1− ||C−R||∞
h/2

, ||C−R||∞
h

≤ 1/2

0, otherwise

= 1− ||A− C||∞
h/2

= 1− 0.10

0.80
= 1− 0.1250 = 0.8750

(4.9)
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Results shown in bold in Equation 4.8 and 4.9 are the contributions of A and C to the

density measure around reference point R. Unlike Uniform Kernel, using Triangular

Kernel for these points yielded different contributions to the density measure around

R.

Now that each point’s contribution is calculated, next step is finding the cumulative

density measure around the reference point. This can be done by adding every non-

dominated point’s contribution. In Equation 3.18, this summation is scaled with the

number of nondominated points N and the window size h.

In our density calculations in this thesis, this scalarization is not necessary since after

finding density values for different reference points, the sum of density measures

in all reference points will be scaled to 1 and each reference point’s scaled density

measure will be found accordingly. Also, setting h to a very small number may lead to

peeks in density measures of some reference points whereas, setting h to a very large

number may cause a uniformity among density measures of reference points. For

these reasons Equation 3.18 is revised as Equation 4.10 below. Calculation method

of the scaled density measure is shown in Equation 4.11.

P (xr) =
N∑
i=1

K

(
||xi − xr||p

h

)
(4.10)

P̄ (xr) =
P (xr)
R∑
r=1

P (xr)

(4.11)

where R is the number of reference points in M dimensional space.

Now let’s consider the previous example again and assume each point as a reference

point. It is possible to calculate the contribution of each point to the other points.

After the same calculations are done with Triangular Kernel for A, B, C and R,

following results are obtained:

As one can see from Table 4.1, the results are symmetric.

In order to understand the density distributions of different problems and to test the

usability of the Parzen Windows method, we first generate equal-spaced reference

points over the solution space. We then calculate the density values at each point.
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Table 4.1: Contributions between points

K(||xr||∞)
R A B C

R - 0.8125 0 0.8750

A 0.8125 - 0 0

B 0 0 - 0

C 0.8750 0 0 -

Figure 4.2: Left: scaled MOAP with 6573 nondominated points, Right: Density

values at the reference points

To generate equal-spaced points, we first scale the objective values as in Köksalan and

Lokman (2009)[12]:
(

z1−zIP1
zNP
1 −zIP1

,
z2−zIP2
zNP
2 −zIP2

, ...,
zM−zIPM
zNP
M −zIPM

)
where (zIP1 , zIP2 , ..., zIPM ) and

(zNP1 , zNP2 , ..., zNPM ) denote the ideal point and nadir point respectively corresponding

to the problem.

After we scale each objective, we divide the range into 20 equally spaced intervals.

The intersection points of these intervals create hypercubes in the solution space. A

total of 8,000 hypercubes were created, each of which had a 0.05 units of edge length.

We consider the center points of these hypercubes as reference points around which

we calculate the density.

As an example, the distribution of the original nondominated points for a MOAP

with 6573 nondominated points are shown on the left side of Figure 4.2. On the right

side, density values are symbolized with the sizes and colors of the spheres. As the
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Figure 4.3: MOKPs with 5652, 6500 and 8288 nondominated points respectively

size of each sphere grows and the color changes from dark blue to dark red, density

increases.

It is noteworthy that the density values of most of the reference points are quite small

(zero or very close to zero). These representative points in some regions of the non-

dominated solution space become invisible since their size are very small relative to

the others.

We also observe that there is an increase in density measure toward the center while

density values approach zero or become negligible at the extreme points. These re-

sults are observed in different type of problems and different sized problems. Figure

4.3 demonstrates how the density values change over the solution space for different

sized MOKPs and we observe common properties.

During the experiments, the effect of the problem type on the density values was in-

vestigated as well as the size. It can be seen in Figure 4.4 that similar sized problems

in different types show similarities in density distribution. When Figure 4.4 is ex-

amined, it can be said that density of the nondominated points increases towards the

center independently of the type of the problem, and density values approach zero

when getting close to the extreme points.

In the studies described so far, reference points are placed in every part of the solution

space and density values are calculated at these points. However, since the nondomi-

nated points set is studied on MOIP, there is no need to calculate the density values for

the entire solution space. In both Figure 4.3 and Figure 4.4, it is observed that non-
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Figure 4.4: MOAP with 6573 and MOKP with 6500 nondominated points respec-

tively

dominated points form an efficient frontier and the rest of the solution space is empty.

Thus, density values at these regions are zero. For this reason, instead of calculating

the density values over whole solution space, working with efficient frontier can save

computational time by eliminating unnecessary calculations and help to avoid obser-

vation of non-zero density values on dominated or dominating (both empty) regions

due to the large window sizes.

Because of the reasons specified above, density values should be calculated only for

the regions that are expected to have nondominated points. To do that, we first ap-

proximate the possible locations of nondominated points.

4.2 Surface Fitting with Lp Functions (Lp-Fitting)

Köksalan (1999) [13] worked with Lp norms to estimate the nondominated frontiers

of bicriteria scheduling problems. Later, Köksalan and Lokman (2009) [12] adapted

this approach to approximate the nondominated frontiers of MOCO problems with

any number of criteria. Lokman and Köksalan (2014) [16] defined preferred regions

by approximating the nondominated set using a hyper-surface generated by Lp norms.

Also, Karasakal and Köksalan (2009) [10] used Lp norms to estimate the shape of the

nondominated frontier. With the help of the surface, they generated a set of points that

represents the frontier. Computational experiments in these studies show that, using
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Lp norms to approximate the nondominated frontiers performs quite well. Thus, in

this study Lp norms are used in order to approximate the nondominated frontiers of

MOIPs.

The algorithm of Köksalan and Lokman (2009) [12], finds a p value in order to fit a

hypersurface to the nondominated points by using one reference point (i.e. mid-point

of the problem) assuming that the hypersurface passes through the scaled vectors

in set S = {(0, 1, .., 1), (1, 0, 1, ..., 1), ..., (1, ..., 1, 0)}. A specific hypersurface that

passes through all the vectors in S can be defined by the following function:

(1− z′1)p + (1− z′2)p + ...+ (1− z′q)p = 1, p > 0 (4.12)

In fact, this is a variation of Lp distance functions mentioned at the earlier parts of this

thesis. This hypersurface will be refered as the "Lp surface" throughout this thesis.

"The central point" or "the reference point" for a MOIP can be defined as the point

that has the minimum Tchebycheff distance to the ideal point.

i∗ = argmin
i

(max
q
ziq) (4.13)

In equation 4.13, ziq represents q’th criterion value of the i’th point. Once the point

i∗ is found, it is substituted into the following equation in order to find the p value for

the Lp surface which passes through S = {(0, 1, .., 1), (1, 0, 1, ..., 1), ..., (1, ..., 1, 0)}
and Zi∗:

Lp(Zi∗) =
∑
q

(1− zi∗q)p = 1 (4.14)

After the Lp surface is obtained, hypothetical points are placed on the surface at ap-

proximately equal intervals to find the density measure at different regions on the

surface. To place these almost equally spaced hypothetical points, the entire space is

divided into small hypercubes, as it was done in the previous sections. Differently,

we consider only the hypercubes that are close to the Lp surface in our density cal-

culations. To do that, for each hypercube, we find a point on the Lp surface that is at

minimum Euclidean distance from the center of the hypercube by solving Model-Dis.

If the distance is more than half of the edge length, the hypercube is excluded from
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our density analysis since we estimate that the density around this point as zero. Oth-

erwise, we use the corresponding point on the Lp surface as one of our hypothetical

points. These hypothetical points are approximately equally spaced on the Lp surface.

Indices:

q = number of objectives (1,2,...,M)

Parameters:

aq = q’th objective value of the center point of the hypercube

p = previously known parameter of the Lp surface

Decision Variables:

zq = q’th objective value of the point on Lp surface

Model-Dis:

min

√√√√ M∑
q=1

(aq − zq)2 (4.15)

s.t.
M∑
q=1

(1− zq)p = 1 (4.16)

0 ≤ zq ≤ 1 ∀q (4.17)

In Figure 4.5, there is an example provided with a MOKP with 6500 nondominated

points and fitted Lp surface related to the problem. Our experiments with 100 differ-

ent MOIPs show that although the estimation error increases towards the edges, Lp

surface fit is a good estimate for MOIPs since we expect more nondominated points

in the center and the surface estimates central regions with better accuracy. Work-

ing with Lp surface estimates eliminates the unnecessary computational efforts in the

regions that are not interesting for the decision maker such as dominated or domi-

nating regions where we do not expect any nondominated points to exist. Thus, Lp

surface fitting is very practical since it can be applied very fast to MOIPs by using

one reference point. For further analysis see Köksalan and Lokman (2009) [12].
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Figure 4.5: Left: MOKP with 6500 nondominated points, Right: hypothetical non-

dominated points placed on the fitted LP surface

4.3 Density Measure at Hypothetical Points on Lp Surface

For the MOIP problems, density values around each of the well-dispersed hypotheti-

cal points on the fitted Lp surface are calculated by Parzen Window (Equation 4.10)

method using the triangular kernel function, K(r), given in Equation 4.7 to perform

a detailed density analysis on the Lp surface. To define a comparable density mea-

sure in different types of problems with different sizes, the density values for each

hypothetical point are scaled so that the sum of cumulative density at all hypothetical

nondominated points is 1. In order to scale the density values at each hypothetical

point, Ri, following function is employed:

P (Ri) =
P (Ri)∑
i

P (Ri)
(4.18)

where P (Ri) is the scaled density values at the hypothetical point Ri. This value can

be interpreted as the contribution of point Ri to the cumulative density measure of the

problem.

The calculations mentioned above are done for the hypothetical points placed on the
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Figure 4.6: Density distributions of different MOAPs with 103 and 107 nondominated

points respectively
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fitted Lp surfaces of 100 different type and different sized problems. The complete

list of problems which are worked with is provided in Appendix B; Table B.1, Table

B.2, and Table B.3.

First observation in these 100 MOIPs is, when the size of the problem is small (i.e.

problems with size less than 1000 nondominated points), it is not possible to interpret

any acceptable common results among problems when the density distributions are

examined (see Figure 4.6). The densities at certain regions of these problems are

highly diversified. An example for density calculations with a MOAP having 120

nondominated points and a MOKP having 6500 nondominated points is presented in

Figure 4.7 where colors dark red and dark blue represent the most dense and the least

dense points respectively.

As the problem sizes get bigger (i.e. when the size gets more than 1000 nondominated

points), density distributions of different problems tend to have common properties.

As common features in bigger problems among the same type of MOIP, it is important

to observe that the hypothetical point said to be the most dense point is located at or

close to a region that can be called "the center" of the surface even though the sizes

of the problems vary. Also, as one moves on the Lp surface from the "central point"

to the one of the edges, density value for each hypothetical point decreases. These

features can be observed for two different sized MOKP problems in Figure 4.8.

Another implication in the bigger sized MOIPs is that, different typed problems show

similar density distributions regardless of the problem size. As an example for this

property, Figure 4.8 is provided. In both problems, it is observed that the density
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values are decreasing from a point that can be called very dense towards the edges.

4.4 Density Based Categorization of Hypothetical Points

Based on the observations in Section 4.3, we conduct a further analysis to investigate

the properties of the distributions of MOIPs. We categorize the hypothetical points

based on their density values and search for common properties of MOIPs.

We study on different MOIPs with different sizes. The complete list of problems that

are worked with includes MOKP, MOAP, MOSTP, and MOSPP. Problem sizes (the

number of nondominated points) in these problems vary between 101 and 10,701.

The results show that the studies do not reflect the distribution properties well, since

the number of nondominated points is not large enough for the problems having less

than 1000 nondominated points. For this reason, for the rest of the thesis the results

will be discussed only for the problems having the size of over 1,000 nondominated

points. The list of these problems are provided in Appendix C.

In the first method used in defining the categories , 4 different categories are created

and their distribution percentages are examined. The highest category, Category 1,

has the most dense hypothetical points, and the last category, Category 4, has the least

dense hypothetical points. In order to understand the category which a hypothetical

point falls into, the categories are formed with the algorithm provided below:

Step 0: Given the hypothetical points, Ri, for i ∈ {1, 2, ..., G} when G is the total

number of hypothetical points and category sets, C1, C2, C3, C4 = ∅

Step 1: Calculate ki = K(Ri) where K(Ri) = K(Ri)

G∑
i=1

K(Ri)

Step 2: Sort ki in descending order, call new list of points as k̂i

Step 3: Find maxn1 such that
n1∑
i=1

k̂i ≤ 0.4 and form C1 = {k̂1, k̂2, ..., k̂n1}

Step 4: Find maxn2 such that
n2∑

i=n1+1

k̂i ≤ 0.3 and formC2 = {k̂n1+1, k̂n1+2, ..., k̂n2}
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Step 5: Find maxn3 such that
n3∑

i=n2+1

k̂i ≤ 0.2 and formC3 = {k̂n2+1, kn2+2, ..., k̂32}

Step 6: Form C4 = {k̂n3+1, kn3+2, ..., k̂G}

The summarised results for the algorithm provided above is presented in Table 4.2.

Table shows that the percentage of the nondominated points that fall into each cate-

gory is similar in the first two categories although the problems differ from each other

in problem type and problem size.

Table 4.2: Percentages of points in different types of MOIPs when the first method (4
categories) is used

Average Percentage of Points in each Category
for Different Types of MOIPs

Problem Type Category 1 Category 2 Category 3 Category 4

MOAP 0.11 % 0.15 % 0.19 % 0.55 %
MOSP 0.11 % 0.14 % 0.17 % 0.58 %
MOKP 0.10 % 0.14 % 0.17 % 0.59 %

Overall
Average

0.11 % 0.14 % 0.18 % 0.57 %

However, because the difference between the percentages of points laying in Cate-

gory 4 between two different problems is greater than the other categories, the last

two categories are combined and the number of categories is reduced to 3, as indicated

below:

Step 0: Given the hypothetical points, Ri, for i ∈ {1, 2, ..., G} when G is the total

number of hypothetical points and category sets, C1, C2, C3 = ∅

Step 1: Calculate ki = P (Ri) where P (Ri) = P (Ri)

G∑
i=1

P (Ri)

Step 2: Sort ki in descending order, call new list of points as k̂i

Step 3: Find maxn1 such that
n1∑
i=1

k̂i ≤ 0.4 and form C1 = {k̂1, k̂2, ..., k̂n1}
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Figure 4.9: Categorization of hypothetical points

Step 4: Find maxn2 such that
n2∑

i=n1+1

k̂i ≤ 0.3 and formC2 = {k̂n1+1, k̂n1+2, ..., k̂n2}

Step 5: Form C3 = {k̂n2+1, kn2+2, ..., k̂G}

In Table 4.3, we present a summary table which shows the average number of points

in each category for different types of MOIPs when the second method is used as

shown in the algorithm provided above. The categorization of a MOKP problem is

also presented in Figure 4.9.

Table 4.3: Percentages of points in different types of MOIPs when the second method
(3 categories) is used

Average Percentage of Points in each Category
for Different Types of MOIPs

Problem Type Category 1 Category 2 Category 3

MOAP 0.11 % 0.15 % 0.74 %
MOSP 0.11 % 0.14 % 0.75 %
MOKP 0.10 % 0.14 % 0.76 %

Overall
Average

0.11 % 0.14 % 0.75 %

The detailed analysis of categorization with the first method (4 categories) is provided

in Tables C.1 and C.2 in Appendix C. Tables C.3 and C.4 in Appendix C also show
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the percentages of the hypothetical points at each category when the second method

is used for different types and sizes of problems.

4.5 Interpretation of Density Measures, Categories and Results

Our analysis on the nondominated sets of different MOIPs show that the distributions

have common properties. Based on our findings, we develop a method that estimates

the possible locations of the nondominated points and categorize these regions based

on their estimated densities for any given MOIP for which the nondominated set is not

available. Before giving the details of our algorithm, let us summarize our findings

on the distributions of MOIPs:

• the closest 11% of the points to the point with the highest density value, con-

tribute to the total density about 40%.

• the closest 25% of the points to the point with the highest density value, con-

tribute to the total density about 70%. So additional 14% of the points only

contribute 30% to the total density.

• the rest 75% of the points contribute to the total density only about 30%.

In line with these findings; it is possible to estimate the possible locations of the

solutions and the density categories of these regions by finding the "center of density"

for any given MOIP. We first approximate the nondominated set using an Lp surface.

The corresponding p-value is calculated using a central reference point as done in

Köksalan and Lokman (2009) [12]. We estimate this point as "the center of density".

Once we approximate the nondominated set using an Lp surface is fit, a set of well

dispersed hypothetical points are generated.

Hypothetical points’ categories are then estimated according to the distances to the

Central Point with the following criteria:

• the first 11% of the hypothetical points contributing to the total density about

40% are in Category 1.
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• the next closest 14% of the hypothetical points contributing to the total density

about 30% are in Category 2.

• the rest 75% of the points contributing to the total density only about 30% are

in Category 3.

We next present the steps of our algorithm:

Step 0: (Initialization) Given the feasible space for true nondominated point set,

X , set window width as h = 0.10,

Step 1: (Fitting an Lp surface) Find the real point, c∗, that has the minimum

Tchebycheff distance to the ideal point: c∗ = min
xεX

(max
q

(zq(x) − ZIP
q ) and

calculate the p value for the Lp surface: Lp(Zc∗) =
M∑
q=1

(1− zc∗q)p = 1.

Step 2: (Generation of the hypothetical points on the Lp surface) Partition the

objective space into hypercubes with an edge length of h. Solve Model-Dis

for each hypercube to find its Euclidean distance, Di, to the Lp surface. If

Di <
h
2
, Ri ∈ H

Step 3: (Estimation of the density categories for the hypothetical points on the

Lp surface) Calculate the Tchebycheff distance of each hypothetical pointRi ∈
H to the central point c∗ and place the first 11% of the points to Category 1, the

following 14% to Category 2 and the rest to Category 3.

In order to evaluate the performance of this our algorithm, it is possible to compare

the true density categories of each point in the case of knowing all the nondominated

points with the category estimates found by our method. Figure 4.8 shows the com-

parison of true and fitted categories of hypothetical points for a MOKP.

Table 4.4 summarizes all the results of experiments on 51 different problems to mea-

sure the performance of our density estimation method. The results in Table 4.4 show

that in the 51 different MOIP, our estimation method placed 86% of the hypothetical

points to the exactly same density category. In addition, when there is a category

estimation error, the difference between the estimated category and the true category
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Figure 4.10: True vs. fitted categories of the hypothetical points

is not more than one level. Moreover, this method, which estimates the categories by

generating only one nondominated point to define the Lp surface, can be considered

as a fast and low cost method for difficult problems, although there is a margin of

error in category estimates.

Table 4.4: Category Estimation Error

The Amount of Deviation From
the Actual Category

Percentage of the Hypothetical Points

2 categories more 0 %
1 category more 6 %
Exact category 87 %
1 category less 7 %

2 categories less 0 %
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CHAPTER 5

DISTRIBUTION-BASED REPRESENTATION FOR MULTI-OBJECTIVE
INTEGER PROGRAMS

Although we have developed a method that generates hypothetical points and esti-

mates the density categories, we need to generate the true nondominated points. In

order to measure how these points represent the whole nondominated set, we also

need to define a new quality measure that takes distribution of the nondominated

points into consideration.

In this section, we propose a new performance measure, "weighted coverage gap" to

evaluate the representation errors. Although it is similar to the coverage gap measure

proposed by Sayın (2000) [25] and the representation errors are measured as in Masin

and Buckin (2008) [17], we define a weight vector to represent the DM’s preferences

for different regions.

5.1 Finding Representative Sets with Weighted Quality Measures for Multi-
Objective Integer Programs

As we discussed in Section 3.1, the preferences of the DM may be incorporated into

the process of generating representative points. We may favor some regions and try

to reduce the representation errors especially in these regions.

In order to measure how the nondominated set is represented based on the preferences

of the DM, we first ask the DM to define weight values for each category. Then, we

evaluate the representative set using:

α = max
x∈H

(min
y∈H

( max
1≤i≤M

((xi − yi)wx))) (5.1)

where H is the set of hypothetical points, M is the number of objectives and wx is
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the weight of point x according to its category such that:

wx =


W1, x ∈ C1

W2, x ∈ C2

W3, x ∈ C3

(5.2)

The values of W1, W2 and W3 are determined according to the preferences of DM.

That is, the measure which takes the distribution of the nondominated set into con-

sideration. This also allows us to reduce the representation errors in regions that are

of interest and the effect of representation errors in the disinterested regions.

In our algorithm the weights differ in the range [0,1]. If the weight for a point is 1,

this means it is in the region of interest and we would like to see its exact coverage

gap measure in the calculations. Hence, in the objective function even the smallest

distance changes between its representative will play an important role. On the other

hand, if we were to use 0 weight for any point, this means this point’s coverage gap

value will not be taken into consideration. The values between 0 and 1 determines

the point’s contribution level to the representation error.

Since we approximate the nondominated set using hypothetical points, we next de-

velop a model that selects a subset of hypothetical points that will represent all hypo-

thetical points based on our new quality measure.

Indices:

i,j = number of points in nondominated point set (1,2,...,N)

p = number of objectives of the problem (1,2,...,M)

Decision Variables:

xi =

 1, if point i is selected to be representative point

0, otherwise

yij =

 1, if point j is represented by point i

0, otherwise

r = number of representative points
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α = weighted coverage gap value

Parameters:

zip = the p’th objective value of point i

gap = maximum accepted coverage gap value

wi = the weight of coverage gap for point i

Model-Weighted-Gap:

min r (5.3)

s.t. α ≥ (zjp − zip)wiyij ∀i, j, p (5.4)

Nxi ≥
N∑
i=1

yij ∀i (5.5)

N∑
i=1

yij = 1 ∀j (5.6)

N∑
i=1

xi = r (5.7)

α ≤ gap (5.8)

xi, yij ∈ {0, 1} ∀i, j (5.9)

Model-Weighted-Gap, is solved for hypothetical points in order to find representa-

tives among hypothetical points. In Model-Weighted-Gap, coverage gap values for

hypothetical points are weighted according to their importance. Afterwards, in the

inequality 5.8 an upper limit is set for the weighted gap measure.

In order to understand the effect of the weights, we experimented with the extreme

values of these weights. We solved different MOIPs with the following weight sets:

• Weight set 1: W1 = 1, W2,W3 = 0

• Weight set 1: W2 = 1, W1,W3 = 0

• Weight set 3: W3 = 1, W1,W2 = 0
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Figure 5.1: Representative point selection among the hypothetical points

As it can be seen in Figure 5.1, working with extreme values of weights shows the

effect of the weights. While the representative points are selected in the most dense

regions for W=(1,0,0), the hypothetical points in extreme regions are favored in rep-

resentative selection when W=(0,0,1).

Once the steps mentioned above are followed, a representative point set can be formed

as it is seen in Figure 5.2. In this example, a total of 32 representative points are

selected among 172 hypothetical points. While selecting the representatives higher

weights are given to the most dense regions (Category 1). This resulted in more

number of representatives in that region.

Once the optimal set of hypothetical points is found using the estimated densities,

we generate the true nondominated points closest to the hypothetical representatives

in the optimal subset. For each hypothetical representative point, we search for the

real point with the minimum Tchebycheff distance to the representative hypothetical

point with the following model:

x∗ = min
x∈X

(max
q
|xq −Riq|) such that Ri ∈ H (5.10)

To sum up the process of finding real representative nondominated points following

alghoritm, FRRP, is provided:
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Figure 5.2: Representative point selection among the hypothetical points

Step 1: Find the central point of the MOIP (See Section 4.2)

Step 2: Fit a Lp surface using the central point (see Section 4.2)

Step 3: Generate hypothetical nondominated points on the Lp surface (see Section 4.2)

Step 4: Estimate the category values for the hypothetical nondominated points (See

Section 4.5)

Step 5: Use estimated category information for hypothetical nondominated point set

to find representatives among the nondominated hypothetical points by using

Model-Weighted-Gap

Step 6: Find x∗ = min
x∈X

(max
q
|xq −Riq|) such that Ri ∈ H

5.2 Computational Experiments

For a better understanding of estimated and true categories of real nondominated

points, we present Figure 5.3. In the Figure, larger circles represent the hypothetical

nondominated points whereas, small dots represent the real nondominated points for

the same problem. Color of each dot and circle show the category of the nondom-

inated point. In order to assign the category of each real nondominated point, we
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Figure 5.3: Estimation of categories on real nondominated points

used closest hypothetical point’s category information. We checked the real and es-

timated categories for 51 different MOIPs and the results show that we approximate

the category values quite well.

We conduct computational experiments algorithm on MOIPs assuming that the set of

nondominated set as well as the density information are not available. We generate

the representative set using our FRRP alghorithm in Section 5.1 and we report the

weighted coverage gap values calculated using the estimated categories.

For comparison purposes, we also calculate the resulting coverage gap value, αa,

using the true densities of the nondominated points. This comparison shows how

well the distribution is estimated by our algorithm. To evaluate how well our algo-

rithm selects the representative hypothetical points, we also consider a case for which

the true densities of hypothetical points are available throughout the algorithm, in

both the representative point selection and weighted coverage gap value calculations.

We report the weighted coverage gap values, αt. We experiment on three-objective,

MOAPs, MOKPs and MOSPPs with sizes between [1014, 10701]. The detailed re-

sults for each of 51 MOIPs can be found in Table 5.1. Table 5.2 includes the summa-

rized information about weighted coverage gap values for these 51 MOIPs.

During calculations, weights are selected as 1 for Category 1 points, 0.75 for Category

2 points and 0.5 for Category 3 points. Also the upper limit for the weighted coverage
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Table 5.1: Results for 51 MOIPs with more than 1000 nondominated points

Weighted Coverage Gap Values
PR Type α αa αt PR Type α αa αt
6 MOAP 0.0825 0.0825 0.0821 76 MOAP 0.1018 0.1018 0.0950
7 MOAP 0.1182 0.1182 0.1034 77 MOAP 0.1050 0.0978 0.1005
8 MOAP 0.0985 0.0985 0.1034 78 MOAP 0.1139 0.1139 0.0917
9 MOAP 0.1111 0.1111 0.1111 79 MOAP 0.1197 0.1197 0.0759

10 MOAP 0.1145 0.1145 0.1145 80 MOAP 0.0931 0.0931 0.0931
11 MOAP 0.0914 0.0914 0.0914 81 MOAP 0.1042 0.1042 0.1063
12 MOAP 0.0841 0.0841 0.0850 82 MOAP 0.0775 0.0941 0.1052
13 MOAP 0.1028 0.1028 0.0868 83 MOAP 0.0979 0.0979 0.0845
14 MOAP 0.1163 0.1131 0.0886 84 MOAP 0.0823 0.0879 0.1009
15 MOAP 0.1029 0.1029 0.1029 85 MOAP 0.1060 0.1060 0.1024
26 MOKP 0.0927 0.1023 0.1061 86 MOAP 0.1003 0.1003 0.0795
27 MOKP 0.1697 0.1697 0.1697 87 MOAP 0.0839 0.0839 0.0854
28 MOKP 0.0880 0.0880 0.0936 88 MOAP 0.0872 0.0872 0.0888
29 MOKP 0.0950 0.0950 0.1032 89 MOAP 0.0815 0.0807 0.1034
30 MOKP 0.0868 0.0807 0.0908 90 MOAP 0.1245 0.1245 0.1165
41 MOKP 0.1104 0.1104 0.1104 91 MOKP 0.0842 0.0842 0.1008
42 MOKP 0.1640 0.1640 0.1368 92 MOKP 0.1156 0.1156 0.1156
43 MOKP 0.1137 0.1137 0.1143 93 MOKP 0.1387 0.1387 0.1387
44 MOKP 0.1196 0.1196 0.1263 94 MOKP 0.1296 0.1296 0.1120
45 MOKP 0.1235 0.1235 0.1237 95 MOKP 0.1078 0.1078 0.1021
61 MOSP 0.0859 0.0859 0.0809 96 MOKP 0.0968 0.0968 0.1063
71 MOAP 0.0903 0.0903 0.1129 97 MOKP 0.0966 0.0966 0.0997
72 MOAP 0.0940 0.0940 0.0872 98 MOKP 0.0815 0.0932 0.0985
73 MOAP 0.1086 0.1086 0.1086 99 MOKP 0.1033 0.1033 0.1033
74 MOAP 0.1206 0.1206 0.1034 100 MOKP 0.1187 0.1187 0.1107
75 MOAP 0.1232 0.1232 0.1048

gap measure is set to 0.1 units.

While we define the desirable weighted coverage gap value as 0.10 for these exper-

iments, our algorithm produces a representative set whose performance measure is

calculated by the algorithm as 0.1050 using the estimated density categories. The ac-

tual weighted coverage gap value of this representative set is actually equal to 0.1056.

Although we slightly underestimate our representation error, the true weighted cover-

age gap value is also close to the desired performance level that shows our representa-

tive selection process works well. If the true density categories were available in our

hypothetical representative selection process, we would select another representative
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Table 5.2: Summary of results for 51 MOIPs with more than 1000 nondominated
points

Weighted Coverage Gap Values

α αa αt

min 0.0775 0.0807 0.0759
max 0.1697 0.1697 0.1697
avg 0.1050 0.1056 0.1031

std. dev. 0.0193 0.0187 0.0165

set with a weighted coverage value of 0.1031. That is, even when the true densities

are known, we would achieve a coverage gap value of 0.1031. This implies that our

density estimation procedure works well while the deviation from the target results

from Lp surface approximation.

Table 5.3: Weighted coverage gap values of different MOKPs and MOAPs

Weighted Coverage Gap Values

Problem Type Average Number of
Nondominated Points

α αa αt

MOAP* 3788 0.1013 0.1016 0.0972
MOKP** 4400 0.1118 0.1126 0.1131

*Experiments are done on 30 instances of different MOAPs
**Experiments are done on 20 instances of different MOKPs

Results in Table 5.3 show that average values for weighted coverage gap values in

different types MOIPs do not change substantially. Our average α value for 30 dif-

ferent MOAPs is 0.1013 where is that of 20 different MOKPs is 0.1118. The average

values for αa and αt are also quite close for these two types of MOIPs. This means

our estimation procedure performs well even when worked with different types of

MOIPs.

In Figure 5.4, we show that our FRRP alghorithm in Section 5.1 also estimates the

locations of worst represented points quite well. As an example, in Figure 5.4 hypo-

thetical point 164 is the worst represented point. This means the weighted coverage

value is determined by this point. When we generate the real points in order to com-
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Figure 5.4: Estimation of the locations of worst represented points

pare the performance of our algorithm, we observe that real point 14 is the worst

represented real point. In general both hypothetical and real worst represented non-

dominated points are located at the same region in the solution space.

Although our resulting weighted coverage gap values deviate from the target level,

the proposed methodology is applicable to any MOIP and is practical in terms of the

solution times. It does not only generate a representative set, it also allows to the DM

to change the weights and involve in the representative selection process.
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CHAPTER 6

CONCLUSIONS

Finding a set of points that represent the nondominated set is useful for MOIPs. Incor-

porating the preferences of the DM into this process is also important for large-sized

problems. In this thesis, we develop methods to generate a set of true nondominated

points in a resaonable solution time. We consider the distrbution properties and the

DM’s preferences in our approach.

for comparison purposes, we study the problems for which we know all of the non-

domianted points. We solve mathematical models that find the optimal set of repre-

sentative points according to existing quality measures. We compare these optimal

sets and show that taking the distribution of the nondominated set into account is im-

portant in representative selection. Therefore, we show that there is a need for a new

quality measure.

We then introduce a density measure, and analyze how the density changes over the

objective space. We find out common properties of MOIPs. Based on our analysis,

we develop a solution framework that approximates the nondominated set, estimates

the distribution of nondominated points over the approximate nondominated set and

generates the true representative nondominated points using a density-based quality

measure.

We experiment on different MOIPs and show that our approach works well. Since our

experiments are limited to three-objective case, one extension would be to experiment

on problems with more than three criteria. Another future work is to incorporate

the decision maker not only in the weight selection process but also other processes

throughout the algorithm to reduce the computational effort.

Finally although the experiments are done on MOIPs having three objectives, the

algorithm can be further analysed with an expansion of problems with more than
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three objectives.
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APPENDIX A

MODELS USED IN THE GENERATION OF NONDOMINATED POINTS

The Multi-Objective Assignment Problem - MOAP

Decision Variables:

xjk

 1, if job j is assigned to person k

0, otherwise

Parameters:

cijk: the coefficient of the assignment of job j to person k in criterion i

Model-MOAP:

” max ” {z1(x), z2(x)..., zM(x)} (A.1)

s.t.
l∑

k=1

xjk = 1 ∀j (A.2)

l∑
j=1

xjk = 1 ∀k (A.3)

xjk ∈ {0, 1} ∀jk (A.4)

where zi(x) =
l∑

j=1

l∑
k=1

cijkxjk ∀i.

We generate cijk coefficients from discrete uniform distribution in the interval [1:20].
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The Multi-Objective Knapsack Problem - MOKP

Decision Variables:

xj

 1, if j is included in the knapsack

0, otherwise

Parameters:

cij: the coefficient of item j in objective i

wj: the weight of item j in the knapsack

W : the capacity of knapsack

Model-MOKP:

” max ” {z1(x), z2(x)..., zM(x)} (A.5)

s.t.
n∑
j=1

wjxj ≤W (A.6)

xj ∈ {0, 1} ∀j (A.7)

where zi(x) =
n∑
j=1

cijxj ∀i.

We randomly generate objective function and weight coefficients from discrete uni-

form distribution such that cij, wj ∈ [10 : 100] and set the knapsack capacity to the

half of the total weight of all items, W =

n∑
j=1

wj

2
.
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The Multi-Objective Spanning Tree Problem - MOSTP

Decision Variables:

xj

 1, if any flow exists from node i to node j

0, otherwise

wij: total flow from node i to node j

fkij: total flow of commodity k from node i to node j

Parameters:

cijv: unit cost of flow from node i to node j in objective v

Model-MOSTP:

” max ” {z1(wij), z2(wij)..., zM(wij)} (A.8)

s.t.
n∑
i=1

n∑
j=1

wij = 1 (A.9)

n∑
j=1

fkij −
n∑
j=1

fkji =


1, i = 1

−1, i = n

0, otherwise

∀i, j k = 2, 3, ..., n (A.10)

fkij ≤ wij ∀i, j k = 2, 3, ..., n (A.11)

wij + wji = xij ∀i, j (A.12)

xij ∈{0, 1} ∀i, j (A.13)

where zv(wij) =
n∑
i=1

n∑
j=1

wijcijv v = 1, 2, ...,M .

We generate cost parameters, cijv as integers uniformly distributed such that cijv ∈
[10 : 100].
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The Multi-Objective Shortest Path Problem - MOSPP

Decision Variables:

xij

 1, if arc between nodes i and j is used

0, otherwise

Parameters:

cijv: unit cost of arc between nodes i and j in objective v

Model-MOSPP:

” max ” {z1(xij), z2(xij)..., zM(xij)} (A.14)

s.t.
n∑
j=1

xij −
n∑
j=1

xji =


1, i = 1

−1, i = n

0, otherwise

∀i (A.15)

xij ∈{0, 1} ∀i, j (A.16)

where zv(xij) =
n∑
i=1

n∑
j=1

cijvxi,j v = 1, 2, ...,M .

The values for cijv are calculated as follows:

cijv =


UNIF (10, 50), i ∈ Stagek, i < j, k = 1, 2, ..., s

UNIF (30, 100), i ∈ Stagek, j ∈ Stage(k+1), k = 1, 2, ..., s− 1

L, otherwise

where L is a sufficiently large number to guarantee that the corresponding edge will

not be included in the random graph.
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APPENDIX B

COMPLETE LIST OF MOIPS
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Table B.1: List of MOIPs (Part-1)

PR Problem Type P-value Size of the
Problem

Number of
Hypothetical Points

1 MOAP 3.9573 103 232
2 MOAP 3.0947 162 207
3 MOAP 2.9711 120 201
4 MOAP 2.1442 107 174
5 MOAP 2.5478 117 169
6 MOAP 3.2179 1846 201
7 MOAP 2.8278 1617 196
8 MOAP 3.2183 1513 201
9 MOAP 2.7646 2007 190

10 MOAP 2.4907 3275 181
11 MOAP 3.6019 6369 211
12 MOAP 3.3835 5368 199
13 MOAP 3.0776 6654 204
14 MOAP 3.4712 6975 196
15 MOAP 3.4125 6573 202
16 MOKP 3.0402 79 207
17 MOKP 4.1975 82 217
18 MOKP 2.4288 60 178
19 MOKP 2.4014 18 178
20 MOKP 2.5394 52 169
21 MOKP 2.4619 405 178
22 MOKP 3.8204 378 229
23 MOKP 4.8056 92 222
24 MOKP 2.2909 676 171
25 MOKP 3.3470 313 195
26 MOKP 2.8080 2751 190
27 MOKP 2.5361 3837 169
28 MOKP 2.8742 3780 192
29 MOKP 2.8599 3084 195
30 MOKP 2.9494 2952 198
31 MOKP 2.3346 182 166
32 MOKP 2.3093 168 172
33 MOKP 2.9246 76 195
34 MOKP 1.9192 163 148
35 MOKP 2.2727 470 177
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Table B.2: List of MOIPs (Part-2)

PR Problem Type P-value Size of the
Problem

Number of
Hypothetical Points

36 MOKP 2.3120 784 172
37 MOKP 2.3462 912 166
38 MOKP 2.9717 519 201
39 MOKP 3.0248 280 207
40 MOKP 2.8790 356 192
41 MOKP 2.6780 2790 184
42 MOKP 2.3642 8288 172
43 MOKP 2.2769 10701 183
44 MOKP 2.3888 5652 172
45 MOKP 2.3898 6500 172
46 MOSPP 4.0531 49 226
47 MOSPP 2.1100 80 159
48 MOSPP 2.2199 119 174
49 MOSPP 2.8603 64 195
50 MOSPP 2.1137 45 159
51 MOSPP 2.9196 217 195
52 MOSPP 2.7456 169 190
53 MOSPP 2.7587 214 190
54 MOSPP 3.0873 325 207
55 MOSPP 2.8238 437 196
56 MOSPP 2.8238 437 196
57 MOSPP 3.6200 464 211
58 MOSPP 3.7270 510 226
59 MOSPP 3.9431 411 232
60 MOSPP 3.8152 316 232
61 MOSPP 4.1155 1014 220
62 MOSPP 3.8891 725 232
63 MOSPP 3.5615 874 205
64 MOSPP 4.2951 682 220
65 MOSPP 4.0050 795 232
66 MOSTP 2.4445 655 178
67 MOSTP 2.4555 486 172
68 MOSTP 2.2777 704 183
69 MOSTP 2.5129 549 184
70 MOSTP 2.5140 733 184
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Table B.3: List of MOIPs (Part-3)

PR Problem Type P-value Size of the
Problem

Number of
Hypothetical Points

71 MOAP 2.6147 1970 178
72 MOAP 2.9683 1247 198
73 MOAP 2.9469 1806 198
74 MOAP 2.9252 2150 195
75 MOAP 2.7078 2246 196
76 MOAP 2.8140 2813 196
77 MOAP 3.2177 1825 201
78 MOAP 2.7405 1591 190
79 MOAP 2.9497 1916 198
80 MOAP 2.8674 1521 195
81 MOAP 3.2186 6099 201
82 MOAP 3.3738 6178 196
83 MOAP 3.6803 3898 214
84 MOAP 3.8194 5394 232
85 MOAP 3.1313 5021 195
86 MOAP 3.7375 4066 226
87 MOAP 3.1454 4350 201
88 MOAP 3.5479 5670 205
89 MOAP 2.9280 6584 195
90 MOAP 3.2003 5090 204
91 MOKP 3.0002 3523 201
92 MOKP 2.9105 3114 195
93 MOKP 2.7196 2714 190
94 MOKP 2.5541 4773 175
95 MOKP 2.7240 2433 190
96 MOKP 2.7102 7203 190
97 MOKP 3.3894 3307 202
98 MOKP 3.1783 3062 195
99 MOKP 2.6522 4355 184

100 MOKP 2.3603 3198 166
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APPENDIX C

COMPLETE LIST OF MOIPS HAVING MORE THAN 1000
NONDOMINATED POINTS
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Table C.1: Percentage of the points in each of 4 categories for the MOIPs having
more than 1000 nondominated points (Part-1/2)

Percentage of Points
in each Category

PR Problem
Type

P-value Problem
Size

Hypo.
Points

1 2 3 4

6 MOAP 3.2179 1846 201 13% 16% 19% 52%
7 MOAP 2.8278 1617 196 13% 17% 21% 48%
8 MOAP 3.2183 1513 201 12% 15% 18% 54%
9 MOAP 2.7646 2007 190 10% 14% 17% 58%

10 MOAP 2.4907 3275 181 12% 14% 16% 58%
11 MOAP 3.6019 6369 211 10% 12% 17% 61%
12 MOAP 3.3835 5368 199 11% 16% 22% 51%
13 MOAP 3.0776 6654 204 12% 16% 22% 50%
14 MOAP 3.4712 6975 196 12% 13% 16% 59%
15 MOAP 3.4125 6573 202 12% 13% 16% 59%
26 MOKP 2.8080 2751 190 7% 8% 13% 72%
27 MOKP 2.5361 3837 169 9% 12% 20% 59%
28 MOKP 2.8741 3780 192 9% 11% 15% 65%
29 MOKP 2.8599 3084 195 9% 11% 16% 64%
30 MOKP 2.9494 2952 198 10% 12% 14% 65%
41 MOKP 2.6780 2790 184 10% 13% 15% 62%
42 MOKP 2.3642 8288 172 13% 16% 20% 50%
43 MOKP 2.2769 10701 183 14% 16% 21% 49%
44 MOKP 2.3888 5652 172 12% 16% 19% 52%
45 MOKP 2.3898 6500 172 14% 17% 20% 49%
61 MOSPP 4.1155 1014 220 10% 14% 15% 60%
71 MOAP 2.6147 1970 178 15% 17% 20% 48%
72 MOAP 2.9682 1247 198 11% 15% 21% 53%
73 MOAP 2.9468 1806 198 14% 16% 16% 55%
74 MOAP 2.9252 2150 195 10% 15% 19% 56%
75 MOAP 2.7077 2246 196 11% 14% 17% 58%
76 MOAP 2.8140 2813 196 9% 11% 17% 63%
77 MOAP 3.2176 1825 201 12% 15% 17% 55%
78 MOAP 2.7404 1591 190 13% 16% 20% 51%
79 MOAP 2.9496 1916 198 11% 15% 18% 56%
80 MOAP 2.8674 1521 195 14% 14% 18% 54%
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Table C.2: Percentage of the points in each of 4 categories for the MOIPs having
more than 1000 nondominated points (Part-2/2)

Percentage of Points
in each Category

PR Problem
Type

P-value Problem
Size

Hypo.
Points

1 2 3 4

81 MOAP 3.2186 6099 201 13% 16% 20% 51%
82 MOAP 3.3737 6178 196 11% 12% 16% 61%
83 MOAP 3.6802 3898 214 10% 13% 17% 60%
84 MOAP 3.8194 5394 232 10% 13% 15% 63%
85 MOAP 3.1312 5021 195 12% 16% 23% 49%
86 MOAP 3.7374 4066 226 13% 16% 19% 52%
87 MOAP 3.1453 4350 201 11% 14% 19% 55%
88 MOAP 3.5479 5670 205 11% 15% 20% 54%
89 MOAP 2.9279 6584 195 13% 16% 20% 51%
90 MOAP 3.2003 5090 204 12% 15% 22% 52%
91 MOKP 3.0002 3523 201 9% 12% 14% 65%
92 MOKP 2.9105 3114 195 8% 12% 15% 65%
93 MOKP 2.7196 2714 190 7% 9% 15% 68%
94 MOKP 2.5541 4773 175 11% 14% 20% 55%
95 MOKP 2.7239 2433 190 10% 15% 21% 55%
96 MOKP 2.7101 7203 190 11% 13% 16% 60%
97 MOKP 3.3894 3307 202 11% 15% 20% 53%
98 MOKP 3.1782 3062 195 10% 13% 17% 60%
99 MOKP 2.6522 4355 184 10% 13% 15% 62%

100 MOKP 2.3603 3198 166 13% 14% 18% 55%

min 7% 8% 13% 48%
max 15% 17% 23% 72%
avg 11% 14% 18% 57%

std. dev. 1.8% 2.0% 2.5% 5.7%
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Table C.3: Percentage of the points in each of 3 categories for the MOIPs having
more than 1000 nondominated points (Part-1/2)

Percentage of Points
in each Category

PR Problem
Type

P-value Problem
Size

Hypo.
Points

1 2 3

6 MOAP 3.2179 1846 201 13% 16% 71%
7 MOAP 2.8278 1617 196 13% 17% 70%
8 MOAP 3.2183 1513 201 12% 15% 73%
9 MOAP 2.7646 2007 190 10% 14% 76%

10 MOAP 2.4907 3275 181 12% 14% 74%
11 MOAP 3.6019 6369 211 10% 12% 77%
12 MOAP 3.3835 5368 199 11% 16% 73%
13 MOAP 3.0776 6654 204 12% 16% 72%
14 MOAP 3.4712 6975 196 12% 13% 75%
15 MOAP 3.4125 6573 202 12% 13% 75%
26 MOKP 2.8080 2751 190 7% 8% 85%
27 MOKP 2.5361 3837 169 9% 12% 79%
28 MOKP 2.8741 3780 192 9% 11% 79%
29 MOKP 2.8599 3084 195 9% 11% 80%
30 MOKP 2.9494 2952 198 10% 12% 79%
41 MOKP 2.6780 2790 184 10% 13% 77%
42 MOKP 2.3642 8288 172 13% 16% 70%
43 MOKP 2.2769 10701 183 14% 16% 69%
44 MOKP 2.3888 5652 172 12% 16% 72%
45 MOKP 2.3898 6500 172 14% 17% 69%
61 MOSPP 4.1155 1014 220 10% 14% 76%
71 MOAP 2.6147 1970 178 15% 17% 69%
72 MOAP 2.9682 1247 198 11% 15% 74%
73 MOAP 2.9468 1806 198 14% 16% 71%
74 MOAP 2.9252 2150 195 10% 15% 75%
75 MOAP 2.7077 2246 196 11% 14% 75%
76 MOAP 2.8140 2813 196 9% 11% 80%
77 MOAP 3.2176 1825 201 12% 15% 73%
78 MOAP 2.7404 1591 190 13% 16% 71%
79 MOAP 2.9496 1916 198 11% 15% 74%
80 MOAP 2.8674 1521 195 14% 14% 72%
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Table C.4: Percentage of the points in each of 3 categories for the MOIPs having
more than 1000 nondominated points (Part-2/2)

Percentage of Points
in each Category

PR Problem
Type

P-value Problem
Size

Hypo.
Points

1 2 3

81 MOAP 3.21863 6099 201 13% 16% 71%
82 MOAP 3.373751 6178 196 11% 12% 77%
83 MOAP 3.680293 3898 214 10% 13% 77%
84 MOAP 3.81941 5394 232 10% 13% 78%
85 MOAP 3.131264 5021 195 12% 16% 72%
86 MOAP 3.737463 4066 226 13% 16% 71%
87 MOAP 3.145361 4350 201 11% 14% 75%
88 MOAP 3.547947 5670 205 11% 15% 74%
89 MOAP 2.927998 6584 195 13% 16% 71%
90 MOAP 3.200332 5090 204 12% 15% 74%
91 MOKP 3.000231 3523 201 9% 12% 79%
92 MOKP 2.910548 3114 195 8% 12% 79%
93 MOKP 2.719634 2714 190 7% 9% 84%
94 MOKP 2.554102 4773 175 11% 14% 75%
95 MOKP 2.723962 2433 190 10% 15% 75%
96 MOKP 2.710181 7203 190 11% 13% 76%
97 MOKP 3.389438 3307 202 11% 15% 74%
98 MOKP 3.178276 3062 195 10% 13% 77%
99 MOKP 2.65225 4355 184 10% 13% 77%

100 MOKP 2.360317 3198 166 13% 14% 73%

min 7% 8% 69%
max 15% 17% 85%
avg 11% 14% 75%

std. dev. 1.8% 2.0% 3.6%
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