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ABSTRACT

MODELING OF FLUID -VAPOR INTERFACE IN THE CONDENSATION
ZONE OF A GROOVED HEAT PIPE

Alipour, Mobin

M.S., Department of Mechanical Engineering

Supervisor : Prof. Dr. Zafer Dursunkaya

September 2017, 75 pages

Condensation in grooved heat pipes involves several simultaneous phenomena

including vapor-liquid boundaries whose shapes are unknown a priori, �uid �ow

due to capillary and dispersion pressure gradients and condensation over ultra

thin �lms. In grooved heat pipes, the majority of condensation occurs on �n

tops due to the thinner liquid �lm, having a lower thermal resistance, compared

to inside the groove where the �uid is substantially thicker. Majority of the

studies in the literature assume an approximate pro�le for the liquid �lm surface

and apply an integral balance for conservation laws, including the e�ect of the

capillary pressure only. In addition, this approximate pro�le is matched with

the liquid pro�le inside the groove, which serves as a boundary condition. In

the current study, the e�ect of a slope dependent disjoining pressure and the

matching conditions with the groove are investigated using a comprehensive

model. The results suggest that for small temperature di�erences and small

slopes, the e�ect of dispersion pressure is non negligible and beyond limiting

values of edge slope angles, the disjoining e�ect precludes solutions where the
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�n top �lm matches the groove in a smooth transition. In addition bifurcation

manner is found for the results. Their physical availability is examined in this

study. This analysis results suggested that the second set of answers which is

found because of bifurcation, despite its mathematical validity, could not be

physically valid.

Keywords: Condensation, micro-grooved heat pipe, disjoining pressure, micro

region
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ÖZ

OLUKLU B�R ISI BORUSUNUN YO�UNLA�MA BÖLGES�NDE SIVI
-BUHAR ARAYÜZÜNÜN MODELLENMES�

Alipour, Mobin

Yüksek Lisans, Makina Mühendisli§i Bölümü

Tez Yöneticisi : Prof. Dr. Zafer Dursunkaya

Eylül 2017 , 75 sayfa

oluklu �s� borular�ndaki yo§unla³ma, ³ekilleri önceden bilinmeyen buhar-s�v� s�-

n�rlar�, k�lcal damlac�klara ve da§�l�m bas�nç gradyenlerine ba§l� s�v� ak�³� ve

ultra ince �lmler üzerindeki yo§unla³ma da dahil olmak üzere birçok e³zamanl�

olay� içerir. oluklu �s� borular�nda yo§unla³man�n ço§unlu§u, s�v�n�n daha kal�n

oldo§u oluk içinedençok, daha dü³ük �s�l direnci olan daha ince s�v� �lm nede-

niyle kanatç�k yuzuy�nde olu³ur. Literatürdeki çal�³malar�n büyük bir ço§unlu§u

s�v� �lm yüzeyi için bir yakla³�k pro�l kullanarak ve yaln�zca k�lcal bas�nç etkisi

ile koruma yasalar� için bir denge uygular. Buna ek olarak, bu yakla³�k pro�l,

oluk içindeki s�v� pro�li ile e³le³tirilir, bu da bir s�n�r durumu ³art� yer�ne ge-

çer. Bu çal�³mada, e§ime ba§l� ayr�lma bas�nc�n�n etkisi ve e³leme ko³ullar� ile

kapsaml� bir model kullan�larak ara³t�r�lm�³t�r. Sonuçlar, küçük s�cakl�k farklar�

ve du³uk e§imler için da§�lma bas�nc�n�n önemsiz olmad�§� ve kenar e§im aç�la-

r�ndaki s�n�rlay�c� de§erlerin ötesinde, ayr�³an etki, kanatç�k üstundeki �lminin

olukla e³le³ti§i yerlerde yumu³ak bir geçi³te bulunuldu§unu önermektedir. Buna

ek olarak, sonuçlar için bifürkasyon görülmü³ ve bunun �ziksel sonuçlar� ince-
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lenmi³tir. Sonuçlar�n bu analizi, bifurkasyon nedeniyle matematiksel geçerlili§ine

ra§men ikinci sonuç kümesinin �ziksel geçerlili§�ni incelemektedir.

Anahtar Kelimeler: Yo§unla³ma, mikro oluklu �s� borusu, ayr�³ma bas�nc�, mikro

bölge
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CHAPTER 1

INTRODUCTION

Electrical devices contain multiple smaller parts with noticeable amount of heat

dissipation. Performance and e�ciency of an electrical system relies on some

dependent factors. One of them is cooling process of the components and ther-

mal management of the whole system. Phase change process enables the heat

pipes to transfer the heat from heat source to sink with smaller distance and

lower temperature di�erences. This is mainly because of the large amount of

heat winch phase change requires in order to be happened. Traditional and com-

monly used cooling methods are not able to address the high heat concentrated

components which modern electrical devices contain. Alternative replacement

of this traditional cooling systems could be design by focusing on using phase

change process which will make them applicable for this cited cooling cases. An

example of systems bene�ting from phase change is heat pipe. Heat pipes are

comprise a container which includes three zones; evaporation, condensation and

adiabatic. Pressure gradient caused because of the capillary pressure di�erence

inside the container of the heat pipes, enables the condensed liquid to �ow from

condensation to evaporation section. In order to have a physical representation,

the phase change phenomena of evaporation and condensations should accu-

rately modeled. Intermolecular forces and interactions becomes dominant in the

scale of the thin liquid �lms. These ultra thin �uid layers encountered in phase

change process, should be modeled by considering the intermolecular forces in

order to have a more accurate predictions for the scale of the liquid �lm and

consequently on the thermal behavior of the heat pipe.
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1.1 Heat pipe

Heat pipes include a container, wick structure and a operational liquid. Heat

pipe has three main zones; condensation, evaporation and adiabatic region. Heat

is transferred from the heat source outside the container to the operating liquid,

this caused the liquid to evaporate. This region where the phase change from

liquid to vapor happens is called evaporation zone. In the heat sink zone, by

observing the heat from the heat pipe, the vapor condensed to liquid. This part

of the heat pipe is named condensation zone. The region between evaporation

and condensation parts, is the adiabatic zone in which the thermal transfer is

not happening. It should be noted that the exact location of the adiabatic region

is not clear which means the exact distinguishing limit between this transition

section and evaporation or condensation zone is unknown. The schematic of the

heat pipe and its mechanism is shown in Fig. 1.1.

 

Figure 1.1: Schematic of the heat pipe, picture adopted from[1]

Transport mechanism of the liquid inside the container from condensation to

the evaporation zone which allows the heat pipe to operate with out delay, is

supplied by the wick structure. This structure allows the water to �ow back to

the evaporation zone by using the capillary pressure di�erences which is emerged

and became dominant because of the wick structure. This wick structured could

be implemented to the container with di�erent methods like creating grooves or

adding sinter.

2



Figure 1.2: Two di�erent methods for creating Wick structure[1]

1.1.1 Types of heat pipes

The simplest form of heat pipes are traditional cylindrical models. Theses mod-

els include a container with cylindrical cross section and di�erent kinds of wick

structures which are chosen based on their applications. An another type of

heat pipe which due to its geometry is more applicable for electronic devices,

is �at heat pipe. In this kind of heat pipe the cross section of the container is

rectangular, despite the cylindrical models, but the working mechanism of both

are almost similar. Capillary pumped looped heat pipes are the most widely

used heat pipes for spacecraft applications. The schematic of its structure is

presented in Fig. 1.5. It bene�ts from the two-phase reservoir which enables

the heat pipe to control the working �uid and the temperature. Another form

of the heat pipes which could have a noticeable potential for cooling application

of the electronic devices, are micro and miniature heat pipes. The micro heat

pipe was de�ned as a heat pipe in which the mean curvature of the liquid vapor

interface is comparable in magnitude to the reciprocal of the hydraulic radius

of the total �ow channel [2]. If the hydraulic diameter of the heat pipe is in

the range of 0.5 - 1.5 mm, it could be named as miniature heat pipe [6]. Dif-

ferentiation between miniature and micro heat pipes are not well de�ned in the

literature. For instance, in some papers, miniature heat pipes including several

micro grooves are named as micro heat pipe either Fig. 1.5.
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Figure 1.3: Capillary pumped loop heat pipe [2]

1.2 Physical phenomena of phase change

Phase change is the principal physical mechanism of transformation between one

thermodynamic state to a new one. Some phenomena related to phase change

is explained in this section.

1.2.1 Phase change

The advantage that help heat pipes to remove the heat in shorter distance and

with lower temperature di�erence between the heat source and sink, is phase

change. Two phase change mechanism happen in the container; evaporation

and condensation. The both of them play a great role in the heat removal pro-

cess. In micro grooved heat pipes, evaporation mostly happens in the liquid-solid

interface inside the groove just before the edge of the �n. Despite the evapo-

ration, condensation mostly occurs on the �n top where the liquid thickness is

4



 

Figure 1.4: Di�erent micro heat pipe cross sections [3]

Figure 1.5: grooved heat pipes cross sectional views

thinner than the liquid inside the groove. The schematic of the evaporation and

condensation sections in the heat pipe are shown in Fig. 1.6. Since the conden-

sation modeling is taken into consideration in this study, a brief introduction of

it is presented in this section.
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Evaporation 

Condensation 

Figure 1.6: Cross sectional view of the condensation and evaporation phase change process in micro grooved

heap pipe, �gure partly adapted from [5]

1.2.1.1 Condensation and evaporation

Condensation is a phase change process in which gas converts to liquid, and is

the reverse process of the evaporation. In order to have a better modeling cal-

culation of the mass �ux created because of the condensation or evaporation, in

addition of the thermal di�erence, pressure balance between two phases should

be analyzed. At liquid-vapor interface, mass, momentum and energy conserva-

tion should be satis�ed in the condensation modeling. Energy balance of the

condensation and evaporation could be written as

q′′l − q′′v = m′′chlv. (1.1)

Conservation of momentum reduces to augmented Young-Laplace equation and

is expressed as
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Pv − Pl = Pc + Pd (1.2)

where Pv, Pl, Pc and Pd refers to vapor, liquid, capillary and disjoining pressure

respectively.

1.2.1.2 Capillary pressure

Surface tension generated from deformation of the interface curvature, results in

the presence of the capillary pressure. It is a function of radius of the �lm and

surface tension. Since the radius of the liquid inside the groove is much larger

than the liquid on the �n top, the related term could be neglected and the �nal

form of the capillary pressure for the condensation liquid �lm is reduced to

Pc =
σ

R
(1.3)

where R could be written as a function of the �lm curvature and expressed as

Pc =
σδxx(

1 + δx
2
)3/2

. (1.4)

1.2.1.3 Disjoining pressure

In the thin �lm layers, less than 100 nm, inter molecular interactions mostly

caused by van der Waals forces, become dominant. In order to remove a small

increment of this thin layer, an equilibrium force is required which its magnitude

depends on the layers thickness and caused by the pressure which is named as

disoining pressure. Disjoinig pressures e�ect is dominant in modeling of droplets

and thin layers of liquid �lms and it should be included in the mathematical

modeling of these problems.
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1.3 Scope of the Thesis

In this study condensation �lm is modeled by considering the conservation of

mass and momentum along with the augmented Young-Laplace equation which

is solved numerically while the e�ect of slope and curvature dependent disjoining

pressure is included in the calculation process. Beside this model, the 4th order

polynomial �tting approach and the case in which the disjoining pressure is

neglected, are taken into consideration and compared. Validity of the boundary

conditions especially those related to the edge of the �n top are discussed and

compared with the experimental results available in literature and the results

dependency to the di�erent e�ective parameters are presented. State of art

review of the condensation and evaporation modelings is presented in chapter 2.

Chapter 3 refers to the modeling process of �uid �ow and condensation process.

In this chapter, numerical approach that is used in this study in order to solve

the condensation �lms general equation is discussed. Results and discussions

are presented in chapter 4. Finally, conclusion and future works are discussed

and suggested in chapter 5.
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CHAPTER 2

LITERATURE REVIEW

Thin liquid meniscus inside the groove and in the evaporation region, has been

modeled by numerous studies in the past decades. Potash and Wayner [7] pre-

sented a mathematical model of the evaporation for the extended meniscus in

1972. Prior to this study, Wayner et al. [8] suggested the transport model by

considering the disjoining pressure for the thin liquid �lm on a �at plate. In

1976 Wayner et al. [9] modi�ed the Schrage [10] for phase change by includ-

ing the Clausius-Clapeyron equation and the equation given by Derjaguin[11].

In this study evaporation mass �ux was expressed as a function of the pres-

sure and temperature jump and the �uid �ow assumed to behave as a 1-D

lubrication �ow. These cited assumptions and considerations were further used

by various studies in literature. Mirzamoghadam et al. [12] applied appropri-

ate pro�les for temperature and velocity distributions in order to model the

menisci of evaporation in a way similar to boundary layer methods. Dasgupta

et al. [13] modeled dispersion and capillariy forces to be continuous by includ-

ing the augmented Young-Laplace equation in the modeling, but variation in

the �lm thickness was assumed to be small and neglected which renders the

model invalid in case of highly curved menisci. Stephan and Busse [14], unlike

the other studies mentioned above, conducted a mathematical modeling based

on combining conservation equations of mass and momentum and solving the

resulting ODE by Runge-Kutta numerical scheme. They asserted that assum-

ing the same temperature for the interfacial and saturation temperatures could

result in over prediction of heat transfer coe�cient. Wee et al. [15] and Wang

et al. [16] used the same solution methodology as the one used in [14]. Wee et

al. [15] analyzed the polarity of the liquid and concluded that polarity leads to
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the reduction of evaporation rate due to the increase in the van der Waals forces

of polar liquid. In contrast to what was assumed in [9] about the equality of the

temperature of the bulk vapor and the vapor in the vicinity of the liquid-vapor

interfacial line which were both included in the mass �ux, Wang et al. [16] did

not consider this assumption. It was found that this assumption results in an

underestimation of the heat transfer coe�cient for superheats more than 5K.

Wang et al. [16] also emphasized the importance of the sharing rate of micro

region in the total heat transfer rate of the evaporation meniscus. Another

research which used the same methodology as what Stephan and Busse[14] ap-

plied in their model, is a study that was conducted by Bertossi et al. [17]. This

research was based on a parametric study and uttered that contact angle and

intrinsic meniscus region are totally independent. In 2011, Du and Zhao [18]

introduced new boundary conditions for the numerical solution of the initial

di�erential equation of the evaporation region, with the same methodology as

what was presented by Wang et al. [16]. In 2015 Kou et al. [19] compared the

e�ects of applying di�erent formulation of evaporation mass �ux to the evap-

oration modeling and discussed their results. Wayner and Clausius�Clapeyron

formulation for evaporation mass �ux were both considered and discussed in

this research. A novel approach for solving the mathematical modeling of the

evaporation in order to �nd the more accurate meniscus pro�le is presented by

Akku³ and Dursunkaya[21] in 2016. In this study, starting point for solving the

di�erential equation was located in the intrinsic meniscus region where the ratio

of disjoining pressure to capillary pressure was signi�cant and the results were

compared with the results of Stephan and Busse [14]. Evaporation modeling

inside the grooved heat pipe has been studied noticeably more in comparison of

condensation modeling. Evaporation mostly happens on edge of �n and groove,

but most of the condensation happens on the �n top and its magnitude inside

the groove is negligible. This is due to the thinner thickness of the liquid �m on

the �n top. In 2001, Zhang and Faghri [4] modeled the condensation �lm inside

the groove and on the top of the �n of the rectangular shaped groove by using

VOF method. Forces due to the pressure jump at the liquid-vapor interface

were modeled as volume force by using divergence theorem and �nally E�ects

of contact angle, surface tension and �n geometry were discussed. They stated
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that convection has negligible e�ect on the condensation liquid �lm and it can

be excluded form the modeling process. Also, the assumption that most of the

condensation happens on the �n top was con�rmed based on the results of their

modeling. In the study of Jiao et al. [22] which was conducted in 2005, thick-

 

Figure 2.1: Predictions for condensation �lm presented in[4]

ness of liquid �lm was assumed to be constant. A hydrodynamic model for the

�ow on the �n top created because of condensation was presented in this study.

A hydrodynamic model which its governing equation was based on coupling

four nonlinear ODEs which were derived from conservation of mass, momentum

and cosnidering Young-Laplace equation, was reported by [5, 23]. They used

Runge-Kutta numerical method for solving the governing equation and Disjoin-

ing pressure was neglected in this study. Condensation mass �ux was assumed

to be constant along the �n top by using Clausius-Clapeyron formulation and

the liquid �lm on the �n top was considered to be symmetric. Four boundary

conditions were assumed in this research, two satisfying the contact angle at the

�n top and the symmetric condition at the beginning, the other two boundaries

refer to the magnitude of the velocity, and the pressure of liquid being equal to
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vapor pressure at the �n edge. Furthure, The results of the �ow modeling and

�lm thickness predictions was coupled to the two dimensional thermal model in

their study. In 2010, they reported a comparison between theoretical results and

experimental observations [5]. The experimental observation which is reported

in their study, shows a signi�cant di�erence between the theoretical predictions

of condensation �lm on the �n top and the experimental data. In addition, the

observed pro�le contain one change in the slope of the liquid �lm before the

edge, where the authors named it as slope break. This change in slope does not

happen in theoretical models predictions. It was mentioned that the exact lo-

 

Figure 2.2: Boundary conditions used in [5] for the modeling of condensation �lm

cation of the �n edge was not clear for them during the test and maybe it could

bring some errors for results. This cited slope break and di�erence between

results should be taken into consideration. The possible reasons attributed to

this mentioned slope break was asserted by authors as: (i) van der Waals forces

and intermolecular interactions at the �n edge where the thickness of the liquid

�lm is extremely thin could e�ected the �lm pro�le and it was neglected in their

modeling. (ii) �ow could also be in the parallel direction of the groove on the
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�n top which is neglected in the modeling.

 

Figure 2.3: Comparison of theoretical and experimental results for condensation �lm in [5]

In 2008 and 2010, a method for predicting the approximated �lm pro�le of the

condensed liquid on the �n top was introduced by Do et al. [20, 24]. This

method was based on �tting a 4th order polynomial to the governing equation

derived from conservation of mass, momentum and Young-Laplace equation.

This derivation resulted in one single di�erential equation that was function of

�lm pro�le. The same method was used by Odaba³i [25] in 2014 for modeling

the condensation �lm. Wayner's formulation for evaporation and condensation

mass �ux is implemented by di�erent researches for modeling the �uid-vapor

interface [3, 9, 13, 15, 16, 18�21, 24�33], on the other hand, Clausius�Clapeyron

formulation is applied by other researches as the main method for calculating

the evaporation and condensation interfacial mass �ux for their modeling [5, 12,

14, 17, 19, 23, 34, 35].

E�ect of disjoining pressure on the behavior of the evaporation menisci was

discussed by di�rent researchers, but it was not considered as a part of con-
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densation modeling. In 1957, Derjaguin and Zorin [11] described the concept of

the disjoining pressure and presented experimental data for polar liquids, which

were formulated as a logarithmic function by Holm and Goplen [36] in 1979.

Derjaguin and Zorin [11] also introduced the polynomial which was only func-

tion of �lm thickness for calculating the disjoining pressure of the non-polar

liquids. These mentioned formulas are commonly used in the literature to in-

clude the e�ects of the disjoining pressure in the evaporation modeling for both

polar and non-polar liquids[9, 13, 15�21, 26�28, 31, 34]. All the cited e�orts

for applying disjoining pressure used the formula which is solely dependent on

the �lm thickness and independent of the slope and curvature of the �lm pro-

�le. Hocking [37] suggested an expression which contains derivatives of the �lm

thickness, however, this expression has two major problems; (i) this expression

was derived by assuming a constant intermolecular potential along the liquid-

vapor interface, and it does not satisfy the equilibrium condition because the

intermolecular potentials of the inside of the droplet or �lm was not taken into

account. (ii) The second problem refers to the assumption that Hocking [37]

took by equaling the disjoining pressure with the intermolecular potential at the

interface, which is utterly unjusti�ed. Indeikina and Chang [38] tried a simi-

lar approach and derived a slope dependent disjoining pressure, but the total

equilibrium condition was not satis�ed in their research either. In 2004, Wu

and Wang [39] expressed a new slope and curvature dependent disjoining pres-

sure, which is modi�ed for small variations of �uid �lm�i.e. small slopes�and

derived by analyzing the equilibrium condition. In this research study, an equi-

librium condition was derived from minimizing the total energy of a droplet on

a substrate in which intermolecular interactions and resulting excess energy is

included. This formulation includes higher order terms which prevent a contact

line from moving without slip when a liquid �lm ends at a substrate while the

previous formulation allows a contact line to move without slip. Dai et al. [40]

signi�ed a problem for the expression derived by Wu and Wang [39], and pre-

sented a correction to this formula. This problem refers to the case in which

the �rst and second derivatives of the �lm are approaching to zero. Biswal et

al. [33] included the expression derived by Wu and Wang [39] in the modeling of

the evaporation meniscus. They stated that the correction which Dai et al. [40]
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applied to the formula is not signi�cantly a�ecting the result and the expression

presented in the study of Wu and Wang, was used as the main formula for cal-

culating disjoining pressure. This study was the only one in which the e�ect of

the slope and curvature dependent disjoining pressure on the evaporation was

taken into consideration. There has not been any research related to analyzing

the e�ect of disjoining pressure for condensation �lm, with or without the slope

dependency, up to present day.
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CHAPTER 3

MODELING AND SOLUTION METHODOLOGY

3.1 Problem de�nition

Evaporation mostly occurs in the groove and close to �n edge. The surface on

the �n top is assumed to be adiabatic which means no evaporation take places on

that surface. Despite the evaporation section, �n top is the most important part

of condensation modeling since almost all of the condensation occurs on the �n

top due to the thinner liquid �lm on it in contrast to the liquid inside the groove.

The adiabatic transitioning region between condensation and evaporation zone

is the section in which any phase change process is neglected in the modeling

of heat pipe. The process of phase changes on the �n top and in the grooves

along with liquid �ow inside the groove is shown in Fig. 3.1. The liquid �lm

is �atter in the ending zone of condensation section and by approaching to the

starting point of condensation section, the shape of the liquid �lm on the �n top

and in the groove becomes more curvy. The liquids �ows from condensation to

evaporation section through the groove because of the pressure gradient created

by capillary pressure. In the evaporation section liquid �lm inside the groove

becomes curvy due to evaporation by approaching to the ending zone of this

section. In this study, the modeling of condensation �lm and predictions for its

pro�le is concentrated to the �n top only, since the most margin of condensation

is happening on the �n top. The modeling process includes conservation of mass,

momentum and augmented Young-Laplace equation in the vapor-liquid inter-

face. In this chapter the modeling process along with the numerical approaches

for solving the problem is discussed and presented.
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(a)

(b)

Figure 3.1: (a) Heat pipe mechanism in groove for evaporation and adiabatic sections (b) Heat pipe mecha-

nism in the groove and on the �n top for condensation and adiabatic sections
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3.2 Flow and condensation model

Since the �lm thickness created because of the condensation on the �n top is

thinner than the liquid inside the groove, most of the heat transfer process hap-

pens on the �n top. Consequently, in order to have a better thermal predictions,

an accurate modeling for the condensation �lm on the �n top is necessary. This

liquid �lm on the �n top and the general geometry of the �n and grooved is

shown in Fig. (3.2). The angle α is the contact angle inside the groove and

slope of the liquid�vapor interface can be expressed as a function of the angle

θe, δx = tan(θe), where the angle θe is de�ned as the �edge slope angle� in the

current study. Augmented Young-Laplace equation (Eq. (3.1)) is used for de-

scribing the pressure di�erence between vapor and liquid on the �n top which

includes capillary and disjoining pressure terms.

 

 

Groove 

Fin 

Condensation 

Liquid film 

α 

θe 
Groove 

Fin 

Figure 3.2: Liquid �lm geometry on the �n top

Pv − Pl = Pc + Pd (3.1)
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The liquid �ow on the �n top is assumed as unidirectional fully developed.

Inertia terms are neglected and the momentum conservation on the �n top is

written as

dPl
dx

= µ
d2u

dy2
. (3.2)

In this equation u is the �uid velocity in the streamwise (i.e. x) direction and

µ is the dynamic viscosity of the �uid. Integrating Eq. (3.2) along with the

boundary conditions u = 0 at y = 0, and du/dy = 0 at y = δ the velocity

distribution is obtained.

u(y) =
1

2µ

dPl
dx

y(y − 2δ), (3.3)

the integration of which gives the mass �ow rate per unit depth

ṁ′ = − 1

3ν

dPl
dx

δ3. (3.4)

Mass �ux at the interfacial region beween vapor and liquid is predicted by using

the modi�ed form of the Wayner's equation which was introduced by Moosman

and Homsy [41]. This equation is a function of temperature di�erence between

vapor and wall. Pressure di�erence between the liquid and vapor phases is taken

into consideration in this formula.

ṁ
′′

c =
a (Tw − Tv)− b (Pv − Pl)

1 + aδhlv/kl
(3.5)

a =
2c

2− c

( M

2πRuTlv

)1/2 PvMhlv
RuTvTlv

(3.6)

b =
2c

2− c

( M

2πRuTlv

)1/2 PvVl
RuTlv

(3.7)

The accommodation coe�cient, c, is taken as unity in Eq. (3.6,3.7)[13, 18�20,

30, 32]. By applying the mass balance between mass �uxes which are introduced
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in Eq. (3.4) and Eq. (3.5), the governing equation which is a function of the �lm

pro�le, is obtained as

dṁ′

dx
= −ṁ′′c . (3.8)

Substitution of the Eq. (3.5) and Eq. (3.4) into Eq. (3.8) results in the governing

di�erential equation for the �lm thickness, δ in terms of pressures

− 1

3ν
δ3d

2Pl
dx2
− δ2

ν

dδ

dx

dPl
dx

= −a (Tw − Tv)− b (Pv − Pl)
1 + aδhlv/kl

. (3.9)

3.3 Capillary and disjoining pressures

Capillary pressure formula which totally dependents on the shape and curvature

of the liquid is expressed as,

Pc =
σδxx(

1 + δx
2
)3/2

. (3.10)

The expression for disjoining pressure was introduced by Derjaguin [11] as

Pd =
A

δ3
. (3.11)

Since this equation is solely function of the �lm thickness, its best predictions

are for parallel surfaces without any slope an curvature for the liquid �lm. In

this study this form of the disjoinig pressure is named as �simple form�, where

A represent the dispersion constant. In the current study the e�ect of the slope

and curvature of the �uid surface on the disjoining pressure is included. In order

to derive the functional form of the disjoinig pressure, the approach that Wu and

Wang [39] followed in the derivation of disjoining pressure is used. They derived

an expression for the disjoining pressure as Eq. (3.12), yet it should be noted

that this expression is only valid for small values of the slope of �lm thickness.
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Pd =
B

δ3

(
α4 − δx4 + δδx

2δxx

)
. (3.12)

In this equation α and B are constants wrriten in Eq. 3.22. In the condesation

region and on the �n top, the liquid �lm could have slop and curvy shapes,

rendering the expression of the disjoning pressure to include higher order terms.

As a consequence, a formula including these cited terms is needed. To this end,

the same mathematical approach of Wu and Wang [39] is used, but modi�cations

are applied.

Figure 3.3: A drop on a solid substrate.

Equilibrium condition in which the total energy of the system is at its minimum

value and its variation is equal to zero, is written as

δ̄I = 0; I =

∫ x∗

0

(
σfg(1 + δx)

1/2 + σfs − σsg + E + Lgδ
)
dx. (3.13)

Expanding Eq. (3.13) gives

∫ x∗

0

(∂E
∂δ

+ pc

)
ωδ dx+

∫ x∗

0

(∂E
∂δ

+
σfgδx(

1 + δx
2
)1/2

)
ωδx dx

+
[
σfg
(
1 + δx

2
)1/2

+ σfs − σsg + E + pcδ
]
x∗
ωx∗ = 0. (3.14)

By using integration of parts method for second term and combining the �rst

and second parts, the �nal expansion of the Eq. (3.13) could be shown as
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∫ x∗

0

(
∂E

∂δ
+ pc −

σfgδxx(
1 + δx

2
)3/2
− d

dx

(∂E
∂δx

))
ωδ dx

−
[( σfgδx(

1 + δx
2
)1/2

+
∂E

∂δx

)
ωδ

]
x=0

+

[
σfg(

1 + δx
2
)1/2

+ σfs − σsg + E + δx
∂E

∂δx

]
x=x0

ωx∗ = 0. (3.15)

Because ωδ and ωx∗ are arbitrary, the expressions inside the parentheses and

brackets should be equal to zero. The �rst expression gives the augmented

Young-Laplace equation as below,

σfgδxx(
1 + δx

)3/2
− ∂E

∂δ
+

d

dx

(∂E
∂δx

)
= Lc. (3.16)

The �rst term of Eq. (3.16) expresses the capillary pressure and the term Lc is

recognized to be the di�erence of the vapor and liquid pressure. Consequently,

disjoining pressure could be de�ned as

Pd = −∂E
∂δ

+
d

dx

(∂E
∂δx

)
. (3.17)

Excess energy was derived by integrating the total intermolecular potential Φ

with respect to x, from cut-o� distance D to the �lm thickness δ at any given

point. This limiting distance D is assigned in order to avoid the in�nite self

interactions. [39]

E =

∫ δ

D

(Φ− Φ∞)dy (3.18)

Φ and Φ∞ were found by considering a geometry of a droplet on the substrate

and assuming two points, one inside the liquid and the other outside, located in

the solid or vapor as shown in Fig. 3.4. Φ is derived by Wu and Wang [39] as

Φ =
πn2

fβff

6

[
a1(1− ρ) + ρ− λ

υ3
1

+
a2(1− ρ)

υ3
2

]
(3.19)
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Figure 3.4: A liquid wedge on a solid substrate in equilibrium with its vapor [39]

where,

λ =
nsβfs
nfβff

, ρ =
ngβfg
nfβff

, υ1 = R sin γ, υ2 = R sin(ψ − γ)

a1 = 1/2 + 3/4 cos γ − 1/4 cos3 γ,

a2 = 1/2 + 3/4 cos(ψ − γ)− 1/4 cos3(ψ − γ).

As υ1 tends to in�nity but making υ2 to be constant, Φ∞ could be expressed as

Φ∞ =
πn2

fβff (1− ρ)

6υ3
2

(3.20)

Wu and Wang [39] derived the excess energy as Eq. (3.21), by calculating the

van der Waals forces between solid, liquid and vapor molecules and de�ning the

intermolecular distance based on the cylindrical geometry. In order to reach the

�nal format of E, the limit of the Eq. (3.21) for the case that D/δ is approaching

to zero should be taken. This assumption is acceptable because of the small

ratio of D/δ, otherwise the scale of δ would be small enough to pass the limits

of continuum postulate.

E = −πnf
2βff

4δ2

(
1− λ

3
+

(1− ρ) δx
2

4

(
1− 1

(1 + δx
2)1/2

))
. (3.21)

Disjoining pressure which is expressed as Eq. (3.12) is derived by taking the

limit of δx → 0 in Eq. (3.21) and inputting the modi�ed E into Eq. (3.17), but
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in this study the excess energy is added to the Eq. (3.17) with the exact form

of the Eq. (3.21). Hence, a new form of disjoining pressure, which is compatible

for higher rates of slope and curvature, could be de�ned as

Pd = ±B
δ3

(
α4 − 2

3
δx

2 − 2δx
4

3
(
1 + δx

2
)3/2

+
2δx

2

3
(
1 + δx

2
)1/2

+
2

3
δδxx

− δδx
4δxx

(1 + δx
2)5/2

+
5δδx

2δxx

3
(
1 + δx

2
)3/2
− 2δδxx

3
(
1 + δx

2
)1/2

)
, (3.22)

where,

B =
3πnf

2βff (1− ρ)

16
, α =

[
8 (1− λ)

9 (1− ρ)

]1/4

, λ =
nsβfs
nfβff

, ρ =
ngβfg
nfβff

.

This derived version of the disjoinig pressure is named as �full form� in this

study. Using Eq.(3.1) and assuming a constant pressure Pv of vapor phase, and

using Eq. (3.10) the pressure gradient in the liquid is found as

dPl
dx

= −d(Pc + Pd)

dx
= −dPd

dx
− σ δxxx

(1 + δx 2)3/2
+ 3σ

δxδxx
(1 + δx 2)5/2

. (3.23)

This new form of disjoining pressure was added to Equations. (3.23) and (3.9)

which results in a 4th order nonlinear ordinary di�erential equation as a �nal

governing equation. In summary, the general di�erential equation of the problem

for a case in which disjoning pressure is excluded and included, are de�ned as

Equations 3.24 and 3.25. Governing equation for the case in which the disjoning

pressure is not included in the modeling is

1

3ν

d

dx

[
δ3 d

dx

[ σδxx(
1 + δx

2
)3/2

]]
= −a (Tw − Tv)− b(σδxx/(1 + δx

2)
3/2

)

1 + aδhlv/kl
. (3.24)

By adding Eq. 3.22 to Eq. 3.9, governing equation which includes the full form
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of the disjoning pressure could be de�ned as

1

3ν

d

dx

[
δ3 d

dx

(
± B

δ3

(
α4 − 2

3
δx

2 − 2δx
4

3
(
1 + δx

2
)3/2

+
2δx

2

3
(
1 + δx

2
)1/2

+
2

3
δδxx

− δδx
4δxx

(1 + δx
2)5/2

+
5δδx

2δxx

3
(
1 + δx

2
)3/2
− 2δδxx

3
(
1 + δx

2
)1/2

)
+

σδxx(
1 + δx

2
)3/2

)]
=

− 1

1 + aδhlv/kl

[
a (Tw − Tv)−b

(
± B
δ3

(
α4− 2

3
δx

2− 2δx
4

3
(
1 + δx

2
)3/2

+
2δx

2

3
(
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(3.25)

It is obvious that including the e�ect of disjoning pressure makes the govern-

ing equation to be highly nonlinear, which should carefully be addressed by

numerical approaches with suitable accuracy in order to �nd the accurate roots.

3.4 Solution methodology

In this section the boundary conditions for the problem are de�ned. Numerical

solution of two methods for the problem are introduced and �nally the �owcharts

of the numerical processes are presented.

3.4.1 Boundary and initial conditions

Boundary conditions are chosen based on the physics of the problem. As it is

shown in the Fig. (3.2), four boundary conditions are available for the �ow on

the �n top. Two of them are de�ned at the symmetry line and the other two are

located at the edge of the �n. First derivative of the �lm thickness is de�ned

in relation with complementary angle at the �n edge by δx(L) = − tan θc. In

order to satisfy the concavity change of the �lm pro�le on the �n top and in

the groove, the second derivative of the �lm thickness should be considered to

be zero at the �n edge. The �rst derivative of the �lm is set be zero in order

to impose the symmetric condition to the �lm pro�le at the centerline. Fourth

boundary condition refers to the third derivative, which is assumed to be zero
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at the center line. This consideration satis�es two di�erent demands; (i) it

guarantees the symmetric condition for the �lm thickness, (ii) it could avoid

any unintended entrance of mass �ow rate at the centerline. If we divide the

�uid �lm into several in�nitesimal elements and consider the �rst element at

the beginning, due to the mass balance there should not be any m
′
in for the

�rst element. In order to make sure that m
′
in is equal to zero, it could be

understood from Eq. (3.4) that the pressure gradient should be imposed to be

zero. Pressure gradient is both function of �rst and third derivatives, as a result,

enforcing �rst derivative to be zero could not make m
′
in to be zero because of

the presence of the terms which are solely function of the third derivative in

pressure gradient. By considering both derivatives to be zero, it could satisfy

the symmetric condition and avoid the possible mass entrance at the centerline

simultaneously.
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x 

α 
θc +  α =  π/2 

Figure 3.5: Boundary and matching conditions frequently used in the literature

In summary the boundary conditions are,

At x = 0 : δx = 0, δxxx = 0;

At x = L : δx = − tan θc, δxx = 0. (3.26)

An alternative set of boundary conditions are used in order to investigate the

validity and applicability of the matching condition at the �n edge. In this case,

the location in which the second derivative of the pro�le change its sign is set

to be in a spot before the �n edge, as observed experimentally [5]. This second

set of boundary conditions is shown in in Fig. 3.5.
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At x = 0 : δx = 0, δxxx = 0;

at x = xi : δxx = 0

at x = L : δx = − tan θe, θe = 0 (3.27)

The schematic of this set of boundary conditions is plotted in Fig. 3.6.

Figure 3.6: Alternative set of Boundary and matching conditions, adaptation by experimental data [5]

3.4.2 Numerical approaches

The governing equation of the condensation �lm was solved numerically in two

di�erent ways. The �rst method is based on using Runge-Kutta-Fehlberg ap-

proach for solving the 4th order nonlinear di�erential equation. The second one

which is commonly used in literature, is to �t a 4thorder polynomial to the gov-

erning equation. Both of the mentioned solution methods are used and modeled

in this study. In this section solution procedures of these two cited approaches

are discussed and explained.
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3.4.2.1 Secant method for 4thorder polynomial model

4thorder polynomial integration method was used in this study, in which the

same methodology is applied as the one was introduced by Do et al. [20, 24]. In

this approach, a 4th order polynomial is assumed as a function of �lm thickness

and its constants are de�ned by considering the boundary conditions. This

polynomial could be written as

δ = α0 + α1 (x− t) + α2(x− t)2 + α3(x− t)3 + α4(x− t)4. (3.28)

Where t represent the �n length at the �n edge. α1, α2, α3 and α4 could be

identi�ed by applying the boundary conditions to the Eq. (3.28), but α0 which

is the amount of δedge, should be assumed as an initial guess. This initial guess

is changing by iterative process unless Eq. (3.29) is satis�ed, where f is a small

parameter chosen dependent on the numerical criteria.

− 1

3υ

dPl
dx

δ3 +

∫ t

0

a (Tw − Tv)− b (Pc + Pd)

1 + aδhlv/Kl

= f (3.29)

Iteration process of Eq. 3.29 is performed by using secant numreical method.

This model is de�ned in Chapter 4 and its results are discussed.

3.4.2.2 Runge-Kutta-Fehlberg for mass conserving model

The governing 4thorder ODE for the �lm thickness δ (Eq. (3.9)), is written in

the standard R-K form as four coupled �rst order ODE's

d4δ

dx4
= f (δ, δx, δxx, δxxx) , (3.30)

dδ

dx
= w,

dw

dx
= q,

dq

dx
= z,

dz

dx
= f (δ, w, q, z) . (3.31)
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Solving the equation with Runge-Kutta-Fehlberg method needs four initial con-

ditions. It means the two conditions at the �n edge should be replaced with two

assumed new conditions at the centerline in this problem. Two initial conditions

are guessed at the center line but these guesses should be altered unless the de-

�ned two conditions at the �n edge are satis�ed. As a result, at the centerline

four conditions are applies as below,

x = 0 → δ0 = guessed, δx = 0, δxx = guessed, δxxx = 0

and the δ0 and δxx at the centerline are changing continuously unless the two

conditions at x = L are satis�ed. A two dimensional Newton-Raphson approach

is chosen for �nding the roots of the shooting method. Variable step size and

quadruple precision are adapted to Runge-Kutta-Fehlberg scheme. Since the

equation is purely nonlinear, it is strongly sensitive to the initial guesses.

3.4.2.3 Flowcharts of the numerical process

Flowchart of the numerical process for both set of boundary conditions described

in Equations (3.26) and (3.27), are presented in Figs. 3.7 and 3.8. The numerical

modeling of the problem with boundary conditions of 3.26, contains two external

iterative loops for reaching the θfinal and ∆Tfinal by starting from initial values

and continues by a small step side. These initial values for θi and ∆Tj usually

are the fastest and simplest θc and ∆T that can be achieved by code. Initial

guesses for the RKF-45 (Runge-Kutta-Fehlberg) is assumed and the results are

obtained. Boundary conditions at the �n edge, are satis�ed by two forcing

functions and using two dimensional Newton-Raphson method. In the second

numerical process in which the second set of boundary conditions 3.8 is used,

there is one external iterative loop for �nding the Xb. This location is de�ned in

order to �nd a location in which the sign of second derivative is changing before

the �n edge. The �lm pro�le is solve by RKF-45 in two separated sections,

before and after the Xb. The forcing functions for correcting the initial guesses

are the magnitude of the mass �ow rate at �n edge and the second derivative at

Xb.
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Figure 3.7: Flowchart of the numerical approach
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Figure 3.8: Flowchart of the numerical approach for the second set of boundary conditions
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CHAPTER 4

NUMERICAL RESULTS AND ANALYSIS

Numerical results are obtained by using numerical approaches stated in section

3.4. The models used in this study are listed as follow:

• 4thorder polynomial: Fits a 4thorder polynomial to the shape of the liquid

�lm as in [20, 24].

• Young-Laplace (YL): Assumes the pressures to be due to the capillary

e�ect only (Pc), neglecting the disjoining pressure (Pd), and solves the

resulting di�erential equation, Eq. 3.24, for �lm thickness using Runge-

Kutta-Fehlberg approach. This model is mainly constructed in order to

analyze and compare the e�ect of disjoning pressure which is discussed in

Section 4.4.

• Augmented Young-Laplace (A-YL): Includes the e�ect of both capillary

(Pc) and disjoining (Pd) pressures. It accounts for the e�ect of interface

slope and curvature on disjoining and capillary pressures, and solves the

resulting di�erential equation, Eq. (3.25), for �lm thickness using Runge-

Kutta-Fehlberg approach.

The problem is formulated for both constant temperature and constant �ux

boundary conditions. Fin thickness is 20 micron, the operating �uid is water.

The physical properties that are used in this study are listed as table. 4.1.

If Eq. (3.22) is used for the parallel surfaces�i.e imposing the �rst and second

derivative to be zero� its format simpli�es to a form introduced by Derjaguin

[11],
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Table 4.1: Physical properties used in condensation modeling

Parameter Unit Magnitude

Pv Pa 1.033× 105

Tv K 373

hlv J/kg 2.3× 106

ρ kg/m3 1000

σ N/m 5.89× 10−2

µ Pa · s 2.79× 10−4

kl W/m ·K 0.6

M kg/mol 18× 10−3

Vl m3/mol 18× 10−6

c 1.0

A* 5× 10−21

* Taken from[20]

Pd =
A

δ3
. (4.1)

Comparing Eq. [3.22] and Eq. [4.1], Bα4 = A, where A is the dispersion constant.

The value of A for water and copper interaction, is obtained from [20] and the

value of Bα4 is calculated to match A.

4.1 4thorder polynomial model

The results of the �lm pro�le for 4 di�erent complementary angle with ∆T = 1◦C

is plotted in Fig. 4.1 for 4thorder polynomial model. Forcing the �rst derivative

at the �n edge render the �lm thickness at the centerline to be completely

dependent on this boundary condition. By increasing the magnitude of the

complementary angle, the �lm pro�le at the centerline becomes thicker despite

its manner at the �n edge which reaches thinner thicknesses. Variation of the �lm

thicknesses with temperature di�erence is presented at Fig. 4.2. By increasing

the temperature di�erence between vapor and wall, the entering condensation
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Figure 4.1: Variation of �lm thickness along the �n for various complementary angles for ∆T = 1 for 4thorder

polynomial model.

mass �ux is increasing and consequently the �lm becomes more thicker.
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Figure 4.2: Variation of �lm thickness along the �n for various complementary angles for θe = 10◦ for

4thorder polynomial model.

4.2 Augmented Young-Laplace (A-YL) model

Variation of �lm pro�le with respect to di�erent complementary angles and

temperature di�erences for (A-YL) model is presented in Fig. 4.3 and Fig. 4.4.

It can be seen from Fig. 4.3 that, same as 4thorder polynomial model results,

by decreasing the complementary angle the �lm pro�le becomes �atter. Fig. 4.4
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shows that for smaller temperature di�erences the �lm is thinner.
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Figure 4.3: Variation of �lm thickness along the �n for various complementary angles for ∆T = 1◦C (A-YL)

model.
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Figure 4.4: Variation of �lm thickness along the �n for various temperature di�erences for θe = 10◦ for

(A-YL) model.

The change between the �lm pro�les along the �n and by altering the temper-

ature di�erence, tends to be almost linear for pro�les with thicker thickness.

When the �lm is thick in higher temperature di�erences, the thickness of the

�lm pro�le all over the �n top is big enough to neglect the e�ect of disjoining

pressure. By recalling the Eq. 3.5, it can be noted that by increasing the mag-

nitude of the δ, the magnitude of a(∆T ) becomes dominant in comparison of

b(∆P ) and ahlvδ/kl, rendering the mass �ux to be solely sensitive to ∆T . By
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increasing the complementary angle, which means the pro�le contain more curvy

shape and reaches thinner thicknesses at the regions near to �n edge, this men-

tioned sensitivity to the temperature di�erences looses its e�ect. This change

is shown in Fig. 4.5 where the �lm thickness for two di�erent complementary

angle but for a same temperature di�erences is plotted.
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Figure 4.5: Variation of �lm thickness along the �n for (A-YL) model.

4.3 Validation and comparison

4.3.1 Validation using data available in literature

The results of this study are validated with numerical predictions reported in

the literature. The results of the (A-YL) model, 4thorder polynomial and the

results reported by Faghri and Zhang [4] using VOF method for θc = 6◦ and

θc = 2◦ at ∆T = 10◦C are given in Fig. 4.6. The (A-YL) model predicts more

condensation since the �lm thickness is thinner in this case comparing to other

models.

Di�renec between the mass �ow rate predictions using (A-YL) model and the

4thorder approximation are given in Fig. 4.8. This �gure shows a notable dif-

ference between the predictions. 4thorder pro�le uses the entire surface of the

liquid �lm for satisfying conservation of mass and momentum, unlike the (A-YL)
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Figure 4.6: Film pro�le comparison for (A-YL), 4thorder polynomial model and VOF method for ∆T = 10◦C
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Figure 4.7: 4th order polynomial and (A-YL) model mass �ow rate comparision for ∆T = 1◦C and θe = 10◦

model which uses in�nitesimal element for controlling the mass and momentum

balance. This di�erence is visible in Fig. 4.8, which shows that the di�erence

between the results of two methods is less signi�cant when the �lm pro�le is

�atter. This cited reason could be better shown by plotting the mass �ow rate

along the �n top for two models with a speci�c complementary angle in Fig.

4.7. Mass conserving behavior of the (A-YL) model is obvious in this �gure,

since the magnitude of the mass �ow rate is increasing step by step because of

the inputting condensation.
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In the report that was presented by Lefèvre et al. [5], condensation �lm was
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modeled by assuming the constant heat �ux along the �n top and neglecting

the disjoning pressure in the modeling process. Wall shear was calculated by

considering a laminar �ow in the channel and it was predicted by using a cor-

relation which was based on minimum aspect ratio cmin. The numerical value

of the cmin was not reported in the paper. In order to have a comparision, the

model used in [5] is constructed and implemented in this study and di�erent

minimum aspect ratios are exercised. Predictions of the �lm thickness reported

in [5], and the results that are obtained in this study by using the (YL) and

(A-YL) models and construction of the [5] model with using di�erent values

of the minimum aspect ratio are presented in Fig. 4.9. The predictions of the

current (YL), (A-YL) models and the reconstructed model using a minimum

aspect ratio cmin = 1 match well. The thickness of the liquid �lm render the

dosjoning pressures e�ect to be substantial small and negligible which makes the

predictions of (Y-L) and (A-YL) models to be in strongly similar magnitudes.
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Figure 4.9: Film thickness calculated by (A-YL) model and Lefèvre [5]

4.3.2 Comparison between three models

By plotting the �lm thickness at the �n edge for all three models introduced at

section 4, di�erences between these mentioned models could be better analyzed.

Since �lm thickness at the edge, (δedge), is the thinnest thickness of the �lm

pro�le, the disjoning pressures e�ect is in its most dominant case along the

�n. Consequently, the values of (δedge) for all three models are plotted. Figs.
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4.10 and 4.11 show a notable di�erence between 4thorder polynomial and (A-

Yl) model for (δedge). The main di�erence between (A-YL) and (YL) refers to

the limitation emerges in (A-YL) results. The reasons rendering this di�erence

is discussed in section 4.4. It should be noted that, this thickness which is

predicted for �lm pro�le especially at edge zone of the �n top, is calculated by

considering the ideal surface for the �n top. Since the scale of the �lm thickness

is less than 1 micron, the surface roughness could readily a�ects the �lm shape.

In this study the surface is considered to be ideal for all modeling processes.
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Figure 4.10: δedge for ∆T = 0.03◦C
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Figure 4.11: δedge for ∆T = 0.3◦C

Predicted mass �ow rate di�erence between (A-YL) and (YL) models is shown in

Fig. 4.12. The di�erence is far lesser than the mass �ow rate di�erence between
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4thorder polynomial and (A-YL) models. It should be noted that the main

notable di�erence between (A-YL) and (YL) models refers to the existence of a

limitation in results of (A-YL) model which is discussed in section 4.4.

Total heat �ux analyzing of (A-YL) model, is plotted in Fig. 4.13 with respect to

di�erent values of complementary angle and temperature di�erences. Heat �ux

is found by multiplying latent heat of evaporation and the total mass �ow rate

calculated from Eq. 3.4. The magnitude of the heat �ux rises by increasing the

temperature di�erence between �n and the interface. By analyzing this �gure,

it could be understood that heat �ux magnitude reaches its maximum value at

at a speci�c complementary angle. There is an extremum point at the beginning

of the each pro�le and this extremum becomes more obvious by increasing the

temperature di�erence. Increasing the number of �ns by having thinner width

increases the magnitude of the heat �uxes. This suggest that by decreasing the

�n thickness, more optimized and enhanced thermal performance is achievable.

This e�ect of �n thickness on the total heat �ux is shown in Fig. 4.14 for a range

of complementary angles. In order to compare the results of heat �uxes predicted

with all three models, Figs. 4.15 and 4.16 are plotted. Like the results of (δedge),

there is a signi�cant di�erence between the results of 4thorder polynomial and

(A-YL) models. The result of (A-YL) and (YL) are in good compatibility, the

only di�erence is the existence of limitation for the results of (A-YL) which is

explained in section 4.4.
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Figure 4.14: Variation of heat �ux in (A-YL) model with complementary angle for di�erent �n thicknesses

4.4 E�ect of disjoining pressure

In order to analyses the e�ect of disjoning pressure on the shape of liquid �lm,

the case in which the �lm is continues at the �ne edge is chosen and boundary

conditions described in Fig.3.5 are used. In this case edge angle is equal to com-

plementary angle, θe = θc. Magnitude of the doisjoning pressure is proportional

to the inverse value of the �lm thickness, which means its e�ect is dominant

when the �lm thickness is small. Smaller complementary angles, render the liq-

uid �lm to be �atter which makes the disjoning pressure e�ects to be distributed

on the whole length of the �n but with the smallest magnitude. In contrast, in
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Figure 4.15: Heat �ux comparison with di�erent models for ∆T = 0.03◦C
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Figure 4.16: Heat �ux comparison with di�erent models for ∆T = 0.3◦C

higher slopes, �lm thickness reaches extremely thinner magnitudes at proximity

of the �n edge. It means that the e�ect of disjoning pressure becomes dominant

at that small zone before the �n edge. Generally, its e�ect is more dominant

at the �n edge zone and for higher slope �lm pro�les in comparison of smaller

slopes.

This e�ect is shown in Fig. 4.17 for ∆T = 0.6◦C and for three di�erent comple-

mentary angles. Predictions of (YL) and (A-YL) models are almost overlapping

for entire range of the �lm thickness referring to Fig. 4.17 except for the small

proximity before the �n edge. The blown up view shows that at the �n edge,

for the case of θ = 20◦, the �lm thickness at the edge (δedge) is ∼ 0.05µm
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and the predictions of the (YL) and (A-YL) are close. This di�erence between

two models becomes more obvious by increasing the magnitude of the comple-

mentary angle. In the case of θ = 40.301◦, since the �lm thickness reaches

extremely smaller magnitudes, this mentioned di�erence between two models is

at its maximum point. This further shows that the e�ect of disjoining pressure

is non-negligible for small �lm thicknesses. Since the e�ect of disjoning pressure

is more dominant at the �n edge and the �lm thickness at that point, (δedge),

the variation of (δedge) with the complementary angle for various interface-wall

temperature di�erences is plotted in Fig. 4.18. Predictions of �lm pro�le shows

that, while the �lm thickness ath the edge zone is thick and slope is �atter, (YL)

and (A-YL) are similar. By increasing the complementary angle, rendering the

�lm thickness to become thinner at the edge, e�ect of disjoniig pressure intensi-

�es and a separation between two models results emerges. The model with the

disjoining pressure,(A-YL), results can only be obtained until a speci�c value of

the complementary angle for a given temperature di�erence, beyond which no

solution can be found. This cited limitation does not exist for (YL) model, and

any speci�c complementary angle �lm pro�le could be obtained by using this

model. This limitation point which occurs for (A-YL) model, is named as the

�cut-o� point" in the current study.

The main di�erence between (A-YL) and (YL) models is due to the cut-o�

point which exists in the results of (A-YL) model. Fig. 4.18 shows that, (YL)

model can predict results for all values of complementary angles, unlike (A-YL).

The results of (A-YL) model on the other hand, are limited by complementary

angle. This limitation emerges when the �lm is thin enough to render disjoining

pressure to be dominant. The variation of this cut-o� point for four temperature

di�erences is shown in Fig. 4.19. Total pressure gradient consists of terms,

related to capillary and disjoning pressure, and existence of the cut-o� point

is due to these cited terms. Contribution of capillary and disjoinig pressure

on the total mass �ow rate solely is plotted in Fig. 4.20. This �gure shows

the contribution of terms corresponding to the case plotted in Fig. 4.19 for

a temperature di�erence of ∆T = 0.03◦C, where the cut-o� point is at θc =

10.4791◦. At the point away from the cut-o� point when complementary angle
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Figure 4.17: Film thickness in the vicinity of groove for (A-YL) and (YL) models at ∆T = 0.6◦C

is equal to θc = 8◦, dominant term contributing on the total pressure gradient

and consequently on the mass �ow rate is caused by capillary pressure. By

increasing the magnitude of the complementary angle, and approaching to the

cut-o� point, the contribution rate of the disjoning pressure terms on the total

mass �ow rate increases due to the decrees in the �lm thickness at the �n edge.

In case the results of θc = 8◦, θc = 10◦ , θc = 10.4◦ and θc = 10.4791◦C

cases are compared, it can be understand that, when the point is away from

the cut-o� capillary pressure is dominant, in contrast, by approaching to cut-

o� point, disjoning pressures contribution increases and surpass the capillary

pressure contribution. Finally, capillary pressures contribution fall into zero at

the cut-o� point, θc = 10.4791◦, and at this point the dominant terms refer to
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disjoning pressures contribution. By using Equations (3.10) and (3.12), mass

�ow rate expression for capillary pressure could be written as

m′Pc
= − 1

3ν

( σδxxx(
1 + δx

2
)3/2
− 3σδxδxx

2(
1 + δx

2
)5/2

)
δ3, (4.2)

and for disjoining pressure the mass �ow rate is equal to

m′Pd
= − 1

3ν

(
dPd
dx

)
δ3. (4.3)
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Figure 4.20: Contribution of capillary and disjoining pressure gradient terms to the mass �ow rate for (a)

θc = 8◦ (b) θc = 10◦ (c) θc = 10.4◦ (d) θc = 10.4791◦ at cut-o�
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The contribution of capillary pressure on the mass �ow rate, m′cp, is plotted with

di�erent temperature di�erences for (A-YL) and (AY) models. The magnitude

of m′cp in (YL) model, goes to zero smoothly with respect to the decline in the

magnitude of temperature di�erence. Despite the (YL) model, in (A-YL) the

magnitude of m′cp drops radically near to the cut-o� point.

The mass �ow rate is proportional to the pressure gradient and the cross sectional

area, e�ectively the �lm thickness. based on Fig. 4.20, by exceeding the cut-o�

point, it can be estimated that the magnitude of the capillary pressure becomes

negative. Since in Eq. (4.2) the second term of the equation is always positive,

this implies that negative contribution of capillary pressure requires δxxx = 0

before the �n edge and δxxx < 0 at the �n edge. Boundary conditions at the �n

edge, forced the �lm pro�le's second derivative to be zero at the �n edge in order
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Figure 4.21: Mass �ow rate percentage di�erence for (A-YL) and (YL) models
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Figure 4.22: Variation of δxxx and δxx of the δedge for ∆T = 0.03◦C

to match the groove pro�le. Since the second derivative of the �lm pro�le before

the edge is negative, its gradient which is δxxx could not be negative if it should

be vanished at the �n edge and reach zero from a negative value. Consequently a

solution cannot be found for this case. This brings a limitation to the maximum

value of the complementary angle for a given temperature di�erence. In the case

of the (YL) model, where only the capillary term is present, no such limitation

exists, since �ow is due to the δxxx, which cannot approach zero, rendering

solutions for all values of complementary angle θc. The behavior of the δxxx and

δxx of the (δedge) is plotted in Fig. 4.22.
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4.5 E�ect of matching conditions and edge slope angle

Very few number of reports regarding the experimental results of the condensa-

tion �lm is available in the literature. In 2010, Lefèvre et al.[5] reported both

experimental and numerical data for the condensation �lm on the �n top of a

grooved heat pipe. Substantial di�erence between two set of results was reported

in their paper. Their experimental test, which was conducted by using confocal

microscopy, shows that the common set of boundary condition (Eq. (3.26)) may

not always be valid due to the di�erent matching condition that was observe din

their test. This experimental result showed a in�ection point of the �n pro�le

located in a point before the �n edge and a slope break happened at the �n

edge where the slope of the liquid �lm on the �n top did not match the slope of

the liquid inside the groove. This point was reported in approximately 320 µm

from the plane of symmetry. The authors argue that one of the reasons for this

behavior may be attributable to the possible e�ect of van der Waals forces in

the regions where the �lm is thin.

The current model is exercised in two di�erent sets of boundary and interior

conditions; one using the set of Eq. (3.26); and a second one using the set of

Eq. (3.27)in which xi refers to the interior in�ection point before the �n edge,

to simulate the experimental �ndings.

Thermophysical properties of the materials and geometry details that were used

in [5] are applied and implemented in this study. Groove width and radius

of curvature are 400 µm and 1.08 mm, respectively. This radius makes the

complementary angle to be equal as 10.68◦. By applying the same properties of

[5] and using the �rst set of boundary conditions (Eq. (3.26), results are obtained

and a comparison between the experimental data and the numerical predictions

is plotted in Fig.4.23 (a). There is a substantial di�erent between the results, and

the shape of the pro�les do not match each other. As a result, in order to match

the pro�les, lower heat �uxes were exercised but matching did not happen in

those cases either. The reason of this noticeable di�erence between �lm shapes of

experimental and theoretical result refers to the boundary conditions de�ned in

Eq. (3.26). Because of the imposed �rst and second derivative located exactly at
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Figure 4.23: (a) Comparison of results using Eq. (3.26) and experimental data of [5] (b) Comparison of

results using Eq. (3.27) and experimental data obtained in [5], where the in�ection point in the pro�le is at

xi = 320 µm
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the �n edge, the shape of the �lm pro�le remains unchanged for di�erent range of

inputted heat �uxes. The same manner is observable for constant temperature

di�erence boundary condition as plotted in Fig. 4.4.

Comparison between experimental and theoretical results shows that by us-

ing boundary conditions de�ned in Eq. (3.26), matching between these results

is unattainable. In this study, disjoning pressure�e�ectively van der Waals

term�is included in the modeling process, but this inclusion does not help the

numerical results to match the experimental observations either. Second set of

boundary consitions de�ned in Eq. (3.27) applied to the model, in order to

compare the new results with experimental observation of [5]. This comparison

is given in Fig. 4.23 (b). Unlike Fig.4.23 (a) a reduction in the magnitude of

the heat �ux changes the magnitudes of the �lm thickness ultimately matching

the experimental, albeit at a much lower heat �ux of 0.2 W/m2. Possibility of

the parallel �ow on the �n top and in the direction of groove, was suggested

by Lefèvre et al.[5] as a second reason for the discrepancy between their ex-

perimentally measure and simulation results. The fact that the matching of

experimental measurements and current study exists at lower heat �uxes may

also be due to the possible presence of such a �ow. In summary, the second

set of boundary conditions at the �n edge enabled the matching of the general

character of the liquid �lm, and the magnitude of the heat transferred through

the �lm resulted in the matching of the entire pro�le. This cited parallel �ows

have been neglected in the previous studies of condensation �lms up to date.

4.6 Double solution with (A-YL) model

The results of general di�erential equation Eq. (3.25) shows a double solution

manner (bifurcation) which means there are two di�erent and independent re-

sults for exactly same set of physical inputs and boundary conditions. The

e�ects of disjoning pressure is more signi�cant where the thickness of the �lm

is thinner, which occurs at the ending zone of the �lm and near to the edge

of the �n. The results for (δedge), which is the magnitude of the �lm thickness

at the �n edge, are shown in Fig. 4.24 with di�erent θc and ∆T . Bifurcation

53



 
0.1

1

10

100

1000

0 10 20 30 40 50 60 70

δ
ed

ge
( 

n
m

 )

Ɵc ( degree )

 Approximated continuum limit δ1   ΔT = 0.03
δ1   ΔT = 0.1  δ1  ΔT = 0.3
δ1  ΔT = 1 δ2   ΔT = 0.03
δ2   ΔT = 0.1 δ2  ΔT = 0.3
δ2  ΔT = 1 

Figure 4.24: First and second set of results for (δedge) with di�erent θc and ∆T while the full form of Pd is

used

manner of results are shown in Fig. 4.24, where results with higher magnitude

for (δedge) are named as ��rst answer� and shown as (δ1). Another set of results

are named as �second answer� and shown as (δ2). These bifurcation manner

happen regardless of which type of disjoining pressure, presented in modeling

section, is being used.

Since δ2 results in a highly small magnitudes for (δedge), approximated limit for

continuum postulate is added to the Fig. 4.24 in order to check the physical

validity of the results. Although all the data are mathematically valid and true,

but their physical availability should be carefully taken into consideration. The

�rst step for examining the physical availability is checking the continuum limit

for the data. it could be concluded that the (δedge) located under the approxi-

mated continuum line could not be acceptable. The second factor for examining

the physical availability is the existence of negative absolute pressure. Extremely

small �lm thicknesses will cause the disjoning pressure to reach noticeable higher

magnitudes which could cause the absolute pressure to be negative, which is not

physically sensible. The limit of this factor is almost the same as the contin-

uum limit, which again means that the (δedge) located under that approximated

limit could not be acceptable. For physical validation of the data located above

this limitation line and resulted by second set of data, other examining factors

like the matching condition between the �lm and liquid inside the groove and
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Figure 4.25: Mass �ow rate contribution of capillary and disjoining pressure on the total mass �ow rate for

∆T = 0.03◦C
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continuity of the �lm pro�le at that spot should be analyzed. This discussion is

further presented at the end of this section.

The results shows a limitation point where both set of answers are converged

into the one point, these limitation points emerge because of the presence of

dosjoinig pressure and are named as cut-o� points. While the disjoning pressure

is excluded from the augmented Young-Laplace equation, this cited cut-o� points

are vanished and model will have results without any restriction by θc. The

contributing factors which make the pro�le to results in these cut-o� points are

discussed in section 4.4 . In order to have a better insight into the reasons

behind this bifurcation manner, the contribution of the capillary and disjoning

pressure on the total mas �ow rate for both answers with di�erent θc are plotted

in Fig. 4.25. Adding disjoining pressure terms to the Young-Laplace equation,

brings an opportunity for disjoining pressure to have a balancing contribution

with capillary pressure on the total generated mass �ow rate. In Fig. 4.25

(a) which is related to �rst set of answers, the capillary pressures contribution

magnitude is almost the same as the total amount in the �atter zones. But by

approaching to the cut-o� point the disjoining pressure become more dominant,

rendering the capillary pressures contribution to fall into zero. In contrast of the

disjioning pressures contribution pattern in the �rst set of answers, its magnitude

starts with a higher value than the total mass �ow rate, implies the point that

capillary pressure should start from negative spot. This pattern is shown in Fig.

(b), where by approaching to the cut-o� point the magnitude of the contribution

of capillary pressure goes to zero and the total and disjonig pressure converges.

This thinner thickness that is essential for providing the required magnitude for

disjoning pressure in second set of answers makes the �lm pro�les of the same θc

to be signi�cantly di�erent, especially for the cases where complementary angle

is not near to the cut-o� point. Contribution of the capillary and disjoning

pressure on the total mass �ow rate along the �n top is plotted in Fig. 4.28

for four di�erent θc. These selected complementary angles are shown in Fig.

4.27 as red spots, The same θc was chosen for plotting the same �gure for �rst

set of answers in Fig. 4.20. Those shown in orange color are referring to the

complementary angles used in plotting Fig. 4.20.
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Figure 4.28: Contribution of capillary and disjoining pressure gradient terms to the mass �ow rate for (a)

θc = 8◦ (b) θc = 10◦ (c) θc = 10.4◦ (d) θc = 10.4791◦ at cut-o� in second set of answers
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Figure 4.30: Second set of results �lm thickness pro�le when ∆T = 0.03◦C and θ = 4◦

Fig. 4.28 shows that by approaching to the cut-o� point m′Pc
reaches zero from

a negative spot rendering the m′Pd
to match the total mass �ow rate. Although

the pro�les are demonstrating di�erent shapes, because the imposed temperature

di�erences between wall and the vapor is equal for both answers, resulting mass

�ow rates are almost the same. This point is expressed in Fig. 4.26. Shape of

the �lm pro�les for two set of answers are plotted in Fig. 4.29 for θc = 4◦ and

∆T = 0.03◦C. The negative sign of the mass �ow rate contribution of capillary

pressures in the second set of answers, suggests that the sign of the �lm's arc

should be positive which demands a positive δxx. Since the third derivative is

negative, δxxx < 0, in this set of answers, the change in sing of second derivative

is necessary in order to satisfy the boundary condition at the �n edge (δxx = 0).

By magnifying the ending zone of the �lm pro�le of second set of answers in

Fig. 4.29, where the disjoining pressure is dominant in both set of answers,

this change in the second derivatives sign could be observed and is plotted as

Fig. 4.30. It can be deduce that by exceeding the cut-o� point, the capillary

pressures contribution will be positive which means δxxx > 0. Since both δxx

and δxxx will be positive in that case, the δxx = 0 at the �n edge could not be

satis�ed and consequently, solution can not be found. The variation of δxx and

δxxx is plotted in Fig. 4.33.

Previously, two factor for validating the physical availability of the results, more

especially the second set of results, were introduced. The another parameter that
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Figure 4.31: (a) δxx when ∆T = 0.03◦C and θ = 4◦ for second set of answers (b) δxx when ∆T = 0.03◦C

and θ = 4◦ for �rst set of answers, red points in Fig. 4.29
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and simple form of disjoning pressure

should be taken into consideration is the continuity of the �lm at the matching

point with the liquid inside the groove. Fig. 4.31 presents the δxx pro�les of

the both answers. The �rst answers second derivative is always negative and

�nally reaches zero at the �n edge zone as the boundary condition imposes. The

second set of answers, as it is mentioned previously, must have positive second

derivative at the ending zone of the �n. This positive derivative radically reaches

zero because of the boundary condition at the edge. This studies modeling is

only predicting the �lm pro�les before the �n edge, but as it can be estimated,

the liquid inside the groove has a positive arc which needs a positive second

derivative. If the �lm pro�le have a positive second derivative after the �n edge,

the second answer could not be valid because it can cause non-continuity at

that zone, since just before the edge it radically reaches zero. In contrast of

this manner, the �rst set of answers never show any non-continuity because its

second derivative reaches zero from a negative spot and can continue to positive

spot smoothly.

Despite the convergence manner of the results and the existence of cut-o� points,

the code results in a divergence manner in a higher temperature di�erences. This

manner does not happen while the simple form of disjoinig pressure is being used.

This di�erence is shown in Fig. 4.32. The main reason behind this divergence

manner is based on the higher order derivatives which the full form contains,
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despite the the simple form which does not include any derivative terms.

The dispersion constant A, used in the �Full model� form of the disjoning pres-

sure at Eq. (3.22) was obtained from [20], but the value of B was calculated

based on the van der Waals potentials and molecular densities for water. In or-

der to better understand the e�ect of these two constant on the behavior of the

model, di�erent values of them with referencing the initial magnitudes named

as A0 and B0 are plotted in Fig. 4.34 . Although the values of the (δedge) for

di�erent A and B could be di�erent, the basic manner of the condensation �lm,

cut-o� and bifurcation, are same in all cases. By analyzing the Fig. 4.34 it could

be understood that the magnitude of the cut-o� point is increasing by the using

a higher value for B. In contrast, this cut-o� point is decreasing by increasing

the magnitude of the A.
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CHAPTER 5

SUMMARY AND FUTURE WORK

5.1 Conclusion

Governing equation of the condensation �lm on the �n top of the grooved heat

pipe including the e�ects of disjoinig pressure is solved numerically and the

di�erent comparisons and discussions took place in this study. Neglecting the

disjoning pressure could result in over predicting the �lm thickness for wider

range of complementary angles, since the cut-o� points appear while the disjoinig

pressure is included. Validation between experimental and theoretical results,

suggested that the set of boundary conditions commonly used in literature could

not be always valid. The alternative set of boundary conditions were assumed

which resulted in better compatibility with the experimental data. Bifurcation is

happening while the disjoning pressure is included to the condensation modeling,

but the second set of answers which result in more thinner magnitudes for δedge

was not physically approved after examinations. The main conclusions and bold

�ndings of this study could be summarized as below:

• Speci�cation of edge angle dictates the shape and thickness of �lm

• E�ect of disjoining pressure is important for small �lm thickness

• E�ect of disjoining is restricted to �n edge for large edge angles, due to

sudden increase of thickness away from the edge

• With disjoining a cut-o� exist in solutions when assumptions in the liter-

ature for matching with the groove are used

• Assumptions used in matching with the groove may not always be valid
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• With disjoining a bifurcation manner exists for the results

• Although bifurcations two di�erent set of answers are mathematically

valid, but examinations prove that the physical availability of the second

set of answers is not predictable

Possibility of parallel �ow, which its existence was discussed in the section 4.5,

should be taken into account in future modelings. Future works for improving

the condensation model is discussed in further sections.

5.2 Possible future work

5.2.1 E�ect of surface roughness

Surface roughness could play a great role on the behavior of the �lm regarding

its thin thickness especially at the �n edge zone. In this study the surface was

considered as ideal, but the surface roughness could readily render a notable

change in the e�ect of the disjoining pressure and consequently on the behavior

and shape of the liquid �lm on the �n top.

Figure 5.1: Surface roughness e�ect on the liquid �lm

In the �n edge zone, where the �lm thickness is thinner the e�ect of surface

roughness is more important. Film thickness at the edge which is utterly de-

pendent on the contact angle but normally is in the range of 1 - 100 nm and in

this range surface roughness will have a great impact on the pressure balance,
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slope and curvature of the �lm. Surface roughness range could be altered based

on the manufacturing method that is used for creating grooves and �ns in the

heat pipe. Beside the manufacturing process, the materials which are chosen

for the substances is another important factor for de�ning the range of surface

roughness. The fact which is undeniable is its e�ect on the �lm pro�le since its

magnitude will at least in nano scale. Fig. 5.1 shows a blown up schematic of

the �n edge with surface roughness.

5.2.2 Recommendation for future work

The discussion presented in 4.5 referring to the validation between experimen-

tal and theoretical results, suggested that there is possibility for �ow existence

parallel to the groove. This concept should be added to the future modelings

in order to better anticipate the sharing rate of the mass �ow on the �n top in

the direction perpendicular and parallel to the groove. This mentioned �ow is

shown in Fig. 5.2.

Figure 5.2: Possible low directions on the �n top
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