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ABSTRACT 

 

 

VIBRATION REDUCTION OF HELICOPTER TAIL SHAFT BY USING 

DRY FRICTION DAMPERS 

 

 

 

Özaydın, Onur 

M.S., Department of Mechanical Engineering 

Supervisor: Assoc. Prof. Dr. Ender Ciğeroğlu 

 

September 2017, 108 pages 

 

 

 

Tail Drive Shaft is a power transmission component of a helicopter which constructs 

the link between the main gearbox and the tail rotor. In many helicopter designs, tail 

shafts are working in supercritical speeds. In order to limit resonance vibrations of 

tail drive shaft occurring as a drawback of a supercritical design, dry friction 

dampers are used by helicopter manufacturers. In this study, vibration reduction of 

supercritical helicopter tail drive shaft by utilizing dry friction dampers is studied. 

Euler-Bernoulli beam theory is used to model the tail drive shaft supported by 

springs at both ends which represent the bearings and couplings used. Equation of 

motion is obtained by using Hamilton’s Principle. Obtained partial differential 

equation of motion is discretized by using Galerkin’s Method, and Harmonic 

Balance Method utilizing single harmonic is used in order to convert the resulting 

nonlinear ordinary differential equations into a set of nonlinear algebraic equations. 

These set of equations are solved by using Newton’s Method and Newton’s Method 

with Arc-Length Continuation. In order to model the dry friction dampers 
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mathematically, two different friction models are taken from the literature. 

However, in the literature there is no mathematical model for dry friction element 

with gap. Therefore, in this study as an addition to the models taken from the 

literature a one-dimensional macroslip dry friction model with gap is developed. 

Several case studies are performed in order to study the effect of design parameters 

on the vibration amplitude of the tail drive shaft. 

 

Keywords: Helicopter tail drive shaft, dry friction damper, macroslip friction 

model, nonlinear vibrations, harmonic balance method  
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ÖZ 

 

 

HELİKOPTER KUYRUK ŞAFTI TİTREŞİMLERİNİN KURU 

SÜRTÜNMELİ SÖNÜMLEYİCİLER KULLANARAK AZALTILMASI 

 

 

 

Özaydın, Onur 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Ender Ciğeroğlu 

 

Eylül 2017, 108 sayfa 

 

 

 

Kuyruk şaftı helikopterlerde ana dişli kutusu ile kuyruk rotoru arasındaki bağlantıyı 

sağlayan güç aktarım organıdır. Birçok helikopter tasarımında ,kuyruk şaftları kritik 

hızın üzerindeki hızlarda çalışmaktadır. Kritik hızın üzerinde çalışmaktan kaynaklı 

oluşan rezonans titreşimlerini sınırlayabilmek için helikopter üreticileri kuru 

sürtünmeli sönümleyicileri kullanmaktadır. Bu çalışmada, kuru sürtünmeli 

sönümleyiciler kullanarak kritik hızın üzerinde çalışan kuyruk şaftlarının 

titreşimlerinin azaltılması çalışılmıştır. Rulmanları ve kaplinleri temsil eden yaylar 

tarafından iki ucundan desteklenen kuyruk şaftı Euler-Bernoulli kiriş teorisi 

kullanılarak modellenmiştir. Hareket denklemi Hamilton Prensibi kullanılarak elde 

edilmiştir. Elde edilen kısmi diferansiyel hareket denklemi Galerkin Metodu vasıtası 

ile ayrıklaştırılmıştır ve ortaya çıkan doğrusal olmayan adi diferansiyel denklemler 

tek harmonikli Harmonik Denge Metodu vasıtası ile doğrusal olmayan cebirsel 

denklem setine dönüştürülmüştür. Elde edilen doğrusal olmayan cebirsel denklem 

seti Newton Metodu ve Yay Uzunluğu Sürekliliği kullanan Newton Metodu vasıtası 
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ile çözülmüştür. Kuru sürtünmeli sönümleyicileri matematiksel olarak 

modelleyebilmek için literatiürden iki farklı model alınmıştır. Ancak literatürde 

boşluk içeren kuru sürtünme elemanları için herhangi bir matematiksel model 

bulunmamaktadır. Bu yüzden bu çalışmada literatürden alınan modellere ek olarak 

tek boyutlu boşluklu makro kayma sürtünme modeli geliştirilmiştir. Tasarım 

parametrelerinin kuyruk şaftı titreşimi üzerindeki etkisini görmek için çeşitli vaka 

incelemeleri yapılmıştır. 

 

Anahtar Kelimeler: Helikopter kuyruk şaftı, kuru sürtünmeli sönümleyici, makro 

kayma sürtünme modeli, doğrusal olmayan titreşimler, harmonik denge metodu  
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CHAPTER 1 

 

 

1 INTRODUCTION AND LITERATURE SURVEY 

 

 

 

1.1 Introduction 

 

Helicopter tail drive shaft is an important power transmission component, excessive 

vibrations of which may lead to catastrophic failures. In helicopter industry, two 

different designs for tail drive shafts are used: subcritical design (operating below 

the first natural frequency) and supercritical design (operating above the first natural 

frequency).  Instead of using many short shafts working at subcritical speed, using 

minimum number of long shafts working at supercritical speed is more 

advantageous. However, in the supercritical design, during startup and shutdown 

shafts pass through at least one critical frequency. This may cause failure of the shaft 

due to excessive vibrations caused by the resonance phenomenon as a result of 

unbalance present in the system. This type of failure can be avoided by using proper 

dry friction dampers (Dzygadlo & Perkowski, 2002; Ozaydin & Cigeroglu, 2017; 

Prasue et al., 1967). 

In the studies aiming to examine the dynamic response of structures including dry 

friction, two main approaches are used, the macroslip and the microslip methods. 

Macroslip method in which the interface is modeled as rigid body, is used for the 

friction interfaces which are assumed to have point contact. In this method only 

stick, slip and separation states are observed. It is impossible to have partial slip. 

This method can only be used for interfaces having small normal load acting on it 

because it is the only way where gross-slip occurs at the friction interface. Unlike 

the macroslip method, in microslip method, friction interface is modeled as elastic 
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body and if the normal load acting on the interface is high enough, it is possible to 

observe partial slip. Macroslip method is studied in large scale because it is 

mathematically simple. Unlike the macroslip method, microslip methods are not 

covered much, because of their complex mathematical structure. 

Although there are many studies in the literature that considers the application of 

dry friction dampers as a vibration reduction device, studies on the reduction of 

helicopter tail shaft vibration are very limited. Due to this lack of information in the 

helicopter industry, data used in the selection of the dry friction dampers are 

obtained from the experimental studies which are expensive. Therefore in this study, 

a continuous dynamic model of a helicopter tail drive shaft with dry friction damper 

attached on it is developed. Euler-Bernoulli beam model is used in order to model 

the shaft because of the long and slender structure of the helicopter tail shaft. 

Equation of motion is derived by using Hamilton’s Principle. Galerkin’s Method 

with multiple trial functions is used to be able to discretize the partial differential 

equation of motion. It is complicated to analyze the systems including dry friction 

because of the nonlinear behavior of the dry friction. Harmonic Balance Method 

(HBM) which is a frequency domain based solution method and in which Fourier 

series approximation is used in order to represent the nonlinear forces, is a widely 

used method in the literature instead of direct time integration, which costs high 

computational effort and computation time. Therefore, in this study, the resulting 

nonlinear ordinary differential equations are converted into a set of nonlinear 

algebraic equations by using HBM. Newton’s Method and Newton’s Method with 

Arc-Length Continuation are used to be able to solve the resulting nonlinear 

equations. In order to model the dry friction dampers mathematically, two different 

friction models, one dimensional macroslip friction model with constant normal 

load and two dimensional macroslip friction model with constant normal load, are 

taken from the literature. However, in the literature there is no mathematical model 

for the friction interfaces with gap. Therefore, in this study as an addition to the 

models taken from the literature a one-dimensional macroslip friction model with 

gap is developed. General conditions for stick, slip and contact and no contact states 
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are developed and transition angles for simple harmonic motion are obtained 

analytically. In order to see the effects of dry friction damper on the response of tail 

drive shaft system, several case studies are performed. 

 

 

1.2 Literature Survey 

  

Supercritical shafts are used in different applications, especially having long 

drivelines like tilt rotors and helicopters. In his study (Prasue et al., 1967) shows the 

advantageous of using supercritical shafts in helicopter drivelines. (Ozaydin & 

Cigeroglu, 2017) developed a mathematical model of the helicopter tail shaft and 

examine the vibrations by adding dry friction damper. Additional studies are 

performed on the dynamics of supercritical shafts by many researchers (Darlow & 

Zorzi, 1978; Desmidt, 2009; Dzygadlo & Perkowski, 2000; Montagnier & Hochard, 

2007). 

Excessive vibration is an important problem for rotating shafts. Reduction of these 

vibrations can be achieved by using external damping elements. Effect of external 

damping on the vibration of flexible shafts are studied by (Dostal et al., 1977).  

Squeeze film dampers and hydrodynamic bearings are widely used in turbines but 

they are complex and costly. Rotating systems on viscoelastic supports are studied 

by (Dutt & Nakra, 1996; Lee et al., 2004; Montagnier & Hochard, 2014). Damping 

of rotor conical whirl by using dry friction is studied by (Sorge, 2009). (Peng et al., 

2017) attached smart spring supports to shafts to suppress the bending vibrations by 

using dry friction. (Bradfield et al., 2016) used electromagnetic bearing in order to 

control the vibrations of a supercritical shaft. (Dzygadlo & Perkowski, 2002; 

Ozaydin & Cigeroglu, 2017) studied the usage of dry friction dampers on 

supercritical helicopter tail shafts. 
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Dry friction dampers are chosen as a solution to resonant vibrations and they are 

widely used in different applications such as turbomachinery (Yang & Menq, 1998b, 

1998c), turbine or compressor blades (Cigeroglu et al., 2007; Cigeroglu & Ozguven, 

2006; Ferri et al., 1998; Koh et al., 2005; Sanliturk et al., 2001), buildings under 

seismic excitation (Belash, 2015; Erisen & Cigeroglu, 2012; Mualla & Belev, 2002; 

Tabeshpour & Ebrahimmian, 2010), and railway bogies (Kaiser et al., 2002; Taylor 

et al., 2014; True & Asmund, 2002). Successful results of the studies (Srinivasan & 

Cutts, 1983) on effectiveness of dry friction dampers draw attention of the 

researchers. 

Simple macroslip models are studied by many researchers in which normal load is 

assumed to be constant and relative motion is one-dimensional (Al Sayed et al., 

2011; Andersson et al., 2007; Cameron et al., 1990; Den Hartog, 1930; Ding & 

Chen, 2008; Dowell & Schwartz, 1983; Ferri, 1995; Griffin, 1980; Liao et al., 2014; 

Menq & Griffin, 1985; Srinivasan & Cutts, 1983; Wang & Chen, 1993). In order to 

solve the forced response of the friction interfaces having two-dimensional relative 

motion with constant normal load, two dimensional friction models were developed. 

(Griffin & Menq, 1991; Menq et al., 1991; Menq & Yang, 1998; Sanliturk & Ewins, 

1996). Apart from the systems with constant normal load, there is a possibility of 

normal load variation and separation if there is a normal component of the relative 

motion to the contact plane. In order to study these kind of systems, new models are 

developed. One-dimensional friction model with variable normal load is studied by 

(Cigeroglu et al., 2009; Menq et al., 1986; Petrov & Ewins, 2004; Siewert et al., 

2009; B. Yang et al., 1998; Yang & Menq, 1998b, 1998c; Zucca et al., 2012). 

 Three-dimensional contact motion is studied by (Chen & Menq, 2001; Yang & 

Menq, 1998a). Apart from the macroslip models, because of the complex 

mathematical structure limited number of studies are done about the microslip 

models (Cigeroglu et al., 2007; Cigeroglu et al., 2006, 2007; Csaba, 1998; Filippi et 

al., 2004; He et al., 2010; Koh et al., 2005; Menq et al., 1986a, 1986b, 1986c; 

Putignano et al., 2011; Quinn & Segalman, 2005). 
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Harmonic Balance Method is a widely used method in order to convert nonlinear 

ordinary differential equation set into a set of nonlinear algebraic equations. In HBM 

method both single harmonic (Ferri & Bindemann, 1992; Liao et al., 2014; 

Ostachowicz, 1990; Sanliturk et al., 1997, 2001; Whiteman & Ferri, 1996) and multi 

harmonic representation are used (Chen et al., 2000; Ferri & Dowell, 1988; Kuran 

& Özgüven, 1996; Petrov & Ewins, 2003; Pierre et al., 1985; Von Groll & Ewins, 

2001) in the literature.  
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CHAPTER 2 

 

 

2 MATHEMATICAL MODEL 

 

 

 

The tail drive shaft system shown in Fig.1 consists of a shaft supported by two 

bearings at both ends and connected to two couplings. A dry friction damper is used 

on the shaft in order to decrease vibration amplitudes. Spring elements are used to 

represent the bearings and couplings. 

 

 

Fig.1 Tail drive shaft system 

 

Modelling of a helicopter tail shaft starts with the selection of proper beam model. 

Because of the long and slender structure of the tail shafts Euler-Bernoulli beam 

theory is chosen. It is  assumed that the cross-section of the beam is symmetric and 

bending takes place in plane of symmetry (Bauchau & Craig, 2009). In order to find 

the equation of motion (EOM) of the beam, Hamilton’s Principle, which is an energy 

based method, is used. This method can be formulated as; 
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where zw  and 
yw  are transverse displacements,   is density, cA  is cross sectional 

area, E  is Young’s Modulus, I  is moment of inertia, c  is viscous damping 

coefficient,   ,nz zf w x t  and   ,ny yf w x t  are the nonlinear friction forces,  zf t  

and  yf t  are external forcings, dL  is the location of dry friction damper, fL  is the 

location of external forcing and kd  is Kronecker Delta. 

Insert Eq.(2.2), Eq.(2.3) and Eq.(2.4) into Eq.(2.1); 
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                                     

 
  

  

  

   

 



          

2

1

2

1 0

t , t , 0

t

t

t L

z z y y kd f

t

f w x t f w x t x L dxdt     



 

.  (2.5) 

Kinetic energy part of the Eq.(2.5) can be written as; 

 
2 2

1 10 0

t tL L
y yz z

c c

t t

w ww w
A dxdt A dxdt

t t t t


 

      
     

        
    .  (2.6) 

After applying integration by parts (IBP) to Eq.(2.6), it can be written as; 

 
22 2 2

1 1 11

22

2 2

0 0

tt t tL L
y yz z

c z z c y y

t t tt

w ww w
A w w dt dx A w w dt dx

t t t t
     

       
                   

    ,  (2.7) 

where 

 
2

1

0

t

z
z

t

w
w

t


 
 

 
,  (2.8) 

 

2

1

0

t

y

y

t

w
w

t


 
 

 
.  (2.9) 

Eq.(2.7) can be simplified as; 

 
2 2

1 1

22

2 2

0 0

t tL L
yz

c z c y

t t

ww
A w dtdx A w dtdx

t t
   


 

     .  (2.10) 

Potential energy part of the Eq.(2.5) can be written as; 

 
2 2

1 1

2 22 2

2 2 2 2

0 0

t tL L
y yz z

t t

w ww w
EI dxdt EI dxdt

x x x x

       
                

    .  (2.11) 
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After applying integration by parts to Eq.(2.11), it can be written as; 

 

2

1

2

1

2 3

2 3

00

2 3

2 3

00

Lt L

z z z z

t

L
t L

y y y y

t

w w w w
dx dt

x x x x

w w w w
EI dx dt

x x x x

 

 

     
        

     
          

 

 

.  (2.12) 

Apply integration by parts once more to Eq.(2.12) and it can be written as; 

 

2

1

2

1

2 3 4

2 3 4

00 0

2 3 4

2 3 4

00 0

L Lt L

z z z z
z z

t

L L
t L

y y y y

y y

t

w w w w
EI w w dx dt

x x x x

w w w w
EI w w dx dt

x x x x


 


 

       
             

       
                 

 

 

.  (2.13) 

EOM is finalized by combining the Eq.(2.10) and Eq.(2.13) and virtual work part of 

Eq.(2.5). 

 

2 2

1 1

2

1

22

2 2

0 0

2 3 4

2 3 4

00 0

2 3 4

2 3 4

00 0

t tL L
yz

c z c y

t t

L Lt L

z z z z
z z

t

L L
L

y y y y

y y

t

ww
A w dxdt A w dxdt

t t

w w w w
EI w w dx dt

x x x x

w w w w
EI w w dx dt

x x x x

   


 


 


 

 

       
              

       
                 

   

 



 
 

 
 

            

          

2

1

2

1

2

1

2

1

0

0

0

,,
, ,

, , , ,

t , t , 0

t

t L
yz

z y

t

t L

nz z z ny y y kd d

t

t L

z z y y kd f

t

w x tw x t
c w x t c w x t dxdt

t t

f w x t w x t f w x t w x t x L dxdt

f w x t f w x t x L dxdt

 

  

  

 
  

  

  

   



 

 

 

.  (2.14) 

Below four equations are the boundary conditions; 
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3

3

0

0

L

z
z

w
EI w

x


 
 

 
,  (2.15) 

 

3

3

0

0

L

y

y

w
EI w

x


 
   

,  (2.16) 

 
2

2

0

0

L

z zw w
EI

x x

  
 

  
,  (2.17) 

 

2

2

0

0

L

y yw w
EI

x x

  
    

.  (2.18) 

Eq.(2.15) and Eq.(2.16) states that either shear force or displacement is zero. 

Eq.(2.17) and Eq.(2.18) states that either moment or slope is zero. These are the four 

boundary conditions of free-free Euler Bernoulli beam. Finally Eq.(2.14) is 

simplified to; 

 

     

        

2 4

2 4

, , ,

t ,

z z z

c

z kd f nz z kd d

w x t w x t w x t
A EI c

t x t

f x L f w x t x L



 

  
 

  

   

,  (2.19) 

 

     

        

2 4

2 4

, , ,

t ,

y y y

c

y kd f ny y kd d

w x t w x t w x t
A EI c

t x t

f x L f w x t x L



 

  
 

  

   

.  (2.20) 

These equation of motions do not contain the linear and torsional springs attached 

on the shaft. They will be added to the solution by using trial functions. 

For the solution of the partial differential equation of motions given in Eq.(2.19) and 

Eq.(2.20) Galerkin’s Method is used. Utilizing expansion theorem, transverse 

displacements of the shaft can be expressed as given below; 

      
1

,
mn

z j j

j

w x t q t x


 ,  (2.21) 
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      
1

,
mn

y j j

j

w x t r t x


 ,  (2.22) 

where  jq t  and  jr t  are the 
thj  generalized coordinates and (x)j  is mass 

normalized eigenfunction of a beam supported by springs at both ends and 
mn  is the 

number of eigenfunctions used in the expansion. Before proceeding forward, 

eigenfunctions are found by using the procedure given below. 

Eq.(2.19) excluding damping and forcing terms and transverse displacement  ,w x t   

are written as; 

 
4 2

4 2

z z
c

w w
EI A

y t


 
 

 
,  (2.23) 

      x, t x F tzw W .  (2.24) 

Insert Eq.(2.24) into Eq.(2.23); 

 
       4 2

4 2

F t F t
c

W x W x
EI A

x t


 
 

 
,  (2.25) 

 
 

   

 

4 2

4 2

x F 1

x Fc

W tEI

A W x t t




 
   

 
,  (2.26) 

 
 

 
4

2

4

x
x 0c

W
EI A W

x
 


 


.  (2.27) 

Solution of the this kind of ordinary differential equation (ODE) is; 

          1 2 3 4x C sin C cos C sinh C coshW x x x x       .  (2.28) 

Four boundary conditions of beam with linear and torsional springs on the corners 

are; 

 
 

 
3

0 03
0x x

d W x
EI kW x

dx
    ,  (2.29) 
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   2

0 02
0x t x

d W x dW x
EI k

dx dx
   ,  (2.30) 

 
 

 
3

3
0x L x L

d W x
EI kW x

dx
   ,  (2.31) 

 
   2

2
0x L t x L

d W x dW x
EI k

dx dx
   ,  (2.32) 

where k  and tk  are the linear and torsional stiffness values of the springs attached 

on the corners. After inserting Eq.(2.28) into Eq.(2.29), Eq.(2.30), Eq.(2.31) and 

Eq.(2.32) ,four equations are obtained; 

 
3 3

1 2 3 4 0EI C kC EI C kC     ,  (2.33) 

 
2 2

1 2 3 4 0t tk C EI C k C EI C        ,  (2.34) 

 

    

    

    

    

3

1

3

2

3

3

3

4

ksin EI cos

kcos EI sin

ksinh EI cosh

kcosh EI sinh 0

L L C

L L C

L L C

L L C

  

  

  

  



 

 

  

,  (2.35) 

 

    

    

    

    

2

1

2

2

2

3

2

4

k cos EI sin

k sin EI cos

k cosh EI sinh

k sinh EI cosh 0

t

t

t

t

L L C

L L C

L L C

L L C

   

   

   

   



  

 

  

.  (2.36) 

Eq.(2.33), Eq.(2.34), Eq.(2.35) and Eq.(2.36) can be written in matrix format as; 

 

1

1 2 2

3 4 3

4

0

C

D D C

D D C

C

 
 

   
  

   
  

,  (2.37) 
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where 

 
3

1 2

t

EI k
D

k EI



 

 
  

  
,  (2.38) 

 
3

2 2

t

EI k
D

k EI



 

  
  

 
,  (2.39) 

 
3 3

3 2 2

(ksin( ) EI cos( )) (kcos( ) EI sin( ))

(k cos( ) EI sin( )) ( k sin( ) EI cos( ))t t

L L L L
D

L L L L

     

       

  
  

   

, (2.40) 

 
3 3

4 2 2

(ksinh( ) EI cosh( )) (kcosh( ) EI sinh( ))

(k cosh( ) EI sinh( )) (k sinh( ) EI cosh( ))t t

L L L L
D

L L L L

     

       

  
  

  

.  (2.41) 

  values are found by making the determinant of the Eq.(2.37) zero as given below; 

 
1 2

3 4

0
D D

D D

 
 

 
.  (2.42) 

After finding   values by using Eq.(2.37) 1C , 2C , 3C  and 4C  are found. It is 

important to note that rank of the matrix in Eq.(2.37) is three not four and because 

of that three constants are found in terms of the remaining constant.  

After finding trial functions Eq.(2.21) and Eq.(2.22) are inserted into Eq.(2.19) and 

Eq.(2.20), in order to discretize the system. 

 

 
 

 
 

 
 

       

2 4

2 4
1 1 1

m m mn n n
j j j

c j j j

j j j

nz d z f

d q t d x dq t
A x EI q t c x

dt dx dt

f t x L f t x L


  

 

  

 

   

  
,  (2.43) 

 

 
   

   
 

       

2 4

2 4
1 1 1

m m mn n n
j j j

c j j j

j j j

ny d y f

d r t d x dr t
A x EI r t c x

dt dx dt

f t x L f t x L


  

 

  

 

   

  
.  (2.44) 

Multiply both sides of the Eq.(2.43) and Eq.(2.44) by (x)i  and integrate over the 

spatial domain. 
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 
     

 
 

 
         

      

2 4

2 4
1 1

0

1

0

m m

m

n n
j j

c j i j iL
j j

n
j

j i nz d i

j

L

z f i

d q t d x
A x x EI q t x

dt dx
dx

dq t
c x x f t x L x

dt

f t x L x dx


   

   

 

 



 
 

 
 
    
 

 

 






,  (2.45) 

 

 
     

 
 

 
         

      

2 4

2 4
1 1

0

1

0

m m

m

n n
j j

c j i j iL
j j

n
j

j i ny d i

j

L

y f i

d r t d x
A x x EI r t x

dt dx
dx

dr t
c x x f t x L x

dt

f t x L x dx


   

   

 

 



 
 

 
 
    
 

 

 






.  (2.46) 

Eq.(2.45) and Eq.(2.46) can be written in matrix format as; 

                r nz zI q C q q F q F t     ,  (2.47) 

                r ny yI r C r r F r F t     .  (2.48) 

Eq.(2.47) and Eq.(2.48) can be combined as follows; 

 

 
 

 

 

 
 

 

 

 
 

 

 

   

   

  

  

0 0 0

0 0 0

r

r

nz z

yny

q q qI C

r r rI C

F q F t

F tF r

                
           

               

   
   

    
     

.  (2.49) 

 Since mass normalized eigenfunctions are used in the expansion,  I ,  rC  and  

are 
m mn n  identity matrix, diagonal damping matrix, diagonal matrix of squares of 

natural frequencies, respectively.  nzF ,  nyF  are nonlinear modal forcing vectors 

and zF ,  yF  are external modal forcing vectors. Elements of these matrices and 

vectors can be calculated as follows; 
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 

 
4

2

4

0

L

i

ii i i

d x
EI x dx

dx


     ,  (2.50) 

  
2

0

2
ii

L

r i i iC c x dx    ,  (2.51) 

        , ,
inz nz i dF q t f q t L ,  (2.52) 

        , ,
iny ny i dF r t f r t L ,  (2.53) 

      
iz z i fF t f t L ,  (2.54) 

      
iy y i fF t f t L ,  (2.55) 

where 
i  and 

i  are the natural frequency and damping ratio of the thi  mode. 
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CHAPTER 3 

 

 

3 DRY FRICTION MODELS 

 

 

 

3.1 One Dimensional Macroslip Friction Model with Constant Normal Load 

 

In this part a simple macroslip model in which normal load is assumed to be constant 

and relative motion is one dimensional, is studied. Illustration of the studied model 

is given Fig. 2. 

 

 

Fig. 2 Dry friction element 

 

Here,
dk  is the tangential contact stiffness, N  is the normal load,   is coefficient 

of friction,  u t  is the tangential input motion and  v t  is the slip motion. 

Interfaces represented by using one dimensional macroslip friction model can be in 

two different states; stick and slip. When the interface is in stick state, the force on 

the spring can be represented as; 

  u vn df k  .  (3.1) 

dk

(t)u
N (t)v


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If the interface is in slip state, the force on the spring is constant and it is represented 

as; 

 nf N  .  (3.2) 

When the interface comes to the instant of slip to stick transition, both Eq.(3.1) and 

Eq.(3.2) are satisfied. Differentiating these two equations 

 
n

d

df du dv
k

dt dt dt

 
  

 
, 

 (3.3)

 0ndf

dt
 .  (3.4) 

Inserting Eq.(3.4) into Eq.(3.3) 

   0dk u v  ,  (3.5) 

 u v .  (3.6) 

From Eq.(3.6) it can be stated that for one dimensional macroslip friction model, 

slip-to-stick transition occurs when the input motion reverses its direction. 

Whenever the friction force reaches to its limiting values, stick-to-slip transition 

occurs. In slip state u v  is constant and the friction interface moves with u . By 

using Eq.(3.1) and Eq.(3.2) the relation can be written as 

  n df k u v N    ,  (3.7) 

  0 0n df k u u f N     ,  (3.8) 

where 
0u  and 

0f  are the displacement and friction force at the beginning of stick 

state. 

For single harmonic relative motion, input motion  u t  can be written as 



19 

 

    sinu t A  ,  (3.9) 

In order to find the slip-to-stick transition angles, differentiate Eq.(3.9) 

  cos 0u A   .  (3.10) 

From Eq.(3.10) two different angles, 
2


    and 

3

2


  , where relative input 

motion changes its sign and slip-to-stick transition occurs are found. 

For stick to negative slip transition; 

 0
2

u u A
 

  
 

,  (3.11) 

 0f N .  (3.12) 

Insert Eq.(3.11) and Eq.(3.12) into Eq.(3.8); 

  *sindk A A N N      ,  (3.13) 

 * 2
sin 1

d

N
a

k A


 

 
   

 
.  (3.14) 

For stick to positive slip transition; 

 0

3

2
u u A

 
   

 
,  (3.15) 

 0f N  .  (3.16) 

Insert Eq.(3.15) and Eq.(3.16) into Eq.(3.8) 

  **sindk A A N N      ,  (3.17) 

 ** *2
2 sin 1

d

N
a

k A


   

 
     

 
.  (3.18) 
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Fig. 3 Hysteresis curve for single harmonic motion 

 

By using the obtained data hysteresis curve given in Fig. 3 can be drawn and it can 

be represented mathematically as given below; 

 

  

 

*

*

*

*

sin  when 
2

3
 when 

2

3
sin( )  when 

2

5
 when 

2

d

n

d

k A A N

N

f

k A A N

N


   


  


    


   


   


   


 
     


   


.  (3.19) 

In the steady-state hysteresis curve given in Fig. 3, horizontal lines are representing 

the slip state, while lines with non-zero slope are representing the stick state. First 

*   
2


 

* 
3

2


 

dslope k

N

N

nf

u
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motion of the dry friction interface starts with stick state and continue in this state 

until the point where the friction force reaches to its limiting value and stick to slip 

transition occurs. Slip state continues with constant friction force and the state of 

friction changes from slip to stick when the relative input motion changes its 

direction. As experienced before, stick state continues until the friction force reaches 

to its limiting value and interface follows this pattern until reaching to steady-state. 

Two main parameters affecting the amount of stick and slip states are   and N . 

In Fig. 4 three different hysteresis curves are given with small, average and high 

N  (slip force) values. It can be said that for the curve with high N  stick state is 

dominant and for the curve with small N  slip state is dominant. The effect of these 

states are examined in case studies. 

 

 

Fig. 4 Hysteresis curves with different slip force values where 
1 2 3N N N      
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The nonlinear dry friction force can be represented by using a single harmonic as 

      sin cosn ns ncf t f f   ,  (3.20) 

    
3

2

2

2
sinns nf f t d



  


  ,  (3.21) 

    
3

2

2

2
cosnc nf f t d



  


  .  (3.22) 

By using Eq.(3.19), 

          
*

*

3

2

2

2 2
sin sin sinns df k A A N d N d







      
 

      ,  (3.23) 

          
*

*

3

2

2

2 2
sin cos cosnc df k A A N d N d







      
 

      ,  (3.24) 

which can be simplified as;  

    * * *24
cos sin 2

2 2

d d d d
ns

Ak Ak Ak AkN
f


  

   

 
      
 

,  (3.25) 

    
2

* *4 2
sin sind d d

nc

N Ak Ak Ak
f


 

  

 
   
 

.  (3.26) 

For the condition 
dAk N  friction interface does not experience stick-slip transition 

and it stays in stick state. This condition is represented as fully-stuck case and the 

friction force in this case can be represented as; 

    
2

0

1
sin sinns df Ak d



  


  ,  (3.27) 

 ns df Ak ,  (3.28) 
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    
2

0

1
sin cosnc df Ak d



  


  ,  (3.29) 

 0ncf  .  (3.30) 

If the input motion has phase angle it can be handled by assuming t     using 

the obtained Fourier coefficients as follows; 

      sin cosn ns ncf t f t f t       ,  (3.31) 

 
          

        

sin cos sin cos

cos cos sin sin

n ns

nc

f t f t t

f t t

   

   

 

 
,  (3.32) 

 
        

      

cos sin sin t

sin cos cos t

n ns nc

ns nc

f t f f

f f

  

  

 

 
,  (3.33) 

 

3.2 One-Dimensional Macroslip Friction Model with Gap 

 

In this part a simple macroslip model with gap in which normal load is assumed to 

be constant and relative motion is one dimensional is studied. Illustration of the 

studied model is given in Fig. 5. 

 

 

Fig. 5 Dry friction element for model with gap 
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Here,
dk  is the tangential contact stiffness, N  is the normal load,   is coefficient 

of friction, h  is the amount of gap,  u t  is the tangential input motion and  v t  is 

the slip motion. 

Gapped interfaces represented by using one dimensional macroslip friction model 

can be in three different states; stick, slip and no contact. When the interface is in 

stick state, the force on the spring can be represented as; 

  u vn df k  .  (3.34) 

If the interface is in slip state, the force on the spring is constant and it is represented 

as; 

 
nf N  .  (3.35) 

When the interface comes to the instant of slip to stick transition, both Eq.(3.34) and 

Eq.(3.35) are satisfied. Differentiating these two equations 

 n
d

df du dv
k

dt dt dt

 
  

 
,  (3.36) 

 0ndf

dt
 .  (3.37) 

Inserting Eq.(3.37) into Eq.(3.36) 

   0dk u v  ,  (3.38) 

 u v .  (3.39) 

From Eq.(3.39) it can be said that for one-dimensional motion with constant normal 

load, when the direction of input motion reverses slip-to-stick transition occurs. 

Whenever the friction force reaches to its limiting values, stick-to-slip transition 

occurs. In slip state u v  is constant and the friction interface moves with u . By 

using Eq.(3.34) and Eq.(3.35) the relation can be written as; 
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  n df k u v N    ,  (3.40) 

  0 0n df k u u f N     ,  (3.41) 

where 
0u  and 

0f  are the displacement and friction force at the beginning of stick 

state. 

For one-dimensional friction model without a gap, stick state continues until the 

friction force reaches its limiting value which results in slip again. However, in one-

dimensional fiction model with a gap, stick state continues until the friction force 

becomes zero and input motion loses its contact due the gap present in the model. 

The point where the contact loss occurs can be found by equating the stick force to 

zero as given in below; 

  0 0 0n df k u u f       (3.42) 

After losing contact, system moves freely until passing through 2h   gap distance 

and catch contact again. If the system moves in the direction of positive to negative 

slip, transition from the no contact to contact case which follows positive and 

negative slip-to-sick can be found by using the relations given below; 

 
0(t) u 2cu h    (3.43) 

 
0(t) u 2cu h    (3.44) 

where 
0cu  is the displacement when the friction force becomes zero. 

For single harmonic relative motion, input motion  u t  can be written as 

    sinu t A  .  (3.45) 

Here, A  is the amplitude of the relative motion and t  . Substituting Eq.(3.45) 

in Eq.(3.39), the following equation is obtained 

  cos 0u A   .  (3.46) 
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Solution of Eq.(3.46) gives positive slip-to-stick and negative slip-to-stick transition 

angles as 

 2,  3 2PSt NSt     ,  (3.47) 

respectively, which correspond to the time when the relative input motion reverses 

its direction. 

In order to determine transition angles of no contact, input motion and the friction 

force at the instant of slip-to-stick transition is required. Utilizing slip-to-stick 

transition angles given by Eq.(3.47), displacement and the friction force at the 

instant of slip-to-stick transition can be obtained as 

 
0 0A,   u f N    (3.48) 

 
0 0A,   u f N      (3.49) 

Substituting Eqs.(3.45) and (3.48) in Eq.(3.42) transition angle for no contact 

following positive slip-to-stick can be obtained as follows 

 sin 1PNC

d

N
a

k A


 

 
   

 
  (3.50) 

Similarly, substituting Eqs.(3.45) and (3.49) in Eq.(3.42)  transition angle for no 

contact following negative slip-to-stick can be obtained as follows 

 2 sin 1NNC PNC

d

N
a

k A


   

 
     

 
  (3.51) 

After losing contact, no friction force is generated till the 2h  gap is closed. 

Therefore, transition angles for contact following positive and negative slip-to-stick 

can be obtained by using Eq.(3.43) and Eq.(3.44) as 

  
2

sin sinPC PNC

h
a

A
  

 
   

 
  (3.52) 
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  
2

2 sin sinNC PNC

h
a

A
  

 
   

 
  (3.53) 

respectively, where 

 NC PC      (3.54) 

Substituting Eq.(3.53) into Eq.(3.41), transition angle for stick to positive slip can 

be obtained as 

  
2

2 sin sinPSl PNC

d

N h
a

k A A


  

 
    

 
  (3.55) 

Similarly, substituting Eq.(3.52) into Eq.(3.41), transition angle for stick to negative 

slip can be obtained as 

  
2

sin sinNSl PNC

d

N h
a

k A A


  

 
    

 
  (3.56) 

 PSl NSl      (3.57) 

If the amplitude of relative motion is less than the gap, i.e. A h , friction interface 

does not experience any contact and nonlinear contact force is given as 

  ,1 0nf     (3.58) 

If the maximum spring force is less than the slip load, i.e.  dk A h N  , friction 

interface does not experience slip state and it behaves a like a symmetric gap element 

which results in the following nonlinear force 
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  

  

  

  

  

1

1 2

2

,2

1

1 2

2

sin if 
2

0 if 

3
sin if  

2

3
sin if 

2

0 if 

5
sin if 

2

d

d

n

d

d

k A h

k A h

f

k A h

k A h


  

  


  




   

    


   


  


 


  


 
    

    



   

,  (3.59) 

where 

 
1 sin

h
a

A
 

 
   

 
  (3.60) 

 
2 sin

h
a

A
 

 
   

 
  (3.61) 

If the maximum spring force is greater than the slip load the friction interface 

experiences stick, slip, no contact states. Using the transition angles, friction force 

as a function of displacement, i.e. hysteresis curve, can be written as follows 

  ,3

(Asin( ) A) N             if    
2

0                                              if 

(Asin( ) (Asin( ) 2 ))      if 

                                       if 

d PNC

PNC PC

PNC PC NSl

n

k

k h

N

f


   

  

    

 



   

 

   





3

2

3
(Asin( ) A) N                  if    

2

0                                              if 

(Asin( ) Asin( ))      if 

                             

NSl

d PNC

PNC PC

PC PC NSl

k

k

N





    

    

       



 

    

   

     

5
          if 

2
NSl


  
















   


. (3.62) 

A general hysteresis curve and a flow chart where the transition angles are shown is 

given in Fig. 6 and Fig. 7 for single harmonic motion. Depending on the parameters 
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of one-dimensional friction model with gap hysteresis curve for harmonic motion 

can take different shapes which shown in Fig. 8 and Fig. 9 as an example. 

 

Fig. 6 Hysteresis Curve for Single Harmonic Motion 

 

 

Fig. 7 Flow Chart for Single Harmonic Motion 
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Fig. 8 Example hysteresis curves 

 

 

Fig. 9 Effect of Amount of Gap on Hysteresis Curve 
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The nonlinear contact force for one-dimensional dry friction element with gap can 

be expressed as 

  

 

   

   

,1

,2

,3

for 

for  &  

for 

n

n n d

n d

f A h

f f A h k A h N

f k A h N



  

 

 


   
  

 . (3.63) 

Utilizing a single harmonic Fourier series representation, the nonlinear contact force 

can be written as follows 

      sin cosn ns ncf t f f   ,  (3.64) 

Considering the odd symmetric property of the nonlinearity Fourier coefficients nsf  

and ncf  can be calculated as follows 

    

3

2

2

2
sin dns nf f t





 


  ,  (3.65) 

    

3

2

2

2
cos dnc nf f t





 


  .  (3.66) 

Fourier coefficients of  ,1nf   are; 

 
,1 0n sf  ,  (3.67) 

 ,1 0n cf  .  (3.68) 

Fourier coefficients of  ,2nf   are; 

          
1

2

3

2

,2

2

2
sin sin sin sinn s df k A h d A h d




 

     


 
 

    
 
 

  ,  (3.69) 
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2

1 2
,2s 2

2
1 1d

n d

hk h
f Ak

A

 

 

   
      

  
,  (3.70) 

          
1

2

3

2

,2

2

2
sin cos sin cosn c df k A h d A h d




 

     


 
 

    
 
 

  ,  (3.71) 

 
,2 0n cf  .  (3.72) 

Fourier coefficients of  ,3nf   are; 

 

    

        

,3

2

3

2

2
(Asin A) N sin d

2
Asin Asin 2 sin d

2
sin( )d

PNC

NSl

PC

NSl

n s d

d PNC

f k

k h

N













   


   


  


  

  

 







,  (3.73) 

 

 

  

  

 

,3

1 1
2 1

2

1 2
2 2 2 1

2 2 2
1

1

n s d d

d

d d d

d

d d d

d

d PNC NSL PC

N
f k A N k A N

k A

N h
N hk k A N k h

k A A

N h
N hk k A N k h

k A A

k A


 




 




 



   


 
    

 

 
      

 

 
      

 

   

,  (3.74) 
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    

        

 

,3

2

3

2

2
(Asin A) N cos d

2
Asin Asin 2 cos d

2
cos d

PNC

NSl

PC

NSl

n c d

d PNC

f k

k h

N













   


   


  


  

  

 







,  (3.75) 

 
 

,3

4 d d

n c

d

N N k A hk
f

k A

 



  
 .  (3.76) 

 

3.3 Two-Dimensional Macroslip Friction Model with Constant Load 

 

In this part, a macroslip model in which normal load is assumed to be constant and 

relative motion is two dimensional, is studied. Studied model is developed by (Menq 

& Yang, 1998). This model is used for the mechanical interfaces with friction 

constraint experiencing two-dimensional relative motion. It can be used for both 

elliptical and circular motion which is a special case of elliptical motion. For the 

calculation of the contact kinematics of friction interfaces experiencing elliptical 

motion, major and minor principals of elliptical motion shown in Fig. 10  is used. 

First, coordinate transformation given in the study of (Menq et al., 1991) is 

described.   
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Fig. 10 Coordinate transformation 

Input motions are defined previously in Eq.(2.21) and Eq.(2.22). Assume these input 

motions as; 

      11 12a cos sinzw t t a t   ,  (3.77) 

      21 22a cos sinyw t t a t   ,  (3.78) 

Two equations defined above can be written in matrix form as; 

 
 

 
11 12

21 22

cos

sin

z

y

w ta a

w ta a





    
     
    

,  (3.79) 

Let, 

 
   

   

   

   
11 12

21 22

cos sin cos sin0

sin cos sin cos0

u u u u

u u u u

a a a

a a b

   

   

      
              

,  (3.80) 

where u  is the inclination of the major axis to the x   axis and v  is the initial phase 

of the motion . As explained in (Menq et al., 1991), four simultaneous non-linear 
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equations coming from Eq.(3.80) can be solved and following expressions are 

obtained; 

        
2 2 2 2

11 22 21 12 11 22 12 21

1

2
a a a a a a a a a        

  
,  (3.81) 

        
2 2 2 2

11 22 21 12 11 22 12 21

1

2
b a a a a a a a a        

  
,  (3.82) 

 
1 112 21 21 12

11 22 11 22

1
tan tan

2
u

a a a a

a a a a
  

     
     

     
,  (3.83) 

 
1 112 21 21 12

11 22 11 22

1
tan tan

2
v

a a a a

a a a a
  

     
     

     
.  (3.84) 

Eq.(3.77) and Eq.(3.78) can be written as; 

  coszw a  ,  (3.85) 

  sinyw b  ,  (3.86) 

 vt    .  (3.87)  

Back transformation formulation can be written as; 

 
   

   

cos sin

sin cos

x xu u

y u u
y

f f

f f

 

 

   
    

      

.  (3.88)        

As mentioned before, this model is used for the mechanical interfaces with friction 

constraint experiencing two-dimensional relative motion. Fig. 11 shows such a 

model with defined contact plane and invariant orientation. One of the contacting 

surfaces assumed as ground and contact normal load is assumed as constant. Friction 

element which obeys the Coulomb friction law and massless elastic element which 

represents the frictional interface are the two main aspects of the model. Here u  

denotes the input relative motion, v  is the slip motion of the contact point, f  is the 
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induced friction force, dk  is the tangential contact stiffness, N  is the normal load, 

  is coefficient of friction. 

 

Fig. 11 Two-dimensional dry friction element 

For simplicity parameters given below are defined. 

 dk u
u

N
 ,  (3.89) 

 dk v
v

N
 ,  (3.90) 

 
f

f
N

 .  (3.91) 

The dimensionless force acting on the ground is expressed as; 

 f u v  .  (3.92) 

Under the effect of small vibrations, contact point stays in stick state with the friction 

force proportional to input motion and with zero slip velocity. According to 
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Coulomb friction law friction force is limited to slip force N . At some point 

friction force on the interface reaches to value of slip force and at that point interface 

enters to slip state in which the friction force remains constant. Stick condition can 

be expressed as; 

 0 0 1f u u f    ,  (3.93) 

 0v  .  (3.94) 

Slip condition can be expressed as; 

 
v

f
v

 ,   (3.95) 

 0v  ,  (3.96) 

where 0u and 0f  are the initial values of u and f at the beginning of the stick state. 

In order to evaluate the frictional behavior of the interface with elliptical motion, it 

is very important to find the two possible transition points, stick-to-slip and slip-to-

stick, very accurately. As mentioned before stick-to-slip transition, when the 

amplitude of the friction force tends to exceed the slip load, can be determined easily 

like done in the one-dimensional case. However, it is not possible to find the slip-

to-stick transition like done in one-dimensional case where transition occurs when 

the direction of relative input motion reverses. Because in elliptical case, input 

motion never reverses its direction. For that reason, slip velocity can be used to find 

the slip-to-stick transition point. Transition occurs when the slip velocity becomes 

zero. 

Stick-to-slip transition occurs when the amplitude of the friction force tends to 

exceed the slip load and can be shown mathematically as; 

 0 0 1f u u f    ,  (3.97) 

 0f  .  (3.98) 
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Given condition for the stick-to-slip can be transformed into a quartic equation and 

can be solved analytically. Relative input motion can be assumed as; 

    cos sin
T

u a b     .  (3.99) 

Eq.(3.97) can be written as; 

 
 

 
1

2

cos
1

sin

a C
f

b C






 


,  (3.100) 

      
2 2

1 2cos sin 1a C b C     .  (3.101) 

 Take square of the both sides of Eq.(3.101)  

        
2 22 2 2 2

1 1 2 22 cos 2 sin cos sin 1C C a C C b a b         .  (3.102) 

It is known that; 

    
2 2

cos 1 sin   .  (3.103) 

Insert Eq.(3.103) into Eq.(3.102) and rearrange it. 

        
22 2 2 2 2

2 1 2 1sin 2 sin 1 2cosb a bC a C C C a         .  (3.104) 

Take the square of the both sides of the Eq.(3.104), insert Eq.(3.103) into the new 

equation and arrange it. 

 

       

    

     

2 4 32 2 2 2

2

22 2 2 2 2 2 2 2 2

1 1 2 2

2
2 2 2 2 2 2 2 2

2 1 2 1 2 1

sin 4 sin

4 2 1 4 sin

4 1 sin 1 4 0

a b C b a b

C a a b C C a C b

C b C C a C C a C a

 





  

       
 

        

.  (3.105) 

Eq.(3.105) can be written as; 

        
4 3 2

4 3 2 1 0sin sin sin sin 0A A A A A        ,  (3.106) 

where 
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  
2

2 2

4A a b  ,  (3.107) 

  2 2

3 24A C b a b   ,  (3.108) 

   2 2 2 2 2 2 2 2 2

2 1 1 2 24 2 1 4A C a a b C C a C b       
 

,  (3.109) 

  2 2 2

1 2 1 24 1A C b C C a    ,  (3.110) 

  
2

2 2 2 2 2

0 1 2 11 4A C C a C a     .  (3.111) 

Eq.(3.106) can be solved analytically by using the method given in Appendix A. 

As described above it is harder to find the slip-to-stick transition. It can be found by 

using the conditions given in Eq.(3.94) and Eq.(3.96). For the slip state, slip motion 

which is along the friction force direction is written as; 

 v cf ,  (3.112) 

where 0c  . 

Friction force has a constant magnitude so; 

 0Tf f  .  (3.113) 

Differentiate Eq.(3.92) and insert Eq.(3.112) into it; 

 0T Tf u cf f  .  (3.114) 

It is known that 1Tf f   , c  can be found as follows; 

 
Tc f u .  (3.115) 

Insert Eq.(3.115) into Eq.(3.112) 

 
Tv f uf .  (3.116) 

Insert Eq.(3.116) into the differentiation of  Eq.(3.92) 
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 Tf u f uf  .  (3.117) 

From Eq.(3.116), 0v   implies; 

 0Tf u  .  (3.118) 

During the slip motion friction force can be expressed as; 

    cos sin
T

f      .  (3.119) 

Insert Eq.(3.99) and Eq.(3.119) into Eq.(3.117); 

    cos cos
2 2

d a b a b

d


   



 
    .  (3.120) 

Similarly from Eq.(3.115); 

    sin sin
2 2

a b a b
c     

  
     

 
.  (3.121) 

Eq.(3.120) can not be solved analytically, so it is solved numerically. By solving 

Eq.(3.120), induced friction force for the slip state and the result of Eq.(3.121) can 

be found. It is known that during the slip state c  has to be positive, so it can be said 

that when the c  constant changes its sign, slip-to-stick transition occurs. After 

finding the transition points, stick-slip hysteresis diagram given in Fig. 12 can be 

drawn. 
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Fig. 12 Friction force trajectory 

 

In the diagram, while trajectories inside the unit circle represent the stick state, 

trajectories following the unit circle represent the slip state. When the motion starts, 

friction interface starts form the stick state with zero friction force. Stick state 

continues until the friction force tends to pass the slip force which is stated 

mathematically in Eq.(3.97), in other words, until the stick trajectory meets unit 

circle. By solving Eq.(3.97) transition angle 1  can be found. After the transition to 

slip state, Eq.(3.120) and Eq.(3.121) can be solved to find the   and c  values. c  

value is used to find the slip-to-stick transition angle 2  because it is known that 

slip-to-stick transition occurs when c  crosses zero. This continues with the same 

pattern until the friction force reaches to steady state. 

For the mechanical interfaces with friction constraint experiencing two-dimensional 

elliptical motion, there are three possible friction force trajectories. If the amplitude 

of input relative motion is small, the friction interface remains stuck and friction 

trajectory becomes an ellipse like shown in Fig. 13 and it is called fully-stuck state. 

When the amplitude of input relative motion increases, friction interface enters to 
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slip state and followed an alternating stick and slip motion with the resulting 

trajectory given in Fig. 14. This trajectory is the steady state version of the one given 

in Fig. 12. After amplitude of input relative motion passes the certain amount, it 

enters to fully-slip state and the resulting trajectory becomes circle which is shown 

in Fig. 15. 

 

 

Fig. 13 Fully-stuck trajectory 

 

 

Fig. 14 Stick-slip state trajectory 
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Fig. 15 Fully-slip trajectory 

 

Once the steady state friction forces are found, Fourier Transform can be used to 

separate the forces into its sine and cosine components. Friction force can be written 

as; 

 
   

   

sin cos

sin cos

z zz
s c

y yy
s c

f ff
f

f ff

 

 

  
    

   
.  (3.122) 

Here force components in-phase with the input motion provide additional spring 

resistance, while components 90° out of phase add friction damping to the interface. 

 For the interface in fully-stuck state, friction force is; 

 
 

 

cos

sin

a
f

b





 
  
 

.  (3.123) 

Employ one-term Fourier series expansion 

    
2

0

1
cos sinz

sf a d



  


  ,  (3.124) 

 0zf  ,  (3.125) 
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    
2

0

1
cos cosz

cf a d



  


  ,  (3.126) 

 z

cf a ,  (3.127) 

    
2

0

1
sin siny

sf b d



  


  ,  (3.128) 

 y

sf b ,  (3.129) 

    
2

0

1
sin cosy

cf b d



  


  ,  (3.130) 

 0y

cf  .  (3.131) 

For the interface in alternating slip-stick state, 

 

       

       

1 2

1

3 4

2 3

0 0

0

0 0

1 1
cos sin cos sin

1 1
cos sin cos sin

z

sf d a u f d

d a u f d

 



 

 

     
 

     
 

        

        

 

 

,  (3.132) 

 

       

       

1 2

1

3 4

2 3

0 0

0

0 0

1 1
cos cos cos cos

1 1
cos cos cos cos

z

cf d a u f d

d a u f d

 



 

 

     
 

     
 

        

        

 

 

,  (3.133) 

 

       

       

1 2

1

3 4

2 3

0 0

0

0 0

1 1
sin sin sin sin

1 1
sin sin sin sin

y

sf d a u f d

d a u f d

 



 

 

     
 

     
 

        

        

 

 

,  (3.134) 
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 

 

     
 

     
 

        

        

 

 

,  (3.135) 

where 1  , 2  , 3  and 4  are transition angles. While the first and third parts of the 

equations defined above represent slip state, second and fourth parts define stick 

state.  

For the interface in fully-slip state, 

    
2

0

1
cos sinz

sf d



  


    ,  (3.136) 

    
2

0

1
cos cosz

cf d



  


    ,  (3.137) 

    
2

0

1
sin siny

sf d



  


    ,  (3.138) 

    
2

0

1
sin cosy

cf d



  


    .  (3.139) 

After finding the force values back transformation should be practiced. 

 
   

   

cos sin

sin cos

zb z
u u

yb y
u u

f f

f f

 

 

    
     

    
,  (3.140) 

 
   

   

sin cos

sin cos

zb zbzb
s c

yb ybyb
s c

f ff

f ff

 

 

  
   

   
.  (3.141) 
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3.3.1 Two-Dimensional Macroslip Friction Model for Circular Motion 

 

In this part a macro slip model in which normal load is constant and relative motion 

is circular is studied. Studied model is developed by (Menq & Yang, 1998). Circular 

motion is the special case of the elliptical motion and for the convenience same 

formulation given in previous part is used. Unlike the elliptical motion, for the 

circular motion coordinate transformation is not needed. 

          , sin cosz j js j jc

j j

w x t x q t x q t      ,  (3.142) 

          , sin cosy j js j jc

j j

w x t x r t x r t      ,  (3.143) 

   1, cos
2

zw x t a t


 
 

   
 

,  (3.144) 

    2, cosyw x t a t   ,  (3.145) 

    , coszw x t a  ,  (3.146) 

    , sinyw x t b  .  (3.147) 

Assume 

  cos( ) sin( )
T

u a b  .  (3.148) 

 When the amplitudes of two input motions, a  and b , become equal, elliptical 

motion becomes circular. If 1a   the contact is in fully stick state. For the values 

where 1a   Eq.(3.120) and Eq.(3.121) become 

  cos
d

a
d


 


  ,  (3.149) 

  sinc a     .  (3.150) 
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It is known that for the slip motion c  value has to be positive, so the solutions of 

above two equations can be found analytically as; 

  1cos 1/ a    ,  (3.151) 

 2 1c a  .  (3.152) 

From Eq.(3.152) it is seen that if the contact changes its behavior from stick to slip, 

it will continue in slip state because c value will be positive after the transition. So 

it can be said that for the frictional interface having circular motion, there are only 

two possible states whose trajectories are given in Fig. 16, fully-stuck and full-slip. 

From Eq.(3.151) it is seen that phase difference between the input relative motion 

and the friction force is  1cos 1/ a
. When a  equals to one, friction interface enters 

to slip state but due to zero phase, friction force behaves as pure spring constraint. 

When a  gets larger, phase angle get closer to 90° and friction force behaves as 

damping force. 

 

 

Fig. 16 Circular motion trajectories 
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Once the steady state friction forces are found, Fourier Transform can be used to 

separate the forces into its sine and cosine components. Friction force can be written 

as; 

 
   

   

sin cos

sin cos

z zz
s c

y yy
s c

f ff
f

f ff

 

 

  
    

   
.  (3.153) 

For the interface in fully-stuck state, friction force is; 

 
 

 

cos

sin

a
f

b





 
  
 

.  (3.154) 

Employ one-term Fourier series expansion 

    
2

0

1
cos sinz

sf a d



  


  ,  (3.155) 

 0z

sf  ,  (3.156) 

    
2

0

1
cos cosz

cf a d



  


  ,  (3.157) 

 
z

cf a ,  (3.158) 

    
2

0

1
a sin siny

sf d



  


  ,  (3.159) 

 
y

sf a ,  (3.160) 

    
2

0

1
a sin cosy

cf d



  


  ,  (3.161) 

 0y

cf  .  (3.162) 

For the interface in fully-slip state, friction force is 
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 

 
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sin
f





 
  
 

,  (3.163) 

    
2

0

1
cos sinz

sf d



  


    ,  (3.164) 

    
2

0

1
cos cosz

cf d



  


    ,  (3.165) 

    
2

0

1
sin siny

sf d



  


    ,  (3.166) 

    
2

0

1
sin cosy

cf d



  


    .  (3.167) 

By inserting Eq.(3.151) into Eq.(3.164)-(3.167); 

     
22

1

0

1 1
cos cos 1/ sin 1z

sf a d
a



  


           
 ,  (3.168) 

     
2

1

0

1 1
cos cos 1/ cosz

cf a d
a



  


          
 ,  (3.169) 

     
2

1

0

1 1
sin cos 1/ siny

sf a d
a



  


          
 ,  (3.170) 

     
22

1

0

1 1
sin cos 1/ cos 1y

cf a d
a



  


          
 .  (3.171) 

Same results given in Eq.(3.168)-(3.171) can be obtained directly by inserting 

Eq.(3.151) into Eq.(3.163).  



50 

 

 

  



51 

 

CHAPTER 4 

 

 

4 NONLINEAR SOLUTION METHOD 

 

 

 

4.1 Harmonic Balance Method 

 

The nonlinear ordinary differential equation set defined by Eq.(2.49) is converted 

into a set of nonlinear algebraic equations by using Harmonic Balance Method. For 

this purpose, by using a single harmonic representation, generalized coordinates can 

be expressed as follows 

          sin coss cq q t q t   ,  (4.1) 

          sin coss cr r t r t   ,  (4.2) 

where  sq ,  sr  and  cq ,  cr  are the sine and cosine components of the vectors 

of generalized coordinates. Similarly, utilizing Fourier series, nonlinear forcing and 

external excitation force vectors can be written as; 

           sin cosnz nzs nzcF t F t F t   ,  (4.3) 

           sin cosny nys nycF t F t F t   ,  (4.4) 

           sin cosz zs zcF t F t F t   ,  (4.5) 

           sin cosy ys ycF t F t F t   ,  (4.6) 
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where  nzsF ,  nysF  and  nzcF ,  nycF   are the sine and cosine components of the 

nonlinear internal forcing vectors and  zsF ,  ysF  and  zcF ,  ycF   are the sine 

and cosine components of external forcing vectors. After inserting Eq.(4.1)-(4.6) 

into Eq.(2.49) and separating sine and cosine components, the following nonlinear 

algebraic equations are obtained. 

 

   
   

   
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F FrC
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















    
   

    
      
      

      
      

                     
             

.  (4.7) 

 

4.2 The Newton’s Method and Newton’s Method with Arc-Length 

Continuation 

 

There are different approaches for the solution of nonlinear equations. Newton’s 

Method is one of the methods used (Urroz, 2004) for the solution of nonlinear 

algebraic equation set. Consider the solution of system of equations with n  

unknowns. 

  

 

 

 

1 1 2

2 1 2

1 2

, , ,

, , ,
0

, , ,
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R x x x

R x x x
R x

R x x x

 
 
  
 
 
  

,  (4.8) 

where  
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 
 
 
 
 
 

.  (4.9) 

Newly approximated root can be written as; 

  1

1n n nx x J R x

   ,  (4.10) 

where J  is called Jacobian matrix and defined as; 
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   
    

.  (4.11) 

In the solution of the some systems, determinant of Jacobian matrix becomes zero 

or very small and because of that it is not possible to calculate the inverse of 

Jacobian. At these times Newton’s Method becomes insufficient for the solution of 

these systems. In these situations Newton’s Method with Arc-Length Continuation 

is preferred by many to solve the problem (Ender Cigeroglu & Samandari, 2012; 

Ewins, 2000; Ferreira & Serpa, 2005). In the Newton’s Method with Arc-Length 

Continuation, instead of frequency arc-length denoted by s   is added to non-linear 

equation set as a path following parameter. s  is the radius of a hypothetical sphere 

in which the next solution point is searched. 

 
x

q


 
  
 

.  (4.12) 

Here q  is the new vector of unknowns. 

    
2 2 2

1 1k k k kx x s      ,  (4.13) 
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 1k k kx x x    ,  (4.14) 

 1k k k      ,  (4.15) 
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x
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
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,  (4.16) 

   2, 0T

k k k kh x q q s      ,  (4.17) 
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





  
         
     

 
  

.  (4.18) 

In some cases it is possible to have convergence problems. In these cases at every 

iteration step relaxation is applied (Cigeroglu & Ozguven, 2006). 

  *

1 1 1i i iq q q     ,  (4.19) 

where   is weighting factor which have a value between 0 and 2. If a non-

convergent system is desired to be made convergent the value of   is employed 

between 0 and 1. If the convergence of already convergent system is desired to be 

accelerated, the value of   is employed between 1 and 2. 
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CHAPTER 5 

 

 

5 CASE STUDIES 

 

 

 

5.1 Case Studies for One Dimensional Macro Slip Friction Model 

 

In this part, case studies covers the shaft-damper assemblies in which dry friction 

dampers are modeled by using one dimensional macro slip friction model with 

constant normal load. Example assembly is given in Fig. 17 where the system is 

excited by the unbalance located on the shaft. Parameters used are given in Table 1. 

 

 

Fig. 17 Tail Shaft Assembly 

 

 



56 

 

 

Table 1 Parameters used  

Parameter Numerical Value 

  mL  3  

  moD  0.09  

 miD  0.07  

  GPaE  68.9  

3 kg/m     2700  

  N/mk  
810

 

  Nm/radtk  
310  

  N/mdk   
610  

   0.02  

 1  me kg m  

 2  me kg m   

310  
30.5 10   

 

where 1me  and 2me  are unbalances, oD  and iD  are outer and inner diameter of the 

shafts, k  and tk  are the stiffness of bearings and couplings attached to shaft . 

External forcing is defined as 2me . For this case study set, just one unbalance, 1me

, is used. In this case study external forcing is; 

  2

1(t) me coszf w wt   (5.1)   

In the case study whose results are given in Fig. 18 both damper and unbalance are 

located on the midpoint of the shaft and effect of slip force, N , on the maximum 

vibration amplitude of the shaft around its first critical speed is investigated. 

Obtained results are taken from the midpoint of the shaft. It is observed from the 

results that increasing slip load decreases the vibration amplitude until a certain 

point where further increase in the slip force results in an increase in the maximum 

vibration amplitude. Moreover, as the slip load increases, resonance frequency of 

the tail drive shaft system also increases which is due to the increased stiffness effect 

of the dry friction damper. After a point, friction damper system enters to fully stuck 
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state and it behaves like a permanent linear spring element and further increase of 

the slip force does not affect the vibration amplitude of the shaft. In Fig. 19 optimal 

curve and frequency shift curve of the same system is given in order to support the 

results of the previous study. From these results, it can be concluded that there is an 

optimum slip load which minimizes the vibration amplitude.  

 

 

Fig. 18 Displacement amplitude of the midpoint vs. frequency plot as a function of 

slip force  N  

 

100 200 300 400 500

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

A
m

p
lit

u
d
e
 (

m
)

Frequency (rad/s)

 Free

 N=40 N

 N=100 N

 N=250 N

 N=2500 N

 N=5000 N

 Stuck



58 

 

 

Fig. 19 Optimal and frequency shift curves 

 

In the next case study whose results can be seen in Fig. 20 , in order to see the effect 

of damper location on the system response, dry friction damper is attached on 

different locations on the shaft with constant optimum slip load. Unbalance is 

located on the midpoint of the shaft and the results which consist of the maximum 

vibration amplitude normalized with respect to the maximum vibration amplitude 

of the no damper case are taken again from the midpoint of the shaft. It is clearly 

seen that the optimum damper location for the first vibration mode is the midpoint 

of the shaft where the highest amplitude of the first mode is expected. In addition to 

these, it should be noted that it is not possible to locate the damper on the exact 

middle section of the shaft but as can be seen from the graph small deviations does 

not affect the performance of the damper. 
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Fig. 20 Effect of damper location on the maximum vibration amplitude 

 

In the next two case studies, it is assumed that shaft is rotating above the second 

natural frequency. In order to see the second mode, unbalance is moved to 0.25L  

and results are taken again from that point. In the case study presented in Fig. 21, 

damper is located at the midpoint of the shaft and it is seen that although the damper 

is able to damp vibrations around the first mode, it is ineffective around the second 

mode. This is due to the fact that the damper is located on the nodal point of the 

second mode. In the other case study presented in Fig. 22, damper is moved from 

the midpoint to 0.25L . It is observed from these results that in this case, vibrations 

around the second mode are as well damped out. It can be concluded that if more 

than one mode is required to be damped, optimum damper location should be sought 

and nodal points should be avoided.  
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Fig. 21 Displacement amplitude of the midpoint vs. frequency plot as a function of 

slip force  N  

 

 

Fig. 22 Displacement amplitude of the midpoint vs. frequency plot as a function of 

slip force  N  
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In the next study given in Fig. 23, in order to see the importance of estimation of 

amount of unbalance, while holding the slip load constant, amount of unbalance is 

changed. Slip load is taken from the case study given in Fig. 18 as 250 N which is 

an optimum value for 310  N unbalance. In order to see the effect, maximum 

vibration amplitude normalized with respect to maximum vibration amplitude of the 

corresponding linear case is plotted. From the results, it is seen that for the other 

unbalance values efficiency of damper decreases and every slip load value is unique 

for its corresponding unbalance value. It can be said that effectiveness of the damper 

depends on the accurate estimation of the amplitude of external forcing which is 

unbalance. 

 

 

Fig. 23 Effect of amplitude variation of external forcing 
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5.2 Case Studies for One-Dimensional Macroslip Friction Model with Gap 

 

In this part, case studies covers the shaft-damper assemblies in which dry friction 

dampers are modeled by using one dimensional dry friction macro slip model with 

gap. Example assembly is given in Fig. 24 where the system is excited by the 

unbalance located on the shaft. Used parameters are given in Table 1. Additionally 

0.5dL L  and 0.5fL L . For this case study set, just one unbalance, 1me , is used. 

In this case study external forcing is; 

  2

1(t) me coszf w wt   (5.2) 

Dry friction damper with gap is attached on the helicopter tail shaft in order to 

suppress the vibrations resulting from passing from the resonance region. There are 

three main parameters affecting the behavior and the performance of the dry friction 

damper. These parameters are slip force, tangential contact stiffness and amount of 

gap. Several case studies are performed in order to examine the effects of these 

parameters. 

 

 

Fig. 24 Tail shaft assembly 
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In order to see the effect of slip force same system is run with different slip force 

values. From the results given in Fig. 25 and Fig. 26, it is seen that when the slip 

force is increased, amount of damping decreases until a point. After that optimum 

point extra increase in the slip force causes vibration amplitude to increase again. In 

addition to this, amount of slip force causes shift in the resonance frequency. The 

reason of the frequency shift is the increased stiffness effect of dry friction damper. 

After some time it becomes stuck and the damper behaves like a linear piece wise 

spring attached on the shaft. Further increase of the slip force does not affect the 

vibration amplitude anymore. From the optimal curve given in Fig. 26, it can be 

concluded that friction damper works properly at the right of the optimum slip force 

in order to eliminate the uncertainties in slip force and excitation amplitude. 

 

 

Fig. 25 Displacement amplitude of the midpoint vs. frequency plot as a function of 

slip force  N  ( 0.001h  m, 610dk  N/m) 
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Fig. 26 Optimal and frequency shift curves ( 0.001h  m, 610dk  N/m) 

 

In order to study the effect of tangential contact stiffness same system defined above 

is run with dry friction damper having different tangential contact stiffness values. 

Results are given in Fig. 27-Fig. 35. From the results it is seen that the biggest effect 

of the tangential contact stiffness change is on the amount of frequency shift. Larger 

dk   values cause larger frequency shifts. It is a fact that because of the unbalance, 

at higher speeds amplitude gets higher. In addition to these, optimum slip force 

region changes with dk . For small dk  values optimum slip force region is relatively 

narrow while for the large dk  values region is wider. Sometimes during the 

operation it is not possible to provide constant slip force because of the factors like 

wear. So it is feasible to have larger optimum regions. However, excessive 

frequency shift can cause the operational speed to approach to the resonance 

frequency in the case of stuck. 
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Fig. 27 Displacement amplitude of the midpoint vs. frequency plot as a function of 

slip force  N  ( 0.001h  m, 510dk  N/m) 

 

 

 

Fig. 28 Optimal and frequency shift curves ( 0.001h  m, 510dk  N/m) 
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Fig. 29 Displacement amplitude of the midpoint vs. frequency plot as a function of 

slip force  N  ( 0.001h  m, 52 10dk   N/m) 

 

Fig. 30 Optimal and frequency shift curves ( 0.001h  m, 52 10dk   N/m) 
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Fig. 31 Displacement amplitude of the midpoint vs. frequency plot as a function of 

slip force  N  ( 0.001h  m, 55 10dk   N/m) 

 

Fig. 32 Optimal and frequency shift curves ( 0.001h  m, 55 10dk   N/m) 
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Fig. 33 Displacement amplitude of the midpoint vs. frequency -  effect of 

tangential contact stiffness ( 0.001h   m) 

 

Fig. 34 Optimal curves ( 0.001h   m) 
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Fig. 35 Frequency shift curves ( 0.001h   m) 
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Fig. 36 Performance curve 
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of the system. Therefore, friction dampers are not required to work continuously; 

instead, they are only necessary during the time short duration of time in speeding 

up or slowing down. 

 

 

Fig. 37 Comparison of effect of amount of gap on displacement amplitude          

(solid lines: 0.001h  m; dashed lines: 0h  m, 
610dk  N/m) 
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Fig. 38 Comparison of effect of amount of gap on displacement amplitude          

(solid lines: 0.001h  m; dashed lines: 0.0005h  m, 
610dk  N/m) 

 

 

 

Fig. 39 Optimal and frequency shift curves (
610dk  N/m) 
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In Fig. 38 two different gap values are considered. As expected, smaller gap value 

results in more reduction in the vibration amplitude but the difference is not 

significant. This can be easily observed in Fig. 39, where the optimal and frequency 

shift curves are given. Proper gap value can be obtained by considering the 

allowable vibration amplitude and maintenance requirements. 

 

5.3 Case Studies for Two-Dimensional Macroslip Friction Model-Elliptical 

Motion 

 

In this part case studies covers the shaft-damper assemblies in which dry friction 

dampers are modeled by using two dimensional macro slip model. Example 

assembly is given in Fig. 40. Parameters used are given in Table 1. In order to see 

elliptical motion, the system is excited by two unbalances located on the shaft with 

90 degrees phase difference. In this case study external forcing is; 

    2 2

1 2(t) me cos sinzf w wt me w wt    (5.3) 

    2 2

1 2(t) me sin w cosyf w wt me wt    (5.4) 

 

Fig. 40 Tail shaft assembly 
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In order to see the effect of dry friction damper on the first and second modes of the 

shaft, different case studies are performed. In the first case study whose results are 

given in Fig. 41, both damper and unbalance are located on the middle of the shaft. 

Two unbalances are located with phase difference in order to examine elliptical 

trajectory. In the second case study whose results are given in Fig. 42 both damper 

and unbalances are moved to 0.25L  to be able to examine the second mode. From 

the results it is seen that when the slip force is increased, amount of damping 

decreases until a point. After that optimum point extra increase in the slip force 

causes vibration amplitude to increase again. In addition to this, amount of slip force 

causes shift in the resonance frequency. The reason of the frequency shift is the 

increased stiffness effect of dry friction damper. After some time it becomes stuck. 

Further increase of the slip force does not affect the vibration amplitude anymore. it 

can be concluded that friction damper works properly at the right of the optimum 

slip force in order to eliminate the uncertainties in slip force and excitation 

amplitude. 

 

 

Fig. 41 Displacement amplitude vs. frequency plot as a function of slip force 
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Fig. 42 Displacement amplitude vs. frequency plot as a function of slip force 

 N  
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rotating shaft with dry friction damper attached on it. Both damper and unbalances 

are located onto the middle of the shaft and the results are taken from that point. 

There is a phase difference between the unbalances which creates the elliptical 

trajectory. First model is the two dimensional macro slip friction model. In the 

second one instead of using two dimensional model , two one dimensional friction 

elements are combined. In the third model, again two one dimensional friction 

elements are combined with additional coordinate transformation which is applied 

in the two dimensional macro slip friction model(E Cigeroglu et al., 2007; Cigeroglu 
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ordinary differential equations which are solved numerically. From the frequency 

vs amplitude graph given in Fig. 44 and from the optimal curve given in Fig. 45, it 

can be said that two alternative methods can be used instead of two dimensional 

model if the computation time is an important concern. However it is better use the 

two one dimensional friction element model with coordinate transformation because 

it gives closer results to the two dimensional model around optimum region. 

 

 

Fig. 43 Coordinate transformation axis and illustration of 2 1D friction elements 

with transformation 
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Fig. 44 Comparison of efficiency of different models  

 

 

Fig. 45 Optimal curves 
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5.4 Case Studies for Two-Dimensional Macroslip Friction Model-Circular 

Motion 

 

In this part case studies covers the shaft-damper assemblies in which dry friction 

dampers are modeled by using two dimensional macro slip model with circular 

motion. Example assembly is given in Fig. 46 where the system is excited by an 

unbalance located on the shaft. Parameters used are given in Table 1. For this case 

study set, just one unbalance, 1me , is used. In this case study external forcing is; 

  2

1(t) me coszf w wt   (5.5) 

  2

1(t) me sinyf w wt   (5.6) 

 

 

Fig. 46 Tail shaft assembly 

 

In order to see the effect of dry friction damper on the first and second modes of the 

shaft following circular trajectory, different case studies are performed. In the first 

case study whose results are given in Fig. 47 and Fig. 48, both damper and unbalance 

are located on the middle of the shaft. Only one unbalance is attached in order to 
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examine circular trajectory. In the second case study whose results are given in Fig. 

49, in order to examine the second mode and the effect of the damper on that mode 

both damper and unbalance is moved to 0.25L . From the results it is seen that when 

the slip force is increased, amount of damping decreases until a point. After that 

optimum point extra increase in the slip force causes vibration amplitude to increase 

again. In addition to this, amount of slip force causes shift in the resonance 

frequency. The reason of the frequency shift is the increased stiffness effect of dry 

friction damper. After some time it becomes stuck and further increase of the slip 

force does not affect the vibration amplitude anymore. It can be said that with correct 

parameters dry friction dampers works properly. 

 

 

Fig. 47 Displacement amplitude vs. frequency plot as a function of slip force 
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Fig. 48 Optimal and frequency shift curves 

 

 

Fig. 49 Displacement amplitude vs. frequency plot as a function of slip force 
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Another case study is performed in order to compare the different models for the 

rotating shaft with dry friction damper attached on it. Both damper and unbalance 

are located on the middle of the shaft and the results are taken from that point. First 

model is the two dimensional macro slip friction model. As a second model instead 

of using two dimensional one, two one dimensional friction elements are combined. 

One of the main reasons of seeking alternative method for the two dimensional 

model is that it is computationaly more complex. From the frequency vs amplitude 

graph given in Fig. 50 both two models gives close results and it can be said that 

combination of two one dimensional friction elements can be used instead of two 

dimensional macro slip friction model. 

 

 

Fig. 50 Comparison of efficiency of different models (solid lines: 2D friction 

element; dashed lines: 2 1D friction element)  
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CHAPTER 6 

 

 

6 DISCUSSION AND CONCLUSION 

 

 

 

6.1 Conclusion 

 

In this study, vibration reduction of supercritical helicopter tail drive shaft by 

utilizing dry friction dampers is studied. The tail drive shaft is modeled by Euler-

Bernoulli beam theory supported by springs at both ends which represent the 

bearings and couplings used. . In order to derive the equation of motion Hamilton’s 

Principle is used. The partial differential equation of motion obtained is discretized 

by using Galerkin’s Method with multiple trial functions and the resulting nonlinear 

ordinary differential equations are converted into a set of nonlinear algebraic 

equations by using Harmonic Balance Method. These resulting nonlinear algebraic 

equations are solved by using Newton’s Method and Newton’s Method with Arc-

Length Continuation. 

In order to model dry friction dampers mathematically different friction models are 

used. Two models are taken from the literature; one dimensional macroslip friction 

model with constant normal load and two dimensional macroslip friction model with 

constant normal load. Moreover, In order to examine the systems having circular 

trajectory sub-model of the two dimensional macroslip friction model with constant 

normal load is used. Apart from these two models to be able to study the systems 

having gap between the interfaces, a new model, one-dimensional macroslip friction 

model with gap, is developed by adding gap element to one dimensional macroslip 

friction model. General conditions for stick, slip and contact and no contact states 
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are developed and transition angles for simple harmonic motion are obtained 

analytically 

Several case studies are performed in order to see the effect of dry friction dampers 

on the helicopter tail shaft vibrations. As a general conclusion it can be said that 

with correct parameters dry friction dampers are able to damp the excessive 

vibrations of the tail shaft while passing from the resonance regions. Two important 

parameters are amount of slip force and the location of the damper. Increasing 

amount of slip force on the damper decreases the vibration amplitude, but after a 

point vibration amplitude increases again with additional frequency shift as a result 

of the increasing stiffening effect. It is obvious that with optimum slip force value, 

damper fulfills its duty successfully. In a practical way, considering the parameter 

uncertainties, it is concluded that optimum slip force value should defined at the 

right of optimum point in the optimal curves. It should be noted that, optimum slip 

force values are unique for specific external forcing value. Because of that 

estimation of the external forcing value is very important. Location of the damper is 

also crucial. If the shaft works just above the first natural frequency, it is better to 

locate the damper around the point where peak of the first mode is expected. If the 

shaft works above more than one natural frequencies, it is better to find the optimum 

location. In addition to this, if one specific mode is desired to be damped, nodal 

point of that mode must be avoided. 

For the systems having dry friction dampers with gap, additional cases are studied. 

Amount of gap is an important parameter for these kind of systems. It is seen that 

adding gap to the damper decreases the performance of the damper. However, 

performance is not the only design parameter. Dampers with gap does not engage 

with the shaft continuously, they make contact with the shaft while passing from the 

resonance region. So it can be said that due to the gap introduced, life of the friction 

damper increases, unnecessary friction torque and shaft wear are eliminated, and 

maintenance downtimes are decreased. Due to the importance of maintenance in 

helicopter operations, it is feasible to use gapped dampers. It is observed that 

tangential contact stiffness is an important design parameter and according to the 
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optimal and performance curves obtained, dampers with higher contact stiffness 

values less sensitive to parameter uncertainties. Therefore, dry friction dampers with 

higher contact stiffness values should be preferred to have better friction damper 

performance. 

Two dimensional macroslip models simulate the dampers successfully but they are 

computationally expensive. For the systems following elliptic trajectory, 

combination of two one dimensional friction elements with coordinate 

transformation can be used instead of two dimensional model if the computation 

time is an important concern. Both models give pretty close results around optimum 

region. Same results can be said for the systems following circular trajectory. Instead 

of two dimensional model, combination of two one dimensional elements can be 

used. 

To sum up, it can be said that dry friction dampers are capable of reducing the 

vibrations of the tail shaft of a helicopter if correct parameters are chosen.  

 

6.2 Future Works 

 

In this study, reduction of vibrations of tail shaft systems of a helicopter by using 

dry friction dampers is examined. Dry friction dampers are modeled by using 

different friction models. While using Harmonic Balance Method single harmonic 

approach is used and in the future studies multi-harmonic approach can be used and 

effects of the harmonics can be examined. 

In this study, in order to model the dry friction damper having gap, one dimensional 

macro slip friction model with gap is used. In the future, this model can be extended 

to two dimensional model. 
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APPENDIX A 

 

 

A. QUARTIC EQUATION SOLVER 

 

 

 

In order to solve the quartic equations, solution of the Lodovico Ferrari who is 

known as the first person solving the quartic equations is used (Szénási & Tóth, 

2015) .  
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