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ABSTRACT

RUNGE-KUTTA SCHEME FOR
STOCHASTIC OPTIMAL CONTROL PROBLEMS

Oz Bakan, Hacer
Ph.D, Department of Financial Mathematics

Supervisor : Prof. Dr. Gerhard-Wilhelm Weber
Co-Supervisor : Asst. Prof. Dr. Fikriye Yilmaz

September 2017, 93 pages

In this thesis, we analyze Runge-Kutta scheme for the nualesdtutions of stochastic
optimal control problems by usingjscretize-then-optimizapproach. Firstly, we dis-
cretize the cost functional and the state equation with éfe &f Runge-Kutta schemes.
Then, we state the discrete Lagrangian and take the pagtiabdive of it with respect
to its variables to get the discrete optimality system. By paring the continuous and
discrete optimality conditions, we find a relationship beg¢w the Runge-Kutta coef-
ficients of the state and adjoint equation, so that we prdRenge-Kutta scheme for
the adjoint pair(p(t), q(t)). Similar to the deterministic setting, the issue of conver-
gence is important when dealing with a numerical schemetolchastic case, this can
be achieved either by using the strong-order convergeneeak-order convergence
criteria. We match the stochastic Taylor expansion on tlaetesolution of continuous
optimality system with the stochastic Taylor expansionpgraximate solution of our
discrete optimality system, term by term, in order to gehlsitong and weak-order
conditions. The thesis ends with a conclusion and a fututeakito forthcoming
research and application.

Keywords Stochastic optimal control, Runge-Kutta discretizatiSigchastic differ-
ential equations, Stochastic-Taylor expansion, HamiétonOptimization, Stochastic
partial differential equation
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0z

STOKASTIK OPTIMAL KONTROL PROBLEMLERI ICIN RUNGE-KUTTA
YONTEMI

Oz Bakan, Hacer
Doktora, Finansal Matematikd@imi
Tez Yoneticisi : Prof. Dr. Gerhard-Wilhelm Weber
Ortak Tez Yoneticisi : Yrd. Dog. Dr. Fikriye Yilmaz

Eylul 2017[93 sayfa

Bu tezdepnce ayriklastirma sonra optimize etme yaklasimi kaltak, stokastik opti-
mal kontrol problemlerinin numerikdziimleri icin Runge-Kutta §ntemini inceledik.
llk once maliyet fonksiyonu ve durum denklemi Runge-Kutiatgmini ile ayriklastir-
dik. Sonra, ayriklastiriimis optimallik kosullarinde etmek icin, Lagrange fonksiy-
onunun ayriklastiriimis halini verdik ve onun kisrarevlerini aldik. $irekli ve ayrik-
lastirimis optimallik kosullarini karsilastirardlkarum denkleminin ve adjoint denklem-
inin Runge-Kutta katsayilari bir Béanti bularak, adjoint denklemi icin Runge-Kutta
yontemini elde ettik. Deterministik durumda ofglugibi, stokastik durumunda da nu-
merik metodun yakinsama konusaemlidir. Stokastik durum igin, gl ve zayif
yakinsama olmakizere iki ¢esit yakinsama vardir. Her iki durum icin d&kiysama
kosullarini elde edebilmek amaciyldrskli optimallik kosullarinin gergekdgziimini
ve ayriklastiriimis optimallik kosullarinin yakl&ggozimini karsilastirdik. Bu tez bir
degerlendirme ve gelecek ¢calismalara bir bakis ile stamdiriimistir.

Anahtar Kelimeler Stokastik optimal kontrol, Runge-Kutta ayriklastirma&okastik
diferansiyel denklemler, Stokastik-Taylor acilimi, Héonian, Optimizasyon, Stokastik
kismi diferansiyel denklemler
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CHAPTER 1

INTRODUCTION

Stochastic optimal control problems play a crucial role maficial mathematics and
economics. For instance, Merton reduced portfolio probleowv to allocate safe and
risky assets while maximizing the expected utility, to atcolnproblem and then he
solved it by using stochastic control theory [40] 41]. Arestexample in finance is
optimal production planning problem; here, a company hasdfast or to control its
production rate in order to meet the demand while minimizimgexpected total cost
[66]. The number of these examples can be increased. At the 8me, solving such
stochastic optimal control problems is also an importasuesand there exist different
approaches to tackle stochastic optimal control probldrhs.first one is called as the
duality methodshere, the problem is reduced to one of finite dimensions atwd
by using the martingale representation theorem and Givsaaasformation|[[B] 4].
The second approachdynamic programminghe method is characterized by means
of theHamilton-Jacobi-Bellman (HJB) equatipleading to a partial differential equa-
tion, whose solution gives the value functionl[66]. The Egproach ifontryagin’s
Maximum Principl€3], 48], which is developed separately and independertty fihe
HJB equation, consists of the original state equation aaddthcallechdjoint process
(p(t),q(t)), defined by a stochastic differential equation (SDE) combiwith a final
condition. So, the resulting system introducef®avard-backward stochastic differ-
ential equation (FBSDE)t is an interesting question which of these methods should
be used to solve the stochastic optimal control problemsrebier, it is sometimes
difficult to find the analytical solutions of stochastic opél control programs, or the
problem does not even admit a global solution at all with tekp lof one of the men-
tioned methods. In this case, numerical methods gain irapoet

The numerical solution methods of SDEs are similar to teqines developed for or-
dinary differential equations (ODESs), but they are extehtiesatisfy the stochastic
dynamics. The most efficient and widely used approach toilata approximation
process is given by discrete-time approximations whichessentially based on the
Itd-Taylor expansions [10, 28]. Euler and Milstein schemeslmath be regarded as
simple methods and they are widely used. Platen and KloéZBjmpfovided a deep
investigations of the &-Taylor expansions that leads to many numerical schentes. T
[td-Taylor schemes use the derivative of the drift and difnstoefficients, and this
increases the computational cost considerably. At thistpiiis reasonable to employ
derivative-free schemes such as Runge-Kutta type methb@sT6 9, 13[ 28, 42, 60].
Burrage and Burrage presented a general class of stochastgefuwtta methods
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in [6]. In [59], Tian and Burrage discussed two-stage diagiprimplicit stochas-
tic Runge-Kutta methods with strong order-1 for strong sohg of the Stratonovich
SDEs. Finally, BRler developed many Runge-Kutta schemes for both thand
Stratonovich SDES [14, 54, 55].

In stochastic calculus, there are two ways to measure theeogence of a numerical
method. When sample paths, trajectories, of the solutiomeeeled, strong conver-
gence criteria are used. So, strong approximations aréigabior problems requiring
direct simulations of dynamical sytems such as filteringesting estimators of dt
proceses, stochastic flows. Recent developments have shbatetthiese approxima-
tions are also important for Multi-level Monte-Carlo metHod SDEs [19]. However,
if one deals with only the probability distribution or somements of the solution pro-
cess, weak convergence criteria are employed. The mosiatygpplication of weak
approximations is Monte-Carlo simulation of option prid@3][

Stochastic Runge-Kutta schemes of strong-order were weliest in [6/ 7 8, 55]. Be-
cause of Jensen’s inequality, mean-square convergendiesnsfrong convergence of
the same ordef [13]. Thus, mean-square convergence is asadasure the strong
convergence. Burrage andRer [6,[7] 8] 55] made use of Rooted Tree analysis in-
vented by Butcher [9] and stochastic Taylor approximatiansktain strong conver-
gence. Burrage [6, 7] 8] derived strong order-1 conditiorth@Runge-Kutta scheme
for SDEs. However, Burrage could not exceed strong order-arfg number of stages
for the same Runge-Kutta scheme. By introducing an additicaralom variable to
the classical Runge-Kutta method, Burrage got strong ordecdnditions with the
help of the stochastic Taylor series.0®er [52,[55] studied on a different kind of
Runge-Kutta scheme from that of Burrage to obtain strongrardeditions by using
the Rooted Tree Theory and stochastic Taylor series.

Many stochastic Runge-Kutta methods converging in weakesemse proposed in
recent years [14, 29, 87,142,160, 61]. It is worth noting tihase stochastic Runge-
Kutta methods are similar, but they were expressed diftgravioreover, the way used
to measure the convergence was different. For example, K§&8} and Roler [54]
derived weak-order conditions by the aid of Rooted-Treeyamlnvented by Butcher
[9]. Tocino and Ardanuy [60] got weak-order conditions ftoahastic Runge-Kutta
method by comparing the truncated-lfaylor expansions of the exact solution and the
solution from the Runge-Kutta method. They studied on the&SIDEs and obtained a
remainder term as well. For this reason, they had to choasdiffusion coefficient
that minimizes the remainder term. On the other hand, Mackev[37] and later
RoRler [14] investigated Runge-Kutta schemes of the Straioh&SDEs to avoid the
remainder term which Tocino and Ardanuy [60] experiencetleyTmade use of dt
Formula to expand the expectation of Taylor expansions.

Runge-Kutta schemes were also well studied for optimal obptoblems of ODEs
[5,[15,[21] 27, 58]. Hager [21] derived the Runge-Kutta schimthe optimal control
problems of ODEs. He discretized the state equation by a RKnga scheme and
observed that the resulting optimality system, after fi@nsing some variables, is
a partitioned Runge-Kutta scheme. Then, by stating the etssdragrangian of the
problem, he found a relationship between the Runge-Kuttfficieats of the state



variable and adjoint variable, which leads to a sympleatitesne. Afterwards, he
compared the Taylor expansion of the discrete and contspoablem to measure the
convergence of the Runge-Kutta scheme and computed thecanal@itions up to 4 for
the optimal control problems of ODEs.

Motivation of this thesis is the desire to derive a Runge-&sttheme for stochastic
optimal control problems. We examine the studies of HagBr[Pll], Runge-Kutta

scheme for optimal control problems of ODEs, and stoch&dticge-Kutta schemes
especially, investigations of Burradge [6,[7, 8] and@¥er [14/52[ 54, 55]. Then, we
aim to extend the results of Hagér [15] 21] to stochasticnegiticontrol problems of

SDEs with the help of stochastic Runge-Kutta schemes.

The main objective of this thesis is to develop a Runge-Kuttese for the numerical
solution of stochastic optimal control problems describgSDEs through Pontrya-
gin’s Maximum Principle. Stochastic optimal control prelvis can be solved numeri-
cally with the help of either theptimize-then-discretizar thediscretize-then-optimize
approachl[22, 26, 62, 65]. In this study, we preferdiseretize-then-optimizgpproach
to gain the advantage of standard optimization technigkestly, the cost functional
and the state equation are discretized, by using Runge-Kehtame. Then, we formu-
late the discrete Lagrangian function and take the paréavdtives with respect to its
variables and equate them to zero to obtain the discretenality conditions. In the
resulting optimality system, we get the Runge-Kutta diszag¢ibn of the coupled ad-
joint process(t), q(t)), whose coefficients can be stated in terms of the Runge-Kutta
coefficients of the state equation that is our main contidioutin order to compute the
expectation, we use the Monte-Carlo method which, firstigndrindependent simu-
lations, then, approximates the cost functional by usinggetiutta scheme. Finally,
it averages the independent samples of the resulting costidwmal to get an estima-
tion of the expectation. We apply our Runge-Kutta scheme teesoroblems selected
from the financial sector, and present a comparison of theengai results with the
exact solutions. We also employ Euler method to test thaefity of our Runge-Kutta
scheme.

We also aim to extend our Runge-Kutta method to stochastimaptontrol prob-
lems governed by some SPDEs. We choose a special and an ampproblem in
economics, finance and biology that is calledogsimal harvestingoroblem. This
problem is closely associated of daily life, e.g., agrigrét fisheries, forestry, garden-
ing, tourism, city planing and water management. We firstréisze the problem with
respect to the space variable with the help of using the fdifference scheme and
convert the given problem to an optimal control problem dfteyn of SDEs. Then,
by following the same methodology as done in the SDE case revalade to derive a
Runge-Kutta method on the numerical solution of stochasiitrol problems subject
to system of SDEs.

In the second part of the thesis, our aim is to address stromgeegence criteria in or-
der to measure the convergence of our Runge-Kutta methogfaona control prob-
lems of SDEs. By assuming exact initial values, the StratmmeVaylor expansions
of the exact solution and the solution from our Runge-Kutteeste are compared to
find the order of accuracy. In our Runge-Kutta scheme for stsitoptimal control



problems, Runge-Kutta coefficients of the adjoint process h&en obtained in terms
of the Runge-Kutta coefficients of the state process. Thigyiadditional order con-

ditions to classical Runge-Kutta method of SDES |6, 8] for dinger of accuracy. In

this work, such order conditions are derived explicitly.

In the third part of the thesis, we purpose to follow the idéMackevicius [37] and
RoRler [14] in order to derive weak-order conditions of our BexiKutta scheme. By
assuming exact initial values, expectations of the Taykmpaasions of the exact so-
lution and the solution from our Runge-Kutta scheme are coetpt find the order
of accuracy. In our Runge-Kutta scheme for stochastic optmatrol problems, we
show that Runge-Kutta discretization of the adjoint prodsssften different from
the Runge-Kutta discretization of the state process. Hénewiere occur additional
weak-order conditions to classical Runge-Kutta conditiohSDEs for the order of
accuracy.

The outline of this thesis is as follows: In the preliminaripresented in Chapter 2,
we give the problem formulation and fundamental derivagiohthe Stochastic Pon-
tryagin’'s Maximum Principle. In Chapter 3, the stochastitirmpl control problem
is discretized by Runge-Kutta schemes and then, by udisgretize-then-optimize
approach, the discrete optimality conditions for the s&stic optimal control pro-
grams described by SDEs are derived. In Chapter 4, our Runga-Kethod is ap-
plied to stochastic optimal control problems of stochgséidial differential equations
(SPDEsSs), as a special case of the optimal harvesting probre@hapter 5, we obtain
strong order-1 and 1.5 conditions of our Runge-Kutta schemstbchastic optimal
control programs. In Chapter 6, we provide weak order-1 andrilitions of our
Runge-Kutta scheme for stochastic optimal control problein<hapter 7, we con-
clude and give an outlook to future studies and applications



CHAPTER 2

PRELIMINARIES

In this chapter, we introduce a stochastic optimal controbfem which we use in
this thesis. We derive of the stochastic Hamilton-Jacobinrien (HJB) equation with
the help of |6 Formula[24| 44, 57]. Then, we relate it with stochastic tR@gin’s
Maximum Principle, an extension of deterministic PontigagMaximum Principle
[51], to present a continuous optimality system. More de&bout stochastic optimal
control theory can be found ih [32,166].

2.1 Stochastic Optimal Control Problem

We let (W (1)), <i<r (With W (0) = 0 a.s.) be a 1-dimensional Brownian motion on
the filtered probability spacg?, 7, (F(t))icjt,, 1), P), wheret, > 0 andQ) = [ty, T

is a fixed finite horizon. On this probability space, the spatcesal-valued square
integrable(F(t))-adapted processes is definedlif(t,, 7). While first we address
scalar-valued processes, in later chapters, also veatoed processes will be permit-
ted.

We consider a controlled SDE

dy(t) = f(t,y(t), u(t))dt + h(t,y(t), w(t)dW(t) (t€[0,T]), ylto) =y", (2.1)

wheref(t,y(t), u(t)) andh(t, y(t), u(t)) are continuously differentiable functions with
respect tdt, y(t), u(t)) and their derivatives are uniformly bounded. Under these as
sumptions, we assure that Egh. {2.1) has a unique solut@®n [Rlso, we letu =
(u(t))eerro, 1) IS @ control process il which is a closed convex set in the control space
L3(t, T).

The objective of the optimal control problem is:

migiergize E [cﬁ(T,y(T)) —|—/t g(s,y(s),u(s))ds
(P) subjectto  dy(t) = f(t,y(t), u(t))dt + h(t,y(t),u(t)dW (t) (t € [to,T]),

y(to) =4,



where® (T, y(T")) andg(t,y(t), u(t)) are smooth functions with the continuous first-
order derivatives. A control process$(t) that solves this problem is called aptimal
control.

2.2 Hamilton-Jacobi-Bellman (HJB) Equation

We define cost functional (¢, y) by

Jit.0) = i [o(Tu() + [ ot veas)

we divide the cost functional in two parts, for any sufficlgrsmall At > 0:

tHAE T
J(t,y) = TGIQE[/t g(s,y,u)ds + ®(T,y(T)) + /ng(s,y, u)ds} . (2.2

J(t+Aty)

Here, we note that the variablesand« depend ors; we usey andw instead ofy(s)

andu(s), respectively. From now on, for simplicity, we will use tl@bbreviation for
variables and Brownian motiol/, and for the increment!V instead ofd1V (s) as
well.

It is also important to note that we can write “min” in the adorentioned represen-
tations of the cost functions rather than “inf”, as in oureash, the infimum will be
attained as a value.

By using the 16 Formula, we have

t+AL 8J(3 y> 8J(5 y)

At,y) = ——= 4 T —

J(t+ At,y) J(t,y)Jr/t ( 5s T/ (s,9,u) 9y
1

+ 5257" {%jgy)hT(s,y,u)h(s,y,u)}) ds (2.3)

t+At 8J(s,y)
—l—/t o h(s,y,u)dW,

wheretr {%hT(s, y,u)h(s,y, u)} stands for the trace of the matrix
82g—l(;"y)hT(s, y,u)h(s,y,u). Inthe 1-dimensional case,
0%J (s, y)

%] (52, y) hr(
oy?

2
8?] h‘ (S7y’u)'

S? y7 u)h(s7 y7 u) -

Now, by inserting Eqn.[(2]13) into Eqr._(2.2), we get

6



t+ AL
J(t,y) =minE {/ g(s,y,u)ds + J(t + At,y)}
t

ueA

t+At t+At
=minE l/ g(s,y,u)ds + J(t,y) + / (ajéi’ y)
t t

ueA
dJ(s,y) 1 {@QJ(s,y)

+ fT(SJyvu)a—y + §t7” @—thT(Sayau)h<57yuu)}) ds

t+At aJ(S, y)
+ /t a—yh(s, y,u)dW}

t+AL t+AE
=minE {/ g(s,y,u)ds + J(t,y) + / (ajgi’ y)
t t

ueA
oJ(s,y) 1 0?J(s,y)
T — I - R s
+ f(s,y,u) dy +2tr{ 0

hT(s,y,u)h(s,y,u)}> ds] :

This gives for any sufficiently smalkt > 0:

H At 8J<S7 y) T (9:](8, y)

1 aQJ(S,y) T
+ 5157“ {3—y2h (s,y,u)h(s,y,u)}> ds] ,

so that we obtain the followinglamilton-Jacobi-Bellman (HJB) equation

_ aJ(t, aJ(t,

ot dy
1 { 0*J(t,y)

i T
- 2t7" oy h (t,y,u)h(t,y,u)}) a.s. (2.4)

For the ease of exposition, the addition a.e. or a.s. is m@yas made in this thesis.

2.3 Stochastic Pontryagin’s Maximum Principle

We defineHamiltonian functiorof the optimal control problen(iP):

1
H(t,y,up.q) =gty u) + [T (L y,wp+ St {gh(t,y, wh' (Ey,u)}

where the coupled procesg|t), q(t)), is adapted with respect (G (¢)):c1,,1 @and

p(t) = Jy(t,y), (2.5)
a(t) = 2—5 — (L),



Here and in the entire thesis, we note that the subscrigtst gy, yy, denote the partial
derivatives ofJ (¢, y) with respect to these variables. For notational converigindhe
rest of the whole work, we will use the variables, written absgripts, as the partial
derivatives.

Now, by using the Hamiltonian function, the HIB Eqn. {2.4) b& rewritten as:

_Jt(tmy) = Té2%<t7y<t>7u(t)vp(t>7Q(t>> (26)

We assume that there exists a known optimal conttl, y(t), p(t), ¢(t)) that solves
the optimal control problem such that

H (t,y,p,q) = H(t,y,w" (t,y, 0. q9),p,q)

1
=g(t.y.p.0) + 1 (ty,p. )p+ Str {ah(t,y. p, )" (v, 0) }
= —Ji(ty): @7

Herewith, we write the SDEs for the state and adjoint diffiéigds ondy anddp, re-
spectively:

dy = f(t,y,u")dt + h(t,y,u")dW
=H,(t,y,p,q)dt + h(t,y,p, q)dW,

and applying the & Formula on the definition qf(¢) in Eqn. [2.5) leads to
1
dp = Jyi(t,y)dt + Jyy (8, y)dy + 5Ty (1 y)dydy
1
- (Jyt(t7 y) + Jyy(ta y)f(ta y7 U) + §tT {Jyyy(ta y)h(t7 yv u)hT(t7 ?/, U,)}) dt
+ Jyy(tv y)h(t, Y, U)dW- (2.8)

Hence, we take the partial derivative of Eqi._2.7) with ez$goy in order to get
Jyt (ta y)

0
+ Hy(t,y, s Q)a—z

. . 0
—Jy(t,y) = H,(t,y,p0,q0) + H, (L, y, p, q)@—z

=M, (t,y,p,q) + Jyy(t, ) f(t,y,u)

+ %tr{Jyyy(t7y)h(t7yuu)hT(tvy?“)} . (29)

8



Inserting Eqn.[(2]19) into Eqn[_(2.8) yields the adjoint eiipra

dp = —H,(t,y,p, q)dt + Jy, (t,y)h(t,y, p, q)dW
= —H,(t,y,p,q)dt + qh(t,y, p, q)dW.

Finally, we can state the system of forward-backward stemhdifferential equation
(FBSDE) of the problentP), the Stochastic Maximum Principle, as:

( dy = H,(t,y,u, p,q)dt + h(t,y,u,p,q)dW (t € [to, T]),
dp = =M, (t,y, u, p, q)dt + qh(t,y,u,p,q)dW (t € [to, T]),
0="Hu(t,y,u,p,q) (L€ [to,T]),
y(to) =4,
p(T) = ¢, (T,y(T)),
| 7y, poq) = minH(t. y, u, p.q).

In this thesis, we restrict our investigations to autonomstochastic optimal control
problems, where diffusion terms do not contain the controtess in the form:

minimize E {Q)(y(T)) +/Tg(y,u)dt

uEL2(tQ,T) to

subjectto dy = f(y,u)dt + h(y)dW (t € [ty,T]),
y(to) = 4"

(Pe)

We note that every nonautonomous stochastic optimal dgmioblem can be canoni-
cally transformed into an autonomous system with one auditiequation.

In this case, the first-order optimality conditions of piebl(7P,):

( dy =Hy(y,u,p,q)dt + h(y)dW (t € [to, T]),
dp = =M, (y, u, p, q)dt + h(y)gdW (L € [to, T),

(oc,) 0=Hu(y,u,p,q) (t€ [to,T]),

y(to) = 4°,

L p(T) = &' (y(T)),

with
H(y. u,p,q) = gy, u) + [ (y, u)p+ %tr {ah(y)h" ()}, (2.10)

where¢'(y(7T)) denotes the derivative af with respect to its variablg. We will use’
for the derivative of differentiable functions which depgesn one variable only.

9



2.4 Runge-Kutta Scheme for SDEs

In this section, we recall the Runge-Kutta scheme for SDEscMisider the following
SDE

dy = f(y)dt + h(y)dW, yo =1y". (2.11)

We introduce an equispaced discretizatioa tg < t; < ... <tp < ... <ty =T of
the time interval0, 7). Let A := T'/N denote the increments (step-size) axid’ :=
Wi, — Wy, beN (0, A)-distributed Gaussian increment of the Brownian motign

We address ag-stage Runge-Kutta schene [8] of Eqn. (2.11), for seraeZ™:

;

s = U+ A aif (i) + AW Y Bih(yes)

i=1 =1

=Y )+ AW i)

7=1 j=1

L vo =y,
fork =0,1,...,N —1,andi = 1,2,...,s, and the constants;, 3;, a;;, b;; are the

Runge-Kutta coefficients. The Butcher array of the Runge-Kiisieretization of Eqn.
(2.11) is given by

C1 | Q11 Lo Qg d1 bn e bls
Cs | Qg1 ... (gg ds | b1 ... Dbgs
aq c Qg ‘ ﬁl c. ﬁs
where
s s
C; = Z Qjj and dz = Z bija
Jj=1 Jj=1
fori =1,2,...,s.

Here, we note that the Runge-Kutta coefficientss;, a;;, b;;, constant real numbers,
could be chosen arbitrarily or in a way such that some comverg properties are
satisfied.

10



CHAPTER 3

RUNGE-KUTTA SCHEME FOR STOCHASTIC OPTIMAL
CONTROL PROBLEMS OF SDEs

3.1 Introduction

In order to solve an stochastic optimal control problem, wecha discretization tech-
nique together with an optimization method. There are twssjlibe options often
referred todiscretize-then-optimizand optimize-then-discretizeln this chapter, we
construct a Runge-Kutta scheme for a class of optimal coptaidlems of SDEs by
following the discretize-then-optimizapproach. Firstly, we discretize the cost func-
tional and the state equation with the help of Runge-Kutt®isws. After we state
the discrete Lagrangian, we take partial derivatives ofiihwespect to its variables
to receive the discrete optimality system. Our main cootrdn is to get an implicit
Runge-Kutta scheme for the adjoint p§ixt), ¢(t)), whose Runge-Kutta coefficients
can be written in terms of the Runge-Kutta coefficients of tiagesequation. Finally,
we confirm our results with some numerical examples from thenitial sector. We
compare our numerical results with Euler method and exduatisn to demonstrate
the efficiency of our Runge-Kutta method.

Now, we recall our optimal control proble(®.) as:

minimize E [(I)(y(T))] + /Tg(y,u)dt}

’LLELQ(t(),T) to

subjectto dy = f(y,u)dt + h(y)dW (t € [to, T)),
y(to) =",

(Pe)

with the first-order optimality conditions of proble(®.):

( dy =Hy(y,u,p,q)dt + h(y)dW (t € [to, T]),
dp = =M, (y, u, p, q)dt + h(y)qgdW (L € [to, T),
(oc,) 0="Hu(y,u,p,q) (t€ [to,T]),

y(to) = 4°,
L p(T) = &' (y(T)),

11



where 1
H(y, u,p,q) = g(y,u) + fly,w)p + §qh2(y)-

3.2 Runge-Kutta Scheme for Stochastic Optimal Control Prokems of SDEs

Runge-Kutta schemes are applied to optimal control problen(s, [15,[21,27]. In

[21], Hager showed that the resulting optimality system [m#itioned Runge-Kutta
scheme, after some change of variables. In this chapternpdog a Runge-Kutta
scheme for stochastic optimal control problems of SDEs.

We introduce an equispaced discretizatioa tg < t; < ... <tp < ... <ty =T of
the time interval0, 7). Let A := T'/N denote the increments (step-size) axid’ :=
Wi, — Wy, beN (0, A)-distributed Gaussian increment of the Brownian motign

Now, we state the-stage Runge-Kutta discretizatidn [21], for some Z*, of the
optimal control problen{P,.) as

. N—-1 s
minimize  E |®(yy) + A Z Z g (Yni> Uki)
k=0 =1

P subjectto  yp1 = yp + A Z i f (Yki, ki) + AWZ Bih(Yri),

d i=1 i=1
Yri = Yp + A Zaijf(ykw“kj) + szb“h<y’“j)’

j=1 Jj=1

\ Yo =1,

fork =0,1,...,N —1,andi = 1,2,...,s, and the constants;, 3;, a,;, b;; are
the Runge-Kutta coefficients. The Butcher array of the Runggakdiscretization of
problem(P,) is given by

ct | 11 ... Q1sg dl bll ce bls
Cs | Qg1 ... (Qgg de | bey ... bgg
(6%} e O ‘ 51 c BS
where
s s
C; = Zaij and dz = Z bij7
j=1 j=1
fori =1,2,...,s.

12



Here, we note that the Runge-Kutta coefficients, 3;, a;;, b;;, are real constants.
In this chapter, they are chosen arbitrarily to obtain nucaéresults. However, in
Chapter 5 and Chapter 6, they are determined in a way such tbagsand weak

convergence properties are satisfied.

Now, we have a discrete state equation and a discrete cagidoal. In the following
theorem, we get discrete optimality conditions by definimg discrete Lagrangian.

Theorem 3.1.1f «;, i, aij, bi; (1,5 = 1,2,...,s) are the Runge-Kutta coefficients
in problem(P,), then discrete first-order optimality conditions of protl¢P,) are
obtained as

p

Vet = Y + A i f (Ynis ) + AW Biba(yia),

i—1 =1
Uk = U + A Z aij [ (Ynj, ugj) + AW Z bijh(Yis),
j=1 J=1

Pr+1 =Dk — A Z @iHy(yki7 Uiy Phis Qki) + AW Z Bz‘h(yki)q}cia

(Ocd) = Pk — AZG’L] yk]7uk]7pk]7qk]> + szbz]h yk])Qk]a
j=1
qkzqujkz Pr — A Z azy ?Jk:g, Uljy Py, ij) + AW Z bzgh yk])iju
7j=1
py =¢ (yN),
Yo = 3/07

0= AZOQ ykzyukmpkqul)

\

fork=0,1,..., N — 1, where the coefficients satisfy the following relations:

dz 7% Bz : ﬂza
B Iy - 6
Q5 1= O — ;Za']u bij - ﬁ] - a_jiajh (31)
. a /6.
Qjj 1= QY E‘?bju bij == Bj — #bjia
(3 KA

with
s 1= Aaih(yri)  P(yri) .
' AWE: hy(yrs)

13



Proof. In order to prove this theorem, we follow the proof of Haget][2n the deter-

ministic case and we extend his proof to the stochastiaggsttiLet

kyi == f(yki7 ukz)

and

mp; -= h(yki)a

so that we have

9(Yri, uri) = g (yk + A aghig + AW by, Um) :

Jj=1 Jj=1

Yk, ugs) = f <yk +A Z a;jky; + AW Z bijmy;, ukz) )

Jj=1 Jj=1

J=1 J=1

Then, we can write the discrete Lagrangianas [11]:

E [®(yn) + (" — o)

N—-1 s s s
+ {AZaig (yk +Azaijkk’j +AWZbijmkj>Uki
i—1

k=0 j=1 j=1

+Pk+1 (yk: — Yp+1 + A Z ok + AW Z Bimki>

i=1 i=1

)

+ Z Sk (f (yk +A Z agikr; + AW Z bijmij, Uim) — kkz)
i=1

j=1 j=1

-+ Z Ckl (h (yk -+ At Z aijkkj + AW Z bijmkj> — m;ﬂ) }] s
=1

j=1 j=1

wherep’, pi.11, &iy G are the Lagrange multipliers. Setting to 0 the partial deives
of this Lagrangian function with respect ¥, vo, yx, fork =0,1,2,..., N — 1, and
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Kiiy Miiy Wi fork = 0,1,... ,N —1,we get:
PN = q)/(yN),
p=7"

Pk — Pk+1 = A Z azgy Ykis ukz + Z észy Ykis ukz + Z Ckz ykz

=A Z Aajajigy<yki7 uk@) + Aapr

J=1

+ A Z ajzfy yk]7 uk] gk] + A Z a]z yk] <kj7

=A Z AW bjigy (Yris uri) + AW Bipria

j=1

+ AW i fy (kg i) ks + AW bjihy (i) i
=1 i=1
0 = AiGu(Yris Uki) + fu(Yris Wki)Eki-

In order to compare the continuous optimality systééC.), with the above system
of equations, we set

ki = Aayppi
and

Cri := AW Biqritri
with

o Aaih<yki) h(yki)
1/% — - 3
AWB; hy(yki)

wherea; # 0andp; #0 (i = 1,2,...,s). If these values vanish, then the solution of

the discrete problem may not converge to the solution of dmticuous problem.

By eliminatingé,; and(y; in the above equations, we obtain the desired result.[]

It is worth noting that although our Runge-Kutta methoddC,;) seems to be a sym-
plectic Runge-Kutta, it is not symplectic. If we add one masadition, 5;a;; = o;b;;
(t,j = 1,2,...,5s), to Egns. [(311), then the resulting Runge-Kutta schemerbheso
a symplectic method [36, 63]. However, in the rest of theithege will continue to
study on our Runge-Kutta scheme, a more general scheme tlyampéestic one.

15



3.3 Monte-Carlo Simulation and Implementation Details

We use Monte-Carlo method to approximate the conditionaketgtions. Monte-
Carlo simulation off[g(y, )] is based on an approximation of the form

M

90 0) = 27 D 0l ), (32)

i=1

wherey; andu; are approximations af(¢) andu(t), respectively, at théh orbit of the

Monte-Carlo method [20, 30, 31].

Now, we give details of our computational efforts. Before suwamizing the algorithm,
we elaborate on the approximate cost functional and theiggrtadThe discrete cost
functional coming from theliscretize-then-optimizapproach is

N—-1 s

E|®(yn)+ A Z Z ;g (Yris uki) | (3.3)

k=0 i=1
where
Yri = Yr + A Zaijf(ykj»“kj) + szbiﬂ'h@’ﬂ)'

j=1 j=1

Moreover, the discrete gradient is

N s
Z Z A (Gu(Yris ki) + fu(Yri, Uki)) Pri- (3.4)

k=0 =1

Algorithm (Discretize-then-OptimizApproach with Gradient Descent)

1. Initialize the control and a toleranee> 0. Choose the number of orbifg to
be used in Monte-Carlo simulation.

2. Fori=1to M:

i. Use Runge-Kutta scheme to discretize the state equation:

;

Yet1 = Ye + A Z & [ (Yris uri) + AW Z Bih(yri),

i=1 i=1

Yk = Y+ DAY aif (Y ung) + AW D bih(rg),

Jj=1 J=1

\ y0:y07
fork=0,1,...,N—1,andi =1,2,...,s.

16



il. Use Runge-Kutta scheme to discretize the adjoint eqoatio

2

Pk+1 = Dk — AZO@ (Yris Wkis Pris Qi) +AWZBZ Yni) Qi

=1

=Pk — A ZG’Z] yk]7 uk]7pk]7 Qk]) + AWZ bzgh yk])qm?

7j=1

Qkﬂﬂm Pr — A Z azy yk]a Uk Pkjs Qk]) + AW Z bz]h yk])Qk]7

\ J=1

fork=0,1,....,.N—1,andi =1,2,...,s

iii. Compute the expected cost functional and the gradierhfEgns. [(3.13)-
(3.4) (Monte-Carlo).

iv. Endfor loop.

3. By using a line search algorithm, compute a descent directi

4. Update the contraly.

5. Compute, = ||ukr1 — ukl|2- If €x < €, then go to step 2.

In computations, we use the following discretization scasffior the state variblet),
to obtain the 2-stage of stochastic Runge-Kutta schenme [¢&hdpy

0| 0 0|0
11 0 /3|23 0
12 1 174 374

By addressing the relations in Eqri._(3.1), we can obtain tlmeesponding Butcher
array for the adjoint pair(p(¢), ¢(t)), as follows:

0|12 -1/2 -1/2| 1/4 -3/4
1/2  1/2 1 1/4 3/4
\ 1/2  1/2 \ 1/4 3/4
and
-1/3| 1/2 -5/6 -1|1/4 -5/4
1 [1/2 1/2 1|1/4 3/4
172 12 1/4 374

respectively.
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3.4 Financial Applications

In many financial applications, the desired task can be gedim an optimal or nearly
an optimal manner. Merton used stochastic optimal condrstudy optimal portfolios
of safe and risky assets for utility maximization [40] 41]nheTcriterion for portfolio
selection, how to allocate stocks and bonds, is the maxtmarzaf the survival prob-
ability (or minimizing the ruin probability) or the minim&ion of the risk of firm. In
this case, how much money is invested in stocks over the rathwvean be considered
as the control variable. Such problems may be modeled byhastic optimal control
problems.

Example 3.1.We consider the Black-Scholes type of an optimal control e 16]:

1 T T
minimize -E *—y)2dt 2dt
weL2(0,T) 2 [/0 W =) +/0 Y } (3.5)

subjectto  dy = uydt + oydW, y(0) =",

whereo is a positive constant. We easily construct an exact solatto

t 02 T - t
y(t) fr— yoefo u(s)ds—TH-aW(t)’ u(t) oy —1 t2 s
where
. 60215 _ (T _ t)2
y (t> = 1 t2

If we apply 2-stage stochastic Runge-Kutta schemes to Ed), (Ben we get

( Y1 = Yk,

2
Yko = Y + AUp1Yp1 + gAWUym,

A AW
Y1 = Yi + E(Ukzlykl + UpoYk2) + TU(ykl + 3Yk2),

« 3
Pkl = Dr+1 + A(Yk2 — Ypg + Drotira + 02%2%2) — §AW0'(]k2yk2v
Pk2 = Pk+1,

4 *
Q11 = Pr1 + gA(ka — Ypo T Pr2Ui2 + UQQk2yk2) — 2AW o qrayra,

k2Vk2 = Di+1,

A * *
Dk = Pk+1 + = (ykl — Yy + Dt + O Gy + Yk — Yis

2
5 AW
FPr2Uk2 + O QkakZ) - TU(ZJMQM + 3YraGr2)-

18



We lety*(t) = y(t), and we choos& = 1 andy, = 1 in our numerical computation.
Furthermore, we use 1000 paths in Monte-Carlo simulatiofrignred 3. Ta and 3.1Lb,
we compare the exact solution of control with the numericaltol obtained from our
Runge-Kutta scheme. We choose= 0.1 on the left and> = 0.3 on the right side.

It is easy to see that the graph of the optimal control with Runge-Kutta scheme
almost fits the graph of the optimal control of the exact sofut

Optimal Control
Optimal Control

0.2 0.4 0.6 0.8 1 e 0 0.2 0.4 0.6 0.8 1
Time Time

(a) Optimal control folr = 0.1. (b) Optimal control foro = 0.3.

Figure 3.1: Optimal control in Example3.1.

In Table[3.1, we compare the Euler scheme with our Runge-Kugtdod. As a stop-
ping tolerance in gradient descent algoritim— 8 is taken.

In order to show the efficiency of our Runge-Kutta scheme, \se abtain the results
with Euler discretization. In this case, trapezoidal rdepplied to compute the ap-
proximate cost functional and its gradient. The state eguas discretized by means
of forward Euler scheme, whereas backward Euler schemeeis fos adjoint com-
putation. Moreover, the same problem settings are emplagad our Runge-Kutta
method. It can be understood from Table] 3.1 that our Rungéakseheme solves the
problem faster and with less number of iterations, when @agbto Euler scheme.

Table 3.1: Comparison of Runge-Kutta and Euler method wits 0.1 in Example

B.1.

CPU Time (sec) # of Iterations
A | Euler | Runge-Kutta] Euler | Runge-Kutta
22| 8.07 0.55 30 25
24 | 15.06 0.77 29 22
25 | 30.25 0.84 30 21
20 | 55.34 2.45 28 22
27 | 125.67 4.19 32 21
28 | 364.50 6.50 34 31
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Example 3.2. We choose the following control problem as a second example:

1 T T
minimize -E *—y)?dt —u*)2dt
weL?(0,T) 2 {/0 (y y) +/0 (u Y ) ]

(3.6)
. 1
subjectto dy = §u(u — u*)ydt + oydW, y(0) =y°,

whereo is a positive scalar. We have the following continuous optity system:

1
dy = Eu(u —uM)ydt + oydW, y(0) = yov
dp = (y* —y+ ozp)dt + oyqdW, p(T) =0,

]

The exact solution is of the form

0,2
y(t) = y*(t) =y T O w(t) = ur(t) = 6sin(rt).

We used the same discretization scheme as done in the pseasample. If we apply
2-stage stochastic Runge-Kutta schemes to Eqq. (3.6), w&veec

( Yk1 = Yk,
A

. 2
Y2 = Yr + Eum(um — Upy )Ykt + gAWUiUm,

A . . AW
Yer1 = Y + Z(uld(ukl — Uy )Yk + ke (Uka — Upe)Yka) + TU(ZJM + 3Yk2),

Pkl = Dit1 + A(Yk2 — Yrg + §pk2uk2(ukz2 — Ufy) + O Qralka) — §AWUQk2?/k27

Pk2 = Pk+1,

4 * 1 *
Q1 Vk1 = Pr1 + gﬁ(ym — Ypa T §pk2uk2(uk2 — Upy) + O qrara) — 2AW O qrayia,
k2Vk2 = Pht1,

A * 1 * *
Pk = Pr+1 + b <yk1 —Yp1 T+ §pkluk1(uk1 —upy) + U2leyk1 + Yr2 — Ypo

1 o, AW
\ +§pk2uk2(uk2 — Upy) + 0 Qralka | — Ta(qukﬂ + 3Yraqr2)-

We choosel’ = 1 andy, = 1 in the numerical computation. Moreover, we use
1000 paths in Monte-Carlo simulation. In Figufes 8.2a and,3v2e compare the
exact solution of optimal control with the numerical optingantrol, obtained from
our Runge-Kutta scheme.

In Table[3.2, one can see the efficiency of our Runge-Kutta edetivhen compared
to Euler scheme with regard to time consumption.
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Optimal Control
Optimal Control

) 02 04 06 08 1 ) 02 04 06 08 1
Time Time

(a) Optimal control forr = 0.3. (b) Optimal control foro = 0.5.

Figure 3.2: Optimal control in Example_3.2.

Table 3.2: Comparison of Runge-Kutta and Euler method witk 0.3 in Example

B.2.

CPU Time (sec) # of Iterations
A | Euler | Runge-Kutta] Euler | Runge-Kutta
23 | 12.31 1.58 35 27
241 22.81 2.58 39 23
2% | 35.45 6.29 33 36
26 | 74.10 10.06 36 32
27 | 186.01 19.83 47 34
28 | 266.00 48.78 34 44

3.5 Summary

In this chapter, we mainly focused on a Runge-Kutta schemé¢hirmoptimal con-
trol problem of SDEs by following thdiscretize-then-optimizapproach. Firstly, we
discretized the cost functional and the state equation thighhelp of Runge-Kutta
schemes. Then, by addressing the discrete Lagrangian, itbeg®unge-Kutta dis-
cretizations of the adjoint pafp(t), ¢(t)) and we derived the Runge-Kutta coefficients
of the adjoint pair in terms of the Runge-Kutta coefficientshef state equation. We
compared the numerical results with the exact solutiondamer method. The numer-
ical results agree with the exact solutions. The efficierfayus Runge-Kutta scheme
comes from its time consumption. The Euler scheme consumes @PU time than
our Runge-Kutta method does.
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CHAPTER 4

RUNGE-KUTTA SCHEME FOR STOCHASTIC OPTIMAL
CONTROL PROBLEMS OF SOME SPDEs

4.1 Introduction

Optimal harvesting problem is an important model and toaghathematical bioeco-
nomics [1/ 34, 56]. For instance, it is used in forestry, agture or a marine resource
such as fish harvesting. This is an important problem in piiogi food and other or-
ganic resources for the people of the world, while caringtierworld in a sustainable
way. Early developments of this problem were studied in amenistic environment
[12]. However, environmental and human factors cause ti@jpbpulations are in
various states with some probabilities. So, this situatieeds modeling in a stochas-
tic environment. Optimal harvesting problem was invesédédor the first time in a
stochastic environment at the end of 1990’s. Alvarez ance@h#&] and Lungu and
@ksendal([34] handled the optimal harvesting on differeagpation models, which
were modelled by stochastic optimal control theory. Ldtengu and @ksendal [35],
@ksendal[[43] and Pinheird [50] continued to study on thpictcoMore studies about
optimal harvesting problems, e.g., by the example of theefisk can be found in

[2,[18,[25/ 39| 417, 49, 64].

We obtained our Runge-Kutta scheme for optimal control gaislof SDEs in Chapter
[3. In this chapter, our aim is to solve an stochastic optimatml| program of SPDEs
by Runge-Kutta method. We choose @ksendal’s optimal hangeptoblem [35] 43].
In this problem, the density of the population is given by &D& and the problem
is to maximize in a balanced way the total expected utilityhef consumption and
the terminal size of the population while controlling theesting rate. By using the
finite difference scheme, we discretize the problem witlpeesto the space variable
and convert the given program to optimal control problemsystem of SDEs. Then,
we employ our Runge-Kutta scheme for the resulting optimatrob problem.

4.2 Formulation of Optimal Harvesting Problem

Let (W (t))o<t<r be a 1-dimensional Brownian motion on the filtered probghsiiace
(€, F, (F(t))epo,n, P), whereT" > 0 is a time maturity and2 C R is a given set.

23



On this probability space, the space of real-valued squaegiable(F(t))-adapted
processes is defined ovéf(0, 7). Defining A := [0,7] x [0,1], we consider the
objective of our optimal control problem to maximize an aleexpected utility of the

consumption
uY(t !
[/ / ddt—i—@/ y(T,:L’)dx},
0

with risk-aversion coefficieny € (0,1) and regularization parametér> 0. Here,
u € L?*(A) is the stochastic control variable which stands for the ésting rate. In
this work, we address the following stochastic reactidfugion equation([43]:

( dy(t,z) = (%Ay(t, x) + py(t,x) — ul(t, x)) dt + Ay(t, x)dW
(x €[0,1], t €[0,7]), (4.1)

y(0,z) = yo(x) (z €[0,1]),
. y(t,0) =y(t,1) =0 (t€[0,T]),

wherey € L?(A) is the state variable which represents the density of thelptipn
living in an environment with a limited carrying capaciky(¢). Furthermorey > 0
and\ are given constants in the stochastic carrying capdcits), defined asiK =
pudt + AdW, andA is the Laplacian ofR:

Oy(t, x)
or?

See [45] 46] for more information on reaction-diffusion atjons.

Ay(t,x) =

4.3 Discretization with Finite Difference Scheme

Our optimal control problem governed by SPDESs can be stated a

maximize E {/ / (@) ——dx dt+9/ y(T x)dx]
(P1) R ueL2(A) ’
subjectto  Eqn.[(4]1)

Now, we use a finite difference scheme to approximate theespadable. We let
the spatial length scale be := z,, — z,,-1 = 1/M (m = 1,2,...,M). For the
space variable) < zp < ;1 < ... < z,, < ... < ) = 1 denotes the equispaced
discretization of space intervé, 1]. We lety™ andw™ correspond tgy(¢, hm) and
u(t, hm), respectively, in the continuous case. Now, by applyinggbeond-order
central difference scheme for the space variable, we get

m—1_2m m+1
dym:(y 2122—1—?; —I—;Lym—um)dt—l—)\ymdw (m=1,2,...,.M —1).

24



Then, we obtain a system of SDEs:

0 2
v (Y Tty Ly 11 1
dy —( 572 —2h2y + py u)dt—l—)\y dW,

1 3
2o (Y Ty L, 2 .2 2
dy —( 572 onzY + py u)dt—l—Ay dw,

m—1 m—+1
dy™ = (—2h2 — —2h2y +py™ —u ) dt + \y™dW,

M—2 M
_ +y I _ _ _
dy™M 1 ) M-1 M=1 _ M=1) 1\ M1/
Y ( 2h? 2h2y 1y “ Y '

which we rewrite in the matrix-vector notation:

1
AY = (FAY + Y —U)dt + AYdW,

where
—1/h%* 1/2Rh? 0 0 0
1/2p* —1/R%* 1/2R* -~ 0 0
0 1/2n* —1/h* --- 0 0
A = . . . . . . )
0 0 0 <o —=1/h* 1/2R?
0 0 0 < 1/2R* —1/Rh?

Y = (yLo? . MO, U = (uh?, M DT, U = (uh e u™)T and
< <0
YO0)=Y = (42, ....y900)T.

Now, we can rewrite our optimal control problem, governedalgystem of SDEs, as
follows:

( maximize AE /T 3 (um)vdtJr i 0(vr)
u€eL?(A) o = 7 o
subjectto dY = (%AY + 1Y —U)dt + \XYdW (t € [0,T7]),
| Y(0)=Y".

For simplicity, to write the cost functional in a quadratarm, we restate the above
problem in full matrix-vector form as

25



( T TT\T TT
maximize hE {/ wdt +0(Yr)'1],
UecL?(A) 0 Y
(P") : 1
subjectto dY = (§AY +pY —U)dt + AXYdW (t €[0,7)

Y(0) =Y,

\

whereV = ((u')"/2, (u*)/?,. .., (uM)W)T andl= (1,1,...,1)T. We note that the
problem(P”) is continuous in time. In this work, our strategy is to folltve approach
discretize-then-optimizeBut, we need to write the continuous optimality conditions
explicitly when choosing some parameters in the discretiengtity system. Herewith,
we first derive the continuous optimality conditions in tbédwing section.

4.4 First-Order Necessary Optimality Conditions
We recall theHamiltonian functiorof the optimal control problem as:

_ 1o (1 S|
H(t,Y,U,P, Q)= ;hV(U)TV(UH (EAY +uY — U) Pt {NQYY'},

for a coupled proces®(t), Q(t)) that is adapted with respect t& (t)).co,r}, Where
P(t) is a vector having dimensiofV/ — 1) and Q(¢) is an(M — 1) x (M — 1)-
dimensional matrix. This pair satisfies the following contus first-order necessary
optimality system:

( dY = Hp(t,Y,U,P,Q)dt + \YdW (t€]0,T]),
dP = —Hy(t,Y,U,P,Q)dt + \QYdW (t € [0,T)),
0="HgtY,U,P,Q) (tel0,1)),
Y(0) =Y
| P(T) = 01.

Let us consider the termr {)\QQYYT}. After we perform the matrix multiplication,
we evaluate the trace of the resulting matrix to get

tr QYY" =Ny gy + @y’ + .+ vy
+ N2 (qoayt + quoy® + ..+ 92,M—1?JM_1)

+ Ny g1y a0 o i ray™ .
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We take the partial derivatives of the Hamiltonian functwith respect to the coordi-
nates ofY. Then, we obtain

a% {%tr {A2QYYT}} =2(Q+QNY.

So, itis easy to see that

— 1
Hy(t,Y,U,P,Q) = ;AP + P +3(Q+Q")Y.

Now, we arrive at the so-calleatljoint equation

dP = —(%ATP +uP + 2*(Q + QN)Y)dt + \QYdW.

If we take the partial derivatives of the Hamiltonian fuoctiwith respect to the coor-
dinates ofU, then we obtain the gradient equation as follows:

0 =Hg(t,Y,U,P,Q) =hV(U) - (PT,0)7,
whereV (U) = ((UY)/2, (U2)7/2,... (UM)/2)" Then,

) 1 .
[IZ:E(]-:)Z)Q/’Y (2.:1’27"'7M_1)7 UM:O

SinceUM = 0, it is enough if we just refer t&J rather tharlU from now on.

In the following section, we use Runge-Kutta method to foatrithe discrete optimal
control problem. At the end, we will obtain a Runge-Kutta sokefor the discrete
adjoint variable.

4.5 Runge-Kutta Schemes for Optimal Harvesting Problem

We introduce a discretization = ¢, < t; < ... < t, < ... < ty = T of the
time interval[0,7]. Let A = T'/N denote the increments (step-size) akd’ be an
N (0, A)-distributed Gaussian increment of the Brownian motin

Now, we state the-stage Runge-Kutta discretization, for some Z™, of the problem
(P") as
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( N—-1 s

h
maximize —E |A V(UL V(UL +0(Ya)'1
Uel2(4) ;;O‘ (Uki)" V(Up) +0(Yn)

- s 1 s
SUbjeCt to Yy =Yr+ A Z az(éAYlm + 1Y — Ukz) + AW Z Bi Y 1,
=1

i=1

s 1 i
Yk:i = Yk + A Z aij(§Aij + ,qu] — Uk]) + AWZ bij/\ijy

j=1 j=1

| Y0)=Y,

whereY,; andU;; have the dimensiofM — 1) and the constants;, 3;, a;;, bi;,
are the Runge-Kutta coefficients for=0,1,..., N — 1, andi,j = 1,2,...,s. The
Butcher array of the Runge-Kutta discretization of the systéproblem(7’) is given

by

C1 | Q11 Lo Qg d1 bn Ce bls
Cs (s1 <o Qg ds bsl bss
‘ (€5} ce Qg ‘ ﬁl c. ﬁs

In the following proposition, we achieve our discrete otlity conditions by defining
the discrete Lagrangian.

Proposition 4.1.1f o; A 0andg; #0( =1,2,...,s,andk =0,1,..., N — 1) are
the Runge-Kutta coefficients of the problghi), then the discrete first-order necessary
optimality conditions of the problefP’) are obtained as

¢ s s
1
Y=Y, +A E Q; (gAYki +pu Y — Uki> + AW E BiNY ki,
=1

i=1

s 1 s
j=1

Jj=1

P, =P, - A Z &My (Yii, Ui, Pri, Qi) + AW Z BidQui Y ki,

i—1 i=1
P, =P, - A Z A Hy (Yis, U, Prj, Qry) + AW Z Eij)\Qk:ijja
=1 =
Qri¥Pr =P, — A Z aijHy (Yij, Uy, Prj, Qiy) + AW Z by AQu; Y i),
=1 =1
PN - YN7
— —0
\ Y(O) = Y )
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whereP,,; andQy; have the dimensions// — 1) and(M — 1) x (M — 1), respectively,
fork =0,...,N —1,and: = 1,2,...,s. The coefficients satisfy the following

relations:
Q; 1=y, Bi == B,
_ a; P Bi
Qij = QO — —Qjs, bij == Bj — gajia
7 3
R oy . B,
Qjj = &5 — #bjia bij == B; — ébjia
7 K3
with

Aqy; _
Uy, = AAWﬁiQkil(Qki + Q)Y — Yy (k=0,...,N—1).

Proof. Let be

Ky = %AYki + 1Y i — U
and

My := AYy,
so that we have

1
§AYM + 1Y — Uy,

1 > 1 >
— §A (Yk + A jzl Qi <§AYkJ + quj — Ukj) + AW ]ZI blj/\Yk]>

S 1 S
+ 1 <Yk +A Z A (ﬁAij +uYy — Ukj> + AW Z bij)\ij>
=1

j=1
— Uy,
and
S 1 S
>\Ykz = /\ (Yk —+ A Z aij (§AYk] + ,quj - Ukj) -+ AWZ bngij> .
j=1 J=1

Then, by usindK,; andM,; introduced above, we can write the discretized Lagrangian
as:
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L(Y i, Ui, Pri, Quis By Zii) = E [PY(Y? = Y,)

N—-1 s
h
+; § :AtE :aiV(Uki)TV(UM) +(Yy)'1

S

N—-1 s s
- Z {Z P, (Yk Y +A Z @il + AW Z @M’“)
k=0 \i=1 i=1

=1

s 1 S 5
+y =L <§A (Yk +A Z i Ky + AWZ bijM’”’)

=1 7=1 7j=1

+p (Yk + A Z aijKy; + AW Z biijj> — Ui — Kkz)

j=1 j=1

+> 7], ()\ (Yk + ALY a Ky + AW Y biijj> - Mk,) H :
i=1 j=1 j=1

whereP?, P, 1, E:, Z;;, are the vectors of Lagrange multipliers. Equating to zero
the derivatives of this Lagrangian function with respecalidhe coordinates oY y,

Yo, Y, fork=1,2,...,N — 1, and ofE;, Z;;, Uy, fork =0,1,...,N — 1, we
obtain:

Py =01,
Pl :P07

S 1 _ _ S
P, —Py, = E §AT:m‘ + pEg + E A,
i=1 =1

_ s 1 _ s 1 _ s
= = AOLiPk+1 + A Z §ajiAT.:.kj =+ A Z §ajiu:.kj + A Z ajiij7
j=1 j=1

j=1

S 1 S 1
Zyi = AWB Py + AW Y Ui AT By + AW > 5L En
=1 j=1

+ AW biAZy,,
j=1

Let us set
Eri = APy
and

Zii = AW BQri Wi
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with

Aal

lI’ki = AWﬁz ka (ka + QkZ)YkIZ Yki>

wherea; # 0andp; #0 (i = 1,2,...,s). If these values vanish, then the solution of
the discrete problem may not converge to the solution of dmticuous problem.

By eliminatingZE,; and Z,, in the above equations, and comparing with the first-order
continuous optimality conditions given in Section 4, weaibtthe desired result.

[

4.6 Numerical Application

We employ Monte-Carlo method to approximate conditionakexgtions([20, 30, 31].
To solve our stochastic optimal control problem, we use digra-descent type algo-
rithm. We apply a line-search method to accelerate the im@igation. In computa-
tions, we use the following discretization schemes for tlagesvariabley, to obtain
the 2-stage of stochastic Runge-Kutta scheme [17] given by

0| 0 0|0
111 0 /3|23 0
12 1 174 374

Now, we letbef) = 1,y = 1/2 and\ = 1 in problem(P;). We perform the matrix-
vector formulation as stated in Propositionl4.1. Furtheemeve employ a 2-step
Runge-Kutta method. Since the adjoint equation is backwatihie, by Proposition
4.1, we can write:

Qr2Wr2 = P,
4A

Q¥ =Pry + KN ( APy, + N (Qr2 + ka)YkQ) —2AW Q2 Y2,

2A
\I’kl = )\Pk_t,_l_Q];ll(le + le)Ykl - Ykl)
2A
AW

Wi = APy ka (Qrz2 + ka2>Yk2 Yio.
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We rewrite these equations to get

(Y(0) =Y",
Y =Yy,

1 2AW
Y=Y, +A <§AYI<:1 + Yy — Ukl) + /\TYM,

A /1 1
Yiy =Y+ Bl <§AY1<;1 +uYr — U + §AYI<;2 + 1Yo — Uk2)

AW
+ )\T(Ykl +3Y}s),

1 3AW
Py =Pra+A <§ATPk2 + /\Q(Qm + Q£2)Yk2) — ATQIQY/M;

P = Pjqy,

A1 1
P, =Py + Bl (§ATP1<;1 + M (Qu + Qi) Yr + §ATPI<:2

AW
+ 2N (Qpz + QZQ)YM) - )\T(leYlﬂ +3Qk2Yi2),
PN - YN7

wherek =0,1,...,N — 1.

We useh = 0.1 andA = 277, In our Monte-Carlo simulation, the number of orbits
is chosen as$00. In Figureg 4.1{-4]3, we present the numerical solutionk@biptimal
state and control variables with varying parameter

Let us note that one of the advantages of our Runge-Kutta seiethat it gives the
Lagrange multiplier paifP, Q) explicitly. However, if thediscretize-then-optimize
approach is used with the Euler method, the multiplier veQalisappears. Thus, the
solution with Euler method is far away from the solution ahéa with our Runge-
Kutta scheme.

Optimal State
Optimal Control

0 0.2 0.4 0.6 0.8 1

Figure 4.1: Density of the population (left), harvestinger@ight) fory = 8 atz = 0.5.

32



181

16

14}

12r

101

Optimal State
Optimal Control

o N & o o

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Time Time

Figure 4.2: Density of the population (left), harvestingeréight) fory = 9 atz = 0.5.
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Figure 4.3: Density of the population (left), harvestingerg&right) for x = 10 at
x = 0.5.

4.7 Summary

In this chapter, we studied the Runge-Kutta methods for themap control of a

stochastic harvesting problem. A stochastic reactiofusiibn type of problem was
chosen for modeling of the optimal harvesting. We formwatee control problem
of SPDEs in terms of SDEs with the help of matrices and vectbtsthermore, we
showed that if a Runge-Kutta type method is applied to thetcains equation, then a
similar scheme is obtained for the corresponding adjoinaé&qn.

33



34



CHAPTER 5

STRONG-ORDER CONDITIONS OF THE RUNGE-KUTTA
SCHEME FOR STOCHASTIC OPTIMAL CONTROL
PROBLEMS

5.1 Introduction

In Chaptef B, we derived our Runge-Kutta scheme for stochagtimal control prob-
lems of SDESs by usindiscretize-then-optimizapproach. At this point, it is important
to measure the accuracy of our Runge-Kutta approximatiorsimgieither the strong-
order convergence or the weak-order convergence critStrang approximations in-
volve direct simulation of stochastic paths and this presidseful information about
the qualitative behavior of the investigated model. Adiyatrong convergence crite-
ria of Runge-Kutta scheme for SDEs is investigated by Burr@yarid strong-order
conditions are derived. In this chapter, our aim is to getrgjrorder conditions of our
Runge-Kutta scheme for stochastic optimal control problems

We let{(7") be a numerical approximation &(¢y) after N steps with constant step
sizeA := (ty —tp)/N. Then(T') is said to converge strongly & with orderr > 0
if there exists a constanit > 0, which does not depend ak, and aA\, > 0 such that

EfIC(T) = X(tn)lly) < CA", A € (0,A),

whereX = (y,p)’ are¢ = (¢,p)" the solution of continuousOC,.) and discrete
optimality system(OC,) in Chaptei B, respectively. We notice that these optimality
systems are stated irblfforms. In this chapter, we address these optimality syiams
related Stratonovich forms.

Here, by assuming exact initial values, the Stratonoviajldr expansions of the exact
solution and of the solution based on our Runge-Kutta schemeanpared to find
the order of accuracy. Firstly, we obtain strong order-1dtiions of our Runge-Kutta
method for the optimal control of SDEs. Then, we show why ih@t possible to
exceed the strong order-1 with our Runge-Kutta scheme, anutegent the minimal
truncation-error constants of our Runge-Kutta method feiogtimal control of SDEs.
By employing a more general Runge-Kutta scheme, we get straieg-@.5 conditions
of the Runge-Kutta method on the optimal control of SDESs. is ¢thapter, such order
conditions are derived explicitly. We confirm our resultshanumerical examples.
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Now, we restate our optimal control problem as:

minimize E [(I)(y(T)) +/TE[g(y,u)]dt}

uel? (to,T") to

subjectto dy = f(y,u)dt + h(y)dW (t € [to,T]),
y(0) ="

(Pe)

We recall theHamilton functionof the optimal control problem:

Hly.u.p.0) = gly.w) + [y 0o + 5P (0)a,

with the following continuous first-order optimality syste

dy = Hy(y, u, p,q)dt + h(y)dW (t € [to, T1),
dp = —H,(y,u, p,q)dt + h(y)gdW (t € [to, T]),
(oc.) 0=Hu(y,u,p,q) (t€ [to,T]),

y(to) = 4°,
L p(T) = ¢'(y(T)).

5.2 Problem Formulation and Discretization

Let X, F andH denote the following pairs:

(1) 7). n(4)

With this notation, we can write constraint of problé.) in the form
dX = F(y,u,p,q)dt + H(y, g)dW

as an |6 SDE, or
dX = F(y,u,p,q)dt + H(y, q) o dW (5.1)

as its related Stratonovich SDE with a modified drift coedintiwhich is defined by
[28] with the vector

F=F— %H/H,
whereF = (f,#,)". For simplicity, we rewrite Eqn[{5l1) as
dX = F(X)dt + H(X) o dW, (5.2)
whereodW represents Stratonovich integral with respect to the BrawniotioniV.

We note that any SDE indtform can be easily converted to its Stratonovich version,
and vice versd [28]. While both SDEs have the same solutienglibice about which
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one is more appropriate to use, depends on the specific prol3ece Stratonovich
calculus follows the same rules as Riemann-Stieltjes aad¢ir this chapter, it is more
advantageous to employ the Stratonovich representatian 8DE.

By following [8, 28], we get the Stratonovich-Taylor approwtion of Eqn. [(ER) in
the subsequent way.

Let £° and L' be vector-valued operators of 2 variables defined as

0P 0P
% .= __F and '® .= _H,
£ 0X™— £ 0X
where® is any twice continuously differentiable vector-valueddtion of 2 variables.
We note that® /90X stands for Jacobian matrix @ so that£’® and£'® are vec-

tors. Now, application of deterministic Chain Rule gives:

2(x(0) = #(xX(1) + [ TP Ry

to

+ /t WH(X(S» o dW (s)

= B(X(ty)) + / L£OB(X(s))ds + / Ll'®(X(s)) o dW(s). (5.3)

to to
If we choose® (X (t)) = X(t), we obtain the original Stratonovich SDE(5.1) in inte-
gral form:

X(t) = X(to) + / ))ds + / H(X(s)) o dW(s). (5.4)
Similarly, for ®(X(t)) = )) and®(X(t)) = H(X(t)), Egn. [5.8) reduces to
F(X(t)) = F(X(t)) / LF(X(s))ds +/ L'F(X(s))odW(s), (5.5)

H(X(t)) = H(X(t)) +/t LH(X(s))ds + /t LH(X(s))odW(s). (5.6)
Substituting Eqn.[(5]5) and Eqii._(5.6) into EJn. |5.4) ireplihat

X(t) = X(to) + /t: <E(X(t0)) + / LF(X(z))dz + / L'F(X(2))o dW(z)) ds

to to

+/t: <H(X(t0)) /SﬁoH( (2))d=
/ LYH(X odW(z)) o dW(s)

= X(to) + F(X(to))Jo + H(X(to)
/ / LF(X(z))dzds + / / L'F(X(2)) o dW(z)ds
/ / LH(X(2))dz o dW (s) + L'H(X(2)) o dW (z) o dW (s).
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If we continue to apply Eqn.[(5.3) to the integrand functiappearing in the above
equation, we reach the Stratonovich-Taylor approximatioiqn. [5.2):

X(t) =X(to) + (FJo+ HJ, + F'FJyo + F'HJyo + HFE Jo; + HHJy,
+ F'F'FJyoo + F'FFJooo + FF'HJy0 + F'FHJ 0
+ F'H'FJy + F'HFEJy,o + FHHJ; 0 + F'HH.J (5.7)
+F'H'F Jy1 + H'FF Jyy + HE'HJ,; + H'FHJ
+HHFJy, + H'HE Jy, + HH'HJ,, + H"HHJlH)(X(tO)) + R.

Here,R represents the remainder term afid, ;, stands for a Stratonovich multiple
integral, where integration is with respectde if j; = 0, or odW(s) if j; = 1. For
example, in one dimension,

t S3 So
Jllg = / / / OdW(81> ©) dW(SQ)ng.
to Jto to

Let us note that the derivatives should be viewed in an opecaintext. For instance,
the first derivative of a vector-valued functi@is the Jacobian matrix, so thRtF
corresponds to multiplying the Jacobian matrix by the veEBt®o give a vector. The
second derivativ@&"” operates on a pair of vectofE, F) to give a vectoFr"FF.

We introduce an equispaced discretization tq < t; < ... <t < ... <ty =T of
the time interval0, 7']. Let A := T'/N denote the time increments (step-size).

Now, we state the-stage Runge-Kutta discretization, for some Z*, of the optimal
control problem(P) in the Stratonovich form as:

p N—-1 s
minimize  E [¢(yn) +Jo > Y 0ig(yri, uri)
k=0 =1

P subjectto  yii1 = yr + Jo Z i f (Y, uri) + N1 Z Bih(yri),

d =1 =1
Yki = Yk + Jo Z aiji(ykj, Ukj) + <]1 Z bz’jh(ykj)a

j=1 J=1

\ Yo = Z/O,

for k = 0,1,...,N — 1, where the constants;, ;, a;;, b;; (¢ = 1,2,...,s) are
the Runge-Kutta coefficients. The Butcher array of the Rungeakdiscretization of
system of problentP)) is given by

C1 | Q11 L. Qg d1 bll Ce bls
Cs | Qg1 ... (Qgg ds | bg1 ... by
aq e g ‘ Bl Ce Bs
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Theorem 5.1.[6} 8] Letw;, f;, aij, bi; (i,5 =1,2,...,s) be the Runge-Kutta coeffi-
cients. If the coefficients of stochastic Runge-Kutta neefonSDEs[(Z.T]1) fulfill the
following conditions:

Al. iai =1, A2. iﬁz =1, A3. i Bibij = %»
i=1 i=1

ij=1

then the stochastic Runge-Kutta method converges of drdethe strong sense.

5.3 Strong Order-1 Conditions of Runge-Kutta Method with Minimal Trunca-
tion Error Constants for Stochastic Optimal Control Problems

In ChaptefB, we have derived the discrete optimality comadstj(OC,), for stochastic
optimal control problems of SDEs indtform. Similar discrete optimality conditions
can be also derived for stochastic optimal control probleh®DEs in the Stratonovich
form.

Theorem 5.2.1f o, f;, asj, bij (4,5 =1,2,...,s) are the Runge-Kutta coefficients in
the system of problett®)), then the discrete first-order optimality conditions assoc
ated to the system of problef®),) are obtained as:

Yr+1 =Yk +Jo Z i f (Yni, uri) + Z Bih(yri),

=1 =1
Yei = Y+ Jo Z iy f(Yrj urg) + i Z bijh(yi;),
j=1 J=1
Pe+1 =Dk — Jo Z &iﬂy(ykm Uri, Pris Gri) + i Z Bih<yki)Qki7
i=1 i=1
(0Cy) Pri =Dk — Jo Y iy (Yags kg Dijs Gkg) + 1 bish(yes) i,
j=1 j=1
Gritki = Dk — Jo Y _ i My (Yng iy Pigs Qi) + 1 bish(yes) i
j=1 j=1
PN = ¢/(?JN)7
Yo =19’
0=A Z G H, (Ynis Uki, Piis Qhi)
\ i=1
fork=0,1,..., N — 1, where the coefficients satisfy the subsequent relations:
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- « > ﬁj

A5 = QO Qs bij - /Bj - ;a]za
i i

X o B

Q5 Qy — BJ bj’L) bzg - 6] - #bji)
i i

with
 Jotaih(yri)  P(Yi)
Yy = — .
J1Bi P (ki)

We shall not give the proof here, since it is quite similartte tt case, Theorein 3.1,
which is given in Chaptd 3.

Now, we will obtain strong order-1 conditions of our Rungettaisscheme by matching
the Stratonovich-Taylor series expansion of the exactisolwand the approximation
defined by the Runge-Kutta method for SDEs over one step, a&sgueract initial
values. For this reason, we use a similar notation to Hagergage 261 in [21]) and
we first write the Stratonovich-Taylor series expansionhef &approximation defined
via the Runge-Kutta method, by benefiting from the approadubcéher [6/ 8] 9].

In order to study order conditions of discrete optimalityditions(OC)), the (OC))

will be written as a function of. By using Butcher approach, we write = ¢, and for
agivent = to+ A. For a given initial iteration valueg, andp;.. 1, the solutiongy,; and

pri are functions of, denoted byy,;(t) andpy;(t), respectively. Let the values.(t)
andy,.,(t) stand for the iterates, andy,. 1, respectively, which can be calculated as
y(t) andp(t) with intermediate valueg.; = y;(t) andpy; = px;(t). For this reason, let
¢(t) = (y(t), p(t))” be the vector of lengtAN (s + 1) and let¢ (t), Cop1 (1), E(C(2))
andH(¢(t)) denote the following pairs:

(ki) , | vea(t) P
[ 21 (G(t)) .

)‘<z;1aw <ckj<t>>> Hsrssel)

N 21 bigh(Crj (1)

S hh(Cu ()G D) ) (S8 et

wherek = 0,1,..., N — 1, is the index of the Runge-Kutta scheme in the discrete
optimality conditiongOC,), with

As+1,5 = as+1] =a; (

bs—&-Lj - s—HJ 6] (



By using the above notation, we can state the discrete optyncainditions(OC)) in
the form

¢(t) = ¢(to) + (t = t)E(C(t)) + JH(C() (1<i<s+1), (5.8)

whereJ; = AW = W(t) — W (ty) so that/;(ty) = 0.

The termF (¢(t)) (@andH(¢(t)), analogously) can be represented by using a Taylor-
series expansion:

B(C(1) = F(c(te)) + 3 SAELEL)), (5.9)

n!

whereL  is the vector-valued differential operator of 2 variablgigen by

a<1>+J 0P
ot o,

LAP :=A
since® is any twice continuously differentiable vector-valueddtion of 2 variables.
Thus, it is seen that

£AE(G(0) = AF (6(0) (E(C(0) + <t—to>F<<<t>>ag—f)+J1ﬂ'<c<t>>a§—§”)
0

8J1 06(75)) ,

+H(C() + LH(C(1) 7

+J1F (t—to

so that

LAF(C(to)) = JoF (C(to))F(C(t) + LE (C(t0) H(C (1))

Similarly,
LAH(C(t)) = JoH'(C(t0))E(C (to)) + ITH(C (t0) H(C (fo)).
Then, the Stratonovich-Taylor approximation of EGA_i(Ba@Ks as follows:
¢(t) = Clto) + RE(C(1) + 4 (FL(C()
= () + o (E((0) + LR (1) + 5 B + ..
- (BH(C(00) + LHG(0)) + g L2BC() 4.
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As we mentioned, in the case of the Stratonovich-Taylor egjma of the exact solu-

tion, the derivatives should be considered in an operatatesd.

For simplicity,

F = ( _%ﬂ;zziﬂy ) jilawf%Zaw (—H)) (1<i<s+1),

where

and

s > i s
H, = bi;h’ +) bii(hq)? (1<i<s+1),
< Z bw hq Z ’ Z ’ P )

7=1

O b=
=) (ar= he |

(B); = ay(£°)' + iy (3,)°)
The J-integralsJy, Ji, Ji1, in Eqns. [5J)) and(5.10) are of ord&r, A% and A,

respectively, so that strong order-1 conditions of our Rukgtta scheme can be ana-
lyzed as stated below.

SinceJ; ~ N (0, A), we have[[28]:

E[J{*] =0, E[J}] = yﬁAkEUmuzgﬁiEwngAi

with

and
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and

Jp
Jl...l - _1|
p:
1) Since
Po— 21 Qif N 4 ;
it holds

2

E =E

S S 2
Jo—Jo Y A(l—zaiﬂ :
=1 i=1

= Z a; =1 (Condition Al. in Theorerh 5l1)

i=1

ii) The second strong order-1 termis

JH =0 BH,
=1

(5]

= > B =1 (Condition A2. in Theoreri5l1).

i=1

which implies that

2

E =E

Ji— D) B
=1

iii) The final strong order-1 term comes from the integkal

S

JHH = J7 Y (H,,,)(H); = J7 Y BH (b;h° + by;(hq)").

i=1 ij=1

Bibij =Y _ Bibij,

S
i—1 ij=1

1’7]
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then

=K

__JQZﬂz ij

2,7=1

2
1 S

2

#a3m)

2
1 S
= 3A? (5 -y 5¢bij> ,

ij=1

® 1 y .
= Z Bibi; = 3 (Condition A3. in Theoreri 5]1).

ij=1
Similarly, we can obtain

Z Bl — Z 8.5, ( ajz) _ % (New condition to Theorein3.1). (5.11)

i,7=1 2,7=1

At this point, the fundamental issue is to construct a familynethods satisfying
strong order-1 conditions. In the casesof= 2 with the explicit scheme for the state
equation and related implicit scheme for the adjoint equative have 4 conditions
for strong order-1, and there are 6 unknowns. Thus, freenpeters guarantee the
existence of a solution. Therefore, one can find differenthods (different coeffi-
cients) which satisfy the strong order-1 conditions for> 2. When constructing
these methods, one needs to be careful about the associateation-error constants,
since larger truncation-error constants can cause a fieduntthe effectiveness of the
method. For this reason, we aim to construct a Runge-Kuttaodeif strong order-1
with minimum local truncation-error constants.

The terms corresponding to the ° in Egns. [5.¥) and (5.10) arise from the following
J-integrals:Jy,, J1p andJiq;. Herewith, the minimum local truncation-error constants
of our Runge-Kutta scheme to have strong order-1 are anahled.

iv) The first strong order-1.5 term looks as follows:

s

JohHE = Jo1 Y (HL,)i(E); = Joh Y BH (a0 + ay(—H,)").

i=1 ij=1

Z Biaz; = Z Bitj,

ij=1 ij=1

then

E

2 2
S 1 S S
Jo1 — JoJi Zﬁiazj] = 3 Z Biaij + (Z @'%‘j) AP, (5.12)
i=1

ij=1 ij=1
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Here, note that the quadratic equation in Eqn. (5.12) doglsav@ any real root, so that
this term cannot be zero. Hence, this result prevents us @etitimg strong order-1.5.
However, the minimal value of the function in Eqh_(3.12)\%/12.

v) The second strong order-1.5 term:

S
~/

JiJEH = 10y > (Fyy)i(H); = JiJo D o (bh” + by (hq)°).

i=1 ij=1

i aibz’j = i O‘il;iﬁ

ij=1 ij=1

then

E

2 2
s 1 s s
Jl() - Jlj() Z Oéibij] = § — Z aibij + (Z aibij) Ag, (513)

i,j=1 4,j=1 4,j=1

and the minimal value of the function in Eqfi(5.13) is alsty/ 12.

vi) The third strong order-1.5 term:

Mm-S (d, )0 = 1Y s (b 4 byha))
2 2 — s+ 1 2 ij:1 J J
If
DB =Y Bibiby =Y Bb,
i,j=1 i,j=1 i,j=1
then
I < ’ 1 2 ’ 15
E — L Wl =E|=—= b2, b2, A3 (5.14
Jlll 9 Z;ﬁ’l iJ 9 31252 iJ + (Z;ﬁl i 4 ) ( )

the minimal value of the function in Eqri.(5]14) is attaineda

The last strong order-1.5 term is

JHHH=J} Y (H,,,);(H);(H),

1,7,k=1

_ 3 Z GH (bij(ho)’—kgij((hq)o)’) (bjkh0+6jk(hq)0).

i,j,k:].
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Z Bibjibi; = Z ﬁibjkgij = Z Bii)jkbij = Z Bii)jkgija

1,7,k=1 ,5,k=1 ,7,k=1 ,5,k=1

then we can obtain

T Jl Z /81 jkbul

i,5,k=1
s 2
— - Z Bibsxbi; + ( > ﬁibjkbij) 15A3, (5.15)
zy k=1 i,j,k=1
and the minimal value of the function in Eqf._(5.14) is also 0.

Eqgns. [5.1R)f(5.15) constitute the truncation-error tams. These equations are min-
imized if

Z Biai; = Z Bia; = %7
ij=1 ij=1
Z ;b = Z ai[;ij = %>
(S) i,j=1 ij=1
ST B = Bbgby = > B = 1
ij=1 ij=1 ij=1
Z Bibjbi; = Z Bibjk:l;ij = Z Bil;jk:bij = Z Bil;jkzgz’j = é,
[ igk=1 i,j,k=1 i,j,k=1 ij,k=1

in which case the minima of the functions in the syst&pdre, respectively,

A3 A3

2 13’ 0, 0.

Let us note that to get strong order-1.5, all of the coeffisi@r terms containing\®
must be zero. Since the coefficients of Eqris._(5.12) and (%43 not be zero, it
is impossible to exceed strong order-1 for any number ofestagithout introducing
another type of random variable in the method formulatiothefRunge-Kutta scheme
in (P).

For a 2-stage explicit method on the state equation and d¢rhpliethod on the adjoint
equation, 4 conditions of strong order-1 must be satisfied 14 conditions of the local
truncation error-constants i5) have to be fulfilled. By inserting the 4 conditions into
11 conditions, one can set up and solve an unconstrainedobjgictive minimization
problem with one variable, namelyg;. The range of optimal solution is obtained by
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finding the maximum and the minimum values fgrsuch thaps; € [—0.4584,0.7500].

We notice that each line it corresponds to a truncation-error constant term if these
inequalities are satisfied, so that we have 4 truncatiorr eoostants. Otherwise, we
address the maximum norm of the equations for each lin&)ino(find the truncation-
error constants. For simplicity, we choose = 0.5. Thus, we have found that the
principal truncation-error constants are

A AT AT AT

—, — A
127 127 487 127 (5-16)

and the solution is represented by the following tableaus:

0O O 0O O
1 0 1 0 (for the state equation),
05 05 05 05
05 -05 05 -05
05 05 0.5 05 (for the adjoint equation).
05 05 05 05

Therefore, in the above analysis, it seems that withoubdhtcing an additional ran-
dom variable to the classical Runge-Kutta method, it is nasjibe to exceed the
strong order-1 for any number of stages. We state this rastiie following theorem.

Theorem 5.3. Let «;, 3;, a5, b;5 (i,j = 1,2,...,s) be Runge-Kutta coefficients in
problem(P)). If the coefficients of our Runge-Kutta method for the stettbapti-
mal control problem satisfy equations A1-A3 in Thedremh Bd Bqn. [5.111), then the
stochastic Runge-Kutta method has maximum strong orderdnfy number of stages.
Moreover, as a special case~= 2, the optimal principal truncation-error coefficients
of explicit method for the state equation and related imphaethod for the adjoint
equation are given in Eqn_(5.116).

5.4 Strong Order-1.5 Conditions of Runge-Kutta Method for Sbchastic Opti-
mal Control Problems

In the previous section, we have obtained strong order-Hitions of our Runge-
Kutta scheme for stochastic optimal control problems. Wwike, Burrage and Burrage
(1996), we are not able to exceed strong order-1 by using ting&kKutta method in
the system of problenP)). For this reason, they assumed that every random vari-
ables,J; ijl b;; andJ; Y ;_, ;, can be written as a linear combinationpadifferent
random variabled);, 6-, . . ., 6,, in order to study strong-order properties of the Runge-
Kutta method, especially, order-1.5 and higher strongombnditions. We follow
their assumption to receive strong order-1.5 conditiorauwfRunge-Kutta scheme for

stochastic optimal control problems. Herewith, probl@)) is a specific case of the
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Runge-Kutta method:

( N—-1 s
minimize E |[¢(yn) + A Z Z ;9 (Ygis ukz)]

k=0 i=1

) subjectto yr 1 = yr + AZaii(yki,um Z (Zﬂ (Yni ) 0,
p

=1 =1

S p
Yri = Yr + A Zaiji(ykj,ukg Z (Z bm (Yn; ) o,

j=1 =

\ Yo = yoa

fork =0,1,....,N—-1,7 = 1,2,...,s, wheref,,0,, ...,0,, are random variables
that can be written in terms of multiple Stratonovich insgnd have the same strong
order as with./;. It was taken ap = 2 with 6, = J; andé, = Jjp/A to obtain
strong-order conditions, such that the problgy) can be rewritten as:

( N—-1 s
minimize E |¢(yn) + A Z Z ;. 9(Yki, Uki)]

k=0 i=1
s

- J
iect t _ A : s 1) (2) 710 .
subjectto yy1 = Yk + A i f (Yri, uki) + Y (@ S+ 57 h(Yi),

(7)2) i=1 i=1
S S J
Ui = Uk + A Y aiif(Yeg ueg) + Y (b DI+ 0 Alo) h(Yi;),
j=1 =1
\ Yo = yO_
fork=0,1,....N—1,andi =1,2,...,s

By comparing the Stratonovich-Taylor series expansionsi@feixact solution and of
the approximation method defined by the Runge-Kutta metho8Rd&s, respectively,
Burrage and Burrage (1996) obtained strong-order condipoesented in the follow-
ing theorem.

Theorem 5.4.[6,18] Lety, 5., 87, a;, b)), b7 (1,5 = 1,2, ..., s) be the Runge-

ij

Kutta coefficients. If the coefficients of stochastlc Rukgta method for SDEE(2.111),
the constraint equations in the probldfR, ), fulfill the subsequent conditions:

Al Za =1, A2. i@f” =1
i=1 =1

i=1 ij—1

A5, Z 5(1)5(2) Z 51(2)55]1-), A6. Z 6(2 b(2 _

7,7=1 i,j=1 i,j=1
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then the stochastic Runge-Kutta method of Eqn. {2.11) cgeseo order-1 in the
strong sense. In addition, if the conditions

i,j=1 i,j=1
A9 D bl =0, AL0. Y ad? =1,
ijﬂ ijfl
All Z A2 = 2 Z B8, AL12. Z B0
i,j=1 i,j=1 3,j=1
A13. Z BB 22 e Al Y BP0S) =
2,7=1 1,7=1 7,7=1
(1) (2)71.(2)1(
A15. Z BB = Al6. Z B =0,
i,5,k=1 1,5,k=1

2), (1
AlT. Zﬂ w 3k+ﬁ bg] Ek) 5 ZJ JkZO’

zyk 1

Al8. Z 5 ZJ Jk—i_ﬁ bZ(J2 Sv)—i_ﬁ ZJ Jk _0

i,5,k=1

are fulfilled, then the stochastic Runge-Kutta method cgegeto order-1.5 in the
strong sense.

We remark that the discrete optimality conditiodXY;) is derived by using the specific
case of the Runge-Kutta method, probleRy ). However, by following the same pro-
cedure in Chaptéd 3, a similar system of equations can alseteed for the problem
(P2) with the conditions:

Q= oy, g =W, BE = p®,

(1) (2)
— a; Sy ) B o) ) B
Qij = Q5 — Ezajiv bij = Bj - ;_iaji7 bij =P~ ;i ;-

In order to study order conditions of discrete optimalityditions(OC)), the (OC))

will be written as a function of. By using Butcher approach, we writge = ¢4, and for
agivent = to+ A. For a given initial iteration valueg, andp,. 1, the solutiong,; and

pri are functions ot, denoted byy,;(t) andpy;(t), respectively. Let the values.(t)
andy,..(t) stand for the iterates, andy,. 1, respectively, which can be calculated as
y(t) andp(t) with intermediate valueg,; = vx;(t) andpx; = pr:(t). For this reason, let

C(t) = (y(t), p(t))T be the vector of lengtBN (s + 1) and letlyi(t), Co1(t), E(C(t))
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andH!(¢(t)) denote the following pairs:

cki<t>:<y’“(t>> (1<i<s), <s+1<t>=(y'““(t)> (i=s+1),

Pri(t) Pry1(t)

. ( S 4 (G (1))

2 e iy (Cri (1)) ) (1<i<s+1)

7 < Z] 1 1] (Ck]< ))
>

) ) (1<i<s+1land
¢ D R(Cs (1)a(Cis (1))

1<1<p),

with the convention that

~.

Q
A IA
A IA
@

V2)
~—

s+, = Qj (

s+1,j — Bj (

Qst1,5 =

j=aki
—_ =

bs—i—l,j -

By using the above notation, we can state the discrete optynesahditions of problem
(P,) in the form

¢(t) = C(t) + (t — to)F +ZH591 (1<i<s+1), (5.17)
wheref,(to) =0,1=1,2,...,p

The termE (¢ (t)) (andH (¢ (t)), analogously) can be elaborated by applying the Taylor-
series expansion:

. . L LAE(C(t
B(C(1) = BC(to)) + Y FAEE) (5.18)
n=1 ’
whereL is the vector-valued differential operator of 2 variabgsen by

LAD = A— Zel T

for ® is any twice continuously differentiable vector-valueddtion of 2 variables.
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Thus, it is seen that

LAF(C(t) = AF(¢ (1) (E(c:(t)) HE-tE )% Y @(ﬁ@)'(cu))g—f)
p ~ / ~/ ac 0
+ Y0 (6(0) ( (¢ - W () g + HOG(0)
=1

so that

/

LaF(C (1)) = AF (1) B¢ () + ' (¢(to) D AHO(C 1)
Similarly,
LaH (¢ (1)) = MY (¢ () E(C(t) + (AVY(C(t0) D AADY(C (1))
=1

fori=1,2,...,p.

Then, the Stratonovich-Taylor approximation of discreigroality system of problem
(P,) looks as follows:

¢(t) = Clto) + AF(C(1)) + Z o (A0 (¢(1)))
(1) + (E(C(to)) + LaB(C(0) + g £AE(C() + )

+> 6 (ﬁ<’><c<to>> + LAHO (1) + 5 LAHO(C () + ) .

Hence,
p
- e )~ 1 e~ )
¢(t) = C(to) + (AE +AFE+AY GFHY + CA'E'FE + AFFE
=1
P ~ /| ~/_~ 1 P ~ /N ~ _~ P ~/ , ~
+A7Y OFFHY + oAy OF FHY + A% 0F (HY)F

1 P ~ I~ = 1 P 1~ L -
A2 F HOF + A oF HON 9HO
+ 5 lzl B B+ 5 lzl 1 Zl l

+ Azelﬁ’(ﬂ%’zezﬁ(”) (C(t0)) +
=1 =1
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(ZelH +AZ€ ”’F+291H(l ZGH”

+ AQZ@ HO ”FF+A2ZQ, HOYE'F

p p

tA Z o(HO)E Z OH® + §A9l(ﬂ<l>)// S a0y F

=1 =1

+AZ@ (HY) Ze U)VE + AZ@, )"ielﬁ@ﬁ
=1
+ 5 Ze H") ”ZGH ZHZH“
+ Z O(HY) Z o(HY Z sz{(”) (€(t)) +
=1 =1 =1

As we mentioned, in the case of the Stratonovich-Taylor egjmm of the exact so-
lution, various derivatives should be considered in an aercontext. Here, let us
note that we write the above Stratonovich-Taylor expan&oan arbitrary positive.
However, strong-order conditions of our Runge-Kutta schémnetochastic optimal
control problem are particularly obtained for= 2. In the subsequent theorem, we
state such order conditions.

Theorem 5.5. Leta,, 8., 8%, ay, ay, b)), 0, 0%, 02 (.5 = 1,2,..., ) be

the Runge-Kutta coefficients. If the coefficients of our Iéuﬁgta method for the
stochastic optimal control problem satisfy both condigi@xil-A6 in Theorem 5.4 and

~ oy _ 1 e -
BL > 8b; =5 B3. ZB

ij—l t,j=1
1)7(2) _ (2)7(1)
B2 AR =~ 37 A,
7,j=1 i,j=1

then our Runge-Kutta method for stochastic optimal conproblems converges to
order-1 in the strong sense. In addition, if both conditié®t¥sA18 in Theorein 5.4 and

B4. > pMay =1, B5. > p%a, =
ij*1 ijfl

B6. Z b)) = B7. Z b)) =
4,j=1 i,j=1
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BS. Z B(l)b(l)b

BO. Z ﬁi@)b@) (2 _

4,j=1 i,j=1
B10. Z (ﬁz‘(l)b@) + 552)[)8)) Bg) _ Z 61'(2)17(2) (1)
i,j=1 h.j=1
~ (o012 @) 50 _ NS 40 (D7)
BLL Y (86 + 570 )b =~ " 8
i,j=1 j=1
B12 > s (})) B13. ) %
ij—l Q=1
B14. Z 82 (0] ) Z S
,j=1 i,j=1
B15. Z B (b ) Z s
i,7=1 ,j=1
s ~ 1 s ~
WL _ @722 _
B16. > B0 by, =& B17. > B0
ij,k=1 ijk=1
~ (50500 4 50 (0,0 4 502
B18 Y (@. BB + B (bw o) + b bjk)) —0,
i k=1
~ (Wi L 4@ (520 L 50\ _
B1o. > (BVBPb + 87 (570 + 50 )) o,
i,J,k=1
S 1 S
(0 (7D 2,272 _
B20. > A0l = o B2L > b =0,
ij,k=1 ijk=1
2 D7(1 1 2 1 1
B22 > (B0 5y + 87 (b5 + )5 ) =0
i k=1
~ (40,70 4@ (@50 O
B23 > (B"05 + 87 (b5 + )57 ) =0
i,J,k=1
z (1)~ 1
B24. > gV ==, B25 Z AL = 0,
ij,k=1 ijk=1
~ (505050 4 50 (G050 4 5052 -
B26. Y (@. BB + B (bw b+ b bjk)> ~0,
ijk=1
B27. > (BP0 + 87 (505 + 5705 )) o,

,7,k=1

are fulfilled, our Runge-Kutta method for stochastic optimantrol problems con-
verges to order-1.5 in the strong sense.
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Proof. We use the same logic as we did in Secfiod 5.3, to find strodgrarondi-
tions of our Runge-Kutta scheme for stochastic control gwisl of SDEs. So, for
simplicity,

N Ciaif
Ez-:( égl J ) Zamf%rz% (—H)) (1<i<s+1),
- jlaU

where

»

i > bish ‘-
H?):( : bR’ + 3 b (ha) (1<i<s+l 1=172)
Z] 1bZ] Jj=1

j=1

and

(E,); = ai; (£°) + as;((3,)°)".

The J-integralsJ,, J;, Ji1, are of orderA, A%® and A, respectively, so that order
conditions of our Runge-Kutta scheme for stochastic coproblems to have strong
order-1 are analyzed below, subsequently.

1) Since

F Z$—1 a; f i '
g Zs_ e — ; S S 7
F. ( =3 A, EQE (1<i<s+1)

s 2 s 2
E Jo—AZCYi A<1_Zaz>] )
i=1 =1

=Y a;=1 (Condition Al. in Theoreri 514)

i=1

it holds

=K

ii) The second strong order-1 termjis
P _ S S Jl
Z Qng-l = (Z 51'(1)J1 + Z Bi@)KO) H
=1 =1 =1
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which leads us to the implication

=1 ]
2
S S J
1-255”) AR

[
(g ERs ),
!

E

J1J10/A E[Jio/A?]

/3 —1/2\  re
“12 1 )ZA =0

(z1,29) = (0,0)

= Zﬁi(l) =1, Zﬁz@) -
=1 =1

(Conditions A2. and A3. in Theoreim 5.4).

iif) The final strong order-1 term comes from the integkal

s

> 6oHY) > oHY Z Z H(l))lerl)iZelZ(I:I)l
2

i=1 = i=1

2)J
<z ‘]1_'_6 AIO)H/

x ((b DI+ b JA“’) h + (ng.)Jl + b ‘]Alo) (hq)0> .

~ (0 @J10) (L0 @ 10
221 (@ Ji+ B A) (bij i+ by A)
> 2 J J
:Z( gy + B 10) (b V0 Am)

ij=1

then, we get the implication

2
Jt : 1) JlO (1) 2) J10
E 7—2(5 Jy+ B2 b gy + 0 N
i,7=1
e | ST 0 2 N (5050 4 5@ g D0 g@e i 2
- 7_2@ ij 1‘2(@' ij+ﬁi ij)lA Bi ij A2

i,j=1 7,j=1

55



=2z7Cz (with C defined by the following line)

E[J{] E[J?Ji0/A]  E[J7 5/ A%]
=z | E[J} /A E[J7 /A2 B[ /A% |z
E[J? Ji/ A% B[AJip/A°] ElJy]

3 3/2 5/6
=A?z" | 3/2 5/6 1/2 |z>0
5/6 1/2 1/3

= z" = (21,22, 23) = (0,0,0)

S 1 S S S
SO DL DY LT S o Y
ij=1 ij=1 i,j=1 ij=1

(Conditions A4-A6. in Theoreiin 5.4).

Similarly, we can obtain 3 extra conditions:

BL > pVb) =

ij=1
S a Z
= > A" (55-” ) > a080s =2 >
i,7=1 i,7=1
B2. Y AV = Z B0
i,7=1 i,j=1
o B o0 B
:>Zﬁ B; _aji I—Zﬁi B _]_‘aji ;
ij=1 & ij=1 &
=Y BB f = Z BEBN
i,j=1 3,j=1
B3. Y A =
ij=1
@ (4@ gy ~ (2) 5(2)
:»2/3 = ay | = Y8787 f=0,
ij=1 Qi ij=1

where

The expressions corresponding to theé® terms arise from theg-integrals: Jy;, Jio
and Ji1;, accordingly, so that order conditions of our Runge-Kuttesae to have
strong order-1.5 are analyzed below.
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iv) The first strong order-1.5 term turns out to be

AZQZ 'F Azezz H(l) Ver1)i (F)
=1

)
=A Z ( BV + 8P 10) H (a;;£° + i (—H,)°).

i,j=1

S

- J J
Z i (@-mjl + ﬁi(g)Klo) = Z Qij (52-(1)]1 + /352)%) 5

ij=1 hj=1

then

=E Jl—ﬁ—Za (ﬁ J1+6 JIO)

=E (1—2551%%]) J1—<1+ZB )JIO

i,j=1 i,7=1

2

)

(using the analysis of quadratic forms)

= XS: Bay =1, XS: B ay; = —

ij=1 ij=1

(Conditions A7. and A8. in Theoreim 5.4).
Similarly, we can obtain 2 additional conditions:

B4. Z 8Vay; = Z Blasfi =1,

ij=1 ij=1

B5. Z 8P, = Z BPaf; = —1.

i,j=1 i,j=1
v) The second strong order-1.5 term:

p
AN o,F HO

=1

= A Z 01 Z 5_|_1 (l))z

=1 =1

, J 2 J10
:AZaiE (( L+ b Alo) h” + (b“)J +55 % ) (hq)o).

1,7=1
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: )T - )
> <b(1)J1 + b Am) =Y (b“ I+ b A”)

i,j=1 i,j=1

then we have the implication

2
: J
E J10_AZCY¢< l)J —i—bz(j) Alo)

3,7=1
S S 2
—E | Jy <1 -y aib§§)> -y aibg;)JoJll
1,7=1 7,j=1
_ T E[ 7] —E[J02J15710]
~El[JoiJio]  E[J3F]

0 1
' =(21,22) = (0,0)

ij=1 ij=1

(Conditions A9. and A10. in Theorem 5.4).

:A3ZT<1/3 O)ZZO,

=z

Similarly, we can get 2 more conditions:

B6. iaiz;g) =1 = Zazﬂ

ivjzl Zj 1
o7 Yad) <0 = Y-
ij=1 ty=1

vi) The third strong order-1.5 term:

i 6, (F1O)" i o, a0 i o, HO

i 02 (L Z@Z "),
2

=1

2)J
< =]1 "‘ﬂ 10) H//

J1o 2) J10 2
><(<b Sy +bm2)A)h°+(b Ji+ b A)(hq)o) .
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2 J J - Y
=2%" (5§1>J1 +ﬁ§2)f) (bgj.)Jl +b§.§>£) (bg)Jl +b§?)£>

ij=1
s 2
_ (1) @ J10) (50 2 J10
- = <61 J + Bz A ) (bzg Jl + bz] K) 3
then
E|J —li B, + b+ 0 2 J10
111 5 s ij A
J3 1 s JlO JlO
—E —1——Z<,6 L+ gl )(b Jy+ 0 )
6 24 N
=z Cz,
where
1 1 <
6 52 22521 +2Zﬂ z] z])
J=1 2,7=1 i,7=1
1 1 &
23—52 B0 +2Z/3 Loa=g 8
1,j=1 i,j=1 i,j=1
and

i =K

J8 e ﬂ itj—2
A )

15 15/2 4 9/4
15/2 4 9/4 4/3
4 9/4 4/3 5/6
9/4 4/3 5/6 5/9

A3z" z >0,

where 0 is attained (i.e., holds as an equality) if and only if

— 1) e L 02 o N A (1)2)
> 87 =3 >8I =2 506
ij=1 ij 1 ij 1

2 2 1 2 1 2
Z ﬁz( )(bgj))Q _ O, Z B( Z B( )b( )553)7
i,j=1 4,j=1 7,j=1

(Conditions A11.-A14. in Theorem 5.4)
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Similarly, we can receive 8 additional conditions:

S 1 S
S =L = =
i,j=1 i,j=1
B10. 2 Z B2 o) = 2 Z B0
i,j=1 i,0=1
= S+ B = - 3 B8
ij*l i,j=1
B11 2 Z A Q)b(Q)b(Q) - Z ﬂ (Q)b(Q)
1,j=1 t,j=1
> 8" = DB =3
i,j=1 t,j=1
S AR = —2 37 ARG
i,7=1 i,j=1
=3 Y =23 875 87 s
ijfl i,j=1
B14. Z BOGEY? = —2 Z B
i,7=1 i,j=1
= 87 =2 8¥808
i,j=1 i,j=1
NS = Z BB 7 = 0.
i,j=1 i,j=1
The last strong order-1.5 term is
p 5 p S B
ZQZ(HU))/Zel( ZelH Zel Z(H;H)l(H )z(H)J
=1 =1 =1 dj=1

i k=1

W ; 2 J10 o
(ﬁ, 1+ B A)

(00 oy (3504570 ) ()

Y

7

+
J - ]
x ((b]k Ji+ b Alo) h + (bg}gjl + bﬁjf) (hq)o) .
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s

D

i k=1

then we ca

E Ji

6

The above

2) J10 1) ) J10 (1) 2) J10
<5 I+ 67 )(bijler]kA b+ b8 A

s

i7j7k:1
S

3 (,@ ) J, + P2

i k=1

i,j.k=1
n obtain

s

1,5,k=1

analysis implies

- (1)1
ZZ: Bi @]lbk'_

i,5,k=1

(2) (1)
Zﬁl lJka+

ij k=1

~ 12,2
Z Bz 1] b]k‘ +

1,5,k=1

> <6(1 Ji+ B 10) b1+ b 1°> (Bﬁj)Jl + b

<
) (it
¢

k
> J 9 J - -
> <ﬁ§”J1+6 2) 10) G0+ 0 1°> <b§j’J1+b§f.)

1 2)71(2)1(2
boX A -

S A0 (20 + 002) o

z]k 1

2) (1,2 (1) (1)
Z B <bw bjk’ U bjk)

i,j,k=1

0

(Conditions A15.-A18. in Theorem 5.4).

Similarly, we obtain 12 further conditions:

s16. > AV~ |
z]kl

S S
'ijl

=

0, =

INRRR

ijk—1

Zﬁ 20 =0

i,7,k=1

B18. Z SIS + Z B (U i §j>b§k>>fo

i,5,k=1

I

1,5,k=1

i,5,k=1

+ 808P £
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B19. > AUBIb + 8B + BPEPb = 0

ij,k=1
N Z ﬁfl)ﬂj@)fibﬁ) +ﬁf2)5§2)fib§-? +5§2)5§1)fibﬁ) =0,
i,5,k=1
~ L, mr) _ 1 1
B20. l];:lﬂl b,Lj bjk —6 = Z‘glﬁ i Bk .7_6’

B2L Y AP =0 = Z BB f =0,

1,5,k=1 i,j,k=1

822 37 AU + AN + pYE = 0

i,j,k’:l

= > BB £+ 8 B f + 86 87 f =0,

1,5,k=1

~ 0, 07@) |, 22;@70) L 4@ _
B23 > B by + 8700 + 870 =0

ijik=1
= > BB £+ B BV f 4+ BB B f =0
ig k=1
. 17 (1)75(1 1 > 1 (1 1 1
B24. Z Bi( )bz(-j)bﬁk) =5 = Z 51‘( )BJ(- )fzﬂ;i )fj =5
1,5, k=1 ijk—l

B25. Y sUEY -0 = Z 8282 £8P f =0,

1,5,k=1 i,7,k=1
6 > APID + AV + AV o

1,5,k=1

= > BB 1A 1+ BV 160 1+ 508V 167 £ =0,

1,5,k=1

B27. 3" AVRDU + BPRIEY + APUEY =0

i,5,k=1
= Y BB LBY i+ 8787 8 i+ BPBY 8D f; = 0.
i,j,k=1

[

In the previous section, we showed that it is possible to firfigérént schemes for
our Runge-Kutta method on the regarded stochastic optinrdatalgproblem, which
converges to strong order-1. For strong order-1.5 we rethatkve have 18 conditions
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which come from Runge-Kutta methods for SDEs, and 27 furtbeditions due to our
stochastic optimal control problem that result in 45 candg. Although the number

of conditions does not depend on the number of stages,the method, the number
of variables is controlled by. Moreover, these equations are nonlinear. So, even
in the Runge-Kutta methods for SDEs case, it is not easy tedblese equations.
Therefore, mostly, explicit schemes become our method$oice with the aim of
simplifying these equations to be solved. For instance, &&18] considered an
explicit scheme for these 18 conditions, but had to incrédasewumber of stage. For

s = 4, Burrage solved these conditions and obtained 4-stagecégitheme in terms

of free parameters.

In our Runge-Kutta method for stochastic optimal controbpamns, we have 45 condi-
tions. Because of additional more complicated 27 condifivmseven harder to solve
them. Herewith, MAPLE is a good choice to deal with these damts. By letting

s > 4, these conditions may be solved in terms of the free paramede, by imposing
conditions such as an explicit method on the state equatidraa implicit method on
the adjoint equation, it may be easier to find a solution. H@mein this study our
aim is to derive a Runge-Kutta method for stochastic optiroatol| problems and to
investigate the convergence of the solution, i.e., to show such conditions can be
obtained.

5.5 Numerical Application

In this section, we choose two numerical examples whoset exduations we know.
Herewith, we can compute the convergence rates expliditysolve the optimization
problem, we employ a gradient-descent method with a stgpgiiterion by the error
margin ofle — 8. We also use 1000 paths of Monte-Carlo simulation in each pl&am

Example 5.1. As a first numerical example, we consider the following opticontrol
problem [16]:

e . 1 T * 2 4 *\ 2
minimize §IE (" —y)dt+ [ (u—u")dt
0 0

u€L?(0,T)

) 1
subjectto dy = Su(u — u*)ydt + oydiV, y(0) = y’,

whereo is merely a positive scalar, often called as volatility. Visethat this example
is from the financial sector and that it can be regarded as tincous modeling task
under so-called regularization. We have the following sardus optimality system:

1
dy = §U(u —u")ydt + oydW, y(0) = yo,
dp = (y* — y + o®p)dt + oyqdW, p(T) =0,

-
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The exact solutiofty, ) is of the form:
y(t) =y (t) =y e T WO y(t) = ur(t) = 6sin(rt).

We employ the following Runge-Kutta scheme which satisfiesctinditions in Theo-
rem[5.5, strong order-1 conditions.

1/2 | 1/4 1/4 1/2 | 1/4 1/4
1/2 | 1/4 1/4 1/2| 1/4 1/4
|12 172 |12 172

We choosel’ = 1, yo = 1 ando = 0.1 for our numerical computation. In Figure
5.1, we compare the exact solution of the optimal controhwhie numerical optimal
control obtained from our Runge-Kutta scheme.

Optimal Control

0 01 02 03 04 05 06 07 08 09 1
Time

Figure 5.1: Optimal control witlr = 0.1 in Example 5.1L.

If the absolute error is given b¥; = |u(t;) — u(t;)|, whereu(t;) is the exact value of
w andu(t;) denotes the the approximate valueuddtt;, then the order of convergence
rate is computed by the following formula:

_ log(Ei/Eiy1)
Rate= IOg(Atz/AtH_l) ’

In Table[5.1, we choosét; = 1/2°. We see that the absolute erBy, , is the half
of £;, andAt;/At;,; = 2. Thus, the calculated order of convergence is 1, as we

expected.
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Table 5.1: Convergence Rate of our Runge-Kutta method avith 0.1 in Example
b, 1.

1 | At; | F; (Absolute Error)| Order
6 | 27F 0.2944 1
7277 0.1472 1

8 | 278 0.0736 1

9| 27 0.0368 1
10| 2710 0.0184 1

Example 5.2. In this example, we investigate the subsequent Black-Sshygfee of
optimal control problen[16]:

1 T T
minimize -E {/ (y* —y)*dt +/ u%lt}
wel2(0,7) 2 0 0
subjectto dy = uydt + oydW, y(0) =1°,
wheres > 0 is a constant ang*(¢) is given. Again, this example can be interpreted in

terms of financial modeling under regularization. We canstmict an exact solution
of the form:

t 0'2 T_t
1) = u(0 efo u(S)d877t+0'W(t)7 u(t) = 7
(1) = 3(0) 0=
Yo
where
ot T_tQ
v = T
S0 4+ 5

Table 5.2: Convergence Rate of our Runge-Kutta method avith 0.1 in Example
0.4.

1 At; E; (Absolute Error)| Order
6| 1/27F 0.0312 1
7 1/277 0.0156 1
8 | 1/278 0.0078 1
9 | 1/279 0.0039 1
10| 1/2710 0.0019 1

We apply the same 2-stage of stochastic Runge-Kutta schemeeaamplé 5.1L. Let
y*(t) = y(t). We also choos& = 1, yy = 1 ando = 0.1 in the numerical compu-
tation. In Figurd 5.2, a comparison between the exact swiuif the control and the
numerical control obtained from our Runge-Kutta schemeuvsrgi

In Table[5.2, we choosat; = 1/2¢. We asses the ratio b,/ E;, 1 = At /Aty = 2,
so that the computed order of convergence is 1.
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1.2 T T T T T T T T T

e Exact

Optimal Control

_02 1 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1

Time

Figure 5.2: Optimal control witlr = 0.1 in Exampld 5.P.
5.6 Summary

In this chapter, firstly, we provided strong order-1 comuhis of our Runge-Kutta
scheme for the optimal control problems of SDEs for any nunafes-stages. We
showed that strong order-1.5 can not be obtained for angstad/loreover, minimal
local truncation-error constants for strong order-1 wdraimed fors = 2. To do this,
we compared the Stratonovich-Taylor expansions of thetesadigtion and our Runge-
Kutta scheme. By considering a general Runge-Kutta schemeyere able to get
strong order-1.5 conditions of our Runge-Kutta scheme feragstimal control prob-
lems of SDEs. We obtained additional order conditions orctassical Runge-Kutta
schemes to SDEs for both order-1 and order-1.5. Finallyhopsing the step-siz&
small enough, the accuracy of the scheme was received. Wiented our results in
two numerical applications.
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CHAPTER 6

WEAK-ORDER CONDITIONS OF THE RUNGE-KUTTA
SCHEME FOR STOCHASTIC OPTIMAL CONTROL
PROBLEMS

6.1 Introduction

In some cases, it is hecessary to approximate certain msneérsplutionX, e.g.,
E[X], E[X?] or, more generallyE[®(X)] for some vector-valued of 2 variables func-
tion ®, instead of simulating the sample paths which are closegtsdtutionX. Sim-
ulating of such moments gives information about the prdigkdistribution of the
solutionX rather than a good approximation of sample paths. Thistesua much
weaker criteria, in so-calledleak convergenceActually, weak convergence criteria
of Runge-Kutta scheme for SDEs is investigated by Mackesif8i] and weak-order
conditions are derived. In this chapter, our aim is to seekkag@der conditions of our
Runge-Kutta scheme for stochastic optimal control problemthe addressed class of
SDEs.

We let{(7T") be a numerical approximation &(¢y) after N steps with constant step
sizeA = (ty —to)/N. Then{(T) is said to converge weakly &8 with orderr > 0, if
for each function® which is2(r + 1)-times continuously differentiable vector-valued
of 2 variables, there exists a const&nt> 0 which does not depend aof\, and a
Ay > 0 such that

IE[@(C(T))] — E[@(X(tn))]ll, < CA™, A (0,A),

whereX = (y,p)” and¢ = (g, p)” are the solutions of continuoW&C..) and discrete
optimality systemgOC,) in Chaptei B, respectively. We notice that these optimality
systems are stated irdlforms. In this chapter, we address these optimality systam
related Stratonovich forms.

Mackevicius[[37] 3B] showed that there is no second-ordekvRunge-Kutta approxi-
mations for 16 SDEs. If one wants to achieve weak-order Runge-Kutta ajprpations
for some 16 SDE, it could firstly be rewritten in Stratonovich SDEs formthis chap-
ter, we follow the idea of Mackevicius [37] andRler [14/52] to derive weak-order
conditions of our Runge-Kutta scheme of the Stratonovicmfof the stochastic op-
timal control problem. As done in the previous chapter, wethe Stratonovich form
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of both continuous and discrete optimality systems. Thenmake use of thedtFor-
mula to expand stochastic Taylor-series on the exact soland the solution of our
Runge-Kutta scheme to find the order of accuracy.

6.2 Problem Formulation

We use the same problem formulation given in Chdgter 5. LetstsréicallX, F and
H denoting the following pairs:

(1), v (4) n(4)

With this notation, we can write proble(f,) in the form
dX = F(y,u, p,q)dt + H(y, ¢)dW

as an 16 SDE, or
dX = F(y,u,p,q)dt + H(y, q) o dW (6.1)

as its related Stratonovich SDE with a modified drift coediintiwhich is defined by
[28] .
F=F- EH’H.
For simplicity, we restate Eqrl._(6.1) as
dX = F(X)dt + H(X) o dW. (6.2)
We recall the discrete optimality conditions of probléR),) posed in Theorem 5.2:

;

Yre1 = Y + Jo Z i [ (Yni, uri) + J1 Z Bih(yri),

i=1 i=1
s

Yki = Yk —+ JO Z aiji(ykj, Uk;j) + Jl Z bz]h(yk])7

j=1 j=1

Pe+1 =Dk — Jo Z M, (Yriy Uris Priy Qi) + 1 Z Bih (Y ) G
1=1 =1

(0Cy) Pri =Pk — Jo Y iy (Yaj kg Prjs Qi) + 1Y bish (Ui Qi

j=1 7=1

Gritni = Dk — Jo Y My (Ykg, gy Prg Qi) + 1 bish(yeg)aw;,
=1 j=1
pn = &' (yn),
Yo = y07

0=A Z aiﬂu(yk:ia Ukiy Pkis ka‘)a
=1
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fork=0,1,..., N — 1, where the coefficients satisfy the subsequent relations:

Q; 1= o, Bi = B,

. o B;

Q5 1= O — _]'a'jiv ﬁ] a]’b)
i

. @ 5

Q5 = QO — BJ bﬂ, bz’j = Bj Bj bﬂ,
i i

with
~ Jotaih(yk)  h(yki)

Ve = J15; h,(yki) .

6.3 Weak-Order Conditions of Runge-Kutta Method for Stochasic Optimal Con-
trol Problems

To obtain weak-order conditions of our Runge-Kutta method, veed to expand
E[®(X(ty + A))] andE[®({(to + A))] using the &6 Formula for some sufficiently
smooth vector-valued of 2 variables functin So, we first consider the vector-valued
diffusion operator of 2 variable£ [28] for the solutionX of the Stratonovich SDE

from Eqgn. [G.2):

0 1,
Lo = oo <F+—HH) + -2 _HH

Then, the & Formula yields

B[@(X(s + A)] = @(X(w) + [ BILR(X(s))ds

to

= ®(X(ty)) + /to+A (E(I)(X(tg)) + /SE [L£°®(X (u)] du) ds

to to
to+A

:@(X(to))Jr/ L®(X(ty)) ds+/t0+A/ L2®(X(to))duds

/ " / / E [£°®(X(v))] dvduds

— B(X(tg)) + LB(X(to)A + L2B(X (¢ ))%AQ

to+A
/ // E [£°®(X,)] dvduds,
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and

0P 1 1 1 1
= (FFF+ -HHF + -H'FH + -HFH + -HHHH
£ 0X i 2 £ 2 - i 2 * 4

4 2
2

1 1 3 1
+ -H'HH'H + —~F"HH + ZH”H’HH + ZH/NHHH)

+

P 3
X2 (E +HH'F + FHH' + ZHH’HH’ +HHH'H' + H'HHH

+HHE') + e FHH + HHHH + 1H’HHH + oo 1HHHH

T OX T 2 X1 \ 4 '
We point out that the expectation of multiplé® lintegral including at least one inte-
gration with respect to Brownian motion is zero[28] 53]. Mwrer, we note that the
derivatives should be viewed in an operator context. Fomgie, the first derivative
of a vector-valued functioir is a Jacobian matrix, so th&{F corresponds to multi-
plying the Jacobian matrix by the vectBrto give a vector. The second derivatiFé
operates on a pair of the vectdd, H) in order to give a vectoF"HH.

As in Sectiori 5.8, in order to study order conditions of diseroptimality conditions
(0C), the (OC.)) will be written as a function of. By using Butcher approach, we
write ¢,, = to, and for a givent = ¢, + A. Let us recall the notations Sectibn]5.3 so
that let{(t) = (y(t), p(t))T be the vector of lengtAN (s + 1) and let¢y;(t), si1(t),
F(¢(t)) andH(¢(t)) denote the following pairs:

cki@):(y’“(”) (1<i<s), cs+l<t>=<y’““(”> (i=s+1),

Pri(t) Prra(t)

F F i1 @ij f (G (t
F(C(1) = E(C(1) = ( 35 f (G (1)

Zj:l aij M, (Crj(t)) ) (1<i<s+1),

and
. > 51 bijh(Cry (1))

Hle) = Hleln) = ( S Buh(Cy (6)a(Cos (1) ) (I<i<s+l)

wherek = 0,1,..., N — 1, is the index of the Runge-Kutta scheme in the discrete
optimality conditiongOC,), with

)
)

Ast1j = Gsy1j =

1 s),
bs-&-Lj = Es+1,j = ﬁj (1 S).

J
J

IA A
IA A

By using the above notation, we can state the discrete optyneainditions(OC/,) in
the form

C(t) =C(to) + (t — to)E(C(t)) + AWH(C(t)) (1<i<s+1), (6.3)
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which is Eqn. [(5.B), wher& = ¢ — ¢, andAW = W (t) — W (to).

Then, one-step Runge-Kutta approximation in EGn.] (6.3) eastéted as

{ C(to) =X(to),

C(t) =AL(t), A, AW). (6.4)

It is clear thatA ({ (o), 0,0) = {(to), but in the following expansion, we briefly write
A(X(t9),0,0) := A(X(tp))-
The corresponding vector-valued diffusion operator of 2aldes,L A, for expansion
of E[®(((ty + A))] is given by
o 10°®
La® =G oo
whereu = A andTW (u) = AW. For simplicity, we writelV" := W (u).

Then, the 1d Formula gives

to+A )
E[B(C(to + A)) ] = B(X(to)) +/t E [£a®(A(C(s). 5. W(s)))ds]

:<1>(X(1t0))+/t0+A (ENI)(A(X( )))+/SE [£2A<I>(A((;( ) W ()] du) ds

to

:q>(X(1t0))+/tO+A LAP(A(X(t9)) ds+/to+A/ LAP(A(X(ty)))duds

/tO+A/ / EBA(I) UvW(U))))] dvduds

= B(X(1)) + LB(A(X(10))A + LAB(A(X(10))) A7

/ e / / (L3 (X(v))] dvduds,

0% (0A 10PAY\  0°®1(0AY’
OX \ Ou 292 oX22 \ ow

with

LAB(A) =

and
0P [2A  PBA 1 0%A 0%°® [ [OA\?
2 _ = - _
£r2(A) =5% ( 052 oWzou T 43W4) T oxe <( au>
OA O?A OA O’°A  OA BPA 3 (32A )>
4+ ——— 1+ 2— — + — — + - | —
OA W2~ oW auaw oW ows3 4 \ g2

+83_<I> oA [ OA +§ OA\? 92A +a4q> 1 a_A4
ox3 \ au \ o 4\oW ) ow2 oX4 \ 4 \ ow '
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Now, we reach the intended weak order-1 and order-2 conditidd our Runge-Kutta
scheme by solving the conditions:

LB(X(t)) = LaB(A(X(t0)))
and

L2®(X(ty)) = LAP(A(X(t))),
respectively.

Theorem 6.1.Letay, B, aij, @i, bi; by, be the Runge-Kutta coefficients fioj =
1,2,...,s. If the coefficients of the Runge-Kutta method for the ststahaptimal
control problems fulfill the following conditions:

S S S S

1. Z%’Zl, 2. Zﬁizl, 3. Zﬁibi:Z@Ei:%,

i=1 i=1 i=1 =1

then our Runge-Kutta method for the stochastic optimalrobptoblems converges to
order-1 in the weak sense. In addition, if the following coiodis are also satisfied:

5. Zale Zazlf iaibiéi =3,
6. Zalzb”b - Zazz% Z%wab ~ Zazzbz;
7. izﬁizaijbj - Z@-Zaij@ = Z@jz%b = Z@Zaw i
8. ZaZwab +Z@Z%
9. Z Bia;b; = Z Bia;b; = Z Bidib; = Z Bidib; = i,
i1 i1 i1 i1
10. Z Biajby; = Z Biajby; = Z Biajbi; = Z Bidjby; = i

ij=1 ij=1 i,j=1 i,5=1
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11 i@bf’ = iﬁzb%z = iﬂzbzgf = iﬁzg? =7
12 Z Bibijbib; = Z Bibi;bib; = Z Bibijbib;

7,7=1 2,j=1 i,7=1

_Zﬁlbmbb _Zﬁl zgi)g =

i,7=1 i,7=1 2,7=1

13 Z szng? Z Blbljg_]bj = Z 516236317] - Z szz]bi Z szz]bi

i,j=1 i,5=1 1,j=1 i,5=1 1,j=1

1,7,k=1 1,5,k=1 1,5,k=1

S 1
bisbiby = .
ﬁ J J 8

s

= Z ﬂibijbjkl;k = Z ﬂibiji)jkl;k = Z 526136]k5k - QL

1,7,k=1 1,7,k=1 1,7,k=1

15 iaibi = iaiéi = %
=1 =1
16. i@ai = iﬁiéi = %7
i=1 =1
17. Z Bib? = Z Bibib; = Z Bib? = =
i=1 i=1 1=
18. zj;ﬁibijbj = Zj;ﬁigijbj = Z/@zb b; = i;ﬁibijgj = év

then our Runge-Kutta method for the stochastic optimalrobptroblems converges
to order-2 in the weak sense, whete:= ", aj, G; :== Y 5_ @y, b == >, b

~ ‘7:1
b; —Zj 1 bij.

gy
Proof. For simplicity,

- Qi 2 :
P = ( Z] 1 ~Jf ) —Zaijf0+zaij(_ﬂ2) (1<i<s+1),
— Y0 agH, A —

where

and



with
w- (" ha) =

(F); = ai(£°) + g (H,)°)

and

First, let us equate the following equations in order towaetine proposed weak order-1
conditions of our Runge-Kutta scheme for stochastic optcoatrol problems:

aq)(aA 182A> 82<I>1(8A>2

Lo =% \ou T aame) Toxes \aw
and
0P 10°®
LD = X <F+ HH) +§@HH
i) We have
O0A ~ ~ ~/ 0 -~ 0
A (et W) = B0 + B () 2 4 (e 2,
0A :
% (X(t())? 07 0) = ; azF(X(tO))
Therefore,
Z . F =F(X(ty)) = iai =1 (Condition 1. in Theorerm 6))1
i=1
i) The partial derivative ofA with respect td¥’ is found to be:
0A - 0 0
2 (et W) = ' (€002 4 Fi((0) + WH((1) S
0A >
oy X)) = 2 SiH(X(to))
Herewith

(Condition 2. in Theorern 6)1
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iii) The second-order partial derivative Afwith respect tdV’ is:

OA (ctu V) =u (E”(C(t)) (X0 kg 290 >>

ow? ow ow?
O (I 65
i (ﬁ%ce)) (X0 ﬁ’(dt))a(;é/(?) |
Since
O )]
we have
IR (i -2”21@H' (X))
= 2i BH (X Z <bwh +by;(hq) ) (X(t0))
If
Zlm i = Zﬁb
then |
QZ@b (X (1) H(X (1)) = H(X () H(X 1)

~ 1 . .
= Z Bibi; = Z Bibi; = 3 (Condition 3. in Theorem B)1

1,7=1 7,j=1

Now, by comparing the following equations, we can reach tlopgsed weak order-2
conditions of our Runge-Kutta scheme for stochastic optooatrol problems:

L2®(X (1) = LAB(A(X(t0))).

i) Let us consider the terms includingp /0X.
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The first term is:

T (e, ) =P %Y w0 B0
+u<£”(€(t)) (%) s pican %L )
20 30

+W<ﬂ”<c<t>>( SOV s e %S, )

Since
oC(te) =
=F
we have
82A | .
o (X(to) _QZ%F o))E(X(t0))
i,7=1
=2 o F'(X(t) Y (ayf® + aiHy) X(to).
=1 =
I
Z QA5 = Z Oéiaij,
ij=1 ij=1
then

2 Z aiaiF (X (o)) E(X(tg)) = E'(X(to))F(X(t0))

= E Q5 = E ;05 =

i,7=1 i,7=1

(Condition 4. in Theorern 6)1

[\.')Ib—

The second term can be obtained by taking the partial dergvat Eqn. [6.5) with
respect tau:

9 ) - (e (22)
e (C(t),u,W) = (E (€() ( 8W aW2 )
+u (E/"(C(t))ags) <%C—V(~Vt)> +2E () T oW E)W8U>
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058 100 250
9¢(t) (1) | vy 1 9%C(1)
oW Ou +H(C’“")3Wa)

a¢(t) (9¢(t)\* 9¢(t) 9°¢(1)
ou < oW ) ) S oW 8u8W>
*¢(t)

)7 —
O ey 20 ) |

=

(e(en 2t
(2l

v
o

)

o
+W( (e (t)
n Vv( ()

o2 OW20u
Since
9*C(to) = I (to) =, ¢ (ty)
ot = E(C(t) =2 + (o) =5 %
and
82C(t0> Y aC(tO) Y/ aC(tO)
i = WG =2 + H (¢ () 22
we have
aBA : INTTL] 11T/ 1
S (Xto) = S (E HH+2£HH>

ijl=1

+2) 5 (WHE + FHH + HE'E) ) (X(t))
i=1

2= 2
So that, Conditions 5. and 10. in Theorem| 6.1 can be easilyo#gedinom the afore-
mentioned equation.

1 1 1 1
- (§E’HH + -F'H'H+ -HFH" + EH’H’E> (X(t0))-

Now, consider the third termi* A /OW*:

24 () = (e (K0 s apricn KO 2E)

(H"( ) (ﬂ) HIC(0) aWQ)

+W<H“’<c< D (%2 ey S0 C“)

ow  ow?
~ T gy @S0
w17 (e S0 6D s wem) ZHY ).
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which implies

A
o4

(X(to))

= 3" 5 (AAAA" + 6A"HA'H + 3A'A'HA + 6HA'HH) (X (1)
ij,l=1
1

= | (HHHH" + H'HH'H + 3H"H'HH + HH'H'H) (X(t0).  (6.6)

Hence, Conditions 11. and 14. in Theorem 6.1 can be obtainedfgn. [6.6).

i) Let us consider the terms includidg® /0X2.

The partial derivative,

OA A
OW Oudw

(X(t0)) =2 3" A(HEH + HE'E)(X(1)

= (HF'H + HH'F)(X(t0)),
yields Conditions 15. and 16. in Theoréml6.1.

Moreover, from the following equation

OA O2A g T T
o v (X(t)) =3 > Bi(HH'HH + HH'H'H)(X (t))

ij=1

— (HH"HH + HH'H'H)(X (t,)),
we obtain Conditions 17. and 18. in Theorem 6.1.

By performing a similar procedures for the other terms, orne aatain weak-order
conditions, which are the same conditions that we have@rebtained for our Runge-
Kutta scheme for stochastic optimal control problems.

O

We note that the first equations in Theorem| 6.1, which do ndude Runge-Kutta
coefficients ofa;; anda,;, constitute the weak order-1 and weak order-2 conditions of
Runge-Kutta method for SDEs. These conditions are derivd8hy52] for different
Runge-Kutta scheme for Stratonovich SDEs. The out of firstahiditions, which we
find in Theoren{ 6]1 are the additional conditions becausé®fstochastic optimal
control problem.

At this point, the fundamental issue is to construct a familgnethods satisfying weak
order-1 and order-2 conditions, respectively. It is nopsising that weak order-1 con-
ditions and strong order-1 conditions are the same, simoagtonvergence implies
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weak convergence. In the casesof 2 with an explicit scheme for the state equation
and a related implicit scheme for the adjoint equation, wesRaconditions for weak
order-1, and there are 6 unknowns. Thus, free parameterargaa the existence of a
solution. Therefore, one can find different methods (i.artipular coefficients) which
satisfy weak order-1 conditions fer> 2. For example, the following tableaus fulfill
weak order-1 conditions:

0O O 0O O
1 0 1 0 (for the state equation),
05 05 05 05

05 -05 05 -05
05 05 05 05 (for the adjoint equation)
05 05 05 05
and
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4  (for the state equation),
172 1/2 1/2 1/2
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4  (for the adjoint equation).
1/2 172 1/2 172

As for the weak order-2, in [14, 37] it is shown that the claasRunge-Kutta method

requiress > 4 in the explicit case. In our Runge-Kutta method, we have moae t

50 equations which need to be fulfilled, such that 5 is needed. One can make
use of MAPLE to solve these equations. However, we mainlydoan the deriava-

tion of Runge-Kutta method for stochastic optimal contralpems and investigating

the convergence of the solution, herewith showing a way hai €onditions can be

achieved.

6.4 Summary

In this chapter, we again used the Stratonovich form of botitinuous and discrete
optimality systems. However, to obtain weak-order condgi of our Runge-Kutta
scheme for stochastic optimal control problems, this twwemade use of thedtFor-
mula to expand stochastic Taylor-series for the exactisolaf continuous optimality
system and the approximate solution of our discrete optiynsystem. After taking
the expectation of stochastic Taylor series, we comparesetiexpansions. Hence,
we succeeded to get weak order-1 and weak order-2 condiiibosr Runge-Kutta
scheme for stochastic optimal control problems.
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CHAPTER 7

CONCLUSION AND OUTLOOK

In this thesis, we proposed a Runge-Kutta method for numesatation of stochastic
optimal control problems based on Pontryagin’s Maximum@éiple. In Chapter]3, we
derived such a method for stochastic optimal control prokslef SDEs. We followed
discretize-then-optimizapproach. After we presented a Runge-Kutta discretization
for both cost functional and state equation, we introdudsdrdte Lagrangian for our
discrete optimal control problem. By taking the partial datives of the discrete La-
grangian with respect to its variables, we achieved therelisoptimality system of
our stochastic optimal control problem. The main advantsigeur method is that a
Runge-Kutta discretization of adjoint pair is derived and gexutta coefficients of
adjoint pair are obtained in terms of Runge-Kutta coeffidaitthe state equation. In
order to test our Runge-Kutta scheme, some examples wentesefeom the financial
sector and a comparison with simulation made for the exdatisn was illustrated.
Numerical results also revealed that our Runge-Kutta scliemere efficient in terms
of time consumption when compared to Euler scheme.

We also derived a Runge-Kutta method for the numerical soiudf stochastic control
problems of some SPDEs in Chapiér 4. We chose a special, emgegngiblem, that
is anoptimal harvestingoroblem. This is an important problem in ensuring food and
other organic material for the people of the world, whileimgrfor humankind in a
sustainable manner. Such problems exist in agricultuteerfiss, forestry, gardening,
tourism, city planing and water management, which are tlosgsociated areas of
daily life, modern industries and scientific research. Byngdhe finite difference
scheme, we discretized the problem with respect to the sf@aiadle and converted the
given problem to an optimal control problem of system of SDHsen, by following
the same methodology as in the SDE case, we were able to geRunge-Kutta
method on the numerical solution of stochastic control [@ois subject to system of
SDEs.

When dealing with a numerical scheme, the issue of conveeggsnienportant in or-
der to judge the quality of the scheme. In stochastic cas;uhe desired task can be
achieved in two different ways. If sample paths of the solutare subject of interest,
strong convergenceriteria are used. Since it requires the sample paths todse dhe
same Brownian motion is used in the simulation. For this neaae first focused on
strong convergence properties of our Runge-Kutta schenmsdohastic optimal con-
trol problems in Chaptér 5. Because of the simplified naturei@t@ovich calculus,

81



we preferred to use the related Stratonovich form for ouchsstic optimal control
problem to examine strong convergence properties of our &Hugta method. By
following the same methodology as iIEDE case, we obtained the discrete opti-
mality system of our problem in the related StratonovicimforThen, we expanded
the exact solution from the continuous optimality systemh @@ approximate solution
from our discrete optimality system in Stratonovich-Tayderies. In order to find the
strong-order of accuracy, we matched these two Stratoholaglor series expansions
by assuming exact initial values. We employed the meanrsqe@nvergence since
mean-square convergence implies the strong convergenegeslt of Jensen’s in-
equality. We were able to obtain strong order-1 conditidrsun Runge-Kutta scheme
for stochastic optimal control problems. We also illustthtvhy we can not exceed
strong order-1. Since it is not possible to get a 0 error fra@fficients of order-1.5
terms, which constitute the principal truncation errorstants, we minimized the er-
ror constants to obtain a good method which converges dirémgrder-1. Thereafter,
by using the idea that each random variable can be writterlingea combination of
2 or more random variables that have the same order with oredtirandom variable
and can be stated as in terms of multiple Stratonovich iategwe reformulated our
problem and we achieved strong order-1.5 conditions of ounrgBtKutta scheme for
stochastic optimal control programs. In our Runge-Kutteesud for stochastic opti-
mal control problems, Runge-Kutta coefficients of the adjpitocess were obtained
in terms of the Runge-Kutta coefficients of the state proc&bss caused additional
order conditions to the classical Runge-Kutta method of SIoEthe strong-order of
accuracy. We derived such order conditions explicitly. riually, we verified our
results in numerical examples.

If one deals with only the probabilistic aspects of the solubr some moments, it
is more appropriate to employ a much weaker conditeak convergenceriteria.
In this case, different Brownian motions or even random mses which have sim-
ilar moment properties with Brownian motions can be used sheamerical solu-
tion. In Chaptef16, we paid attention to weak convergenceestigs of our Runge-
Kutta scheme for stochastic optimal control problems. A€laptefb, we used the
Stratonovich form of both continuous and discrete optityaystems. However, we
made use of the &t Formula to expand the expectation of stochastic Tayloesdor
the exact solution of a continuous optimality system andajhygroximate solution of
our discrete optimality system to find weak-order accurdayChaptef B, with our
Runge-Kutta scheme for stochastic optimal control probjene show that Runge-
Kutta discretization of the adjoint process is often defarfrom the Runge-Kutta dis-
cretization of the state process. Herewith, there occutiaddl weak-order conditions
to classical Runge-Kutta conditions of SDEs for the wealeoad accuracy.

As a further study, in the formulation of stochastic optirnahtrol problem, we can
consider control processes in diffusion process. More@vstochastic optimal control
problem of a coupled state equation can be investigated Smze we use Pontraya-
gin’s Maximum Principle, we can also allow the existence elagls in the stochastic
optimal control problem, to find excellent theoretical désin such a wider framework
with delay and to use them for numerical solution procedutdsrewith, a Runge-
Kutta method for stochastic optimal control with delay candnother research di-
rection. Furthermore, jJumps and regime switching dynammeg be introduced into
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stochastic optimal control of SDESs in order to propose a Rigiga scheme. We can
permit the existence of control processes in the jump tevo,then we may speak of
a Runge-Kutta scheme of impulse control. Finally, strongwaedk convergence of
the proposed future research and application can be igatsdt.

83



84



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

REFERENCES

L. H.R. Alvarez and L. A. Sheep, Optimal harvesting of $tastically fluctuating
populations, Journal of Mathematical Biology, 37, pp. 155~11998.

I. Arnarson and P. Jensson, Impact of the cost of the teseurrce on efficiency of
economic processes, European Journal of Operational Resé#P, p. 616—630,
2006.

J.-M. Bismut, Conjugate convex functions in optimal stastic control, Journal
of Mathematical Analysis and Applications, 44(2), pp. 3834, 1973.

J.-M. Bismut, An introductory approach to duality in ap&l stochastic control,
SIAM Review, 20(1), pp. 62-78, 1978.

J. F. Bonnans and J. Laurent-Varin, Computation of ordedddmns for sym-
plectic partitioned Runge-Kutta schemes with applicatmaytimal control, Nu-
merische Mathematik, 103(1), pp. 1-10, 2006.

K. Burrage and P. M. Burrage, High strong order explicit Rextutta methods
for stochastic ordinary differential equations, Appliedriyerical Mathematics,
20, pp. 1-21, 1996.

K. Burrage and P. M. Burrage, Order conditions of stocleeRtinge—Kutta meth-
ods by B-series, SIAM Journal on Numerical Analysis, 38(%), 1626—1646,
2000.

P. Burrage,Runge-Kutta Methods for Stochastic Differential Equagjoh.D.
thesis, Department of Mathematics, University of Queartsldustralia, 1999.

[9] J. ButcherNumerical Methods for Ordinary Differential Equatign&/iley, Eng-

[10]

[11]

[12]

[13]

land, 2016.

C. C. Chang, Numerical solution of stochastic differdreguations with constant
diffusion coefficients, Mathematics of Computation, 49(18@. 523-542, 1987.

G. C. Chow, Optimal control without solving the Bellman atjon, Journal of
Economic Dynamics and Control, 17(4), pp. 621-630, 1993.

C. Clark,Mathematical Bioeconomics: The Optimal Management of Rahke
ResourcesPure and Applied Mathematics: A Wiley Series of Texts, Mgnaphs
and Tracts, Wiley, 1990.

K. Debrabant and A. Kveerng, B—series analysis of stochBsinge—Kutta meth-
ods that use an iterative scheme to compute their interagestalues, SIAM
Journal on Numerical Analysis, 47(1), pp. 181-203, 2009.

85



[14] K. Debrabant and A. 3ler, Classification of stochastic Runge—Kutta methods
for the weak approximation of stochastic differential egpres, Mathematics and
Computers in Simulation, 77(4), pp. 408-420, 2008.

[15] A. L. Dontchev, W. W. Hager, and V. M. Veliov, Second-erdRunge—Kutta ap-
proximations in control constrained optimal control, SIAurnal on Numerical
Analysis, 38(1), pp. 202-226, 2000.

[16] N. Du, J. Shi, and W. Liu, An effective gradient projectimethod for stochastic
optimal control, International Journal of Numerical Ansily& Modeling, 10(4),
pp. 757-774, 2013.

[17] S.Fadheland A. Abdulamear, Explicit Runge-Kutta methfmr solving stochas-
tic differential equations, Journal of Basrah Researcheg1iBes), 37(4C), pp.
300-313, 2011.

[18] P. A. Filipe, C. A. Braumann, and C. Carlos, Profit optimiaatfor cattle grow-
ing in a randomly fluctuating environment, Optimization(®4 pp. 1393-1407,
2015.

[19] M. B. Giles, Multi-level Monte Carlo path simulation, Opions Research,
56(3), pp. 607-617, 2008.

[20] P. Glassermamvionte Carlo Methods in Financial Engineerin§tochastic Mod-
elling and Applied Probability, Springer New York, 2013.

[21] W. W. Hager, Runge-Kutta methods in optimal control amel transformed ad-
joint system, Numerische Mathematik, 87(2), pp. 247-2802

[22] M. Heinkenschloss, Numerical solution of implicithpmestrained optimization
problems, Technical report, Department of Computationdl Applied Mathe-
matics, Rice University, 2008.

[23] N. Ikeda and S. Watanab8tochastic Differential Equations and Diffusion Pro-
cessesNorth-Holland Mathematical Library, Elsevier Scienc@12.

[24] K. Itd, Stochastic integral, Proceedings of the Imperial Acad@®(8), pp. 519—
524, 1944,

[25] P. Jensson, Daily production planning in fish proceséims, European Journal
of Operational Research, 36(3), pp. 410-415, 1988.

[26] B. Kara®zen and F. Yilmaz, Optimal boundary control of the unsteagigers
equation with simultaneous space-time discretizatiortir@gd Control Applica-
tions and Methods, 35(4), pp. 423-434, 2014.

[27] C.Y. Kaya, Inexact restoration for Runge—Kutta dis@ation of optimal control
problems, SIAM Journal on Numerical Analysis, 48(4), pp9241517, 2010.

[28] P. Kloeden and E. PlatetNumerical Solution of Stochastic Differential Equa-
tions Stochastic Modelling and Applied Probability, SpringeriBeHeidelberg,
2013.

86



[29] Y. Komori, Weak second-order stochastic Runge—Kuttathods for non-
commutative stochastic differential equations, Jourf@amputational and Ap-
plied Mathematics, 206(1), pp. 158-173, 2007.

[30] R. Korn, E. Korn, and G. KroisandiMonte Carlo Methods and Models in Fi-
nance and InsuranceChapman and Hall/CRC Financial Mathematics Series,
CRC Press, 2010.

[31] D. Kroese, T. Taimre, and Z. BoteMandbook of Monte Carlo MethodgViley
Series in Probability and Statistics, John Wiley and Soresy Nork, 2013.

[32] H. Kushner and P. Dupui®yumerical Methods for Stochastic Control Problems
in Continuous TimgStochastic Modelling and Applied Probability, SpringeaviN
York, 2013.

[33] W. Li and M. Xing, Weak convergence for approximationArherican option
prices, Communications on Stochastic Analysis, 5(3), pp-—5@5, 2011.

[34] E. Lungu and B. @ksendal, Optimal harvesting from a papaoih in a stochastic
crowded environment, Mathematical Biosciences, 145(1)4pp75, 1997.

[35] E. Lungu and B. @ksendal, Optimal harvesting from intérey populations in a
stochastic environment, Bernoulli, 7(3), pp. 527-539, 2001

[36] Q. Ma and X. Ding, Stochastic symplectic partitioned BernKutta methods for
stochastic Hamiltonian systems with multiplicative noideplied Mathematics
and Computation, 252, pp. 520-534, 2015.

[37] V. Mackevicius, Second-order weak approximations $tratonovich stochas-
tic differential equations, Lithuanian Mathematical Jmaly 34(2), pp. 183-200,
1994.

[38] V. Mackevicius and J. Navikas, Second order weak Rungétaktype methods
for Itd equations, Mathematics and Computers in Simulation, 5pf.)29-34,
2001.

[39] S. Margeirsson, B. Hrafnkelsson, G. R. Jonsson, P. Janasd S. Arason, De-
cision making in the cod industry based on recording andyarsabf value chain
data, Journal of Food engineering, 99(2), pp. 151-158, 2010

[40] R. C. Merton, Lifetime portfolio selection under uncentg: the continuous-time
case, Rev. Econ. Stat., 51, pp. 247-257, 19609.

[41] R. C. Merton, Optimum consumption and portfolio rules icantinuous-time
model, J. Econ. Theory,, 3, pp. 373-413, 1971.

[42] A. Napoli, On a class of stochastic Runge-Kutta methdwls,Journal of Con-
temp. Math. Sciences, 33-36(7), pp. 1583-1604, 2012.

[43] B. @ksendal, Optimal control of stochastic partial rééntial equations, Stochas-
tic Analysis and Applications, 23(1), pp. 165179, 2005.

87



[44] B. OksendalStochastic Differential Equations: An Introduction with fAiga-
tions, Universitext, Springer Berlin Heidelberg, 2013.

[45] B. @ksendal, G. ¥ge, and H. Z. Zhao, Asymptotic properties of the solutions
to stochastic KPP equations, Proceedings of the Royal SocfeEdinburgh:
Section A Mathematics, 130(6), pp. 1363—-1381, 2000.

[46] B. @ksendal, G. ¥ge, and H. Z. Zhao, Two properties of stochastic KPP equa-
tions: ergodicity and pathwise property, Nonlinearity(34 pp. 639—662, 2001.

[47] A. Olafsson, S. Margeirsson, E. Ingisgeirsson, H. Stéhsson, P. Jensson,
R. Gumundsson, and S. Arason, Quantitative methods foridacssipport in
the Icelandic fishing industry, Natural Resource Modeling(32, pp. 365—-384,
2013.

[48] S. Peng, A general stochastic maximum principle foiropt control problems,
SIAM Journal on Control and Optimization, 28(4), pp. 966—91/200.

[49] S. Pinheiro, On a logistic growth model with predatiorda power-type diffu-
sion coefficient: |. existence of solutions and extinctioitecia, Mathematical
Methods in the Applied Sciences, 38(18), pp. 4912-49305201

[50] S. Pinheiro, Optimal harvesting for a logistic growtlode!l with predation and a
constant elasticity of variance, to appear in Annals of @pens Research, S.I.:
Advances of OR in Commodities and Financial Modelling, 2017.

[51] L. Pontryagin,Mathematical Theory of Optimal Processé&dassics of Soviet
Mathematics, Taylor & Francis, 1987.

[52] A. Roller, Runge—Kutta methods for Stratonovich stochastieréifitial equa-
tion systems with commutative noise, Journal of Computati@nd Applied
Mathematics, 164, pp. 613-627, 2004.

[53] A. RoRler, Stochastic Taylor expansions for the expectatiofun€tionals of
diffusion processes, Stochastic Analysis and Applicati@2(6), pp. 1553—-1576,
2004.

[54] A. RoRler, Rooted tree analysis for order conditions of stoah&ainge-Kutta
methods for the weak approximation of stochastic diffae¢eguations, Stochas-
tic Analysis and Applications, 24(1), pp. 97-134, 2006.

[55] A. Roller, Runge—Kutta methods for the strong approximationobfti®ns of
stochastic differential equations, SIAM Journal on NumariAnalysis, 48(3),
pp. 922-952, 2010.

[56] B. Schulstok,Optimal income by harvesting under uncertainBh.D. thesis,
Cand. Scient. thesis, University of Oslo, 1998.

[57] S. ShreveStochastic Calculus for Finance Il: Continuous-Time Mogd8|sringer
Finance Textbooks, Springer, 2004.

[58] G. Sun, A simple way constructing symplectic Runge-Kuttethods, Journal of
Computational Mathematics, 18(1), pp. 61-68, 2000.

88



[59] T. H. Tian and K. Burrage, Two-stage stochastic Runga&umethods for
stochastic differential equations, BIT Numerical Matheo®gt42(3), pp. 625—
643, 2002.

[60] A. Tocino and R. Ardanuy, Runge—Kutta methods for nunareolution of
stochastic differential equations, Journal of Computatiand Applied Math-
ematics, 138(2), pp. 219-241, 2002.

[61] A. Tocino and J. Vigo-Aguiar, Weak second order comdht for stochastic
Runge—Kutta methods, SIAM Journal on Scientific Computing2R4p. 507—
523, 2002.

[62] F. Troltzsch,Optimal Control of Partial Differential Equations: Theorieth-
ods, and ApplicationsGraduate studies in mathematics, American Mathematical
Society, 2010.

[63] P. Wang, J. Hong, and D. Xu, Construction of symplectic g+Kutta methods
for stochastic Hamiltonian systems, Communications in Cdatmnal Physics,
21(2), p. 237-270, 2017.

[64] S. Wang, L. Wang, and T. Wei, Optimal harvesting for acktstic predator-
prey model with S-type distributed time delays, to appeavigthodology and
Computing in Applied Probability, 2016.

[65] F. Yilmaz and B. Karaien, An all-at-once approach for the optimal control of
the unsteady Burgers equation, Journal of Computational gpied Mathe-
matics, 259, pp. 771-779, 2014.

[66] J. Yong and X. ZhouStochastic Controls: Hamiltonian Systems and HIB Equa-
tions Stochastic Modelling and Applied Probability, SpringesviNYork, 1999.

89



90



CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Oz Bakan, Hacer
Nationality: Turkish

Date and Place of Birth: 09.02.1988, Ceyhan
Marital Status: Married
Phone:+903125868223

Fax: +903125868223

EDUCATION
Degree Institution Year of Graduation
M.S. Middle East Technical University 2013
B.S. Middle East Technical University 2011

High School Osmaniye Anatolian High School 2006

PROFESSIONAL EXPERIENCE

Year Place Enroliment
2015-present  Atim University, Research Assistant

PUBLICATIONS

e F. Yilmaz, H.Oz, and G.-W. Weber, Simulation of Stochastic Optimal Cdntro
Problems with Symplectic Partitioned Runge-Kutta Schenyamgmics of Con-
tinuous, Discrete and Impulsive Systems, Series B: Apptinat Algorithms,
22(6), pp. 425440, 2015.

e H. Oz Bakan, F. Yilmaz, and G.-W. Weber, A discrete optimalitgtegn for an
optimal harvesting problem, to appear in Computational Man@ent Science;
http://link.springer.com/article/10.1007/s10287-31286-5.

e F.Yilmaz, H.Oz Bakan, and G.-W. Weber, Strong-Order Conditions of Runge-
Kutta Method for Stochastic Optimal Control Problems, subedi 2017.

91



e H. Oz Bakan, F. Yilmaz, and G.-W. Weber, Minimal Truncation E@onstants
for Runge-Kutta Method for Stochastic Optimal Control Profde submitted,
2017.

e H. Oz Bakan, F. Yilmaz, and G.-W. Weber, Weak-Order ConditionRuige-
Kutta Method for Stochastic Optimal Control Problems, ingamation.

International Conference Publications
Book Chapters

e F. Yilmaz, H.Oz, and G.-W. Weber, Calculus and “Digitalization” in Financ
Change of Time Method and Stochastic Taylor Expansion with @idgation of
Expectation, Chapter 40 in book Modeling, Optimization, Bymcs and Bioe-
conomy |, Springer Proceedings in Mathematics & Statistictume 73, 2014,
pp. 739-753, D. Zilberman and A. Pinto, eds.

e F. Yilmaz, H.Oz Bakan, and G.-W. WeberpkTaylor Expansions for Systems
of Stochastic Differential Equations with ApplicationsStochastic Partial Dif-
ferential Equations, to appear in 2017 as book chapter im&gr Proceedings
in Mathematics & Statistics (PROMS), Modeling, Dynamicgti@ization and
Bioeconomics Il, A. Pinto and D. Zilberman, editors, at theasson of 3rd Inter-
national Conference on Dynamics, Games and Science, Fghrd1, 2014,
University of Porto, Portugal.

Presentations:

e F. Yilmaz, H.Oz, and G.-W. Weber, Approximation and Numerical Solutién o
Optimal Stochastic Control Problems for Multi-dimensioSabchastic Differ-
ential Equations by UsingdtTaylor Method with Malliavin Calculus, ICOTA
2013 - The 9th International Conference on Optimization:hiégues and Ap-
plications (ICOTA 9), Taipei, Taiwan, December 13-15, 2013.

e H. Oz, F. Yilmaz, and G.-W. WeberdiTaylor Approximation of Optimal Stoc-
hastic Control Problems for Stochastic Differential Eqoiasi, International Work-
shop on Applied Probability (IWAP 2014), “Probability: TMeasure of Tomor-
row”, Antalya, Turkey, June 16-19, 2014.

e F.Yilmaz, H.Oz, and G.-W. Weber, Approximation of Optimal Stochastic Con
trol Problems for Stochastic Partial Differential Equasdy Using 16-Taylor
Method, in: 8th International Conference on Game Theory amchddement
(GTM 2014), St. Petersburg, Russia, June 25-27, 2014.

e G.-W. Weber, F. Yilmaz, and HDz, It-Taylor Approximation of Optimal Stoc-
hastic Control Problems for Stochastic Differential Eqoiasi, 9th International
Summer School, AACIMP-2014, National University of Techomy of the Ukra-
ine, Kyiv, Ukraine, August 1-15, 2014.

92



G.-W. Weber, F. Yilmaz, and HDz, It-Taylor Approximation of Optimal Stoc-
hastic Control Problems for Stochastic Partial Differdriiquations, 9th Inter-
national Summer School, AACIMP-2014, National Universityfechnology of

the Ukraine, Kyiv, Ukraine, August 1-15, 2014.

G.-W. Weber, F. Yilmaz, and HDz, I#9-Taylor Approximation of Optimal Stoc-
hastic Control Problems for Stochastic Partial Differdriiquations, 9th Inter-
national Summer School, AACIMP-2014, National Universityfechnology of

the Ukraine, Kyiv, Ukraine, August 1-15, 2014.

H. Oz, F. Yilmaz, and G.-W. Weber, Optimal Control of Stochaskiat Equa-
tion with Symplectic-Partitioned Runge-Kutta Schemes, $bth Meeting of
EWGCFM, EURO Working Group for “Commodities and Financial Matiat-
ics” (EWGCFM 2015), METU, Ankara, Turkey, May 14-16, 2015.

H. Oz, F. Yilmaz, and G.-W. Weber, Multilevel Monte Carlo MethiodOp-

timal Control Problems of Stochastic Differential Equatomith Runge-Kutta
Methods, European Conference on Numerical Mathematics avdmced Ap-
plications (ENUMATH 2015), Ankara, Turkey, September 181-2015.

H. Oz, F. Yilmaz, and G.-W. Weber, Stokastik Diferansiyal Denkerin Opti-

mal Kontrol Problemleri ve Cok Dzeyli Monte-Carlo Siralasyonu, Yoneylem

Arastirmasi ve Enigstri Muhendislgi (YAEM) 35. Ulusal Kongresi, Ankara,
Tarkiye, 9- 11 Eyill, 2015.

G.-W. Weber, F. Yilmaz, and HDz, Optimal Control of Stochastic Heat Equa-
tion with Symplectic-Partitioned Runge-Kutta Schemesyegad at 10th Inter-
national Summer School, AACIMP-2015, National Universityfechnology of
the Ukraine, Kyiv, Ukraine, August 4-18, 2015.

H. Oz, G.-W. Weber, and F. Yilmaz, Optimal Control Problems afc8astic
Differential Equations with New Runge-Kutta Methods, Seaniat Department
of Mathematics, Atilim University, Ankara, Turkey, MarchZD16.

H. Oz Bakan, F. Yilmaz, and G.-W. Weber, Order Conditions of Syt
Partitioned Runge-Kutta (SPRK) Method for Stochastic Opti@antrol Prob-
lems, The 5th International Eurasian Conference on Matheat&ciences and
Applications (IECMSA-2016), Belgrade, Serbia, August 16-2®16.

G.-W. Weber, H.Oz Bakan, and F. Yilmaz, A discrete optimality system for
an optimal harvesting problem, Presentation to Faculty mfilenmental and
Urban Engineering, Kansai University, Osaka, Japan, Noezid4, 2016.

G.-W. Weber, HOz Bakan, and F. Yilmaz, Symplectic Partitioned-Runge Kutta
Method for an Optimal Harvesting Problem, Seminar at Depant of Agri-
cultural Economics, National Taiwan University, Taipegiwan, December 2,
2016.

G.-W. Weber, HOz Bakan, and F. Yilmaz, Minimal Truncation Error Constants
for Runge-Kutta Method for Stochastic Optimal Control Profide International
Conference of Operational Research (InteriOR 2017), Medaopesia, August
21-23, 2017.

93



	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CHAPTERS
	INTRODUCTION
	PRELIMINARIES
	Stochastic Optimal Control Problem
	Hamilton-Jacobi-Bellman (HJB) Equation
	Stochastic Pontryagin's Maximum Principle
	Runge-Kutta Scheme for SDEs

	RUNGE-KUTTA SCHEME FOR STOCHASTIC OPTIMAL CONTROL PROBLEMS OF SDEs 
	Introduction
	Runge-Kutta Scheme for Stochastic Optimal Control Problems of SDEs
	Monte-Carlo Simulation and Implementation Details
	Financial Applications
	Summary

	RUNGE-KUTTA SCHEME FOR STOCHASTIC OPTIMAL CONTROL PROBLEMS OF SOME SPDEs 
	Introduction
	Formulation of Optimal Harvesting Problem
	Discretization with Finite Difference Scheme
	First-Order Necessary Optimality Conditions
	Runge-Kutta Schemes for Optimal Harvesting Problem
	Numerical Application
	Summary

	STRONG-ORDER CONDITIONS OF THE RUNGE-KUTTA SCHEME FOR STOCHASTIC OPTIMAL CONTROL PROBLEMS
	Introduction
	Problem Formulation and Discretization
	Strong Order-1 Conditions of Runge-Kutta Method with Minimal Truncation Error Constants for Stochastic Optimal Control Problems
	Strong Order-1.5 Conditions of Runge-Kutta Method for Stochastic Optimal Control Problems
	Numerical Application
	Summary

	WEAK-ORDER CONDITIONS OF THE RUNGE-KUTTA SCHEME FOR STOCHASTIC OPTIMAL CONTROL PROBLEMS
	Introduction
	Problem Formulation
	Weak-Order Conditions of Runge-Kutta Method for Stochastic Optimal Control Problems
	Summary

	CONCLUSION AND OUTLOOK
	REFERENCES
	CURRICULUM VITAE

