
RUNGE-KUTTA SCHEME FOR
STOCHASTIC OPTIMAL CONTROL PROBLEMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY
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ABSTRACT

RUNGE-KUTTA SCHEME FOR
STOCHASTIC OPTIMAL CONTROL PROBLEMS

Öz Bakan, Hacer

Ph.D, Department of Financial Mathematics

Supervisor : Prof. Dr. Gerhard-Wilhelm Weber

Co-Supervisor : Asst. Prof. Dr. Fikriye Yılmaz

September 2017, 93 pages

In this thesis, we analyze Runge-Kutta scheme for the numerical solutions of stochastic
optimal control problems by usingdiscretize-then-optimizeapproach. Firstly, we dis-
cretize the cost functional and the state equation with the help of Runge-Kutta schemes.
Then, we state the discrete Lagrangian and take the partial derivative of it with respect
to its variables to get the discrete optimality system. By comparing the continuous and
discrete optimality conditions, we find a relationship between the Runge-Kutta coef-
ficients of the state and adjoint equation, so that we presentRunge-Kutta scheme for
the adjoint pair(p(t), q(t)). Similar to the deterministic setting, the issue of conver-
gence is important when dealing with a numerical scheme. In stochastic case, this can
be achieved either by using the strong-order convergence orweak-order convergence
criteria. We match the stochastic Taylor expansion on the exact solution of continuous
optimality system with the stochastic Taylor expansion of approximate solution of our
discrete optimality system, term by term, in order to get both strong and weak-order
conditions. The thesis ends with a conclusion and a future outlook to forthcoming
research and application.

Keywords: Stochastic optimal control, Runge-Kutta discretization,Stochastic differ-
ential equations, Stochastic-Taylor expansion, Hamiltonian, Optimization, Stochastic
partial differential equation
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ÖZ

STOKASṪIK OPTİMAL KONTROL PROBLEMLERİ İÇİN RUNGE-KUTTA
YÖNTEMİ

Öz Bakan, Hacer

Doktora, Finansal Matematik B̈olümü

Tez Yöneticisi : Prof. Dr. Gerhard-Wilhelm Weber

Ortak Tez Ÿoneticisi : Yrd. Doç. Dr. Fikriye Yılmaz

Eylül 2017, 93 sayfa

Bu tezde,̈once ayrıklaştırma sonra optimize etme yaklaşımı kullanarak, stokastik opti-
mal kontrol problemlerinin numerik ç̈ozümleri için Runge-Kutta ÿontemini inceledik.
İlk önce maliyet fonksiyonu ve durum denklemi Runge-Kutta yöntemini ile ayrıklaştır-
dık. Sonra, ayrıklaştırılmış optimallik koşullarını elde etmek için, Lagrange fonksiy-
onunun ayrıklaştırılmış halini verdik ve onun kısmi türevlerini aldık. S̈urekli ve ayrık-
laştırlmış optimallik koşullarını karşılaştırarakdurum denkleminin ve adjoint denklem-
inin Runge-Kutta katsayıları bir bağlantı bularak, adjoint denklemi için Runge-Kutta
yöntemini elde ettik. Deterministik durumda olduğu gibi, stokastik durumunda da nu-
merik metodun yakınsama konusuönemlidir. Stokastik durum için, g̈uçlü ve zayıf
yakınsama olmak̈uzere iki çeşit yakınsama vardır. Her iki durum için de yakınsama
koşullarını elde edebilmek amacıyla, sürekli optimallik koşullarının gerçek ç̈ozümünü
ve ayrıklaştırılmış optimallik koşullarının yaklaşık çözümünü karşılaştırdık. Bu tez bir
dĕgerlendirme ve gelecek çalışmalara bir bakış ile sonuçlandırılmıştır.

Anahtar Kelimeler: Stokastik optimal kontrol, Runge-Kutta ayrıklaştırması, Stokastik
diferansiyel denklemler, Stokastik-Taylor açılımı, Hamiltonian, Optimizasyon, Stokastik
kısmi diferansiyel denklemler
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CHAPTER 1

INTRODUCTION

Stochastic optimal control problems play a crucial role in financial mathematics and
economics. For instance, Merton reduced portfolio problem, how to allocate safe and
risky assets while maximizing the expected utility, to a control problem and then he
solved it by using stochastic control theory [40, 41]. Another example in finance is
optimal production planning problem; here, a company has toadjust or to control its
production rate in order to meet the demand while minimizingthe expected total cost
[66]. The number of these examples can be increased. At the same time, solving such
stochastic optimal control problems is also an important issue and there exist different
approaches to tackle stochastic optimal control problems.The first one is called as the
duality methods; here, the problem is reduced to one of finite dimensions and solved
by using the martingale representation theorem and Girsanov transformation [3, 4].
The second approach isdynamic programming; the method is characterized by means
of theHamilton-Jacobi-Bellman (HJB) equation, leading to a partial differential equa-
tion, whose solution gives the value function [66]. The lastapproach isPontryagin’s
Maximum Principle[3, 48], which is developed separately and independently from the
HJB equation, consists of the original state equation and the so-calledadjoint process
(p(t), q(t)), defined by a stochastic differential equation (SDE) combined with a final
condition. So, the resulting system introduces aforward-backward stochastic differ-
ential equation (FBSDE). It is an interesting question which of these methods should
be used to solve the stochastic optimal control problems. Moreover, it is sometimes
difficult to find the analytical solutions of stochastic optimal control programs, or the
problem does not even admit a global solution at all with the help of one of the men-
tioned methods. In this case, numerical methods gain importance.

The numerical solution methods of SDEs are similar to techniques developed for or-
dinary differential equations (ODEs), but they are extended to satisfy the stochastic
dynamics. The most efficient and widely used approach to obtain an approximation
process is given by discrete-time approximations which areessentially based on the
Itô-Taylor expansions [10, 28]. Euler and Milstein schemes can both be regarded as
simple methods and they are widely used. Platen and Kloeden [28] provided a deep
investigations of the It̂o-Taylor expansions that leads to many numerical schemes. The
Itô-Taylor schemes use the derivative of the drift and diffusion coefficients, and this
increases the computational cost considerably. At this point, it is reasonable to employ
derivative-free schemes such as Runge-Kutta type methods [6, 8, 7, 9, 13, 28, 42, 60].
Burrage and Burrage presented a general class of stochastic Runge-Kutta methods
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in [6]. In [59], Tian and Burrage discussed two-stage diagonally implicit stochas-
tic Runge-Kutta methods with strong order-1 for strong solutions of the Stratonovich
SDEs. Finally, R̈oßler developed many Runge-Kutta schemes for both the Itô and
Stratonovich SDEs [14, 54, 55].

In stochastic calculus, there are two ways to measure the convergence of a numerical
method. When sample paths, trajectories, of the solution areneeded, strong conver-
gence criteria are used. So, strong approximations are practical for problems requiring
direct simulations of dynamical sytems such as filtering or testing estimators of Itô
proceses, stochastic flows. Recent developments have showedthat these approxima-
tions are also important for Multi-level Monte-Carlo methodfor SDEs [19]. However,
if one deals with only the probability distribution or some moments of the solution pro-
cess, weak convergence criteria are employed. The most typical application of weak
approximations is Monte-Carlo simulation of option prices [33].

Stochastic Runge-Kutta schemes of strong-order were well studied in [6, 7, 8, 55]. Be-
cause of Jensen’s inequality, mean-square convergence implies strong convergence of
the same order [13]. Thus, mean-square convergence is used to measure the strong
convergence. Burrage and Rößler [6, 7, 8, 55] made use of Rooted Tree analysis in-
vented by Butcher [9] and stochastic Taylor approximations to obtain strong conver-
gence. Burrage [6, 7, 8] derived strong order-1 conditions ofthe Runge-Kutta scheme
for SDEs. However, Burrage could not exceed strong order-1 for any number of stages
for the same Runge-Kutta scheme. By introducing an additionalrandom variable to
the classical Runge-Kutta method, Burrage got strong order-1.5 conditions with the
help of the stochastic Taylor series. Rößler [52, 55] studied on a different kind of
Runge-Kutta scheme from that of Burrage to obtain strong-order conditions by using
the Rooted Tree Theory and stochastic Taylor series.

Many stochastic Runge-Kutta methods converging in weak sense were proposed in
recent years [14, 29, 37, 42, 60, 61]. It is worth noting that these stochastic Runge-
Kutta methods are similar, but they were expressed differently. Moreover, the way used
to measure the convergence was different. For example, Komori [29] and R̈oßler [54]
derived weak-order conditions by the aid of Rooted-Tree analysis invented by Butcher
[9]. Tocino and Ardanuy [60] got weak-order conditions for stochastic Runge-Kutta
method by comparing the truncated Itô-Taylor expansions of the exact solution and the
solution from the Runge-Kutta method. They studied on the Itô SDEs and obtained a
remainder term as well. For this reason, they had to choose the diffusion coefficient
that minimizes the remainder term. On the other hand, Mackevicius [37] and later
Rößler [14] investigated Runge-Kutta schemes of the Stratonovich SDEs to avoid the
remainder term which Tocino and Ardanuy [60] experienced. They made use of Itô
Formula to expand the expectation of Taylor expansions.

Runge-Kutta schemes were also well studied for optimal control problems of ODEs
[5, 15, 21, 27, 58]. Hager [21] derived the Runge-Kutta schemefor the optimal control
problems of ODEs. He discretized the state equation by a Runge-Kutta scheme and
observed that the resulting optimality system, after transforming some variables, is
a partitioned Runge-Kutta scheme. Then, by stating the discrete Lagrangian of the
problem, he found a relationship between the Runge-Kutta coefficients of the state
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variable and adjoint variable, which leads to a symplectic scheme. Afterwards, he
compared the Taylor expansion of the discrete and continuous problem to measure the
convergence of the Runge-Kutta scheme and computed the orderconditions up to 4 for
the optimal control problems of ODEs.

Motivation of this thesis is the desire to derive a Runge-Kutta scheme for stochastic
optimal control problems. We examine the studies of Hager [15, 21], Runge-Kutta
scheme for optimal control problems of ODEs, and stochasticRunge-Kutta schemes
especially, investigations of Burrage [6, 7, 8] and Rößler [14, 52, 54, 55]. Then, we
aim to extend the results of Hager [15, 21] to stochastic optimal control problems of
SDEs with the help of stochastic Runge-Kutta schemes.

The main objective of this thesis is to develop a Runge-Kutta scheme for the numerical
solution of stochastic optimal control problems describedby SDEs through Pontrya-
gin’s Maximum Principle. Stochastic optimal control problems can be solved numeri-
cally with the help of either theoptimize-then-discretizeor thediscretize-then-optimize
approach [22, 26, 62, 65]. In this study, we prefer thediscretize-then-optimizeapproach
to gain the advantage of standard optimization techniques.Firstly, the cost functional
and the state equation are discretized, by using Runge-Kuttascheme. Then, we formu-
late the discrete Lagrangian function and take the partial derivatives with respect to its
variables and equate them to zero to obtain the discrete optimality conditions. In the
resulting optimality system, we get the Runge-Kutta discretization of the coupled ad-
joint process (p(t), q(t)), whose coefficients can be stated in terms of the Runge-Kutta
coefficients of the state equation that is our main contribution. In order to compute the
expectation, we use the Monte-Carlo method which, firstly, draws independent simu-
lations, then, approximates the cost functional by using Runge-Kutta scheme. Finally,
it averages the independent samples of the resulting cost functional to get an estima-
tion of the expectation. We apply our Runge-Kutta scheme to some problems selected
from the financial sector, and present a comparison of the numerical results with the
exact solutions. We also employ Euler method to test the efficiency of our Runge-Kutta
scheme.

We also aim to extend our Runge-Kutta method to stochastic optimal control prob-
lems governed by some SPDEs. We choose a special and an important problem in
economics, finance and biology that is called asoptimal harvestingproblem. This
problem is closely associated of daily life, e.g., agriculture, fisheries, forestry, garden-
ing, tourism, city planing and water management. We first discretize the problem with
respect to the space variable with the help of using the finitedifference scheme and
convert the given problem to an optimal control problem of system of SDEs. Then,
by following the same methodology as done in the SDE case, we are able to derive a
Runge-Kutta method on the numerical solution of stochastic control problems subject
to system of SDEs.

In the second part of the thesis, our aim is to address strong convergence criteria in or-
der to measure the convergence of our Runge-Kutta method for optimal control prob-
lems of SDEs. By assuming exact initial values, the Stratonovich-Taylor expansions
of the exact solution and the solution from our Runge-Kutta scheme are compared to
find the order of accuracy. In our Runge-Kutta scheme for stochastic optimal control
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problems, Runge-Kutta coefficients of the adjoint process have been obtained in terms
of the Runge-Kutta coefficients of the state process. This yields additional order con-
ditions to classical Runge-Kutta method of SDEs [6, 8] for theorder of accuracy. In
this work, such order conditions are derived explicitly.

In the third part of the thesis, we purpose to follow the idea of Mackevicius [37] and
Rößler [14] in order to derive weak-order conditions of our Runge-Kutta scheme. By
assuming exact initial values, expectations of the Taylor expansions of the exact so-
lution and the solution from our Runge-Kutta scheme are compared to find the order
of accuracy. In our Runge-Kutta scheme for stochastic optimal control problems, we
show that Runge-Kutta discretization of the adjoint processis often different from
the Runge-Kutta discretization of the state process. Herewith, there occur additional
weak-order conditions to classical Runge-Kutta conditionsof SDEs for the order of
accuracy.

The outline of this thesis is as follows: In the preliminaries, presented in Chapter 2,
we give the problem formulation and fundamental derivations of the Stochastic Pon-
tryagin’s Maximum Principle. In Chapter 3, the stochastic optimal control problem
is discretized by Runge-Kutta schemes and then, by usingdiscretize-then-optimize
approach, the discrete optimality conditions for the stochastic optimal control pro-
grams described by SDEs are derived. In Chapter 4, our Runge-Kutta method is ap-
plied to stochastic optimal control problems of stochasticpartial differential equations
(SPDEs), as a special case of the optimal harvesting problem. In Chapter 5, we obtain
strong order-1 and 1.5 conditions of our Runge-Kutta scheme for stochastic optimal
control programs. In Chapter 6, we provide weak order-1 and 2 conditions of our
Runge-Kutta scheme for stochastic optimal control problems. In Chapter 7, we con-
clude and give an outlook to future studies and applications.
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CHAPTER 2

PRELIMINARIES

In this chapter, we introduce a stochastic optimal control problem which we use in
this thesis. We derive of the stochastic Hamilton-Jacobi-Bellman (HJB) equation with
the help of It̂o Formula [24, 44, 57]. Then, we relate it with stochastic Pontryagin’s
Maximum Principle, an extension of deterministic Pontryagin’s Maximum Principle
[51], to present a continuous optimality system. More details about stochastic optimal
control theory can be found in [32, 66].

2.1 Stochastic Optimal Control Problem

We let (W (t))t0≤t≤T (with W (0) = 0 a.s.) be a 1-dimensional Brownian motion on
the filtered probability space(Ω,F , (F(t))t∈[t0,T ],P), wheret0 > 0 andΩ = [t0, T ]
is a fixed finite horizon. On this probability space, the spaceof real-valued square
integrable(F(t))-adapted processes is defined inL2(t0, T ). While first we address
scalar-valued processes, in later chapters, also vector-valued processes will be permit-
ted.

We consider a controlled SDE

dy(t) = f(t, y(t), u(t))dt+ h(t, y(t), u(t))dW (t) (t ∈ [0, T ]), y(t0) = y0, (2.1)

wheref(t, y(t), u(t)) andh(t, y(t), u(t)) are continuously differentiable functions with
respect to(t, y(t), u(t)) and their derivatives are uniformly bounded. Under these as-
sumptions, we assure that Eqn. (2.1) has a unique solution [23]. Also, we letu =
(u(t))t∈[t0,T ] is a control process inA which is a closed convex set in the control space
L2(t0, T ).

The objective of the optimal control problem is:

(P)







minimize
u∈A

E

[

φ(T, y(T )) +

∫ T

t0

g(s, y(s), u(s))ds

]

subject to dy(t) = f(t, y(t), u(t))dt+ h(t, y(t), u(t))dW (t) (t ∈ [t0, T ]),

y(t0) = y0,

5



whereΦ(T, y(T )) andg(t, y(t), u(t)) are smooth functions with the continuous first-
order derivatives. A control processu∗(t) that solves this problem is called anoptimal
control.

2.2 Hamilton-Jacobi-Bellman (HJB) Equation

We define cost functionalJ(t, y) by

J(t, y) = min
u∈A

E

[

φ(T, y(T )) +

∫ T

t

g(s, y, u)ds

]

;

we divide the cost functional in two parts, for any sufficiently small∆t > 0:

J(t, y) = min
u∈A

E

[ ∫ t+∆t

t

g(s, y, u)ds+ Φ(T, y(T )) +

∫ T

t+∆t

g(s, y, u)ds

︸ ︷︷ ︸

J(t+∆t,y)

]

. (2.2)

Here, we note that the variablesy andu depend ons; we usey andu instead ofy(s)
andu(s), respectively. From now on, for simplicity, we will use thisabbreviation for
variables and Brownian motionW, and for the incrementdW instead ofdW (s) as
well.

It is also important to note that we can write “min” in the aforementioned represen-
tations of the cost functions rather than “inf”, as in our research, the infimum will be
attained as a value.

By using the It̂o Formula, we have

J(t+∆t, y) = J(t, y) +

∫ t+∆t

t

(
∂J(s, y)

∂s
+ fT (s, y, u)

∂J(s, y)

∂y

+
1

2
tr

{
∂2J(s, y)

∂y2
hT (s, y, u)h(s, y, u)

})

ds (2.3)

+

∫ t+∆t

t

∂J(s, y)

∂y
h(s, y, u)dW,

wheretr
{

∂2J(s,y)
∂y2

hT (s, y, u)h(s, y, u)
}

stands for the trace of the matrix
∂2J(s,y)

∂y2
hT (s, y, u)h(s, y, u). In the 1-dimensional case,

∂2J(s, y)

∂y2
hT (s, y, u)h(s, y, u) =

∂2J(s, y)

∂y2
h2(s, y, u).

Now, by inserting Eqn. (2.3) into Eqn. (2.2), we get
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J(t, y) = min
u∈A

E

[∫ t+∆t

t

g(s, y, u)ds+ J(t+∆t, y)

]

= min
u∈A

E

[∫ t+∆t

t

g(s, y, u)ds+ J(t, y) +

∫ t+∆t

t

(
∂J(s, y)

∂s

+ fT (s, y, u)
∂J(s, y)

∂y
+

1

2
tr

{
∂2J(s, y)

∂y2
hT (s, y, u)h(s, y, u)

})

ds

+

∫ t+∆t

t

∂J(s, y)

∂y
h(s, y, u)dW

]

= min
u∈A

E

[∫ t+∆t

t

g(s, y, u)ds+ J(t, y) +

∫ t+∆t

t

(
∂J(s, y)

∂s

+ fT (s, y, u)
∂J(s, y)

∂y
+

1

2
tr

{
∂2J(s, y)

∂y2
hT (s, y, u)h(s, y, u)

})

ds

]

.

This gives for any sufficiently small∆t > 0:

0 = min
u∈A

E

[∫ t+∆t

t

(

g(s, y, u) +
∂J(s, y)

∂s
+ fT (s, y, u)

∂J(s, y)

∂y

+
1

2
tr

{
∂2J(s, y)

∂y2
hT (s, y, u)h(s, y, u)

})

ds

]

,

so that we obtain the followingHamilton-Jacobi-Bellman (HJB) equation

0 = min
u∈A

(

g(t, y, u) +
∂J(t, y)

∂t
+ fT (t, y, u)

∂J(t, y)

∂y

+
1

2
tr

{
∂2J(t, y)

∂y2
hT (t, y, u)h(t, y, u)

})

a.s. (2.4)

For the ease of exposition, the addition a.e. or a.s. is not always made in this thesis.

2.3 Stochastic Pontryagin’s Maximum Principle

We defineHamiltonian functionof the optimal control problem(P):

H(t, y, u, p, q) := g(t, y, u) + fT (t, y, u)p+
1

2
tr
{
qh(t, y, u)hT (t, y, u)

}
,

where the coupled process,(p(t), q(t)), is adapted with respect to(F(t))t∈[t0,T ] and

p(t) = Jy(t, y), (2.5)

q(t) =
∂p

∂y
= Jyy(t, y).
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Here and in the entire thesis, we note that the subscripts, e.g.,t, y, yy, denote the partial
derivatives ofJ(t, y) with respect to these variables. For notational convenience, in the
rest of the whole work, we will use the variables, written as subscripts, as the partial
derivatives.

Now, by using the Hamiltonian function, the HJB Eqn. (2.4) can be rewritten as:

−Jt(t, y) = min
u∈A

H(t, y(t), u(t), p(t), q(t)). (2.6)

We assume that there exists a known optimal controlu∗(t, y(t), p(t), q(t)) that solves
the optimal control problem such that

H∗(t, y, p, q) = H(t, y, u∗(t, y, p, q), p, q)

= g(t, y, p, q) + fT (t, y, p, q)p+
1

2
tr
{
qh(t, y, p, q)hT (t, y, p, q)

}

= −Jt(t, y). (2.7)

Herewith, we write the SDEs for the state and adjoint differentials ondy anddp, re-
spectively:

dy = f(t, y, u∗)dt+ h(t, y, u∗)dW

= H∗
p(t, y, p, q)dt+ h(t, y, p, q)dW,

and applying the It̂o Formula on the definition ofp(t) in Eqn. (2.5) leads to

dp = Jyt(t, y)dt+ Jyy(t, y)dy +
1

2
Jyyy(t, y)dydy

=

(

Jyt(t, y) + Jyy(t, y)f(t, y, u) +
1

2
tr
{
Jyyy(t, y)h(t, y, u)h

T (t, y, u)
}
)

dt

+ Jyy(t, y)h(t, y, u)dW. (2.8)

Hence, we take the partial derivative of Eqn. (2.7) with respect toy in order to get
Jyt(t, y):

−Jyt(t, y) = H∗
y(t, y, p, q) +H∗

p(t, y, p, q)
∂p

∂y
+H∗

q(t, y, p, q)
∂q

∂y

= H∗
y(t, y, p, q) + Jyy(t, y)f(t, y, u)

+
1

2
tr
{
Jyyy(t, y)h(t, y, u)h

T (t, y, u)
}
. (2.9)
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Inserting Eqn. (2.9) into Eqn. (2.8) yields the adjoint equation:

dp = −H∗
y(t, y, p, q)dt+ Jyy(t, y)h(t, y, p, q)dW

= −H∗
y(t, y, p, q)dt+ qh(t, y, p, q)dW.

Finally, we can state the system of forward-backward stochastic differential equation
(FBSDE) of the problem(P), the Stochastic Maximum Principle, as:







dy = Hp(t, y, u, p, q)dt+ h(t, y, u, p, q)dW (t ∈ [t0, T ]),

dp = −Hy(t, y, u, p, q)dt+ qh(t, y, u, p, q)dW (t ∈ [t0, T ]),

0 = Hu(t, y, u, p, q) (t ∈ [t0, T ]),

y(t0) = y0,

p(T ) = φy(T, y(T )),

H∗(t, y, p, q) = min
u∈A

H(t, y, u, p, q).

In this thesis, we restrict our investigations to autonomous stochastic optimal control
problems, where diffusion terms do not contain the control process in the form:

(Pc)







minimize
u∈L2(t0,T )

E

[

Φ(y(T )) +

∫ T

t0

g(y, u)dt

]

subject to dy = f(y, u)dt+ h(y)dW (t ∈ [t0, T ]),

y(t0) = y0.

We note that every nonautonomous stochastic optimal control problem can be canoni-
cally transformed into an autonomous system with one additional equation.

In this case, the first-order optimality conditions of problem(Pc):

(OCc)







dy = Hp(y, u, p, q)dt+ h(y)dW (t ∈ [t0, T ]),

dp = −Hy(y, u, p, q)dt+ h(y)qdW (t ∈ [t0, T ]),

0 = Hu(y, u, p, q) (t ∈ [t0, T ]),

y(t0) = y0,

p(T ) = φ′(y(T )),

with

H(y, u, p, q) = g(y, u) + fT (y, u)p+
1

2
tr
{
qh(y)hT (y)

}
, (2.10)

whereφ′(y(T )) denotes the derivative ofφ with respect to its variabley. We will use′

for the derivative of differentiable functions which depend on one variable only.
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2.4 Runge-Kutta Scheme for SDEs

In this section, we recall the Runge-Kutta scheme for SDEs. Weconsider the following
SDE

dy = f(y)dt+ h(y)dW, y0 = y0. (2.11)

We introduce an equispaced discretization0 = t0 < t1 < . . . < tk < . . . < tN = T of
the time interval[0, T ]. Let∆ := T/N denote the increments (step-size) and∆W :=
Wtk+1

−Wtk beN (0,∆)-distributed Gaussian increment of the Brownian motionW .

We address ans-stage Runge-Kutta scheme [8] of Eqn. (2.11), for somes ∈ Z
+:







yk+1 = yk +∆
s∑

i=1

αif(yki) + ∆W
s∑

i=1

βih(yki)

yki = yk +∆
s∑

j=1

aijf(ykj) + ∆W
s∑

j=1

bijh(ykj)

y0 =y
0,

for k = 0, 1, . . . , N − 1, andi = 1, 2, . . . , s, and the constantsαi, βi, aij, bij are the
Runge-Kutta coefficients. The Butcher array of the Runge-Kuttadiscretization of Eqn.
(2.11) is given by

c1 a11 . . . a1s
...

...
.. .

...
cs as1 . . . ass

α1 . . . αs

d1 b11 . . . b1s
...

...
.. .

...
ds bs1 . . . bss

β1 . . . βs

where

ci =
s∑

j=1

aij and di =
s∑

j=1

bij,

for i = 1, 2, . . . , s.

Here, we note that the Runge-Kutta coefficientsαi, βi, aij, bij, constant real numbers,
could be chosen arbitrarily or in a way such that some convergence properties are
satisfied.
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CHAPTER 3

RUNGE-KUTTA SCHEME FOR STOCHASTIC OPTIMAL
CONTROL PROBLEMS OF SDEs

3.1 Introduction

In order to solve an stochastic optimal control problem, we need a discretization tech-
nique together with an optimization method. There are two possible options often
referred todiscretize-then-optimizeandoptimize-then-discretize. In this chapter, we
construct a Runge-Kutta scheme for a class of optimal controlproblems of SDEs by
following the discretize-then-optimizeapproach. Firstly, we discretize the cost func-
tional and the state equation with the help of Runge-Kutta schemes. After we state
the discrete Lagrangian, we take partial derivatives of it with respect to its variables
to receive the discrete optimality system. Our main contribution is to get an implicit
Runge-Kutta scheme for the adjoint pair(p(t), q(t)), whose Runge-Kutta coefficients
can be written in terms of the Runge-Kutta coefficients of the state equation. Finally,
we confirm our results with some numerical examples from the financial sector. We
compare our numerical results with Euler method and exact solution to demonstrate
the efficiency of our Runge-Kutta method.

Now, we recall our optimal control problem(Pc) as:

(Pc)







minimize
u∈L2(t0,T )

E

[

Φ(y(T ))] +

∫ T

t0

g(y, u)dt

]

subject to dy = f(y, u)dt+ h(y)dW (t ∈ [t0, T ]),

y(t0) = y0,

with the first-order optimality conditions of problem(Pc):

(OCc)







dy = Hp(y, u, p, q)dt+ h(y)dW (t ∈ [t0, T ]),

dp = −Hy(y, u, p, q)dt+ h(y)qdW (t ∈ [t0, T ]),

0 = Hu(y, u, p, q) (t ∈ [t0, T ]),

y(t0) = y0,

p(T ) = φ′(y(T )),
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where

H(y, u, p, q) = g(y, u) + f(y, u)p+
1

2
qh2(y).

3.2 Runge-Kutta Scheme for Stochastic Optimal Control Problems of SDEs

Runge-Kutta schemes are applied to optimal control problemsin [5, 15, 21, 27]. In
[21], Hager showed that the resulting optimality system is apartitioned Runge-Kutta
scheme, after some change of variables. In this chapter, we employ a Runge-Kutta
scheme for stochastic optimal control problems of SDEs.

We introduce an equispaced discretization0 = t0 < t1 < . . . < tk < . . . < tN = T of
the time interval[0, T ]. Let∆ := T/N denote the increments (step-size) and∆W :=
Wtk+1

−Wtk beN (0,∆)-distributed Gaussian increment of the Brownian motionW .

Now, we state thes-stage Runge-Kutta discretization [21], for somes ∈ Z
+, of the

optimal control problem(Pc) as

(Pd)







minimize E

[

Φ(yN) + ∆
N−1∑

k=0

s∑

i=1

αig(yki, uki)

]

subject to yk+1 = yk +∆
s∑

i=1

αif(yki, uki) + ∆W
s∑

i=1

βih(yki),

yki = yk +∆
s∑

j=1

aijf(ykj, ukj) + ∆W
s∑

j=1

bijh(ykj),

y0 = y0,

for k = 0, 1, . . . , N − 1, and i = 1, 2, . . . , s, and the constantsαi, βi, aij, bij are
the Runge-Kutta coefficients. The Butcher array of the Runge-Kutta discretization of
problem(Pd) is given by

c1 a11 . . . a1s
...

...
.. .

...
cs as1 . . . ass

α1 . . . αs

d1 b11 . . . b1s
...

...
.. .

...
ds bs1 . . . bss

β1 . . . βs

where

ci =
s∑

j=1

aij and di =
s∑

j=1

bij,

for i = 1, 2, . . . , s.
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Here, we note that the Runge-Kutta coefficients,αi, βi, aij, bij, are real constants.
In this chapter, they are chosen arbitrarily to obtain numerical results. However, in
Chapter 5 and Chapter 6, they are determined in a way such that strong and weak
convergence properties are satisfied.

Now, we have a discrete state equation and a discrete cost functional. In the following
theorem, we get discrete optimality conditions by defining the discrete Lagrangian.

Theorem 3.1. If αi, βi, aij, bij (i, j = 1, 2, . . . , s) are the Runge-Kutta coefficients
in problem(Pd), then discrete first-order optimality conditions of problem (Pd) are
obtained as

(OCd)







yk+1 = yk +∆
s∑

i=1

αif(yki, uki) + ∆W
s∑

i=1

βih(yki),

yki = yk +∆
s∑

j=1

aijf(ykj, ukj) + ∆W
s∑

j=1

bijh(ykj),

pk+1 = pk −∆
s∑

i=1

α̃iHy(yki, uki, pki, qki) + ∆W
s∑

i=1

β̃ih(yki)qki,

pki = pk −∆
s∑

j=1

ãijHy(ykj, ukj, pkj, qkj) + ∆W
s∑

j=1

b̃ijh(ykj)qkj,

qkiψki = pk −∆
s∑

j=1

âijHy(ykj, ukj, pkj, qkj) + ∆W
s∑

j=1

b̂ijh(ykj)qkj,

pN = φ′(yN),

y0 = y0,

0 = ∆
s∑

i=1

αiHu(yki, uki, pki, qki),

for k = 0, 1, . . . , N − 1, where the coefficients satisfy the following relations:

α̃i := αi, β̃i := βi,

ãij := αj −
αj

αi

aji, b̃ij := βj −
βj
αi

aji, (3.1)

âij := αj −
αj

βi
bji, b̂ij := βj −

βj
βi
bji,

with

ψki :=
∆αih(yki)

∆Wβi
−

h(yki)

hy(yki)
.
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Proof. In order to prove this theorem, we follow the proof of Hager [21], in the deter-
ministic case and we extend his proof to the stochastic settings. Let

kki := f(yki, uki)

and

mki := h(yki),

so that we have

g(yki, uki) = g

(

yk +∆
s∑

j=1

aijkkj +∆W
s∑

j=1

bijmkj, uki

)

,

f(yki, uki) = f

(

yk +∆
s∑

j=1

aijkkj +∆W
s∑

j=1

bijmkj, uki

)

,

h(yki) = h

(

yk +∆t
s∑

j=1

aijkkj +∆W
s∑

j=1

bijmkj

)

.

Then, we can write the discrete Lagrangian as [11]:

E
[
Φ(yN) + p0(y0 − y0)

+
N−1∑

k=0

{

∆
s∑

i=1

αig

(

yk +∆
s∑

j=1

aijkkj +∆W
s∑

j=1

bijmkj, uki

)

+pk+1

(

yk − yk+1 +∆
s∑

i=1

αikki +∆W
s∑

i=1

βimki

)

+
s∑

i=1

ξki

(

f

(

yk +∆
s∑

j=1

aijkkj +∆W
s∑

j=1

bijmkj, uki

)

− kki

)

+
s∑

i=1

ζki

(

h

(

yk +∆t
s∑

j=1

aijkkj +∆W
s∑

j=1

bijmkj

)

−mki

)}]

,

wherep0, pk+1, ξki, ζki are the Lagrange multipliers. Setting to 0 the partial derivatives
of this Lagrangian function with respect toyN , y0, yk, for k = 0, 1, 2, . . . , N − 1, and
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kki,mki, uki, for k = 0, 1, . . . , N − 1, we get:

pN = Φ′(yN),

p1 = p0,

pk − pk+1 = ∆
s∑

i=1

αigy(yki, uki) +
s∑

i=1

ξkify(yki, uki) +
s∑

i=1

ζkihy(yki),

ξki = ∆
s∑

j=1

∆αjajigy(yki, uki) + ∆αipk+1

+∆
s∑

j=1

ajify(ykj, ukj)ξkj +∆
s∑

j=1

ajihy(ykj)ζkj,

ζki = ∆
s∑

j=1

∆Wαjbjigy(yki, uki) + ∆Wβipk+1

+∆W
s∑

j=1

bjify(ykj, ukj)ξkj +∆W
s∑

j=1

bjihy(ykj)ζkj,

0 = ∆αigu(yki, uki) + fu(yki, uki)ξki.

In order to compare the continuous optimality system,(OCc), with the above system
of equations, we set

ξki := ∆αipki

and

ζki := ∆Wβiqkiψki

with

ψki :=
∆αih(yki)

∆Wβi
−

h(yki)

hy(yki)
,

whereαi 6= 0 andβi 6= 0 (i = 1, 2, . . . , s). If these values vanish, then the solution of
the discrete problem may not converge to the solution of the continuous problem.

By eliminatingξki andζki in the above equations, we obtain the desired result.

It is worth noting that although our Runge-Kutta method in(OCd) seems to be a sym-
plectic Runge-Kutta, it is not symplectic. If we add one more condition,βiaji = αibji
(i, j = 1, 2, . . . , s), to Eqns. (3.1), then the resulting Runge-Kutta scheme becomes
a symplectic method [36, 63]. However, in the rest of the thesis, we will continue to
study on our Runge-Kutta scheme, a more general scheme than a symplectic one.
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3.3 Monte-Carlo Simulation and Implementation Details

We use Monte-Carlo method to approximate the conditional expectations. Monte-
Carlo simulation ofE[g(y, u)] is based on an approximation of the form

ḡ(y, u) =
1

M

M∑

i=1

gi(yi, ui), (3.2)

whereyi andui are approximations ofy(t) andu(t), respectively, at theith orbit of the
Monte-Carlo method [20, 30, 31].

Now, we give details of our computational efforts. Before summarizing the algorithm,
we elaborate on the approximate cost functional and the gradient. The discrete cost
functional coming from thediscretize-then-optimizeapproach is

E

[

Φ(yN) + ∆
N−1∑

k=0

s∑

i=1

αig(yki, uki)

]

, (3.3)

where

yki = yk +∆
s∑

j=1

aijf(ykj, ukj) + ∆W
s∑

j=1

bijh(ykj).

Moreover, the discrete gradient is

N∑

k=0

s∑

i=1

∆αi (gu(yki, uki) + fu(yki, uki)) pki. (3.4)

Algorithm (Discretize-then-OptimizeApproach with Gradient Descent)

1. Initialize the control and a toleranceǫ > 0. Choose the number of orbitsM to
be used in Monte-Carlo simulation.

2. For i = 1 to M :

i. Use Runge-Kutta scheme to discretize the state equation:






yk+1 = yk +∆
s∑

i=1

αif(yki, uki) + ∆W
s∑

i=1

βih(yki),

yki = yk +∆
s∑

j=1

aijf(ykj, ukj) + ∆W
s∑

j=1

bijh(ykj),

y0 = y0,

for k = 0, 1, . . . , N − 1, andi = 1, 2, . . . , s.
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ii. Use Runge-Kutta scheme to discretize the adjoint equation:






pk+1 = pk −∆
s∑

i=1

α̃iHy(yki, uki, pki, qki) + ∆W
s∑

i=1

β̃ih(yki)qki,

pki = pk −∆
s∑

j=1

ãijHy(ykj, ukj, pkj, qkj) + ∆W
s∑

j=1

b̃ijh(ykj)qkj,

qkiψki = pk −∆
s∑

j=1

âijHy(ykj, ukj, pkj, qkj) + ∆W
s∑

j=1

b̂ijh(ykj)qkj,

for k = 0, 1, . . . , N − 1, andi = 1, 2, . . . , s.

iii. Compute the expected cost functional and the gradient from Eqns. (3.3)-
(3.4) (Monte-Carlo).

iv. End for loop.

3. By using a line search algorithm, compute a descent direction.

4. Update the controluk.

5. Computeǫk = ||uk+1 − uk||2. If ǫk < ǫ, then go to step 2.

In computations, we use the following discretization schemes for the state varible,y(t),
to obtain the 2-stage of stochastic Runge-Kutta scheme [17] given by

0 0
1 1 0

1/2 1/2

0 0
2/3 2/3 0

1/4 3/4

By addressing the relations in Eqn. (3.1), we can obtain the corresponding Butcher
array for the adjoint pair,(p(t), q(t)), as follows:

0 1/2 -1/2
1 1/2 1/2

1/2 1/2

-1/2 1/4 -3/4
1 1/4 3/4

1/4 3/4

and

-1/3 1/2 -5/6
1 1/2 1/2

1/2 1/2

-1 1/4 -5/4
1 1/4 3/4

1/4 3/4

respectively.
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3.4 Financial Applications

In many financial applications, the desired task can be achieved in an optimal or nearly
an optimal manner. Merton used stochastic optimal control to study optimal portfolios
of safe and risky assets for utility maximization [40, 41]. The criterion for portfolio
selection, how to allocate stocks and bonds, is the maximization of the survival prob-
ability (or minimizing the ruin probability) or the minimization of the risk of firm. In
this case, how much money is invested in stocks over the net wealth can be considered
as the control variable. Such problems may be modeled by a stochastic optimal control
problems.

Example 3.1.We consider the Black-Scholes type of an optimal control problem [16]:







minimize
u∈L2(0,T )

1

2
E

[∫ T

0

(y∗ − y)2dt+

∫ T

0

u2dt

]

subject to dy = uydt+ σydW, y(0) = y0,

(3.5)

whereσ is a positive constant. We easily construct an exact solution as:

y(t) = y0e
∫
t

0
u(s)ds−σ

2

2
t+σW (t), u(t) =

T − t
1
y0

− Tt+ t2

2

,

where

y∗(t) =
eσ

2t − (T − t)2

1
y0

− Tt+ t2

2

+ 1.

If we apply 2-stage stochastic Runge-Kutta schemes to Eqn. (3.5), then we get







yk1 = yk,

yk2 = yk +∆uk1yk1 +
2

3
∆Wσyk1,

yk+1 = yk +
∆

2
(uk1yk1 + uk2yk2) +

∆W

4
σ(yk1 + 3yk2),

pk1 = pk+1 +∆(yk2 − y∗k2 + pk2uk2 + σ2qk2yk2)−
3

2
∆Wσqk2yk2,

pk2 = pk+1,

qk1ψk1 = pk+1 +
4

3
∆(yk2 − y∗k2 + pk2uk2 + σ2qk2yk2)− 2∆Wσqk2yk2,

qk2ψk2 = pk+1,

pk = pk+1 +
∆

2

(
yk1 − y∗k1 + pk1uk1 + σ2qk1yk1 + yk2 − y∗k2

+pk2uk2 + σ2qk2yk2
)
−

∆W

4
σ(yk1qk1 + 3yk2qk2).
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We lety∗(t) = y(t), and we chooseT = 1 andy0 = 1 in our numerical computation.
Furthermore, we use 1000 paths in Monte-Carlo simulation. InFigures 3.1a and 3.1b,
we compare the exact solution of control with the numerical control obtained from our
Runge-Kutta scheme. We chooseσ = 0.1 on the left andσ = 0.3 on the right side.
It is easy to see that the graph of the optimal control with ourRunge-Kutta scheme
almost fits the graph of the optimal control of the exact solution.
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(a) Optimal control forσ = 0.1.
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(b) Optimal control forσ = 0.3.

Figure 3.1: Optimal control in Example 3.1.

In Table 3.1, we compare the Euler scheme with our Runge-Kuttamethod. As a stop-
ping tolerance in gradient descent algorithm,1e− 8 is taken.

In order to show the efficiency of our Runge-Kutta scheme, we also obtain the results
with Euler discretization. In this case, trapezoidal rule is applied to compute the ap-
proximate cost functional and its gradient. The state equation is discretized by means
of forward Euler scheme, whereas backward Euler scheme is used for adjoint com-
putation. Moreover, the same problem settings are employedas in our Runge-Kutta
method. It can be understood from Table 3.1 that our Runge-Kutta scheme solves the
problem faster and with less number of iterations, when compared to Euler scheme.

Table 3.1: Comparison of Runge-Kutta and Euler method withσ = 0.1 in Example
3.1.

CPU Time (sec) # of Iterations
∆ Euler Runge-Kutta Euler Runge-Kutta
23 8.07 0.55 30 25
24 15.06 0.77 29 22
25 30.25 0.84 30 21
26 55.34 2.45 28 22
27 125.67 4.19 32 21
28 364.50 6.50 34 31
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Example 3.2.We choose the following control problem as a second example:






minimize
u∈L2(0,T )

1

2
E

[∫ T

0

(y∗ − y)2dt+

∫ T

0

(u− u∗)2dt

]

subject to dy =
1

2
u(u− u∗)ydt+ σydW, y(0) = y0,

(3.6)

whereσ is a positive scalar. We have the following continuous optimality system:







dy =
1

2
u(u− u∗)ydt+ σydW, y(0) = y0,

dp = (y∗ − y + σ2p)dt+ σyqdW, p(T ) = 0,

u− u∗ = −E

[

p

(

u−
1

2
u∗
)]

.

The exact solution is of the form

y(t) = y∗(t) = y0e−
σ
2

2
t+σW (t), u(t) = u∗(t) = 6 sin(πt).

We used the same discretization scheme as done in the previous example. If we apply
2-stage stochastic Runge-Kutta schemes to Eqn. (3.6), we receive






yk1 = yk,

yk2 = yk +
∆

2
uk1(uk1 − u∗k1)yk1 +

2

3
∆Wσyk1,

yk+1 = yk +
∆

4
(uk1(uk1 − u∗k1)yk1 + uk2(uk2 − u∗k2)yk2) +

∆W

4
σ(yk1 + 3yk2),

pk1 = pk+1 +∆(yk2 − y∗k2 +
1

2
pk2uk2(uk2 − u∗k2) + σ2qk2yk2)−

3

2
∆Wσqk2yk2,

pk2 = pk+1,

qk1ψk1 = pk+1 +
4

3
∆(yk2 − y∗k2 +

1

2
pk2uk2(uk2 − u∗k2) + σ2qk2yk2)− 2∆Wσqk2yk2,

qk2ψk2 = pk+1,

pk = pk+1 +
∆

2

(

yk1 − y∗k1 +
1

2
pk1uk1(uk1 − u∗k1) + σ2qk1yk1 + yk2 − y∗k2

+
1

2
pk2uk2(uk2 − u∗k2) + σ2qk2yk2

)

−
∆W

4
σ(yk1qk1 + 3yk2qk2).

We chooseT = 1 and y0 = 1 in the numerical computation. Moreover, we use
1000 paths in Monte-Carlo simulation. In Figures 3.2a and 3.2b, we compare the
exact solution of optimal control with the numerical optimal control, obtained from
our Runge-Kutta scheme.

In Table 3.2, one can see the efficiency of our Runge-Kutta method, when compared
to Euler scheme with regard to time consumption.
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(a) Optimal control forσ = 0.3.
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(b) Optimal control forσ = 0.5.

Figure 3.2: Optimal control in Example 3.2.

Table 3.2: Comparison of Runge-Kutta and Euler method withσ = 0.3 in Example
3.2.

CPU Time (sec) # of Iterations
∆ Euler Runge-Kutta Euler Runge-Kutta
23 12.31 1.58 35 27
24 22.81 2.58 39 23
25 35.45 6.29 33 36
26 74.10 10.06 36 32
27 186.01 19.83 47 34
28 266.00 48.78 34 44

3.5 Summary

In this chapter, we mainly focused on a Runge-Kutta scheme forthe optimal con-
trol problem of SDEs by following thediscretize-then-optimizeapproach. Firstly, we
discretized the cost functional and the state equation withthe help of Runge-Kutta
schemes. Then, by addressing the discrete Lagrangian, we got the Runge-Kutta dis-
cretizations of the adjoint pair(p(t), q(t)) and we derived the Runge-Kutta coefficients
of the adjoint pair in terms of the Runge-Kutta coefficients ofthe state equation. We
compared the numerical results with the exact solutions andEuler method. The numer-
ical results agree with the exact solutions. The efficiency of our Runge-Kutta scheme
comes from its time consumption. The Euler scheme consumes more CPU time than
our Runge-Kutta method does.
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CHAPTER 4

RUNGE-KUTTA SCHEME FOR STOCHASTIC OPTIMAL
CONTROL PROBLEMS OF SOME SPDEs

4.1 Introduction

Optimal harvesting problem is an important model and tool inmathematical bioeco-
nomics [1, 34, 56]. For instance, it is used in forestry, agriculture or a marine resource
such as fish harvesting. This is an important problem in providing food and other or-
ganic resources for the people of the world, while caring forthe world in a sustainable
way. Early developments of this problem were studied in a deterministic environment
[12]. However, environmental and human factors cause that the populations are in
various states with some probabilities. So, this situationneeds modeling in a stochas-
tic environment. Optimal harvesting problem was investigated for the first time in a
stochastic environment at the end of 1990’s. Alvarez and Sheep [1] and Lungu and
Øksendal [34] handled the optimal harvesting on different population models, which
were modelled by stochastic optimal control theory. Later,Lungu and Øksendal [35],
Øksendal [43] and Pinheiro [50] continued to study on that topic. More studies about
optimal harvesting problems, e.g., by the example of the fisheries can be found in
[2, 18, 25, 39, 47, 49, 64].

We obtained our Runge-Kutta scheme for optimal control problems of SDEs in Chapter
3. In this chapter, our aim is to solve an stochastic optimal control program of SPDEs
by Runge-Kutta method. We choose Øksendal’s optimal harvesting problem [35, 43].
In this problem, the density of the population is given by an SPDE and the problem
is to maximize in a balanced way the total expected utility ofthe consumption and
the terminal size of the population while controlling the harvesting rate. By using the
finite difference scheme, we discretize the problem with respect to the space variable
and convert the given program to optimal control problems ofsystem of SDEs. Then,
we employ our Runge-Kutta scheme for the resulting optimal control problem.

4.2 Formulation of Optimal Harvesting Problem

Let (W (t))0≤t≤T be a 1-dimensional Brownian motion on the filtered probability space
(Ω,F , (F(t))t∈[0,T ],P), whereT > 0 is a time maturity andΩ ⊂ R is a given set.
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On this probability space, the space of real-valued square integrable(F(t))-adapted
processes is defined overL2(0, T ). DefiningA := [0, T ] × [0, 1], we consider the
objective of our optimal control problem to maximize an overall expected utility of the
consumption

E

[∫ T

0

∫ 1

0

uγ(t, x)

γ
dxdt+ θ

∫ 1

0

y(T, x)dx

]

,

with risk-aversion coefficientγ ∈ (0, 1) and regularization parameterθ > 0. Here,
u ∈ L2(A) is the stochastic control variable which stands for the harvesting rate. In
this work, we address the following stochastic reaction-diffusion equation [43]:






dy(t, x) =

(
1

2
∆y(t, x) + µy(t, x)− u(t, x)

)

dt+ λy(t, x)dW

(x ∈ [0, 1], t ∈ [0, T ]),

y(0, x) = y0(x) (x ∈ [0, 1]),

y(t, 0) = y(t, 1) = 0 (t ∈ [0, T ]),

(4.1)

wherey ∈ L2(A) is the state variable which represents the density of the population
living in an environment with a limited carrying capacityK(t). Furthermore,µ > 0
andλ are given constants in the stochastic carrying capacityK(t), defined asdK =
µdt+ λdW , and∆ is the Laplacian onR:

∆y(t, x) =
∂2y(t, x)

∂x2
.

See [45, 46] for more information on reaction-diffusion equations.

4.3 Discretization with Finite Difference Scheme

Our optimal control problem governed by SPDEs can be stated as:

(P1)







maximize
u∈L2(A)

E

[∫ T

0

∫ 1

0

uγ(t, x)

γ
dxdt+ θ

∫ 1

0

y(T, x)dx

]

subject to Eqn. (4.1).

Now, we use a finite difference scheme to approximate the space variable. We let
the spatial length scale beh := xm − xm−1 = 1/M (m = 1, 2, . . . ,M). For the
space variable,0 ≤ x0 < x1 < . . . < xm < . . . < xM = 1 denotes the equispaced
discretization of space interval[0, 1]. We letym andum correspond toy(t, hm) and
u(t, hm), respectively, in the continuous case. Now, by applying thesecond-order
central difference scheme for the space variable, we get

dym =

(
ym−1 − 2ym + ym+1

2h2
+ µym − um

)

dt+ λymdW (m = 1, 2, . . . ,M − 1).
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Then, we obtain a system of SDEs:

dy1 =

(
y0 + y2

2h2
−

1

2h2
y1 + µy1 − u1

)

dt+ λy1dW,

dy2 =

(
y1 + y3

2h2
−

1

2h2
y2 + µy2 − u2

)

dt+ λy2dW,

...

dym =

(
ym−1 + ym+1

2h2
−

1

2h2
ym + µym − um

)

dt+ λymdW,

...

dyM−1 =

(
yM−2 + yM

2h2
−

1

2h2
yM−1 + µyM−1 − uM−1

)

dt+ λyM−1dW,

which we rewrite in the matrix-vector notation:

dY = (
1

2
AY + µY −U)dt+ λYdW,

where

A :=











−1/h2 1/2h2 0 · · · 0 0
1/2h2 −1/h2 1/2h2 · · · 0 0
0 1/2h2 −1/h2 · · · 0 0
...

...
...

. ..
...

...
0 0 0 · · · −1/h2 1/2h2

0 0 0 · · · 1/2h2 −1/h2











,

Y := (y1, y2, . . . , yM−1)T , U := (u1, u2, . . . , uM−1)T , U := (u1, u2, . . . , uM)T and
Y(0) = Y

0
:= (y10, y

2
0, . . . , y

M
0 )T .

Now, we can rewrite our optimal control problem, governed bya system of SDEs, as
follows:







maximize
u∈L2(A)

hE

[
∫ T

0

M∑

m=1

(um)γ

γ
dt+

M∑

m=1

θ(ymT )

]

subject to dY = (
1

2
AY + µY −U)dt+ λYdW (t ∈ [0, T ]),

Y(0) = Y
0
.

For simplicity, to write the cost functional in a quadratic form, we restate the above
problem in full matrix-vector form as
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(P ′′)







maximize
U∈L2(A)

hE

[∫ T

0

V(U)TV(U)

γ
dt+ θ(YT )

T1

]

,

subject to dY = (
1

2
AY + µY −U)dt+ λYdW (t ∈ [0, T ])

Y(0) = Y
0
,

whereV =
(
(u1)γ/2, (u2)γ/2, . . . , (uM)γ/2

)T
and1 = (1, 1, . . . , 1)T . We note that the

problem(P ′′) is continuous in time. In this work, our strategy is to followthe approach
discretize-then-optimize. But, we need to write the continuous optimality conditions
explicitly when choosing some parameters in the discrete optimality system. Herewith,
we first derive the continuous optimality conditions in the following section.

4.4 First-Order Necessary Optimality Conditions

We recall theHamiltonian functionof the optimal control problem as:

H(t,Y,U,P,Q) =
1

γ
hV(U)TV(U)+

(
1

2
AY + µY −U

)T

P+
1

2
tr
{
λ2QYYT

}
,

for a coupled process(P(t),Q(t)) that is adapted with respect to(F(t))t∈[0,T ], where
P(t) is a vector having dimension(M − 1) andQ(t) is an (M − 1) × (M − 1)-
dimensional matrix. This pair satisfies the following continuous first-order necessary
optimality system:







dY = HP(t,Y,U,P,Q)dt+ λYdW (t ∈ [0, T ]),

dP = −HY(t,Y,U,P,Q)dt+ λQYdW (t ∈ [0, T ]),

0 = H
U
(t,Y,U,P,Q) (t ∈ [0, T ]),

Y(0) = Y
0
,

P(T ) = θ1.

Let us consider the termtr
{
λ2QYYT

}
. After we perform the matrix multiplication,

we evaluate the trace of the resulting matrix to get

tr
{
λ2QYYT

}
=λ2y1(q1,1y

1 + q1,2y
2 + . . .+ q1,M−1y

M−1
t )

+ λ2y2(q2,1y
1 + q2,2y

2 + . . .+ q2,M−1y
M−1)

...

+ λ2yM−1(qM−1,1y
1 + qM−1,2y

2 + . . .+ qM−1,M−1y
M−1).
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We take the partial derivatives of the Hamiltonian functionwith respect to the coordi-
nates ofY. Then, we obtain

∂

∂Y

{
1

2
tr
{
λ2QYYT

}
}

= λ2(Q+QT )Y.

So, it is easy to see that

HY(t,Y,U,P,Q) =
1

2
ATP+ µP+ λ2(Q+QT )Y.

Now, we arrive at the so-calledadjoint equation

dP = −(
1

2
ATP+ µP+ λ2(Q+QT )Y)dt+ λQYdW.

If we take the partial derivatives of the Hamiltonian function with respect to the coor-
dinates ofU, then we obtain the gradient equation as follows:

0 = H
U
(t,Y,U,P,Q) = hV̄(U)− (PT , 0)T ,

whereV̄(U) =
(
(U1)γ/2, (U2)γ/2, . . . , (UM)γ/2

)T
. Then,

Ui =
1

h
(Pi)2/γ (i = 1, 2, . . . ,M − 1), UM = 0.

SinceUM = 0, it is enough if we just refer toU rather thanU from now on.

In the following section, we use Runge-Kutta method to formulate the discrete optimal
control problem. At the end, we will obtain a Runge-Kutta scheme for the discrete
adjoint variable.

4.5 Runge-Kutta Schemes for Optimal Harvesting Problem

We introduce a discretization0 = t0 < t1 < . . . < tn < . . . < tN = T of the
time interval[0, T ]. Let ∆ = T/N denote the increments (step-size) and∆W be an
N (0,∆)-distributed Gaussian increment of the Brownian motionW .

Now, we state thes-stage Runge-Kutta discretization, for somes ∈ Z
+, of the problem

(P ′′) as
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(P ′)







maximize
U∈L2(A)

h

γ
E

[

∆
N−1∑

k=0

s∑

i=1

αiV(Uki)
TV(Uki) + θ(YN)

T1

]

subject to Yk+1 = Yk +∆
s∑

i=1

αi(
1

2
AYki + µYki −Uki) + ∆W

s∑

i=1

βiλYki,

Yki = Yk +∆
s∑

j=1

aij(
1

2
AYkj + µYkj −Ukj) + ∆W

s∑

j=1

bijλYkj,

Y(0) = Y
0
,

whereYki andUki have the dimension(M − 1) and the constantsαi, βi, aij, bij,
are the Runge-Kutta coefficients fork = 0, 1, . . . , N − 1, andi, j = 1, 2, . . . , s. The
Butcher array of the Runge-Kutta discretization of the systemof problem(P ′) is given
by

c1 a11 . . . a1s
...

...
.. .

...
cs as1 . . . ass

α1 . . . αs

d1 b11 . . . b1s
...

...
.. .

...
ds bs1 . . . bss

β1 . . . βs

In the following proposition, we achieve our discrete optimality conditions by defining
the discrete Lagrangian.

Proposition 4.1. If αi 6= 0 andβi 6= 0 (i = 1, 2, . . . , s, andk = 0, 1, . . . , N − 1) are
the Runge-Kutta coefficients of the problem(P ′), then the discrete first-order necessary
optimality conditions of the problem(P ′) are obtained as







Yk+1 = Yk +∆
s∑

i=1

αi

(
1

2
AYki + µYki −Uki

)

+∆W
s∑

i=1

βiλYki,

Yki = Yk +∆
s∑

j=1

aij

(
1

2
AYkj + µYkj −Ukj

)

+∆W
s∑

j=1

bijλYkj,

Pk+1 = Pk −∆
s∑

i=1

α̃iHY(Yki,Uki,Pki,Qki) + ∆W
s∑

i=1

β̃iλQkiYki,

Pki = Pk −∆
s∑

j=1

ãijHY(Ykj,Ukj ,Pkj,Qkj) + ∆W
s∑

j=1

b̃ijλQkjYkj,

QkiΨki = Pk −∆
s∑

j=1

âijHY(Ykj,Ukj ,Pkj,Qkj) + ∆W
s∑

j=1

b̂ijλQkjYkj,

PN = YN ,

Y(0) = Y
0
,
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wherePki andQki have the dimensions(M−1) and(M−1)× (M−1), respectively,
for k = 0, . . . , N − 1, and i = 1, 2, . . . , s. The coefficients satisfy the following
relations:

α̃i := αi, β̃i := βi,

ãij := αj −
αj

αi

aji, b̃ij := βj −
βj
αi

aji,

âij := αj −
αj

βi
bji, b̂ij := βj −

βj
βi
bji,

with

Ψki := λ
∆αi

∆Wβi
Q−1

ki (Qki +QT
ki)Yki −Yki (k = 0, . . . , N − 1).

Proof. Let be

Kki :=
1

2
AYki + µYki −Uki

and

Mki := λYki,

so that we have

1

2
AYki + µYki −Uki

=
1

2
A

(

Yk +∆
s∑

j=1

aij

(
1

2
AYkj + µYkj −Ukj

)

+∆W
s∑

j=1

bijλYkj

)

+ µ

(

Yk +∆
s∑

j=1

aij

(
1

2
AYkj + µYkj −Ukj

)

+∆W
s∑

j=1

bijλYkj

)

−Uki,

and

λYki = λ

(

Yk +∆
s∑

j=1

aij

(
1

2
AYkj + µYkj −Ukj

)

+∆W
s∑

j=1

bijλYkj

)

.

Then, by usingKki andMki introduced above, we can write the discretized Lagrangian
as:
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L(Yki,Uki,Pki,Qki,Ξki,Zki) := E
[
P0(Y0 −Y0)

+
h

γ

N−1∑

k=0

∆t
s∑

i=1

αiV(Uki)
TV(Uki) + (YN)

T1

+
N−1∑

k=0

{
s∑

i=1

PT
k+1

(

Yk −Yk+1 +∆
s∑

i=1

αiKki +∆W
s∑

i=1

βiMki

)

+
s∑

i=1

ΞT
ki

(

1

2
A

(

Yk +∆
s∑

j=1

aijKkj +∆W
s∑

j=1

bijMkj

)

+ µ

(

Yk +∆
s∑

j=1

aijKkj +∆W
s∑

j=1

bijMkj

)

−Uki −Kki

)

+
s∑

i=1

ZT
ki

(

λ

(

Yk +∆t
s∑

j=1

aijKkj +∆W
s∑

j=1

bijMkj

)

−Mki

)}]

,

whereP0, Pk+1, Ξki, Zki, are the vectors of Lagrange multipliers. Equating to zero
the derivatives of this Lagrangian function with respect toall the coordinates ofYN ,
Y0, Yk, for k = 1, 2, . . . , N − 1, and ofΞki, Zki, Uki, for k = 0, 1, . . . , N − 1, we
obtain:

PN = θ1,

P1 = P0,

Pk −Pk+1 =
s∑

i=1

1

2
ATΞki + µΞki +

s∑

i=1

λZki,

Ξki = ∆αiPk+1 +∆
s∑

j=1

1

2
ajiA

TΞkj +∆
s∑

j=1

1

2
ajiµΞkj +∆

s∑

j=1

ajiZkj,

Zki = ∆WβiPk+1 +∆W
s∑

j=1

1

2
bjiA

TΞkj +∆W
s∑

j=1

1

2
bjiµΞkj

+∆W
s∑

j=1

bjiλZkj,

0 = h∆αiV̄(Uki)−Ξki.

Let us set

Ξki := ∆αiPki

and

Zki := ∆WβiQkiΨki
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with

Ψki := λ
∆αi

∆Wβi
Q−1

ki (Qki +QT
ki)Yki −Yki,

whereαi 6= 0 andβi 6= 0 (i = 1, 2, . . . , s). If these values vanish, then the solution of
the discrete problem may not converge to the solution of the continuous problem.

By eliminatingΞki andZki in the above equations, and comparing with the first-order
continuous optimality conditions given in Section 4, we obtain the desired result.

4.6 Numerical Application

We employ Monte-Carlo method to approximate conditional expectations [20, 30, 31].
To solve our stochastic optimal control problem, we use a gradient-descent type algo-
rithm. We apply a line-search method to accelerate the implementation. In computa-
tions, we use the following discretization schemes for the state variable,y, to obtain
the 2-stage of stochastic Runge-Kutta scheme [17] given by

0 0
1 1 0

1/2 1/2

0 0
2/3 2/3 0

1/4 3/4

Now, we let beθ = 1, γ = 1/2 andλ = 1 in problem(P1). We perform the matrix-
vector formulation as stated in Proposition 4.1. Furthermore, we employ a 2-step
Runge-Kutta method. Since the adjoint equation is backward in time, by Proposition
4.1, we can write:







Qk2Ψk2 = Pk+1,

Qk1Ψk1 = Pk+1 +
4∆

3

(
1

2
ATPk2 + λ2(Qk2 +QT

k2)Yk2

)

− 2∆WQk2Yk2,

Ψk1 = λPk+1
2∆

∆W
Q−1

k1 (Qk1 +QT
k1)Yk1 −Yk1,

Ψk2 = λPk+1
2∆

3∆W
Q−1

k2 (Qk2 +QT
k2)Yk2 −Yk2.
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We rewrite these equations to get







Y(0) = Y0,

Yk1 = Yk,

Yk2 = Yk +∆

(
1

2
AYk1 + µYk1 −Uk1

)

+ λ
2∆W

3
Yk1,

Yk+1 = Yk +
∆

2

(
1

2
AYk1 + µYk1 −Uk1 +

1

2
AYk2 + µYk2 −Uk2

)

+ λ
∆W

4
(Yk1 + 3Yk2),

Pk1 = Pk+1 +∆

(
1

2
ATPk2 + λ2(Qk2 +QT

k2)Yk2

)

− λ
3∆W

2
Qk2Yk2,

Pk2 = Pk+1,

Pk = Pk+1 +
∆

2

(
1

2
ATPk1 + λ2(Qk1 +QT

k1)Yk1 +
1

2
ATPk2

+ λ2(Qk2 +QT
k2)Yk2

)

− λ
∆W

4
(Qk1Yk1 + 3Qk2Yk2),

PN = YN ,

wherek = 0, 1, . . . , N − 1.

We useh = 0.1 and∆ = 2−7. In our Monte-Carlo simulation, the number of orbits
is chosen as100. In Figures 4.1-4.3, we present the numerical solutions of the optimal
state and control variables with varying parameterµ.

Let us note that one of the advantages of our Runge-Kutta scheme is that it gives the
Lagrange multiplier pair(P,Q) explicitly. However, if thediscretize-then-optimize
approach is used with the Euler method, the multiplier vector Q disappears. Thus, the
solution with Euler method is far away from the solution obtained with our Runge-
Kutta scheme.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

Time

O
pt

im
al

 S
ta

te

0 0.2 0.4 0.6 0.8 1
0.275

0.28

0.285

0.29

0.295

0.3

0.305

0.31

0.315

0.32

0.325

Time

O
pt

im
al

 C
on

tr
ol

Figure 4.1: Density of the population (left), harvesting rate (right) forµ = 8 atx = 0.5.
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Figure 4.2: Density of the population (left), harvesting rate (right) forµ = 9 atx = 0.5.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

Time

O
pt

im
al

 S
ta

te

0 0.2 0.4 0.6 0.8 1
0.027

0.028

0.029

0.03

0.031

0.032

0.033

0.034

0.035

0.036

Time

O
pt

im
al

 C
on

tr
ol

Figure 4.3: Density of the population (left), harvesting rate (right) for µ = 10 at
x = 0.5.

4.7 Summary

In this chapter, we studied the Runge-Kutta methods for the optimal control of a
stochastic harvesting problem. A stochastic reaction-diffusion type of problem was
chosen for modeling of the optimal harvesting. We formulated the control problem
of SPDEs in terms of SDEs with the help of matrices and vectors. Furthermore, we
showed that if a Runge-Kutta type method is applied to the constraint equation, then a
similar scheme is obtained for the corresponding adjoint equation.
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CHAPTER 5

STRONG-ORDER CONDITIONS OF THE RUNGE-KUTTA
SCHEME FOR STOCHASTIC OPTIMAL CONTROL

PROBLEMS

5.1 Introduction

In Chapter 3, we derived our Runge-Kutta scheme for stochasticoptimal control prob-
lems of SDEs by usingdiscretize-then-optimizeapproach. At this point, it is important
to measure the accuracy of our Runge-Kutta approximation by using either the strong-
order convergence or the weak-order convergence criteria.Strong approximations in-
volve direct simulation of stochastic paths and this provides useful information about
the qualitative behavior of the investigated model. Actually, strong convergence crite-
ria of Runge-Kutta scheme for SDEs is investigated by Burrage [8] and strong-order
conditions are derived. In this chapter, our aim is to get strong-order conditions of our
Runge-Kutta scheme for stochastic optimal control problems.

We letζ(T ) be a numerical approximation toX(tN) afterN steps with constant step
size∆ := (tN − t0)/N . Thenζ(T ) is said to converge strongly toX with orderr > 0
if there exists a constantC > 0, which does not depend on∆, and a∆0 > 0 such that

E [‖ζ(T )−X(tN)‖2] ≤ C∆r, ∆ ∈ (0,∆0),

whereX = (y, p)T areζ = (ŷ, p̂)T the solution of continuous(OCc) and discrete
optimality system(OCd) in Chapter 3, respectively. We notice that these optimality
systems are stated in Itô forms. In this chapter, we address these optimality sytemsin
related Stratonovich forms.

Here, by assuming exact initial values, the Stratonovich-Taylor expansions of the exact
solution and of the solution based on our Runge-Kutta scheme are compared to find
the order of accuracy. Firstly, we obtain strong order-1 conditions of our Runge-Kutta
method for the optimal control of SDEs. Then, we show why it isnot possible to
exceed the strong order-1 with our Runge-Kutta scheme, and wepresent the minimal
truncation-error constants of our Runge-Kutta method for the optimal control of SDEs.
By employing a more general Runge-Kutta scheme, we get strong order-1.5 conditions
of the Runge-Kutta method on the optimal control of SDEs. In this chapter, such order
conditions are derived explicitly. We confirm our results with numerical examples.
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Now, we restate our optimal control problem as:

(Pc)







minimize
u∈L2(t0,T )

E

[

Φ(y(T )) +

∫ T

t0

E[g(y, u)]dt

]

subject to dy = f(y, u)dt+ h(y)dW (t ∈ [t0, T ]),

y(0) = y0.

We recall theHamilton functionof the optimal control problem:

H(y, u, p, q) = g(y, u) + f(y, u)p+
1

2
h2(y)q,

with the following continuous first-order optimality system:

(OCc)







dy = Hp(y, u, p, q)dt+ h(y)dW (t ∈ [t0, T ]),

dp = −Hy(y, u, p, q)dt+ h(y)qdW (t ∈ [t0, T ]),

0 = Hu(y, u, p, q) (t ∈ [t0, T ]),

y(t0) = y0,

p(T ) = φ′(y(T )).

5.2 Problem Formulation and Discretization

LetX, F andH denote the following pairs:

X =

(
y
p

)

, F =

(
f

−Hy

)

, H =

(
h
hq

)

.

With this notation, we can write constraint of problem(Pc) in the form

dX = F(y, u, p, q)dt+H(y, q)dW

as an It̂o SDE, or
dX = F(y, u, p, q)dt+H(y, q) ◦ dW (5.1)

as its related Stratonovich SDE with a modified drift coefficient which is defined by
[28] with the vector

F = F−
1

2
H′H,

whereF = (f,Hy)
T . For simplicity, we rewrite Eqn. (5.1) as

dX = F(X)dt+H(X) ◦ dW, (5.2)

where◦dW represents Stratonovich integral with respect to the Brownian motionW .

We note that any SDE in Itô form can be easily converted to its Stratonovich version,
and vice versa [28]. While both SDEs have the same solution, the choice about which
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one is more appropriate to use, depends on the specific problem. Since Stratonovich
calculus follows the same rules as Riemann-Stieltjes calculus, in this chapter, it is more
advantageous to employ the Stratonovich representation ofan SDE.

By following [8, 28], we get the Stratonovich-Taylor approximation of Eqn. (5.2) in
the subsequent way.

LetL0 andL1 be vector-valued operators of 2 variables defined as

L
0Φ :=

∂Φ

∂X
F and L

1Φ :=
∂Φ

∂X
H,

whereΦ is any twice continuously differentiable vector-valued function of 2 variables.
We note that∂Φ/∂X stands for Jacobian matrix ofΦ so thatL0Φ andL1Φ are vec-
tors. Now, application of deterministic Chain Rule gives:

Φ(X(t)) = Φ(X(t0)) +

∫ t

t0

∂Φ(X(s))

∂X
F(X(s))ds

+

∫ t

t0

∂Φ(X(s))

∂X
H(X(s)) ◦ dW (s)

= Φ(X(t0)) +

∫ t

t0

L
0Φ(X(s))ds+

∫ t

t0

L
1Φ(X(s)) ◦ dW (s). (5.3)

If we chooseΦ(X(t)) = X(t), we obtain the original Stratonovich SDE (5.1) in inte-
gral form:

X(t) = X(t0) +

∫ t

t0

F(X(s))ds+

∫ t

t0

H(X(s)) ◦ dW (s). (5.4)

Similarly, forΦ(X(t)) = F(X(t)) andΦ(X(t)) = H(X(t)), Eqn. (5.3) reduces to

F(X(t)) = F(X(t0)) +

∫ t

t0

L
0F(X(s))ds+

∫ t

t0

L
1F(X(s)) ◦ dW (s), (5.5)

H(X(t)) = H(X(t0)) +

∫ t

t0

L
0H(X(s))ds+

∫ t

t0

L
1H(X(s)) ◦ dW (s). (5.6)

Substituting Eqn. (5.5) and Eqn. (5.6) into Eqn. (5.4) implies that

X(t) = X(t0) +

∫ t

t0

(

F(X(t0)) +

∫ s

t0

L
0F(X(z))dz +

∫ s

t0

L
1F(X(z)) ◦ dW (z)

)

ds

+

∫ t

t0

(

H(X(t0)) +

∫ s

t0

L
0H(X(z))dz

+

∫ s

t0

L
1H(X(z)) ◦ dW (z)

)

◦ dW (s)

= X(t0) + F(X(t0))J0 +H(X(t0))J1

+

∫ t

t0

∫ s

t0

L
0F(X(z))dzds+

∫ t

t0

∫ s

t0

L
1F(X(z)) ◦ dW (z)ds

+

∫ t

t0

∫ s

t0

L
0H(X(z))dz ◦ dW (s) +L

1H(X(z)) ◦ dW (z) ◦ dW (s).
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If we continue to apply Eqn. (5.3) to the integrand functionsappearing in the above
equation, we reach the Stratonovich-Taylor approximationof Eqn. (5.2):

X(t) = X(t0) + (FJ0 +HJ1 + F′FJ00 + F′HJ10 +H′FJ01 +H′HJ11
+ F′F′FJ000 + F′′FFJ000 + F′F′HJ100 + F′′FHJ100
+ F′H′FJ010 + F′′HFJ010 + F′H′HJ110 + F′′HHJ110 (5.7)
+ F′H′FJ001 +H′′FFJ001 +H′F′HJ101 +H′′FHJ101
+H′H′FJ011 +H′′HFJ011 +H′H′HJ111 +H′′HHJ111)(X(t0)) +R.

Here,R represents the remainder term andJj1j2...jk stands for a Stratonovich multiple
integral, where integration is with respect tods if ji = 0, or ◦dW (s) if ji = 1. For
example, in one dimension,

J110 =

∫ t

t0

∫ s3

t0

∫ s2

t0

◦dW (s1) ◦ dW (s2)ds3.

Let us note that the derivatives should be viewed in an operator context. For instance,
the first derivative of a vector-valued functionF is the Jacobian matrix, so thatF′F

corresponds to multiplying the Jacobian matrix by the vector F to give a vector. The
second derivativeF′′ operates on a pair of vectors(F,F) to give a vectorF′′FF.

We introduce an equispaced discretization0 = t0 < t1 < . . . < tk < . . . < tN = T of
the time interval[0, T ]. Let∆ := T/N denote the time increments (step-size).

Now, we state thes-stage Runge-Kutta discretization, for somes ∈ Z
+, of the optimal

control problem(P) in the Stratonovich form as:

(P ′
d)







minimize E

[

φ(yN) + J0

N−1∑

k=0

s∑

i=1

αig(yki, uki)

]

subject to yk+1 = yk + J0

s∑

i=1

αif(yki, uki) + J1

s∑

i=1

βih(yki),

yki = yk + J0

s∑

j=1

aijf(ykj, ukj) + J1

s∑

j=1

bijh(ykj),

y0 = y0,

for k = 0, 1, . . . , N − 1, where the constantsαi, βi, aij , bij (i = 1, 2, . . . , s) are
the Runge-Kutta coefficients. The Butcher array of the Runge-Kutta discretization of
system of problem(P ′

d) is given by

c1 a11 . . . a1s
...

...
.. .

...
cs as1 . . . ass

α1 . . . αs

d1 b11 . . . b1s
...

...
.. .

...
ds bs1 . . . bss

β1 . . . βs
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Theorem 5.1. [6, 8] Letαi, βi, aij, bij (i, j = 1, 2, . . . , s) be the Runge-Kutta coeffi-
cients. If the coefficients of stochastic Runge-Kutta method for SDEs (2.11) fulfill the
following conditions:

A1.
s∑

i=1

αi = 1, A2.
s∑

i=1

βi = 1, A3.
s∑

i,j=1

βibij =
1

2
,

then the stochastic Runge-Kutta method converges of order-1 in the strong sense.

5.3 Strong Order-1 Conditions of Runge-Kutta Method with Minimal Trunca-
tion Error Constants for Stochastic Optimal Control Problems

In Chapter 3, we have derived the discrete optimality conditions,(OCd), for stochastic
optimal control problems of SDEs in Itô form. Similar discrete optimality conditions
can be also derived for stochastic optimal control problemsof SDEs in the Stratonovich
form.

Theorem 5.2. If αi, βi, aij, bij (i, j = 1, 2, . . . , s) are the Runge-Kutta coefficients in
the system of problem(P ′

d), then the discrete first-order optimality conditions associ-
ated to the system of problem(P ′

d) are obtained as:

(OC ′
d)







yk+1 = yk + J0

s∑

i=1

αif(yki, uki) + J1

s∑

i=1

βih(yki),

yki = yk + J0

s∑

j=1

aijf(ykj, ukj) + J1

s∑

j=1

bijh(ykj),

pk+1 = pk − J0

s∑

i=1

α̃iHy(yki, uki, pki, qki) + J1

s∑

i=1

β̃ih(yki)qki,

pki = pk − J0

s∑

j=1

ãijHy(ykj, ukj, pkj, qkj) + J1

s∑

j=1

b̃ijh(ykj)qkj,

qkiψki = pk − J0

s∑

j=1

âijHy(ykj, ukj, pkj, qkj) + J1

s∑

j=1

b̂ijh(ykj)qkj,

pN = φ′(yN),

y0 = y0,

0 = ∆
s∑

i=1

αiHu(yki, uki, pki, qki),

for k = 0, 1, . . . , N − 1, where the coefficients satisfy the subsequent relations:
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α̃i := αi, β̃i := βi,

ãij := αj −
αj

αi

aji, b̃ij := βj −
βj
αi

aji,

âij := αj −
αj

βi
bji, b̂ij := βj −

βj
βi
bji,

with

ψki :=
J0tαih(yki)

J1βi
−
h(yki)

h′(yki)
.

We shall not give the proof here, since it is quite similar to the Itô case, Theorem 3.1,
which is given in Chapter 3.

Now, we will obtain strong order-1 conditions of our Runge-Kutta scheme by matching
the Stratonovich-Taylor series expansion of the exact solution and the approximation
defined by the Runge-Kutta method for SDEs over one step, assuming exact initial
values. For this reason, we use a similar notation to Hager (see page 261 in [21]) and
we first write the Stratonovich-Taylor series expansion of the approximation defined
via the Runge-Kutta method, by benefiting from the approach ofButcher [6, 8, 9].

In order to study order conditions of discrete optimality conditions(OC ′
d), the(OC ′

d)
will be written as a function oft. By using Butcher approach, we writetn = t0, and for
a givent = t0+∆. For a given initial iteration valuesyk andpk+1, the solutionsyki and
pki are functions oft, denoted byyki(t) andpki(t), respectively. Let the valuespk(t)
andyk+1(t) stand for the iteratespk andyk+1, respectively, which can be calculated as
y(t) andp(t) with intermediate valuesyki = yki(t) andpki = pki(t). For this reason, let
ζ(t) = (y(t), p(t))T be the vector of length2N(s+ 1) and letζki(t), ζs+1(t), F̃(ζ(t))
andH̃(ζ(t)) denote the following pairs:

ζki(t) =

(

yki(t)

pki(t)

)

(1 ≤ i ≤ s), ζs+1(t) =

(

yk+1(t)

pk(t)

)

(i = s+ 1),

F̃(ζ(t)) = F̃i(ζ(t)) =

( ∑s
j=1 aijf(ζkj(t))

∑s
j=1 ãijHy(ζkj(t))

)

(1 ≤ i ≤ s+ 1),

and

H̃(ζ(t)) = H̃i(ζ(t)) =

( ∑s
j=1 bijh(ζkj(t))

∑s
j=1 b̃ijh(ζkj(t))q(ζkj(t))

)

(1 ≤ i ≤ s+ 1),

wherek = 0, 1, . . . , N − 1, is the index of the Runge-Kutta scheme in the discrete
optimality conditions(OC ′

d), with

as+1,j = ãs+1,j = αj (1 ≤ j ≤ s),

bs+1,j = b̃s+1,j = βj (1 ≤ j ≤ s).
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By using the above notation, we can state the discrete optimality conditions(OC ′
d) in

the form

ζ(t) = ζ(t0) + (t− t0)F̃(ζ(t)) + J1H̃(ζ(t)) (1 ≤ i ≤ s+ 1), (5.8)

whereJ1 = ∆W = W (t)−W (t0) so thatJ1(t0) = 0.

The termF̃(ζ(t)) (andH̃(ζ(t)), analogously) can be represented by using a Taylor-
series expansion:

F̃(ζ(t)) = F̃(ζ(t0)) +
∞∑

n=1

L
n
∆F̃(ζ(t0))

n!
, (5.9)

whereL∆ is the vector-valued differential operator of 2 variables,given by

L∆Φ := ∆
∂Φ

∂t
+ J1

∂Φ

∂J1
,

sinceΦ is any twice continuously differentiable vector-valued function of 2 variables.
Thus, it is seen that

L∆F̃(ζ(t)) = ∆F̃
′
(ζ(t))

(

F̃(ζ(t)) + (t− t0)F̃
′
(ζ(t))

∂ζ(t)

∂t
+ J1H̃

′(ζ(t))
∂ζ(t)

∂t

)

+ J1F̃
′
(ζ(t))

(

(t− t0)F̃
′
(ζ(t))

∂ζ(t)

∂J1
+ H̃(ζ(t)) + J1H̃

′(ζ(t))
∂ζ(t)

∂J1

)

,

so that

L∆F̃(ζ(t0)) = J0F̃
′
(ζ(t0))F̃(ζ(t0)) + J1F̃

′
(ζ(t0))H̃(ζ(t0)).

Similarly,

L∆H̃(ζ(t0)) = J0H̃
′(ζ(t0))F̃(ζ(t0)) + J1H̃

′(ζ(t0))H̃(ζ(t0)).

Then, the Stratonovich-Taylor approximation of Eqn. (5.8)looks as follows:

ζ(t) = ζ(t0) + J0F̃(ζ(t)) + J1

(

H̃(ζ(t))
)

= ζ(t0) + J0

(

F̃(ζ(t0)) +LF̃(ζ(t0)) +
1

2!
L

2F̃(ζ(t0)) + . . .

)

+ J1

(

H̃(ζ(t0)) +LH̃(ζ(t0)) +
1

2!
L

2H̃(ζ(t0)) + . . .

)

,
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ζ(t) = ζ(t0) +

(

J0F̃+ J2
0 F̃

′
F̃+ J0J1F̃

′
H̃+

1

2
J3
0 F̃

′′
F̃F̃+ J3

0F
′F̃

′
F̃

+ J2
0J1F̃

′
F̃

′
H̃+

1

2
J2
0J1F̃

′′
F̃H̃+ J2

0J1F̃
′
H̃′F̃

+
1

2
J2
0J1F̃

′′
H̃F̃+

1

2
J0J

2
1 F̃

′′
H̃H̃+ J0J

2
1 F̃

′
H̃′H̃

)

(ζ(t0)) + . . . (5.10)

+

(

J1H̃+ J0J1H̃
′F̃+ J2

1 H̃
′H̃+

1

2
J2
0J1H̃

′′F̃F̃+ J2
0J1H̃

′F̃
′
F̃

+ J0J
2
1 H̃

′F̃
′
H̃+

1

2
J0J

2
1 H̃

′′H̃F̃+ J0J
2
1 H̃

′H̃′F̃+
1

2
J0J

2
1 H̃

′′H̃F̃

+
1

2
J3
1 H̃

′′H̃H̃+ J3
1 H̃

′H̃′H̃

)

(ζ(t0)) + . . .

As we mentioned, in the case of the Stratonovich-Taylor expansion of the exact solu-
tion, the derivatives should be considered in an operator context.

For simplicity,

F̃i =

( ∑s
j=1 aijf

−
∑s

j=1 ãijHy

)

=
s∑

j=1

aijf
0 +

s∑

j=1

ãij(−H
0
y) (1 ≤ i ≤ s+ 1),

where

f0 =

(

f

0

)

, H
0
y =

(

0

−Hy

)

,

and

H̃i =

( ∑s
j=1 bijh

∑s
j=1 b̃ijhq

)

=
s∑

j=1

bijh
0 +

s∑

j=1

b̃ij(hq)
0 (1 ≤ i ≤ s+ 1),

with

h0 =

(

h

0

)

, (hq)0 =

(

0

hq

)

,

and

(F̃
′

i)j = aij(f
0)′ + ãij((Hy)

0)′.

The J-integralsJ0, J1, J11, in Eqns. (5.7) and (5.10) are of order∆, ∆0.5 and∆,
respectively, so that strong order-1 conditions of our Runge-Kutta scheme can be ana-
lyzed as stated below.

SinceJ1 ∼ N (0,∆), we have [28]:

E[J2k+1
1 ] = 0, E[J2k

1 ] =
2k!

k!2k
∆k, E[J10J1] =

1

2
∆2, E[J2

10] =
1

3
∆3,
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and

J1...1 =
Jp
1

p!
.

i) Since

F̃s+1 =

( ∑s
i=1 αif

−
∑s

i=1 αiHy

)

=
s∑

i=1

αiF (1 ≤ i ≤ s+ 1),

it holds

E

[

J0 − J0

s∑

i=1

αi

]2

= E

[

∆

(

1−
s∑

i=1

αi

)]2

,

⇒
s∑

i=1

αi = 1 (Condition A1. in Theorem 5.1).

ii) The second strong order-1 term isJ1:

J1H̃s+1 = J1

s∑

i=1

βiH,

which implies that

E

[

J1 − J1

s∑

i=1

βi

]2

= E

[

J1

(

1−
s∑

i=1

βi

)]2

,

⇒
s∑

i=1

βi = 1 (Condition A2. in Theorem 5.1).

iii) The final strong order-1 term comes from the integralJ11:

J2
1 H̃

′H̃ = J2
1

s∑

i=1

(H̃′
s+1)i(H̃)i = J2

1

s∑

i,j=1

βiH
′(bijh

0 + b̃ij(hq)
0).

If

s∑

i,j=1

βibij =
s∑

i,j=1

βib̃ij,
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then

E

[

J2
1

2
− J2

1

s∑

i,j=1

βibij

]2

= E

[

J2
1

(

1

2
−

s∑

i,j=1

βibij

)]2

= 3∆2

(

1

2
−

s∑

i,j=1

βibij

)2

,

⇒
s∑

i,j=1

βibij =
1

2
(Condition A3. in Theorem 5.1).

Similarly, we can obtain

s∑

i,j=1

βib̃ij =
s∑

i,j=1

βiβj

(

1−
aji
αi

)

=
1

2
(New condition to Theorem 5.1). (5.11)

At this point, the fundamental issue is to construct a familyof methods satisfying
strong order-1 conditions. In the case ofs = 2 with the explicit scheme for the state
equation and related implicit scheme for the adjoint equation, we have 4 conditions
for strong order-1, and there are 6 unknowns. Thus, free parameters guarantee the
existence of a solution. Therefore, one can find different methods (different coeffi-
cients) which satisfy the strong order-1 conditions fors ≥ 2. When constructing
these methods, one needs to be careful about the associated truncation-error constants,
since larger truncation-error constants can cause a reduction in the effectiveness of the
method. For this reason, we aim to construct a Runge-Kutta method of strong order-1
with minimum local truncation-error constants.

The terms corresponding to the∆1.5 in Eqns. (5.7) and (5.10) arise from the following
J-integrals:J01, J10 andJ111. Herewith, the minimum local truncation-error constants
of our Runge-Kutta scheme to have strong order-1 are analyzedbelow.

iv) The first strong order-1.5 term looks as follows:

J0J1H̃
′F̃ = J0J1

s∑

i=1

(H̃′
s+1)i(F̃)i = J0J1

s∑

i,j=1

βiH
′(aijf

0 + ãij(−Hy)
0).

If
s∑

i,j=1

βiaij =
s∑

i,j=1

βiãij,

then

E

[

J01 − J0J1

s∑

i=1

βiaij

]2

=




1

3
−

s∑

i,j=1

βiaij +

(
s∑

i,j=1

βiaij

)2


∆3. (5.12)
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Here, note that the quadratic equation in Eqn. (5.12) does not have any real root, so that
this term cannot be zero. Hence, this result prevents us fromgetting strong order-1.5.
However, the minimal value of the function in Eqn. (5.12) is∆3/12.

v) The second strong order-1.5 term:

J1J0F̃
′
H̃ = J1J0

s∑

i=1

(F̃
′

s+1)i(H̃)i = J1J0

s∑

i,j=1

αiF
′(bijh

0 + b̃ij(hq)
0).

If

s∑

i,j=1

αibij =
s∑

i,j=1

αib̃ij,

then

E

[

J10 − J1J0

s∑

i,j=1

αibij

]2

=




1

3
−

s∑

i,j=1

αibij +

(
s∑

i,j=1

αibij

)2


∆3, (5.13)

and the minimal value of the function in Eqn. (5.13) is also∆3/12.

vi) The third strong order-1.5 term:

J3
1

2
H̃′′H̃H̃ =

J3
1

2

s∑

i=1

(H̃′′
s+1)i(H̃)2i =

J3
1

2

s∑

i,j=1

βiH
′′
(

bijh
0 + b̃ij(hq)

0
)2

.

If

s∑

i,j=1

βib
2
ij =

s∑

i,j=1

βibij b̃ij =
s∑

i,j=1

βib̃
2
ij,

then

E

[

J111 −
J3
1

2

s∑

i,j=1

βib
2
ij

]2

= E




1

9
−

2

3

s∑

i,j=1

βib
2
ij +

(
∑

i,j=1

βib
2
ij

)2



15

4
∆3; (5.14)

the minimal value of the function in Eqn. (5.14) is attained as 0.

The last strong order-1.5 term is

J3
1 H̃

′H̃′H̃ = J3
1

s∑

i,j,k=1

(H̃′
s+1)i(H̃

′)i(H̃)j

= J3
1

s∑

i,j,k=1

βiH
′
(

bij(h
0)′ + b̃ij((hq)

0)′
)(

bjkh
0 + b̃jk(hq)

0
)

.
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If
s∑

i,j,k=1

βibjkbij =
s∑

i,j,k=1

βibjkb̃ij =
s∑

i,j,k=1

βib̃jkbij =
s∑

i,j,k=1

βib̃jkb̃ij,

then we can obtain

E

[

J3
1

6
− J3

1

s∑

i,j,k=1

βibjkbij

]2

= E




1

36
−

1

3

s∑

i,j,k=1

βibjkbij +

(
s∑

i,j,k=1

βibjkbij

)2


 15∆3, (5.15)

and the minimal value of the function in Eqn. (5.14) is also 0.

Eqns. (5.12)-(5.15) constitute the truncation-error constants. These equations are min-
imized if

(S)







s∑

i,j=1

βiaij =
s∑

i,j=1

βiãij =
1

2
,

s∑

i,j=1

αibij =
s∑

i,j=1

αib̃ij =
1

2
,

s∑

i,j=1

βib
2
ij =

s∑

i,j=1

βibij b̃ij =
s∑

i,j=1

βib̃
2
ij =

1

3
,

s∑

i,j,k=1

βibjkbij =
s∑

i,j,k=1

βibjkb̃ij =
s∑

i,j,k=1

βib̃jkbij =
s∑

i,j,k=1

βib̃jkb̃ij =
1

6
,

in which case the minima of the functions in the system (S) are, respectively,

∆3

12
,
∆3

12
, 0, 0.

Let us note that to get strong order-1.5, all of the coefficients of terms containing∆3

must be zero. Since the coefficients of Eqns. (5.12) and (5.13) can not be zero, it
is impossible to exceed strong order-1 for any number of stages without introducing
another type of random variable in the method formulation ofthe Runge-Kutta scheme
in (P ′

d).

For a 2-stage explicit method on the state equation and implicit method on the adjoint
equation, 4 conditions of strong order-1 must be satisfied, and 11 conditions of the local
truncation error-constants in (S) have to be fulfilled. By inserting the 4 conditions into
11 conditions, one can set up and solve an unconstrained multi-objective minimization
problem with one variable, namely,β1. The range of optimal solution is obtained by
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finding the maximum and the minimum values forβ1 such thatβ1 ∈ [−0.4584, 0.7500].
We notice that each line in (S) corresponds to a truncation-error constant term if these
inequalities are satisfied, so that we have 4 truncation error constants. Otherwise, we
address the maximum norm of the equations for each line in (S) to find the truncation-
error constants. For simplicity, we chooseβ1 = 0.5. Thus, we have found that the
principal truncation-error constants are

∆3

12
,
∆3

12
,
5∆3

48
,
5∆3

12
, (5.16)

and the solution is represented by the following tableaus:

0 0
1 0

0.5 0.5

0 0
1 0

0.5 0.5
(for the state equation),

0.5 -0.5
0.5 0.5
0.5 0.5

0.5 -0.5
0.5 0.5
0.5 0.5

(for the adjoint equation).

Therefore, in the above analysis, it seems that without introducing an additional ran-
dom variable to the classical Runge-Kutta method, it is not possible to exceed the
strong order-1 for any number of stages. We state this resultin the following theorem.

Theorem 5.3. Let αi, βi, aij , bij (i, j = 1, 2, . . . , s) be Runge-Kutta coefficients in
problem(P ′

d). If the coefficients of our Runge-Kutta method for the stochastic opti-
mal control problem satisfy equations A1-A3 in Theorem 5.1 and Eqn. (5.11), then the
stochastic Runge-Kutta method has maximum strong order-1 for any number of stages.
Moreover, as a special case,s = 2, the optimal principal truncation-error coefficients
of explicit method for the state equation and related implicit method for the adjoint
equation are given in Eqn. (5.16).

5.4 Strong Order-1.5 Conditions of Runge-Kutta Method for Stochastic Opti-
mal Control Problems

In the previous section, we have obtained strong order-1 conditions of our Runge-
Kutta scheme for stochastic optimal control problems. Likewise, Burrage and Burrage
(1996), we are not able to exceed strong order-1 by using the Runge-Kutta method in
the system of problem(P ′

d). For this reason, they assumed that every random vari-
ables,J1

∑s
j=1 bij andJ1

∑s
i=1 βi, can be written as a linear combination ofp different

random variables,θ1, θ2, . . . , θp, in order to study strong-order properties of the Runge-
Kutta method, especially, order-1.5 and higher strong-order conditions. We follow
their assumption to receive strong order-1.5 conditions ofour Runge-Kutta scheme for
stochastic optimal control problems. Herewith, problem(P ′

d) is a specific case of the
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Runge-Kutta method:

(Pp)







minimize E

[

φ(yN) + ∆
N−1∑

k=0

s∑

i=1

αig(yki, uki)

]

subject to yk+1 = yk +∆
s∑

i=1

αif(yki, uki) +

p
∑

l=1

(
s∑

i=1

β
(l)
i h(yki)

)

θl,

yki = yk +∆
s∑

j=1

aijf(ykj, ukj) +

p
∑

l=1

(
s∑

j=1

b
(l)
ij h(ykj)

)

θl,

y0 = y0,

for k = 0, 1, . . . , N − 1; i = 1, 2, . . . , s, whereθ1, θ2, . . . , θp, are random variables
that can be written in terms of multiple Stratonovich integral and have the same strong
order as withJ1. It was taken asp = 2 with θ1 = J1 and θ2 = J10/∆ to obtain
strong-order conditions, such that the problem(Pp) can be rewritten as:

(P2)







minimize E

[

φ(yN) + ∆
N−1∑

k=0

s∑

i=1

αig(yki, uki)

]

subject to yk+1 = yk +∆
s∑

i=1

αif(yki, uki) +
s∑

i=1

(

β
(1)
i J1 + β

(2)
i

J10
∆

)

h(yki),

yki = yk +∆
s∑

j=1

aijf(ykj, ukj) +
s∑

j=1

(

b
(1)
ij J1 + b

(2)
ij

J10
∆

)

h(ykj),

y0 = y0.

for k = 0, 1, . . . , N − 1, andi = 1, 2, . . . , s.

By comparing the Stratonovich-Taylor series expansions of the exact solution and of
the approximation method defined by the Runge-Kutta method for SDEs, respectively,
Burrage and Burrage (1996) obtained strong-order conditionspresented in the follow-
ing theorem.

Theorem 5.4. [6, 8] Letαi, β
(1)
i , β

(2)
i , aij, b

(1)
ij , b

(2)
ij (i, j = 1, 2, . . . , s) be the Runge-

Kutta coefficients. If the coefficients of stochastic Runge-Kutta method for SDEs (2.11),
the constraint equations in the problem(P2), fulfill the subsequent conditions:

A1.
s∑

i=1

αi = 1, A2.
s∑

i=1

β
(1)
i = 1,

A3.
s∑

i=1

β
(2)
i = 0, A4.

s∑

i,j=1

β
(1)
i b

(1)
ij =

1

2
,

A5.
s∑

i,j=1

β
(1)
i b

(2)
ij = −

s∑

i,j=1

β
(2)
i b

(1)
ij , A6.

s∑

i,j=1

β
(2)
i b

(2)
ij = 0,
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then the stochastic Runge-Kutta method of Eqn. (2.11) converges to order-1 in the
strong sense. In addition, if the conditions

A7.
s∑

i,j=1

β
(1)
i aij = 1, A8.

s∑

i,j=1

β
(2)
i aij = −1,

A9.
s∑

i,j=1

αib
(1)
ij = 0, A10.

s∑

i,j=1

αib
(2)
ij = 1,

A11.
s∑

i,j=1

β
(2)
i (b

(1)
ij )

2 = −2
s∑

i,j=1

β
(1)
i b

(1)
ij b

(2)
ij , A12.

s∑

i,j=1

β
(1)
i (b

(1)
ij )

2 =
1

3
,

A13.
s∑

i,j=1

β
(1)
i (b

(2)
ij )

2 = −2
s∑

i,j=1

β
(2)
i b

(1)
ij b

(2)
ij , A14.

s∑

i,j=1

β
(2)
i (b

(2)
ij )

2 = 0,

A15.
s∑

i,j,k=1

β
(1)
i b

(1)
ij b

(1)
jk =

1

6
, A16.

s∑

i,j,k=1

β
(2)
i b

(2)
ij b

(2)
jk = 0,

A17.
s∑

i,j,k=1

β
(2)
i b

(1)
ij b

(1)
jk + β

(1)
i b

(2)
ij b

(1)
jk + β

(1)
i b

(1)
ij b

(2)
jk = 0,

A18.
s∑

i,j,k=1

β
(1)
i b

(2)
ij b

(2)
jk + β

(2)
i b

(2)
ij b

(1)
jk + β

(2)
i b

(1)
ij b

(2)
jk = 0,

are fulfilled, then the stochastic Runge-Kutta method converges to order-1.5 in the
strong sense.

We remark that the discrete optimality conditions (OCd) is derived by using the specific
case of the Runge-Kutta method, problem (Pd). However, by following the same pro-
cedure in Chapter 3, a similar system of equations can also be derived for the problem
(P2) with the conditions:

α̃i := αi, β̃
(1)
i := β

(1)
i , β̃

(2)
i := β

(2)
i ,

ãij := αj −
αj

αi

aji, b̃
(1)
ij := β

(1)
j −

β
(1)
j

αi

aji, b̃
(2)
ij := β

(2)
j −

β
(2)
j

αi

aji.

In order to study order conditions of discrete optimality conditions(OC ′
d), the(OC ′

d)
will be written as a function oft. By using Butcher approach, we writetn = t0, and for
a givent = t0+∆. For a given initial iteration valuesyk andpk+1, the solutionsyki and
pki are functions oft, denoted byyki(t) andpki(t), respectively. Let the valuespk(t)
andyk+1(t) stand for the iteratespk andyk+1, respectively, which can be calculated as
y(t) andp(t) with intermediate valuesyki = yki(t) andpki = pki(t). For this reason, let
ζ(t) = (y(t), p(t))T be the vector of length2N(s+ 1) and letζki(t), ζs+1(t), F̃(ζ(t))
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andH̃l(ζ(t)) denote the following pairs:

ζki(t) =

(

yki(t)

pki(t)

)

(1 ≤ i ≤ s), ζs+1(t) =

(

yk+1(t)

pk+1(t)

)

(i = s+ 1),

F̃(ζ(t)) = F̃i(ζ(t)) =

( ∑s
j=1 aijf(ζkj(t))

∑s
j=1 ãijHy(ζkj(t))

)

(1 ≤ i ≤ s+ 1)

and

H̃(l)(ζ(t)) = H̃
(l)
i (ζ(t)) =

( ∑s
j=1 b

(l)
ij h(ζkj(t))

∑s
j=1 b̃

(l)
ij h(ζkj(t))q(ζkj(t))

)

(1 ≤ i ≤ s+ 1 and

1 ≤ l ≤ p),

with the convention that

as+1,j = ãs+1,j = αj (1 ≤ i ≤ s),

bs+1,j = b̃s+1,j = βj (1 ≤ i ≤ s).

By using the above notation, we can state the discrete optimality conditions of problem
(Pp) in the form

ζ(t) = ζ(t0) + (t− t0)F̃(ζ(t)) +

p
∑

l=1

H̃lθl(ζ(t)) (1 ≤ i ≤ s+ 1), (5.17)

whereθl(t0) = 0, l = 1, 2, . . . , p.

The termF̃(ζ(t)) (andH̃(ζ(t)), analogously) can be elaborated by applying the Taylor-
series expansion:

F̃(ζ(t)) = F̃(ζ(t0)) +
∞∑

n=1

L
n
∆F̃(ζ(t0))

n!
, (5.18)

whereL is the vector-valued differential operator of 2 variables,given by

L∆Φ := ∆
∂Φ

∂t
+

p
∑

l=1

θl
∂Φ

∂θl
,

for Φ is any twice continuously differentiable vector-valued function of 2 variables.
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Thus, it is seen that

L∆F̃(ζ(t)) = ∆F̃
′
(ζ(t))

(

F̃(ζ(t)) + (t− t0)F̃
′
(ζ(t))

∂ζ

∂t
+

p
∑

l=1

θl(H̃
(l))′(ζ(t))

∂ζ

∂t

)

+

p
∑

l=1

θlF̃
′
(ζ(t))

(

(t− t0)F̃
′
(ζ(t))

∂ζ

∂θl
+ H̃(l)(ζ(t))

+

p
∑

l=1

θl(H̃
(l))′(ζ(t))

∂ζ

∂θl

)

,

so that

L∆F̃(ζ(t0)) = ∆F̃
′
(ζ(t0))F̃(ζ(t0)) + F̃

′
(ζ(t0))

p
∑

l=1

θlH̃
(l)(ζ(t0)).

Similarly,

L∆H̃
(l)(ζ(t0)) = ∆(H̃(l))′(ζ(t0))F̃(ζ(t0)) + (H̃(l))′(ζ(t0))

p
∑

l=1

θl(H̃
(l))′(ζ(t0))

for l = 1, 2, . . . , p.

Then, the Stratonovich-Taylor approximation of discrete optimality system of problem
(Pp) looks as follows:

ζ(t) = ζ(t0) + ∆F̃(ζ(t)) +

p
∑

l=1

θl

(

H̃(l)(ζ(t))
)

= ζ(t0) + ∆

(

F̃(ζ(t0)) +L∆F̃(ζ(t0)) +
1

2!
L

2
∆F̃(ζ(t0)) + . . .

)

+

p
∑

l=1

θl

(

H̃(l)(ζ(t0)) +L∆H̃
(l)(ζ(t0)) +

1

2!
L

2
∆H̃

(l)(ζ(t0)) + . . .

)

.

Hence,

ζ(t) = ζ(t0) +

(

∆F̃+∆2F̃
′
F̃+∆

p
∑

l=1

θlF̃
′
H̃(l) +

1

2
∆3F̃

′′
F̃F̃+∆3F̃

′
F̃

′
F̃

+∆2

p
∑

l=1

θlF̃
′
F̃

′
H̃(l) +

1

2
∆2

p
∑

l=1

θlF̃
′′
F̃H̃(l) +∆2

p
∑

l=1

θlF̃
′
(H̃(l))′F̃

+
1

2
∆2

p
∑

l=1

θlF̃
′′
H̃(l)F̃+

1

2
∆

p
∑

l=1

θlF̃
′′
H̃(l)

p
∑

l=1

θlH̃
(l)

+ ∆

p
∑

l=1

θlF̃
′
(H̃(l))′

p
∑

l=1

θlH̃
(l)

)

(ζ(t0)) + . . .
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+

(
p
∑

l=1

θlH̃
(l) +∆

p
∑

l=1

θl(H̃
(l))′F̃+

p
∑

l=1

θl(H̃
(l))′

p
∑

l=1

θlH̃
(l)

+
1

2
∆2

p
∑

l=1

θl(H̃
(l))′′F̃F̃+∆2

p
∑

l=1

θl(H̃
(l))′F̃

′
F̃

+∆

p
∑

l=1

θl(H̃
(l))′F̃

′
p
∑

l=1

θlH̃
(l) +

1

2
∆θl(H̃

(l))′′
p
∑

l=1

θlH̃
(l)

p
∑

l=1

F̃

+∆

p
∑

l=1

θl(H̃
(l))′

p
∑

l=1

θl(H̃
(l))′F̃+

1

2
∆

p
∑

l=1

θl(H̃
(l))′′

p
∑

l=1

θlH̃
(l)F̃

+
1

2

p
∑

l=1

θl(H̃
(l))′′

p
∑

l=1

θlH̃
(l)

p
∑

l=1

θlH̃
(l)

+

p
∑

l=1

θl(H̃
(l))′

p
∑

l=1

θl(H̃
(l))′

p
∑

l=1

θlH̃
(l)

)

(ζ(t0)) + . . .

As we mentioned, in the case of the Stratonovich-Taylor expansion of the exact so-
lution, various derivatives should be considered in an operator context. Here, let us
note that we write the above Stratonovich-Taylor expansionfor an arbitrary positivep.
However, strong-order conditions of our Runge-Kutta schemefor stochastic optimal
control problem are particularly obtained forp = 2. In the subsequent theorem, we
state such order conditions.

Theorem 5.5. Let αi, β
(1)
i , β

(2)
i , aij, ãij, b

(1)
ij , b̃

(1)
ij , b

(2)
ij , b̃

(2)
ij (i, j = 1, 2, . . . , s) be

the Runge-Kutta coefficients. If the coefficients of our Runge-Kutta method for the
stochastic optimal control problem satisfy both conditions A1-A6 in Theorem 5.4 and

B1.
s∑

i,j=1

β
(1)
i b̃

(1)
ij =

1

2
, B3.

s∑

i,j=1

β
(2)
i b̃

(2)
ij = 0,

B2.
s∑

i,j=1

β
(1)
i b̃

(2)
ij = −

s∑

i,j=1

β
(2)
i b̃

(1)
ij ,

then our Runge-Kutta method for stochastic optimal controlproblems converges to
order-1 in the strong sense. In addition, if both conditionsA7-A18 in Theorem 5.4 and

B4.
s∑

i,j=1

β
(1)
i ãij = 1, B5.

s∑

i,j=1

β
(2)
i ãij = −1,

B6.
s∑

i,j=1

αib̃
(2)
ij = 1, B7.

s∑

i,j=1

αib̃
(1)
ij = 0,
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B8.
s∑

i,j=1

β
(1)
i b

(1)
ij b̃

(1)
ij =

1

6
, B9.

s∑

i,j=1

β
(2)
i b

(2)
ij b̃

(2)
ij = 0,

B10.
s∑

i,j=1

(

β
(1)
i b

(2)
ij + β

(2)
i b

(1)
ij

)

b̃
(2)
ij = −

s∑

i,j=1

β
(2)
i b

(2)
ij b̃

(1)
ij ,

B11.
s∑

i,j=1

(

β
(1)
i b

(2)
ij + β

(2)
i b

(1)
ij

)

b̃
(1)
ij = −

s∑

i,j=1

β
(1)
i b

(1)
ij b̃

(2)
ij ,

B12.
s∑

i,j=1

β
(1)
i (b̃

(1)
ij )

2 =
1

3
, B13.

s∑

i,j=1

β
(2)
i (b̃

(2)
ij )

2 = 0,

B14.
s∑

i,j=1

β
(2)
i (b̃

(1)
ij )

2 = −2
s∑

i,j=1

β
(1)
i b̃

(1)
ij b̃

(2)
ij ,

B15.
s∑

i,j=1

β
(1)
i (b̃

(2)
ij )

2 = −2
s∑

i,j=1

β
(2)
i b̃

(1)
ij b̃

(2)
ij ,

B16.
s∑

i,j,k=1

β
(1)
i b̃

(1)
ij b

(1)
jk =

1

6
, B17.

s∑

i,j,k=1

β
(2)
i b̃

(2)
ij b

(2)
jk = 0,

B18.
s∑

i,j,k=1

(

β
(2)
i b̃

(1)
ij b

(1)
jk + β

(1)
i

(

b̃
(2)
ij b

(1)
jk + b̃

(1)
ij b

(2)
jk

))

= 0,

B19.
s∑

i,j,k=1

(

β
(1)
i b̃

(2)
ij b

(2)
jk + β

(2)
i

(

b̃
(2)
ij b

(1)
jk + b̃

(1)
ij b

(2)
jk

))

= 0,

B20.
s∑

i,j,k=1

β
(1)
i b

(1)
ij b̃

(1)
jk =

1

6
, B21.

s∑

i,j,k=1

β
(2)
i b

(2)
ij b̃

(2)
jk = 0,

B22.
s∑

i,j,k=1

(

β
(2)
i b

(1)
ij b̃

(1)
jk + β

(1)
i

(

b
(2)
ij b̃

(1)
jk + b

(1)
ij b̃

(2)
jk

))

= 0,

B23.
s∑

i,j,k=1

(

β
(1)
i b

(2)
ij b̃

(2)
jk + β

(2)
i

(

b
(2)
ij b̃

(1)
jk + b

(1)
ij b̃

(2)
jk

))

= 0,

B24.
s∑

i,j,k=1

β
(1)
i b̃

(1)
ij b̃

(1)
jk =

1

6
, B25.

s∑

i,j,k=1

β
(2)
i b̃

(2)
ij b̃

(2)
jk = 0,

B26.
s∑

i,j,k=1

(

β
(2)
i b̃

(1)
ij b̃

(1)
jk + β

(1)
i

(

b̃
(2)
ij b̃

(1)
jk + b̃

(1)
ij b̃

(2)
jk

))

= 0,

B27.
s∑

i,j,k=1

(

β
(1)
i b̃

(2)
ij b̃

(2)
jk + β

(2)
i

(

b̃
(2)
ij b̃

(1)
jk + b̃

(1)
ij b̃

(2)
jk

))

= 0,

are fulfilled, our Runge-Kutta method for stochastic optimal control problems con-
verges to order-1.5 in the strong sense.
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Proof. We use the same logic as we did in Section 5.3, to find strong-order condi-
tions of our Runge-Kutta scheme for stochastic control problems of SDEs. So, for
simplicity,

F̃i =

( ∑s
j=1 aijf

−
∑s

j=1 ãijHy

)

=
s∑

j=1

aijf
0 +

s∑

j=1

ãij(−H
0
y) (1 ≤ i ≤ s+ 1),

where

f0 =

(

f

0

)

, H
0
y =

(

0

−Hy

)

,

and

H̃
(l)
i =

( ∑s
j=1 bijh

∑s
j=1 b̃

(l)
ij hq

)

=
s∑

j=1

b
(l)
ij h

0 +
s∑

j=1

b̃
(l)
ij (hq)

0 (1 ≤ i ≤ s+ 1; l = 1, 2)

with

h0 =

(

h

0

)

, (hq)0 =

(

0

hq

)

,

and

(F̃′
i)j = aij(f

0)′ + ãij((Hy)
0)′.

The J-integralsJ0, J1, J11, are of order∆, ∆0.5 and∆, respectively, so that order
conditions of our Runge-Kutta scheme for stochastic controlproblems to have strong
order-1 are analyzed below, subsequently.

i) Since

F̃s+1 =

( ∑s
i=1 αif

−
∑s

i=1 αiHy

)

=
s∑

i=1

αiF (1 ≤ i ≤ s+ 1),

it holds

E

[

J0 −∆
s∑

i=1

αi

]2

= E

[

∆

(

1−
s∑

i=1

αi

)]2

,

⇒
s∑

i=1

αi = 1 (Condition A1. in Theorem 5.4).

ii) The second strong order-1 term isJ1:

p
∑

l=1

θlH̃
(l)
s+1 =

(
s∑

i=1

β
(1)
i J1 +

s∑

i=1

β
(2)
i

J10
∆

)

H,
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which leads us to the implication

E

[

J1 −

(
s∑

i=1

β
(1)
i J1 +

s∑

i=1

β
(2)
i

J10
∆

)]2

= E

[(

1−
s∑

i=1

β
(1)
i

)

J1 −
s∑

i=1

β
(2)
i

J10
∆

]2

= zT
(

E[J2
1 ] −E[J1J10/∆]

−E[J1J10/∆] E[J2
10/∆

2]

)

z

= zT
(

1/3 −1/2
−1/2 1

)

z∆2 ≥ 0

⇒ zT = (z1, z2) = (0, 0)

⇒
s∑

i=1

β
(1)
i = 1,

s∑

i=1

β
(2)
i = 0

(Conditions A2. and A3. in Theorem 5.4).

iii) The final strong order-1 term comes from the integralJ11:
p
∑

l=1

θl(H̃
(l))′

p
∑

l=1

θlH̃
(l) =

p
∑

l=1

θl

s∑

i=1

((H̃(l))′s+1)i

p
∑

l=1

θl

s∑

i=1

(H̃)i

=
s∑

i,j=1

(

β
(1)
i J1 + β

(2)
i

J10
∆

)

H′

×

((

b
(1)
ij J1 + b

(2)
ij

J10
∆

)

h0 +

(

b̃
(1)
ij J1 + b̃

(2)
ij

J10
∆

)

(hq)0
)

.

If
s∑

i,j=1

(

β
(1)
i J1 + β

(2)
i

J10
∆

)(

b
(1)
ij J1 + b

(2)
ij

J10
∆

)

=
s∑

i,j=1

(

β
(1)
i J1 + β

(2)
i

J10
∆

)(

b̃
(1)
ij J1 + b̃

(2)
ij

J10
∆

)

,

then, we get the implication

E

[

J2
1

2
−

s∑

i,j=1

(

β
(1)
i J1 + β

(2)
i

J10
∆

)(

b
(1)
ij J1 + b

(2)
ij

J10
∆

)]2

= E

[

J2
1

2
−

s∑

i,j=1

β
(1)
i b

(1)
ij J

2
1 −

s∑

i,j=1

(

β
(1)
i b

(2)
ij + β

(2)
i b

(1)
ij

)

J1
J10
∆

− β
(2)
i b

(2)
ij

J2
10

∆2

]2
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= zTCz (with C defined by the following line)

= zT





E[J4
1 ] E[J3

1J10/∆] E[J2
1J

2
10/∆

2]
E[J3

1J10/∆] E[J2
1J

2
10/∆

2] E[J1J
3
10/∆

3]
E[J2

1J
2
10/∆

2] E[J1J
3
10/∆

3] E[J4
10]



 z

= ∆2zT





3 3/2 5/6
3/2 5/6 1/2
5/6 1/2 1/3



 z ≥ 0

⇒ zT = (z1, z2, z3) = (0, 0, 0)

⇒
s∑

i,j=1

β
(1)
i b

(1)
ij =

1

2
,

s∑

i,j=1

β
(1)
i b

(2)
ij = −

s∑

i,j=1

β
(2)
i b

(1)
ij ,

s∑

i,j=1

β
(2)
i b

(2)
ij = 0

(Conditions A4-A6. in Theorem 5.4).

Similarly, we can obtain 3 extra conditions:

B1.
s∑

i,j=1

β
(1)
i b̃

(1)
ij =

1

2

⇒
s∑

i,j=1

β
(1)
i

(

β
(1)
j − β

(1)
j

aji
αi

)

=
s∑

i,j=1

β
(1)
i β

(1)
j fi =

1

2
,

B2.
s∑

i,j=1

β
(1)
i b̃

(2)
ij = −

s∑

i,j=1

β
(2)
i b̃

(1)
ij

⇒
s∑

i,j=1

β
(1)
i

(

β
(2)
j −

β
(2)
j

αi

aji

)

= −
s∑

i,j=1

β
(2)
i

(

β
(1)
j −

β
(1)
j

αi

aji

)

,

⇒
s∑

i,j=1

β
(1)
i β

(2)
j fi = −

s∑

i,j=1

β
(2)
i β

(1)
j fi,

B3.
s∑

i,j=1

β
(2)
i b̃

(2)
ij = 0

⇒
s∑

i,j=1

β
(2)
i

(

β
(2)
j −

β
(2)
j

αi

aji

)

=
s∑

i,j=1

β
(2)
i β

(2)
j fi = 0,

where

fi =
s∑

j=1

(

1−
aij
αi

)

.

The expressions corresponding to the∆1.5 terms arise from theJ-integrals:J01, J10
andJ111, accordingly, so that order conditions of our Runge-Kutta scheme to have
strong order-1.5 are analyzed below.
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iv) The first strong order-1.5 term turns out to be

∆

p
∑

l=1

θl(H̃
(l))′F = ∆

p
∑

l=1

θl

s∑

i=1

((H̃(l))′s+1)i(F̃)i

= ∆
s∑

i,j=1

(

β
(1)
i J1 + β

(2)
i

J10
∆

)

H′(aijf
0 + ãij(−Hy)

0).

If
s∑

i,j=1

aij

(

β
(1)
i J1 + β

(2)
i

J10
∆

)

=
s∑

i,j=1

ãij

(

β
(1)
i J1 + β

(2)
i

J10
∆

)

,

then

E

[

J01 −
s∑

i,j=1

aij

(

β
(1)
i J1 + β

(2)
i

J10
∆

)]2

= E

[

J1 −
J10
∆

−
s∑

i,j=1

aij

(

β
(1)
i J1 + β

(2)
i

J10
∆

)]2

= E

[(

1−
s∑

i,j=1

β
(1)
i aij

)

J1 −

(

1 +
s∑

i,j=1

β
(2)
i ci

)

J10
∆

]2

,

(using the analysis of quadratic forms)

⇒
s∑

i,j=1

β
(1)
i aij = 1,

s∑

i,j=1

β
(2)
i aij = −1

(Conditions A7. and A8. in Theorem 5.4).

Similarly, we can obtain 2 additional conditions:

B4.
s∑

i,j=1

β
(1)
i ãij =

s∑

i,j=1

β
(1)
i αjfi = 1,

B5.
s∑

i,j=1

β
(2)
i ãij =

s∑

i,j=1

β
(2)
i αjfi = −1.

v) The second strong order-1.5 term:

∆

p
∑

l=1

θlF̃
′
H̃(l)

= ∆

p
∑

l=1

θl

s∑

i=1

(F̃
′

s+1)i(H̃
(l))i

= ∆
s∑

i,j=1

αiF
′

((

b
(1)
ij J1 + b

(2)
ij

J10
∆

)

h0 +

(

b̃
(1)
ij J1 + b̃

(2)
ij

J10
∆

)

(hq)0
)

.
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If
s∑

i,j=1

αi

(

b
(1)
ij J1 + b

(2)
ij

J10
∆

)

=
s∑

i,j=1

αi

(

b̃
(1)
ij J1 + b̃

(2)
ij

J10
∆

)

,

then we have the implication

E

[

J10 −∆
s∑

i,j=1

αi

(

b
(1)
ij J1 + b

(2)
ij

J10
∆

)]2

= E

[

J10

(

1−
s∑

i,j=1

αib
(2)
ij

)

−
s∑

i,j=1

αib
(1)
ij J0J1

]2

= zT
(

E[J2
10] −E[J0J1J10]

−E[J0J1J10] E[J2
0J

2
1 ]

)

z

= ∆3zT
(

1/3 0
0 1

)

z ≥ 0,

⇒ zT = (z1, z2) = (0, 0)

⇒
s∑

i,j=1

αib
(2)
ij = 1,

s∑

i,j=1

αib
(1)
ij = 0

(Conditions A9. and A10. in Theorem 5.4).

Similarly, we can get 2 more conditions:

B6.
s∑

i,j=1

αib̃
(2)
ij = 1 ⇒

s∑

i,j=1

αiβ
(2)
j fi = 1,

B7.
s∑

i,j=1

αib̃
(1)
ij = 0 ⇒

s∑

i,j=1

αiβ
(1)
j f = 0.

vi) The third strong order-1.5 term:

p
∑

l=1

θl(H̃
(l))′′

p
∑

l=1

θlH̃
(l)

p
∑

l=1

θlH̃
(l)

=

p
∑

l=1

θl

s∑

i=1

(H̃′′
s+1)i

p
∑

l=1

θl

s∑

i=1

(H̃(l))i(H̃
(l))i

=
s∑

i,j=1

(

β
(1)
i J1 + β

(2)
i

J10
∆

)

H′′

×

((

b
(1)
ij J1 + b

(2)
ij

J10
∆

)

h0 +

(

b̃
(1)
ij J1 + b̃

(2)
ij

J10
∆

)

(hq)0
)2

.
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If
s∑

i,j=1

(

β
(1)
i J1 + β

(2)
i

J10
∆

)(

b
(1)
ij J1 + b

(2)
ij

J10
∆

)2

= 2
s∑

i,j=1

(

β
(1)
i J1 + β

(2)
i

J10
∆

)(

b
(1)
ij J1 + b

(2)
ij

J10
∆

)(

b̃
(1)
ij J1 + b̃

(2)
ij

J10
∆

)

=
s∑

i,j=1

(

β
(1)
i J1 + β

(2)
i

J10
∆

)(

b̃
(1)
ij J1 + b̃

(2)
ij

J10
∆

)2

,

then

E

[

J111 −
1

2

s∑

i,j=1

(

β
(1)
i J1 + β

(2)
i

J10
∆

)(

b
(1)
ij J1 + b

(2)
ij

J10
∆

)2
]2

= E

[

J3
1

6
−

1

2

s∑

i,j=1

(

β
(1)
i J1 + β

(2)
i

J10
∆

)(

b
(1)
ij J1 + b

(2)
ij

J10
∆

)2
]2

= zTCz,

where

z1 =
1

6
−

1

2

s∑

i,j=1

β
(1)
i (b

(1)
ij )

2, z2 =
1

2

s∑

i,j=1

β
(2)
i (b

(1)
ij )

2 + 2
s∑

i,j=1

β
(1)
i b

(1)
ij b

(2)
ij ,

z3 =
1

2

s∑

i,j=1

β
(1)
i (b

(2)
ij )

2 + 2
s∑

i,j=1

β
(2)
i b

(1)
ij b

(2)
ij , z4 =

1

2

s∑

i,j=1

β
(2)
i (b

(2)
ij )

2 = 0,

and

cij = E

[

J
8−(i+j)
1 −

(
J10
∆

)i+j−2
]

,

∆3zT






15 15/2 4 9/4
15/2 4 9/4 4/3
4 9/4 4/3 5/6
9/4 4/3 5/6 5/9




 z ≥ 0,

where 0 is attained (i.e., holds as an equality) if and only if
s∑

i,j=1

β
(1)
i (b

(1)
ij )

2 =
1

3
,

s∑

i,j=1

β
(2)
i (b

(1)
ij )

2 = −2
s∑

i,j=1

β
(1)
i b

(1)
ij b

(2)
ij ,

s∑

i,j=1

β
(2)
i (b

(2)
ij )

2 = 0,
s∑

i,j=1

β
(1)
i (b

(2)
ij )

2 = −2
s∑

i,j=1

β
(2)
i b

(1)
ij b

(2)
ij ,

(Conditions A11.-A14. in Theorem 5.4).
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Similarly, we can receive 8 additional conditions:

B8.
s∑

i,j=1

β
(1)
i b

(1)
ij b̃

(1)
ij =

1

6
⇒

s∑

i,j=1

β
(1)
i β

(1)
j b

(1)
ij fi =

1

6
,

B10. 2
s∑

i,j=1

(β
(1)
i b

(2)
ij + β

(2)
i b

(1)
ij )b̃

(1)
ij = −2

s∑

i,j=1

β
(1)
i b

(1)
ij b̃

(2)
ij

⇒
s∑

i,j=1

(β
(1)
i b

(2)
ij + β

(2)
i b

(1)
ij )β

(1)
j fi = −

s∑

i,j=1

β
(1)
i b

(1)
ij β

(2)
j fi,

B11. 2
s∑

i,j=1

β
(2)
i b

(2)
ij b̃

(2)
ij = 0 ⇒

s∑

i,j=1

β
(2)
i β

(2)
j b

(2)
ij fi = 0,

B12.
s∑

i,j=1

β
(1)
i (b̃

(1)
ij )

2 =
1

3
⇒

s∑

i,j=1

β
(1)
i (β

(1)
j )2f 2

i =
1

3
,

B13.
s∑

i,j=1

β
(2)
i (b̃

(1)
ij )

2 = −2
s∑

i,j=1

β
(1)
i b̃

(1)
ij b̃

(2)
ij

⇒
s∑

i,j=1

β
(2)
i (β

(1)
j )2f 2

i = −2
s∑

i,j=1

β
(1)
i β

(1)
j β

(2)
j f 2

i ,

B14.
s∑

i,j=1

β
(1)
i (b̃

(2)
ij )

2 = −2
s∑

i,j=1

β
(2)
i b̃

(1)
ij b̃

(2)
ij

⇒
s∑

i,j=1

β
(1)
i (β

(2)
j )2f 2

i = −2
s∑

i,j=1

β
(2)
i β

(1)
j β

(2)
j f 2

i ,

B15.
s∑

i,j=1

β
(2)
i (b̃

(2)
ij )

2 = 0 ⇒
s∑

i,j=1

β
(2)
i (β

(2)
j )2f 2

i = 0.

The last strong order-1.5 term is

p
∑

l=1

θl(H̃
(l))′

p
∑

l=1

θl(H̃
(l))′

p
∑

l=1

θlH̃
(l) =

p
∑

l=1

θl

s∑

i,j=1

(H̃′
s+1)i(H̃

′)i(H̃)j

=
s∑

i,j,k=1

(

β
(1)
i J1 + β

(2)
i

J10
∆

)

H′

×

((

b
(1)
ij J1 + b

(2)
ij

J10
∆

)

(h0)′ +

(

b̃
(1)
ij J1 + b̃

(2)
ij

J10
∆

)

((hq)0)′
)

×

((

b
(1)
jk J1 + b

(2)
jk

J10
∆

)

h0 +

(

b̃
(1)
jk J1 + b̃

(2)
jk

J10
∆

)

(hq)0
)

.
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If
s∑

i,j,k=1

(

β
(1)
i J1 + β

(2)
i

J10
∆

)(

b
(1)
jk J1 + b

(2)
jk

J10
∆

)(

b
(1)
ij J1 + b

(2)
ij

J10
∆

)

=
s∑

i,j,k=1

(

β
(1)
i J1 + β

(2)
i

J10
∆

)(

b
(1)
jk J1 + b

(2)
jk

J10
∆

)(

b̃
(1)
ij J1 + b̃

(2)
ij

J10
∆

)

=
s∑

i,j,k=1

(

β
(1)
i J1 + β

(2)
i

J10
∆

)(

b̃
(1)
jk J1 + b̃

(2)
jk

J10
∆

)(

b
(1)
ij J1 + b

(2)
ij

J10
∆

)

=
s∑

i,j,k=1

(

β
(1)
i J1 + β

(2)
i

J10
∆

)(

b̃
(1)
jk J1 + b̃

(2)
jk

J10
∆

)(

b̃
(1)
ij J1 + b̃

(2)
ij

J10
∆

)

,

then we can obtain

E

[

J3
1

6
−

s∑

i,j,k=1

(

β
(1)
i J1 + β

(2)
i

J10
∆

)(

b
(1)
jk J1 + b

(2)
jk

J10
∆

)(

b
(1)
ij J1 + b

(2)
ij

J10
∆

)]2

.

The above analysis implies

s∑

i,j,k=1

β
(1)
i b

(1)
ij b

(1)
jk =

1

6
,

s∑

i,j,k=1

β
(2)
i b

(2)
ij b

(2)
jk = 0,

s∑

i,j,k=1

β
(2)
i b

(1)
ij b

(1)
jk +

s∑

i,j,k=1

β
(1)
i

(

b
(2)
ij b

(1)
jk + b

(1)
ij b

(2)
jk

)

= 0,

s∑

i,j,k=1

β
(1)
i b

(2)
ij b

(2)
jk +

s∑

i,j,k=1

β
(2)
i

(

b
(2)
ij b

(1)
jk + b

(1)
ij b

(2)
jk

)

= 0

(Conditions A15.-A18. in Theorem 5.4).

Similarly, we obtain 12 further conditions:

B16.
s∑

i,j,k=1

β
(1)
i b̃

(1)
ij b

(1)
jk =

1

6
⇒

s∑

i,j,k=1

β
(1)
i β

(1)
j b

(1)
jk fi =

1

6
,

B17.
s∑

i,j,k=1

β
(2)
i b̃

(2)
ij b

(2)
jk = 0, ⇒

s∑

i,j,k=1

β
(2)
i β

(2)
j fib

(2)
jk = 0,

B18.
s∑

i,j,k=1

β
(2)
i b̃

(1)
ij b

(1)
jk +

s∑

i,j,k=1

β
(1)
i

(

b̃
(2)
ij b

(1)
jk + b̃

(1)
ij b

(2)
jk

)

= 0

⇒
s∑

i,j,k=1

β
(2)
i β

(1)
j fib

(1)
jk + β

(1)
i β

(2)
j fib

(1)
jk + β

(1)
i β

(1)
j fib

(2)
jk = 0,
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B19.
s∑

i,j,k=1

β
(1)
i b̃

(2)
ij b

(2)
jk + β

(2)
i b̃

(2)
ij b

(1)
jk + β

(2)
i b̃

(1)
ij b

(2)
jk = 0

⇒
s∑

i,j,k=1

β
(1)
i β

(2)
j fib

(2)
jk + β

(2)
i β

(2)
j fib

(1)
jk + β

(2)
i β

(1)
j fib

(2)
jk = 0,

B20.
s∑

i,j,k=1

β
(1)
i b

(1)
ij b̃

(1)
jk =

1

6
⇒

s∑

i,j,k=1

β
(1)
i b

(1)
ij β

(1)
k fj =

1

6
,

B21.
s∑

i,j,k=1

β
(2)
i b

(2)
ij b̃

(2)
jk = 0 ⇒

s∑

i,j,k=1

β
(2)
i b

(2)
ij β

(2)
k fj = 0,

B22.
s∑

i,j,k=1

β
(2)
i b

(1)
ij b̃

(1)
jk + β

(1)
i b

(2)
ij b̃

(1)
jk + β

(1)
i b

(1)
ij b̃

(2)
jk = 0

⇒
s∑

i,j,k=1

β
(2)
i b

(1)
ij β

(1)
k fj + β

(1)
i b

(2)
ij β

(1)
k fj + β

(1)
i b

(1)
ij β

(2)
k fj = 0,

B23.
s∑

i,j,k=1

β
(1)
i b

(2)
ij b̃

(2)
jk + β

(2)
i b

(2)
ij b̃

(1)
jk + β

(2)
i b

(1)
ij b̃

(2)
jk = 0

⇒
s∑

i,j,k=1

β
(1)
i b

(2)
ij β

(2)
k fj + β

(2)
i b

(2)
ij β

(1)
k fj + β

(2)
i b

(1)
ij β

(2)
k fj = 0,

B24.
s∑

i,j,k=1

β
(1)
i b̃

(1)
ij b̃

(1)
jk =

1

6
⇒

s∑

i,j,k=1

β
(1)
i β

(1)
j fiβ

(1)
k fj =

1

6
,

B25.
s∑

i,j,k=1

β
(2)
i b̃

(2)
ij b̃

(2)
jk = 0 ⇒

s∑

i,j,k=1

β
(2)
i β

(2)
j fiβ

(2)
k fj = 0,

B26.
s∑

i,j,k=1

β
(2)
i b̃

(1)
ij b̃

(1)
jk + β

(1)
i b̃

(2)
ij b̃

(1)
jk + β

(1)
i b̃

(1)
ij b̃

(2)
jk = 0

⇒
s∑

i,j,k=1

β
(2)
i β

(1)
j fiβ

(1)
k fj + β

(1)
i β

(2)
j fiβ

(1)
k fj + β

(1)
i β

(1)
j fiβ

(2)
k fj = 0,

B27.
s∑

i,j,k=1

β
(1)
i b̃

(2)
ij b̃

(2)
jk + β

(2)
i b̃

(2)
ij b̃

(1)
jk + β

(2)
i b̃

(1)
ij b̃

(2)
jk = 0

⇒
s∑

i,j,k=1

β
(1)
i β

(2)
j fiβ

(2)
k fj + β

(2)
i β

(2)
j fiβ

(1)
k fj + β

(2)
i β

(1)
j fiβ

(2)
k fj = 0.

In the previous section, we showed that it is possible to find different schemes for
our Runge-Kutta method on the regarded stochastic optimal control problem, which
converges to strong order-1. For strong order-1.5 we remarkthat we have 18 conditions
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which come from Runge-Kutta methods for SDEs, and 27 further conditions due to our
stochastic optimal control problem that result in 45 conditions. Although the number
of conditions does not depend on the number of stages,s, of the method, the number
of variables is controlled bys. Moreover, these equations are nonlinear. So, even
in the Runge-Kutta methods for SDEs case, it is not easy to solve these equations.
Therefore, mostly, explicit schemes become our methods of choice with the aim of
simplifying these equations to be solved. For instance, Burrage [8] considered an
explicit scheme for these 18 conditions, but had to increasethe number of stage. For
s = 4, Burrage solved these conditions and obtained 4-stage explicit scheme in terms
of free parameters.

In our Runge-Kutta method for stochastic optimal control programs, we have 45 condi-
tions. Because of additional more complicated 27 conditions, it is even harder to solve
them. Herewith, MAPLE is a good choice to deal with these conditions. By letting
s ≥ 4, these conditions may be solved in terms of the free parameters. Or, by imposing
conditions such as an explicit method on the state equation and an implicit method on
the adjoint equation, it may be easier to find a solution. However, in this study our
aim is to derive a Runge-Kutta method for stochastic optimal control problems and to
investigate the convergence of the solution, i.e., to show how such conditions can be
obtained.

5.5 Numerical Application

In this section, we choose two numerical examples whose exact solutions we know.
Herewith, we can compute the convergence rates explicitly.To solve the optimization
problem, we employ a gradient-descent method with a stopping criterion by the error
margin of1e− 8. We also use 1000 paths of Monte-Carlo simulation in each example.

Example 5.1.As a first numerical example, we consider the following optimal control
problem [16]:







minimize
u∈L2(0,T )

1

2
E

[∫ T

0

(y∗ − y)2dt+

∫ T

0

(u− u∗)2dt

]

subject to dy =
1

2
u(u− u∗)ydt+ σydW, y(0) = y0,

whereσ is merely a positive scalar, often called as volatility. We note that this example
is from the financial sector and that it can be regarded as a continuous modeling task
under so-called regularization. We have the following continuous optimality system:







dy =
1

2
u(u− u∗)ydt+ σydW, y(0) = y0,

dp = (y∗ − y + σ2p)dt+ σyqdW, p(T ) = 0,

u− u∗ = −E

[

p

(

u−
1

2
u∗
)]

.

63



The exact solution(y, u) is of the form:

y(t) = y∗(t) = y0e−
σ
2

2
t+σW (t), u(t) = u∗(t) = 6 sin(πt).

We employ the following Runge-Kutta scheme which satisfies the conditions in Theo-
rem 5.5, strong order-1 conditions.

1/2 1/4 1/4
1/2 1/4 1/4

1/2 1/2

1/2 1/4 1/4
1/2 1/4 1/4

1/2 1/2

We chooseT = 1, y0 = 1 andσ = 0.1 for our numerical computation. In Figure
5.1, we compare the exact solution of the optimal control with the numerical optimal
control obtained from our Runge-Kutta scheme.
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Figure 5.1: Optimal control withσ = 0.1 in Example 5.1.

If the absolute error is given byEi = |u(ti)− ū(ti)|, whereu(ti) is the exact value of
u andū(ti) denotes the the approximate value ofu at ti, then the order of convergence
rate is computed by the following formula:

Rate=
log(Ei/Ei+1)

log(∆ti/∆ti+1)
.

In Table 5.1, we choose∆ti = 1/2i. We see that the absolute errorEi+1 is the half
of Ei, and∆ti/∆ti+1 = 2. Thus, the calculated order of convergence is 1, as we
expected.
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Table 5.1: Convergence Rate of our Runge-Kutta method withσ = 0.1 in Example
5.1.

i ∆ti Ei (Absolute Error) Order

6 2−6 0.2944 1
7 2−7 0.1472 1
8 2−8 0.0736 1
9 2−9 0.0368 1
10 2−10 0.0184 1

Example 5.2. In this example, we investigate the subsequent Black-Scholes type of
optimal control problem [16]:







minimize
u∈L2(0,T )

1

2
E

[∫ T

0

(y∗ − y)2dt+

∫ T

0

u2dt

]

subject to dy = uydt+ σydW, y(0) = y0,

whereσ > 0 is a constant andy∗(t) is given. Again, this example can be interpreted in
terms of financial modeling under regularization. We can construct an exact solution
of the form:

y(t) = y(0)e
∫
t

0
u(s)ds−σ

2

2
t+σW (t), u(t) =

T − t
1
y0

− Tt+ t2

2

,

where

y∗(t) =
eσ

2t − (T − t)2

1
y0

− Tt+ t2

2

+ 1.

Table 5.2: Convergence Rate of our Runge-Kutta method withσ = 0.1 in Example
5.2.

i ∆ti Ei (Absolute Error) Order

6 1/2−6 0.0312 1
7 1/2−7 0.0156 1
8 1/2−8 0.0078 1
9 1/2−9 0.0039 1
10 1/2−10 0.0019 1

We apply the same 2-stage of stochastic Runge-Kutta scheme asin Example 5.1. Let
y∗(t) = y(t). We also chooseT = 1, y0 = 1 andσ = 0.1 in the numerical compu-
tation. In Figure 5.2, a comparison between the exact solution of the control and the
numerical control obtained from our Runge-Kutta scheme is given.

In Table 5.2, we choose∆ti = 1/2i. We asses the ratio byEi/Ei+1 = ∆ti/∆ti+1 = 2,
so that the computed order of convergence is 1.
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Figure 5.2: Optimal control withσ = 0.1 in Example 5.2.

5.6 Summary

In this chapter, firstly, we provided strong order-1 conditions of our Runge-Kutta
scheme for the optimal control problems of SDEs for any number of s-stages. We
showed that strong order-1.5 can not be obtained for any stagess. Moreover, minimal
local truncation-error constants for strong order-1 were obtained fors = 2. To do this,
we compared the Stratonovich-Taylor expansions of the exact solution and our Runge-
Kutta scheme. By considering a general Runge-Kutta scheme, wewere able to get
strong order-1.5 conditions of our Runge-Kutta scheme for the optimal control prob-
lems of SDEs. We obtained additional order conditions on theclassical Runge-Kutta
schemes to SDEs for both order-1 and order-1.5. Finally, by choosing the step-size∆
small enough, the accuracy of the scheme was received. We confirmed our results in
two numerical applications.
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CHAPTER 6

WEAK-ORDER CONDITIONS OF THE RUNGE-KUTTA
SCHEME FOR STOCHASTIC OPTIMAL CONTROL

PROBLEMS

6.1 Introduction

In some cases, it is necessary to approximate certain moments of solutionX, e.g.,
E[X], E[X2] or, more generally,E[Φ(X)] for some vector-valued of 2 variables func-
tionΦ, instead of simulating the sample paths which are close to the solutionX. Sim-
ulating of such moments gives information about the probability distribution of the
solutionX rather than a good approximation of sample paths. This results in a much
weaker criteria, in so-calledweak convergence. Actually, weak convergence criteria
of Runge-Kutta scheme for SDEs is investigated by Mackevicius [37] and weak-order
conditions are derived. In this chapter, our aim is to seek weak-order conditions of our
Runge-Kutta scheme for stochastic optimal control problemson the addressed class of
SDEs.

We letζ(T ) be a numerical approximation toX(tN) afterN steps with constant step
size∆ = (tN − t0)/N . Thenζ(T ) is said to converge weakly toX with orderr > 0, if
for each functionΦ which is2(r + 1)-times continuously differentiable vector-valued
of 2 variables, there exists a constantC > 0 which does not depend on∆, and a
∆0 > 0 such that

‖E[Φ(ζ(T ))]− E[Φ(X(tN))]‖2 ≤ C∆r, ∆ ∈ (0,∆0),

whereX = (y, p)T andζ = (ŷ, p̂)T are the solutions of continuous(OCc) and discrete
optimality systems(OCd) in Chapter 3, respectively. We notice that these optimality
systems are stated in Itô forms. In this chapter, we address these optimality systems in
related Stratonovich forms.

Mackevicius [37, 38] showed that there is no second-order weak Runge-Kutta approxi-
mations for It̂o SDEs. If one wants to achieve weak-order Runge-Kutta approximations
for some It̂o SDE, it could firstly be rewritten in Stratonovich SDEs form. In this chap-
ter, we follow the idea of Mackevicius [37] and Rößler [14, 52] to derive weak-order
conditions of our Runge-Kutta scheme of the Stratonovich form of the stochastic op-
timal control problem. As done in the previous chapter, we use the Stratonovich form
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of both continuous and discrete optimality systems. Then, we make use of the Itô For-
mula to expand stochastic Taylor-series on the exact solution and the solution of our
Runge-Kutta scheme to find the order of accuracy.

6.2 Problem Formulation

We use the same problem formulation given in Chapter 5. Let us first recallX, F and
H denoting the following pairs:

X =

(
y
p

)

, F =

(
f

−Hy

)

, H =

(
h
hq

)

.

With this notation, we can write problem(Pc) in the form

dX = F(y, u, p, q)dt+H(y, q)dW

as an It̂o SDE, or
dX = F(y, u, p, q)dt+H(y, q) ◦ dW (6.1)

as its related Stratonovich SDE with a modified drift coefficient which is defined by
[28]

F = F−
1

2
H′H.

For simplicity, we restate Eqn. (6.1) as

dX = F(X)dt+H(X) ◦ dW. (6.2)

We recall the discrete optimality conditions of problem(P ′
d) posed in Theorem 5.2:

(OC ′
d)







yk+1 = yk + J0

s∑

i=1

αif(yki, uki) + J1

s∑

i=1

βih(yki),

yki = yk + J0

s∑

j=1

aijf(ykj, ukj) + J1

s∑

j=1

bijh(ykj),

pk+1 = pk − J0

s∑

i=1

α̃iHy(yki, uki, pki, qki) + J1

s∑

i=1

β̃ih(yki)qki,

pki = pk − J0

s∑

j=1

ãijHy(ykj, ukj , pkj, qkj) + J1

s∑

j=1

b̃ijh(ykj)qkj,

qkiψki = pk − J0

s∑

j=1

âijHy(ykj, ukj , pkj, qkj) + J1

s∑

j=1

b̂ijh(ykj)qkj,

pN = φ′(yN),

y0 = y0,

0 = ∆
s∑

i=1

αiHu(yki, uki, pki, qki),
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for k = 0, 1, . . . , N − 1, where the coefficients satisfy the subsequent relations:

α̃i := αi, β̃i := βi,

ãij := αj −
αj

αi

aji, b̃ij := βj −
βj
αi

aji,

âij := αj −
αj

βi
bji, b̂ij := βj −

βj
βi
bji,

with

ψki :=
J0tαih(yki)

J1βi
−
h(yki)

h′(yki)
.

6.3 Weak-Order Conditions of Runge-Kutta Method for Stochastic Optimal Con-
trol Problems

To obtain weak-order conditions of our Runge-Kutta method, we need to expand
E[Φ(X(t0 + ∆))] andE[Φ(ζ(t0 + ∆))] using the It̂o Formula for some sufficiently
smooth vector-valued of 2 variables functionΦ. So, we first consider the vector-valued
diffusion operator of 2 variablesL [28] for the solutionX of the Stratonovich SDE
from Eqn. (6.2):

LΦ :=
∂Φ

∂X

(

F+
1

2
H′H

)

+
1

2

∂2Φ

∂X2
HH.

Then, the It̂o Formula yields

E [Φ(X(t0 +∆))] = Φ(X(t0)) +

∫ t0+∆

t0

E [LΦ(X(s))ds]

= Φ(X(t0)) +

∫ t0+∆

t0

(

LΦ(X(t0)) +

∫ s

t0

E
[
L

2Φ(X(u)
]
du

)

ds

= Φ(X(t0)) +

∫ t0+∆

t0

LΦ(X(t0))ds+

∫ t0+∆

t0

∫ s

t0

L
2Φ(X(t0))duds

+

∫ t0+∆

t0

∫ s

t0

∫ u

t0

E
[
L

3Φ(X(v))
]
dvduds

= Φ(X(t0)) +LΦ(X(t0))∆ +L
2Φ(X(t0))

1

2
∆2

+

∫ t0+∆

t0

∫ s

t0

∫ u

t0

E
[
L

3Φ(Xv)
]
dvduds,
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and

L
2Φ =

∂Φ

∂X

(

F′F+
1

2
H′H′F+

1

2
H′′FH+

1

2
H′F′H+

1

4
H′H′H′H

+
1

4
H′′HH′H+

1

2
F′′HH+

3

4
H′′H′HH+

1

4
H′′′HHH

)

+
∂2Φ

∂X2

(

FF+HH′F+ FHH′ +
3

4
HH′HH′ +HHH′H′ +H′′HHH

+HHF′) +
∂3Φ

∂X3

(

FHH+H′HHH+
1

2
H′HHH

)

+
∂4Φ

∂X4

(
1

4
HHHH

)

.

We point out that the expectation of multiple Itô integral including at least one inte-
gration with respect to Brownian motion is zero [28, 53]. Moreover, we note that the
derivatives should be viewed in an operator context. For example, the first derivative
of a vector-valued functionF is a Jacobian matrix, so thatF′F corresponds to multi-
plying the Jacobian matrix by the vectorF to give a vector. The second derivativeF′′

operates on a pair of the vector(H,H) in order to give a vectorF′′HH.

As in Section 5.3, in order to study order conditions of discrete optimality conditions
(OC ′

d), the(OC ′
d) will be written as a function oft. By using Butcher approach, we

write tn = t0, and for a givent = t0 + ∆. Let us recall the notations Section 5.3 so
that letζ(t) = (y(t), p(t))T be the vector of length2N(s + 1) and letζki(t), ζs+1(t),
F̃(ζ(t)) andH̃(ζ(t)) denote the following pairs:

ζki(t) =

(

yki(t)

pki(t)

)

(1 ≤ i ≤ s), ζs+1(t) =

(

yk+1(t)

pk+1(t)

)

(i = s+ 1),

F̃(ζ(t)) = F̃i(ζ(t)) =

( ∑s
j=1 aijf(ζkj(t))

∑s
j=1 ãijHy(ζkj(t))

)

(1 ≤ i ≤ s+ 1),

and

H̃(ζ(t)) = H̃i(ζ(t)) =

( ∑s
j=1 bijh(ζkj(t))

∑s
j=1 b̃ijh(ζkj(t))q(ζkj(t))

)

(1 ≤ i ≤ s+ 1),

wherek = 0, 1, . . . , N − 1, is the index of the Runge-Kutta scheme in the discrete
optimality conditions(OC ′

d), with

as+1,j = ãs+1,j = αj (1 ≤ j ≤ s),

bs+1,j = b̃s+1,j = βj (1 ≤ j ≤ s).

By using the above notation, we can state the discrete optimality conditions(OC ′
d) in

the form

ζ(t) = ζ(t0) + (t− t0)F̃(ζ(t)) + ∆W H̃(ζ(t)) (1 ≤ i ≤ s+ 1), (6.3)
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which is Eqn. (5.8), where∆ = t− t0 and∆W = W (t)−W (t0).

Then, one-step Runge-Kutta approximation in Eqn. (6.3) can be stated as
{
ζ(t0) =X(t0),

ζ(t) =A(ζ(t),∆,∆W ).
(6.4)

It is clear thatA(ζ(t0), 0, 0) = ζ(t0), but in the following expansion, we briefly write
A(X(t0), 0, 0) := A(X(t0)).

The corresponding vector-valued diffusion operator of 2 variables,L∆, for expansion
of E[Φ(ζ(t0 +∆))] is given by

L∆Φ :=
∂Φ

∂u
+

1

2

∂2Φ

∂W̃ 2
,

whereu = ∆ andW̃ (u) = ∆W . For simplicity, we writeW̃ := W̃ (u).

Then, the It̂o Formula gives

E [Φ(ζ(t0 +∆)) ] = Φ(X(t0)) +

∫ t0+∆

t0

E

[

L∆Φ(A(ζ(s), s, W̃ (s)))ds
]

= Φ(X(t0)) +

∫ t0+∆

t0

(

L∆Φ(A(X(t0))) +

∫ s

t0

E

[

L
2
∆Φ(A(ζ(u), u, W̃ (u)))

]

du

)

ds

= Φ(X(t0)) +

∫ t0+∆

t0

L∆Φ(A(X(t0)))ds+

∫ t0+∆

t0

∫ s

t0

L
2
∆Φ(A(X(t0)))duds

+

∫ t0+∆

t0

∫ s

t0

∫ u

t0

E

[

L
3
∆Φ((ζ(v), v, W̃ (v))))

]

dvduds

= Φ(X(t0)) +LΦ(A(X(t0)))∆ +L
2
∆Φ(A(X(t0)))

1

2
∆2

+

∫ t0+∆

t0

∫ s

t0

∫ u

t0

E
[
L

3
∆Φ(X(v))

]
dvduds,

with

L∆Φ(A) =
∂Φ

∂X

(
∂A

∂u
+

1

2

∂2A

∂W̃ 2

)

+
∂2Φ

∂X2

1

2

(
∂A

∂W̃

)2

and

L
2
∆Φ(A) =

∂Φ

∂X

(
∂2A

∂s2
+

∂3A

∂W̃ 2∂u
+

1

4

∂4A

∂W̃ 4

)

+
∂2Φ

∂X2

((
∂A

∂u

)2

+
∂A

∂∆

∂2A

∂W̃ 2
+ 2

∂A

∂W̃

∂2A

∂u∂W̃
+
∂A

∂W̃

∂3A

∂W̃ 3
+

3

4

(
∂2A

∂W̃ 2

))

+
∂3Φ

∂X3

(

∂A

∂u

(
∂A

∂W̃

)2

+
3

4

(
∂A

∂W̃

)2
∂2A

∂W̃ 2

)

+
∂4Φ

∂X4

(

1

4

(
∂A

∂W̃

)4
)

.
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Now, we reach the intended weak order-1 and order-2 conditions of our Runge-Kutta
scheme by solving the conditions:

LΦ(X(t0)) = L∆Φ(A(X(t0)))

and

L
2Φ(X(t0)) = L

2
∆Φ(A(X(t0))),

respectively.

Theorem 6.1. Let αi, βi, aij, ãij, bij b̃ij, be the Runge-Kutta coefficients fori, j =
1, 2, . . . , s. If the coefficients of the Runge-Kutta method for the stochastic optimal
control problems fulfill the following conditions:

1.
s∑

i=1

αi = 1, 2.
s∑

i=1

βi = 1, 3.
s∑

i=1

βibi =
s∑

i=1

βib̃i =
1

2
,

then our Runge-Kutta method for the stochastic optimal control problems converges to
order-1 in the weak sense. In addition, if the following conditions are also satisfied:

4.
s∑

i=1

αiai =
s∑

i=1

αiãi =
1

2
,

5.
s∑

i=1

αib
2
i =

s∑

i=1

αib̃
2
i =

s∑

i=1

αibib̃i =
1

2
,

6.
s∑

i=1

αi

s∑

j=1

bijbj =
s∑

i=1

αi

s∑

j=1

bij b̃j =
s∑

i=1

αi

s∑

j=1

b̃ijbj =
s∑

i=1

αi

s∑

j=1

b̃ij b̃j,

7.
s∑

i=1

βi

s∑

j=1

aijbj =
s∑

i=1

βi

s∑

j=1

aij b̃j =
s∑

i=1

βi

s∑

j=1

ãijbj =
s∑

i=1

βi

s∑

j=1

ãij b̃j,

8.
s∑

i=1

αi

s∑

j=1

bijbj +
s∑

i=1

βi

s∑

j=1

aijbj =
1

4
,

9.
s∑

i=1

βiaibi =
s∑

i=1

βiaib̃i =
s∑

i=1

βiãibi =
s∑

i=1

βiãib̃i =
1

4
,

10.
s∑

i,j=1

βiajbij =
s∑

i,j=1

βiaj b̃ij =
s∑

i,j=1

βiãjbij =
s∑

i,j=1

βiãj b̃ij =
1

4
,
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11.
s∑

i=1

βib
3
i =

s∑

i=1

βib
2
i b̃i =

s∑

i=1

βibib̃
2
i =

s∑

i=1

βib̃
3
i =

1

4
,

12.
s∑

i,j=1

βibijbibj =
s∑

i,j=1

βibij b̃ibj =
s∑

i,j=1

βib̃ij b̃ibj

=
s∑

i,j=1

βibijbib̃j =
s∑

i,j=1

βibij b̃ib̃j =
s∑

i,j=1

βib̃ij b̃ib̃j =
1

8
,

13.
s∑

i,j=1

βibijb
2
j =

s∑

i,j=1

βibij b̃jbj =
s∑

i,j=1

βib̃ij b̃jbj =
s∑

i,j=1

βibij b̃
2
j =

s∑

i,j=1

βib̃ij b̃
2
j =

1

12
,

14.
s∑

i,j,k=1

βibijbjkbk =
s∑

i,j,k=1

βibij b̃jkbk =
s∑

i,j,k=1

βib̃ij b̃jkbk

=
s∑

i,j,k=1

βibijbjkb̃k =
s∑

i,j,k=1

βibij b̃jkb̃k =
s∑

i,j,k=1

βib̃ij b̃jkb̃k =
1

24
,

15.
s∑

i=1

αibi =
s∑

i=1

αib̃i =
1

2
,

16.
s∑

i=1

βiai =
s∑

i=1

βiãi =
1

2
,

17.
s∑

i=1

βib
2
i =

s∑

i=1

βibib̃i =
s∑

i=1

βib̃
2
i =

1

3
,

18.
s∑

i=1

βibijbj =
s∑

i=1

βib̃ijbj =
s∑

i=1

βibij b̃j =
s∑

i=1

βib̃ij b̃j =
1

6
,

then our Runge-Kutta method for the stochastic optimal control problems converges
to order-2 in the weak sense, whereai :=

∑s
j=1 aij, ãi :=

∑s
j=1 ãij, bi :=

∑s
j=1 bij,

b̃i :=
∑s

j=1 b̃ij.

Proof. For simplicity,

F̃i =

( ∑s
j=1 aijf

−
∑s

j=1 ãijHy

)

=
s∑

j=1

aijf
0 +

s∑

j=1

ãij(−H
0
y) (1 ≤ i ≤ s+ 1),

where

f0 =

(

f

0

)

, H
0
y =

(

0

−Hy

)

,

and

H̃i =

( ∑s
j=1 bijh

∑s
j=1 b̃ijhq

)

=
s∑

j=1

bijh
0 +

s∑

j=1

b̃ij(hq)
0 (1 ≤ i ≤ s+ 1),
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with

h0 =

(

h

0

)

, (hq)0 =

(

0

hq

)

,

and

(F̃
′

i)j = aij(f
0)′ + ãij((Hy)

0)′.

First, let us equate the following equations in order to derive the proposed weak order-1
conditions of our Runge-Kutta scheme for stochastic optimalcontrol problems:

L∆Φ(A) =
∂Φ

∂X

(
∂A

∂u
+

1

2

∂2A

∂W̃ 2

)

+
∂2Φ

∂X2

1

2

(
∂A

∂W̃

)2

and

LΦ =
∂Φ

∂X

(

F+
1

2
H′H

)

+
1

2

∂2Φ

∂X2
HH.

i) We have

∂A

∂u

(

ζ(t), u, W̃
)

= F̃(ζ(t)) + uF̃
′
(ζ(t))

∂ζ(t)

∂u
+ W̃ H̃′(ζ(t))

∂ζ(t)

∂u
,

∂A

∂u
(X(t0), 0, 0) =

s∑

i=1

αiF(X(t0)).

Therefore,
s∑

i=1

αiF(X(t0)) = F(X(t0)) ⇒
s∑

i=1

αi = 1 (Condition 1. in Theorem 6.1).

ii) The partial derivative ofA with respect toW̃ is found to be:

∂A

∂W̃

(

ζ(t), u, W̃
)

= uF̃
′
(ζ(t))

∂ζ(t)

∂W̃
+ H̃(ζ(t)) + W̃ H̃′(ζ(t))

∂ζ(t)

∂W̃

⇒
∂A

∂W̃
(X(t0)) =

s∑

i=1

βiH(X(t0)).

Herewith,
(

s∑

i=1

βiH(X(t0))

)2

= H(X(t0))H(X(t0)) ⇒
s∑

i=1

βi = 1

(Condition 2. in Theorem 6.1).
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iii) The second-order partial derivative ofA with respect toW̃ is:

∂2A

∂W̃ 2

(

ζ(t), u, W̃
)

=u

(

F̃
′′
(ζ(t))

(
∂ζ(t)

∂W̃

)2

+ F̃
′
(ζ(t))

∂2ζ(t)

∂W̃ 2

)

+ H̃′(ζ(t))
∂ζ(t)

∂W̃
+ H̃′(ζ(t))

∂ζ(t)

∂W̃
(6.5)

+ W̃

(

H̃′′(ζ(t))

(
∂ζ(t)

∂W̃

)2

+ H̃′(ζ(t))
∂2ζ(t)

∂W̃ 2

)

.

Since

∂ζ(t0)

∂W̃
= H̃(ζ(t0)),

we have

∂2A

∂W̃ 2
(X(t0)) = 2

s∑

i,j=1

βiH
′(X(t0))H̃(X(t0))

= 2
s∑

i=1

βiH
′(X(t0))

s∑

j=1

(

bijh
0 + b̃ij(hq)

0
)

(X(t0)).

If

s∑

i,j=1

βibij =
s∑

i,j=1

βib̃ij,

then

2
s∑

i=1

βibijH
′(X(t0))H(X(t0)) = H′(X(t0))H(X(t0))

⇒
s∑

i,j=1

βibij =
s∑

i,j=1

βib̃ij =
1

2
(Condition 3. in Theorem 6.1).

Now, by comparing the following equations, we can reach the proposed weak order-2
conditions of our Runge-Kutta scheme for stochastic optimalcontrol problems:

L
2Φ(X(t0)) = L

2
∆Φ(A(X(t0))).

i) Let us consider the terms including∂Φ/∂X.
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The first term is:

∂2A

∂u2

(

ζ(t), u, W̃
)

=F′(ζ(t))
∂ζ(t)

∂u
+ F′(ζ(t))

∂ζ(t)

∂u

+ u

(

F′′(ζ(t))

(
∂ζ(t)

∂u

)2

+ F′(ζ(t))
∂2ζ(t)

∂u2

)

+ W̃

(

H′′(ζ(t))

(
∂ζ(t)

∂u

)2

+H′(ζ(t))
∂2ζ(t)

∂u2

)

.

Since

∂ζ(t0)

∂u
= F̃(ζ(t0)),

we have

∂2A

∂u2
(X(t0)) = 2

s∑

i,j=1

αiF
′(X(t0))F̃(X(t0))

= 2
s∑

i=1

αiF
′(X(t0))

s∑

j=1

(
aijf

0 + ãijH
0
y

)
X(t0).

If
s∑

i,j=1

αiaij =
s∑

i,j=1

αiãij,

then

2
s∑

i=1

αiaijF
′(X(t0))F(X(t0)) = F′(X(t0))F(X(t0))

⇒
s∑

i,j=1

αiaij =
s∑

i,j=1

αiãij =
1

2
(Condition 4. in Theorem 6.1).

The second term can be obtained by taking the partial derivative of Eqn. (6.5) with
respect tou:

∂3A

∂W̃ 2∂u

(

ζ(t), u, W̃
)

=

(

F̃
′′
(ζ(t))

(
∂ζ(t)

∂W̃

)2

+ F̃
′
(ζ(t))

∂2ζ(t)

∂W̃ 2

)

+ u

(

F̃
′′′
(ζ(t))

∂ζ(t)

∂u

(
∂ζ(t)

∂W̃

)2

+ 2F̃
′′
(ζ(t))

∂ζ(t)

∂W̃

∂2ζ(t)

∂W̃∂u

)
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+ u

(

F̃
′′
(ζ(t))

∂ζ(t)

∂u

∂2ζ(t)

∂W̃ 2
+ F̃

′
(ζ(t))

∂3ζ(t)

∂W̃ 2∂u

)

+ 2

(

H̃′′(ζ(t))
∂ζ(t)

∂W̃

∂ζ(t)

∂u
+ H̃′(ζki)

∂2ζ(t)

∂W̃∂u

)

+ W̃

(

H̃′′′(ζ(t))
∂ζ(t)

∂u

(
∂ζ(t)

∂W̃

)2

+ 2H̃′′(ζ(t))
∂ζ(t)

∂W̃

∂2ζ(t)

∂u∂W̃

)

+ W̃

(

H̃′′(ζ(t))
∂2ζ(t)

∂W̃ 2
+H′(ζ(t))

∂3ζ(t)

∂W̃ 2∂u

)

.

Since

∂2ζ(t0)

∂u∂W̃
= F̃

′
(ζ(t0))

∂ζ(t0)

∂W̃
+ H̃′(ζ(t0))

∂ζ(t0)

∂u
,

and

∂2ζ(t0)

∂W̃ 2
= H̃′(ζ(t0))

∂ζ(t0)

∂W̃
+ H̃′(ζ(t0))

∂ζ(t0)

∂W̃
,

we have

∂3A

∂W̃ 2∂u
(X(t0)) =

s∑

i,j,l=1

αi

(

F′′H̃H̃+ 2F′H̃′H̃
)

+ 2
s∑

i=1

βi

(

H′′H̃F̃+ F̃
′
H′H̃+H′H̃′F̃)

)

(X(t0))

=

(
1

2
F′′HH+

1

2
F′H′H+

1

2
HFH′′ +

1

2
H′H′F

)

(X(t0)).

So that, Conditions 5. and 10. in Theorem 6.1 can be easily deduced from the afore-
mentioned equation.

Now, consider the third term∂4A/∂W̃ 4:

∂3A

∂W̃ 3

(

ζ(t), u, W̃
)

=u

(

F′′′(ζ(t))

(
∂ζ(t)

∂W̃

)3

+ 2F′′(ζ(t))
∂ζ(t)

∂W̃

∂2ζ(t)

∂W̃ 2

)

+

(

H′′(ζ(t))

(
∂ζ(t)

∂W̃

)2

+H′(ζ(t))
∂2ζ(t)

∂W̃ 2

)

+ W̃

(

H′′′(ζ(t))

(
∂ζ(t)

∂W̃

)3

+H′′(ζ(t))
∂ζ(t)

∂W̃

∂2ζ(t)

∂W̃ 2

)

+ W̃

(

H′′(ζ(t))
∂ζ(t)

∂W̃

∂2ζ(t)

∂W̃ 2
+H′(ζ(t))

∂3ζ(t)

∂W̃ 3

)

,
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which implies

∂4A

∂W̃ 4
(X(t0))

=
s∑

i,j,l=1

βi

(

H̃H̃H̃H̃′′′ + 6H̃′′H̃H̃′H̃+ 3H̃′H̃′′H̃H̃+ 6H̃′H̃′H̃′H̃
)

(X(t0))

=
1

4
(HHHH′′′ +H′′HH′H+ 3H′′H′HH+H′H′H′H) (X(t0)). (6.6)

Hence, Conditions 11. and 14. in Theorem 6.1 can be obtained from Eqn. (6.6).

ii) Let us consider the terms including∂2Φ/∂X2.

The partial derivative,

2
∂A

∂W̃

∂2A

∂u∂W̃
(X(t0)) = 2

s∑

i,j=1

βi(HF̃
′
H̃+HH̃′F̃)(X(t0))

= (HF′H+HH′F)(X(t0)),

yields Conditions 15. and 16. in Theorem 6.1.

Moreover, from the following equation

∂A

∂W̃

∂3A

∂W̃ 3
(X(t0)) = 3

s∑

i,j=1

βi(HH′′H̃H̃+HH′H̃′H̃)(X(t0))

= (HH′′HH+HH′H′H)(X(t0)),

we obtain Conditions 17. and 18. in Theorem 6.1.

By performing a similar procedures for the other terms, one can obtain weak-order
conditions, which are the same conditions that we have already obtained for our Runge-
Kutta scheme for stochastic optimal control problems.

We note that the first equations in Theorem 6.1, which do not include Runge-Kutta
coefficients of̃aij andãij, constitute the weak order-1 and weak order-2 conditions of
Runge-Kutta method for SDEs. These conditions are derived by[37, 52] for different
Runge-Kutta scheme for Stratonovich SDEs. The out of first 17 conditions, which we
find in Theorem 6.1 are the additional conditions because of the stochastic optimal
control problem.

At this point, the fundamental issue is to construct a familyof methods satisfying weak
order-1 and order-2 conditions, respectively. It is not surprising that weak order-1 con-
ditions and strong order-1 conditions are the same, since strong convergence implies
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weak convergence. In the case ofs = 2 with an explicit scheme for the state equation
and a related implicit scheme for the adjoint equation, we have 4 conditions for weak
order-1, and there are 6 unknowns. Thus, free parameters guarantee the existence of a
solution. Therefore, one can find different methods (i.e., particular coefficients) which
satisfy weak order-1 conditions fors ≥ 2. For example, the following tableaus fulfill
weak order-1 conditions:

0 0
1 0

0.5 0.5

0 0
1 0

0.5 0.5
(for the state equation),

0.5 -0.5
0.5 0.5
0.5 0.5

0.5 -0.5
0.5 0.5
0.5 0.5

(for the adjoint equation)

and

1/4 1/4
1/4 1/4
1/2 1/2

1/4 1/4
1/4 1/4
1/2 1/2

(for the state equation),

1/4 1/4
1/4 1/4
1/2 1/2

1/4 1/4
1/4 1/4
1/2 1/2

(for the adjoint equation).

As for the weak order-2, in [14, 37] it is shown that the classical Runge-Kutta method
requiress ≥ 4 in the explicit case. In our Runge-Kutta method, we have more than
50 equations which need to be fulfilled, such thats ≥ 5 is needed. One can make
use of MAPLE to solve these equations. However, we mainly focus on the deriava-
tion of Runge-Kutta method for stochastic optimal control problems and investigating
the convergence of the solution, herewith showing a way how such conditions can be
achieved.

6.4 Summary

In this chapter, we again used the Stratonovich form of both continuous and discrete
optimality systems. However, to obtain weak-order conditions of our Runge-Kutta
scheme for stochastic optimal control problems, this time,we made use of the Itô For-
mula to expand stochastic Taylor-series for the exact solution of continuous optimality
system and the approximate solution of our discrete optimality system. After taking
the expectation of stochastic Taylor series, we compared these expansions. Hence,
we succeeded to get weak order-1 and weak order-2 conditionsof our Runge-Kutta
scheme for stochastic optimal control problems.
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CHAPTER 7

CONCLUSION AND OUTLOOK

In this thesis, we proposed a Runge-Kutta method for numerical solution of stochastic
optimal control problems based on Pontryagin’s Maximum Principle. In Chapter 3, we
derived such a method for stochastic optimal control problems of SDEs. We followed
discretize-then-optimizeapproach. After we presented a Runge-Kutta discretization
for both cost functional and state equation, we introduced discrete Lagrangian for our
discrete optimal control problem. By taking the partial derivatives of the discrete La-
grangian with respect to its variables, we achieved the discrete optimality system of
our stochastic optimal control problem. The main advantageof our method is that a
Runge-Kutta discretization of adjoint pair is derived and Runge-Kutta coefficients of
adjoint pair are obtained in terms of Runge-Kutta coefficients of the state equation. In
order to test our Runge-Kutta scheme, some examples were selected from the financial
sector and a comparison with simulation made for the exact solution was illustrated.
Numerical results also revealed that our Runge-Kutta schemeis more efficient in terms
of time consumption when compared to Euler scheme.

We also derived a Runge-Kutta method for the numerical solution of stochastic control
problems of some SPDEs in Chapter 4. We chose a special, emerging problem, that
is anoptimal harvestingproblem. This is an important problem in ensuring food and
other organic material for the people of the world, while caring for humankind in a
sustainable manner. Such problems exist in agriculture, fisheries, forestry, gardening,
tourism, city planing and water management, which are closely associated areas of
daily life, modern industries and scientific research. By using the finite difference
scheme, we discretized the problem with respect to the spacevariable and converted the
given problem to an optimal control problem of system of SDEs. Then, by following
the same methodology as in the SDE case, we were able to derivea Runge-Kutta
method on the numerical solution of stochastic control problems subject to system of
SDEs.

When dealing with a numerical scheme, the issue of convergence is important in or-
der to judge the quality of the scheme. In stochastic calculus, the desired task can be
achieved in two different ways. If sample paths of the solution are subject of interest,
strong convergencecriteria are used. Since it requires the sample paths to be close, the
same Brownian motion is used in the simulation. For this reason, we first focused on
strong convergence properties of our Runge-Kutta scheme forstochastic optimal con-
trol problems in Chapter 5. Because of the simplified nature of Stratonovich calculus,
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we preferred to use the related Stratonovich form for our stochastic optimal control
problem to examine strong convergence properties of our Runge-Kutta method. By
following the same methodology as in Itô SDE case, we obtained the discrete opti-
mality system of our problem in the related Stratonovich form. Then, we expanded
the exact solution from the continuous optimality system and the approximate solution
from our discrete optimality system in Stratonovich-Taylor series. In order to find the
strong-order of accuracy, we matched these two Stratonovich-Taylor series expansions
by assuming exact initial values. We employed the mean-square convergence since
mean-square convergence implies the strong convergence asa result of Jensen’s in-
equality. We were able to obtain strong order-1 conditions of our Runge-Kutta scheme
for stochastic optimal control problems. We also illustrated why we can not exceed
strong order-1. Since it is not possible to get a 0 error from coefficients of order-1.5
terms, which constitute the principal truncation error constants, we minimized the er-
ror constants to obtain a good method which converges strongly to order-1. Thereafter,
by using the idea that each random variable can be written as alinear combination of
2 or more random variables that have the same order with mentioned random variable
and can be stated as in terms of multiple Stratonovich integrals, we reformulated our
problem and we achieved strong order-1.5 conditions of our Runge-Kutta scheme for
stochastic optimal control programs. In our Runge-Kutta scheme for stochastic opti-
mal control problems, Runge-Kutta coefficients of the adjoint process were obtained
in terms of the Runge-Kutta coefficients of the state process.This caused additional
order conditions to the classical Runge-Kutta method of SDEsfor the strong-order of
accuracy. We derived such order conditions explicitly. Eventually, we verified our
results in numerical examples.

If one deals with only the probabilistic aspects of the solution or some moments, it
is more appropriate to employ a much weaker condition:weak convergencecriteria.
In this case, different Brownian motions or even random processes which have sim-
ilar moment properties with Brownian motions can be used in each numerical solu-
tion. In Chapter 6, we paid attention to weak convergence properties of our Runge-
Kutta scheme for stochastic optimal control problems. As inChapter 5, we used the
Stratonovich form of both continuous and discrete optimality systems. However, we
made use of the Itô Formula to expand the expectation of stochastic Taylor-series for
the exact solution of a continuous optimality system and theapproximate solution of
our discrete optimality system to find weak-order accuracy.In Chapter 3, with our
Runge-Kutta scheme for stochastic optimal control problems, we show that Runge-
Kutta discretization of the adjoint process is often different from the Runge-Kutta dis-
cretization of the state process. Herewith, there occur additional weak-order conditions
to classical Runge-Kutta conditions of SDEs for the weak-order of accuracy.

As a further study, in the formulation of stochastic optimalcontrol problem, we can
consider control processes in diffusion process. Moreover, a stochastic optimal control
problem of a coupled state equation can be investigated, too. Since we use Pontraya-
gin’s Maximum Principle, we can also allow the existence of delays in the stochastic
optimal control problem, to find excellent theoretical results in such a wider framework
with delay and to use them for numerical solution procedures. Herewith, a Runge-
Kutta method for stochastic optimal control with delay can be another research di-
rection. Furthermore, jumps and regime switching dynamicsmay be introduced into
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stochastic optimal control of SDEs in order to propose a Runge-Kutta scheme. We can
permit the existence of control processes in the jump term, too; then we may speak of
a Runge-Kutta scheme of impulse control. Finally, strong andweak convergence of
the proposed future research and application can be investigated.

83



84



REFERENCES

[1] L. H. R. Alvarez and L. A. Sheep, Optimal harvesting of stochastically fluctuating
populations, Journal of Mathematical Biology, 37, pp. 155–177, 1998.

[2] I. Arnarson and P. Jensson, Impact of the cost of the time resource on efficiency of
economic processes, European Journal of Operational Research, 172, p. 616–630,
2006.

[3] J.-M. Bismut, Conjugate convex functions in optimal stochastic control, Journal
of Mathematical Analysis and Applications, 44(2), pp. 384–404, 1973.

[4] J.-M. Bismut, An introductory approach to duality in optimal stochastic control,
SIAM Review, 20(1), pp. 62–78, 1978.

[5] J. F. Bonnans and J. Laurent-Varin, Computation of order conditions for sym-
plectic partitioned Runge-Kutta schemes with application to optimal control, Nu-
merische Mathematik, 103(1), pp. 1–10, 2006.

[6] K. Burrage and P. M. Burrage, High strong order explicit Runge-Kutta methods
for stochastic ordinary differential equations, Applied Numerical Mathematics,
20, pp. 1–21, 1996.

[7] K. Burrage and P. M. Burrage, Order conditions of stochastic Runge–Kutta meth-
ods by B-series, SIAM Journal on Numerical Analysis, 38(5), pp. 1626–1646,
2000.

[8] P. Burrage,Runge-Kutta Methods for Stochastic Differential Equations, Ph.D.
thesis, Department of Mathematics, University of Queensland, Australia, 1999.

[9] J. Butcher,Numerical Methods for Ordinary Differential Equations, Wiley, Eng-
land, 2016.

[10] C. C. Chang, Numerical solution of stochastic differential equations with constant
diffusion coefficients, Mathematics of Computation, 49(180), pp. 523–542, 1987.

[11] G. C. Chow, Optimal control without solving the Bellman equation, Journal of
Economic Dynamics and Control, 17(4), pp. 621–630, 1993.

[12] C. Clark,Mathematical Bioeconomics: The Optimal Management of Renewable
Resources, Pure and Applied Mathematics: A Wiley Series of Texts, Monographs
and Tracts, Wiley, 1990.

[13] K. Debrabant and A. Kværnø, B–series analysis of stochastic Runge–Kutta meth-
ods that use an iterative scheme to compute their internal stage values, SIAM
Journal on Numerical Analysis, 47(1), pp. 181–203, 2009.

85



[14] K. Debrabant and A. R̈oßler, Classification of stochastic Runge–Kutta methods
for the weak approximation of stochastic differential equations, Mathematics and
Computers in Simulation, 77(4), pp. 408–420, 2008.

[15] A. L. Dontchev, W. W. Hager, and V. M. Veliov, Second-order Runge–Kutta ap-
proximations in control constrained optimal control, SIAMJournal on Numerical
Analysis, 38(1), pp. 202–226, 2000.

[16] N. Du, J. Shi, and W. Liu, An effective gradient projection method for stochastic
optimal control, International Journal of Numerical Analysis & Modeling, 10(4),
pp. 757–774, 2013.

[17] S. Fadhel and A. Abdulamear, Explicit Runge-Kutta methods for solving stochas-
tic differential equations, Journal of Basrah Researches (Sciences), 37(4C), pp.
300–313, 2011.

[18] P. A. Filipe, C. A. Braumann, and C. Carlos, Profit optimization for cattle grow-
ing in a randomly fluctuating environment, Optimization, 64(6), pp. 1393–1407,
2015.

[19] M. B. Giles, Multi-level Monte Carlo path simulation, Operations Research,
56(3), pp. 607–617, 2008.

[20] P. Glasserman,Monte Carlo Methods in Financial Engineering, Stochastic Mod-
elling and Applied Probability, Springer New York, 2013.

[21] W. W. Hager, Runge-Kutta methods in optimal control and the transformed ad-
joint system, Numerische Mathematik, 87(2), pp. 247–282, 2000.

[22] M. Heinkenschloss, Numerical solution of implicitly constrained optimization
problems, Technical report, Department of Computational and Applied Mathe-
matics, Rice University, 2008.

[23] N. Ikeda and S. Watanabe,Stochastic Differential Equations and Diffusion Pro-
cesses, North-Holland Mathematical Library, Elsevier Science, 2014.
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[55] A. Rößler, Runge–Kutta methods for the strong approximation of solutions of
stochastic differential equations, SIAM Journal on Numerical Analysis, 48(3),
pp. 922–952, 2010.

[56] B. Schulstok,Optimal income by harvesting under uncertainty, Ph.D. thesis,
Cand. Scient. thesis, University of Oslo, 1998.

[57] S. Shreve,Stochastic Calculus for Finance II: Continuous-Time Models, Springer
Finance Textbooks, Springer, 2004.

[58] G. Sun, A simple way constructing symplectic Runge-Kutta methods, Journal of
Computational Mathematics, 18(1), pp. 61–68, 2000.

88



[59] T. H. Tian and K. Burrage, Two-stage stochastic Runge-Kutta methods for
stochastic differential equations, BIT Numerical Mathematics, 42(3), pp. 625–
643, 2002.

[60] A. Tocino and R. Ardanuy, Runge–Kutta methods for numerical solution of
stochastic differential equations, Journal of Computational and Applied Math-
ematics, 138(2), pp. 219–241, 2002.

[61] A. Tocino and J. Vigo-Aguiar, Weak second order conditions for stochastic
Runge–Kutta methods, SIAM Journal on Scientific Computing, 24(2), pp. 507–
523, 2002.
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• H. Öz Bakan, F. Yılmaz, and G.-W. Weber, Minimal Truncation Error Constants
for Runge-Kutta Method for Stochastic Optimal Control Problems, submitted,
2017.
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• G.-W. Weber, F. Yılmaz, and H.̈Oz, Itô-Taylor Approximation of Optimal Stoc-
hastic Control Problems for Stochastic Partial Differential Equations, 9th Inter-
national Summer School, AACIMP-2014, National University of Technology of
the Ukraine, Kyiv, Ukraine, August 1-15, 2014.

• G.-W. Weber, F. Yılmaz, and H.̈Oz, Itô-Taylor Approximation of Optimal Stoc-
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