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CHAPTER 1 

 

 

INTRODUCTION AND MOTIVATION 

 

 

 

Time series is a series that consists of observations that are measured in an 

order. Even though this ordering is generally made through time with 

equally spaced intervals, continuously recorded series are also possible. 

Time series has many application areas including economics (Baillie et al. 

1996), finance (McNeil and Frey, 2000), oceanography (Lau and Weng, 

1995), and health (Zeger et al., 2006). 

The main objectives of the time series are to understand the nature of the 

data, to make forecasts about the future values, to interpret the results and 

to control and simulate the system.  The observations of the series are 

correlated and different series may be dependent on each other. Thus, 

independence assumption of the traditional methods is not valid for time 

series and other methods which considers properties of time series such as 

autocorrelation are needed.  

Any change in the parameters of time series may influence the distribution 

and may cause abrupt changes or trends, sudden increase or decreases, or 

changes in the mean and/or variance of the series. Investigating the effects 

and locations of these changepoints is a branch of time series. Before 

conducting any statistical analyses, the quality control of the data should be 

considered to detect and correct the effects of changepoints, if possible. 
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While working with data which includes independent observations, the 

traditional statistical tests such as t-test or chi-square test can be easily 

applied, if assumptions are validated. However, these tests are not applicable 

if the data covers time series due to autocorrelation.  

The detection of changepoints is crucial in many areas such as climate 

(Toreti et al., 2012) to detect climate change, health studies to detect 

anomalies such as an increase in heart rate (Aminikhanghahi and Cook, 

2017), to detect macroeconomic fluctuations (Sobreira et al, 2014) etc. It is 

also needed to detect the location of the changepoint and then remove or 

correct the effect of it, if possible. This correction process is called as 

homogenization in climate studies.  

One of the examples of time series is climate studies which gained much 

concern since it has an effect on humans and environment directly.  The 

food, water and shelter to live are the most essential needs for living things. 

These are all dependent on the climate of the region. World Meteorological 

Organization (WMO) defines climate as the mean weather status of an area 

over a long period of time (WMO, 2017). However, the world is 

experiencing the strongest climate change since the beginning of the 20th 

century in its history (WMO, 2017) which may influence the next 

generations. This change may result in increase in temperature, floods, rise 

in sea-levels and melting glaciers. In order to forecast extreme climate 

events and take precautions, conducting statistical analyses with 

meteorological series is the first step. These analyses are valid with a high 

quality non-human effect related data.  

Climate studies are also a possible area of changepoint detection because 

the world is continuously changing with all its components one of which is 

climate. Humans and living things which are adapted to the changes such as 

shortages on the water sources early, have a better selective advantage over 

those who do not in a dynamic world. Thus, perceiving changes and moving 

with them becomes a significant issue (Boettcher, 2011).   
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There are many climate related studies in the literature. To exemplify, in our 

project (Determination of Climate Zones and Development of Rainfall 

Prediction Models for Turkey by Data Mining), where we have been 

working for more than five years, the homogeneity problem occurred due to 

the nature of the data. The main concerns of the project are to determine the 

change in climate and to develop precipitation models motivated by changes 

in the climate.  

It is also essential to work with data that do not have any outer effect so that 

reliable results can be obtained; otherwise unreliable inferences may be 

made. If any outer effect is detected, it should be removed if possible before 

conducting any kind of analyses.  

Meteorological variables such as precipitation, minimum temperature, 

maximum temperature or air pressure can be easily influenced by outer 

effects and they are collected in meteorological stations by instruments. 

Thus, the variables are subject to instrument, location or station which may 

have significant effect on them. For instance, urbanization around the 

stations, any breakout or change in the instruments, or changes in the 

calculations can result in abrupt changes, sudden increase or decreases, 

gradual changes, artificial trends or multiple changepoints (Yozgatligil and 

Yazici, 2016). That occurrence of non-climatic effect on the variables is 

called as homogeneity problem in climate studies. That problem is also 

named as structural break, segmentation, edge detection, event detection, 

regime switching, breakouts and anomaly detection (Aminikhanghahi and 

Cook, 2017). Historic metadata support is the best solution to this problem 

and essential for evaluating the breaks detected. Unfortunately, most of the 

data sets do not have accompanying metadata to check the sources of 

inhomogeneity. 

In homogeneity studies, changepoint detecting algorithms are classified as 

absolute and relative depending on whether the need for a reference series 

or not (Tuomenvirta, 2002). If a highly correlated series is needed to conduct 

the test, the method is classified as relative, otherwise it is classified as an 
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absolute test. The methods are also classified as online and offline 

algorithms (Aminikhanghahi and Cook, 2017). The offline algorithms take 

the whole series and look back in time to detect when the change occurred, 

while online algorithms tries to detect the changepoint as soon as it occurs 

rather than investigating the past observations. 

Note that, since the observations are taken from instruments in the 

meteorological stations, it is obvious that these variables are spatio-temporal 

variables. However, the methods used in the literature to detect 

inhomogeneities have some drawbacks. For instance, the Standard Normal 

Homogeneity Test (SNHT) has independent and identically distributed 

(i.i.d) assumption which is not realistic for time series. The nonparametric 

tests such as Kruskal Wallis do not indicate the exact breakpoint but gives 

an interval and the number of observations in each block is not determined.  

The relative tests need homogeneous references, but if there is no prior 

information, then it is almost impossible to classify the stations.  Moreover, 

this type of data may include extreme values due to its nature. Thus, these 

extreme values should be determined and treated separately.  

There are many methods used for changepoint analysis. Yozgatligil and 

Yazici (2016) compared the performances of the offline methods under 

different scenarios of inhomogeneity based on simulated data. The results 

show that relative tests work better than absolute tests especially when the 

changepoint is in the middle of the series, while the detection performances 

become worse when the location of the changepoint is close to the beginning 

or end of the series. Moreover, detection performances become better when 

the magnitude of the level shift increases. Thus, there is a need for an 

absolute test to detect small amounts of level shifts especially when the shift 

is close to the boundaries of the series.  

In this study, likelihood ratio test based on the exact likelihood for 

autoregressive models is used. The other alternative is to use conditional 

likelihood which is an approximation of the exact likelihood and both have 
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the large sample properties (Hamilton, 1994). The critical values of the test 

are obtained by a simulation study. Then, moving block bootstrap procedure 

is proposed for detection of changepoints to capture the mean shift starting 

at the beginning or end of the observations. This study considers the mean 

shift (level shift) scenario. The method is also tried to detect multiple 

changepoints. Even though this study is motivated by a meteorological data, 

the proposed method can be applicable to any time series such as economics 

or health data which may include a changepoint.  

The current study consists of five chapters and each one is organized in the 

following way. Literature review for the applications of changepoint 

detection is given in Chapter 2. In Chapter 3, likelihood ratio tests for 

autoregressive models, Standard Normal Homogeneity Tests (SNHT) and 

bootstrap methods that are used in this study are explained in detail. 

Application results of the methods on the simulations are presented in 

Chapter 4. Conclusions and future studies, which can be developed 

depending on the findings of this thesis, are given in Chapter 5. 
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CHAPTER 2 

 

 

LITERATURE REVIEW AND BACKGROUND 

 

 

 

Changepoint detection in time series has been studied in different aspects in 

the literature. Chen and Gupta (2012) stated that the first aim of the 

changepoint analysis is to detect whether there is any change in the series or 

not and then try to estimate the number of possible changepoints and 

associated locations.  

There are few studies to make inferences about time series such as the 

equality of means or variances. For instance, Panaretos et al. (2010) 

considered two-sample problem in terms of functional setting and 

developed inferential methodology. Horvath et al. (2009) compared linear 

operators in two functional regression models.  Horvath et al. (2013) 

proposed methods to test whether the mean functions of the functional 

samples are equal or not. They considered the samples which exhibit 

temporal dependence valid for stationary data by using kernels. Degras et 

al. (2012) proposed a simulation-based test for parallelism among trends in 

nonstationary time series.   

Likelihood ratio test (LRT) is generally used to test the changepoint 

problems in time series. For instance, Tsay (1988) tried to handle outliers 

by using least squares and residual variance ratios. Chang et al. (1988) 

studied the estimation of parameters when there are outliers in ARMA 

model and then Chen and Liu (1993) improved their model.  Then, Battaglia 

and Orfei (2005) suggested a similar method of Chen and Liu (1993) to 

nonlinear time series models. Apart from these studies, Davis et al. (1995) 
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proved that if there is no change in the parameters and order of an AR model, 

the LRT obtained by conditional likelihood is distributed as Gumbel’s 

extreme value distribution. Karioti and Caroni (2004) compared the powers 

of LRT and Normal outlier test to detect whether the means of different 

small time series are equal or not.  Moreover, McQuarrie and Tsai (2003) 

investigated the effect of outliers on the parameter estimates and model 

selection and proposed a LRT based method to classify the outlier as an 

innovation or an additive one. Then, Gombay (2008) studied the large 

sample properties of the test statistic derived to detect the change in any 

parameter of the AR models. All these works mentioned are based on 

conditional likelihood or least squares.  Moreover, Davis et al. (2008) 

studied the break detection in nonlinear time series models. Yau and Zhao 

(2015) tried to estimate the multiple changepoints by using scan statistics.  

Since changepoint detection is generally studied in economics to detect 

structural breaks, there are many studies conducted in that area. One of the 

first studies is developed by Chow (1960) which needs the possible 

breakpoint a priori. Then, it is improved with the F-statistic for the case of 

unknown changepoint. It is based on testing the change of parameters of a 

linear model. Then, Zivot and Andrews (1992) proposed an endogenous 

structural break test to detect possible break associated with the minimum 

unit root t-test statistic. Another regression based method for structural 

change with cointegration is developed by Gregory and Hansen (1996). In 

another study, Bai and Perron (1998) developed a test statistic to multiple 

changes in linear models. Perron (2017) made a comprehensive literature 

review on unit root and structural break tests. Banerjee et al. (1998) used 

bootstrapping for inferential purposes such as deriving the confidence 

interval for parameters of the marginal and conditional model to locate the 

multiple break. Jiang (2009) developed a Bayesian structural break model 

and considered the number of breaks as random and allowed a regime 

coefficient to include information about the other regime coefficients.  

Apart from these studies, there are regime switching methods in the 

literature. For instance, Azavedo et al. (2014) studied Markov-switching 
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jump, Temocin and Weber (2014) developed an approximation for 

controlled autonomous stochastic hybrid systems with jumps, Yerlikaya-

Ozkurt et al. (2016) proposed a robust hybrid approach for CMARS, MSOM 

and CQP to handle outliers and Savku et al. (2015) applied stochastic hybrid 

models to sudden paradigm changes.   

On the other hand, there are many climate related studies. Ribeiro et al. 

(2016) made a comprehensive review on the detection and homogenization 

methods used in climate studies and Peterson et al. (1998) evaluated many 

methods used in the literature. The most well-known relative homogeneity 

test is the Standard Normal Homogeneity Test (SNHT) which was proposed 

by Alexandersson (1986) as a likelihood ratio test. Even though Rienzner 

and Gandolfi (2011) improved it to capture multiple changepoints, this test 

has some drawbacks. First, it has the assumption of i.i.d. series which is not 

realistic for time series. The test also requires homogeneous reference 

stations; thus, their reliability and homogeneity should be validated before 

the test. Moreover, it needs close relative stations so that the correlation 

between the series obtained in the test station and reference stations must be 

at least 0.80. If this assumption is not satisfied, then the test station is 

classified as non-testable (Gokturk et al., 2008). Finally, at the end of the 

test, stations are classified as homogeneous, inhomogeneous and 

inconsistent. Later, Alexandersson and Moberg (1997) modified the test to 

identify the linear trends. The SNHT captures the changepoints close to the 

beginning and the end of the series better (Wijngaard et al., 2003). This test 

detects the location of the year in which the break occurs.  Buishand range 

and the Pettitt test have this property, null and alternative hypotheses in 

common. Thus, these three tests are named as location-specific tests 

(Wijngaard et al., 2003).  

Since it is the most popular homogeneity test, there are many studies which 

involve this test. For instance, Gokturk et al. (2008) applied SNHT to 

Turkish monthly precipitation from 267 stations. Apart from the other 

studies, in this study all months are treated separately and the test is applied 
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to each individual monthly series and at the end of the test the stations are 

classified as homogeneous or not if the test is applicable.  

Buishand range test is an absolute test which is proposed by Buishand 

(1982).  It assumes the series is i.i.d and captures the breakpoints in the 

middle of the series easily (Hawkins, 1977). The test based on the adjusted 

partial sums is defined as 

  ).,,2,1(

,0

1

*

*
0







k

i
ik nkXXS

S


             (1) 

If there is a break in year K, then *
kS  gets the maximum (negative shift) or 

minimum (positive shift) close to the year k = K for the series of X, where n 

is the sample size.   

The test statistic is defined as 

sSSR kk /)min(max **   (s is the sample standard deviation) and the 

critical values can be obtained from Buishand (1982), where the max and 

min denote the maximum and minimum values of S, respectively. 

Pettitt test is a nonparametric and absolute test. The ranks ( nrrr ,,, 21  ) of 

the variables nXXX ,,, 21  , are used to obtain the test statistic. This test 

needs the ranks of the series rather than the original values; hence it does 

not need the normally distributed Xi values. However, this makes it less 

sensitive to outliers (Wijngaard et al. 2003), but more sensitive to 

breakpoints in the middle of a time series (Hawkins, 1977). The test statistic 

is calculated as 

).,,2,1()1(2
1

nknkrP
k

i
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           (2) 

If there is a break in the year E, then the test statistic gets its maximal or 

minimal near the year k = K. 
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The critical values can be obtained from the original work of Pettitt (1979). 

The von Neumann ratio test is also an absolute test, but cannot detect the 

location of the break. This property of the test is complementary to other 

three tests since it is more sensitive to breaks other than strict step-wise 

shifts (Wijngaard et al., 2003). The Von Neumann ratio is calculated by 

the ratio of the mean square successive difference to the variance 
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When there is not any breakpoint in the sample, the value of N is 2. In case 

of inhomogeneity, the value of the N is smaller than this expected value. If 

there are rapid variations in the mean, the values are higher than 2.  

The KW test (Kruskal, 1952; Kruskal and Wallis, 1952) is a popular 

nonparametric test. This test needs at least two independent groups of 

samples and then compares them.  Even though it is one of the mostly used 

tests for detecting homogeneity, the assumptions of random observations 

and independent populations are not valid for time series. The test statistic 

H  is calculated as   

,)1(3
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where n represents the overall sample size in the whole data, in  and iR  

represent  the sample size and the rank of the i th series, respectively. In 

addition to them, m represents the number of groups. 

The KW test does not consider the autocorrelation in the series; thus, the 

performance of the Friedman Test is studied. This test which is proposed 

by Friedman (1937) is the nonparametric version of the repeated Analysis 
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of Variance test. The test statistic is obtained by the sum of ranks within 

each column by the following expression F:   

,)1(3
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i
i cbR

cbc
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where iR  represents the underlying rank for the i th series ( ti ,,2,1  ), 

b   denotes the number of columns and c  denotes the rows of the data 

matrix. 

The KPSS test which is proposed by Kwiatkowski et al., (1992) tries to 

detect the trend within the series if exists. The test may capture the positive 

or negative shift as a trend in case of mean shift. The first step to conduct 

the KPSS is to regress tX  on a constant and then to obtain the least-squares 

residuals   .,,, 21
T

n   In the next step, the partial sum of the 

residuals is calculated as 



t

i
ite
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 . The KPSS test statistic is obtained by 
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where 2̂  represents the estimate of the long-run variance of the residuals. 

In case of nonstationarity, i.e., inhomogeneity, the null hypothesis should 

be rejected.  An asymptotic distribution of the test statistic uses the 

standard Brownian bridge.  

Another test which is proposed to detect the stationarity of the time series 

is the ADF Test. This test also tries to detect the trend within the series. 

Considering the p-th order autoregressive process, AR(p), 

,110 tpttt aXXX               (8) 

where 0 represents the function of process mean, while  are model 

parameters and at  is a White Noise process with zero mean and constant 

variance. In order to conduct the test, the process should be represented by 

backshift operator form, tt
p

p aXBB  01 )1(   . If some of 
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roots of the polynomial )1( 1
p

p BB     are 1, then the series is not 

stationary. To detect whether the series is stationary or not, the Equation 9 

is used as 

.0
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If γ =1, there is a unit root in the series, i.e., the series is not stationary. The 

critical values of the test can be found in the study of Said and Dickey 

(1984). 

GAHMDI which is proposed by Toreti et al. (2012) tries to find the M 

possible changepoints and the homogeneous segments. This method uses 

Hidden Markov models and a genetic algorithm (GA) in order to obtain 

the global maximum. The first step of the method is to decide on the 

maximum number of changepoints, Mmax. The GAHMDI method uses a 

likelihood approach and then an expectation-maximization procedure in 

order to complete maximization. GA helps to estimate the initial state 

sequence in order to get global maxima. Then, the number of states is 

obtained by using the minimum description length. 

The Bayesian method of change-point analysis is also known as the 

product partition model (Barry and Hartigan, 1992; 1993). This procedure 

can be used as an absolute and a relative test. The posterior probability of 

a break point for all time points of the series is presented and the posterior 

mean is approximated by Markov Chain Monte Carlo (MCMC). This 

method is also capable of detecting multiple changepoints. It is assumed 

that the change-points are identical and have the geometric distribution and 

independent priors for the parameters in order to capture them in the mean 

of normally distributed variables. The partition  nUUUU ,,, 21   where 

Ui = 1 indicates a changepoint at position i+1, is used to conduct the test. 

In the first step, Ui is equal to 0 for all i < n, with Un = 1. In every process 

of the Markov chain, at each position i, a value of Ui is selected from the 

conditional distribution of Ui given all observations and the current 
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partition.  The transition probability for the conditional probability of a 

changepoint at the position i+1 may be calculated by using the ratio  
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where X represents the series. This series can also be used with another 

series, Y, and include some explanatory variables, such as reference 

information. 

RHTest is proposed by Wang (2008a, 2008b). This method can capture 

single or multiple mean changepoints and it is based on an empirical 

approach which accounts for lag-1 autocorrelation. RHTest is based on the 

penalized maximal t-test (PMT) or F test (PMF) suggested by (Wang et 

al., 2007).  First, the most possible changepoint c0 

  minminmin ,...,1, nnnnt   is identified. Then, the next possible 

changepoints; c01 and c03 are searched in the segments 

 )(,..., min0min ncnt   and  ,)(,...,1 minmin0 nnnct  respectively. 

Then, the new estimate of c0, represented by c02 is identified. PMT test 

statistic, PTmax is needed to determine the most significant changepoint. 

The following models are conducted in order to estimate the p-value of the 

PTmax,  

 

 .,...,2ˆ

,

,,...,2,1ˆ

1

11

ntRRW

RW

ntXXR

ttt

tt








         (11) 

where tX̂  indicates the full model fit to the series Xt, and Rt denotes the 

residuals. Then, the prewhitened series, Wt is obtained in order to get the 

t-statistics and p-value for c. The changepoint associated with the 

maximum PTmax is determined. If it is significant, this point is classified 

as a changepoint.  
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Caussinus and Mestre (2004) (CauMe) suggested a method to capture the 

changepoints and then correct them in a climate series. This test assumes 

the normally distributed differences between the test and reference series. 

One of the advantages of this method is that it uses adapted penalized log-

likelihood procedure which makes it useable when there is not any reliable 

reference series. This method considers that each observation in a climate 

series represents the climate and station effect in addition to a random 

white noise.  The following model is used to conduct the test 

,)( ),( jijhiijXE             (12) 

where i  represents the climate effect at time i and jh  represents the 

station effect of station  j for level Ljh. When the sample size of the series 

is large, the number of hypotheses increases which makes it 

computationally inefficient. In order to prevent this, a dynamic 

programming algorithm is used for pairwise comparisons.  

Two Phase Regression (TPR) is also used to detect changepoints and 

proposed by Easterling and Peterson (1995). Similar to other relative tests, 

the differences between the test and reference series is calculated.  A 

simple linear regression (SLR) is conducted where the differences are 

regressed on the time variable and the residual sum of squares, RSS1 of the 

model is calculated. Then, two different SLR is conducted before and after 

the possible breakpoint, k, and the sum of the residual sum of squares 

(RSS2) of these two models are obtained for each possible breakpoint k. 

The maximum value of RSS2 is determined as the test statistic and then the 

significance of the test is determined by using the test statistic U: 

 
.

)4/(

2/

2

21





nRSS

RSSRSS
U          (13) 

Lund and Reeves (2002) presented the critical values. If a possible 

breakpoint is determined, its magnitude is estimated by the differences of 

the averages before and after the breakpoint.  
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After introducing the common methods to detect inhomogeneities, the 

studies comparing the performances of the methods are discussed. The 

comparison studies (Guijarro, 2013; Ducre-Robitaille et al., 2003) 

generally include simulation studies. However, they either simulated i.i.d. 

data or they create only one type of shift like mean shift which is not 

realistic or not enough for comparison. Toreti et al. (2012) proposed an 

approach based on a genetic algorithms and hidden markov models 

(GAHMDI) to detect inhomogeneities. Caussinus and Mestre (2004) 

detects the number of breaks and outliers by using an adapted penalized 

log-likelihood procedure.  Wang (2008a, 2008b) proposed an approach in 

order to account for lag-1 autocorrelation to capture mean shifts. Toreti et 

al. (2012) compared their method with the SNHT, the RHtest (Wang, 

2008a), and the method developed by Caussinus and Mestre (2004). In 

their work, GAHMDI overperforms the other three methods. Huskova and 

Kirch (2012) used bootstrapping regression methods to find the critical 

values of the sequential changepoint tests.  

Buishand (1982) applied his test to annual data from 264 stations of 30 

years long and compared the results with that of the von Neumann ratio 

test and concluded that Buishand range test performs better than von 

Neumann ratio test for the model of one changepoint in the mean. 

Wijngaard et al. (2003) applied SNHT, the Buishand range, the Pettitt test 

and the Von Neumann tests to the daily European series and classified the 

series as useful (if at least one test indicates inhomogeneity), doubtful (if 

two tests indicate inhomogeneity) and suspect (if at least three tests 

indicates inhomogeneity). Hanssen-Bauer and Forland (1994) proposed a 

four-step approach to define the reference series as homogeneous in SNHT 

if there is no prior information about the homogeneity of the reference 

series.  Gonzalez-Rouco et al. (2001) used SNHT for the 95 monthly 

precipitation series of the Southwest Europe and added a one step to the 

proposed method of Gonzalez – Rouco et al. (2001) in order to classify the 

stations according to its homogeneity. Karabork et al. (2007) compared the 

performances of the SNHT and Pettitt tests for the annual precipitation 
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totals of 212 stations of Turkey. If both tests indicate homogeneity, the 

series is classified as homogeneous. Thus, 43 out of 212 stations are 

classified as inhomogeneous and the other stations are detected as 

homogeneous.  Sahin and Cigizoglu (2010) compared the performances of 

SNHT, Pettitt, von Neumann, Buishand range and the bivariate test 

developed by Maronna and Yohai (1978) on 250 meteorological stations 

of Turkey and concluded that the relative tests performs better than the 

absolute tests. Tayanc et al. (1998) conducted a comparative study by 

using Kruskal–Wallis and Wald–Wolfz methods to detect the 

inhomogeneity of the temperature series of Turkey. Their study revealed 

that 50 stations out of 82 were classified as homogeneous.   

Li and Lund (2012) proposed a method based on a genetic algorithm to 

detect the number of changepoints and their locations. Guijarro (2013) 

compared t-test, SNHT, two-phase regression (TPR), Wilcoxon-Mann-

Whitney test, Durbin-Watson (DW) test and squared relative mean 

difference on windows running along the series and conclude that SNHT 

is the best performing test Moreover, Ducre-Robitaille et al. (2003) 

compared the performances of the SNHT with and without trend, Multiple 

Linear regression (MLR), TPR, Wilcoxon rank-sum, sequential testing for 

equality of means, Bayesian approach with and without reference series on 

a simulated temperature series and concluded that SNHT and MLR have 

the better performances.   

The studies in the literature that are mentioned tried to detect the mean 

shift type but not any change in the variance, sudden increase or decrease 

or trend cases. On the other hand, the studies that covers AR or ARMA 

models deal with conditional likelihood, but not exact likelihood.  

In our research group, a simulation study is conducted in order to compare 

the performances of the homogeneity tests most commonly used. First, the 

temperature model is estimated from the data set which consists of 244 

meteorological stations of Turkey. The results imply that the appropriate 

model for the monthly temperature series is a seasonal dummy model. By 
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using similar coefficients, two reference series are created and the 

performances of the SNHT, Pettitt, Buishand range, Chow test, von 

Neumann and Kruskal Wallis are compared (Yazici et al., 2012; 

Yozgatlıgil, 2011) under several scenarios which represent the sources of 

inhomogeneity like mean shift, trend, gradual change and sudden decrease. 

The results imply that SNHT is the best method in terms of detecting the 

breakpoints.  
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CHAPTER 3 

 

 

METHODS 

 

 

 

The methods that are used in the mentioned study are explained in this 

chapter. First, the motivation of the study is explained and then the 

likelihood ratio test is given in general. Next, the derivation of LRT for level 

shifts for AR(1) and AR(p) are presented. In the next subsections, the best 

performing relative and absolute changepoint detection tests; the SNHT and 

F-test are explained in detail. Then, the proposed approach; the moving 

block bootstrap is given and the application of bootstrap to LRT is explained 

in the last subsection. 

3.1. Motivation 

Detection of inhomogeneity, if exists, is an important problem in time series 

data. There are many sources from which inhomogeneity can be originated 

such as mean shift, variance and trend change, gradual change, or sudden 

decrease or increase in time series. Figure 1 illustrates the examples of these 

cases. 

There are many methods developed for changepoint detection. In 

Yozgatligil and Yazici (2016) the methods in the literature are compared 

based on simulation of temperature series. The results indicate that the 

SNHT has the best performance in terms of capturing the breakpoint. 

However, it has some drawbacks such as its performance is getting worse if 

the level shift occurs at the beginning or at the end of the series especially 

for small amounts of shifts. Moreover, it is a relative method which needs 
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highly correlated reference series.  Thus, an absolute test which detects 

changepoints especially in the beginning or at the end of the series is needed.  

In this thesis, first likelihood ratio test (LRT) based on the exact likelihood 

for autoregressive models to capture mean shift is constructed. A simulation 

study is conducted to obtain the critical values of the test since its 

distribution is not known. Then, computational approach involving 

bootstrapping is used to improve the performance of likelihood ratio test for 

level shifts in autoregressive models to detect changepoints occurred at the 

beginning or end of the series. 

 

Figure 1. Examples of changepoint in time series. 
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3.2. Likelihood Ratio Test 

The likelihood ratio test is a likelihood based test designed for testing 

hypotheses and related with maximum likelihood estimators. If the null and 

alternative hypotheses are defined as 00 : H  versus CH 01 :  , 

where   is b×1 vector of parameters, 0  and C
0  are the parameter spaces 

specified in the null and alternative hypotheses, respectively, and X 

represents the i.i.d. data.  Then the likelihood ratio test statistic is defined as

     

 

 

 





XL

XL

x
|sup

|sup

0





                  (14) 

where Θ represents the parameter space and L represents the likelihood of 

the data. The rejection region of the test is   kxx : , where k is any 

number which satisfies 10  k (Bain and Engelhardt, 1992). 

Wilks (1938) stated that if the study consists i.i.d. data for large n, 

  .~)(ln2 2
bx   Thus, an approximate size α test is to reject the null 

hypothesis if   ).(~)(ln2 2 bx   However, it is no longer valid for 

unknown changepoints (Wei, 2017; Karioti and Caroni, 2002).  

3.2.1. Likelihood Ratio Test for Level Shift for Autoregressive Models 

In that section, the likelihood of AR(1) and AR(p) are studied and the related 

test statistics are obtained.  

3.2.1.1. The First-Order Autoregressive Model (AR(1)) 

AR(1) which is a linear model used to predict the present value of a time 

series. It also uses the immediately prior value in time and the model is 

represented as 
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ttt XX   1  

where ),0(~ 2 WNt .                                 (15) 

Here, δ determines the mean of the process. If δ = 0, then the mean of the 

process is 0.  In order to be stationary, the 1 condition should be 

satisfied. For a stationary AR(1), the process mean is 




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)( tXE  and the 

process variance is 
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tXVar . The autocorrelation function is defined 
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3.2.1.2. Maximum Likelihood Estimators of AR(1) 

In the case of identically distributed and independent random variables, the 

likelihood function is just the multiplication of marginal pdf of random 

variables. However, in time series analysis, the dependence structure of 

observation is specified and joint pdf is considered. To ease the calculations, 

conditional densities are used.  

Consider the AR(1) model with Gaussian errors. For the model  

ttt XX   1 , the i.i.d. errors are ),0(~ 2 Nt and the parameter 

vector is .),,( 2 Tθ  
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The conditional distribution of the second observation X2 conditional on        

X1 = x1  is obtained from the AR(1) model 

212   XX .            (17) 

Hence,    2
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The joint density of X1 and X2 is obtained by the multiplication of the 

conditional and marginal densities as 

     θθθ ;;|;, 112|12, 11212
xfxxfxxf XXXXX  .                        (19) 

The conditional distribution of X3 given the first two observations can be 

derived similarly and obtained as 
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The joint density of the first three observations can be obtained as 
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The value of X1, X2, ..., Xt-1 has an effect on Xt only through the value of   Xt-

1 and the density of observation t conditional on the preceding t-1 

observations given by  
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The likelihood of the complete sample is then obtained as 
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The exact log-likelihood for a sample of size n from a Gaussian AR(1) 

process is  
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                                         (24) 

The exact log-likelihood is a non-linear function of the parameters θ. Thus, 

there is no closed form solution in order to obtain the maximum likelihood 

estimates. The exact estimates can be obtained by numerically maximizing 

the log-likelihood.  

3.2.1.3. Test for a Breakpoint in AR(1) Models 

The purpose of this study is to conduct a test for detecting a breakpoint of 

an AR(1) for mean shift. The hypothesis is that the AR(1) process does not 

have any changepoint against the alternative hypothesis that the sequence 

does have a changepoint. The changepoint is considered as the change of 

either the correlation coefficient  , or the change of the drift .  In this test, 

only a changepoint in the drift   is considered. Otherwise, the variance of 

the process also varies by time.  

The stationary AR(1) model can be shown as 
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          (25)  

where ),,2,1( nt   and  the stationarity condition is satisfied if .1  

If there is not a change in the mean, 0  and 1  should be the same. Thus, the 

hypothesis can be represented as  
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The null hypothesis indicates no changepoint, while the alternative 

expresses a single changepoint at time k. Under H1, the model can be 

specified as in Eqn (25).      

Then, the likelihood ratio test is adopted to test the hypothesis. Under H0, 

the parameter space is  11,0,100   , while under H1, 

it is defined as  11,0,10  C  and the overall parameter 

space is  .11,0,, 10    

The likelihood ratio, ),(x defined as 
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and the ratio is always between 0 and 1. It is an evidence to reject the null 

hypothesis if the ratio is small.  

Since the function -2log( )(x ) is a decreasing function of x, the critical 

region of the test can be expressed in the form 

 cxxC  )(log2:  .                       (27) 

Then, the likelihood ratio statistic is defined as below 

 );();ˆ(2)(log2)( 0 xlxlxx   . Under regularity conditions (Rao 

and Scott, 1987), 

2)( q
dx  , where q = dim( )-dim( 0 ). 

In order to test the hypothesis for an AR(1) model of a possible breakpoint, 

the denominator of the )(x  is obtained as follows: 
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Then, the following likelihood ratio test statistics is obtained: 

 

     (29) 

Since there is no closed form solution for the maximum likelihood estimates 

in exact log-likelihood functions, Newton-Raphson method is used.  

Since the location of the breakpoint, k, is not known in advance, the test 

statistic is calculated as 
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where  ns ,,2   for a sample size of n (Wei 2017, Karioti and Caroni, 

2002) and the distribution of this test statistic is not known. If the supremum 

is greater than the critical level, C, then the null hypothesis is rejected. In 

the previous studies, several values for C is recommended. For conditional 
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likelihood approach, Tsay (1988) used 3.0, 3.5, and 4.0; Chen and Tiao 

(1990) used 2.8, 3.0, and 3.3; Chen and Liu (1993) used 2.3 and 3.4 while 

Galeano et al. (2006) used values between 2.9 and 4.0. Conditioning leads 

to loss of information (Karioti and Caroni, 2002), thus, in this study exact 

likelihood is used to derive the test statistic to prevent this. Hence, suggested 

critical values are not valid for our case. To obtain the critical values, first, 

the likelihood based on exact likelihood is obtained and then a simulation 

study for 9.0,,9.0  of sample sizes of 50, 75 and 100 is conducted to 

obtain the critical values of the test.  

3.2.2. Likelihood Ratio Test for Level Shift for AR(p) Models 

To be able to provide a general testing procedure, we derive a test for AR(p) 

process. 

The stationary AR(p) model can be expressed as 

tptpttt XXXX    2211 ,          (30) 

where ),0(~ 2 Nt .              

The likelihood function is calculated by conditional pdfs. The vector of 

parameters for an AR(p) model is .),,,,,( 2
21

T
p  θ  Here, the joint 

density of the first p time series variables, ( pxxx ,,, 21  ), is Multivariate 

Normal Distribution, i.e., 
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where )1/( 21 p    and pV2  is the variance – covariance 

matrix of the first p observations which is defined as 
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For the other variables, the conditional density is used (Hamilton, 1994). 

The p most recent observations are used for the remaining observations.  
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The likelihood function for the complete sample of sample size n is 
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Thus, the log likelihood is 
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where .   
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3.2.2.1. Test for a Breakpoint in AR(p) Models 

Hypotheses for a single break are defined as follows 
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Thus, the likelihood ratio test statistic is  
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If the underlying process is ARMA(p,q) process, the process is written in 

inverted form and approximated by AR(pmax) when 





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










4/1

max 100
12

n
P  

where  x  denotes the integer part of x (Schwert, 1989). Then, by using 

similar methodology, we obtain the critical values for different p-values 

under various sample sizes to be able to conduct the test.  

3.3. Standard Normal Homogeneity Test (SNHT) 

SNHT which is the most popular homogeneity test is a likelihood based test 

proposed by Alexandersson (1986) to capture breaks in climate studies. It is 

designed to detect single mean shifts and does not concern the 

autocorrelation in time series. This relative test which assumes normality 

needs reference series that are highly correlated (at least 0.80) with the test 

series. The relative series should also be close to the test series in terms of 

location.  

The calculation of the test statistic starts with obtaining Q values which is 

explained below.  
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where X and Y (Yj represents the jth reference series) are the test reference 

series, respectively and ρ represents the weight between test and reference 

series. This weight is generally used as the correlation between these series. 

This formula is used for temperature series, while it becomes  
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for precipitation series.  

 

 



31 
  

Then, the Q values are normalized as follows: 
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where Q  is the mean and Q̂  is the estimated standard deviation of the Qi 

values.  

The normality assumption is applied here, and the null and alternative 

hypotheses are constructed as 
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where a is the possible changepoint, 1  is the mean of the first a  

observations and 2  is the mean of the last (n-a) observations for a sample 

size n.   

Hence, the test statistic is calculated as 
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where  1z  and  2z  are the mean values before and after the shift. The test 

statistic is compared with the critical values obtained by Alexandersson 

(1986), and if maxT   is greater than the critical value which is given in 

Alexandersson (1986) for the selected significance level and then, the test 

series is classified as an inhomogeneous series. 

3.4. F-Test 

In economics, the Chow test is proposed for structural breaks. It is a model 

based test proposed by Chow (1960). To apply the test, the following model 

is considered. 
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 ,,,2,1 ntXY tt
T
tt                      (42)

               

where tX  is the vector of independent variables and variables t  are i.i.d. 

with ( ) 0tE    and constant variance. The test is capable of being used as 

an absolute test and a relative test if there are reference series. tX  represents 

the time series obtained in  j reference series if it used as a relative series. 

The null hypothesis is 00 :  tH , while the alternative hypothesis states 

that the series includes a structural break. Thus, in the alternative hypothesis, 

the parameters are represented as 
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where K is the changepoint in the interval (k, n − k).  In the original version, 

the breakpoint is known in advance and then it is modified for all possible 

changepoints in the interval (1, n).  The related test statistic is defined as  
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where   TBA uue ˆ,ˆˆ   and the F test statistic is distributed  as .k  The results 

are compared by SNHT and F-test.  

3.5. Bootstrap 

The bootstrap is a computer-intensive computational method that provides 

answers to inference problems (Lahiri, 2003). It is proposed by Efron (1979) 

as a resampling technique which considers the data as a population and 

obtains samples from it with replacement. Bootstrap is widely used for 

estimating biases, standard errors and parameters. The approach is 

generalized to solve problems in independent but not identically distributed 

data sets, dependent data, and discrimination and regression problems. The 

application of bootstrap includes constructing confidence intervals, 

estimation of standard errors and biases and to obtain critical values of some 

tests.  
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The bootstrap methods for dependent data have provided new approaches 

to solve problems about inferential statistics. The bootstrap methods for 

dependent data is still an active research area. In this study, a bootstrap 

method for dependent data is considered to increase the performance of our 

testing methodology.  The data generating process for dependent data is not 

fully defined, thus there is no unique way to resample from the data 

(Mammen and Nandi, 2012). The important point is to capture the 

dependence structure. The most widely used bootstrap methods for 

dependent data are block, sieve, the nonparametric autoregressive bootstrap, 

frequency domain and Markov bootstrap and subsampling.  Block bootstrap 

methods have been studied under the assumption of stationarity (Gonçalves 

and Politis, 2011). 

3.5.1. Moving Block Bootstrap (MBB) 

The block bootstrap has a similar approach to the nonparametric i.i.d. 

bootstrap and proposed by Künsch (1989). However, in this method, blocks 

of consecutive observations are taken with replacement instead of single 

observations. This method is valid for stationary processes. First, a set of 

blocks of consecutive observations are constructed and then, the blocks are 

selected with replacement. When it is first proposed, nonoverlapping blocks 

of fixed length l:      ,,,1:,,,1: ljXljX jlj    was used. Then, it 

is suggested to use all possible (overlapping and nonoverlapping) blocks of 

length l, i.e. the r-th block consists of the observations  ljX jr ,,1:1   

which is also known as Moving Block Bootstrap (MBB). The bootstrap 

sampling procedure which is illustrated in Figure 2 is constructed by 

sampling ln /  blocks randomly with replacement and combining to a time 

series of length n for different B bootstrap samples. The distribution of the 

bootstrap time series is a nonstationary (conditional) distribution by 

construction. When the block length, l, is random and generated from 

a geometric distribution, the resample becomes stationary and called as 

stationary bootstrap. Recently, Paparoditis and Politis (2001, 2002) 
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proposed another modification to correct the effects of boundaries between 

consecutive blocks.  

MBB has better higher-order properties which make it superior to the one 

which uses non-overlapping blocks. Both methods get higher order accuracy 

similar to the stationary bootstrap. Even though the block bootstrap does not 

achieve the accuracy of the bootstrap for i.i.d. data, it works better than 

the subsampling. Moreover, MBB performs well under weak conditions on 

the dependency structure. Mammen and Nandi (2012) stated that there is no 

specific assumption about the data generating process to apply block 

bootstrap.   

Figure 2. Moving Block Bootstrap Scheme 

It is important to determine the block length in order to apply bootstrap. A 

common approach is to select the block lengths which minimizes the Mean 

Squared Error (MSE) of the bootstrap estimators. The main nonparametric 

methods of estimating block lengths are proposed by Hall et al. (1995) and 
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Lahiri et al. (2007). Hall et al. (1995) proposed to use n1/3, n1/4 and n1/5, 

where n is the sample size for the estimation of variance or bias. In their 

work, an empirical block length selection is proposed with the formula 

kDnb /1 , where  k = 3, 4 or 5 and the constant D is determined by the 

underlying process. Then, Lahiri et al. (2007) proposed another method 

based on the jackknife-after-bootstrap method to estimate variance and 

Nordman and Lahiri (2014) compared the convergence rates of the block 

length procedures in variance estimation and conclude that the second 

method has better convergence properties.   

3.6. Proposed Approach 

In this thesis, the use of moving block bootstrap method described in Section 

3.5.1 is proposed to detect the small mean shifts close to the boundaries of 

the data for autoregressive models. Since the moving block bootstrap keeps 

the autocorrelation and has no assumption, it is applicable for time series 

and it can be used for autoregressive models. The algorithm to detect the 

changepoint and its location is explained below.  

Algorithm 

Step 0. Apply stationarity or unit root test to the series. If it is not stationary, 

convert it to a stationary series by detrending or differencing. Then, decide 

on order of the time series model.  

Step 1. LRT based on exact likelihood for an AR model is conducted to the 

original stationary series and the test statistic is compared with the critical 

values obtained by simulation. If the test detects a changepoint, classify it 

as a changepoint.  

Step 2. If the test cannot detect any significant changepoint, a bootstrap 

sample is selected by using moving block bootstrap and original locations 

of the observations are recorded. The original locations of the observations 

are the locations in stationary time series. For instance, in Figure 2, in the 

first bootstrap sample, starts with 3rd block, B3. The observations covered 



36 
  

in that block are 3, 4, 5, 6 and 7 and their original locations are their locations 

in the data, that is also 3, 4, 5, 6 and 7. 

Step 3. LRT is conducted to the bootstrap sample and if a changepoint is 

detected, its original location is recorded. 

Step 4. The frequency of the locations is calculated and then the possible 

location of the changepoint with the highest frequencies are determined as 

the location of the breakpoint. 
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CHAPTER 4 

 

 

  APPLICATIONS 

 

 

 

In this chapter, the applications and obtained results are presented. First, the 

break types that are covered are explained and then a combination of moving 

block bootstrap with SNHT is given. In the next section, the comparison of 

the changepoint detection methods based on a simulation study is given. 

Then, the application of LRT and its comparison with the best performing 

methods, SNHT and F-test, is given. In the next subsection, the critical 

values of the LRT are presented and then the moving block bootstrap is 

applied to LRT is applied.   

4.1. The Artificial Breaks  

In this study, two types of inhomogeneity is considered. These are mean 

shift and sudden decrease or increase which are explained as below. 

1. Mean Shift  

Mean shift may represent the abrupt discontinuity. Since there are 60 yearly 

aggregates, the 0.5, 1 and 2 oC shifts are applied to the series starting from 

5th year (starting from the beginning), 27th year (starting from the middle) 

and 53th year (starting from the end).  
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2. Sudden Decrease/Increase  

Sudden decreases or increases may represent the change or any breakdown 

in the instrument. In the application, 1oC is decreased from the 5th year (in 

the beginning), 27th year (in the middle) and 53th year (in the end).   

The LRT is designed for mean shift. However, the first purpose is to improve 

the performance of SNHT. In that part of the study (4.2), the performance 

of the proposed method is compared under mean shift and sudden decrease 

cases.  

4.2. A Modification of the SNHT based on Bootstrap 

The comparison of the methods indicate that SNHT is the best test in terms 

of detecting the breakpoints. Even though Yozgatligil and Yazici (2016) 

show that SNHT is superior to other tests in terms of detecting 

inhomogeneity, this test has some drawbacks. The test requires reference 

stations, whose reliability and homogeneity should be validated before the 

test is conducted. Moreover, similar to other relative tests, it needs close 

relative series so that the correlation between the test series and reference 

series must be at least 0.80. If this assumption is not satisfied, then the test 

series is classified as non-testable (Gokturk et al., 2008).  

In order to overcome this drawback and improve the test, an application of 

one of the dependent bootstrap methods is proposed if there is a reference 

series with correlation smaller than 0.80. Since the data is time series, one 

of the dependent bootstrap methods called moving block bootstrap (MBB) 

is applied to construct an empirical distribution of the test statistics and 

decide whether the test statistics obtained from the original series is 

insignificant or not by constructing percentile intervals. Since the 

assumption of SNHT which needs the high correlation between test and 

reference series is not validated it is not applied here, but another successful 

test, called F-test is applied to the series to compare the performances of the 

both methods. 
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4.2.1. Data Generation  

First, a time series model is fitted to temperature variable of one of the series. 

The best model obtained for the temperature variable is the seasonal 

exponential smoothing method  

  tptt tSY    

where 
t  is a level parameter indicates the mean of the series, the terms 

 tS p  indicates the seasonal parameters and t  is an error term 

12 ;720,,2,1  periodyseasonalitpt  . The t  term has 0 mean and 

constant variance. The coefficients estimated from the data are as follows; 

            ,2.66,4.15,0.34,1.63,5.72,4.71 121212121212  SSSSSS  

        ,8.110,7.59,4.98,0.97 12121212  SSSS

    .5.512 and 6.211 1212  SS  

These coefficients are the same for each month of each year, but adding an 

error term t , produces different values each of the 732 values.  

However, to conduct relative tests, reference series having high correlation 

with the test series are needed. To simulate the two reference series, similar 

coefficients are used and yearly aggregates are obtained. However, the 

correlations of the yearly aggregates are not satisfactory for the tests, so a 

random t
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~ 3  Nt   vector is added to all 

variables. When paired t-test is conducted to the simulated series and the 

series in the dataset that is used in NINLIL project and it is concluded that 

there is not statistically significant difference between the two series. Thus, 

a simulation setup based on real data is obtained. 
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4.2.2. Application 

The test and reference series are simulated as explained in Section 4.2.1 and 

yearly aggregates are obtained. Kernel density estimation is tried to be fitted 

to the test series to decide on the density estimates. The lowest and highest 

3 density values are taken as possible breakpoints. After excluding these 

observations MBB is applied on the three series. The aim of removing these 

values is to apply bootstrap, since bootstrap is not an appropriate method if 

there are extreme values in the data. Thus, the weights given to values are 

not affected by the possible breakpoints. However, these values are used in 

the test process.   

Gaussian kernel and the bandwith selection of 5/1786.0  nIQR are used 

for density estimation, where IQR is the interquartile range of the series. 

The observations associated with the lowest and highest 3 density values are 

removed from the data to exclude the possible breakpoints. The length 

selection method to decide on the block length of MBB of Politis and White 

(2004) gives the block length of 1 (one) for the yearly aggregates and MBB 

is applied 250 times. SNHT statistic sTmax is obtained for each bootstrap 

sample and the 5% percentile interval (PI) is calculated from the empirical 

distribution. If the test statistic sTmax of the original data falls in the PI, then 

the test series is classified as homogeneous, otherwise it is classified as 

inhomogeneous. SNHT is not applied to the series, since its assumption is 

not validated. Moreover, the F-test is also applied on the series without 

conducting bootstrap to compare the performances. The same procedure is 

repeated after creating the breaks in the data. 1 oC and 2 oC mean shifts are 

applied. The whole analysis is repeated 250 times due to computational 

inefficiency of the bootstrap method.  

4.2.3.  Results 

The simulation results are given in Table A1 and Table A2 for the mean 

shift and sudden decrease cases, respectively. SNHT-BS represents the 

SNHT test applied with bootstrapping and F-test represents the F-test 
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applied with reference series. Yt column represents the frequencies of 

inhomogeneity detection after simulating the original series i.e. when there 

is not any artificial break. That column also represents the Type-I error 

probability. Yt,shift column represents the frequencies of inhomogeneity 

detection after creating the artificial change. For instance, the first row of 

the table represents the output when the shift starts from the beginning of 

the series.  For the increase of 1 oC, Type-I error probability is 0.284 for the 

SNHT-BS and 0.044 for the F-test which should be close to 5%. When there 

is a 1 oC increase which starts from the beginning of the series, SNHT-BS 

captures 38.8% of the breakpoints while F-test captures 5.6% of the series.  

The frequencies obtained from the original series are better for F-test since 

they are close to Type-I error probability of 5%. However, the detection 

rates for the SNHT-BS are higher than the F-test. The detection frequencies 

of the SNHT-BS are higher if the break is located in the middle of the series 

in both scenarios. Moreover, the detection frequencies increase as the 

magnitude of the shift increases from 1 oC to 2 oC. In addition to this, both 

tests are better to capture the mean shift than the sudden decrease.  

4.2.4. Conclusions 

The homogeneity analysis is the quality control part of the meteorological 

studies which should be conducted carefully. The non-climatic effects 

should be detected and removed if possible to obtain reliable inferences. The 

most widely used relative homogeneity test, SNHT, needs highly correlated 

reference series to conduct the test. In this part of the study a computational 

statistics method; bootstrap for dependent data is applied, if there are 

reference series with correlation less than 0.80. Otherwise, SNHT cannot be 

applied since its assumption is not validated. Thus, the non-classified SNHT 

test stations are tested. The results are compared with another relative test 

F-test which does not make any assumptions on the reference series and 

applied on two inhomogeneity scenarios of mean shift and sudden change. 

The performance of the SNHT-BS method works well especially if the break 

is in the middle of the series; while it needs to be improved to capture the 
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Type-I probability better in both inhomogeneity scenarios. However, it is 

still a relative test and needs relative series. Since the Type-I error is not 

correctly captured, SNHT-BS is not a reliable test. The ratio that a 

homogenous series to be classified as inhomogeneous series is high.  

The relative tests need homogeneous and highly correlated reference series, 

while it is not possible to obtain such series in some datasets. Even though 

an attempt is done to improve the application of the best performing test, 

SNHT, there are still problems such as high Type-I error probability. Then, 

the study is continued to obtain an absolute test which captures the 

breakpoints and application of likelihood ratio test is studied.  

4.3.  Likelihood Ratio Test for AR(1) for a Single Changepoint 

The previous part of the study indicates the need for an absolute test in order 

to capture breakpoints. Here, the purpose is to propose a likelihood ratio test 

for time series models to detect the changepoint by resampling methods by 

using an absolute test. Then, the comparison of the performances of the 

proposed methods for mean shift is conducted and the methods are applied 

to real life datasets such as economics, meteorology, energy. 

A likelihood ratio test for AR(1) model is conducted to detect a single 

changepoint. AR(1) series of length 732 which has the same size with the 

data is simulated and then a single changepoint is created artificially by 

changing the parameter,   and three changepoint scenarios such as at the 

beginning, in the middle and at the end of the series  and their outputs are 

investigated.  

In this part of the study, the distribution of the test statistic is tried to be 

derived by using its asymptotic distribution. Since 2
1~)( x  

asymptotically (Bain and Engelhardt, 1992), the distribution of the 

maximum order statistics is needed. Let Yn represent the maximum order 

statistics and GY represent the cumulative distribution function of Yn..  That 

is, 
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gives the value of 16.99 for n = 732. Since the test statistics is the maximum 

of the )(x  should be compared with 16.99. 

The results of the likelihood ratio test are compared with that of SNHT 

applied to the same series.  The test (X) and two reference series (Y, Z) are 

simulated with arbitrarily chosen parameter values so that the correlation of 

X and Y, and X and Z are at least 0.80 both for the monthly series and yearly 

aggregates.  

ttt XX  15.04.0 ,  

tttt YXY   11 55.04.025.0  

ttttt ZYXZ   111 45.041.03.031.0  

where the error terms are generated from 3

0 1 .9 .9

~ ( 0 , .9 1 .9 )

0 .9 .9 1
t N 

   
       
      

. 

The simulation is conducted to obtain 732 monthly (61 years) series.   

The model is simulated 1000 times and each time the detected breakpoints 

are calculated. Note that, the SNHT-BS is not used in the comparisons due 

to its high Type-I error probability and also the correlations between the test 

and reference series are high enough (greater than 0.80) to conduct SNHT. 

The SNHT is applied to monthly and annual data while both tests (LR and 

SNHT) are applied before creating the artificial change and after the change. 
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“In the beginning” case, the observations starting from 26 (2th year) to the 

end of the series (732), “In the middle” case, the observations starting from 

355 (29th year) to the end of the series (732) and “at the end” case, the 

observations starting from 700 (58th year) to the end of the series (732) are 

increased by 1, 2, 3, 5 and 10, respectively. The original series and the series 

that have breaks are illustrated in Figure 3 and Figure 4.  

 

Figure 3. Original Series and a Single Change that Starts at the Beginning 

(26th observation)  
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Figure 4. Single Change that Starts in the Middle (355th observation) and at 

the end of the series (700th observation) 

Tables A3-A7 present the breakpoint detection frequencies and location 

detections. In these tables, the “Methods” column represents the applied 

methods, namely LRT, SNHTmonthly when the test is applied to monthly 

series and SNHTannual when the test is applied to yearly aggregates. Similar 

to previous tables, Yt column represents the detection frequencies before 

creating the change. It also indicates the Type-I error probability. Yt,shift  

column represents the detection frequencies after the change. “Location 

detection” column presents the detected frequencies of the true locations of 

breakpoints among the detected shifts. All analyses are conducted under       

α = 0.05. For instance, in the Table A3, when there is no breakpoint in the 

beginning case, LRT captures 1%, SNHTmonthly captures 92%, SNHTannual 

captures 9% of inhomogeneous cases. However, when 1 oC of mean shift is 

applied starting from the beginning case, LRT detects 12%, SNHTmonthly 
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detects 11% and SNHTannual detects 2% of the true shifts. On the other hand, 

LRT captures the true breakpoint (26th month) 1.1% of the detected series.  

It can be easily observed that the detection frequencies are higher in 

SNHTmonthly , close to zero in LR and close to 0.1 in SNHTannual when there 

is no change. Even though the detection frequencies and location detection 

in SNHTmonthly are higher, it has worse performance in terms of Type-I error. 

The detection frequencies are lower, if the changepoint is started in the 

beginning of the series and they increase as the unit of mean shift increase. 

SNHTannual produces close results with LR, however the location detected is 

a year not a month, while the LR can be applied on monthly series. 

Moreover, LR can be applied to a series without any reference series and 

that makes it to be a powerful absolute test.   

Thus, the LRT can be proposed to be used as an absolute test to detect 

changepoints. However, its Type-I error probability should be improved.  

4.4. Empirical Null Distributions 

The simulations done in the previous part of the study indicate that LRT can 

be used as an absolute test to detect mean shifts if it is improved to capture 

Type-I better. In order to achieve this, an attempt is done to derive the 

critical values of the test statistic.  

In the previous part of the study, the distribution of the LRT statistic is 

derived by using the property that the asymptotic distribution of the test 

statistic is chi-square. Karioti and Caroni (2002) states that the asymptotic 

distribution of the test statistics is distributed as chi-square, thus they should 

be obtained by a simulation study. In this section, the derivation of the 

critical values by simulation is explained.  

The exact distribution of the LRT statistic for mean shift is not known, a 

simulation study is conducted to obtain the empirical distribution of the test 

statistic. First,  1,000 different series of AR(1) models with the  = -0.9, …, 

0.9 with 2 = 1 are simulated for sample sizes, n = 50, 75 and 100.   
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Then, the original test statistic  x  is calculated for each series and the 

supremum is calculated to obtain the empirical distribution. The 

corresponding values of 95% percentile is calculated for each case and the 

critical values are presented in Table 1. For instance, if a LRT is applied for 

a sample size of 50 the test statistic should be compared with 8.33 if   of 

the series is obtained as 0.9. The value of the test statistic is obtained as 8.37  

Table 1. Critical Values for the LRT 

    

 Sample 
Size (n) 

  = -0.9   = -0.8   = -0.7   = -0.6   = -0.5   = -0.4 

50 8.33 8.34 8.05 8.69 8.47 9.00 

75 8.37 8.69 8.73 8.68 9.05 8.76 

> 100 9.40 8.91 8.89 8.97 8.94 8.52 

  
 

  

  = -0.3   = -0.2   = -0.1   = 0.1   = 0.2   = 0.3 

50 8.72 9.68 8.78 8.32 8.46 8.01 

75 9.05 9.19 9.40 8.49 8.70 8.29 

> 100 8.96 9.34 8.98 8.73 9.21 8.90 

  
 

  

  = 0.4   = 0.5   = 0.6   = 0.7   = 0.8   = 0.9 

50 7.77 7.83 7.98 8.15 8.10 9.09 

75 8.40 8.32 8.32 8.46 8.81 9.10 

> 100 8.87 8.59 8.55 8.32 8.70 9.07 

 

for a sample size of 75 and 9.40 for a sample size of 100. If the sample size 

of the series is greater than 100, the corresponding value for the sample size 

of 100 is suggested to be used. For other sample sizes, interpolation can be 

used to decide on the critical value. 

Table 1 indicates that the critical values of the LRT differs when the sample 

size changes. Moreover, the values are also different from the values 

obtained from the chi-square distribution. For instance, the corresponding 

value of that distribution, 2
05.0  is 3.84, while it depends on the   of the fitted 

AR(1) model and the sample size in the proposed method. Moreover, the 

values and the method differs from the values obtained from the previous 
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part of the study. The main reason for that is the assumption of the 

approximate distribution of the test statistic which is not valid when the 

exact location of the breakpoint is not known. 

4.5. Moving Block Based Likelihood Ratio Test (LRT-BS) for AR(1) 

Model for a Single Change 

The critical values of the LRT statistic are obtained by simulation, thus 

moving block bootstrap application to LRT can be suggested in order to 

improve the mean shift detection. The detection performance of the LRT-

BS method which is the name of the application of MBB to LRT is 

investigated with a simulation study.  

The data used in this part of the study is generated as explained in Section 

4.2.1. The moving block bootstrap with different block lengths (l) is also 

applied 1,000 times to detect the changepoints for different sample sizes.  In 

that bootstrap model consecutive observations are selected. After 

constructing each bootstrap sample, LRT is applied to that sample. The 

frequencies of the detected locations among the detected inhomogeneities 

are calculated. The results are given in Table A8 and A9 when the change 

starts at the beginning and at the end, respectively. In these tables, sample 

sizes from 50 to 90 are studied. “Location of the breakpoint” column 

presents the exact location of the true breakpoint. Different block sizes for 

each sample size is tried. For instance, block length of 15, 20 and 30 are 

tried when the sample size is 50. Yt column represents the results obtained 

when there is no changepoint in the series and Yt,shift column represents the 

output obtained after creating the artificial changepoint. SNHTmonthly, 

SNHTannual and LRT columns represent the results obtained from the 

application of these tests, while the LRT-BS column represents the results 

obtained from the application of MBB to LRT.  

The highest frequency is presented in the last column. For instance, the first 

row of the Table A8 presents the output of a sample size 50. In that case, the 

breakpoint is at the 10th observation. In the application of bootstrap, block 

size of 15 is used. None of the tests detected a change before the artificial 
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break (10th observation) and only SNHTmonthly detected changepoint at the 

25th observation which is not the true location. However, the LRT-BS 

detected a change 41% of the times. Among these detected ones, the 

frequencies of the detected locations are calculated. In that case, 25% 

classifies the 10th observation as the breakpoint which is the highest 

frequency.   

The output in the Table A8 and Table A9 show that the Type-I error rates 

are low (almost 0) even for the small samples. While the tests’ performance 

decrease for small samples, LRT-BS is capable of detecting the true location 

of the breakpoint. However, SNHTmonthly  usually detects a changepoint 

close to the exact location among the detected changepoints. On the other 

hand, it has large Type-I error probability. In the “Beginning” case, the 

LRT-BS performs better when n = 50 and n = 90. However, the best 

performance of the detection of true location is obtained when the block size 

is 20 or 30. In the “End” case, the LRT-BS test has the highest percent of 

capturing the inhomogeneity when n = 50. If the size of the blocks is 30 or 

40, the capability of detecting the true location is generally higher.  

4.6. Comparison of LRT-BS with SNHT and F-test 

In the comparison study of all Yozgatligil and Yazici (2016), the best 

performing tests are SNHT as the best relative test, F-test as the best 

absolute test and RHTest as the best one to capture multiple changepoints. 

Thus, another simulation study is performed to compare performance of 

LRT-BS with these tests.  

First, 100 series of AR(1) model with the parameters  = -0.9, -0.6, -0.3, 

0.3, 0.6, 0.9 and σ = 1 are simulated for sample sizes of n = 75 and n = 100. 

Since SNHT is a relative test, two reference series are obtained. First, error 

terms are simulated from multivariate normal distribution 
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is obtained by adding the first column of the error terms to the test series 

and the second reference series is obtained by adding the second column of 

the error terms to the test series. Thus, highly correlated test and reference 

series are obtained and SNHT is performed on these series.    

Before creating artificial change, the four tests are conducted on the original 

series. Single and multiple changes are applied to series. When single level 

shift is considered, 5-unit increase is applied after 20th observation for             

n = 100 and the same amount of increase is applied after 10th observation 

for n = 75. In the case of multiple change, two level shifts are considered. 

The first shift is applied as explained at the 10th and 20th observations for      

n = 75 and n = 100 respectively.  Then, a second level shift of 5-unit is 

applied at the 70th observation and 80th observation for n = 75 and n = 100, 

respectively. Figures 5 and 6 exemplify the level shifts for sample size of 75 

and 100, respectively for the model with  = -0.3. 

 

Figure 5. Single and Multiple Changes for n = 75 and   = -0.3 
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Figure 6. Single and Multiple Changes for n = 100 and   = -0.3 

The detection rates for single change are presented in Table 2 and Table 3 

for n = 75 and n = 100, respectively. The detection rates in the original 

samples and the rates after creating shifts are presented in the tY  and shifttY ,  

columns, respectively. tY  column also presents the Type-I error and the 

“Breakpoint detection” column represents the frequency of the detection of 

true locations among the detected series.  

When Table 2 is investigated for the performance of the tests when there is 

a single change for the sample size of 75, it can be seen that Type-I error 

probabilities of the SNHT and LRT are close to 5%, while it increases as the 

  increases for the F-test and it is always greater than 5% for the RHTest.  

Moreover, the F-test and LRT captures the breakpoint 99% of the series. 

SNHT is the worst test in terms of detecting the location of the true 

breakpoint. This test only captures the breakpoint when  = 0.6. On the 

other hand, the true breakpoint detection frequencies are higher for the F-

test and LRT. For instance, when the series is generated from the  = -0.6, 
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F-test detects 11th observation 91% of the detected series and 12th 

observation 8% of the detected series. However, the detection frequency and  

Table 2. Detection Rates for Single Changes for 100 simulated series 

for n = 75 

SINGLE CHANGE 

 


 Method  tY   sYt ,  
 Breakpoint 
Detection 
(%) 

   Method  tY  sYt ,  
 Breakpoint 
Detection 
(%) 

-0.9 

SNHT 0.02 0.04 - 

0.3

SNHT 0.06 0.05 - 

F-test 0.00 0.99 
110.01, 
120.99 

F-test 0.26 0.99 110.98 

RHTest 0.23 0.26 110.08 RHTest 0.32 0.36 110.08 

LRT 0.05 0.99 
80.59, 
90.40 

LRT 0.03 0.99 80.90 

-0.6 

SNHT 0.02 0.02 - 

0.6

SNHT 0.02 0.06 90.16 

F-test 0.00 0.99 
110.91, 
120.08 

F-test 0.49 0.99 110.92 

RHTest 0.35 0.31 11 0.13 RHTest 0.26 0.32 110.12 

LRT 0.10 0.99 
80.81, 
90.18 

LRT 0.07 0.99 80.87 

-0.3 

SNHT 0.04 0.04 - 

0.9

SNHT 0.04 0.03 - 

F-test 0.00 0.99 110.95 F-test 0.82 0.99 110.70 

RHTest 0.25 0.38 110.15 RHTest 0.26 0.25 110.08 

LRT 0.06 0.99 
80.88, 
90.10 

LRT 0.05 0.74 80.62 

 

the detection of the breakpoint is the smallest when  = 0.9 for the LRT 

when only this tests’ output is investigated. 

The detection performance of the methods when a single shift is applied to 

a sample size of 100 is investigated and the related output is presented in 

Table 3. Type-I error probabilities present similar results with the sample 

size of 75 except for LRT in the case of  = 0.6. The F-test and LRT captures 

the breakpoint almost all of the series except for  = 0.9. In addition to this, 

the frequency of breakpoint detection is also higher for these two tests. 
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Table 3. Detection Rates for Single Changes for 100 simulated series for 

n = 100 

    Method  tY   sYt ,
 Breakpoint 
Detection 
(%)    

 Method  tY   sYt ,  
 Breakpoint 
Detection 
(%) 

-0.9 

SNHT 0.03 0.04 - 

0.3 

SNHT 0.07 0.07 - 

F-test 0.00 1.00 190.77 F-test 0.23 1.00 190.97 

RHTest 0.24 0.30 110.06 RHTest 0.22 0.22 110.18 

LRT 0.06 1.00 
190.54, 
200.46 

LRT 0.08 1.00 190.95 

-0.6 

SNHT 0.07 0.01 190.97 

0.6 

SNHT 0.06 0.06 - 

F-test 0.00 1.00 190.97 F-test 0.66 1.00 190.98 

RHTest 0.24 0.26 110.15 RHTest 0.25 0.25 110.16 

LRT 0.07 1.00 190.85 LRT 0.13 1.00 180.98 

-0.3 

SNHT 0.05 0.04 - 

0.9 

SNHT 0.04 0.02 - 

F-test 0.01 1.00 190.98 F-test 1.00 0.99 190.67 

RHTest 0.20 0.25 110.08 RHTest 0.25 0.28 110.07 

LRT 0.07 1.00 190.94 LRT 0.02 0.73 
170.20, 
180.42 

 

The output obtained when the multiple change applied to the sample size of 

75 is presented in Table 4. According to that table, SNHT and LRT produce 

similar Type-I error probabilities, while F-tests’ Type-I error probability  

Table 4. Detection Rates for Multiple Changes for 100 simulated series for 

n = 75 

MULTIPLE 

   
 Method  tY   sYt ,  

 Breakpoint 
Detection 
(%)   Method  tY   sYt ,  

 Breakpoint 
Detection 
(%) 

-
0.9 

SNHT 0.07 0.04 690.25 

0.3

SNHT 0.05 1.00 - 

F-test 0.00 0.99 
110.77, 
120.22 F-test 0.33 0.99 110.85 

LRT 0.06 0.99 
8-0.76, 
90.22 LRT 0.08 0.99 

80.64,   
68 0.23 

-
0.6 

SNHT 0.02 0.07 740.14 

0.6

SNHT 0.07 0.03 - 

F-test 0.00 0.99 110.90 F-test 0.54 0.99 110.72 

LRT 0.06 0.99 
70.10, 
80.81 LRT 0.02 0.97 

80.44, 
680.31 

-
0.3 

SNHT 0.04 0.06 - 

0.9

SNHT 0.05 0.04 - 

F-test 0.00 0.99 110.92 F-test 0.80 0.99 
110.48, 
640.12 

LRT 0.05 0.99 110.86 LRT 0.06 0.77 
100.37, 
700.18 
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becomes worse when the   value increases. The F-test and LRT captures 

the breakpoint almost all of the cases. However, the detection frequency of 

LRT becomes worse when  = 0.9. Even though F-test and the LRT detect 

the true breakpoint in most of the cases, the detection performance of the 

LRT again worsens for the  = 0.9.  

When the multiple change is applied to sample size of 100, its output is 

presented in Table 5. SNHT is still the best performing test in terms of Type-

I error probabilities. Even though the LRT performs better when compared 

with F-test in terms of Type-I error probability, its performance also 

becomes worse when   is close to 0.9. Similarly, the F-test has zero Type-

I probability in most of the cases, while it increases for large values of  . 

When the detection of changepoints are investigated, it can be easily stated  

Table 5. Detection Rates for Multiple Changes for 100 simulated series for 

n = 100 

MULTIPLE 

  
 Method  tY   sYt ,   Breakpoint 

Detection (%)    
 Method  tY   sYt ,

 Breakpoint 
Detection 
(%) 

-0.9 

SNHT 0.08 0.03 200.33 

0.3 

SNHT 0.06 0.02 - 

F-test 0.00 1.00 
190.23, 
790.51 F-test 0.00 1.00 

190.29, 
790.63 

LRT 0.02 1.00 
190.18, 
790.55 LRT 0.06 1.00 

190.39, 
790.45 

-0.6 

SNHT 0.05 0.04 170.24 

0.6 

SNHT 0.08 0.07 780.14 

F-test 0.00 1.00 
190.29, 
790.63 F-test 0.58 1.00 

190.33, 
790.56 

LRT 0.06 1.00 
190.39, 
790.45 LRT 0.14 0.99 

190.36, 
790.30 

-0.3 

SNHT 0.03 0.04 200.25 

0.9 

SNHT 0.06 0.03 790.33 

F-test 0.00 1.00 
190.24, 
790.70 F-test 0.95 1.00 

190.35,  
790.26 

LRT 0.02 1.00 
190.38, 
790.36 LRT 0.16 0.78 

190.32,  
790.20 

 

that the F-test and LRT again have the best performances. However, when 

  = 0.9, the detection of LRT decreases. These two tests again have the best 

performance in terms of capturing the exact location of the breakpoint.  
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When there is no changepoint in the series, the Type-I error rates are close 

to 0.05 for the SNHT and LRT especially for the sample size of 75. 

However, when n = 100 is considered, SNHT still captures the 0.05 while 

LRT performs worse when  = 0.6, 0.9. On the other side, the Type-I 

probabilities of F-test and RHTest are not close to 0.05. Even though, in the 

simulation study of Yozgatligil and Yazici (2016), F-test performs well in 

terms of Type-I, that is probably because of the small sample size. It is also 

the same for the multiple changes which are presented in Table 4 and Table 

5, respectively for n = 75 and n = 100.  

When the detection rates are investigated, F-test and LRT are the best 

performing tests. Since the Type-I rates are higher in F-test, LRT is 

preferable in all cases. The reason why the SNHT does not perform well can 

be the small sample sizes.  

After creating single or multiple changes, the stationarity of the model 

usually is not valid. Thus, ADF test is applied on each series and if the test 

concludes that the series is nonstationary, the series are made stationary by 

differencing. Table 6 and Table 7 presents the orders of the models for single 

and multiple shifts respectively.  When the series are simulated with positive 

  values after creating shifts and differencing, almost all models become 

White Noise. However, for the cases with  negative   values, the series still 

follow the AR(1) type. Moreover, the MA1 model frequencies are also high 

especially when  is 0.3 or -0.3. The estimation is done with AR(1) model. 

Note that, even if the wrong model is used for estimation, the performance 

of the test is not changing.  

LRT-BS is applied to each series 100 times with different block length, l. 

Since the purpose is to detect a changepoint, the best length is determined 

by simulation. For this purpose, the length of 0.1×n, 0.2×n and 0.3×n are 

considered where n is the sample size of the series.   

 



 

 

Table 6. The frequency of models after creating a single shift 

 

Sample 
Size 

                SINGLE         

75 

0.9 
WN         

100 

0.9 
AR1 WN         

1.00         0.10 0.90         

0.6 
AR1 MA1 WN     

0.6 
AR1 ARMA11 MA1 MA2 WN   

0.01 0.10 0.89     0.01 0.05 0.12 0.01 0.81   

0.3 
AR1 MA1 MA2 WN   

0.3 
AR1 ARMA11 MA1 MA2 WN   

0.06 0.30 0.01 0.63   0.03 0.08 0.59 0.08 0.22   

-0.3 
AR1 AR2 ARMA11 MA1 MA2 

-0.3 
AR1 AR2 ARMA11 ARMA23 MA1 MA2 

0.30 0.12 0.34 0.22 0.02 0.05 0.05 0.31 0.02 0.57 0.03 

-0.6 
AR1 AR2 ARMA11 ARMA21 MA2 

-0.6 
AR1 AR2 ARMA11 ARMA12 MA2   

0.37 0.46 0.15 0.01 0.01 0.08 0.40 0.49 0.01 0.02   

-0.9 
AR1 AR2 ARMA11     

-0.9 
AR1 AR2 AR3 ARMA11 ARMA12   

0.43 0.49 0.08     0.07 0.47 0.02 0.43 0.01   
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Table 7. The frequency of models after creating multiple shifts  

Sample 
Size 

  
MULTIPLE 

75 

0.9 
MA1 WN         

100

0.9 
AR1 WN       

0.02 0.98         0.02 0.98       

0.6 
MA1 WN         

0.6 
AR1 ARMA11 ARMA21 MA1 WN 

0.04 0.96         0.01 0.01 0.01 0.10 0.87 

0.3 
AR1 MA1 WN       

0.3 
AR1 ARMA11 MA1 MA2 WN 

0.06 0.20 0.74       0.05 0.03 0.63 0.01 0.28 

-0.3 
AR1 AR2 ARMA11 ARMA21 MA1 MA2 

-0.3 
AR1 AR2 ARMA11 MA1 MA2 

0.58 0.10 0.01 0.01 0.28 0.02 0.26 0.07 0.04 0.56 0.07 

-0.6 
AR1 AR2 ARMA11 ARMA21 MA1 MA2 

-0.6 
AR1 AR2 ARMA11 ARMA12 MA1 

0.88 0.06 0.01 0.02 0.02 0.01 0.55 0.28 0.14 0.01 0.02 

-0.9 
AR1 AR2         

-0.9 
AR1 AR2 ARMA11     

0.98 0.02         0.68 0.31 0.01     
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Table 8. The frequency of true breakpoint detection for single shift  

   
  Single 

Sample 
 Size Block Length 

 Location -0.9 -0.6 -0.3 0.3 0.6 0.9 

n = 75 

l = 7 

9 0.33 0.75 0.65 0.63 0.62 0.72 

10 0.05 0.12 0.15 0.27 0.32 0.50 

11 0.26 0.74 0.46 0.43 0.33 0.35 

l = 15 

9 0.00 0.01 0.03 0.08 0.08 0.17 

10 0.05 0.14 0.11 0.22 0.31 0.47 

11 0.65 0.65 0.60 0.45 0.39 0.40 

l = 22 

9 0.75 0.77 0.67 0.69 0.70 0.62 

10 0.06 0.10 0.16 0.27 0.36 0.53 

11 0.70 0.72 0.64 0.48 0.42 0.44 

n = 100 

l = 10 

19 0.40 0.71 0.77 0.74 0.75 0.67 

20 0.20 0.08 0.15 0.13 0.29 0.39 

21 0.39 0.61 0.61 0.60 0.38 0.32 

l = 20 

19 0.79 0.74 0.78 0.84 0.78 0.70 

20 0.08 0.09 0.18 0.24 0.34 0.29 

21 0.75 0.68 0.63 0.61 0.43 0.37 

l = 30 

19 0.73 0.84 0.80 0.76 0.88 0.73 

20 0.08 0.08 0.16 0.31 0.35 0.44 

21 0.81 0.77 0.70 0.51 0.50 0.33 
 

The highest frequencies of the detected breakpoints are kept. Note that the 

exact breakpoints are 10 and 20 for n = 75 and n = 100 respectively in the 

single change case. Multiple change is applied at 10th and 70th observations 

for n = 75 and 20th and 80th observations are n = 100. The detection of the 

true breakpoints is presented in Table 8 and Table 9 for single and multiple 

changes respectively. According to Table 8, the highest detection rates 

belong to 9th and 11th observations for n = 75 and 19th and 21st observations 

for n = 100, while the exact location is 10th and 20th observations. This is 

probably losing one observation by taking a differencing. On the other hand, 

even though the models becomes White Noise for positive   values, the 

detection rates are still high. When the detection rates are compared, l = 22 

and l = 30 produce close detection rates for two different sample sizes.   
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When multiple change detections are compared in Table 9, it can be seen 

that for n = 75, l = 15 generally produces better detection rates for the 

locations of 11 and 68.  On the other hand, if n = 100 is considered, the block 

length of l = 30 is not as good as the other block lengths for capturing the 

second changepoint at the end of the series. The best detection rate is 

obtained for l = 15 and l = 20 for the sample size of 75 and 100, respectively.  

The LRT-BS method is applicable to capture multiple changepoints. Table 

10 presents the performance of the LRT-BS method for capturing the true 

breakpoints at the same time. For instance, when the exact breakpoint is 10 

and 70 for the sample size of 75, if l = 15 and the model is simulated from 

  = -0.9, LRT-BS detects both changepoint 43% of the series. According 

to the results, the highest detection rate is obtained when the block length, l 

is 15 and 20 for the sample size of 75 and 100.  

4.7. Application of LRT-BS to a Real Data 

The LRT-BS method is applied to two different datasets. The first one is the 

Nile data set that is used in many studies (Figure 7). The data include the 

annually flow volume Nile River at Aswan between 1871 and 1970. 

According to Cobb  (1978),  river flow levels in 1877 and 1913 are possible 

additive outliers and also there was a mean shift in the flow levels starting 

from 1899. This is connected partly to the climate changes and partly to the 

beginning of construction of a new dam at Aswan.  

When LRT-BS is applied with the block length, l = 20 which is the 0.2×n, 

the detected years are 7th (1877), 27 (1897), 44 (1913) and 82 (1952), while 

F-test captures 1898 as the only breakpoint. On the other hand, after 

simulating highly correlated reference series, SNHT cannot detect any 

changepoint for that data when it is applied to monthly and yearly 

aggregates. Thus, LRT-BS is capable of detecting the true changepoint of 

the series while the other tests cannot detect any changepoint. Moreover, the 
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Table 9. The frequency of true breakpoint detection for multiple shift 

      Multiple 
Sample 
Size 

Block 
Length 

 Location -0.9 -0.6 -0.3 0.3 0.6 0.9 

n = 75 

l = 7 

9 0.43 0.56 0.56 0.68 0.69 0.72 

10 0.04 0.07 0.07 0.19 0.29 0.39 

11 0.27 0.46 0.46 0.41 0.30 0.29 

67 0.04 0.04 0.04 0.03 0.07 0.11 

68 0.12 0.08 0.08 0.07 0.03 0.14 

69 0.31 0.62 0.62 0.72 0.72 0.59 

l = 15 

9 0.00 0.01 0.01 0.08 0.06 0.15 

10 0.02 0.11 0.11 0.21 0.30 0.43 

11 0.64 0.68 0.68 0.51 0.42 0.26 

67 0.01 0.01 0.01 0.03 0.05 0.06 

68 0.07 0.10 0.10 0.06 0.05 0.12 

69 0.64 0.78 0.78 0.78 0.82 0.62 

l = 22 

9 0.11 0.65 0.80 0.82 0.78 0.67 

10 0.00 0.11 0.09 0.22 0.26 0.48 

11 0.09 0.51 0.78 0.54 0.41 0.30 

67 0.00 0.02 0.05 0.03 0.10 0.06 

68 0.01 0.05 0.09 0.03 0.00 0.04 

69 0.06 0.60 0.19 0.11 0.01 0.09 

n = 100 

l = 10 

19 0.26 0.55 0.70 0.64 0.73 0.65 

20 0.05 0.07 0.16 0.16 0.16 0.30 

21 0.37 0.47 0.39 0.38 0.37 0.29 

79 0.28 0.62 0.67 0.69 0.67 0.64 

80 0.02 0.08 0.15 0.25 0.15 0.22 

81 0.29 0.45 0.40 0.37 0.26 0.28 

l = 20 

19 0.72 0.65 0.72 0.65 0.75 0.68 

20 0.10 0.11 0.15 0.21 0.23 0.31 

21 0.54 0.52 0.54 0.38 0.32 0.31 

79 0.75 0.70 0.72 0.67 0.69 0.73 

80 0.15 0.13 0.18 0.22 0.23 0.24 

81 0.54 0.55 0.49 0.38 0.27 0.28 

l = 30 

19 0.58 0.75 0.74 0.80 0.77 0.94 

20 0.10 0.12 0.18 0.20 0.23 0.93 

21 0.64 0.72 0.67 0.52 0.45 0.68 

79 0.25 0.13 0.04 0.06 0.04 0.01 

80 0.00 0.00 0.00 0.00 0.00 0.00 

81 0.00 0.00 0.00 0.00 0.00 0.00 
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Table 10. The frequency of true breakpoint detection for multiple shift 

n = 75 

  

 Location 
Block 
Length -0.9 -0.6 -0.3 0.3 0.6 0.9 

[9,67] l = 7 0.16 0.33 0.37 0.35 0.24 0.21 

[9,67] l = 15 0.43 0.53 0.59 0.42 0.34 0.18 

[9,67] l = 22 0.04 0.16 0.59 0.10 0.05 0.03 

n = 100 

 Location 
Block 
Length -0.9 -0.6 -0.3 0.3 0.6 0.9 

[19,79] l = 10 0.10 0.32 0.44 0.44 0.52 0.46 

[19,79] l = 20 0.54 0.45 0.51 0.38 0.54 0.54 

[19,79] l = 30 0.16 0.08 0.02 0.04 0.03 0.46 

 

year “1899” is an example of inhomogeneity in climate studies since it is an 

effect of non-climatic effect.  

The LRT-BS is also capable of detecting inhomogeneity in meteorological 

studies. The first real life application of the method shows that the proposed 

method works better than the other methods.   

 

Figure 7. Time Series Plot of Annual River Flow of Nile River 
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The second data is temperature and precipitation of Fethiye station which 

belongs to our project data. According to metadata, the station is moved to 

somewhere else at 1962, but still represents the same area. This data is an 

example of a sample size greater than 100. Figure 8 and 9 represent the time 

series plots of precipitation and temperature series of the data, respectively 

with the year of inhomogeneity. 

The three methods, LRT-BS, SNHT and F-test are applied to both series of 

length 732 monthly data separately for both series. SNHT is applied 

monthly and yearly aggregates. However, SNHT and F-test cannot detect 

any changepoint in both of the series, while the proposed method, LRT-BS 

detects breakpoints.   

 

Figure 8. Time Series Plot of Precipitation of Fethiye 
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Figure 9. Time Series Plot of Temperature of Fethiye 

LRT-BS indicate that there is a breakpoint at October of 1961. Another 

changepoint is detected as April of 1968. This data is also an example of an 

inhomogeneity since there is an effect which is not related with climate. 

Similar to the first real life application, this one also shows that LRT-BS is 

superior to SNHT and F-test when the changepoint detection performances 

are compared.   
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CHAPTER 5 

 

 

CONCLUSION AND FURTHER RESEARCH 

 

 

 

The changepoint is an important issue in time series analysis. The effect of 

a changepoint can be change in mean, variance, abrupt or sudden changes, 

gradual increases or multiple changes. The methods in the literature have 

some drawbacks that may lead to unreliable inferences. For instance, these 

include i.i.d. or normality assumption of observations whose validation may 

not be possible for dependent data. In this thesis, a computational approach 

involving bootstrapping is used to improve existing methods to detect 

whether data is homogeneous or not.  

First, an attempt is done to improve the best performing method, SNHT 

based on the computation method, moving block bootstrap. However, the 

application shows that the proposed SNHT-BS method, has high Type-I 

error probabilities. Moreover, it is still a relative method which needs 

homogeneous reference series similar to SNHT. Then, the study is 

continued to propose an absolute test which captures the breakpoints.   

Then, the use of likelihood ratio test is considered and the applications show 

that this method can be used to detect changepoints in the series. However, 

the moving block bootstrap method is applied on the LRT to capture the 

breakpoints close to the beginning or end of the series in addition to detect 

multiple changepoints.   

The study covers LRT based on the exact likelihood whose distribution is 

not known. Thus, a simulation study is conducted to obtain the critical 
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values of the test statistic. Then, moving block bootstrap is applied to LRT 

capture single or multiple changepoints.  

The proposed approach, LRT-BS consists of selecting block length of 0.2×n 

to capture the breakpoints especially multiple changepoints starting at the 

beginning or end of the series. These points are starting values of the mean 

shifts and when the performance of the proposed method is compared with 

the other methods such as SNHT and F-test, it is concluded as the best one 

in terms of detecting the changepoint. Moreover, LRT-BS is also capable of 

detecting the multiple changes.  

The simulations show that F-test and LRT are the best performing tests. 

Since the Type-I error probabilities are higher in F-test, LRT is preferable 

in all cases. The performance of SNHT is not as good as the other methods, 

for instance this test cannot capture the true breakpoint most of the time. 

This can be due to the small sample size of the series.  

Since the results imply better detection rates, the study is applied to two real 

datasets whose breakpoints are known. These data sets are also examples of 

the inhomogeneous series in climate studies. The result of the proposed 

approach show that the method is capable of detecting the changepoint while 

the SNHT and F-test cannot detect any changepoint especially in the long 

series. Thus, this real life example also shows that the proposed method is 

capable of detecting the true single or multiple changepoints. 

On the other hand, the frequencies of the model types show that after 

creating changepoints, the models do not always keep the AR(1) model type. 

The series simulated by   values  produce MA(1) or ARMA(1,1) models. 

Even though the model type is different from AR(1), the LRT based on that 

model still detects the true changepoints.  

Moreover, in that study, AR(p) models is considered since the 

approximations can be applied to ARMA models to represent them with AR 

models. When the series are simulated with positive   values after creating 

shifts and differencing, almost all models become White Noise. However, 
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for the cases with  negative   values, the series protect the AR(1) type. 

Moreover, the MA(1) model frequencies are also high especially when  is 

0.3 or -0.3. 

In conclusion, the proposed method, LRT-BS is capable of detecting the 

single or multiple changes close especially to the beginning or end of time 

series data when mean shift type of breakpoint is considered. In addition to 

this, the block length of the proposed method is studied and appropriate 

length is suggested to capture mean shifts in the series while other tests in 

the literature such as the F-test and SNHT cannot detect them.  

Even though the applications are done based on climate studies, the method 

can be applicable to any time series including economics or health studies. 

Moreover, the method can be used in the classification studies.  

The method is going to be applied to variance changes and changes in  . 

The LRT test is then going to be applied to AR(p) models for single and 

multiple changepoints under different simulation cases. Since the bootstrap 

is an inefficient method in terms of computation, another study is going to 

be conducted to decrease this inefficiency. Moreover, the application of the 

method to spatial data is also considered. On the other hand, the combination 

of the proposed method with stochastic differential equations and Markov 

switching techniques can be considered for the other types of shifts.  
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       Table A1. The detection frequencies for mean shift  

Detection 
rates 

1oC 2 oC 

  
Yt Yt,shift Yt Yt,shift 

SNHT-
BS 

F-Test  
SNHT-

BS 
F-

Test 
SNHT-

BS 
F-Test 

SNHT-
BS 

F-Test 

At the 
beginning

0.284 0.044 0.388 0.056 0.328 0.064 0.532 0.116 

In the 
middle 

0.32 0.092 0.628 0.264 0.336 0.04 0.912 0.848 

At the 
end  

0.296 0.052 0.444 0.108 0.3 0.06 0.696 0.34 
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Table A2. The detection frequencies for sudden decrease  

Detection 
rates 

Sudden Decrease (1oC) 

 Yt Yt,shift 

SNHT-
BS 

F-
Test  

SNHT-
BS 

F-
Test  

At the 
beginning 

0.264 0.044 0.272 0.052 

In the 
middle 

0.324 0.056 0.324 0.056 

At the 
end  

0.288 0.048 0.280 0.052 
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  Table A3. Frequencies of inhomogeneity when there is a mean shift of 1-unit increase 

 At the beginning In the middle At the end 

Methods Yt Yt,shift 
Location 

Detection 
Yt Yt,shift 

Location 

Detection 
Yt Yt,shift 

Location 

Detection 

LRmonthly 0.01 0.12 260.011 0.01 1.00 3550.13 0.00 0.19 7000.26 

SNHTmonthly 0.92 0.11 250.270 0.91 1.00 3550.02 0.94 0.18 6990.11 

SNHTannual 0.09 0.02 - 0.10 1.00 29th0.84 0.10 0.66 
58th0.06 

59th0.06 
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 Table A4. Frequencies of inhomogeneity when there is a mean shift of 2-unit increase 

 At the beginning In the middle At the end 

Methods Yt Yt,shift 
Location 

Detection 
Yt Yt,shift 

Location 

Detection 
Yt Yt,shift 

Location 

Detection 

LRmonthly 0.00 0.86 260.37 0.01 0.99 3550.34 0.01 0.97 7000.30 

SNHTmonthly 0.93 0.99 250.77 0.92 0.95 3550.94 0.95 0.97 6990.65 

SNHTannual 0.17 0.85 2th0.91 0.11 0.99 29th0.36 0.11 0.96 
58th0.83 

59th0.09 
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Table A5. Frequencies of inhomogeneity when there is a mean shift of 3-unit increase 

 At the beginning In the middle At the end 

Methods Yt Yt,shift 
Location 

Detection 
Yt Yt,shift 

Location 

Detection 
Yt Yt,shift 

Location 

Detection 

LRmonthly 0.00 0.88 260.75 0.00 1.00 3550.69 0.00 1.00 7000.44 

SNHTmonthly 0.89 0.98 250.85 0.93 1.00 3540.90 0.96 0.96 6990.62 

SNHTannual 0.10 0.98 2th 0.97 0.06 1.00 
29th0.5 

30th0.5 

0.13 0.96 58th0.88 
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Table A6. Frequencies of inhomogeneity when there is a mean shift of 5-unit increase 

 At the beginning In the middle At the end 

Methods Yt Yt,shift 
Location 

Detection 
Yt Yt,shift 

Location 

Detection 
Yt Yt,shift 

Location 

Detection 

LRmonthly 0.00 0.97 260.91 0.01 1.00 3550.84 0.02 1.00 7000.85 

SNHTmonthly 0.96 1.00 250.97 0.96 1.00 3541.00 0.90 1.00 6991.00 

SNHTannual 0.08 0.97 2th 0.97 0.08 1.00 
29th0.48 

30th0.52 
0.10 1.00 58th1.00 
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 Table A7. Frequencies of inhomogeneity when there is a mean shift of 10-unit increase 

 At the beginning In the middle At the end 

Methods Yt Yt,shift 
Location 

Detection 
Yt Yt,shift 

Location 

Detection 
Yt Yt,shift 

Location 

Detection 

LRmonthly 0.03 0.98 260.98 0.00 1.00 3551.00 0.00 1.00 7001.00 

SNHTmonthly 0.97 0.98 251.00 0.93 1.00 3541.00 0.94 1.00 6991.00 

SNHTannual 0.14 0.98 2th1.00 0.07 1.00 
29th0.51 

30th0.49 
0.10 1.00 58th1.00 

 

 

 

 

85 



 

 

Table A8. Frequencies of inhomogeneous results when the mean shift starts at the beginning of the series 

Sample 
Size   BEGINNING 

  
Location 

of the 
Breakpoint 

  Yt Yt,shift 

Block 
Size  

SNHTmonthly SNHTannual LRmonthly SNHTmonthly SNHTannual LRmonthly LRT-BS 

    l = 15 - - - ~0 (25) - - 
0.41 

(100.25) 

    l = 20 - - - ~0 (25) - - 
0.28 

(100.90) 

n = 50 10 l = 30 - - - ~0 (25) - - 
0.36 

(90.30, 
100.23) 

      SNHTmonthly SNHTannual LRmonthly SNHTmonthly SNHTannual LRmonthly LRT-BS 

    l = 10 ~0  (49) - - ~0  (9) - - 
0.12 

(100.84) 

    l = 20 ~0  (49) - - ~0  (9) - - 
0.18 

(100.87) 

 n = 60 10 l = 30 ~0  (49) - - ~0  (9) - - 
0.10 

(100.87) 

      l = 40 ~0  (49) - - ~0  (9) - - 
0.13 

(100.85) 
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Table A8 (contd’). Frequencies of inhomogeneous results when the mean shift starts at the beginning of the series 

Sample 
Size   BEGINNING 

  
Location 

of the 
Breakpoint 

  Yt Yt,shift 

Block 
Size  

SNHTmonthly SNHTannual LRmonthly SNHTmonthly SNHTannual LRmonthly LRT-BS 

      SNHTmonthly SNHTannual LRmonthly SNHTmonthly SNHTannual LRmonthly LRT-BS 

    l = 10 ~0  (5) - - ~0 (14) - - 
0.30 

(150.72) 

    l = 20 ~0  (5) - - ~0 (14) - - 
0.15 

(150.80) 

n = 70 15 l = 30 ~0  (5) - - ~0 (14) - - 
0.10 

(150.82) 

      l = 40             
0.3 

(150.83) 

      SNHTmonthly SNHTannual LRmonthly SNHTmonthly SNHTannual LRmonthly LRT-BS 

    l = 10 - - - - - - 
0.7 

(200.50) 

    l = 20 - - - ~0  (17) - - 
0.11 

(200.66) 

n = 80 20 l = 30 - - - ~0  (17) - - 
0.14 

(200.74) 

      l = 40 - - - ~0  (17) - - 
0.14 

(200.75) 
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Table A8 (contd’). Frequencies of inhomogeneous results when the mean shift starts at the beginning of the series 

Sample 
Size   BEGINNING 

  
Location 

of the 
Breakpoint 

  Yt Yt,shift 

Block 
Size  

SNHTmonthly SNHTannual LRmonthly SNHTmonthly SNHTannual LRmonthly LRT-BS 

      SNHTmonthly SNHTannual LRmonthly SNHTmonthly SNHTannual LRmonthly LRT-BS 

    l = 10 ~0  (13) - - ~0  (16) - - 
0.34 

(190.16) 

    l = 20 ~0  (13) - - ~0  (16) - - 
0.22 

(190.23) 

n = 90 20 l = 30 ~0  (13) - - ~0  (16) - - 
0.40 

(190.18) 

      l = 40 1~0  (13) - - ~0  (16) - - 
0.46 

(190.15) 
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Table A9. Frequencies of inhomogeneous results when the mean shift starts at the end of the series 
 

 Sample 
Size   END 

  
Location 

of the 
Breakpoint 

  Yt Yt,shift 

Block 
Size   

SNHTmonthly SNHTannual LRmonthly SNHTmonthly SNHTannual LRmonthly LRT-BS 

    l = 10 ~0 (53) - - ~0  (43) - - 
0.8 

(400.77) 

n = 50 40 l = 20 ~0 (53) - - ~0  (43) - - 
0.23 

(400.90) 

      l = 30 ~0 (53) - - ~0  (43) - - 
0.38 

(400.92) 

      l = 40 ~0 (53) - - ~0  (43) - - 
0.38 

(400.92) 

  
    SNHTmonthly SNHTannual LRmonthly SNHTmonthly SNHTannual LRmonthly LRT-BS 

    l = 10 - - - ~0  (44) - - 
0.2 

(450.87) 

  n = 60 45 l = 20 - - - ~0  (44) - - 
0.4 

(450.92) 

      l = 30 - - - ~0 (44) - - 
0.6 

(450.94) 

      l = 40 - - - ~0  (44) - - 
0.6 

(450.94) 
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  Table A9(contd’). Frequencies of inhomogeneous results when the mean shift starts at the end of the series 

 
 

 Sample 
Size   END 

  
Location 

of the 
Breakpoint 

  Yt Yt,shift 

Block 
Size   

SNHTmonthly SNHTannual LRmonthly SNHTmonthly SNHTannual LRmonthly LRT-BS 

      SNHTmonthly SNHTannual LRmonthly SNHTmonthly SNHTannual LRmonthly LRT-BS 

    l = 10 ~0 (29) - - ~0  (54) - - 
0.16 

(550.33) 

n = 70 55 l = 20 ~0 (29) - - ~0  (54) - - 
0.22 

(550.32) 

      l = 30 ~0 (29) - - ~0  (54) - - 
0.24 

(550.35) 

      l = 40 ~0 (29) - - ~0  (54) - - 
0.30 

(550.30) 

      SNHTmonthly SNHTannual LRmonthly SNHTmonthly SNHTannual LRmonthly LRT-BS 

    l = 10 ~0 (40) - - ~0  (57) - - 
0.2 

(640.35) 

  n = 80 65 l = 20 ~0 (40) - - ~0  (57) - - 
0.12 

(640.44) 

      l = 30 ~0 (40) - - ~0  (57) - - 
0.10 

(640.35) 

      l = 40 ~0 (40) - - ~0  (57) - - 
0.15 

(640.57) 
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  Table A9(contd’). Frequencies of inhomogeneous results when the mean shift starts at the end of the series 
 

 Sample 
Size   END 

  
Location 

of the 
Breakpoint 

  Yt Yt,shift 

Block 
Size   

SNHTmonthly SNHTannual LRmonthly SNHTmonthly SNHTannual LRmonthly LRT-BS 

      SNHTmonthly SNHTannual LRmonthly SNHTmonthly SNHTannual LRmonthly LRT-BS 

    l = 10 ~0 (6) - - ~0  (65) - - 
0.16 

(700.55) 

n = 90 70 l = 20 ~0 (6) - - ~0  (65) - - 
0.25 

(700.46) 

      l = 30 ~0 (6) - - ~0  (65) - - 
0.35 

(700.52) 

      l = 40 ~0 (6) - - ~0  (65) - - 
0.35 

(700.52) 
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