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ABSTRACT

CONTRIBUTIONS ON PLATEAUED (VECTORIAL) FUNCTIONS FOR
SYMMETRIC CRYPTOGRAPHY AND CODING THEORY

Sınak, Ahmet
Ph.D., Department of Cryptography

Supervisor : Prof. Dr. Ferruh Özbudak

Co-Supervisor : Prof. Dr. Sihem Mesnager

September 2017, 171 pages

Plateaued functions, used to construct nonlinear functions and linear codes, play a sig-
nificant role in cryptography and coding theory. They can possess various desirable
cryptographic properties such as high nonlinearity, low autocorrelation, resiliency,
propagation criteria, balanced-ness and correlation immunity. In fact, they provide
the best possible compromise between resiliency order and nonlinearity. Besides they
resist against linear cryptanalysis and fast correlation attacks due to their low Walsh-
Hadamard transform values. Indeed, cryptographic algorithms are usually designed
by appropriate composition of nonlinear functions, hence plateaued functions have
a great effect on the security of these algorithms. Additionally, plateaued functions
are closely related to linear codes, the most significant class of codes in coding the-
ory, which have diverse applications in secret sharing schemes, authentication codes,
communication, data storage devices and consumer electronics.

The main objectives of this thesis are twofold: to study in detail the explicit char-
acterizations for plateaued-ness of functions over finite fields from a cryptographic
point of view, and to construct linear codes from weakly regular plateaued functions
in coding theory.

In this thesis, we first analyse characterizations of plateaued (vectorial) functions
over a finite field Fp with p a prime number. More precisely, we obtain a large
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number of their characterizations in terms of their Walsh power moments, deriva-
tives and autocorrelation functions, with the aim of both clarifying their structure and
obtaining information about their construction. In particular, we observe the non-
existence of a homogeneous cubic bent function (and in some cases a (homogeneous)
cubic plateaued function) over Fp with p an odd prime. Moreover, we show the non-
existence of a function whose absolute Walsh transform takes exactly three distinct
values (one being zero), and introduce a new class of functions whose absolute Walsh
transform takes exactly four distinct values (one being zero). Furthermore, we study
partially bent and plateaued functions over a finite field Fq, with q a prime power, and
obtain some of their characterizations in order to understand their behaviour over this
field.

In addition, we introduce the notion of (non)-weakly regular plateaued functions over
Fp, with p an odd prime, and provide the secondary constructions of these functions.
We then construct three-weight linear p-ary (resp. binary) codes from weakly regular
p-ary plateaued (resp. Boolean plateaued) functions and determine their weight dis-
tributions. Finally, we show that the constructed linear codes can be used to construct
secret sharing schemes with “nice” access structures. To the best of our knowledge,
the construction of linear codes from plateaued functions over Fp, with p an odd
prime, is studied in this thesis for the first time in the literature.

Keywords: Boolean functions, vectorial functions, p-ary functions, bent, partially
bent, plateaued, (non)-weakly regular plateaued, linear codes, secret sharing schemes
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ÖZ

SİMETRİK KRİPTOGRAFİ VE KODLAMA TEORİSİ İÇİN (VEKTÖREL)
PLATO FONKSİYONLAR ÜZERİNE KATKILAR

Sınak, Ahmet
Doktora, Kriptografi Bölümü

Tez Yöneticisi : Prof. Dr. Ferruh Özbudak

Ortak Tez Yöneticisi : Prof. Dr. Sihem Mesnager

Eylül 2017, 171 sayfa

Doğrusal olmayan fonksiyonlar ve doğrusal kodlar inşa etmek için kullanılan plato
fonksiyonlar kriptografide ve kodlama teorisinde çok önemli rol oynamaktadır. Bu
fonksiyonlar yüksek doğrusalsızlık, düşük otokorelasyon, esneklik, yayılma kriteri,
dengelilik ve korelasyon dayanıklılığı gibi çeşitli istenen kriptografik özelliklere sa-
hip olabilmektedir. Aslında bu fonksiyonlar esneklik derecesi ve doğrusalsızlık ara-
sındaki mümkün olan en iyi sınırı sağlar. Bunun yanı sıra, bu fonksiyonlar düşük
Walsh-Hadamard dönüşüm değerlerine sahip olmalarından dolayı doğrusal kripta-
nalize ve hızlı korelasyon saldırılarına karşı dayanıklıdır. Gerçekten de, kriptografik
algoritmalar çoğunlukla doğrusal olmayan fonksiyonların uygun bileşkeleri ile tasar-
lanır, bu nedenle plato fonksiyonlar bu algoritmaların güvenliği üzerinde önemli bir
etkiye sahiptir. Plato fonksiyonlar aynı zamanda, gizli paylaşım şemaları, kimlik doğ-
rulama kodları, iletişim, veri depolama cihazları ve tüketici elektronikleri gibi birçok
alanda uygulamaları olan ve kodlama teorisindeki en önemli kod sınıfını oluşturan
doğrusal kodlarla yakından ilgilidir.

Bu tezin iki temel amacı vardır: kriptografik açıdan sonlu cisimler üzerindeki fonk-
siyonların platoluluk özelliğini veren karakterizasyonlarını detaylı çalışmak, ve kod-
lama teorisinde zayıf düzenli plato fonksiyonlardan doğrusal kodlar inşa etmektir.

Bu tezde, ilk olarak sonlu cisim Fp, p asal sayı, üzerindeki plato (vektörel) fonksi-
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yonların karakterizasyonlarını analiz ediyoruz. Açıkçası, bu fonksiyonların yapılarını
anlamak ve inşaları hakkında bilgi edinmek için, Walsh kuvvet momentleri, türev-
leri ve otokorelasyon fonksiyonları bakımından çok sayıda karakterizasyonlarını elde
ediyoruz. Özel olarak Fp, p tek asal sayı, üzerinde homojen kübik bükük (ve bazı
durumlarda homojen kübik plato) fonksiyonların olamayacağını gözlemliyoruz. Ay-
rıca, mutlak Walsh dönüşümü üç farklı değere (bir tanesi sıfır) sahip olan fonksiyon
olamayacağını gösteriyoruz ve mutlak Walsh dönüşümü dört farklı değere (bir tanesi
sıfır) sahip olan yeni fonksiyonlar sınıfı veriyoruz. Daha sonra, kısmi bükük ve plato
fonksiyonlarını herhangi bir sonlu cisim Fq, q asal kuvvet, üzerinde çalışıyor ve bu
cisim üzerindeki davranışlarını anlamak için bazı karakterizasyonlarını veriyoruz.

Bunlara ek olarak, Fp, p tek asal sayı, üzerinde zayıf düzenli (olmayan) plato fonksi-
yon kavramını ve bu fonksiyonların ikincil inşalarını veriyoruz. Sonra, zayıf düzenli
p-li plato (sırayla, Boole plato) fonksiyonlardan üç ağırlıklı doğrusal p-li (sırayla,
ikili) kodlar inşa ediyoruz ve bu kodların ağırlık dağılımlarını belirliyoruz. Son olarak
da, inşa edilen doğrusal kodların “mükemmel” erişim yapılarına sahip gizli paylaşım
şemaları üretmek için kullanılabileceğini gösteriyoruz. Bilgimiz dahilinde, Fp, p tek
asal sayı, üzerinde plato fonksiyonlardan doğrusal kodların inşası literatürde ilk kez
bu tezde çalışılıyor.

Anahtar Kelimeler: Boole fonksiyonlar, vektörel fonksiyonlar, p-li fonksiyonlar, bü-
kük, kısmi bükük, plato, zayıf düzenli (olmayan) plato, doğrusal kodlar, gizli payla-
şım şemaları
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CHAPTER 1

INTRODUCTION

1.1 Overview

The functions over a binary field are called Boolean functions, which play an im-

portant role in cryptography and coding theory. Bent functions over a binary field

are maximally nonlinear Boolean functions. They have attracted considerable atten-

tion in the literature not only for being interesting combinatorial objects, but also

for their relations to coding theory (e.g. the Reed-Muller codes, the Kerdock codes,

etc.), combinatorics (e.g. difference sets), design theory, sequence theory, and appli-

cations in cryptography (design of stream ciphers and of substitution-boxes for block

ciphers). Plateaued Boolean functions are generalization of Boolean bent functions.

They also have a significant role in cryptography, coding theory, sequences for com-

munications, and the related combinatorics and designs. Notably, they are applicable

primitives used in coding theory to construct linear codes and symmetric cryptog-

raphy to construct nonlinear functions. In addition to the desirable various crypto-

graphic properties of bent functions such as high nonlinearity, low additive autocor-

relation, resiliency and propagation criteria, plateaued functions can have balanced-

ness and correlation immunity. In fact, the order of resiliency and the nonlinearity

of Boolean functions is strongly bounded only by plateaued functions. Addition-

ally, some plateaued functions provide resistance against linear cryptanalysis and fast

correlation attacks due to their high nonlinearities and low Walsh-Hadamard trans-

form values. The algorithms in symmetric cryptography (stream and block ciphers)

are designed using an appropriate composition of nonlinear functions, and thereby

plateaued functions have a great effect on the security of these algorithms (for in-
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stance, the security of block ciphers highly depends on the substitution-boxes).

The notion of Boolean bent functions was introduced by Rothaus [72] in the 1970s

and initially studied by Dillon as early as in 1974 [30]. They have been widely stud-

ied in the past forty years by a large number of researchers (see, a non-exhaustive

list, [6, 11, 13, 14, 39, 49, 70]). In fact, a jubilee survey paper [19] and a book [57]

have been devoted to bent functions (including generalizations, variations and appli-

cations). Because of unbalanced-ness of bent functions, Carlet (1993) introduced in

[12] a super class of bent functions: the notion of partially bent functions, whose

elements not only have high nonlinearity but also can be balanced. As an extension

of this notion, Zheng and Zhang (1999) introduced in [78] the notion of plateaued

functions, whose squared Walsh transform takes only one nonzero value (also pos-

sibly the value 0). Plateaued Boolean functions include four important classes of

Boolean functions: 0-plateaued functions (called bent functions), 1-plateaued func-

tions (called near-bent functions), 2-plateaued functions (called semi-bent functions)

and partially bent functions. It is worth noting that, in characteristic 2, 0-plateaued

and 2-plateaued functions exist only when n is even, while 1-plateaued functions ex-

ist only when n is odd. These Boolean functions have been extensively studied by a

large number of researchers (see, e.g., [15, 21, 26, 45, 49, 54, 56, 79]). However, the

other plateaued Boolean functions have not been studied much in a general frame-

work when compared to their importance. In fact, a small amount of work have been

done in [21, 69, 78]. Recently, Carlet [15] (2015) has deeply studied the construc-

tions and characterizations of plateaued Boolean (vectorial) functions by means of

their Walsh power moments, autocorrelation functions, first-order and second-order

derivatives.

The notion of plateaued functions has been generalized to arbitrary characteristic:

the so-called p-ary plateaued functions (see, e.g., [23, 55]). Indeed, in 2014, the first

study of p-ary plateaued functions was done in [55] by Mesnager, who introduced new

characterizations of p-ary plateaued by the constant of the ratio of two consecutive

Walsh power moments of even order. A small number of researchers have studied

and brought some results on these functions, especially on their characterizations

and constructions in arbitrary characteristic (see, e.g., [23, 43, 55]). Because of the

gap between the interest of the notion of these functions and our knowledge on it,
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we aim in this thesis to continue bringing new results on the characterizations of p-

ary plateaued (vectorial) functions and to provide new tools which allow us a better

understanding of their structure and have a toolbox for future construction of these

functions. To this end, we first push further the study initiated by Mesnager on p-ary

plateaued (vectorial) functions (2014) and extend the ones done by Carlet (2015) in

characteristic 2. We also obtain a number of new characterizations of these functions

by using their Walsh power moments, derivatives and autocorrelation functions, with

the aim of clarifying their structure.

In 1985, the notion of bent functions was generalized to any residue class ring Zk
by Kumar et al. [46] where k is any positive integer, and since then they have been

exhaustively studied by a number of researchers (see, e.g., [18, 40, 41, 48, 67] for

a positive integer k and see, e.g., [22, 23, 24, 36, 37, 38, 75] for a prime k). In

1991, the notion of perfect nonlinear functions over Zk, with k any positive integer,

was introduced by Nyberg [67]. Nyberg established some properties of bent and

perfect nonlinear functions over Zk. We emphasize that generalized bent and perfect

nonlinear functions over Zk are not equivalent for a positive integer k, in general.

Nyberg, over Zk, showed that any perfect nonlinear function is a generalized bent

function for any positive integer k, but the converse is true only if k is a prime number.

In 1997, Coulter and Matthews [28] redefined bent functions over any finite field

Fq with q a prime power, and discussed some of their properties and permutation

behaviour. They showed that bent and perfect nonlinear functions are equivalent over

Fq, while they are not equivalent over Zk for a composite number k. Additionally,

Hou [41] (2004) come up with further results about bent functions over Fq. Within

this framework, the other purpose of this thesis is to study the notions of partially bent

and plateaued functions over any finite field Fq and their various characterizations.

Error correcting codes are extensively studied in the literature by a large number of

researchers and employed by many engineers. They have long been known to have

applications in computer and communication systems, data storage devices (starting

from the use of Reed Solomon codes in CDs) and consumer electronics. Consider-

able progress has been made on the constructions of linear codes with few weights.

Such codes have many applications in secret sharing schemes [1, 17, 27, 35, 77], au-

thentication codes [32], association schemes and strongly regular graphs [9]. There
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are several methods to construct linear codes, one of which is based on functions

over finite fields (see, a non-exhaustive list, [31, 34, 35, 58, 76, 80]). Two generic

constructions (say, first and second) of linear codes from functions have been kept

apart from the others in the literature. Recently, several constructions of linear codes

based on the second generic construction were proposed, and plenty of linear codes

with perfect parameters were constructed. In fact, Ding brought out an interesting

survey [31] devoted to the construction of binary linear codes from Boolean func-

tions based on the second generic construction. Commonly, bent functions (mostly,

quadratic and weakly regular bent functions) have been used to construct linear codes

with few weights. Recently, it was shown in a few papers (see, e.g., [35, 76, 80])

that they lead to the construction of interesting linear codes with few weights based

on the second generic construction. Very recently, Mesnager [58] has constructed a

new family of three-weight linear codes from weakly regular bent functions in odd

characteristic based on the first generic construction. Within this framework, the next

purpose of this thesis is to construct new classes of three-weight linear codes from

weakly regular plateaued functions. This is the first time construction of linear codes

from weakly regular plateaued functions in odd characteristic.

Secret sharing schemes were introduced in 1979 by Blakley [4] and Shamir [74].

They have been widely studied by a large number of researchers due to their diverse

real-word applications in cryptographic protocols, electronic voting systems, banking

systems and a controlling of nuclear weapons. There are several methods to construct

secret sharing schemes, one of which is based on linear codes in coding theory. In

fact, the connection between Shamir’s secret sharing scheme and the Reed-Solomon

codes was given in 1981 by McEliece and Sarwate [53] and since then, the construc-

tion of secret sharing schemes using linear codes has been extensively studied (see,

e.g., [1, 17, 33, 35, 51, 53, 71, 77]). Every linear code can be used to construct secret

sharing schemes and provides a pair of secret sharing schemes, based on itself and

its dual code. We emphasize that the constructed linear codes in this thesis generate

secret sharing schemes with “nice” access structures.
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1.2 Motivation and Achievements

Although plateaued functions were first introduced more than a decade ago, our

knowledge on them is actually not at a sufficient level corresponding to their im-

portance. With their explicit characterizations we indeed aim to reduce to a degree

the gap between the interest of these functions and what is known on them. The

main contributions of this thesis are summarized as follows. We first study charac-

terizations of bent and plateaued (vectorial) functions over Fp, with p a prime num-

ber. More precisely, we obtain a large number of their characterizations in terms of

their Walsh power moments, derivatives and autocorrelation functions, with the aim

of not only clarifying their structure but also obtaining new tools which help their

future construction. Actually, using one of these characterizations, we observe the

non-existence of a homogeneous cubic bent function (and for some cases a (homo-

geneous) cubic plateaued function) over Fp, with p an odd prime. We next study the

notions of partially bent and plateaued functions over Fq, with q a prime power, in

order to understand their behaviour over Fq. Moreover, we show the non-existence

of a function whose absolute Walsh transform takes exactly three distinct values (one

being zero), and then introduce a new class of functions whose absolute Walsh trans-

form takes exactly four distinct values (one being zero) over F2 and F3. Furthermore,

we introduce the notion of weakly regular plateaued functions, and construct three-

weight linear codes from these functions over Fp, with p an odd prime. We also

determine the weight distributions of the constructed codes. Finally, we describe the

access structures of the secret sharing schemes based on the dual codes of the con-

structed linear codes.

1.3 Outline

In this section, we describe how this thesis is organized.

• Chapter 2 sets main notations and collects necessary background in finite field

theory, cryptography and coding theory. More precisely, we first give basic

notions in the study of finite fields such as the Legendre symbol and cyclotomic

field. Next we present the notions of significant cryptographic functions over
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finite fields such as bent, partially bent and plateaued functions. Meanwhile,

we give the Fourier transform and the Walsh transform of a function in terms of

additive characters of a finite field. Finally, linear codes, secret sharing schemes

and their connection are mentioned.

• Chapter 3 focuses on explicit characterizations for plateaued-ness of (vecto-

rial) p-ary functions in arbitrary characteristic, with the aim of understanding

their structure and getting more information about their construction. Section

3.1 characterizes p-ary bent functions by means of their Walsh power moments,

derivatives and autocorrelation functions. Section 3.2 obtains a large number of

characterizations of p-ary plateaued functions in terms of the value distribution

of their second-order derivatives, even power moments of their Walsh trans-

form and their autocorrelation functions, which allow us a better understanding

of their structure and provide useful intuition for their future construction. In

Section 3.3, we use the value distributions of the second-order (and also first-

order) derivatives of vectorial functions in order to provide several characteri-

zations of vectorial bent and plateaued p-ary functions. In Section 3.4, to char-

acterize vectorial p-ary plateaued functions by means of the Walsh transform

and autocorrelation function, we make use of the Walsh power moments and

autocorrelation functions of their nonzero component functions. Section 3.5

explores a probably unexpected behavior of cubic functions in even and odd

characteristics. Indeed, we observe the non-existence of a homogeneous cubic

bent function (and for some cases a (homogeneous) cubic plateaued function)

in odd characteristic.

• Chapter 4 is concerned with functions whose absolute Walsh transform takes

exactly three and four distinct values. Section 4.1 shows the non-existence of

a function whose absolute Walsh transform takes exactly three distinct values

(one being zero) in arbitrary characteristic. Section 4.2 introduces a new class

of functions whose absolute Walsh transform takes exactly four distinct values

(one being zero) in characteristics 2 and 3.

• Chapter 5 investigates the notions of partially bent and plateaued functions over

any finite field Fq, with q a prime power. Section 5.1 redefines, over Fq, the no-

tions of partially bent and plateaued functions, which rely on the concept of
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their Walsh transform in terms of canonical additive characters of Fq. Indeed,

we provide a concrete example of a 4-ary plateaued but not vectorial plateaued

Boolean function. In Section 5.2, we obtain several characterizations of q-ary

partially bent functions by means of their Walsh power moments, derivatives

and autocorrelation functions. In Section 5.3 we extend to q-ary case some of

characterizations of p-ary plateaued functions given in Section 3.3. Finally, in

Section 5.4, we introduce the notion of a q-ary plateaued-type function associ-

ated with its Walsh-type transform.

• Chapter 6 focuses on the construction of linear codes with few weights from

functions over finite fields and their application in secret sharing schemes. In

Section 6.1, we first introduce the notion of (non)-weakly regular plateaued

functions over finite fields of odd characteristic, which covers a non-trivial sub-

class of the class of plateaued functions. We next give the secondary and re-

cursive constructions for the first constructions of these functions. Section 6.2

deals with the construction of linear codes involving special functions based on

the first generic construction. In Section 6.3, we construct new classes of three-

weight linear p-ary (resp. binary) codes from weakly regular p-ary plateaued

(resp. plateaued Boolean) functions based on the first generic construction. We

also determine the weight distributions of the constructed linear codes. Finally,

in Section 6.4, we observe that all nonzero codewords of the constructed linear

codes are minimal for almost all cases. This suggests that the constructed lin-

ear codes can be used to construct secret sharing schemes with “nice” access

structures.
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CHAPTER 2

PRELIMINARIES

In this chapter, we state main notations and recall some necessary definitions/results

in finite field theory, cryptography and coding theory. For more details and further

reading of the essential theory and concepts, the reader is referred to [44, 50, 66] for

finite field theory, to [6, 13, 14, 57] for cryptography, and to [42] for coding theory.

2.1 Basic Background in Finite Field Theory

Let p be a prime number. The residue class ring Zp := Z/〈p〉 forms a finite field,

identified with the Galois field Fp with p elements. For a prime p and an integer

n ≥ 1, to construct a finite extension field with pn elements over Fp, one needs an

irreducible polynomial of degree n over Fp. In fact, the residue class ring

Fp[x]/〈g(x)〉 = {a0 + a1x+ · · ·+ an−1x
n−1 : ai ∈ Fp for 0 ≤ i ≤ n− 1} (2.1)

forms a finite field with pn elements, where g(x) is an irreducible polynomial of

degree n in Fp[x]. The finite field with pn elements is unique up to isomorphism and

is denoted by Fpn . Here, F?pn = 〈ζ〉 is a multiplicative cyclic group of order pn − 1

with generator ζ , and Fp is the prime field contained in Fpn (i.e., the characteristic of

Fpn is p).

Let α be a root of an irreducible polynomial g(x) in Fpn . By choosing a basis B =

{1, α, α2, . . . , αn−1} ⊆ Fpn over Fp, the extension field Fpn can be viewed as an

n-dimensional vector space over Fp, denoted by

Fnp = 〈B〉 = {a0 + a1α + a2α
2 + · · ·+ an−1α

n−1 : ai ∈ Fp for 0 ≤ i ≤ n− 1}.(2.2)
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An element a ∈ Fpn can be viewed as a vector a = (a0, a1, . . . , an−1) ∈ Fnp where

ai ∈ Fp for 0 ≤ i ≤ n − 1. This identification gives an isomorphism between the

finite field Fpn in (2.1) and the vector space Fnp in (2.2). The dimension of the vector

space Fnp over Fp is the size of B, in symbols dim(Fnp ) = n. The size of the vector

space Fnp is equal to pdim(Fnp ), denoted by #Fnp = pn. We now recall the definition of

the trace function.

Definition 2.1. Let n and k be two positive integers such that k divides n. Then the

relative trace function Trp
n

pk
from the finite field Fpn to its subfield Fpk is defined by

Trp
n

pk
(x) =

n
k
−1∑
i=0

xp
ki

= x+ xp
k

+ · · ·+ xp
n−k

.

The absolute trace of x ∈ Fpn over Fp is defined by Trp
n

p (x) = x+ xp + · · ·+ xp
n−1
.

Proposition 2.1. The trace function has the following significant properties:

• It is the surjective function:

• It is the linear function: Trp
n

p (ax+by) = aTrp
n

p (x)+bTrp
n

p (y) for all x, y ∈ Fpn

and a, b ∈ Fp.

• It satisfies the transitivity property in a chain of extension fields, i.e., for all

x ∈ Fpn , Trp
n

p (x) = Trp
k

p

(
Trp

n

pk
(x)
)
.

• Trp
n

p (xp) = Trp
n

p (x) for all x ∈ Fpn .

Two bases B = {α1, α2, . . . , αn} and B′ = {α′1, α
′
2, . . . , α

′
n} of Fnp over Fp are said

to be dual if for 1 ≤ i, j ≤ n

Trp
n

p (αiα
′

j) =

 1 if i = j,

0 if i 6= j.

For an Fp-linear subspace W of Fnp , there exists a complementary subspace W of W

such that Fnp = W ⊕W (namely, Fnp = W +W and W ∩W = {0}), where ⊕ is the

direct sum. Thus, an element x ∈ Fnp can be uniquely written as x = x1 + x2 where

x1 ∈ W and x2 ∈ W . Notice that dim(W ) + dim(W ) = n.
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In the following, we state the Legendre symbol and the cyclotomic field, which will

be used in Chapter 6.

The Legendre Symbol. Let a be a positive integer and p be an odd prime number.

Consider the following quadratic congruence:

x2 ≡ a (mod p). (2.3)

We say that a is a quadratic residue modulo p if the congruence relation (2.3) has

a solution in F?p, that is,
√
a ∈ F?p and a is a quadratic non-residue modulo p if the

congruence relation (2.3) has no solution in F?p, that is,
√
a /∈ F?p. The Legendre

symbol is defined as

(
a

p

)
=


0 if p|a,
1 if a is a quadratic residue modulo p,

−1 if a is a quadratic non-residue modulo p.

Lemma 2.1. The Legendre symbol satisfies the congruence relation:(
a

p

)
≡ a

p−1
2 (mod p). (2.4)

Proof. It is obvious that both sides are 0 modulo p when p divides a. Assume that p

does not divide a. Let ζ be a generator of F∗p. Note that all quadratic residues are in

the form ζ2i for some i. If a ≡ ζ2i (mod p) for i ∈ N, then

a
p−1
2 ≡ ζ2i( p−1

2
) ≡ ζ i(p−1) ≡

(
ζp−1

)i ≡ 1 (mod p).

This shows that (2.4) holds.

For a non-quadratic residue a ≡ ζ2i+1 (mod p) for i ∈ N, we have

a
p−1
2 ≡ ζ(2i+1) p−1

2 ≡ ζ i(p−1)ζ
p−1
2 ≡ ζ

p−1
2 ≡ −1 (mod p).

This shows (2.4) also holds in this case. The proof is complete.

The Legendre symbol satisfies the following properties for positive integers a, b and

odd primes p, q.

• The Legendre symbol has the multiplicative property:
(
ab
p

)
=
(
a
p

)(
b
p

)
. By

Lemma 2.1,(
ab

p

)
≡ (ab)

p−1
2 (mod p) = a

p−1
2 b

p−1
2 (mod p) ≡

(
a

p

)(
b

p

)
.
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• If p - a, then
(
a2

p

)
=
(
a
p

)(
a
p

)
= 1. In particular, we have

(
1
p

)
= 1.

• If a ≡ b (mod p), then
(
a
p

)
=
(
b
p

)
, that is,

(
a
p

)
depends only on a ∈ Fp.

• We have the following:(
−1

p

)
≡ (−1)

p−1
2 (mod p) =

 1 ⇐⇒ p ≡ 1 (mod 4)

−1 ⇐⇒ p ≡ 3 (mod 4).
(2.5)

Throughout this thesis,
(
a
p

)
denotes the Legendre symbol for a ∈ F?p, and p∗ denotes(

−1
p

)
p, where p is an odd prime.

Cyclotomic Field Q(ξp). Let p be a prime and let Q denote the field of rational

numbers. Let ξp = e2πi/p be a primitive p-th root of unity in C where i =
√
−1.

A cyclotomic field Q(ξp) is obtained from the field Q by adjoining ξp. The ring of

integers in Q(ξp) is defined as OQ(ξp) := Z(ξp), where Z is the set of integers. An

integral basis of OQ(ξp) is the set

{ξip : 1 ≤ i ≤ p− 1}.

The field extension Q(ξp)/Q is Galois of degree p− 1, and the Galois group

Gal(Q(ξp)/Q) = {σa : a ∈ F?p},

where the automorphism σa of Q(ξp) is defined by σa(ξp) = ξap . The cyclotomic field

Q(ξp) has a unique quadratic subfield Q(
√
p∗), where p∗ =

(
−1
p

)
p. For a ∈ F?p, we

have σa(
√
p∗) =

(
a
p

)√
p∗. Hence, the Galois group Gal(Q(

√
p∗)/Q) = {1, σγ} for

any γ ∈ Fp such that
√
γ /∈ F?p. The reader is referred to [44] for further reading on

cyclotomic fields.

2.2 On the (Vectorial) Functions over Finite Fields

In this section, we consider the discrete functions between two vector spaces.

We mention the functions from Fnp to Fmp , where p is a prime and m,n are positive

integers. For any prime p, a function F from Fnp to Fmp is called vectorial p-ary

function (or, (n,m)-p-ary function), and a function f from Fnp to Fp is called p-ary
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function (or, (n, 1)-p-ary function) in n variables. For simplicity, in this thesis, a

function F from Fnp to Fmp is denoted by F : Fnp → Fmp and a function f from Fnp to

Fp is denoted by f : Fnp → Fp.

Remark 2.1. The identification between the finite field Fpn and n-dimensional vector

space Fnp over Fp allows us to define these functions over finite fields as well.

In the case of p = 2, a function F : F2n → F2m is called vectorial Boolean function

(or, (n,m)-Boolean function), and a function f : F2n → F2 is called Boolean function

in n variables.

Boolean Functions. The functions over a binary field are called Boolean functions.

Boolean functions play a significant role in cryptography and coding theory. In both

frameworks, n is rarely large in practice. In fact, cryptographic transformations

(pseudo-random generators in stream ciphers, substitution boxes in block ciphers)

can be designed by an appropriate composition of nonlinear Boolean functions. In

coding theory, every code of length 2n can be expressed as a set of Boolean func-

tions, since every n-variable Boolean function can be represented by its truth table.

Two of the most famous codes, the Reed–Muller and the Kerdock codes, are defined

this way as sets of Boolean functions. For more details on Boolean functions, the

reader is referred to [13, 14].

Representations of p-Ary Functions over Fp. There exist several representations of

p-ary functions, we now refer two ones that will be used in this thesis. We first explain

the univariate form of a p-ary function f , which is an essential representation. Since

an n-dimensional vector space Fnp over Fp is identified with the Galois field Fpn (see

Remark 2.1), every p-ary function f : Fpn → Fp can be described in the so-called

univariate form, which can be given in trace form as

f(x) = Trp
n

p

(
pn−1∑
i=0

aix
i

)
where ai ∈ Fpn . It is worth noting that the univariate representation is not unique.

Indeed, a unique univariate form of p-ary function f , called trace representation, is

given by

f(x) =
∑
i∈Γn

Trp
◦(i)

p (aix
i) + apn−1x

pn−1,
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where

• Γn is the set of integers obtained by choosing the smallest element in each

cyclotomic coset modulo pn − 1 (with respect to p);

• ◦(i) is the size of the cyclotomic coset containing i;

• ai ∈ Fp◦(i) and apn−1 ∈ Fp.

The algebraic degree of f (denoted by deg f ) is equal to max {wp(i) : ai 6= 0}, where

wp(i) is the weight of the p-ary expansion of i. In particular, p-ary linear functions

are exactly all functions of the form Trp
n

p (ax) for some a ∈ Fpn , namely, a function

is called linear if its algebraic degree is one. On the other hand, a function is called

quadratic if its algebraic degree is two.

If we do not identify the vector space Fnp with the finite field Fpn , p-ary function has a

representation as a unique multinomial in x1, x2, . . . , xn, where the variables xi occur

with exponent at most p− 1. A p-ary function f : Fnp → Fp is uniquely expressed by

f(x) =
∑
u∈Fnp

aux
u =

∑
u∈Fnp

aux
u1
1 x

u2
2 · · ·xunn ,

where x = (x1, x2, . . . , xn) ∈ Fnp , u = (u1, u2, . . . , un) ∈ Fnp and au ∈ Fp. This is

called the multivariate representation or algebraic normal form (ANF). The algebraic

degree of a p-ary function is the global degree of its multivariate representation.

Representations of Vectorial p-Ary Functions. Recall that a function F from Fpn

to Fpm is said to be vectorial p-ary function.

If m = n, any vectorial function F : Fpn → Fpn has a unique representation as a

univariate polynomial over Fpn of degree smaller than pn

F (x) =

pn−1∑
i=0

aix
i, ai ∈ Fpn .

A function F : Fpn → Fpn is linear if F (x) =
∑

0≤i≤n aix
pi , where ai ∈ Fpn , and F

is affine if it is a sum of a linear function and a constant function.

In the case when m divides n, F : Fpn → Fpm can also admit a univariate polynomial
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representation (since it can be seen as a function from Fpn to itself): in the trace form

F (x) = Trp
n

pm

(
pn−1∑
i=0

aix
i

)
, ai ∈ Fpn .

In this case, the vectorial function F can be viewed as a function f from Fqk to Fq
defined by

f(x) = Trq
k

q

qk−1∑
i=0

aix
i

 , ai ∈ Fqk ,

where q = pm and n = mk for a positive integer k. This function f is called q-ary

function and denoted by f : Fqk → Fq, where q is a prime power.

On the other hand, in the case when m is not a divisor of n, the univariate represen-

tation of vectorial function F in the field is not proper. Hence, F should be viewed

over the vector space, i.e., F : Fnp → Fmp and represented by its algebraic normal

form ANF:

F (x) =
∑
u∈Fnp

au

n∏
i=1

xuii , au ∈ Fmp ,

(this sum is in Fmp ). The algebraic degree of F equals the degree of its ANF.

We now indicate the component functions of a vectorial F : Fnp → Fmp . The nonzero

component functions of F are Fλ = λ · F : Fnp → Fp, λ ∈ Fmp \ {0}, defined as

Fλ(x) = λ · F (x)

for every x ∈ Fnp , where “·” denotes an inner product in Fmp . Since the vector spaces

Fnp and Fmp can be identified with the Galois fields Fpn and Fpm of orders pn and pm,

respectively (see Remark 2.1), then for every λ ∈ F?pm , the component function Fλ is

defined as

Fλ(x) = Trp
m

p (λF (x))

for every x ∈ Fpn .

2.3 The Fourier Transform and the Walsh Transform of Function

We start by giving the notion of additive characters of a finite field.

15



Let ξp = e2πi/p be a primitive p-th root of unity in C, where i =
√
−1 and p is a prime

number. It is obvious that the complex conjugation of ξp is its inverse, i.e., ξp = ξ−1
p .

Then, the function χ from Fq to C, defined as

χ(x) = ξTrqp(x)
p (2.6)

for all x ∈ Fq, is called the canonical additive character of Fq. Notice that for each

y ∈ Fq, the function χy(x) = χ(yx) for all x ∈ Fq is an additive character of Fq and

every additive character of Fq is obtained in this way. In particular, χ0 is the trivial

additive character of Fq defined as χ0(x) = 1 for all x ∈ Fq. For each character χ

of Fq, there is associated the conjugate character χ defined as χ(x) := χ(x) for all

x ∈ Fq. Let χ and ψ be the canonical additive characters of Fq and Fnq , respectively.

Then for all α ∈ Fnq , they are connected by the identity χ(Trq
n

q (α)) = ψ(α).

The following lemma gives some well known properties of additive characters of Fq,

which will be frequently used in the sequel.

Lemma 2.2. Let χ : Fq → C be an additive character as in (2.6). Then for all

x1, x2 ∈ Fq, we have χ(x1 + x2) = χ(x1)χ(x2) and χ(x) = χ(−x) for all x ∈ Fq.

Proof. For all x1, x2 ∈ Fq, we have

χ(x1 + x2) = ξ
Trqp(x1+x2)
p = ξ

Trqp(x1)+Trqp(x2)
p = ξ

Trqp(x1)
p ξ

Trqp(x2)
p = χ(x1)χ(x2)

where in the second equality we used the fact that Trqp is linear. Next, for all x ∈ Fq
we have

χ(x) = ξ
Trqp(x)
p =

(
ξp
)Trqp(x)

=
(
ξ−1
p

)Trqp(x)
= ξ

−Trqp(x)
p = ξ

Trqp(−x)
p = χ(−x)

where we used the fact that ξp = ξ−1
p in the third equality, and that Trqp is linear in the

fifth equality.

Below we give the definition of the Fourier transform of a complex valued function

(see [66, Definition 10.1.3]).

Definition 2.2. Let G be a function from Fnq to C and χ be an additive character of

Fq as in (2.6). The Fourier transform of G is defined as

Ĝ : Fnq → C

ω 7−→ Ĝ(ω) =
∑
x∈Fnq

G(x)χ(ω · x).
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In the following, we define the Walsh transform of a function f : Fnq → Fq. Let

χ : Fq → C be an additive character as in (2.6). A composite function χf from Fnq to

C of χ and f can be defined as

χf (x) := χ(f(x)) = ξTrqp(f(x))
p .

Definition 2.3. Let f : Fnq → Fq. The Walsh transform of f at ω ∈ Fnq is the Fourier

transform χ̂f of χf defined as

χ̂f : Fnq → C

ω 7−→ χ̂f (ω) =
∑
x∈Fnq

χf (x)χ(ω · x), (2.7)

where χ : Fq → C is any non-trivial additive character of Fq in (2.6) and “ · ” denotes

an inner product (for instance, the usual inner product) over Fnq .

It is worth mentioning that (2.7) can also be given without the conjugate of χ. We

should also remark that f is constant if and only if χ̂f (ω) = 0 at any nonzero ω ∈ Fqn

(see, e.g., [66]). If Fnq is identified with Fqn , we can take ω · x = Trq
n

q (ωx), and the

Walsh transform of f at ω ∈ Fqn is

χ̂f (ω) =
∑
x∈Fqn

ξTrqp(f(x))−Trq
n

p (ωx)
p .

The set of complex values χ̂f (ω), called the Walsh coefficient of f at point ω, for all

ω ∈ Fqn is called the Walsh spectrum of f . The Walsh support of f is the set

{ω ∈ Fqn : χ̂f (ω) 6= 0},

denoted by Supp(χ̂f ) and Nχ̂f = #Supp(χ̂f ), and obviously, Nχ̂f ≤ qn.

We now give some strong properties of the Fourier transform of a complex valued

function from Fnq to C.

Lemma 2.3. Let G : Fnq → C be a function and let Ĝ : Fnq → C be its Fourier

transform. Then ̂̂G(u) = qnG(−u) for all u ∈ Fnq .

Proof. The Fourier transform ̂̂
G of Ĝ at α ∈ Fnq is obtained bŷ̂

G(α) =
∑
v∈Fnq

Ĝ(v)χ(−v · α) =
∑
v∈Fnq

∑
u∈Fnq

G(u)χ(−v · u)χ(−v · α)

=
∑
u∈Fnq

G(u)
∑
v∈Fnq

χ(−v · (u+ α)) = qnG(−α)
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since
∑

v∈Fnq
ξ

Trq
n

p (−v(u+α))
p =

 qn if u = −α,
0 if u 6= −α.

It easily follows from Lemma 2.3 that for all u ∈ Fnq

G(−u) =
1

qn

∑
v∈Fnq

Ĝ(v)χ(v · u).

This suggests that G(u) = 0 for all u ∈ Fnq if and only if Ĝ(v) = 0 for all v ∈ Fnq .

In the light of the above results, we have the following strong property of the Fourier

transform.

Lemma 2.4. Let G1, G2 : Fnq → C be two functions. Then

G1(u) = G2(u), ∀u ∈ Fnq ⇐⇒ Ĝ1(v) = Ĝ2(v), ∀v ∈ Fnq .

Next we recall the convolution of two complex valued functions (see [66, Definition

10.1.18]).

Definition 2.4. Let G1 and G2 be two functions from Fnq to C. The convolution of G1

and G2 is the map from Fnq to C, at a ∈ Fnq , defined as

(G1 ⊗G2)(a) =
∑
x∈Fnq

G1(a− x)G2(x).

The convolution theorem of Fourier analysis states that the Fourier transform of a

convolution of two functions is the ordinary product of their Fourier transforms (see

[66, Theorem 10.1.19]).

Theorem 2.1. LetG1 andG2 be two functions from Fnq to C. Then, we have Ĝ1 ⊗G2 =

Ĝ1Ĝ2, and also Ĝ1 ⊗ Ĝ2 = qnĜ1G2.

Proof. Applying the Fourier transform to the convolution of G1 and G2 at point v ∈
Fnq , we obtain

(Ĝ1 ⊗G2)(v) =
∑
u∈Fnq

(G1 ⊗G2)(u)χ(−v · u)

=
∑
u∈Fnq

∑
t∈Fnq

G1(t)G2(u− t)χ(−v · u)

=
∑
t∈Fnq

G1(t)χ(−v · t)
∑
u∈Fnq

G2(u− t)χ(−v · (u− t))

= Ĝ1(v)Ĝ2(v),
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that is, Ĝ1 ⊗G2 = Ĝ1Ĝ2. To show the next relation, apply the Fourier transform to

Ĝ1 ⊗ Ĝ2. Then, by the first relation, for all u ∈ Fnq we have

̂
(Ĝ1 ⊗ Ĝ2)(u) =

̂̂
G1(u)

̂̂
G2(u) = q2nG1(−u)G2(−u),

where the second equality follows from Lemma 2.3. Next, applying again the Fourier

transform to them, for all u ∈ Fnq we obtain

q2nĜ1G2(−u) =
̂̂

(Ĝ1 ⊗ Ĝ2)(u) = qn(Ĝ1 ⊗ Ĝ2)(−u),

where the second equality follows from Lemma 2.3. Hence the proof is complete.

2.4 Some Tools of a Function

In this section, we introduce some useful tools of a function such as its Walsh power

moments, derivative, balanced-ness, linear translator and autocorrelation function,

which will be frequently used in the sequel to characterize plateaued (vectorial) func-

tions.

The Walsh Power Moments. The notion of even power moments of the Walsh trans-

form (for simplicity, we call it as the Walsh power moments) of a p-ary function was

introduced by Mesnager [55]. This notion can be also given for a q-ary function. For

any nonnegative integer i, the Walsh power moment of a q-ary function f is defined

as

Si(f) =
∑
ω∈Fnq

|χ̂f (ω)|2i

with the convention that S0(f) = qn. It is a well known fact that S1(f) = q2n, which

is known as the Parseval identity. We now make a preliminary but useful remark: for

every nonnegative integers A and i, we have∑
ω∈Fqn

(
|χ̂f (ω)|2 − A

)2

|χ̂f (ω)|2i = Si+2(f)− 2ASi+1(f) + A2Si(f) ≥ 0.

Derivative. The definition of derivative of a q-ary function is given as follows (see,

e.g., [28, 57]).
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Definition 2.5. Let f : Fnq → Fq. The derivative (first-order derivative) of f in the

direction of a ∈ Fnq is the map Daf from Fnq to Fq defined by

Daf(x) = f(x+ a)− f(x).

The second-order derivative of f in the direction of (a, b) ∈ F2
qn is given asDbDaf(x) =

f(x+a+b)−f(x+a)−f(x+b)+f(x). By the definition of derivative, for (a, b) ∈ F2
qn

we readily have that DbDaf(x) = DaDbf(x) for every x ∈ Fqn .

For a vectorial function F : Fpn → Fpm , the first-order derivativeDaF in the direction

of a ∈ Fpn is the map from Fpn to Fpm defined as DaF (x) = F (x + a)− F (x), and

its second-order derivative in the direction of (a, b) ∈ F2
pn is given as

DbDaF (x) = F (x+ a+ b)− F (x+ a)− F (x+ b) + F (x).

By the definition of derivative, DbDaF (x) = DaDbF (x) for all x ∈ Fpn .

Linear Translator. The notion of linear translator for a q-ary function is given as

follows (see [47, 57]).

Definition 2.6. Let f : Fnq → Fq. A nonzero element α ∈ Fnq is called a b-linear

translator for f if

f(x+ uα)− f(x) = ub

holds for all x ∈ Fnq , u ∈ Fq and a fixed b ∈ Fq. In other words, f is said to have

a linear translator if there exists a nonzero α ∈ Fnq such that f(x + uα) − f(x) =

u(f(α)−f(0)) for all x ∈ Fnq and u ∈ Fq. The set of linear translators of f is denoted

by Lf .

In particular, when q = 2, α ∈ Fn2 is said to be b-linear structure for the Boolean

function f if f(x+ α) + f(x) = b holds for all x ∈ Fn2 and a fixed b ∈ F2. Note that

if α is b-linear structure of f , then necessarily b = f(α)− f(0). The notions of linear

translators and derivatives are related. The linear kernel of f is the linear subspace

of vectors b such that Dbf is a constant function. In fact, any element of the linear

kernel of f is a linear translator of f .

Balanced-ness. Cryptographic functions should be balanced to avoid statistical de-

pendence between the plain-text (input) and the cipher-text (output) in the stream

20



cipher and to prohibit cryptographic distinguishing attacks. However, cryptographic

functions having maximum nonlinearity cannot be balanced (for instance, bent func-

tions). A balanced Boolean function is the function whose output yields as many

zeros as ones over its input set. For q-ary functions and vectorial functions, the

balanced-ness can be given as follows.

Definition 2.7. [28] Let f : Fnq → Fq. Then f is said to be balanced (or permutation

polynomial) over Fq if #{x ∈ Fnq : f(x) = k} = qn−1 for each k ∈ Fq i.e., f takes

every element of Fq the same number qn−1 of pre-images.

Definition 2.8. [6] Let F : Fpn → Fpm . Then F is called balanced over Fpm if F

takes every element of Fpm the same number pn−m of pre-images.

It is easy to see that a vectorial function is balanced if and only if all of its nonzero

component functions are balanced.

The Autocorrelation Function. The autocorrelation function of a q-ary function can

be defined by its first-order derivative (see, e.g., [46]).

Definition 2.9. Let f : Fnq → Fq. Then, the autocorrelation function of a q-ary

function f is the map from Fnq to C defined as

∆f (a) =
∑
x∈Fnq

χ(Daf(x))

for all a ∈ Fnq , where χ is a non-trivial additive character of Fq in (2.6).

We end this section by proving the following properties of the Walsh transform and

the autocorrelation function, which will be used in the sequel. They can be easily

obtained by using the properties of additive character of Fq (see Lemma 2.2).

Proposition 2.2. Let f : Fnq → Fq. Then

i.) f is balanced if and only if χ̂f (0) = 0.

ii.) χ̂f (ω) = χ̂f (−ω) for all ω ∈ Fnq .

iii.) χ̂Daf (0) = ∆f (a) for all a ∈ Fnq .

iv.) ∆f (a) = ∆f (−a) for all a ∈ Fnq .
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v.) |χ̂f (ω)|2 = ∆̂f (ω) for all ω ∈ Fnq .

vi.) |χ̂f (0)|2 =
∑

a∈Fnq
∆f (a).

Proof. i.) A function f is balanced if and only if
∑
x∈Fnq

ξTrqp(f(x))
p = 0, namely,

χ̂f (0) =
∑
x∈Fnq

χ(f(x)) =
∑
x∈Fnq

ξTrqp(f(x))
p = 0.

ii.) For all ω ∈ Fnq ,

χ̂f (ω) =
∑
x∈Fnq

χ(f(x))χ(ω · x) =
∑
x∈Fnq

χ
(
f(x)

)
χ(−ω · x) = χ̂f (−ω).

iii.) Clearly, for all a ∈ Fnq ,

χ̂Daf (0) =
∑
x∈Fnq

χ(Daf(x))χ(0 · x) =
∑
x∈Fnq

χ(Daf(x)) = ∆f (a).

iv.) Clearly, for all a ∈ Fnq ,

∆f (a) =
∑
x∈Fnq

χ(f(x+ a)− f(x)) =
∑
x∈Fnq

χ(f(x)− f(x+ a)) = ∆f (−a),

where in the last equality we used the (bijective) change of variable x 7→ x−a.

v.) Since |z|2 = zz for z ∈ C, for all ω ∈ Fnq , it easily follows that

|χ̂f (ω)|2 =
∑
a∈Fnq

χ(f(a)− ω · a)
∑
b∈Fnq

χ(−f(b) + ω · b)

=
∑
a,b∈Fnq

χ(f(a)− f(b))χ(ω · (a− b))

=
∑
a∈Fnq

∑
b∈Fnq

χ(f(a+ b)− f(b))χ(ω · a)

=
∑
a∈Fnq

∆f (a)χ(ω · a) = ∆̂f (ω),

where in the third equality we used the (bijective) change of variable a 7→ a+b.

vi.) This follows from (v) by setting ω = 0.
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2.5 Bent, Partially Bent and Plateaued Functions over Finite Fields

In this section, we give the notions of significant cryptographic functions, which have

various useful cryptographic properties.

To begin with, we recall the notion of the Walsh transform of a p-ary function f :

Fpn −→ Fp. The Walsh transform of f at point ω ∈ Fpn is defined by:

χ̂f (ω) =
∑
x∈Fpn

ξp
f(x)−Trp

n

p (ωx).

In the case of p = 2, the Walsh transform of a Boolean function f at point ω ∈ F2n is

given as

χ̂f (ω) =
∑
x∈F2n

(−1)f(x)+Tr2
n

2 (ωx).

Bent functions were introduced by Rothaus [72] in characteristic 2 and generalized to

any residue class ring by Kumar et al. [46].

Definition 2.10. Let f : F2n → F2 and let n be an even integer. Then, f is called a

Boolean bent function if for every ω ∈ F2n , we have χ̂f (ω) = ±2
n
2 .

We now give the definition of a generalized bent function over a finite field.

Definition 2.11. Let f : Fpn → Fp. Then, f is p-ary bent if for every ω ∈ Fpn , we

have |χ̂f (ω)|2 = pn.

Remark 2.2. A function f : Fpn → Fp is p-ary bent if and only if the derivative Daf
is balanced for all nonzero a ∈ Fpn .

Remark 2.3. A function f : Fpn → Fp is linear if and only if f(x+ y) = f(x) +f(y)

for all x, y ∈ Fpn . A function g : Fpn → Fp is affine if and only if g = f + a where f

is a linear function and a is a constant.

As an extension of bent functions, Carlet [12] introduced a superclass: the notion of

partially bent functions whose elements are in the form f(x, y) = g(x) + h(y) where

g is a bent function on F2k and h is an affine function on F2n−k . This notion has been

generalized to arbitrary characteristic (see, e.g., [25]).
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Definition 2.12. Let f : Fpn → Fp. Then, f is called p-ary partially bent if the

derivative Daf is either balanced or constant for all a ∈ Fpn .

Remark 2.4. Any p-ary bent and quadratic functions are p-ary partially bent functions.

As an extension of partially bent functions, Zheng and Zhang [78] introduced plateaued

functions in characteristic 2.

Definition 2.13. Let f : F2n → F2 and s be an integer with 0 ≤ s ≤ n. Then, f is

called an s-plateaued Boolean function if χ̂f (ω) ∈ {0,±2(n+s)/2} for all ω ∈ F2n ,

where n+ s is an even integer.

Plateaued Boolean functions have been generalized to arbitrary characteristic and they

are called p-ary plateaued functions (see, e.g., [23, 55]).

Definition 2.14. Let f : Fpn → Fp. Then, f is called p-ary plateaued if its absolute

Walsh transform takes only one nonzero value µ (also possibly the value 0), which is

called the amplitude of f .

For any n-variable p-ary plateaued function f of the amplitude µ, the Parseval identity

implies that p2n = µ2Nχ̂f where

Nχ̂f = #{ω ∈ Fpn : |χ̂f (ω)|2 = µ2}.

Since p is a prime and Nχ̂f ≤ pn, we get µ2 = pt for t ≥ n. Then, 1 ≤ Nχ̂f =

p2n−t ≤ pn gives t = n + s for an integer s with 0 ≤ s ≤ n. Namely, we have

µ2 = pn+s with 0 ≤ s ≤ n. In the light of these results, f is said to be a p-ary

s-plateaued function if for every ω ∈ Fpn , we have

|χ̂f (ω)|2 ∈ {0, pn+s},

where s is an integer with 0 ≤ s ≤ n. From now on, s is an integer with 0 ≤ s ≤ n

for s-plateaued functions unless otherwise stated. We point out that a bent function is

0-plateaued and an affine function is n-plateaued.

The absolute Walsh distribution of plateaued functions follows from the Parseval

identity (see, e.g., [55]).
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Lemma 2.5. Let f : Fpn → Fp be an s-plateaued function. Then for ω ∈ Fpn ,

|χ̂f (ω)|2 takes pn−s times the value pn+s and pn − pn−s times the value 0.

In fact, in characteristic 2, the Walsh distribution of plateaued Boolean functions

is given in the following lemma (see, e.g., [11] in the case of a quadratic Boolean

function).

Lemma 2.6. Let f : F2n → F2 be an s-plateaued Boolean function with f(0) = 0

and n+ s is an even integer. Then for ω ∈ F2n , the Walsh distribution of f is given by

χ̂f (ω) =


2
n+s
2 , 2n−s−1 + 2

n−s−2
2 times,

0, 2n − 2n−s times,

−2
n+s
2 , 2n−s−1 − 2

n−s−2
2 times.

Proof. Let A and B denote the multiplicities of the values 2
n+s
2 and −2

n+s
2 in the

Walsh spectrum of f , respectively. By Lemma 2.5, we have that A + B = 2n−s and

the multiplicity of the value 0 in its Walsh spectrum is equal to 2n − 2n−s. On the

other hand, since
∑

ω∈F2n
χ̂f (ω) = 2n, we have A − B = 2

n−s
2 . By solving the two

equations obtained above, the proof is complete.

We end this section by giving an upper bound for the degrees of p-ary plateaued

functions (see, e.g., [43]).

Remark 2.5. Let f : Fpn → Fp be s-plateaued. Then we have

deg f ≤ (p− 1)
n− s

2
+ 1

provided that p > 1 + 2
n+s

(i.e., except when p = 3 and n = 1).

2.6 Linear Codes in Coding Theory

Coding theory is concerned with improving reliability of communication over noisy

channels. This is achieved by adding redundancy to the messages in order to detect or

even correct the transmission errors. The most significant class of the codes in coding

theory is the class of linear codes, which have been exhaustively studied due to their

various applications. For further reading on coding theory, we send the reader to [42].
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Linear Codes. Let p be a prime number and n be a positive integer. A linear code

C of length n and dimension k over Fp is a k-dimensional linear subspace of Fnp ,

denoted by [n, k]p. Indeed, a linear code C of length n and dimension k over Fp
with minimum Hamming distance d is denoted by [n, k, d]p. It is worth noting that

the minimum Hamming distance d detects the error correcting capability of C. The

elements of the linear code are called codewords. The minimum Hamming distance of

the code is the minimum Hamming weight of its nonzero codewords. The Hamming

weight of a codeword ã = (a0, . . . , an−1) ∈ Fnp , denoted by wt(ã), is the size of its

support defined as

supp(ã) := {0 ≤ i ≤ n− 1 : ai 6= 0}.

Let Aw denote the number of codewords with Hamming weight w in C of length n.

Then, (1, A1, . . . , An) is the weight distribution of C and the polynomial 1 + A1y +

· · ·+Anyn is called the weight enumerator of C. The code C is called a t-weight code

if the number of nonzero Aw in the weight distribution is t. The weight distribution

of linear codes attracts considerable attention and has been widely studied in coding

theory since it contains significant information for estimating the probability of error

detection and correction.

The dual code of a linear code C is the linear code of length n and dimension n − k
over Fp defined by

C⊥ = {b̃ ∈ Fnp : b̃ · ã = 0̃ for all ã ∈ C},

where “ · ” is an inner product (for instance, Euclidean inner product) on Fnp . The

dual code C⊥ is denoted by [n, n−k, d⊥]p, where d⊥ denotes the minimum Hamming

distance of C⊥.

Since a linear code has a basis, any of its codeword can be written as a linear com-

bination of the basis vectors. A generator matrix G of a linear code C is a k × n

matrix whose rows form a basis for C, that is, the row vectors of G generate the linear

subspace C. A generator matrixH of the dual code C⊥ is an (n−k)×nmatrix whose

rows form a basis for the dual code C⊥, namely, the row vectors of H generate the

linear subspace C⊥.

We now state the covering problem of linear codes.
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The Covering Problem of Linear Codes. Let C be a linear [n, k, d]p code over Fp.

We say that a codeword ã covers a codeword b̃ if supp(b̃) ⊂ supp(ã). If a nonzero

codeword ã of a linear code C does not cover any other nonzero codeword of C, then

ã is called a minimal codeword of C.

Definition 2.15. The covering problem of a linear code C is to find all minimal code-

words of C.

The covering problem is extremely difficult for general linear codes, but is easy for

some particular linear codes (it has been solved only for a few special linear codes).

From [2, 3], when the Hamming weights of the codewords of a linear code C are too

close to each other, then all nonzero codewords of C are minimal.

Lemma 2.7. [2, 3] Let C be a linear code over Fp. Then, all nonzero codewords of C
are minimal if

p− 1

p
<
wmin

wmax

,

where wmin and wmax denote the minimum and maximum nonzero weights in C, re-

spectively.

In view of Lemma 2.7, the question arises: how to construct a linear code whose all

nonzero codewords are minimal?

2.7 Application of the Linear Codes in Secret Sharing Schemes

In this section, we first describe secret sharing scheme, and then investigate the ap-

plication of linear codes in secret sharing schemes. The following results are mainly

quoted from the papers [17, 33, 35].

2.7.1 Secret Sharing Schemes

A secret sharing scheme consists of

• a dealer D and a group P = {P1, P2, . . . , Pn−1} of (n− 1) participants;
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• a secret space S;

• n− 1 share spaces S1, S2, . . . , Sn−1;

• a share computing procedure; and

• a secret recovering procedure.

The dealer D chooses a secret s from S, and computes a share, which belongs to Si,

of s (with the sharing computing procedure) for each participant Pi and then gives

the share to Pi, where 1 ≤ i ≤ n − 1. A proper subset of the participants may be

able to recover the secret s from their shares by the secret recovering procedure. Any

set covering a set of participants who can recover the secret s can also recover s. The

sharing computing procedure and the secret s are known only by D, while the secret

recovering procedure is known by all the participants in P .

Definition 2.16. A set of participants who can recover the secret s from their shares

is called an access set. The set of all access sets is called the access structure of

a secret sharing scheme. An access set is called a minimal access set if any of its

proper subsets cannot recover s from their shares. Notice that a proper subset has less

participants than this set. Hence, we take only an interest in the set of all minimal

access sets, which is said to be as the “nice” access structure of a secret sharing

scheme.

Remark 2.6. A secret sharing scheme has the monotone access structure if any super-

set of any access set is also an access set. In such a secret sharing scheme, the access

structure is fully characterized by its minimal access sets.

There are a number of methods to construct secret sharing schemes, one of which

is based on linear codes in coding theory, which is now described in the following

subsection.

2.7.2 A Construction of Secret Sharing Schemes from the Linear Codes

The connection between Shamir’s secret sharing scheme and the Reed-Solomon codes

was given in 1981 [53] and since then, the construction of the secret sharing schemes
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from linear codes have been widely studied. In fact, every linear code C can be used to

construct secret sharing scheme and generates a pair of secret sharing schemes, based

on C and its dual code C⊥. But, the following two essential problems are unavoidable

in the secret sharing scheme based on a linear code:

• How can one find the access structure of the secret sharing scheme based on a

linear code?

• How can one construct a linear code such that the secret sharing scheme based

on the dual code has a nice access structure, while minimizing information rate?

The first question is equivalent to the covering problem of the linear codes (see Re-

mark 2.7). The second question depends on solutions to the first question, and turns

out to be difficult in general.

There are several ways to use linear codes in the construction of secret sharing schemes.

In 1993, Massey [51, 52] introduced the following construction of secret sharing

schemes using linear error-correcting codes. Given a linear [n, k, d]p code C, its k×n
generator matrix G is denoted by

G = [g0,g1, . . . ,gn−1].

In the secret sharing scheme based on C, the secret s is an element of Fp. In order

to compute the shares with respect to s, the dealer D chooses randomly a vector

u = (u0, u1, . . . , uk−1) ∈ Fkp such that s = ug0, which is an inner product of two

vectors. Notice that there exist pk−1 such vectors u ∈ Fkp. The dealer D computes the

corresponding codeword as

t = (t0, t1, . . . , tn−1) = uG,

which is (ug0,ug1, . . . ,ugn−1). The dealer D then assigns ti to party Pi as share for

all 1 ≤ i ≤ n− 1. Now we introduce the secret recovering procedure. Notice that the

secret s is t0 = ug0. It is easy to see that a set of shares {ti1 , ti2 , . . . , tim} recovers

the secret s if and only if g0 is a linear combination of gi1 ,gi2 , . . . ,gim .

Lemma 2.8. [51] Let G be a generator matrix of a linear [n, k, d]p code C. In the

secret sharing scheme based on C, a set of shares {ti1 , ti2 , . . . , tim} determines the
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secret s if and only if there exists a codeword

(1, 0, . . . , 0, ci1 , 0, . . . , 0, cim , 0, . . . , 0) (2.8)

in the dual code C⊥, where cij 6= 0 for at least one j, 1 ≤ i2 < · · · < im ≤ n − 1,

and 1 ≤ m ≤ n− 1.

If there exists a codeword as in (2.8) in the dual code C⊥, then g0 is a linear combina-

tion of the elements gi1 , gi2 , . . . , gim , i.e., we have g0 =
∑m

j=1 xjgij . Hence, the secret

s can be recovered as

s =
m∑
j=1

xjtij .

Remark 2.7. In the light of Lemma 2.8, clearly there is a one-to-one correspondence

between the set of minimal access sets of the secret sharing scheme based on C and

the set of minimal codewords of the dual code C⊥ whose first coordinate is 1. The

other nonzero coordinates of these codewords correspond to the participants in the

minimal access set.

In view of Remark 2.7, to find the access structure of the secret sharing scheme based

on C, it is enough to find all minimal codewords whose first coordinate is 1, i.e., a

subset of the set of all minimal codewords of the dual code C⊥. Notice that in almost

all cases we should in any case find the set of all minimal codewords of the dual code

C⊥.

The access structure of the secret sharing scheme based on a linear code is com-

plicated in general, however it can be easily found in certain cases. The following

theorem (see [17, 33, 77]) gives the access structure of the secret sharing scheme

based on a linear code.

Theorem 2.2. Let C be a linear [n, k, d]p code over Fp with the generator matrix

G = [g0,g1, . . . ,gn−1]. We denote by d⊥ the minimum Hamming distance of its dual

code C⊥. If all nonzero codewords of C are minimal, then in the secret sharing scheme

based on the dual code C⊥, the number of participants is n− 1, and there exist pk−1

minimal access sets.

• If d⊥ = 2, the access structure is given as follows.
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– If gi, 1 ≤ i ≤ n − 1, is a multiple of g0, then Pi must be in all minimal

access sets. Such Pi is called a dictatorial participant.

– If gi, 1 ≤ i ≤ n−1, is not a multiple of g0, then Pi must be in (p−1)pk−2

out of pk−1 minimal access sets.

• If d⊥ ≥ 3, for any fixed 1 ≤ t ≤ min{k− 1, d⊥− 2}, every set of t participants

is involved in (p− 1)tpk−(t+1) out of pk−1 minimal access sets.

The minimum Hamming distance d of C gives the lower bound d − 1 for the size of

any minimal access set, while the minimum Hamming distance d⊥ of C⊥ indicates the

extent of democracy of the secret sharing scheme. But, there is a trade-off between

them, i.e., d + d⊥ ≤ n + 2, with an equality if and only if C is maximum-distance

separable (MDS).

Remark 2.8. The shares for the participants depend on the choice of the generator

matrixG of the code C. However, the choice ofG does not affect the access structures

of the secret sharing schemes. Thus, we call it the secret sharing scheme based on C
without mentioning G.

We finally remark that the general construction of the secret sharing scheme based

on a linear code is described in this section. In Section 6.4, we consider the secret

sharing schemes based on the dual codes of the constructed linear codes.
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CHAPTER 3

EXPLICIT CHARACTERIZATIONS FOR PLATEAUED-NESS

OF (VECTORIAL) FUNCTIONS OVER FP

Plateaued functions have appealed great interest since their introduction in the liter-

ature due to their various desirable cryptographic properties and applications in the

sequence theory and coding theory. Several researchers obtained some important re-

sults about them and introduced new tools to better understand their structure and to

design such functions. However, they have not yet been studied in detail in a gen-

eral framework in view of their importance. Their structure is still more difficult to

characterize and little is known about these functions already in characteristic 2 and

still more in arbitrary characteristic. To fill a little the gap between the interest of the

notion of these functions and our knowledge on it, we provide various tools to han-

dle the plateaued-ness property of (vectorial) functions. In this chapter, we mainly

make use of the value distribution of their derivatives, even power moments of their

Walsh transform and their autocorrelation functions in order to characterize bent and

plateaued (vectorial) functions.

The objective of this chapter is to obtain a large number of characterizations of bent

and plateaued (vectorial) p-ary functions in terms of the value distribution of their

second-order (also first-order) derivatives, Walsh power moments and autocorrela-

tion functions of p-ary functions. The obtained characterizations may be related to

each other, however they provide complementary information on these functions. We

believe that they are rather useful to clarify the structure of plateaued functions for

their future construction.

The presented results in this chapter appear in [20, 62, 63, 64].
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We begin with the following applicable tools, which will be frequently used in the

sequel. Let f : Fpn −→ Fp be a p-ary function. For any nonnegative integer i, even

power moments of the Walsh transform of f is defined as

Si(f) =
∑
ω∈Fpn

|χ̂f (ω)|2i

with S0(f) = pn. For every nonnegative integers A and i, we have∑
ω∈Fpn

(
|χ̂f (ω)|2 − A

)2

|χ̂f (ω)|2i = Si+2(f)− 2ASi+1(f) + A2Si(f) ≥ 0. (3.1)

For positive integers i and A = pn+s with an integer 1 ≤ s ≤ n, the inequality (3.1)

becomes an equality if and only if f is p-ary s-plateaued. For i = 1, f is p-ary s-

plateaued if and only if S3(f) + p4n+2s = 2pn+sS2(f). For every integer A and every

nonnegative integers i and j, we have∑
ω∈Fpn

(
|χ̂f (ω)|2 − A

)2j

|χ̂f (ω)|2i ≥ 0. (3.2)

For A = pn+s with 1 ≤ s ≤ n and positive integers i and j, the inequality (3.2)

becomes an equality if and only if f is s-plateaued. For i = j = 1, f is s-plateaued

if and only if S3(f) + p4n+2s = 2pn+sS2(f). For i = 2 and j = 1, f is s-plateaued if

and only if

S4(f) + p2n+2sS2(f) = 2pn+sS3(f).

The increment on i and/or j gives new relations between the next power moments of

the Walsh transform of plateaued function. The autocorrelation function at a ∈ Fpn

of p-ary function f is defined as

∆f (a) =
∑
x∈Fpn

ξf(x+a)−f(x)
p .

For G1, G2 : Fpn → C, by Theorem 2.1, we have

Ĝ1 ⊗ Ĝ2 = pnĜ1G2, (3.3)

and by Lemma 2.4,

G1(x) = G2(x), ∀x ∈ Fpn ⇐⇒ Ĝ1(ω) = Ĝ2(ω), ∀ω ∈ Fpn . (3.4)

Here, for a p-ary function f : Fpn −→ Fp and a vectorial function F : Fpn −→ Fpm ,

we introduce the following notations, which will be used in the sequel.
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• Supp(χ̂f ) = {ω ∈ Fpn | χ̂f (ω) 6= 0} and Nχ̂f = #Supp(χ̂f ).

• Supp(∆f ) = {a ∈ Fpn | ∆f (a) 6= 0} and N∆f
= #Supp(∆f ).

• N(f) = #{(a, b, x) ∈ F3
pn : DbDaf(x) = 0}.

• N(F ) = #{(a, b, x) ∈ F3
pn : DbDaF (x) = 0}.

• For v ∈ Fp and x ∈ Fpn , Nf (v;x) = #{(a, b) ∈ F2
pn : DbDaf(x) = v}.

• For v ∈ Fpm and x ∈ Fpn , NF (v;x) = #{(a, b) ∈ F2
pn : DbDaF (x) = v}.

We now state the well-known Hölder’s Inequality, which will be frequently used in

the sequel.

Theorem 3.1 (Hölder’s Inequality). [73] Let p1, p2 ∈ (1,∞) with 1
p1

+ 1
p2

= 1. Then,

for all vectors (x1, x2, . . . , xm), (y1, y2, . . . , ym) ∈ Rm or Cm, Hölder’s Inequality

states that

m∑
k=1

|xkyk| ≤

(
m∑
k=1

|xk|p1
) 1

p1

(
m∑
k=1

|yk|p2
) 1

p2

.

The above inequality becomes an equality if and only if for every k ∈ {1, . . . ,m}

|xk|p1 = d|yk|p2

for some d ∈ R+. In particular, if p1 = p2 = 2, then this is called the Cauchy-

Schwarz Inequality.

In the following section, we characterize p-ary bent functions in terms of their Walsh

power moments, second-order derivatives and autocorrelation functions.

3.1 Characterizations of p-Ary Bent Functions

We start by extending the following theorem for all even power moments of the Walsh

transform of a p-ary function.

Theorem 3.2. [55] Let f : Fpn → Fp. Then we have p3n ≤ S2(f), with an equality

if and only if f is p-ary bent.
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A lower bound of even power moments of the Walsh transform of a function can

be derived from Hölder’s Inequality, whose equality case yields the following strong

characterizations of bent functions.

Theorem 3.3. Let f : Fpn → Fp. Then for every integer i ≥ 2, we have

pn(i+1) ≤ Si(f),

where the equality holds for one (and hence for all) i ≥ 2 if and only if f is p-ary

bent.

Proof. By Theorem 3.1, putting xk = |χ̂f (ω)|2 and yk = 1 for all ω ∈ Fpn , 1 ≤ k ≤
pn, with p1 = i and p2 = i

i−1
where i ≥ 2, we have

∑
ω∈Fpn

|χ̂f (ω)|2 ≤

∑
ω∈Fpn

|χ̂f (ω)|2i
 1

i
∑
ω∈Fpn

1

 i−1
i

, (3.5)

that is, by the Parseval identity, p2ni ≤ Si(f)pn(i−1) from which we conclude that

pn(i+1) ≤ Si(f) for every integer i ≥ 2.

By the equality case of Hölder’s Inequality, for i ≥ 2, the inequality (3.5) becomes

an equality if and only if for every ω ∈ Fpn , |χ̂f (ω)|2i = d, for some d ∈ R+, i.e.,

for every ω ∈ Fpn , |χ̂f (ω)|2 is the same positive integer; equivalently, f is p-ary

bent.

Corollary 3.1. Let f : Fpn → Fp. Then, f is p-ary bent if and only if N∆f
= 1;

equivalently, maxa∈F?pn (|∆f (a)|) = 0. Also, f is p-ary affine if and only if Nχ̂f = 1.

The sequence of the Walsh power moments of p-ary bent function is a simple geo-

metric sequence.

Corollary 3.2. Let f : Fpn → Fp be p-ary bent. Then for all positive integers i and

j, we have Si(f) = pn(i+1) and Si(f)Sj(f) = Si+1(f)Sj−1(f).

Proof. By the Walsh transform values of bent functions, we have

Si(f) =
∑
ω∈Fpn

|χ̂f (ω)|2i = pn(pni) = pn(i+1).
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Then the following

Si(f)Sj(f) = pn(i+1)pn(j+1) = pn(i+j+2), and

Si+1(f)Sj−1(f) = pn(i+2)pnj = pn(i+j+2)

are equal. Hence, the result clearly follows.

The following link between the second-order derivative and the fourth power moment

of the Walsh transform was given in [55] (in characteristic 2, see [13]).

Proposition 3.1. [55] Let f : Fpn → Fp. Then,

S2(f) = pn
∑

a,b,x∈Fpn

ξDaDbf(x)
p .

The following is an immediate consequence of Theorem 3.2 and Proposition 3.1.

Corollary 3.3. Let f : Fpn → Fp. Then we have

p2n ≤
∑

a,b,x∈Fpn

ξDaDbf(x)
p ,

with an equality if and only if f is p-ary bent.

The following corollary can be readily given (see [46, Property 4]).

Corollary 3.4. Let f : Fpn → Fp. Then

p2n ≤
∑
a∈Fpn

|∆f (a)|2 (3.6)

with an equality if and only if f is p-ary bent.

Proof. For any function f , ∆f (0) = pn and |∆f (a)| ≥ 0 for all a ∈ F?pn . Hence,

the bound in (3.6) holds for every function, and it is satisfied by p-ary bent functions

because of the fact that f is p-ary bent if and only if ∆f (a) = 0 for all a ∈ F?pn .

We now give a link between the second-order derivative and autocorrelation function

of a p-ary function.

Proposition 3.2. Let f : Fpn → Fp. Then∑
a∈Fpn

|∆f (a)|2 =
∑

a,b,x∈Fpn

ξDaDbf(x)
p .
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Proof. Since |z|2 = zz for z ∈ C, clearly we have

∑
a∈Fpn

|∆f (a)|2 =
∑
a∈Fpn

∑
b∈Fpn

ξDaf(b)
p

∑
x∈Fpn

ξ−Daf(x)
p

 =
∑

a,b,x∈Fpn

ξDaDbf(x)
p ,

where in the second equality we used the bijective change of variable: b 7→ b+x.

In the light of Proposition 3.2, Corollaries 3.3 and 3.4 are equivalent. The next propo-

sition is a direct consequence of Propositions 3.1 and 3.2.

Proposition 3.3. Let f : Fpn → Fp. Then,

S2(f) = pn
∑
a∈Fpn

|∆f (a)|2.

The first characterization of Boolean bent functions in terms of their second-order

derivatives was provided by Carlet and Prouff in [21]. Below, we give it with a dif-

ferent proof in arbitrary characteristic.

Theorem 3.4. Let f : Fpn → Fp. Then we have for all x ∈ Fpn

pn ≤
∑

a,b∈Fpn

ξDaDbf(x)
p ,

with an equality if and only if f is p-ary bent.

Proof. For all x ∈ Fpn , it is obvious that for a = 0, we have∑
b∈Fpn

ξD0Dbf(x)
p = pn. (3.7)

For all x ∈ Fpn , we have∑
a∈F?pn

∑
b∈Fpn

ξDaDbf(x)
p =

∑
a∈F?pn

ξ−Daf(x)
p

∑
b∈Fpn

ξDaf(b)
p ≥ 0 (3.8)

with an equality if and only if Daf is balanced at a ∈ F?pn , where we used the (bi-

jective) change of variable: b 7→ b − x. Combining (3.7) and (3.8), the proof is

complete.

The last aim of this section is to characterize bent functions in terms of the zeros

of their second-order derivatives. To do this, we need the following results. For a
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function f : Fpn → Fp, a corresponding function fλ := λf : Fpn → Fp is defined

as x 7→ λf(x) for every λ ∈ F?p. Then for any λ ∈ F?p, we have DbDafλ(x) =

λ(DbDaf(x)) at (a, b) ∈ F2
pn for every x ∈ Fpn .

Proposition 3.4. Let f : Fpn → Fp and let N(f) be the size of the set K =

{(a, b, x) ∈ F3
pn : DbDaf(x) = 0}. Then∑

λ∈F?p

S2(λf) = pn+1N(f)− p4n.

Proof. By Proposition 3.1, we have∑
λ∈F?p

S2(fλ) =
∑
λ∈F?p

(
pn

∑
a,b,x∈Fpn

ξDbDafλ(x)
p

)
= pn

(∑
λ∈F?p

∑
(a,b,x)∈K

ξλDbDaf(x)
p +

∑
(a,b,x)/∈K

∑
λ∈F?p

ξλDbDaf(x)
p

)
= pn

(
(p− 1)N(f)− (p3n −N(f))

)
= pn+1N(f)− p4n,

where in the third equality we used that 1 + ξp + ξ2
p + · · ·+ ξp−1

p = 0.

From Theorem 3.2 and Proposition 3.4, we derive the following characterization of

bent functions.

Theorem 3.5. Let f : Fpn → Fp. Then, f is p-ary bent if and only if N(f) =

p2n + p3n−1 − p2n−1.

Proof. Clearly, f is p-ary bent if and only if fλ is p-ary bent for every λ ∈ F?p. Hence,

in view of Theorem 3.2, f is p-ary bent if and only if∑
λ∈F?p

S2(fλ) = (p− 1)p3n;

equivalently, by Proposition 3.4 we have N(f) = p2n + p3n−1 − p2n−1.

3.2 Characterizations of p-Ary Plateaued Functions

This section provides many explicit characterizations of p-ary plateaued functions

in terms of the value distribution of their second-order derivatives, even power mo-

ments of their Walsh transform and their autocorrelation functions. More precisely,
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we extend the characterizations of plateaued Boolean functions given in [15, 21] to

arbitrary characteristic and complete the given ones in [55]. We also obtain further

new characterizations of plateaued functions in arbitrary characteristic.

3.2.1 Characterizations of p-Ary Plateaued Functions by their Derivatives

In this subsection, we make use of the value distribution of the second-order deriva-

tives of p-ary functions in order to characterize p-ary plateaued functions.

The first characterization of plateaued Boolean functions in terms of their second-

order derivatives was provided by Carlet and Prouff in [21]. We extend it to arbitrary

characteristic in the next theorem with a different proof.

Theorem 3.6. Let f : Fpn → Fp. Set θf (x) =
∑

a,b∈Fpn ξ
DbDaf(x)
p for x ∈ Fpn . Then,

f is p-ary s-plateaued if and only if for all x ∈ Fpn

θf (x) = pn+s. (3.9)

Proof. Put θ = pn+s. Then for all x ∈ Fpn , (3.9) holds if and only if∑
a,b∈Fpn

ξf(x+a+b)−f(x+a)−f(x+b)
p = θξ−f(x)

p , ∀x ∈ Fpn . (3.10)

Put a1 = x+ a and b1 = x+ b for a1, b1 ∈ Fpn . Thus, (3.10) is equivalent to∑
a1,b1∈Fpn

ξf(a1+b1−x)−f(a1)−f(b1)
p = θξ−f(x)

p , ∀x ∈ Fpn . (3.11)

Let the left-hand side of (3.11) be G1(x) and its right-hand side be G2(x) for all

x ∈ Fpn , i.e., G1(x) = G2(x) for all x ∈ Fpn . Then, their Fourier transforms at

ω ∈ Fpn are

Ĝ1(ω) =
∑
x∈Fpn

G1(x)ξ−Trp
n

p (ωx)
p =

∑
x∈Fpn

∑
a1,b1∈Fpn

ξf(a1+b1−x)−f(a1)−f(b1)
p ξ−Trp

n

p (ωx)
p

=
∑

a1∈Fpn

ξ−f(a1)−Trp
n

p (ωa1)
p

∑
b1∈Fpn

ξ−f(b1)−Trp
n

p (ωb1)
p

∑
x∈Fpn

ξf(a1+b1−x)−Trp
n

p (−ω(a1+b1−x))
p = (−χ̂f )(ω)(−χ̂f )(ω)χ̂f (−ω),
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and

Ĝ2(ω) =
∑
x∈Fpn

G2(x)ξ−Trp
n

p (ωx)
p =

∑
x∈Fpn

θξ−f(x)−Trp
n

p (ωx)
p = θ(−χ̂f )(ω).

By Proposition 2.2, (−χ̂f )(ω) = χ̂f (−ω) for all ω ∈ Fpn . By (3.4), then (3.11) holds

for all x ∈ Fpn if and only if for all ω ∈ Fpn

χ̂f (−ω)χ̂f (−ω)χ̂f (−ω) = θχ̂f (−ω).

Therefore, (3.9) holds for all x ∈ Fpn if and only if |χ̂f (ω)|2 ∈ {0, θ} for all ω ∈ Fpn ,

where θ = pn+s, that is, f is p-ary s-plateaued.

From Proposition 3.1 and Theorem 3.6, we have the following.

Corollary 3.5. Let f : Fpn → Fp. Set θf (x) =
∑

a,b∈Fpn ξ
DbDaf(x)
p for x ∈ Fpn . Then,

f is p-ary plateaued if and only if S2(f) = p2nθf (x) for all x ∈ Fpn .

Proof. Assume that f is p-ary plateaued. By Proposition 3.1,

S2(f) = pn
∑
x∈Fpn

θf (x).

Then by Theorem 3.6, S2(f) = pnpnθf (x) for all x ∈ Fpn . Conversely, for all

x ∈ Fpn we have θf (x) = θ, where θ = p−2nS2(f). By Theorem 3.6, f is p-ary

plateaued.

Theorem 3.6 directly implies the following result.

Corollary 3.6. Let f : Fpn → Fp. If f is s-plateaued, then∑
a,b,x∈Fpn

ξDaDbf(x)
p = p2n+s. (3.12)

The following is a direct consequnece of Theorem 3.2 and Proposition 3.1.

Corollary 3.7. Let f : Fpn → Fp. Then, f is p-ary bent if and only if∑
a,b,x∈Fpn

ξDaDbf(x)
p = p2n.

We now mention our mistake given in [57, 63].
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Remark 3.1. The converse of Corollary 3.6 fails for integers 1 ≤ s ≤ n, in general.

In other words, the plateaued-ness of f cannot be checked only with the fourth power

moment of its Walsh transform in general. Unfortunately, we had the wrong statement

that the converse of Corollary 3.6 holds for integers 1 ≤ s ≤ n in [63, Corollary 4 and

Theorem 4] (and hence, [57, Corollary 16.3.13 and Theorem 16.3.15]). We observed

that it is wrong for integers 1 ≤ s ≤ n, while it is correct for s = 0 as in Corollary 3.7.

To see this, by MAGMA [5], we obtain a great number of examples, which satisfy

(3.12) although they are not s-plateaued for 1 ≤ s ≤ n. These examples motivate us

to study further functions giving these counterexamples for the converse of Corollary

3.6 rather systematically, and we present our results in Chapter 4. Here we only give

two such examples explicitly.

Example 3.1. Let f(x) = Tr25

2 (ζx7 + ζ13x11 + ζ18x15), where F?25 = 〈ζ〉 with ζ5 +

ζ2 + 1 = 0. Then we have S2(f) = 216 but f is not 1-plateaued function.

Example 3.2. Let f(x) = Tr33

3 (ζx4 + ζ3x5 + ζ11x11 + ζ25x13), where F?33 = 〈ζ〉 with

ζ3 + 2ζ + 1 = 0. Then we have S2(f) = 310 but f is not 1-plateaued function.

For the next characterization of plateaued functions, we need the following lemma.

Lemma 3.1. Let h : Fpn × Fpn → Fp and s be a nonnegative integer. For v ∈ Fp,

let Nh(v) be the size of the set {(a, b) ∈ F2
pn : h(a, b) = v}. Then, the following

statements are equivalent:

i.)
∑

a,b∈Fpn

ξh(a,b)
p = pn+s,

ii.) Nh(0) = pn+s + p2n−1 − pn+s−1 and Nh(v) = p2n−1 − pn+s−1, where v ∈ F?p.

Proof. Assume that (i) holds. Then we have∑
a,b∈Fpn

ξh(a,b)
p = Nh(0) +Nh(1)ξp +Nh(2)ξ2

p + · · ·+Nh(p− 1)ξp−1
p = pn+s(3.13)

where Nh(v) = #{(a, b) ∈ F2
pn : h(a, b) = v} for v ∈ Fp. Recall that 1 + x + x2 +

· · · + xp−1 is the minimal polynomial of ξp over the rational number field. It follows

readily from (3.13) that there exists a nonnegative integer c such thatNh(0) = pn+s+c
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and Nh(v) = c, where v ∈ F?p since

pn+s + c(1 + ξp + ξ2
p + · · ·+ ξp−1

p ) = pn+s.

Hence, sinceNh(0) +Nh(1) + · · ·+Nh(p− 1) = p2n, we have c = p2n−1− pn+s−1,

that is, (ii) holds. Conversely, by (ii), clearly we get∑
a,b∈Fpn

ξh(a,b)
p = pn+s + (p2n−1 − pn+s−1)(1 + ξp + · · ·+ ξp−1

p ) = pn+s,

where we used that 1 + ξp + ξ2
p + · · ·+ ξp−1

p = 0. Thus, (i) holds.

We deduce by Theorem 3.6 and Lemma 3.1 the following characterizations of plateaued

functions via the value distribution of their second-order derivatives.

Theorem 3.7. Let f : Fpn → Fp. Then, f is s-plateaued if and only if there exist two

integers u1 and u2 such that Nf (0;x) = u1 and Nf (v;x) = u2 for every v ∈ F?p and

x ∈ Fpn .

Proof. Assume that f is s-plateaued. Let x0 be any chosen element of Fpn . Set

h(a, b) = DbDaf(x0) for every (a, b) ∈ F2
pn and define Nf (v;x0) = #{(a, b) ∈

F2
pn : h(a, b) = v}. By Theorem 3.6 and Lemma 3.1, we obtain Nf (0;x0) = pn+s +

p2n−1−pn+s−1 andNf (v;x0) = p2n−1−pn+s−1 for v ∈ F?p. For each chosen element

x ∈ Fpn , we can do the same process, and hence the assertion holds. Conversely, for

every x ∈ Fpn we have∑
a,b∈Fpn

ξDbDaf(x)
p =

∑
v∈Fp

Nf (v;x)ξvp = u1 +
∑
v∈F?p

u2ξ
v
p = u1 − u2.

Put θ = u1 − u2. Equivalently, for every x ∈ Fpn , by the (bijective) change of

variables: a→ a− x and b→ b− x,∑
a,b∈Fpn

ξf(a+b−x)−f(a)−f(b)
p = θξ−f(x)

p . (3.14)

We denote by G1(x) the left-hand side of (3.14) and by G2(x) its right-hand side, i.e.,

G1(x) = G2(x) for every x ∈ Fpn . As in the proof of Theorem 3.6, their Fourier

transforms are

Ĝ1(ω) = (−χ̂f )(ω)(−χ̂f )(ω)χ̂f (−ω)
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and Ĝ2(ω) = θ(−χ̂f )(ω) for every ω ∈ Fpn . By Proposition 2.2, (−χ̂f )(ω) =

χ̂f (−ω) for every ω ∈ Fpn . By (3.4), the equation (3.14) holds for every x ∈ Fpn if

and only if

χ̂f (ω) χ̂f (ω)χ̂f (ω) = θχ̂f (ω),

that is, |χ̂f (ω)|2 ∈ {0, θ} for every ω ∈ Fpn . Hence, by the Parseval identity, θ =

pn+s, namely, f is s-plateaued with 0 ≤ s ≤ n.

This suggests a characterization of plateaued functions in terms of the number of the

value distribution of their second-order derivatives.

Corollary 3.8. Let f : Fpn → Fp. Then, f is s-plateaued if and only if for every

x ∈ Fpn and v ∈ F?p

Nf (v;x) = p2n−1 − pn+s−1. (3.15)

Proof. Assume that (3.15) holds. For any x ∈ Fpn , we have

Nf (0;x) +
∑
v∈F?p

Nf (v;x) = p2n.

Then, by (3.15) we have Nf (0;x) = pn+s + p2n−1 − pn+s−1 for every x ∈ Fpn .

Thus by Theorem 3.7, f is s-plateaued. The converse is clear from Theorem 3.6 and

Lemma 3.1.

In the light of Theorem 3.7, the following characterization of bent functions follows

immediately from Theorem 3.5.

Corollary 3.9. Let f : Fpn → Fp. Then, f is p-ary bent if and only if Nf (0;x) =

pn + p2n−1 − pn−1 for any x ∈ Fpn .

Remark 3.2. Corollary 3.9 can be given for bent functions only although Theorem

3.6 and Corollary 3.8 are valid for any s-plateaued function with 0 ≤ s ≤ n.

3.2.2 Characterizations of p-Ary Plateaued Functions by their Walsh Power

Moments

This subsection, to characterize p-ary plateaued functions, makes use of even power

moments of their Walsh transform. We construct several new characterizations of
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plateaued functions in arbitrary characteristic and extend some characterizations of

plateaued Boolean functions to arbitrary characteristic.

The sequence of the Walsh power moments of a p-ary plateaued function is a simple

geometric sequence, which is an immediate consequence of Lemma 2.5.

Corollary 3.10. Let f : Fpn → Fp. If f is s-plateaued, then for all i ∈ Z+

Si(f) = p(i+1)n+(i−1)s.

Proof. By Lemma 2.5, for all integers i ≥ 1, we have Si(f) = pn−s(pn+s)i + (pn −
pn−s)0 = p(i+1)n+(i−1)s.

Theorem 3.8. [55] Let f : Fpn → Fp. Then, f is plateaued if and only if Si(f)2 =

Si−1(f)Si+1(f) for all i ∈ Z+.

The following seems to be more practical than Theorem 3.8 in some applications.

Corollary 3.11. Let f : Fpn → Fp. Then, f is plateaued if and only if Si(f)Sj(f) =

Si+1(f)Sj−1(f) for all integers i ≥ 1 and j ≥ 2.

Proof. Assume that f is plateaued. The assertion is clear from Corollary 3.10. The

converse follows from Theorem 3.8 for j = i.

In fact, Corollary 3.11 is equivalent to Theorem 3.8.

Proposition 3.5. Let f : Fpn → Fp. Then the following are equivalent:

i.) Si(f)2 = Si+1(f)Si−1(f) for all integers i ≥ 2.

ii.) Si(f)Sj(f) = Si+1(f)Sj−1(f) for all integers i ≥ 1 and j ≥ 2.

Proof. Suppose that (i) holds. Without loss of generality, we may assume i < j. Fix

i ≥ 2. We proceed by induction on j. For j = i + 1 and j = i + 2, then (ii) trivially

holds. Let j = i+ 3. From (i), we get

Si+1(f)Si+1(f) = Si+2(f)Si(f),

Si+2(f)Si+2(f) = Si+3(f)Si+1(f).
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It follows that Si(f)Si+3(f) = Si+1(f)Si+2(f). Then, (ii) holds for j = i + 3. For

j = i+ k, assume that (ii) holds. We then have

Si(f)Si+k(f) = Si+1(f)Si+k−1(f),

Si+k−1(f)Si+k+1(f) = Si+k(f)Si+k(f).

It follows that Si(f)Si+k+1(f) = Si+1(f)Si+k(f). Therefore, (ii) holds for j =

i+ k + 1. The converse is obvious for j = i.

According to (3.1), for i ≥ 1 and a nonnegative integer A, f is p-ary s-plateaued if

and only if

Si(f)A2 − 2Si+1(f)A+ Si+2(f) = 0, (3.16)

whereA = pn+s > 0. Then, the reduced discriminant Si+1(f)2−Si+2(f)Si(f) ≤ 0 of

the above equation cannot be positive, and it is zero if and only if f is p-ary plateaued.

This proves the following.

Proposition 3.6. Let f : Fpn → Fp. Then for all integers i ≥ 1,

Si+1(f)2 ≤ Si+2(f)Si(f), (3.17)

where the equality holds for one (and hence for all) i ≥ 1 if and only if f is p-ary

plateaued.

Proposition 3.6 can be also derived from the Cauchy-Schwarz Inequality (see Theo-

rem 3.1). Notice that its equality case is equivalent to Theorem 3.8.

More precisely, from (3.16), for i = 1 and A > 0, f is p-ary plateaued if and only if

S1(f)A2 − 2S2(f)A+ S3(f) = 0.

The reduced discriminant S2(f)2 − S3(f)S1(f) ≤ 0 of the above equation cannot be

positive and it is zero if and only if f is p-ary plateaued.

Corollary 3.12. Let f : Fpn → Fp. Then S2(f)2 ≤ p2nS3(f), with an equality if and

only if f is p-ary plateaued.

Indeed, the plateaued-ness of a p-ary function can be checked by the values of the

fourth and sixth power moments of its Walsh transform.
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Theorem 3.9. Let f : Fpn → Fp. Then, f is p-ary s-plateaued if and only if S2(f) =

p3n+s and S3(f) = p4n+2s.

Proof. Assume that f is s-plateaued. Then, the assertion follows directly from Corol-

lary 3.10. Conversely, by (3.1) with A = pn+s and i = 1, we have∑
ω∈Fpn

(|χ̂f (ω)|2 − pn+s)2|χ̂f (ω)|2 = S3(f)− 2pn+sS2(f) + p2n+2sS1(f)

= p4n+2s − 2pn+sp3n+s + p2n+2sp2n = 0,

where we used the Parseval identity in the last equality. Therefore, |χ̂f (ω)|2 ∈
{0, pn+s} for all ω ∈ Fpn , namely, f is s-plateaued.

We now use the Cauchy-Schwarz Inequality to obtain new characterizations of plateaued

functions. In Theorem 3.1, applying the Cauchy-Schwarz Inequality, for xk = |χ̂f (ω)|2

and yk = |χ̂f (ω)|2i for all ω ∈ Fpn , 1 ≤ k ≤ pn, we have∑
ω∈Fpn

|χ̂f (ω)|2i+2

2

≤
∑
ω∈Fpn

|χ̂f (ω)|4
∑
ω∈Fpn

|χ̂f (ω)|4i,

that is, Si+1(f)2 ≤ S2(f)S2i(f), where the equality holds for one (and hence for all)

i ≥ 1 if and only if for all ω ∈ Fpn , |χ̂f (ω)|2 = d |χ̂f (ω)|2i for some d ∈ R+; or

equivalently, for all ω ∈ Fpn , |χ̂f (ω)|2 is either the same positive integer or 0, namely,

f is p-ary plateaued. This proves the following.

Proposition 3.7. Let f : Fpn → Fp. Then for all integers i ≥ 1, we have

Si+1(f)2 ≤ S2(f)S2i(f),

where the equality holds for one (and hence for all) i ≥ 1 if and only if f is p-ary

plateaued.

In a similar way, by Theorem 3.1, for xk = |χ̂f (ω)| and yk = |χ̂f (ω)|2i+1 for all

ω ∈ Fpn , 1 ≤ k ≤ pn, we have Si+1(f)2 ≤ S1(f)S2i+1(f), where the equality holds

for one (and hence for all) i ≥ 1 if and only if for all ω ∈ Fpn , |χ̂f (ω)|2 is either

the same positive integer or 0, that is, f is p-ary plateaued. Hence, by the Parseval

identity, we have the following.
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Theorem 3.10. Let f : Fpn → Fp. Then for all integers i ≥ 1, we have

Si+1(f)2 ≤ p2nS2i+1(f),

where the equality holds for one (and hence for all) i ≥ 1 if and only if f is p-ary

plateaued.

The following corollary follows readily from Corollary 3.10 and Theorem 3.10.

Corollary 3.13. Let f : Fpn → Fp. Then f is p-ary s-plateaued if and only if for one

(and hence for all) i ≥ 1, Si+1(f) = pn(i+2)+si and S2i+1(f) = pn(2i+2)+2si,

Remark 3.3. In the following, the nonzero Walsh transform values of f correspond to

the nonzero coordinates of the vector (x1, x2, . . . , xpn) ∈ Rpn in Theorem 3.1. And

the nonzero coordinates of the corresponding vector (y1, y2, . . . , ypn) ∈ Rpn are all 1.

By Theorem 3.1, for xk = |χ̂f (ω)|2i for all ω ∈ Supp(χ̂f ) and yk = 1 (notice that

xj = yj = 0 for all j with 1 ≤ j 6= k ≤ pn), we have ∑
ω∈Supp(χ̂f )

|χ̂f (ω)|2i
2

≤
∑

ω∈Supp(χ̂f )

|χ̂f (ω)|4i
∑

ω∈Supp(χ̂f )

1

that is, Si(f)2 ≤ S2i(f)∗Nχ̂f , with an equality for one (and hence for all) i ≥ 1 if and

only if for all ω ∈ Supp(χ̂f ), |χ̂f (ω)|2i = d for some d ∈ R+; equivalently, |χ̂f (ω)|2

is the same positive integer for all ω ∈ Supp(χ̂f ), that is, f is p-ary plateaued. This

proves the following theorem.

Theorem 3.11. Let f : Fpn → Fp. Then for every integer i ≥ 1, we have

Si(f)2 ≤ S2i(f) ∗ Nχ̂f , (3.18)

where the equality holds for one (and hence for all) i ≥ 1 if and only if f is p-ary

plateaued.

In the case of i = 1, Theorem 3.11 indicates a bound stating the trade-off between

the size of the Walsh support and the value of the fourth power moments of the Walsh

transform of p-ary functions, and this bound is satisfied by plateaued functions only.

In view of the Parseval identity, we have the following.
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Corollary 3.14. Let f : Fpn → Fp. Then

p4n ≤ S2(f) ∗ Nχ̂f ,

with an equality if and only if f is p-ary plateaued.

The following is an immediate consequence of Proposition 3.1 and Corollary 3.14.

Corollary 3.15. Let f : Fpn → Fp. Set θf =
∑

a,b,x∈Fpn ξ
DaDbf(x)
p . Then

p3n ≤ θf ∗ Nχ̂f ,

with an equality if and only if f is p-ary plateaued.

Proposition 3.2 and Corollary 3.15 directly bring the following result, which was first

observed in [78], in characteristic 2.

Corollary 3.16. Let f : Fpn → Fp. Set A∆f
=
∑

a∈Fpn |∆f (a)|2. Then

p3n ≤ A∆f
∗ Nχ̂f ,

with an equality if and only if f is p-ary plateaued.

In Theorem 3.1, putting xk = |χ̂f (ω)|2 for all ω ∈ Supp(χ̂f ) and yk = 1 (notice that

xj = yj = 0 for all j with 1 ≤ j 6= k ≤ pn), with p1 = i and p2 = i
i−1

, we have

∑
ω∈Supp(χ̂f )

|χ̂f (ω)|2 ≤

 ∑
ω∈Supp(χ̂f )

|χ̂f (ω)|2i
 1

i
 ∑
ω∈Supp(χ̂f )

1

 i−1
i

,

by the Parseval identity, p2ni ≤ Si(f) ∗ N (i−1)
χ̂f

, where the equality holds for one (and

hence for all) i ≥ 2 if and only if for every ω ∈ Supp(χ̂f ), |χ̂f (ω)|2 = d for some

d ∈ R+; equivalently, f is p-ary plateaued. This proves the following theorem.

Theorem 3.12. Let f : Fpn → Fp. Then for every integer i ≥ 2,

p2ni ≤ Si(f) ∗ N (i−1)
χ̂f

,

where the equality holds for one (and hence for all) i ≥ 2 if and only if f is p-ary

plateaued.
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The following was first observed in [78] in characteristic 2. We extend it to arbitrary

characteristic with a different proof .

Proposition 3.8. Let f : Fpn → Fp. Then

p2n ≤ max
b∈Fpn

(|χ̂f (b)|2) ∗ Nχ̂f , (3.19)

with an equality if and only if f is p-ary plateaued.

Proof. By the definition of Nχ̂f , we have∑
ω∈Fnp

|χ̂f (ω)|2 ≤ max
b∈Fpn

(|χ̂f (b)|2) ∗ Nχ̂f .

Hence, the first assertion follows directly from the Parseval identity.

Assume that the lower bound in (3.19) holds. By the Parseval identity, for all ω ∈
Supp(χ̂f ), we have |χ̂f (ω)|2 = maxb∈Fpn (|χ̂f (b)|2), that is, there exists an integer

s such that |χ̂f (ω)|2 = pn+s for all ω ∈ Supp(χ̂f ). Hence, f is s-plateaued. Con-

versely, assume that f is s-plateaued. By Lemma 2.5, we have Nχ̂f = pn−s and

|χ̂f (ω)|2 = pn+s for all ω ∈ Supp(χ̂f ). Hence, the bound in (3.19) is satisfied.

Theorem 3.13. Let f : Fpn → Fp. Then,

S2(f) ≤ p2n max
b∈Fpn

(|χ̂f (b)|2),

with an equality if and only if f is p-ary plateaued.

Proof. We have∑
ω∈Fpn

|χ̂f (ω)|4 =
∑
ω∈Fpn

|χ̂f (ω)|2|χ̂f (ω)|2 ≤
∑
ω∈Fpn

|χ̂f (ω)|2 max
b∈Fpn

(|χ̂f (b)|2); (3.20)

equivalently, S2(f) ≤ S1(f) maxb∈Fpn (|χ̂f (b)|2). In view of the Parseval identity, the

first assertion holds.

For the equality case, assume that f is plateaued. By Corollary 3.10, S2(f) = p3n+s.

Hence, the assertion is clear from the assumption. Conversely, by (3.20), for all

ω ∈ Supp(χ̂f ), |χ̂f (ω)|2 = maxb∈Fpn (|χ̂f (b)|2), i.e., there exists an integer s such

that |χ̂f (ω)|2 = pn+s; equivalently, f is plateaued.

50



In the light of Proposition 3.1, the following is a direct conclusion of Theorem 3.13.

Corollary 3.17. Let f : Fnp → Fp. Set θf =
∑

a,b,x∈Fpn ξ
DaDbf(x)
p . Then,

θf ≤ pn max
b∈Fpn

(|χ̂f (b)|2),

with an equality if and only if f is p-ary plateaued.

The equality case of Corollary 3.17 was first observed in [10], in characteristic 2.

By Proposition 3.2, the following is an immediate consequence of Theorem 3.13.

Corollary 3.18. Let f : Fnp → Fp. Set A∆f
=
∑

a∈Fpn |∆f (a)|2. Then,

A∆f
≤ pn max

b∈Fpn
(|χ̂f (b)|2),

with an equality if and only if f is p-ary plateaued.

Remark 3.4. [13] A function from Fpn to C is constant if and only if its Fourier

transform vanishes at any nonzero input.

We now extend to arbitrary characteristic the characterizations of plateaued Boolean

functions given in [15], considering Theorem 3.6 and Remark 3.4.

Theorem 3.14. Let f : Fpn → Fp. Then f is p-ary plateaued if and only if for all

α ∈ F?pn , we have ∑
ω∈Fpn

χ̂f (α + ω)χ̂f (ω) |χ̂f (ω)|2 = 0. (3.21)

Proof. By the definition of χ̂f , for all α ∈ F?pn (3.21) is equivalent to:∑
ω,x,y,z,t∈Fpn

ξf(x)−(α+ω)·x−f(y)+ω·y+f(z)−ω·z−f(t)+ω·t
p = 0,

that is, to:
∑

ω,x,y,z,t∈Fpn

ξf(x)−f(y)+f(z)−f(t)−ω·(x−y+z−t)−α·x
p = 0, equivalently, to:

∑
x,y,z∈Fpn

ξf(x)−f(y)+f(z)−f(x−y+z)−α·x
p = 0

since
∑

ω∈Fpn ξ
ω·(x−y+z−t)
p is null if x−y+ z− t 6= 0, that is, (by the bijective change

of variables: y = x+ a and z = x+ a+ b) to:∑
x,a,b∈Fpn

ξDbDaf(x)−α·x
p = 0, (3.22)
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which is the Fourier transform at α ∈ F?pn of the function

x 7→
∑

a,b∈Fpn

ξDbDaf(x)
p . (3.23)

Owing to Remark 3.4, (3.22) holds for all α ∈ F?pn if and only if the function in (3.23)

is constant; equivalently by Theorem 3.6, f is p-ary plateaued.

Corollary 3.19. Let f : Fpn → Fp. Then f is p-ary plateaued if and only if for all

x ∈ Fpn

S2(f) = pn
∑
ω∈Fpn

ξf(x)−ω·x
p χ̂f (ω) |χ̂f (ω)|2. (3.24)

Proof. Assume that f is p-ary s-plateaued. By Corollary 3.10, S2(f) = p3n+s. For

all x ∈ Fpn , the right-hand side of (3.24) equals

p2n+s
∑
ω∈Fpn

ξf(x)−ω·x
p χ̂f (ω) = p2n+s

∑
y∈Fpn

ξf(x)−f(y)
p

∑
ω∈Fpn

ξω·(y−x)
p = p3n+s.

Thus for all x ∈ Fpn , (3.24) holds. Conversely, assume that (3.24) holds for all

x ∈ Fpn . That is, for all x ∈ Fpn , the function G : Fpn → C defined by

x 7→ G(x) =
∑
ω∈Fpn

ξf(x)−ω·x
p χ̂f (ω)|χ̂f (ω)|2

is constant. The Fourier transform of this constant function at α ∈ Fpn is given by

Ĝ(α) =
∑
x∈Fpn

G(x)ξ−α·xp =
∑
ω∈Fpn

∑
x∈Fpn

ξf(x)−x·(α+ω)
p χ̂f (ω) |χ̂f (ω)|2

=
∑
ω∈Fpn

χ̂f (α + ω)χ̂f (ω) |χ̂f (ω)|2,

which is null at any α ∈ F?pn by Remark 3.4. Hence, by Theorem 3.14, f is p-ary

plateaued.

The following gives a link between the Walsh transform and second-order derivative

of a p-ary function.

Proposition 3.9. Let f : Fpn → Fp. Then, for all x ∈ Fpn∑
ω∈Fpn

ξf(x)−ω·x
p χ̂f (ω) |χ̂f (ω)|2 = pn

∑
a,b∈Fpn

ξDaDbf(x)
p . (3.25)
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Proof. By the definition of χ̂f , for all x ∈ Fpn , the left-hand side of (3.25) equals∑
ω,a,b,c∈Fpn

ξf(x)−f(a)−f(b)+f(c)+ω·(a+b−c−x)
p = pn

∑
a,b∈Fpn

ξf(x)−f(a)−f(b)+f(a+b−x)
p

since
∑

ω∈Fpn ξ
−ω·(x−a−b+c)
p is null if c 6= a+ b− x. For all x ∈ Fpn , by the bijective

change of variables: a 7→ a + x and b 7→ b + x, it is equal to the right-hand side of

(3.25). Hence, the proof is complete.

In view of Proposition 3.9, the following follows readily from Theorem 3.6.

Corollary 3.20. Let f : Fpn → Fp. Then, f is p-ary s-plateaued if and only if for all

x ∈ Fpn ∑
ω∈Fpn

ξf(x)−ω·x
p χ̂f (ω) |χ̂f (ω)|2 = p2n+s.

3.2.3 Characterizations of p-Ary Plateaued Functions by their Autocorrelation

Functions

In this subsection, we extend the characterizations of plateaued Boolean functions to

arbitrary characteristic, by means of their autocorrelation functions.

By Lemma 2.3, for all a ∈ Fpn , we have

̂̂
∆f (a) = pn∆f (−a). (3.26)

By Proposition 2.2, for all a ∈ Fpn ,

∆f (a) = ∆f (−a), (3.27)

and for all ω ∈ Fpn ,

|χ̂f (ω)|2 = ∆̂f (ω). (3.28)

Combining (3.26), (3.27) and (3.28), we have ̂|χ̂f (a)|2 = pn∆f (a) for all a ∈ Fpn .

Hence, the Fourier transform of |χ̂f |4 is obtained as

̂|χ̂f |2|χ̂f |2 = p−n
(
|̂χ̂f |2 ⊗ |̂χ̂f |2

)
= p−n

(
pn∆f ⊗ pn∆f

)
= pn

(
∆f ⊗∆f

)
(3.29)

where we used (3.3) in the first equality.
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Now we characterize p-ary plateaued functions by considering the Fourier transforms

of their absolute Walsh transforms. By the definition of p-ary plateaued, we can say

that f is p-ary plateaued of the amplitude µ if and only if the two functions |χ̂f |4

and µ2|χ̂f |2 are equal; equivalently, by (3.4), their Fourier transforms are equal. This

implies the following.

Theorem 3.15. Let f : Fpn → Fp. Then, f is p-ary plateaued of the amplitude µ if

and only if for all x ∈ Fpn∑
a∈Fpn

∆f (a)∆f (x− a) = µ2∆f (x). (3.30)

Proof. As stated above, f is p-ary plateaued of the amplitude µ if and only if the two

functions ∆f ⊗∆f and µ2∆f are equal; equivalently, (∆f ⊗∆f )(x) = µ2∆f (x) for

all x ∈ Fpn by (3.27). This completes the proof.

The Fourier transform of |χ̂f |6 can be given by

̂|χ̂f |2|χ̂f |4 = p−n
(
|̂χ̂f |2 ⊗ |̂χ̂f |4

)
= pn

(
∆f ⊗∆f ⊗∆f

)
where we used (3.3) in the first equality and used (3.29) in the second equality. We

now give the next characterization of plateaued function.

Corollary 3.21. Let f : Fpn → Fp. Then, f is p-ary plateaued of the amplitude µ if

and only if for all x ∈ Fpn∑
a,b∈Fpn

∆f (a)∆f (b)∆f (x− a− b) = µ2
∑
c∈Fpn

∆f (c)∆f (x− c).

Proof. As in the proof of Theorem 3.15, f is p-ary plateaued of the amplitude µ if

and only if the two functions |χ̂f |6 and µ2|χ̂f |4 are equal; equivalently, by (3.4) their

Fourier transforms are equal, that is, by (3.27) for all x ∈ Fpn we have

(∆f ⊗∆f ⊗∆f )(x) = µ2(∆f ⊗∆f )(x).

In order to characterize vectorial plateaued p-ary functions whose component func-

tions may have different amplitudes, we need to eliminate the constant µ2 in (3.30).
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Then putting x = 0 in (3.30), we have∑
a∈Fpn

|∆f (a)|2 = µ2∆f (0) = µ2pn

by (3.27) since ∆f (0) = pn. Hence the following follows directly from Theorem

3.15.

Corollary 3.22. Let f : Fpn → Fp. Then, f is p-ary plateaued if and only if for all

x ∈ Fpn ,

pn
∑
a∈Fpn

∆f (a)∆f (x− a) =
∑
a∈Fpn

|∆f (a)|2∆f (x).

We now give an example of quadratic plateaued functions.

Example 3.3. Let p be an odd prime and n ≥ 2 be an integer. Let f : Fpn → Fp be

an arbitrary Fp-quadratic form defined as

f(x) = Trp
n

p (a0x
2 + a1x

p+1 + a2x
p2+1 + · · ·+ abn2 cx

pb
n
2 c+1).

The radical of f given by

Wf = {x ∈ Fpn : f(x+ y) = f(x) + f(y),∀y ∈ Fpn}

is an Fp-linear subspace of Fpn . Let dimFp(Wf ) = s. It follows from the proof of [8,

Theorem 4.1] that for all ω ∈ Fpn

|χ̂f (ω)|2 = 0 or p2s
∑

y1,...,yn−s∈Fp

∑
z1,...,zn−s∈Fp

ξH(y1,...,yn−s)−H(z1,...,zn−s)
p ,

where H(x1, . . . , xn−s) = 1
2
(x2

1 + · · · + x2
n−s−1 + dx2

n−s) and d ∈ F?p. For each pair

yi and zi, where i = 1, . . . , n− s, as is readily seen,∑
yi,zi∈Fp

ξ
1
2

(y2i−z2i )
p =

∑
ti1,ti2∈Fp

ξ
1
2

(ti1ti2)
p =

∑
ti2∈Fp

( ∑
ti1∈Fp

ξ
1
2
ti1

p

)
= p.

Therefore, we conclude that |χ̂f (ω)|2 ∈ {0, pn+s} for all ω ∈ Fpn . Moreover, [7,

Proposition 5.8] gives an algorithm to construct such a quadratic form f with radical

Wf of dimension s with 0 ≤ s ≤ n − 1. In fact, this algorithm holds for any finite

field Fq, where q is a prime power. Hence, for odd prime p, integers n ≥ 2 and s

with 0 ≤ s ≤ n− 1, there exists a quadratic p-ary s-plateaued f from Fpn to Fp. For

example, for p = 3 and n = 5,
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• Tr35

3 (x2 + x4 + 2x10) is the quadratic 0-plateaued function,

• Tr35

3 (x2 + x4 + x10) is the quadratic 1-plateaued function,

• Tr35

3 (ζx2 + x4 + 2x10) is the quadratic 2-plateaued function,

• Tr35

3 (ζ2x2 + 2x4 + ζ28x10) is the quadratic 3-plateaued function and

• Tr35

3 (x2 + 2x4 + 2x10) is the quadratic 4-plateaued function,

where ζ is a primitive element of F35 with ζ5 + 2ζ + 1 = 0.

3.3 Characterizations of Vectorial Bent and Plateaued p-Ary Functions

This section characterizes bent and plateaued vectorial functions in arbitrary char-

acteristic. Firstly, the notion of vectorial Boolean plateaued functions is extended

to arbitrary characteristic. We next give a number of characterizations of bent and

plateaued vectorial p-ary functions by the value distribution of their second-order

(and also first-order) derivatives. More precisely, we investigate plateaued-ness prop-

erty of vectorial p-ary functions whose component functions are all unbalanced. We

also deal with plateaued-ness property of power functions by their first-order deriva-

tives. We finally extend the notion of strongly-plateaued Boolean functions to arbi-

trary characteristic.

The notion of vectorial bent p-ary functions was given as follows (see, e.g., [55]).

Definition 3.1. Let F be a vectorial function from Fpn to Fpm and let Fλ, λ ∈ F?pm , be

its component function from Fpn to Fp defined by Fλ(x) = Trp
m

p (λF (x)) for every

x ∈ Fpn . Then, F is called vectorial p-ary bent if Fλ, λ ∈ F?pm , is p-ary bent function.

The notion of plateaued vectorial Boolean functions was first given by Carlet in [14],

which can be given in arbitrary characteristic.

Definition 3.2. Let F be a vectorial function from Fpn to Fpm and let Fλ, λ ∈ F?pm , be

its component function from Fpn to Fp defined by Fλ(x) = Trp
m

p (λF (x)) for every

x ∈ Fpn . Then,
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• F is called vectorial p-ary partially bent if Fλ, λ ∈ F?pm , is p-ary partially bent.

• F is called vectorial p-ary plateaued if Fλ, λ ∈ F?pm , is p-ary plateaued with

possibly different amplitudes.

• F is called vectorial p-ary plateaued with single amplitude if Fλ, λ ∈ F?pm , is

p-ary plateaued of the same amplitude. In other words, there exists an integer

s with 0 ≤ s ≤ n such that F is called vectorial p-ary s-plateaued if Fλ,

λ ∈ F?pm , is p-ary s-plateaued.

Remark 3.5. A vectorial p-ary function is plateaued if and only if all of its component

functions are p-ary plateaued with possibly different amplitudes. More precisely, a

vectorial p-ary function is plateaued with single amplitude if and only if all of its

component functions are p-ary plateaued of the same amplitude. These facts will be

frequently used in the sequel.

A vectorial p-ary bent is vectorial p-ary 0-plateaued. The following example shows

that the notion of vectorial plateaued is strictly more general than the notion of vec-

torial s-plateaued for nonzero s.

Example 3.4. Let p be a prime and n be a positive even integer. Let f1 and f2 be

quadratic p-ary s1-plateaued and s2-plateaued functions from Fpn to Fp with s1 6= s2,

respectively. For any θ ∈ Fp2 \ Fp, the function F given as

F (x) = f1(x) + θf2(x)

is vectorial plateaued from Fpn to Fp2 , but it is not vectorial s-plateaued function for

any integer s.

3.3.1 Characterizations of Vectorial Bent p-Ary Functions

This subsection provides a new proof of the link between the balanced-ness of first-

order derivatives and the number of zeros of second-order derivatives of vectorial

functions.

In 1991, Nyberg characterized vectorial bent functions by the balanced-ness of their

first-order derivatives.
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Theorem 3.16. [67, Theorem 2.3] Let F : Fpn → Fpm . Then F is vectorial p-ary

bent if and only if the derivative DaF is balanced for all a ∈ F?pn .

In 2014, Mesnager presented the following characterization of vectorial bent func-

tions in terms of the zeros of their second-order derivatives.

Theorem 3.17. [55, Theorem 6] Let F : Fpn → Fpm . Then F is vectorial p-ary bent

if and only if

N(F ) = p3n−m + p2n − p2n−m.

It would be interesting to prove directly that DaF is balanced for all a ∈ F?pn if and

only if N(F ) = p3n−m+p2n−p2n−m without using the bent-ness of vectorial function

F . Before proving it, we give the following well-known result, which can be easily

proven using Theorem 3.1.

Lemma 3.2. Let x1, x2, . . . , xm be positive real numbers such that x1 + x2 + · · · +
xm = n. We then have

n2

m
≤ x2

1 + x2
2 + · · ·+ x2

m

with an equality if and only if x1 = x2 = · · · = xm.

The following lemma is similar to [16, Proposition 1], but is also valid in arbitrary

characteristic.

Lemma 3.3. Let G be a vectorial function from Fpn to Fpm . Then

p2n−m ≤ #{(x1, x2) ∈ F2
pn : G(x1) = G(x2)} (3.31)

with an equality if and only if G is balanced.

Proof. Let Aj = {x ∈ Fpn : G(x) = yj ∈ Fpm} and zj = #Aj for j ∈ {1, . . . , pm}.
Then we have

#{(x1, x2) ∈ F2
pn : G(x1) = G(x2)} = #

(⋃pm

j=1{(x1, x2) ∈ F2
pn : x1, x2 ∈ Aj}

)
=

pm∑
j=1

(#Aj)
2 =

pm∑
j=1

z2
j .

By Lemma 3.2, for
∑pm

j=1 zj = pn and zj ≥ 0, we get
∑pm

j=1 z
2
j ≥ p2n−m. Thus, (3.31)

holds. Notice that G is balanced if and only if z1 = z2 = · · · = zpm . Hence, the last

assertion follows from Lemma 3.2.
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Theorem 3.18. Let F : Fpn → Fpm . Then

DaF is balanced for all a ∈ F?pn ⇐⇒ N(F ) = p3n−m + p2n − p2n−m. (3.32)

Proof. For (a, b, x) ∈ F3
pn , clearly we have that DbDaF (x) = 0 if and only if

DaF (x) = DaF (x+ b). (3.33)

First, for n = m, we prove that DaF is balanced for all a ∈ F?pn if and only if

N(F ) = 2p2n − pn. For a = 0, it is easy to see that (3.33) holds for all b, x ∈ Fpn

since DaF is the zero map. Then,

#{(0, b, x) ∈ F3
pn : DbDaF (x) = 0} = p2n.

For a 6= 0, by Lemma 3.3, the number of pairs (b, x) ∈ F2
pn satisfying (3.33) is pn if

and only if DaF is balanced. Then, #{(a, b, x) ∈ F3
pn : a 6= 0,DbDaF (x) = 0} =

p2n−pn. Therefore,DaF is balanced for all a ∈ F?pn if and only if N(F ) = 2p2n−pn.

Now assume n 6= m. For a = 0, we get #{(0, b, x) ∈ F3
pn : DbDaF (x) = 0} = p2n.

For a 6= 0, by Lemma 3.3, the number of pairs (b, x) ∈ F2
pn satisfying (3.33) is p2n−m

if and only if DaF is balanced. Then

#{(a, b, x) ∈ F3
pn : a 6= 0,DbDaF (x) = 0} = (pn − 1)p2n−m.

Thus, (3.32) holds.

Corollary 3.23. [55, Corollary 1] Let F : Fpn → Fpm . Then F is vectorial p-ary

bent if and only if N?(F ) = (pn − 1)(p2n−m − pn), where N?(F ) = #{(a, b, x) ∈
F?pn × F?pn × Fpn : DbDaF (x) = 0}.

As in the proof of Theorem 3.18, the following corollary easily follows without using

bent-ness.

Corollary 3.24. Let F : Fpn → Fpm . Then, DaF is balanced for all a ∈ F?pn if and

only if N?(F ) = (pn − 1)(p2n−m − pn).
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3.3.2 Characterizations of Vectorial Plateaued p-Ary Functions by their Deriva-

tives

This subsection extends to arbitrary characteristic the characterizations of plateaued

vectorial Boolean functions in terms of their derivatives given in [15]. We also obtain

new characterizations of vectorial plateaued functions in terms of the value distribu-

tion of their second-order derivatives in arbitrary characteristic. We finally extend the

notion of strongly-plateaued functions to arbitrary characteristic.

We start by giving the following characterization of vectorial plateaued functions.

Theorem 3.19. Let F : Fpn → Fpm . Then

i.) F is vectorial plateaued if and only if for every v ∈ Fpm , NF (v;x) does not

depend on x ∈ Fpn .

ii.) There exists an integer s with 0 ≤ s ≤ n such that F is vectorial s-plateaued

if and only if for every v ∈ Fpm , NF (v;x) does not depend on x ∈ Fpn and

NF (v1;x) = NF (v2;x) for every v1, v2 ∈ F?pm and x ∈ Fpn .

Proof. For x ∈ Fpn and u ∈ Fpm , let G(u;x) be the complex valued function defined

by

G(u;x) =
∑

a,b∈Fpn

ξDbDaTrm(uF (x))
p . (3.34)

For x ∈ Fpn and v ∈ Fpm , the Fourier transform Ĝ of G is defined as

Ĝ(v;x) =
∑
u∈Fpm

G(u;x)ξ−Trm(uv)
p .

Then for every x ∈ Fpn and v ∈ Fpm , the Fourier transform Ĝ(v;x) is given by∑
u∈Fpm

∑
a,b∈Fpn

ξDbDaTrm(uF (x))−Trm(uv)
p =

∑
a,b∈Fpn

∑
u∈Fpm

ξTrm(u(DbDaF (x)−v))
p

= pm#{(a, b) ∈ F2
pn : DbDaF (x) = v} = pmNF (v;x).

(3.35)

Then for every v ∈ Fpm , NF (v;x) does not depend on x ∈ Fpn if and only if the

Fourier transform Ĝ(v;x) does not depend on x ∈ Fpn . It follows from (3.4) that for

x1, x2 ∈ Fpn , Ĝ(v;x1) = Ĝ(v;x2) for every v ∈ Fpm if and only if

G(u;x1) = G(u;x2)
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for every u ∈ Fpm . By Theorem 3.6, G(u;x) does not depend on x ∈ Fpn for every

u ∈ Fpm if and only if F is vectorial plateaued. Hence, F is vectorial plateaued if and

only if for every v ∈ Fpm , NF (v;x) does not depend on x ∈ Fpn .

Next we prove (ii). Note that F is vectorial s-plateaued if and only if F is vectorial

plateaued and for every x ∈ Fpn we have G(u1;x) = G(u2;x) for every u1, u2 ∈ F?pm
given in (3.34). This also follows from Theorem 3.6. For any x ∈ Fpn , using the

above arguments we obtain G(u1;x) = G(u2;x) for every u1, u2 ∈ F?pm if and only

if NF (v1;x) = NF (v2;x) for every v1, v2 ∈ F?pm . The proof follows from (i).

We remark that Theorem 3.19 gives an alternative proof of the fact that any quadratic

(vectorial) function is plateaued in arbitrary characteristic. The following theorem is

related to Theorem 3.19. It yields the number of the value distribution of the second-

order derivatives of these functions. To do this, by Lemma 2.3, for G : Fpn → C, we

have

G(u) = θ, ∀u ∈ F?pn ⇐⇒ Ĝ(v) = θ′, ∀v ∈ F?pn , (3.36)

where θ and θ′ are constants in C. Notice that G(0) = θ + θ′ and Ĝ(0) = pnθ + θ′.

Theorem 3.20. Let F : Fpn → Fpm . The following hold.

i.) There exists an integer s with 0 ≤ s ≤ n such that F is vectorial s-plateaued

if and only if NF (v;x) = p2n−m − pn+s−m for every v ∈ F?pm and x ∈ Fpn . In

this case, NF (0;x) = pn+s + p2n−m − pn+s−m for every x ∈ Fpn .

ii.) Assume that F is vectorial plateaued. For each λ ∈ F?pm , let sλ be an integer

with 0 ≤ sλ ≤ n such that component function Fλ is sλ-plateaued. Then

NF (0;x) = p2n−m + pn−m
∑

λ∈F?pm
psλ for every x ∈ Fpn .

Proof. i.) For x ∈ Fpn and λ ∈ Fpm , let G(λ;x) be the complex valued function

defined by

G(λ;x) =
∑

a,b∈Fpn

ξDbDaTrm(λF (x))
p .

Clearly, for λ = 0, we have G(0;x) = p2n for every x ∈ Fpn . By Theorem 3.6, F

is vectorial s-plateaued if and only if for every λ ∈ F?pm we have G(λ;x) = pn+s for
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every x ∈ Fpn; equivalently, by (3.36), for every v ∈ F?pm we obtain

Ĝ(v;x) = G(0;x)−G(λ;x) = p2n − pn+s

for every x ∈ Fpn , by (3.35), the first assertion holds.

For the second statement, notice that for every x ∈ Fpn , we have

NF (0;x) +
∑
v∈F?pm

NF (v;x) = p2n.

Hence, with the above arguments, we get NF (0;x) = pn+s + p2n−m − pn+s−m for

every x ∈ Fpn .

ii.) Assume that F is vectorial plateaued. As Fλ is sλ-plateaued for every λ ∈ F?pm ,

we have G(0;x) = p2n and G(λ;x) = pn+sλ for every λ ∈ F?pm and x ∈ Fpn . Then,

for every x ∈ Fpn we obtain

Ĝ(0;x) = p2n +
∑
λ∈F?pm

pn+sλ .

Thus, the assertion follows from (3.35).

The following characterization of vectorial bent functions is derived readily from

Theorems 3.17 and 3.19.

Corollary 3.25. Let F : Fpn → Fpm . Then, F is vectorial p-ary bent if and only if

NF (0;x) = pn + p2n−m − pn−m for every x ∈ Fpn .

The following proposition is helpful to distinguish vectorial plateaued functions.

Proposition 3.10. Let F,G : Fpn → Fpm be two vectorial plateaued functions. If

NF (v;x) = NG(v;x) for every v ∈ F?pm , which means that F and G have the same

distribution for DbDaF (x) and DbDaG(x), then the component functions Fλ and Gλ

are sλ-plateaued functions with the same amplitude for every λ ∈ F?pm .

Proof. By (3.4), it follows from (3.34) and (3.35) that if NF (v;x) = NG(v;x) for

every v ∈ F?pm and x ∈ Fpn , then for every λ ∈ F?pm and x ∈ Fpn we have∑
a,b∈Fpn

ξDbDaTrm(λF (x))
p =

∑
a,b∈Fpn

ξDbDaTrm(λG(x))
p . (3.37)
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By Theorem 3.6, there exists an integer sλ with 0 ≤ sλ ≤ n for every λ ∈ F?pm such

that the functions in (3.37) are equal to pn+sλ for every x ∈ Fpn . Hence, Fλ and Gλ

are sλ-plateaued functions with the same sλ for every λ ∈ F?pm .

The characterizations of plateaued (vectorial) functions in terms of their second-order

derivatives can be also given by means of their first-order derivatives, which poten-

tially makes easier the study of checking the plateaued-ness of (vectorial) functions

in arbitrary characteristic.

Proposition 3.11. Let F : Fpn → Fpm . For v ∈ Fpm , we haveNF (v;x) = #{(a, b) ∈
F2
pn : DaF (b)−DaF (x) = v} for every x ∈ Fpn .

Proof. For (a, b) ∈ F2
pn and for every x ∈ Fpn , by the (bijective) change of variable

b → b − x, we have DbDaF (x) = Db−xDaF (x) = F (b + a) − F (b) − F (x +

a) + F (x) = DaF (b) − DaF (x). Hence, the value distribution of DbDaF (x) when

(a, b) ∈ F2
pn is equal to the value distribution of DaF (b) − DaF (x). This completes

the proof.

Notice that for all a, b, c ∈ Fpn we haveDaDbFλ(c) = λ·DaDbF (c), where Fλ = λ·F
for λ ∈ F?pm . By Proposition 3.1 and Corollary 3.5, F is p-ary plateaued if and only

if for all x ∈ Fpn and λ ∈ F?pm∑
a,b,c∈Fpn

ξλ·DaDbF (c)
p = pn

∑
a,b∈Fpn

ξλ·DaDbF (x)
p ,

equivalently, applying the Fourier transform, by (3.4) for all x ∈ Fpn and v ∈ Fpm

#{(a, b, c) ∈ F3
pn : DaDbF (c) = v} = pn#{(a, b) ∈ F2

pn : DaDbF (x) = v},(3.38)

that is, for all v ∈ Fpm , #{(a, b) ∈ F2
pn : DaDbF (x) = v} is independent of x ∈ Fpn .

Thus, Corollary 3.5 can be also derived from Theorem 3.19.

Remark 3.6. If we add an affine function to F , then plateaued-ness of F is preserved

because it does not change the value of the second-order derivative of F . On the other

hand, adding a quadratic function to F changes this value since the distribution of the

second-order derivative of F is dependent on x in general. We indicate this in the

following results.
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Corollary 3.26. Let F : Fpn → Fpm . Then, F is p-ary plateaued if and only if for

all x ∈ Fpn , there exists a permutation φx of F2
pn defined as φx(a, b) = (ax, bx) such

that DbDaF (x) = DbxDaxF (0); or equivalently, there exists a permutation ψx of F2
pn

defined as ψx(a, b) = (a′x, b
′
x) such that DaF (b)−DaF (x) = Da′xF (b′x)−Da′xF (0).

Proof. For v ∈ Fpm and x ∈ Fpn , we define the sets

{
(a, b) ∈ F2

pn : DbDaF (x) = v
}

and
{

(ax, bx) ∈ F2
pn : DbxDaxF (0) = v

}
.(3.39)

Assume that F is p-ary plateaued. By Theorem 3.19, for each x ∈ Fpn the sizes

of the sets in (3.39) are equal for all v ∈ Fpm . Then for all x ∈ Fpn there exists

a permutation φx of F2
pn from the first set (defined for some value of v and x 6= 0)

to the second set (defined for the same value of v and for x = 0) in (3.39) defined

as φx(a, b) = (ax, bx). Conversely, because of the permutation φx, for all v ∈ Fpm

and x ∈ Fpn , the sizes of the sets in (3.39) are equal. By Theorem 3.19, F is p-ary

plateaued.

For the second statement, we consider the sets

{(a, b) ∈ F2
pn : DaF (b)−DaF (x) = v} and (3.40)

{(a′x, b′x) ∈ F2
pn : Da′xF (b′x)−Da′xF (0) = v} (3.41)

for v ∈ Fpm and x ∈ Fpn . By Theorem 3.19, using the above arguments, F is p-ary

plateaued if and only if for all x ∈ Fpn , there exists a permutation ψx of F2
pn from the

set in (3.40) to the set in (3.41) defined as ψx(a, b) = (a′x, b
′
x).

Recall that DaF (b) − DaF (x) = DaDb−xF (x) for all a, b, x ∈ Fpn . Hence we

have ψx(a, b) = φx(a, b − x) since Da′xF (b′x) − Da′xF (0) = DaF (b) − DaF (x) =

DaDb−xF (x) = Da′′xDb′′xF (0) = Da′′xF (b′′x)−Da′′xF (0) where ψx(a, b) = (a′x, b
′
x) and

φx(a, b− x) is denoted by (a′′x, b
′′
x).

Remark 3.7. Notice that the simple permutation φx(a, b) = (a, b) for all a, b ∈
Fpn correlates with quadratic functions. Actually, F admits such an associated φx

if and only if DbDaF (c) = DbDaF (0) at (a, b) ∈ F2
pn for all c ∈ Fpn , that is,

DcDbDaF (0) = 0 at (a, b, c) ∈ F3
pn , which means that it is a quadratic function.
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Corollary 3.27. Let F : Fpn → Fpm be p-ary plateaued, and for all x ∈ Fpn , let φx be

a permutation defined by φx(a, b) = (ax, bx) as in Corollary 3.26. LetG : Fpn → Fpm

be a function such that DbDaG(x) = DbxDaxG(0) at (a, b) ∈ F2
pn for all x ∈ Fpn .

Then, F +G is p-ary plateaued.

Proof. By Corollary 3.26, for all x ∈ Fpn , we have DbDaF (x) = DbxDaxF (0),

where (ax, bx) = φx(a, b). Then, for all x ∈ Fpn , DbDa(F + G)(x) = DbDaF (x) +

DbDaG(x) = DbxDaxF (0) + DbxDaxG(0) = DbxDax(F + G)(0) where (ax, bx) =

φx(a, b). Thus, F +G is p-ary plateaued.

Remark 3.8. We derive from the above results that in general F +G may not be p-ary

plateaued when F is p-ary plateaued and G is quadratic. For a quadratic function G,

although we have DbDaG(x) = DbDaG(0) (see Remark 3.7), DbDaG(x) may not be

equal to DbxDaxG(0) for some x ∈ Fpn , where (ax, bx) = φx(a, b) for the associated

permutation φx of F .

We now investigate power functions on Fpn in terms of their first-order derivatives.

Power functions are exhaustively studied due to their interesting algebraic and com-

binatorial properties, and their applications in sequence design, coding theory and

cryptography.

Corollary 3.28. Let F be a power function on Fpn defined as F (x) = xd. For v, x ∈
Fpn , letNF (v;x) be the size of the set {(a, b) ∈ F2

pn : DaF (b)−DaF (x) = v}. Then

for all v, x, γ ∈ Fpn with γ 6= 0,

NF (v;x) = #{(a, b) ∈ F2
pn : DaF (b)−DaF (x/γ) = v/γd}. (3.42)

In particular, for all v ∈ Fpn , NF (v; 0) = NF (v/γd; 0) for any γ ∈ F?pn . Moreover

i.) F is p-ary plateaued if and only if NF (v; 1) = NF (v; 0) for all v ∈ Fpn .

ii.) F is p-ary plateaued with single amplitude if and only if NF (0; 1) = NF (0; 0)

and there exists an integer u such that NF (v; 1) = NF (v; 0) = u for all v ∈
F?pn .

If F is p-ary plateaued and gcd(d, pn − 1) = 1, then it has a single amplitude.
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Proof. For all γ ∈ Fpn with γ 6= 0, by the bijective change of variable a 7→ γa and

b 7→ γb, we have #{(a, b) ∈ F2
pn : DaF (b) − DaF (x) = v} = #{(a, b) ∈ F2

pn :

DγaF (γb) − DγaF (x) = v}. For all a, b, x, γ ∈ Fpn with γ 6= 0, we can easily see

DγaF (γb) = (γb+γa)d− (γb)d = γdDaF (b) andDγaF (x) = γdDaF (x/γ). Hence,

(3.42) holds for all v, x, γ ∈ Fpn with γ 6= 0.

In particular, for x = 0 in (3.42), we have #{(a, b) ∈ F2
pn : DaF (b) − DaF (0) =

v} = #{(a, b) ∈ F2
pn : DaF (b)−DaF (0) = v/γd}, that is,NF (v; 0) = NF (v/γd; 0)

for all v, γ ∈ Fpn with γ 6= 0.

We now prove (i). By (3.42), for all v ∈ Fpn we have (by taking γ = x for x 6= 0)

NF (v;x) = #{(a, b) ∈ F2
pn : DaF (b)−DaF (1) = v/xd}. (3.43)

Assume that NF (v; 1) = NF (v; 0) for all v ∈ Fpn . Then we have #{(a, b) ∈ F2
pn :

DaF (b)−DaF (1) = v/xd} = #{(a, b) ∈ F2
pn : DaF (b)−DaF (0) = v/xd}, which

equals #{(a, b) ∈ F2
pn : DaF (b) − DaF (0) = v} from the second statement. Then,

for all v ∈ Fpn , NF (v;x) = NF (v; 0) for all x ∈ F?pn by (3.43). Hence, F is p-ary

plateaued by Theorem 3.19. The other direction is clear from Theorem 3.19.

Next we prove (ii). Theorem 3.19 says that F is p-ary plateaued with single ampli-

tude if and only if there exist two integers u1 and u2 such that NF (0;x) = u1 and

NF (v;x) = u2 for all x ∈ Fpn and v ∈ F?pn . Assume that NF (0; 1) = NF (0; 0) and

there exists an integer u such that NF (v; 1) = NF (v; 0) = u for all v ∈ F?pn . From

the proof of (i), we have

NF (v;x) = NF (v; 0)

for all v, x ∈ Fpn with x 6= 0. Combining them, we conclude that NF (v;x) = u

for all v, x ∈ Fpn with v 6= 0 and NF (0;x) is independent of x ∈ Fpn . Hence,

by Theorem 3.19, F is p-ary plateaued with single amplitude. The other direction

follows from Theorem 3.19.

Finally we prove the last assertion. Assume that F is p-ary plateaued. By (i),

NF (v; 1) = NF (v; 0) for all v ∈ Fpn . From the second assertion, NF (v; 0) =

NF (v/γd; 0) for all v, γ ∈ Fpn with γ 6= 0. Then,

NF (v; 1) = NF (v/γd; 0)
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for all v, γ ∈ Fpn with γ 6= 0. For v = 0, it is obvious that NF (0; 1) = NF (0; 0).

For v ∈ F?pn , if we set v = 1 and using the fact gcd(d, pn − 1) = 1, then γ 7→ 1/γd

is a permutation of F?pn . Then we get NF (1, 1) = NF (v, 0) for all v ∈ F?pn , that is,

NF (v, 0) = NF (v; 1) does not depend on v ∈ F?pn . Hence, plateaued function F has

single amplitude by (ii).

Remark 3.9. With the above notations, for the power function F (x) = xd, in general

we have NF (v; 1) 6= NF (v/γd; 1) for v, γ ∈ Fpn with γ 6= 0. However, the equality

case is necessary for plateaued-ness.

Below, we consider plateaued-ness property of vectorial p-ary functions whose com-

ponent functions are all unbalanced.

Remark 3.10. A function is balanced if and only if its Walsh transform vanishes at

the zero input.

Theorem 3.21. Let F : Fpn → Fpm , and let the functions Fλ, λ ∈ F?pm , be unbal-

anced. Then, F is p-ary plateaued if and only if for all v ∈ Fpm and x ∈ Fpn

NF (v;x) = #{(a, b) ∈ F2
pn : F (a)− F (b) = v}. (3.44)

In particular, F is p-ary plateaued with single amplitude if and only if for all v ∈ Fpm

and x ∈ Fpn (3.44) holds and is independent of v ∈ F?pm .

Proof. Assume that F is p-ary plateaued. Since Fλ = λ · F , λ ∈ F?pm , are all unbal-

anced p-ary plateaued of the amplitude µλ, we have χ̂Fλ(0) 6= 0 for all λ ∈ F?pm (and

also for λ = 0), and hence µ2
λ = |χ̂Fλ(0)|2. For λ ∈ Fpm , since |z|2 = zz for z ∈ C,

we can easily see

|χ̂Fλ(0)|2 =
∑

a,b∈Fpn

ξλ·(F (a)−F (b))
p . (3.45)

Recall that DaDbFλ(x) = λ · (DaDbF (x)) for all a, b, x ∈ Fpn and λ ∈ Fpm . Then,

by Theorem 3.6, for all x ∈ Fpn and λ ∈ Fpm we have

G(λ;x) =
∑

a,b∈Fpn

ξλ·DaDbF (x)
p =

∑
a,b∈Fpn

ξλ·(F (a)−F (b))
p , (3.46)

where the second equality follows from (3.45). By (3.4), for all x ∈ Fpn and v ∈ Fpm ,

the Fourier transforms of the equal functions in (3.46) are equal:

Ĝ(v;x) =
∑
λ∈Fpm

∑
a,b∈Fpn

ξλ·(DaDbF (x)−v)
p =

∑
λ∈Fpm

∑
a,b∈Fpn

ξλ·(F (a)−F (b)−v)
p , (3.47)
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equivalently, Ĝ(v;x) = pm#{(a, b) ∈ F2
pn : DaDbF (x) = v} = pm#{(a, b) ∈

F2
pn : F (a)− F (b) = v}. Hence, the assertion holds. Conversely, assume that for all

x ∈ Fpn and v ∈ Fpm (3.44) holds, that is, (3.47) holds. By (3.4), for all x ∈ Fpn

and λ ∈ Fpm , (3.46) holds, equivalently by (3.45), G(λ;x) = |χ̂Fλ(0)|2, which is

nonzero since Fλ, λ ∈ F?pm , are all unbalanced. Then, for all λ ∈ F?pm , G(λ;x) does

not depend on x ∈ Fpn . By Theorem 3.6, Fλ, λ ∈ F?pm , is p-ary plateaued, and hence,

F is p-ary plateaued.

We prove the last assertion. Theorem 3.6 says that F is p-ary plateaued with single

amplitude if and only if G(λ;x) in (3.46) does not depend on x ∈ Fpn nor λ for

λ 6= 0; equivalently by (3.4), Ĝ(v;x) in (3.47) does not depend on x ∈ Fpn nor on v

for v 6= 0. Hence, using the above arguments, the proof is complete.

In view of Theorem 3.21, the following corollary is derived directly from Corollary

3.25 and Theorem 3.20.

Corollary 3.29. Let F : Fpn → Fpm be a function such that all of whose component

functions are unbalanced. Then F is vectorial p-ary s-plateaued if and only if for all

v ∈ F?pm

#{(a, b) ∈ F2
pn : F (a)− F (b) = v} = p2n−m − pn+s−m.

In this case, we also have #{(a, b) ∈ F2
pn : F (a) = F (b)} = p2n−m+pn+s−pn+s−m.

In particular, F is vectorial p-ary bent if and only if

#{(a, b) ∈ F2
pn : F (a) = F (b)} = p2n−m + pn − pn−m.

3.3.3 p-Ary Strongly-Plateaued Functions over Fp

In this subsection, we study a particular case of p-ary plateaued (vectorial) functions:

when the value distribution of b 7→ DaDbF (x) is independent of x ∈ Fpn for each

fixed value of a although the value distribution of DbDaF (x) when (a, b) ∈ F2
pn is

independent of x ∈ Fpn in Theorem 3.19.

Definition 3.3. Let F : Fpn → Fpm . Then, F is called vectorial p-ary strongly-

plateaued if for all a ∈ Fpn and v ∈ Fpm , the size of the set {b ∈ Fpn : DaDbF (x) =
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v} is independent of x ∈ Fpn . In particular, f : Fpn → Fp is called p-ary strongly-

plateaued if for all a ∈ Fpn and v ∈ Fp, the size of the set {b ∈ Fpn : DaDbf(x) = v}
is independent of x ∈ Fpn .

Remark 3.11. By Theorem 3.19, any p-ary strongly-plateaued function is the p-ary

plateaued function. Moreover, a vectorial p-ary function is strongly-plateaued if and

only if its component functions are p-ary strongly-plateaued.

Proposition 3.12. Let F : Fpn → Fpm . For all a, x ∈ Fpn and v ∈ Fpm we have

#{b ∈ Fpn : DaDbF (x) = v} = #{b ∈ Fpn : DaF (b)−DaF (x) = v}.

Proof. For all a, b, x ∈ Fpn , (by the bijective change of variable b 7→ b− x), we have

DaDbF (x) = DaDb−xF (x) = F (a + b) − F (x + a) − F (b) + F (x) = DaF (b) −
DaF (x). This completes the proof.

The notion of p-ary strongly-plateaued is closely connected to p-ary partially-bent.

Proposition 3.13. Let f : Fpn → Fp. Then f is p-ary strongly-plateaued if and only

if f is p-ary partially-bent.

Proof. By Definition 2.12, f is p-ary partially-bent if and only if the derivativeDaf is

either balanced or constant for all a ∈ Fpn; equivalently, for all v ∈ Fpm and a ∈ Fpn ,

#{b ∈ Fpn : Daf(b) = Daf(x) + v} is independent of x ∈ Fpn , that is, f is p-ary

strongly-plateaued by Proposition 3.12.

Proposition 3.14. A vectorial p-ary function is strongly-plateaued if and only if all

of its component functions are p-ary partially-bent. In particular, p-ary bent and

quadratic (vectorial) functions are p-ary strongly-plateaued (vectorial) functions.

Proof. The first assertion follows from Remark 3.11 and Proposition 3.13. By Re-

mark 2.4, the last assertion follows from the first assertion.

3.4 Characterizations of Vectorial Plateaued p-Ary Functions

This section, in order to characterize plateaued vectorial p-ary functions, makes use

of the Walsh power moments and autocorrelation functions of their component func-
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tions. We first characterize plateaued vectorial functions by using Walsh power mo-

ments of their component functions in arbitrary characteristic.

We can extract from Theorem 3.9 the following characterization of vectorial plateaued

functions.

Theorem 3.22. Let F : Fpn → Fpm and let Fλ, λ ∈ F?pm , be the component functions

of F . Then, F is vectorial s-plateaued if and only if∑
λ∈F?pm

S2(Fλ) = p3n+s(pm − 1) and
∑
λ∈F?pm

S3(Fλ) = p4n+2s(pm − 1). (3.48)

Proof. Assume that F is vectorial s-plateaued, that is, Fλ, λ ∈ F?pm , is s-plateaued.

By Theorem 3.9, we conclude that (3.48) holds. Conversely, suppose that (3.48)

holds. By (3.1) with A = pn+s and i = 1, for all λ ∈ F?pm we have

Dλ =
∑
ω∈Fpn

(|χ̂Fλ(ω)|2 − pn+s)2|χ̂Fλ(ω)|2 = S3(Fλ)− 2pn+sS2(Fλ) + p2(n+s)S1(Fλ).

By (3.48) and using the Parseval identity, we have∑
λ∈F?pm

Dλ = p4n+2s(pm − 1)− 2pn+sp3n+s(pm − 1) + p2n+2sp2n(pm − 1) = 0.

Then, since Dλ ≥ 0 and
∑

λ∈F?pm
Dλ = 0, we get Dλ = 0 for every λ ∈ F?pm . Hence,

for every λ ∈ F?pm , |χ̂Fλ(ω)|2 ∈ {0, pn+s} for all ω ∈ Fpn , namely, Fλ, λ ∈ F?pm , is

s-plateaued. Hence, F is vectorial s-plateaued.

To give the next characterization of vectorial s-plateaued functions, we recall the

following result.

Proposition 3.15. [55] Let F : Fpn → Fpm and let Fλ, λ ∈ F?pm , be its component

functions. Then ∑
λ∈F?pm

S2(Fλ) = pn+mN(F )− p4n.

Theorem 3.23. Let F : Fpn → Fpm and let Fλ, λ ∈ F?pm , be its component functions.

Then, F is vectorial s-plateaued if and only if S3(Fλ) = p4n+2s for all λ ∈ F?pm and

N(F ) = p3n−m + p2n+s − p2n+s−m.
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Proof. Assume that F is vectorial s-plateaued. By Theorem 3.9, we have S2(Fλ) =

p3n+s and S3(Fλ) = p4n+2s for all λ ∈ F?pm . By Proposition 3.15, we get

p3n+s(pm − 1) = pn+mN(F )− p4n.

Thus, the assertion holds. Conversely, we have
∑

λ∈F?pm
S3(Fλ) = p4n+2s(pm − 1),

and by Proposition 3.15, we get∑
λ∈F?pm

S2(Fλ) = pn+m(p3n−m + p2n+s − p2n+s−m)− p4n = p3n+s(pm − 1).

By Theorem 3.22, F is vectorial s-plateaued.

In view of Proposition 3.6, we can deduce the following.

Theorem 3.24. Let F : Fpn → Fpm and let Fλ, λ ∈ F?pm , be its component functions.

Then for all integers i ≥ 1, we have∑
λ∈F?pm

Si+1(Fλ)
2 ≤

∑
λ∈F?pm

Si+2(Fλ)Si(Fλ), (3.49)

equivalently, ∑
λ∈F?pm

Si+1(Fλ) ≤
∑
λ∈F?pm

√
Si+2(Fλ)Si(Fλ), (3.50)

with an equality if and only if F is p-ary plateaued.

Proof. The inequalities (3.49) and (3.50) follows easily from (3.17). To prove equal-

ity cases, notice that by (3.17) we have

Si+2(Fλ)Si(Fλ)− Si+1(Fλ)
2 ≥ 0

for all λ ∈ F?pm . Thanks to the well known fact that a sum of nonnegative terms is zero

if and only if each term is zero, the inequality (3.49) (equivalently, (3.50)) becomes

an equality if and only if Fλ, λ ∈ F?pm , are all p-ary plateaued by (3.17); equivalently,

F is p-ary plateaued.

Theorem 3.24, in the case of i = 1, suggests the following corollary.
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Corollary 3.30. Let F : Fpn → Fpm and let Fλ, λ ∈ F?pm , be the component functions

of F . Then we have ∑
λ∈F?pm

S2(Fλ)
2 ≤ p2n

∑
λ∈F?pm

S3(Fλ),

equivalently,
∑

λ∈F?pm
S2(Fλ) ≤ pn

∑
λ∈F?pm

√
S3(Fλ), with an equality if and only if

F is p-ary plateaued.

In the light of Remark 3.5, clearly we have the following corollaries.

Corollary 3.31. Let F : Fpn → Fpm , and let Fλ, λ ∈ F?pm , be the component functions

of F . Then F is p-ary plateaued if and only if for each λ ∈ F?pm ,

S2(Fλ) = p2nθFλ(x)

for all x ∈ Fpn . In particular, F is p-ary plateaued with single amplitude if and only

if, additionally, S2(Fλ) does not depend on λ for λ 6= 0.

Proof. By Remark 3.5, the first assertion is a direct consequence of Corollary 3.5.

The second assertion follows from Theorems 3.6 and 3.19.

Corollary 3.32. Let F : Fpn → Fpm and let Fλ, λ ∈ F?pm , be the component functions

of F . Then, F is p-ary plateaued if and only if∑
ω∈Fpn

χ̂Fλ(α + ω)χ̂Fλ(ω) |χ̂Fλ(ω)|2 = 0

for all α ∈ F?pn and λ ∈ F?pm . In particular, F is p-ary plateaued with single ampli-

tude if and only if, additionally, S2(Fλ) does not depend on λ for λ 6= 0.

Proof. By Remark 3.5, the first assertion is a direct consequence of Theorem 3.14.

The second assertion follows from Theorems 3.6 and 3.19.

Corollary 3.33. Let F : Fpn → Fpm , and let Fλ, λ ∈ F?pm , be the component functions

of F . Then F is p-ary plateaued if and only if for all x ∈ Fpn and λ ∈ F?pm∑
ω∈Fpn

|χ̂Fλ(ω)|4 = pn
∑
ω∈Fpn

ξFλ(x)−ω·x
p χ̂Fλ (ω)|χ̂Fλ(ω)|2. (3.51)

In particular, F is p-ary plateaued with single amplitude if and only if for all x ∈ Fpn

and λ ∈ F?pm (3.51) holds and is independent of λ 6= 0.
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Proof. By Remark 3.5, the first statement is a direct consequence of Corollary 3.20.

The second assertion follows from Theorems 3.6 and 3.19.

Considering Fλ = λ · F for λ ∈ F?pm , for all x ∈ Fpn and λ ∈ F?pm the equality (3.51)

is equivalent to:∑
ω,a,b,c,d∈Fpn

ξ
λ·(F (a)−F (b)+F (c)−F (d))−ω·(a−b+c−d)
p

= pn
∑

ω,a,b,c∈Fpn

ξλ·(F (x)−F (a)+F (b)−F (c))−ω·(x−a+b−c)
p ,

equivalently,∑
a,b,c∈Fpn

ξλ·(F (a)−F (b)+F (c)−F (a−b+c))
p = pn

∑
a,b∈Fpn

ξλ·(F (x)−F (a)+F (b)−F (x−a+b))
p ,

that is, (by the bijective change of variables: a 7→ a + b + c and b 7→ b + c in the

left-hand side, and a 7→ a+ x and b 7→ a+ b+ x in the right-hand side) we have∑
a,b,c∈Fpn

ξλ·(DbDaF (c))
p = pn

∑
a,b∈Fpn

ξλ·(DbDaF (x))
p ,

which is equivalent to (3.38). Namely, the characterizations given by Corollaries 3.20

and 3.5 are equivalent.

In the following, we extend to arbitrary characteristic the characterizations of plateaued

vectorial Boolean functions in terms of autocorrelation functions of their component

functions.

We can derive from Remark 3.5 and Theorem 3.15 the following.

Corollary 3.34. Let F : Fpn → Fpm and let Fλ, λ ∈ F?pm , be the component functions

of F . Then, F is p-ary plateaued with single amplitude µ if and only if for all x ∈ Fpn

and λ ∈ F?pm , we have ∑
a∈Fpn

∆Fλ(a)∆Fλ(x− a) = µ2∆Fλ(x).

In the light of Remark 3.5 and Corollary 3.21, obviously we have the following.

Corollary 3.35. Let F : Fpn → Fpm and let Fλ, λ ∈ F?pm , be the component functions

of F . Then, F is p-ary plateaued with single amplitude µ if and only if for all x ∈ Fpn
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and λ ∈ F?pm ,∑
a,b∈Fpn

∆Fλ(a)∆Fλ(b)∆Fλ(x− a− b) = µ2
∑
c∈Fpn

∆Fλ(c)∆Fλ(x− c).

In a similar way, considering Remark 3.5 and Corollary 3.22, we have the following.

Corollary 3.36. Let F : Fpn → Fpm , and Fλ, λ ∈ F?pm , be the component functions

of F . Then, F is p-ary plateaued if and only if for all x ∈ Fpn and λ ∈ F?pm ,

pn
∑
a∈Fpn

∆Fλ(a)∆Fλ(x− a) =
∑
a∈Fpn

|∆Fλ(a)|2∆Fλ(x).

We can rewrite Corollary 3.36 as follows. A p-ary function f is plateaued if and only

if for all x ∈ Fpn (by the bijective change of variable a 7→ a− b)

pn
∑

a,b,c∈Fpn

ξ−f(a)+f(b)+f(c)−f(−a+b+c+x)
p

=
∑

a,b,c,d∈Fpn

ξ−f(a)+f(b)+f(c)−f(−a+b+c)+f(d)−f(d+x)
p .

For vectorial F : Fpn → Fpm , we can write this by considering f = λ ·F for λ ∈ F?pm .

Applying the Fourier transform, by (3.4) their Fourier transforms are equal, and hence

we deduce (see the proof of Theorem 3.19) the following.

Corollary 3.37. A vectorial function F is plateaued if and only if for all x ∈ Fpn and

v ∈ Fpm pn#{(a, b, c) ∈ F3
pn : −F (a) + F (b) + F (c)− F (−a+ b+ c+ x) = v} =

#{(a, b, c, d) ∈ F4
pn : −F (a)+F (b)+F (c)−F (−a+b+c)+F (d)−F (d+x) = v}.

We end this section with the following result, which follows directly from Remark

3.5 and Corollary 3.4.

Corollary 3.38. Let F : Fpn → Fpm , and let Fλ, λ ∈ F?pm , be the component functions

of F . Then F is vectorial p-ary bent if and only if
∑

a∈Fpn |∆Fλ(a)|2 = p2n for all

λ ∈ F?pm .

Remark 3.12. It is worth noting that all characterizations of plateaued p-ary functions

can be given for vectorial plateaued p-ary functions by the component functions in

the light of Remark 3.5.
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3.5 Cubic (Homogeneous) Bent and Plateaued p-Ary Functions

This section studies (homogeneous) cubic functions. In this section, the character-

ization of bent and plateaued functions in terms of their second-order derivatives is

devoted especially to (homogeneous) cubic functions. This reveals the non-existence

of a homogeneous cubic bent function (and a (homogeneous) cubic plateaued func-

tion for some cases) in odd characteristic. Moreover, we use a rank notion which

generalizes the rank notion of quadratic function in arbitrary characteristic and we

give a simple algorithm to determine it. This rank notion discovers new results about

(homogeneous) cubic plateaued functions.

3.5.1 Cubic (Homogeneous) Bent p-Ary Functions

In this subsection, we provide new results on (homogeneous) cubic bent functions in

arbitrary characteristic. Indeed, we observe that there does not exist homogeneous

cubic bent functions in odd characteristic (see Corollary 3.39). On the other hand, by

Remark 3.16 and Example 3.6 we point out that it is not the case for even characteris-

tic. We give a concrete example of homogeneous cubic s-plateaued functions in odd

characteristic when s > 0 to show their existence.

We begin with the notion of cubic functions in arbitrary characteristic. Let f be a

cubic function from Fpn to Fp. Then, f can be written as

f(x) = Trp
n

p (xD(x)) + Trp
n

p (xA(x)) + α(x). (3.52)

Hence, D is a quadratic polynomial given by

D(x) =
∑

0≤i<j≤n−1

dijx
2i+2j with dij ∈ F2n if p = 2

and

D(x) =
∑

0≤i≤j≤n−1

dijx
pi+pj with dij ∈ Fpn if p 6= 2. (3.53)

Moreover, here A is a linearized polynomial given by

A(x) =
∑

0≤i≤n−1

aix
pi with ai ∈ Fpn (3.54)
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and α(x) is an affine polynomial for x ∈ Fpn . Notice that DaDbα(x) is equal to

zero for every a, b, x ∈ Fpn . Then by Theorem 3.6, a cubic function f as in (3.52) is

plateaued if and only if Trp
n

p (xD(x))+Trp
n

p (xA(x)) is plateaued. Therefore, without

loss of generality we assume that f(x) = Trp
n

p (xD(x))+Trp
n

p (xA(x)), i.e., α(x) = 0

throughout this section.

Definition 3.4. We say that a cubic function f as in (3.52) is homogeneous if the

linearized polynomial A in (3.54) is the zero polynomial.

Remark 3.13. Choosing a basis {w1, w2, . . . , wn} of Fn2 and considering x = x1w1 +

· · · + xnwn with xi ∈ F2, any function f : Fn2 → F2 can be represented as an ele-

ment of F2[x1, . . . , xn]/〈x2
1−x1, . . . , x

2
n−xn〉. This representation is called algebraic

normal form or multivariate form. In the literature a Boolean cubic function is called

homogeneous if it has only cubic terms in algebraic normal form. The notions of

algebraic normal form (multivariate form) and homogeneous function in this sense

also exist in odd characteristic (see, e.g., [57, Section 1.3]). It is well known that a

Boolean homogeneous cubic function becomes Boolean cubic containing (multivari-

ate) quadratic terms or linear terms under a linear isomorphism. However, this is not

the case for homogeneous cubic functions if p > 3. Moreover if p = 3, then a ho-

mogeneous cubic function becomes a cubic function containing linear terms (but not

quadratic terms). Therefore, using Definition 3.4 the notions of homogeneous cubic

functions and algebraic normal form are the same for p > 3. Moreover they can be

considered to be the same for plateaued functions without loss of generality if p = 3

as they may differ only by linear terms. However, for p = 2 and n = 6, there is an im-

portant difference for cubic bent functions in the notions of homogeneous functions

in the sense of Definition 3.4 and in the sense of this remark using algebraic normal

form (see Remark 3.17 below).

Let B : Fpn × Fpn → Fpn be the quadratic map depending on D defined as

B(x, y) = D(x+ y)−D(x)−D(y) (3.55)

for x, y ∈ Fpn . For a, b ∈ Fpn , let La,b,B be the linear map from Fpn to Fp defined as

La,b,B(x) = Trp
n

p (xB(a, b) + aB(x, b) + bB(x, a)) (3.56)

for every x ∈ Fpn . For a, b ∈ Fpn , let Ca,b,D and Ca,b,A be the constant functions from
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Fpn to Fp defined as

Ca,b,D = Trp
n

p (aB(a, b) + bB(b, a) + aD(b) + bD(a)),

Ca,b,A = Trp
n

p (aA(b) + bA(a)).
(3.57)

From now on, we keep the above notations in this section.

Lemma 3.4. Let f be a cubic function as in (3.52). Then the second-order derivative

of f at (a, b) ∈ F2
pn is the affine function defined asDaDbf(x) = La,b,B(x) +Ca,b,D +

Ca,b,A for x ∈ Fpn .

Proof. Recall that f(x) = Trp
n

p (xD(x) +xA(x)) for x ∈ Fpn . The first-order deriva-

tive DbTrp
n

p (xD(x)) at b ∈ Fpn is given as

Trp
n

p (xB(x, b) + bB(x, b) + xD(b) + bD(x) + bD(b))

andDbTrp
n

p (xA(x)) = Trp
n

p (xA(b)+ bA(x)+ bA(b)) for every x ∈ Fpn . The second-

order derivatives at (a, b) ∈ F2
pn are obtained as

DaDbTrp
n

p (xD(x)) = Trp
n

p (xB(a, b) + aB(x, b) + bB(x, a)+

aB(a, b) + bB(b, a) + aD(b) + bD(a)),

which is equal to La,b,B(x) + Ca,b,D for every x ∈ Fpn , and

DaDbTrp
n

p (xA(x)) = Trp
n

p (aA(b) + bA(a)),

which is equal to Ca,b,A. This completes the proof.

Let S ⊆ Fpn × Fpn be the subset

S = {(a, b) ∈ F2
pn : La,b,B(x) = 0, ∀x ∈ Fpn}. (3.58)

Note that S is not a linear subspace of F2
pn in general. For a ∈ Fpn , let Sa ⊆ Fpn be

the subset Sa = {b ∈ Fpn : La,b,B(x) = 0, ∀x ∈ Fpn} = {b ∈ Fpn : (a, b) ∈ S}.
Hence for every a ∈ Fpn , Sa is an Fp-linear subspace of Fpn . In particular, if a = 0,

then S0 = Fpn . It is worth noting that S =
⋃
a∈Fpn{(a, b) ∈ F2

pn : b ∈ Sa}. Now we

can give the following.

Proposition 3.16. Let p be an arbitrary prime and let f be a cubic function as in

(3.52). If f is p-ary s-plateaued, then∑
a∈F?pn

∑
b∈Sa

ξ
Ca,b,D+Ca,b,A
p = pn(ps − 1). (3.59)

Conversely, if the above sum is zero, then f is p-ary bent.
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Proof. Assume that f is s-plateaued. By Corollary 3.6, we have∑
(a,b)/∈S

∑
x∈Fpn

ξDaDbf(x)
p +

∑
(a,b)∈S

∑
x∈Fpn

ξDaDbf(x)
p = p2n+s. (3.60)

Recall that by Lemma 3.4, DaDbf(x) = La,b,B(x) + Ca,b,D + Ca,b,A is the affine

function for x ∈ Fpn . For (a, b) /∈ S, the first sum in (3.60) is zero since an affine

function is balanced. By (3.58), if (a, b) ∈ S, then we have La,b,B(x) = 0 for every

x ∈ Fpn . Then, (3.60) is equivalent to:∑
(a,b)∈S

ξ
Ca,b,D+Ca,b,A
p = pn+s.

Notice that (a, b) ∈ S if and only if b ∈ Sa for a ∈ Fpn . Recall that if a = 0, then

S0 = Fpn . If a = 0, then we can easily see by (3.57) that Ca,b,D = 0 and Ca,b,A = 0.

Thus we have ∑
b∈Fpn

ξ0
p +

∑
(a,b)∈S,a6=0

ξ
Ca,b,D+Ca,b,A
p = pn+s,

that is, (3.59) holds. Conversely, using the above arguments we have∑
x,a,b∈Fpn

ξDaDbf(x)
p =

∑
x∈Fpn

∑
(a,b)∈S

ξ
Ca,b,D+Ca,b,A
p

=
∑
x∈Fpn

∑
b∈Fpn

ξ0
p +

∑
a∈F?pn

∑
b∈Sa

ξ
Ca,b,D+Ca,b,A
p

 = p2n.

Hence, by Corollary 3.7, f is p-ary bent.

Remark 3.14. In Subsection 3.2.2, we indicate that the converse of Proposition 3.16

does not hold, in general when s > 0. Namely, (3.59) does not determine whether f

is s-plateaued or not when s > 0.

The following fact can be given in odd characteristic.

Lemma 3.5. Let B be the quadratic map as in (3.55). Assume that p is an odd prime.

Then, for every b ∈ Fpn we have

B(b, b) = 2D(b). (3.61)

Proof. By (3.55), we have B(b, b) = D(b + b) − D(b) − D(b) = D(2b) − 2D(b)

for every b ∈ Fpn . From the definition of D as in (3.53), for 0 ≤ i ≤ j ≤ n − 1
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we have (2b)p
i+pj = 2p

i+pjbp
i+pj = 2p

i
2p

j
bp
i+pj = 4bp

i+pj , where in the last equality

we used that 2p
i

= 2 in Fpn for 0 ≤ i ≤ n − 1 in odd characteristic. In other words,

D(2b) = 4D(b) for every b ∈ Fpn since 2 ∈ F?p in odd characteristic. This completes

the proof.

In the light of the above results, we have further simplifications.

Lemma 3.6. Assume that p is an odd prime. Let S ⊆ Fpn × Fpn be the subset as in

(3.58) and Ca,b,D be a constant function as in (3.57). For every (a, b) ∈ S, we have

Ca,b,D = 0.

Proof. Recall the definition of linear function La,b,B in (3.56), and put x = a,

La,b,B(a) = Trp
n

p (bB(a, a)) + 2Trp
n

p (aB(a, b)). (3.62)

Similarly, by symmetry on a↔ b, we have

La,b,B(b) = Trp
n

p (aB(b, b)) + 2Trp
n

p (bB(b, a)). (3.63)

By (3.58), if (a, b) ∈ S, then La,b,B(x) = 0 for every x ∈ Fpn . Then for every

(a, b) ∈ S,

La,b,B(a) = 0 and La,b,B(b) = 0. (3.64)

Combining (3.61), (3.62) and (3.63), we have La,b,B(a)+La,b,B(b) = 2Ca,b,D. Hence,

by (3.64), Ca,b,D = 0 for every (a, b) ∈ S.

Remark 3.15. In the case when p = 2, Lemma 3.6 does not hold. The following

example shows that Lemma 3.6 fails in characteristic 2.

Example 3.5. Let f(x) = Tr23

2 (ζ2x2 + ζ3x3 + ζx6) be the Boolean function, where

F?23 = 〈ζ〉 with ζ3 + ζ + 1 = 0. Then, in characteristic 2, there exist a = ζ3 and

b = ζ5 such that (ζ3, ζ5) ∈ S but Ca,b,D = 1. On the other hand, there exist a = ζ6

and b = ζ5 such that (ζ6, ζ5) ∈ S and Ca,b,D = 0.

To state the next result, we define the following linear function. For a ∈ Fpn , let ψa,A

be the linear function from Fpn to Fp defined as

ψa,A(x) = Trp
n

p (aA(x) + xA(a)). (3.65)
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Notice that the kernel of ψa,A is defined as ker(ψa,A) = {b ∈ Fpn : ψa,A(b) = 0},
which is an Fp-linear subspace of Fpn . The following result improves Proposition

3.16 when p is an odd prime.

Proposition 3.17. Let p be an odd prime, and let f be a cubic function as in (3.52).

If f is s-plateaued, then the following equivalent statements hold:

i.)
∑
a∈F?pn

∑
b∈Sa

ξ
Ca,b,A
p = pn(ps − 1),

ii.)
∑

a∈F?pn ,Sa⊆ker(ψa,A)

pdim(Sa) = pn(ps − 1).

Conversely, if one of the above summations is zero, then f is p-ary bent.

Proof. Assume that f is s-plateaued. By Proposition 3.16 and Lemma 3.6, it is ob-

vious that (i) holds. We now prove (ii). Recall the definition of the linear function

ψa,A in (3.65), and put x = b. Then we have ψa,A(b) = Trp
n

p (aA(b) + bA(a)), that

is, Ca,b,A. Note that if Sa ⊆ ker(ψa,A), then Ca,b,A = 0 for every b ∈ Sa; otherwise,

Ca,b,A is the linear function. Thus, we have∑
a∈F?pn

∑
b∈Sa

ξ
Ca,b,A
p =

∑
a∈F?pn

∑
b∈Sa⊆ker(ψa,A)

ξ0
p +

∑
a∈F?pn

∑
b∈Sa 6⊆ker(ψa,A)

ξ
Ca,b,A
p

=
∑

a∈F?pn , Sa⊆ker(ψa,A)

#Sa.

If f is s-plateaued, then the assertion follows from (i). Conversely, by Proposition

3.16 and using the above arguments we have∑
x,a,b∈Fpn

ξDaDbf(x)
p =

∑
x∈Fpn

∑
(a,b)∈S

ξ
Ca,b,A
p

=
∑
x∈Fpn

∑
b∈Fpn

ξ0
p +

∑
a∈F?pn

∑
b∈Sa

ξ
Ca,b,A
p

 = p2n.

By Corollary 3.7, we conclude that f is p-ary bent.

The following corollary explains a probably unexpected behavior of homogeneous

cubic functions in even and odd characteristics (see also Remark 3.16).

Corollary 3.39. Let p be an odd prime and f be homogeneous cubic as in Definition

3.4. Then, f is not bent.
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Proof. By Proposition 3.17, f is bent if and only if∑
a∈F?pn

∑
b∈Sa

ξ
Ca,b,A
p = 0. (3.66)

Assume that f is a homogeneous cubic function. Then A(x) = 0 and here Ca,b,A = 0

for every a ∈ F?pn and b ∈ Sa. It is worth noting that Sa is an Fp-linear subspace of

Fpn for every a ∈ Fpn . Thus we have∑
a∈F?pn

∑
b∈Sa

ξ
Ca,b,A
p =

∑
a∈F?pn

#Sa ≥ pn − 1,

which contradicts (3.66). Hence, f is not bent.

Remark 3.16. For p = 2, Corollary 3.39 does not hold. The following example shows

that Corollary 3.39 fails in characteristic 2.

Example 3.6. The homogeneous cubic function Tr26

2 (ζ11x7 + ζ6x11 + ζx13), where

F?26 = 〈ζ〉 with ζ6 + ζ4 + ζ3 + ζ + 1 = 0, is bent in characteristic 2.

Remark 3.17. Under the notation of Example 3.6, let {1, α, α2, . . . , α5} be a basis

of F26 . Putting x = x1 + x2α + x3α
2 + · · · + x6α

5 we obtain a multivariate form

representation in F2[x1, · · · , x6]/〈x2
1−x1, . . . , x

2
6−x6〉 of the function f in Example

3.6. We denote this multivariate form representation again as f = f(x1, . . . , x6) for

simplicity of notation. The degree 3 part of this form is f3(x1, . . . , x6) = x1x2x3 +

x1x2x6 + x1x3x4 + x1x4x5 + x1x4x6 + x1x5x6 + x2x3x6 + x2x4x6 + x3x4x5. Recall

rank3(f3) = rank3(f) is an affine invariant defined in [39]. By a simple and useful

matrix computation explained in [39, Section 3] we obtain that rank3(f3) = 6. Recall

that there are exactly 3 distinct cubic bent functions R1, R2, R3 up to extended affine

equivalence for q = 2 and n = 6 such that rank3(R1) = 3, rank3(R2) = 5 and

rank3(R3) = 6 (see [72]). This shows that the function in Example 3.6 is extended

affine equivalent to R3. Moreover for p = 2 and n = 6 there are exactly 30 distinct

homogeneous cubic bent functions in the sense of multivariate form and they all are

extended affine equivalent to R1 (see [70]). Therefore it is impossible to obtain a

homogeneous cubic bent function in the sense of multivariate form starting from the

function in Example 3.6, choosing a basis and making an affine change of variables.

This shows the important difference for p = 2 and n = 6 mentioned at the end of

Remark 3.13.
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There exists a homogeneous cubic s-plateaued function in odd characteristic when

s > 0.

Example 3.7. In characteristic 3, the homogeneous cubic function Tr33

3 (ζ4x5+ζ2x11+

ζx13) is 1-plateaued where F?33 = 〈ζ〉 with ζ3 + 2ζ + 1 = 0.

Recall that the radical of a quadratic function Q : Fpn → Fp is defined as

WQ := {y ∈ Fpn : Q(x+ y) = Q(x) +Q(y), ∀x ∈ Fpn},

which is an Fp-linear subspace of Fpn . If dim(WQ) = 0, that is,WQ = {0}, then Q

is said to be non-degenerate; otherwise, Q is said to be degenerate.

Corollary 3.40. Let p be an odd prime and f be a cubic function as in (3.52). If

f is bent, then the homogeneous quadratic function Q(x) = Trp
n

p (xA(x)) is non-

degenerate.

Proof. Assume that Q(x) = Trp
n

p (xA(x)) is degenerate. Then, there exists u ∈ F?pn
such that Q(x+ u) = Q(x) +Q(u) for every x ∈ Fpn . As

Trp
n

p ((x+ u)A(x+ u)) = Q(x) + Trp
n

p (xA(u) + uA(x)) +Q(u),

there exists u ∈ F?pn such that Trp
n

p (xA(u) + uA(x)) = 0 for every x ∈ Fpn . Recall

the definition of the linear function ψu,A defined as ψu,A(x) = Trp
n

p (xA(u) + uA(x))

in (3.65). Then, there exists u ∈ F?pn such that ker(ψu,A) = Fpn . Assume also that f

is bent. By Proposition 3.17, we obtain∑
a∈F?pn ,Sa⊆ker(ψa,A)

pdim(Sa) = 0. (3.67)

As u ∈ F?pn and ker(ψu,A) = Fpn , we have Su ⊆ ker(ψu,A), dim(Su) ≥ 0 and

pdim(Su) ≥ 1. Hence for u ∈ F?pn , the left-hand side of (3.67) is positive, which is a

contradiction.

Example 3.8. Let Tr33

3 (2x4 + 2x5 + x11) be the cubic bent function. Then, its homo-

geneous quadratic part Tr33

3 (2x4) is non-degenerate.

A linearized polynomial C(x) = c0x + c1x
p + · · · + cn−1x

pn−1 ∈ Fpn [x] is called a

permutation polynomial if the map x 7→ C(x) is a bijection on Fpn , which means that
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C has no nonzero root in Fpn . Using a well-known characterization of non-degenerate

quadratic forms in odd characteristic we obtain the following.

Corollary 3.41. Let p be an odd prime and f be a cubic function as in (3.52). Let a ∈
F?p be a quadratic non-residue. If f is bent, then there exists a linearized permutation

polynomial C(x) ∈ Fpn [x] such that f(C(x)) = Trp
n

p (xD̃(x)) + Trp
n

p (ηx2) where

η ∈ {1, a} and

D̃(x) =
∑

0≤i≤j≤n−1

d̃ijx
pi+pj with d̃ij ∈ Fpn (3.68)

satisfying Trp
n

p (xD̃(x)) = Trp
n

p (C(xD(x))) for every x ∈ Fpn .

Proof. By Corollary 3.40, the quadratic function Trp
n

p (xA(x)) is non-degenerate.

Using the arguments in the proof of [68, Proposition 3.1], we obtain that any non-

degenerate quadratic function is equivalent to exactly one of the quadratic func-

tions x 7→ Trp
n

p (ηx2) with η ∈ {1, a}. Then we consider the quadratic functions

Trp
n

p (ηx2) with η ∈ {1, a}. Hence, there exists a linearized permutation polynomial

C(x) ∈ Fpn [x] such that Trp
n

p (C(xA(x))) = Trp
n

p (ηx2) with η ∈ {1, a}. Moreover,

there exists D̃(x) as in (3.68) such that Trp
n

p (C(xD(x))) = Trp
n

p (xD̃(x)) since C is

a linearized permutation polynomial over Fpn . Combining the arguments above, the

proof is complete.

3.5.2 Cubic (Homogeneous) Plateaued p-Ary Functions Without Full Rank

In this subsection, we first consider a notion of the rank of a function in arbitrary

characteristic, and then give a method, which can be straightforwardly obtained from

the definition, to determine it. By MAGMA [5], we obtain several cubic plateaued

functions without full rank in characteristic 3. By considering the rank of plateaued

functions, we characterize these functions in terms of their second-order derivatives,

and hence it reveals the non-existence of a (homogeneous) cubic plateaued function

in odd characteristic in many cases.

Definition 3.5. Let f be a function from Fpn to Fp. The rank of f is defined as the

smallest nonnegative integer r such that there exists an Fp-linear subspace W ⊆ Fpn
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and its complement W ⊆ Fpn of dimension n− r satisfying

f(x1 + x2) = f(x1)

for every x1 ∈ W and x2 ∈ W. We write rank(f) = r.

It is worth noting that if f is a quadratic function, then the notion of the rank of f in

Definition 3.5 coincides with the usual rank of quadratic functions (see, e.g., [7]).

Remark 3.18. We remark that the notion of the rank in Definition 3.5 is invariant

under affine transformations. Indeed, let ψ : Fpn → Fpn be an Fp-linear isomorphism

and α ∈ Fpn . Let g(x) = f(ψ(x)) and h(x) = f(x+α). It is enough to show that the

ranks of f, g and h are the same in the sense of Definition 3.5. Assume that rank(f) =

r and W,W are Fp-linear subspaces of Fpn with dim(W ) = r, dim(W ) = n− r and

W ∩W = {0}. Moreover, we assume that f(x1 + x2) = f(x1) for all x1 ∈ W and

x2 ∈ W. Then it is not difficult to observe that g(y1+y2) = g(y1) for all y1 ∈ ψ−1(W )

and y2 ∈ ψ−1(W ). Moreover, dim(ψ−1(W )) = r, dim(ψ−1(W )) = n − r and

ψ−1(W )∩ψ−1(W ) = {0}. Also we observe that h(x1 + x2) = h(x1) for all x1 ∈ W
and x2 ∈ W . These arguments show that the rank in Definition 3.5 is invariant under

affine transformations.

Recall that the cubic function f is defined as

f(x) = Trp
n

p (xD(x)) + Trp
n

p (xA(x))

for x ∈ Fpn without loss of generality. Assume that rank(f) = r. Let W be a

corresponding r-dimensional Fp-linear subspace of Fpn . Indeed, there may be many

different r-dimensional subspaces corresponding to rank r. By Definition 3.5, f can

be written as f(x1) = Trp
n

p (x1D(x1)) + Trp
n

p (x1A(x1)) for x1 ∈ W . We keep the

above notations in the sequel. The following is a direct generalization of Lemma 3.4.

Lemma 3.7. Let f be a cubic function as in (3.52), and let W be an Fp-linear sub-

space of dimension rank(f) for the rank of f in Definition 3.5. For a, b, x ∈ Fpn ,

let a1, b1, x1 ∈ W and a2, b2, x2 ∈ W such that a = a1 + a2, b = b1 + b2 and

x = x1 + x2. Then, the second-order derivative of f at (a, b) ∈ F2
pn for x ∈ Fpn is

the affine function defined as DaDbf(x) = La1,b1,B(x1) + Ca1,b1,D + Ca1,b1,A, where

a1, b1, x1 ∈ W .
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Proof. The second-order derivative of f at (a, b) ∈ F2
pn for x ∈ Fpn is given as

DaDbf(x) = f(x+ a+ b)− f(x+ a)− f(x+ b) + f(x) =

f(x1 + x2 + a1 + a2 + b1 + b2)− f(x1 + x2 + a1 + a2)− f(x1 + x2 + b1 + b2)

+f(x1 + x2) = f(x1 + a1 + b1)− f(x1 + a1)− f(x1 + b1) + f(x1)

= Da1Db1f(x1),

where we use the fact that W is an Fp-linear subspace of dimension rank(f). By

Lemma 3.4, and using the notation we have

Da1Db1f(x1) = La1,b1,B(x1) + Ca1,b1,D + Ca1,b1,A.

This completes the proof.

The following is a direct but practical generalization of Theorem 3.6.

Theorem 3.25. Let f : Fpn → Fp. Let r be the rank of f and let W be a correspond-

ing r-dimensional Fp-linear subspace of Fpn . Then, f is s-plateaued if and only if for

every x1 ∈ W ∑
a1,b1∈W

ξ
Da1Db1f(x1)
p = p2r+s−n.

Proof. Let W be a corresponding n− r dimensional Fp-linear subspace of Fpn . Then

a, b, x ∈ Fpn are uniquely determined as a = a1 + a2, b = b1 + b2 and x = x1 + x2,

where a1, b1, x1 ∈ W and a2, b2, x2 ∈ W . By Lemma 3.7, we have DaDbf(x) =

Da1Db1f(x1). Then by Theorem 3.6, f is s-plateaued if and only if for every x1 ∈
W,x2 ∈ W ∑

a1∈W

∑
a2∈W

∑
b1∈W

∑
b2∈W

ξ
Da1Db1f(x1)
p = pn+s,

that is, pn−rpn−r
∑

a1∈W
∑

b1∈W ξ
Da1Db1f(x1)
p = pn+s for every x1 ∈ W .

As a generalization of the sets S and Sa given before Proposition 3.16, we now define

the sets T and Ta1 as follows. Let T ⊆ W ×W be the subset T = {(a1, b1) ∈ W 2 :

La1,b1,B(x1) = 0, ∀x1 ∈ W}. For a1 ∈ W, let Ta1 ⊆ W be the subset

Ta1 = {b1 ∈ W : La1,b1,B(x1) = 0, ∀x1 ∈ W} = {b1 ∈ W : (a1, b1) ∈ T}.
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Note that for every a1 ∈ W, Ta1 is an Fp-linear subspace of W . Clearly, if a1 = 0,

then T0 = W .

Let ψ̃a1,A : W → Fp be a generalization of the linear function ψa,A given in (3.65).

Namely, for a1 ∈ W , let ψ̃a1,A(x1) = Trp
n

p (a1A(x1)) + Trp
n

p x1A(a1)) for x1 ∈ W .

Notice that the kernel of ψ̃a1,A is defined as ker(ψ̃a1,A) = {b1 ∈ W : ψ̃a1,A(b1) = 0},
which is an Fp-linear subspace of W .

Now we are ready to give a generalization of Proposition 3.17.

Proposition 3.18. Let p be an odd prime and let f be a cubic function as in (3.52).

Assume that rank(f) = r in Definition 3.5. Let W be a corresponding r-dimensional

Fp-linear subspace of Fpn . If f is s-plateaued, then the following equivalent state-

ments hold:

i.)
∑

0 6=a1∈W

∑
b1∈Ta1

ξ
Ca1,b1,A
p = pr(pr+s−n − 1),

ii.)
∑

0 6=a1∈W, Ta1⊆ker(ψ̃a1,A)

pdim(Ta1 ) = pr(pr+s−n − 1).

Proof. By Lemma 3.7, the second-order derivative of f at (a1, b1) ∈ W 2 is the affine

function given as Da1Db1f(x1) = La1,b1,B(x1) + Ca1,b1,D + Ca1,b1,A for x1 ∈ W .

Assume that f is s-plateaued. By Theorem 3.25, we have∑
(a1,b1)/∈T

∑
x1∈W

ξ
Da1Db1f(x1)
p +

∑
(a1,b1)∈T

∑
x1∈W

ξ
Da1Db1f(x1)
p = p3r+s−n.

For (a1, b1) /∈ T , the first sum is zero since an affine function is balanced. For

(a1, b1) ∈ T we have La1,b1,B(x1) = 0 for every x1 ∈ W . Then, we have∑
(a1,b1)∈T

ξ
Ca1,b1,D+Ca1,b1,A
p = p2r+s−n.

Notice that (a1, b1) ∈ T if and only if b1 ∈ Ta1 for a1 ∈ W . Recall that if a1 = 0,

then T0 = W . If a1 = 0, we have Ca1,b1,D = 0 and Ca1,b1,A = 0. By Lemmas 3.6 and

3.7, Ca1,b1,D = 0 for every (a1, b1) ∈ T . Thus we have∑
b1∈W

ξ0
p +

∑
(a1,b1)∈T,a1 6=0

ξ
Ca1,b1,A
p = p2r+s−n,

that is, (i) holds.
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We next prove (ii). From the definition of ψ̃a1,A, putting x1 = b1, we have

ψ̃a1,A(b1) = Trp
n

p (a1A(b1)) + Trp
n

p (b1A(a1)),

which is equal to Ca1,b1,A. Hence, if Ta1 ⊆ ker(ψ̃a1,A), then Ca1,b1,A = 0 for every

b1 ∈ Ta1; otherwise, Ca1,b1,A is the linear function. Then we have∑
06=a1∈W

∑
b1∈Ta1

ξ
Ca1,b1,A
p =

∑
06=a1∈W

∑
b1∈Ta1⊆ker(ψ̃a1,A)

ξ0
p+∑

06=a1∈W

∑
b1∈Ta1 6⊆ker(ψ̃a1,A)

ξ
Ca1,b1,A
p =

∑
06=a1∈W, Ta1⊆ker(ψ̃a1,A)

#Ta1 .

Hence, the proof follows from (i).

We derive from Proposition 3.18 the following result.

Corollary 3.42. Let p be an odd prime and f be a cubic function as in (3.52) with

rank(f) = r. If r + s < n, then f is not s-plateaued.

Proof. Let W be a corresponding r-dimensional Fp-linear subspace of Fpn for the

rank of f in Definition 3.5. Assume that f is s-plateaued. By Proposition 3.18, we

have

∑
06=a1∈W, Ta1⊆ker(ψ̃a1,A)

pdim(Ta1 ) = pr(pr+s−n − 1). (3.69)

Note that the left-hand side of (3.69) is nonnegative. However, since r + s < n, we

have pr+s−n − 1 < 0 and hence the right-hand side of (3.69) is negative, which is a

contradiction.

In the case of r + s = n, we obtain the following result, which is a generalization of

Corollary 3.39. We assume that f is non-constant without loss of generality, that is,

the rank of f cannot be zero.

Corollary 3.43. Let p be an odd prime and f be homogeneous cubic as in Definition

3.4 with rank(f) = r ≥ 1. If r + s = n, then f is not s-plateaued.
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Proof. Let W be a corresponding r-dimensional Fp-linear subspace of Fpn for the

rank of f in Definition 3.5. Assume that f is s-plateaued and r+ s = n. By Proposi-

tion 3.18, we have ∑
0 6=a1∈W

∑
b1∈Ta1

ξ
Ca1,b1,A
p = pr(pr+s−n − 1) = 0, (3.70)

since pr+s−n = 1. Moreover, since f is a homogeneous cubic function, A(x) = 0 for

every x ∈ Fpn and hence Ca1,b1,A = 0 for every 0 6= a1 ∈ W and b1 ∈ Ta1 . Note

that Ta1 is an Fp-linear subspace of W for every a1 ∈ W . Hence, as in the proof of

Corollary 3.39, we have∑
0 6=a1∈W

∑
b1∈Ta1

ξ
Ca1,b1,A
p =

∑
06=a1∈W

#Ta1 ≥ pr − 1. (3.71)

Since r ≥ 1, combining (3.70) and (3.71) we get a contradiction.

The following result can be considered as a generalization of Corollary 3.40.

Corollary 3.44. Let p be an odd prime and f be a cubic function as in (3.52) with

rank(f) = r ≥ 1. Assume that f is s-plateaued and r + s = n. Let W be a corre-

sponding r-dimensional Fp-linear subspace of Fpn for the rank of f in Definition 3.5.

Let QW : W → Fp be the restriction of the corresponding homogeneous quadratic

function such that QW (x) = Trn(xA(x)) for x ∈ W . Then QW is non-degenerate.

Proof. As in the proof of Corollary 3.43, since f is s-plateaued and r + s = n, we

have ∑
06=a1∈W, Ta1⊆ker(ψ̃a1,A)

pdim(Ta1 ) = pr(pr+s−n − 1) = 0. (3.72)

Next we use an argument in the proof of Corollary 3.40. Assume that QW is degener-

ate. Then, there exists a1 ∈ W \ {0} such that Trp
n

p (xA(a1)) + Trp
n

p (a1A(x)) = 0 for

every x ∈ W . This implies ker(ψ̃a1,A) = W and hence the right-hand side of (3.72) is

at least pdim(Ta1 ) ≥ 1. This gives a contradiction. Hence, QW is non-degenerate.

As a generalization of Corollary 3.41, we give the next result. Recall that if W is an

Fp-linear subspace of Fpn of dimension rank(f) and if W ⊆ Fpn is its complement

as in Definition 3.5, then f(x1 + x2) = f(x1) for x1 ∈ W and x2 ∈ W .

88



Corollary 3.45. Let p be an odd prime and f be a cubic function as in (3.52) with

rank(f) = r ≥ 1. Assume that f is s-plateaued and r + s = n. Let η ∈ F?pn be a

quadratic non-residue. Let W be a corresponding r-dimensional Fp-linear subspace

of Fpn for the rank of f in Definition 3.5. Then there exists an Fp-linear isomorphism

L : W → Fpr and µ ∈ {1, η} such that

f(L(y1)) = Trp
n

p (L(y1)D(L(y1))) + Trr(µy2
1)

for every y1 ∈ Fpr .

Proof. By the help of the proof of Corollary 3.41, we are able to prove this corollary.

Let QW : W → Fp be a homogeneous quadratic function defined as QW (x1) =

Trn(x1A(x1)) for x1 ∈ W . By Corollary 3.44, QW is non-degenerate. As in the

proof of Corollary 3.41 we obtain an Fp-linear isomorphism L : W → Fpr and

µ ∈ {1, η} such that

Trp
n

p (L(y1)A(L(y1))) = Trr(µy2
1)

for every y1 ∈ Fpr . Using the fact that f(x1) = Trp
n

p (x1D(x1)) + Trp
n

p (x1A(x1)) for

every x1 ∈ W , the result follows.

In this section we consider mainly arbitrary cubic functions as in (3.52). It is worth

noting that if p = 2, then there exists a different and natural notion of ranks for

Boolean functions (see [39]). For example if f is a Boolean cubic function in n

variables in algebraic normal form (multivariate form), then rank3(f) is the smallest

number of linearly independent combinations of x1, . . . , xn needed in the degree 3

part of f = f(x1, . . . , xn). Then rank2(f) is also defined. Moreover, [39] gives

a very nice algorithm to determine these ranks. The notion of rank in Definition

3.5 is different from these notions in [39]. Finally in this subsection, we give a rather

direct method, the consequence of the definition, to determine the rank of a cubic (and

actually an arbitrary) function in arbitrary characteristic in the sense of Definition 3.5.

A method to determine rank(f): Let f : Fnp → Fp. Recall that the rank of f is the

smallest nonnegative integer r such that there exists an Fp-linear subspace W ⊆ Fnp
and its complement W ⊆ Fnp of dimension n − r satisfying f(x1 + x2) = f(x1) for

every x1 ∈ W and x2 ∈ W , where x1 +x2 = x ∈ Fnp . Let BW = {α1, α2, . . . , αr} be
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a basis of W over Fp and BW = {αr+1, αr+2, . . . , αn} be a basis of W over Fp where

B = {α1, α2, . . . , αr, αr+1, . . . , αn} is a basis of Fnp . Let B′W = {α′1, α
′
2, . . . , α

′
r} and

B
′

W
= {α′r+1, α

′
r+2, . . . , α

′
n} be the dual bases of BW and BW , respectively where

B
′

= {α′1, α
′
2, . . . , α

′
r, α

′
r+1, . . . , α

′
n} is a basis of Fnp . Notice that Fnp = 〈B〉 = 〈B′〉,

where B and B′ are the dual bases of Fnp over Fp. Hence, x1 and x2 can be written as

x1 = α1Trp
n

p (α
′
1x) + α2Trp

n

p (α
′
2x) + · · ·+ αrTrp

n

p (α
′
rx)

and

x2 = αr+1Trp
n

p (α
′
r+1x) + αr+2Trp

n

p (α
′
r+2x) + · · ·+ αnTrp

n

p (α
′
nx).

Using the dual bases B and B
′ , we can determine r and provide a corresponding

Fp-linear subspace W = 〈BW 〉 using Algorithm 1.

Algorithm 1 Find rank(f) = r

Require: n, f, B = {α1, α2, . . . , αn}, B
′
= {α′1, α

′
2, . . . , α

′
n},Fnp .

Ensure: r.

1: for r := 1 to n− 1 do

2: for x in Fnp do

3: Compute x1 = α1Trp
n

p (α
′
1x) + α2Trp

n

p (α
′
2x) + · · ·+ αrTrp

n

p (α
′
rx)

4: Compute x2 = αr+1Trp
n

p (α
′
r+1x)+αr+2Trp

n

p (α
′
r+2x)+· · ·+αnTrp

n

p (α
′
nx)

5: if f(x1 + x2)! = f(x1) then

6: goto next r

7: end if

8: end for

9: return r

10: end for

11: return n

In the following example we give a cubic plateaued function f with rank(f) < n and

a corresponding Fp-linear subspaceW of dimension rank(f) when p is an odd prime.

Example 3.9. Let f(x) = Tr33

3 (ζx2 + ζx3 + ζ22x4 + ζ22x13), where F?33 = 〈ζ〉 with

ζ3 + 2ζ + 1 = 0. Then, f is 1-plateaued with rank(f) = 2 and W = 〈{ζ, ζ2}〉.
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CHAPTER 4

ON THE FUNCTIONS WITH FOUR-VALUED ABSOLUTE

WALSH SPECTRUM

The main motivation of this chapter is about the converse of Corollary 3.6 in Subsec-

tion 3.2.2. As this shows a drastic change for s = 0 and an integer s ≥ 1 cases, by

MAGMA [5] we found a great number of concrete examples which show the failure

of the converse of Corollary 3.6 for s ≥ 1 (notice that its converse is true for s = 0).

Then, we tried to study these examples in a systematic way. As a plateaued (but not

bent) function has exactly two distinct values (one being zero) in its absolute Walsh

spectrum, then it is natural to try such examples first with three distinct values (one

being zero). We observe that it is impossible for many cases to find a such example

with exactly three distinct values (one being zero) in its absolute Walsh spectrum. Fi-

nally we search a such example with exactly four distinct values (one being zero), and

find several examples in characteristics 2 and 3. The results presented in this chapter

appear in [64].

4.1 Non-Existence of Functions with Three-valued Absolute Walsh Spectrum

This section shows the non-existence of a function f such that S2(f) = p3n+s with

1 ≤ s ≤ n and its absolute Walsh transform takes exactly three distinct values, which

are in {0, c1p
n, c2p

n} with 0 < c1 < ps < c2 positive integers. In the case of s = 0,

the non-existence of a such function follows readily from Theorem 3.2.

We first need the following lemma. Recall that S0(f) = pn and S1(f) = p2n for

any function f . The even moments Si(f) for i = 0, 1, 2 allow us to compute the
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multiplicity of each value of the absolute Walsh transforms of f .

Lemma 4.1. Let f : Fpn → Fp and s be an integer with 1 ≤ s ≤ n. Assume that

there exists a function f such that |χ̂f (ω)|2 ∈ {0, c1p
n, c2p

n} for every ω ∈ Fpn , all

of three appear and c1, c2 are positive integers with 0 < c1 < ps < c2, and also

S2(f) = p3n+s. Then |χ̂f (ω)|2 takes a0 times the value 0, a1 times the value c1p
n and

a2 times the value c2p
n, where the values a0 = pn − a1 − a2,

a1 =
pn(ps − c2)

c1(c1 − c2)
and a2 =

pn(ps − c1)

c2(c2 − c1)
(4.1)

are positive integers with 0 < c1 < ps < c2.

Proof. As S0(f) = pn, S1(f) = p2n and S2(f) = p3n+s, we have the following

equations, respectively:

a0 + a1 + a2 = pn,

a1c1 + a2c2 = pn,

a1c
2
1 + a2c

2
2 = pn+s.

Then, by solving the above linear equation system, we obtain the desired positive

integers in (4.1).

Recall that for a prime p, the p-adic valuation of a positive integer c is the highest

power v such that pv divides c, which is denoted by vp(c) = v.

Theorem 4.1. Let f : Fpn → Fp and s be an integer with 1 ≤ s ≤ n. There does not

exist a function f such that

|χ̂f (ω)|2 ∈ {0, c1p
n, c2p

n}

for every ω ∈ Fpn , all of three appear and c1, c2 are positive integers with 0 < c1 <

ps < c2, and also S2(f) = p3n+s.

Proof. Assume that there exists a such function f . By Lemma 4.1, the values

a1 =
pn(ps − c2)

c1(c1 − c2)
and a2 =

pn(ps − c1)

c2(c2 − c1)
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are two positive integers with 0 < c1 < ps < c2. Let vp be p-adic valuation. It is

obvious that vp(c2) ≥ 0 and vp(c1) ≥ 0. Assume that there exists an integer i with

0 ≤ i ≤ s− 1 such that vp(c1) ≥ i and vp(c2) ≥ i. We now show

vp(c2) ≥ i+ 1,

vp(c1) ≥ i+ 1.
(4.2)

Assume that vp(c2) = i. The positive integer a2 can be rewritten as

a2 =
pn
(
ps−c1
pi

)
(
c2
pi

)
(c2 − c1)

since vp(ps−c1) ≥ i and vp(c2) = i.As both c2
pi

and ps−c1
pi

are integers and gcd(p, c2
pi

) =

1, we have c2
pi
| ps−c1

pi
. Then, c2 | (ps − c1) and it implies c2 ≤ ps − c1, which is a

contradiction with 0 < c1 < ps < c2. Hence, vp(c2) ≥ i+ 1.

To prove the second inequality in (4.2), assume that vp(c1) = i. We have vp(c2−c1) =

min{vp(c2), vp(c1)} = i, which implies

gcd

(
c2 − c1

pi
, p

)
= 1. (4.3)

Notice that vp(ps − c1) ≥ i by assumption. Then the positive integer a2 can be

rewritten as

a2 =
pn
(
ps−c1
pi

)
c2

(
c2−c1
pi

) .
Thus, c2−c1

pi
| ps−c1

pi
by (4.3). We conclude c2 − c1 ≤ ps − c1, that is, c2 ≤ ps, which

is a contradiction with 0 < c1 < ps < c2. Hence, vp(c1) ≥ i + 1. By using (4.2),

we have vp(c2) ≥ s and vp(c1) ≥ s, which is a contradiction with 0 < c1 < ps < c2.

Thus, we conclude the non-existence of a such function f .

4.2 A new Class of Functions with Four-valued Absolute Walsh Spectrum

This section is concerned with a function f such that S2(f) = p3n+s with 1 ≤ s ≤
n and its absolute Walsh transform takes exactly four distinct values, which are in

{0, c1p
n, c2p

n, c3p
n} with 0 < c1 < c2 < c3. We present some experimental results

about such functions by MAGMA [5] in characteristics 2 and 3.
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We start by introducing the notion of WT 4-valued with type-s Boolean functions for

a nonempty class of such functions in characteristic 2.

Definition 4.1. Let f be a Boolean function from F2n to F2, and both n and s be odd

(or even) integers with 1 ≤ s ≤ n − 4. Then, f is called WT 4-valued with type-s if

|χ̂f (ω)|2 has exactly four values, which are in {0, 2n+s−2, 4 ∗ 2n+s−2, 9 ∗ 2n+s−2} for

every ω ∈ F2n .

The following theorem allows us to obtain an infinite class of WT 4-valued with

type-s functions in the sense of Definition 4.1 starting from one such function with a

smaller type parameter.

Theorem 4.2. Let f be a WT 4-valued with type-s Boolean function on F2n and both n

and s be integers with 1 ≤ s ≤ n. Let m be a positive integer. There exists a Boolean

function h on F2n × F2m defined as h(x, y) = f(x) for x ∈ F2n and y ∈ F2m . Then,

h is WT 4-valued with type-s′ Boolean on F2n+m , where s′ = m+ s.

Proof. For (ω, v) ∈ F2n × F2m , the Walsh transform χ̂h(ω, v) of h from F2n+m to F2

is given by

χ̂h(ω, v) =
∑
x∈F2n

∑
y∈F2m

ξ
h(x,y)−Tr2

n

2 (ωx)−Tr2
m

2 (vy)
2

=
∑
x∈F2n

ξ
f(x)−Tr2

n

2 (ωx)
2

∑
y∈F2m

ξ
−Tr2

m

2 (vy)
2 = 2mχ̂f (ω),

where in the second equality we used h(x, y) = f(x) for x ∈ F2n and y ∈ F2m .

Hence, the proof is complete.

We now make a preliminary but useful remark, which can be used to characterize the

WT 4-valued with type-s functions. For every integers A1, A2, A3 and every nonneg-

ative integers u1, u2, u3, u4, we have∑
ω∈Fpn

(
|χ̂f (ω)|2 − A1

)2u1 (|χ̂f (ω)|2 − A2

)2u2 (|χ̂f (ω)|2 − A3

)2u3 |χ̂f (ω)|2u4 ≥ 0.

In particular, for any integers A1, A2, A3, the following equation holds∑
ω∈Fpn

(
|χ̂f (ω)|2 − A1

) (
|χ̂f (ω)|2 − A2

) (
|χ̂f (ω)|2 − A3

)
|χ̂f (ω)|2 =

S4(f)− S3(f)(A1 + A2 + A3) + S2(f)(A1A2 + A2A3 + A1A3)− S1(f)A1A2A3.
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Theorem 4.3. Let f : F2n → F2 be a Boolean function such that S2(f) = 23n+1

and S3(f) = 24n−5173. Then f is WT 4-valued with type-1 if and only if S4(f) =

25n−5571.

Proof. For A1 = 2n−1, A2 = 4 ∗ 2n−1, A3 = 9 ∗ 2n−1, and by substituting the Si(f)

values into above equation, we get∑
ω∈Fpn

(
|χ̂f (ω)|2 − 2n−1

) (
|χ̂f (ω)|2 − 4 ∗ 2n−1

) (
|χ̂f (ω)|2 − 9 ∗ 2n−1

)
|χ̂f (ω)|2

= 25n−5571− 25n−6173 ∗ 14 + 25n−149− 25n−336 = 0,

that is, |χ̂f (ω)|2 ∈ {0, 2n−1, 4∗2n−1, 9∗2n−1} for every ω ∈ F2n . It is clear that all of

these values appear. Indeed, otherwise, modifying the argument above in this proof

we obtain the contradiction that S4(f) 6= 25n−5571. This completes the proof.

By MAGMA [5], we obtain several concrete examples of a WT 4-valued with type-1

Boolean function f such that S2(f) = 23n+1 and S3(f) = 24n−5173, where n = 5

and s = 1.

Example 4.1. The function f given in Example 3.1 is WT 4-valued with type-1, i.e.,

|χ̂f (ω)|2 ∈ {0, 16, 64, 144} for every ω ∈ F25 . Moreover it satisfies S2(f) = 216 and

S3(f) = 215173.

Recall that S0(f) = pn and S1(f) = p2n for any function f . Assume that f is a

WT 4-valued with type-1 Boolean function such that S2(f) = 23n+1 and S3(f) =

24n−5173. Then, the even moments Si(f) for i = 0, 1, 2, 3 of f allow us to compute

the multiplicity of each value of the absolute Walsh transform of f .

Lemma 4.2. Let f be a WT 4-valued with type-1 Boolean function on F2n , where n

is an odd integer. Assume that S2(f) = 23n+1 and S3(f) = 24n−5173. Then, |χ̂f (ω)|2

takes a0 times the value 0, a1 times the value 2n−1, a2 times the value 4 ∗ 2n−1 and

a3 times the value 9 ∗ 2n−1, where a0 = 2n − 26 ∗ 2n−5, a1 = 15 ∗ 2n−5, a2 =

10 ∗ 2n−5, and a3 = 2n−5 are positive integers.

Proof. As S0(f) = 2n, S1(f) = 22n, S2(f) = 23n+1 and S3(f) = 24n−5173, we have
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the following four equations, respectively:

a0 + a1 + a2 + a3 = 2n,

a1 + 4a2 + 9a3 = 2n+1,

a1 + 16a2 + 81a3 = 2n+3,

a1 + 64a2 + 729a3 = 2n−2173.

Thus, solving the above linear equation system, we get the desired positive integers.

The sequence of the Walsh power moments of a WT 4-valued with type-1 Boolean

function follows from Lemma 4.2.

Corollary 4.1. Let f be a WT 4-valued with type-1 Boolean function on F2n . Assume

that S2(f) = 23n+1 and S3(f) = 24n−5173. Then for every integer i ≥ 2, we get

Si(f) =
∑
ω∈F2n

|χ̂f (ω)|2i = 2n(i+1)+i−4(2−2i−1(15 + 9i) + 5).

Proof. By Lemma 4.2, for every integer i ≥ 2, we get

Si(f) =
∑
ω∈F2n

|χ̂f (ω)|2i = (2n − 26 ∗ 2n−5) ∗ 0

+15 ∗ 2n−5 ∗ 2i(n−1) + 10 ∗ 2n−5 ∗ 4i ∗ 2i(n−1) + 2n−5 ∗ 9i ∗ 2i(n−1)

= 2i(n−1)(15 ∗ 2n−5 + 10 ∗ 2n−5 ∗ 4i + 2n−5 ∗ 9i)

= 2n(i+1)+i−4(2−2i−1(15 + 9i) + 5).

The proof is complete.

Remark 4.1. Let f be a WT 4-valued with type-1 Boolean function on F2n . Assume

that S2(f) = 23n+1 and S3(f) = 24n−5173. For n = 5, 7, the Walsh power moments

Si(f) are given in

2n(i+1)+i−1 < Si(f) < 2n(i+1)+2(i−1)

for i = 4, . . . , 17 and in 2n(i+1)+2(i−1) < Si(f) < 2n(i+1)+3(i−1) for i = 18, . . . , 100000.

By MAGMA [5], we obtain several concrete examples of a WT 4-valued with type-2

Boolean function f such that S2(f) = 23n+2 and S3(f) = 24n−2109, where n is an

even integer for s = 2.
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Example 4.2. Let f(x) = Tr26

2 (ζx23 + ζ18x27), where F?26 = 〈ζ〉 with ζ6 + ζ4 + ζ3 +

ζ + 1 = 0. Then f is WT 4-valued with type-2, i.e., |χ̂f (ω)|2 ∈ {0, 64, 256, 576} for

every ω ∈ F26 . Moreover it satisfies S2(f) = 220 and S3(f) = 222109.

Assume that f is a WT 4-valued with type-2 Boolean function such that S2(f) =

23n+2 and S3(f) = 24n−2109. Then, the even moments Si(f) for i = 0, 1, 2, 3 of f

allow us to compute the multiplicity of each value of the absolute Walsh transform of

f .

Lemma 4.3. Let f be a WT 4-valued with type-2 Boolean function on F2n , where n is

an even integer. Assume that S2(f) = 23n+2 and S3(f) = 24n−2109. Then, |χ̂f (ω)|2

takes a0 times the value 0, a1 times the value 2n, a2 times the value 4∗2n and a3 times

the value 9 ∗ 2n, where a0 = 2n − 18 ∗ 2n−5, a1 = 15 ∗ 2n−5, a2 = 2 ∗ 2n−5 and

a3 = 2n−5 are positive integers.

Proof. Notice that we have S0(f) = 2n, S1(f) = 22n, S2(f) = 23n+2 and S3(f) =

24n−2109. Then we have the following four equations, respectively:

a0+ a1 + a2 + a3 = 2n,

a1 + 4a2 + 9a3 = 2n,

a1 + 16a2 + 81a3 = 2n+2,

a1 + 64a2 + 729a3 = 2n−2109.

Thus, solving the above linear equation system, we obtain these integers.

The sequence of the Walsh power moments of a WT 4-valued with type-2 Boolean

function follows from Lemma 4.3.

Corollary 4.2. Let f be a WT 4-valued with type-2 Boolean function on F2n . Assume

that S2(f) = 23n+2 and S3(f) = 24n−2109. Then for every integer i ≥ 2, we get

Si(f) =
∑
ω∈F2n

|χ̂f (ω)|2i = 2n(i+1)+2i−4(2−2i−1(15 + 9i) + 1).
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Proof. By Lemma 4.3, for every integer i ≥ 2, we have

Si(f) =
∑
ω∈F2n

|χ̂f (ω)|2i = (2n − 18 ∗ 2n−5) ∗ 0

+15 ∗ 2n−5 ∗ 2in + 2 ∗ 2n−5 ∗ 4i ∗ 2ni + 2n−5 ∗ 9i ∗ 2in

= 2n(i+1)+2i−4(2−2i−1(15 + 9i) + 1).

The proof is complete.

Below we introduce the notion of WT 4-valued with type-s functions in odd charac-

teristic, which is a non-empty class of such functions.

Definition 4.2. Let f be a function from Fpn to Fp, and both n and s be integers

with 1 ≤ s ≤ n − 2, where p = 3. Then, f is called WT 4-valued with type-s

if |χ̂f (ω)|2 has exactly four values, which are in {0, pn+s−1, 4pn+s−1, 7pn+s−1} for

every ω ∈ Fpn .

By MAGMA [5], we obtain several concrete examples of a WT 4-valued with type-1

function f such that S2(f) = p3n+1 and S3(f) = 47p4n−1, where p = 3.

Example 4.3. The function f given in Example 3.2 is the WT 4-valued with type-1,

i.e., |χ̂f (ω)|2 ∈ {0, 27, 108, 189} for every ω ∈ F33 . Moreover it satisfies S2(f) = 310

and S3(f) = 31147.

Assume that f is a WT 4-valued with type-1 function such that S2(f) = p3n+1 and

S3(f) = 47p4n−1, where p = 3. The even moments Si(f) for i = 0, 1, 2, 3 of f allow

us to compute the multiplicity of each value of its absolute Walsh transform.

Lemma 4.4. Let f be a WT 4-valued with type-1 function from Fpn to Fp, where

p = 3. Assume that S2(f) = p3n+1 and S3(f) = p4n−147. Then |χ̂f (ω)|2 takes a0

times the value 0, a1 times the value pn, a2 times the value 4pn and a3 times the value

7pn, where a0 = pn − 18pn−3, a1 = 16pn−3, a2 = pn−3 and a3 = pn−3 are positive

integers.

Proof. As S0(f) = pn, S1(f) = p2n, S2(f) = p3n+1 and S3(f) = 47p4n−1, we have
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the following four equations, respectively:

a0+ a1 + a2 + a3 = pn,

a1 + 4a2 + 7a3 = pn,

a1 + 16a2 + 49a3 = pn+1,

a1 + 64a2 + 343a3 = 47pn−1.

Then solving the above linear equation system, we get these integers.

The sequence of the Walsh power moments of a WT 4-valued with type-1 function

follows from Lemma 4.4.

Corollary 4.3. Let f be a WT 4-valued with type-1 function from Fpn to Fp, where

p = 3. Assume that S2(f) = p3n+1 and S3(f) = p4n−147. Then for every integer

i ≥ 2,

Si(f) =
∑
ω∈Fpn

|χ̂f (ω)|2i = pn(i+1)−3(16 + 4i + 7i).

Proof. By Lemma 4.4, for every integer i ≥ 2,

Si(f) =
∑
ω∈F2n

|χ̂f (ω)|2i = (pn − 18pn−3)0 + 16pn−3pni + pn−34ipni + pn−37ipni

= pn(i+1)−3(16 + 4i + 7i).

Remark 4.2. Let f be a WT 4-valued with type-1 function from Fpn to Fp. As-

sume that S2(f) = p3n+1 and S3(f) = p4n−147. For p = 3 and n = 3, we have

pn(i+1)+i−1 < Si(f) < pn(i+1)+2i−2 for i = 3, . . . , 100000.

This chapter showed the non-existence of a function whose absolute Walsh trans-

form has exactly three distinct values (one being zero). Additionally, we introduced

the notion of WT 4-valued with type-s functions and presented explicit examples in

characteristics 2 and 3.
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CHAPTER 5

PARTIALLY BENT AND PLATEAUED FUNCTIONS OVER FQ

AND THEIR CHARACTERIZATIONS

Bent functions over Z2 were introduced by Rothaus [72] in the 1970s and then were

extended to the residue class ring Zk for any positive integer k by Kumar et.al. (1985)

[46]. In 1991, perfect nonlinear functions over the residue class ring Zk for any posi-

tive integer k were introduced by Nyberg [67]. It is worth mentioning that generalized

bent and perfect nonlinear functions over Zk are not equivalent for a positive integer

k, in general. Nyberg [67], over Zk, showed that any perfect nonlinear function is a

generalized bent function for any positive integer k, but the converse is true only if k

is a prime number. In 1993, Carlet [12] introduced partially bent functions over Z2,

and then they were extended in [25] to the finite field Zp for any prime number p. As

an extension of partially bent, Zheng and Zhang (1999) introduced in [78] plateaued

functions over Z2, and then they were extended to the finite field Zp and studied in

[23, 55]. In 1997, Coulter and Matthews redefined in [28] bent functions over any

finite field Fq, with q a prime power.

The aim of this chapter is to study partially bent and plateaued functions over any

finite field Fq, with q a prime power. We first redefine partially bent and plateaued

functions over Fq, which rely on the concept of the Walsh transform in terms of

canonical additive characters of Fq. We give an explicit example of a 4-ary plateaued,

but not vectorial plateaued Boolean function. We next provide a large number of

characterizations of q-ary partially bent and q-ary plateaued functions by means of

their Walsh power moments, derivatives and autocorrelation functions. Furthermore,

we emphasize that q-ary bent and q-ary partially bent are q-ary plateaued. We finally
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introduce the notion of a q-ary plateaued-type function associated with its Walsh-type

transform.

The presented results in this chapter appear in [59, 65].

5.1 q-Ary Partially Bent and q-Ary Plateaued Functions over Fq

This section revisits the notions of partially bent and plateaued functions over Fq,

where q = pm for a prime p and an integer m > 1.

The notions of generalized bent and perfect nonlinear functions over Zk were rede-

fined in [28] over any finite field Fq. These notions rely on the concept of the Walsh

transform in terms of canonical additive character of Fq given in (2.7).

Definition 5.1. [28] Let f be a function from Fnq to Fq. Then f is called q-ary bent if

|χ̂f (ω)|2 = qn for all ω ∈ Fnq , and f is called perfect nonlinear if the derivative Daf
(see Definition 2.7) is balanced for all nonzero a ∈ Fnq .

We can redefine partially bent and plateaued functions over Fq, which rely on the

concept of the Walsh transform in terms of canonical additive character of Fq given

in (2.7).

Definition 5.2. Let f be a function from Fnq to Fq. Then

• f is called q-ary partially bent if the derivative Daf is either balanced or con-

stant for all a ∈ Fnq .

• f is called q-ary plateaued if its absolute Walsh transform takes only one

nonzero value µ (also possibly the value 0), where µ is called the amplitude of

plateaued f .

For any n-variable q-ary plateaued function, there exists a nonzero value µ such that

µ2 = qr, where r ≥ n, sinceNχ̂f ≤ qn. Then the squared absolute Walsh transform of

q-ary plateaued is divisible by qn, and hence there exists an integer s with 0 ≤ s ≤ n

such that µ2 = qn+s. In the light of the above arguments, f is said to be q-ary s-

plateaued if

|χ̂f (ω)|2 ∈ {0, qn+s}
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for all ω ∈ Fnq . From now on, s is an integer with 0 ≤ s ≤ n in this chapter unless

otherwise stated.

The multiplicity of the absolute Walsh coefficient of a q-ary plateaued function fol-

lows from the Parseval identity (see [55] for the p-ary case).

Lemma 5.1. Let f : Fnq → Fq be s-plateaued. Then for ω ∈ Fnq , |χ̂f (ω)|2 takes qn−s

times the value qn+s and qn − qn−s times the value 0.

Proof. Recall that Nχ̂f = #{ω ∈ Fnq : |χ̂f (ω)|2 = qn+s} for s-plateaued f . Then,∑
ω∈Fnq

|χ̂f (ω)|2 = qn+sNχ̂f

and hence, Nχ̂f = qn−s by the Parseval identity. Since #Fnq = qn, then we have

#{ω ∈ Fnq : |χ̂f (ω)|2 = 0} = qn − qn−s. Hence, the result follows.

By MAGMA [5], we obtain several q-ary plateaued functions, which show their ex-

istence.

Example 5.1. Let q = 4 and n = 3. The function f1(x) = Tr43

4 (ξ2x + ξx3) is the

4-ary 0-plateaued function and f2(x) = Tr43

4 (ξ3x3) is the 4-ary 1-plateaued function,

where F?43 = 〈ξ〉 with ξ3 + ξ2 + ξ + ζ2 = 0 for F?22 = 〈ζ〉.

Remark 5.1. It is worth noting that, over Fq, any perfect nonlinear function is q-ary

partially bent. Moreover, the following theorem shows that, over Fq, the notion of

q-ary bent functions and the notion of perfect nonlinear functions are equivalent.

Theorem 5.1. ([28, Theorem 2.3]) Let f : Fnq → Fq. Then f is q-ary bent if and only

if f is perfect nonlinear. Namely, f is q-ary bent if and only if the derivative Daf is

balanced for all nonzero a ∈ Fnq .

The following follows readily from Theorem 5.1.

Corollary 5.1. Let f : Fnq → Fq. Then f is q-ary bent if and only if ∆f (a) = 0 for

all nonzero a ∈ Fnq .

Proof. By Theorem 5.1, f is q-ary bent if and only if the derivative Daf is balanced;

equivalently, ∆f (a) = 0 for all nonzero a ∈ Fnq .
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In [28], by choosing an m-dimensional basis of Fq with q = pm, we have that a q-ary

bent function from Fnq to Fq is equivalent to a vectorial p-ary bent function from Fmnp
to Fmp .

The following example shows that there exists a 4-ary plateaued function from F3
4 to

F4, which is not vectorial plateaued from F6
2 to F2

2.

Example 5.2. Let q = 4 and n = 3 where q = pm for p = 2 and m = 2. The

function f(x) = Tr43

4 (ξ4x11 +ξ4x7 +ξ5x5) is 4-ary 1-plateaued where F?43 = 〈ξ〉 with

ξ3+ξ2+ξ+γ2 = 0 for F?22 = 〈γ〉. Then, its component function f1(x) = Tr4
2(f(x)) is

2-plateaued Boolean function from F6
2 to F2. However, the other component functions

fγ(x) = Tr4
2(γf(x)) and fγ2(x) = Tr4

2(γ2f(x)) are not plateaued Boolean functions

from F6
2 to F2 since |χ̂fγ (ω)|2 and |χ̂fγ2 (ω)|2 have exactly four values, which are in

{0, 64, 256, 576} for every ω ∈ F26 . Hence, f is not vectorial plateaued Boolean

function from F6
2 to F2

2.

In view of Example 5.2, we can say that a q-ary plateaued function from Fnq to Fq
with its Walsh transform may not correspond to vectorial p-ary plateaued function

from Fmnp to Fmp with the Walsh transform of its component functions for some cases,

where q = pm for a prime p and an integer m > 1.

Remark 5.2. The notion of q-ary plateaued functions is not equivalent to the notion

of vectorial p-ary plateaued functions in general, where q = pm for a prime p and an

integer m > 1. This is the main reason for dealing with the notion of q-ary plateaued

functions in this chapter.

We should remark that the characterizations of q-ary partially bent and q-ary plateaued

functions given in Section 5.2 and Section 5.3, respectively, may not be given for vec-

torial p-ary functions, where q = pm for a prime p and an integer m > 1.

5.2 Characterizations of q-Ary Partially Bent Functions over Fq

In this section, we characterize q-ary partially bent functions by means of their Walsh

power moments, derivatives and autocorrelation functions. Several characterizations

of these functions are presented, although some of them are interrelated, since they

104



can provide useful information about the structure of these functions. We also high-

light that q-ary bent and q-ary partially bent functions are q-ary plateaued functions.

We begin with the significant properties of linear translator of a q-ary function (see

Definition 2.6).

Lemma 5.2. Let f : Fnq → Fq and let Lf be the set of linear translators of f . Let

α ∈ Lf . Then we have the following.

i.) f(x+ uα) = f(x) + f(uα)− f(0) for all x ∈ Fnq and u ∈ Fq.

ii.) Lf is a linear subspace of Fnq and it is called a linear space of f .

iii.) l(x) := f(x)− f(0) is a linear function on Lf .

Proof. i.) For two values of x (one of which is 0), by Definition 2.6, obviously we

have f(x+ uα)− f(x) = f(uα)− f(0) for all x ∈ Fnq and u ∈ Fq.

ii.) Firstly, the all-zero vector 0 is a linear translator of any function f , that is, 0 ∈ Lf .

Next, let α1 ∈ Lf and c ∈ Fq. For all u ∈ Fq, by (i)

f(x+ u(cα1))− f(x) =

f(x+ uα1 + u(c− 1)α1)− f(x+ uα1) + f(x+ uα1)− f(x) =

f(u(c− 1)α1)− f(0) + f(uα1)− f(0)

does not depend on x ∈ Fnq , that is, cα1 ∈ Lf where in the last equality we used that

f(x+uα1 +u(c−1)α1)−f(x+uα1) = f(u(c−1)α1)−f(0) by setting x = x+uα1

and u = u(c− 1) in (i). Lastly, let α1, α2 ∈ Lf . For all x ∈ Fnq and u ∈ Fq,

f(x+ u(α1 + α2)) = f(x+ uα1) + f(uα2)− f(0)

= f(x) + f(uα1)− f(0) + f(uα2)− f(0)

= f(x) + f(u(α1 + α2))− f(0),

(5.1)

where in the last equality we used that f(uα1 + uα2) = f(uα1) + f(uα2)− f(0) by

setting x = uα1 by (i). Hence, α1 + α2 ∈ Lf .

iii.) Let α1, α2 ∈ Lf . By (5.1), for all u ∈ Fq, we have

f(u(α1 + α2))− f(0) = f(uα1)− f(0) + f(uα2)− f(0),

that is, l(u(α1 + α2)) = l(uα1) + l(uα2). The proof is complete.
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Remark 5.3. The notion of q-ary partially bent functions can be revisited as follows.

A function f with linear space Lf is called q-ary partially bent if the derivative Daf
is balanced for all a ∈ Fnq \ Lf . It is obvious that the derivative Daf is constant for

all a ∈ Lf by Definition 2.6.

Remark 5.4. Any q-ary bent is the q-ary partially bent with Lf = {0} since q-ary bent

functions have balanced derivatives Daf for all nonzero a ∈ Fnq (see Theorem 5.1).

Proposition 5.1. Let f : Fnq → Fq with linear space Lf and let dim(Lf ) = s. If f is

q-ary partially bent, then |χ̂f (ω)|2 ∈ {0, qn+s} for all ω ∈ Fnq .

Proof. Assume that f is q-ary partially bent, that is, the derivative Daf is balanced

for all a ∈ Fnq \ Lf . By Proposition 2.2 (v), for all ω ∈ Fnq

|χ̂f (ω)|2 = ∆̂f (ω) =
∑
a∈Fnq

∆f (a)χ(ω · a)

=
∑
a∈Lf

∑
x∈Fnq

χ(Daf(x))χ(ω · a) +
∑
a/∈Lf

∑
x∈Fnq

χ(Daf(x))χ(ω · a)

where the latter is zero since Daf is balanced for all a ∈ Fnq \ Lf . By Lemma 5.2 (i),

if a ∈ Lf , then f(x+ a)− f(x) = f(a)− f(0) for all x ∈ Fnq . Then, for all ω ∈ Fnq

|χ̂f (ω)|2 =
∑
a∈Lf

∑
x∈Fnq

χ(f(a)− f(0)− ω · a)

= qn
∑
a∈Lf

χ(f(a)− f(0)− ω · a)

=

 qn+s, if f(a)− ω · a = f(0) on Lf ,
0, otherwise

where we used that f(a)− f(0)− ω · a is linear on Lf . Hence, |χ̂f (ω)|2 ∈ {0, qn+s}
for all ω ∈ Fnq .

The identity involving the fourth power moment of the Walsh transform and the

second-order derivative of a function was constituted for Boolean and p-ary functions

(see, e.g., [13, 55]), which can also be given for q-ary functions.

Proposition 5.2. Let f : Fnq → Fq. Then

S2(f) = qn
∑

a,b,x∈Fnq

χ(DaDbf(x)). (5.2)
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Proof. Recall that |z|4 = z2z2 for z ∈ C. Then the left hand-side of (5.2) is∑
x,a,b,c∈Fnq

χ(f(x)− f(a) + f(b)− f(c))
∑
ω∈Fnq

χ(ω · (x− a+ b− c))

= qn
∑

a,b,x∈Fnq

χ(f(x)− f(a) + f(b)− f(x− a+ b))

since
∑

ω∈Fnq
ξ

Trq
n

p (−ω(x−a+b−c))
p =

 qn if c = x− a+ b,

0 otherwise.

Hence, since (a, b, x) 7→ (x + a, x + a + b, x) is a permutation of (Fnq )3, then (5.2)

holds.

Obviously, the link given in Proposition 3.2 can be extended to a q-ary function as

follows.

Proposition 5.3. Let f : Fnq → Fq. Then,∑
a∈Fnq

|∆f (a)|2 =
∑

a,b,x∈Fnq

χ(DaDbf(x)). (5.3)

Proof. Since |z|2 = zz for z ∈ C, the left hand side of (5.3) is∑
a∈Fnq

∑
b∈Fnq

χ(Daf(b))
∑
x∈Fnq

χ(Daf(x)) =
∑

a,b,x∈Fnq

χ(Daf(b)−Daf(x))

=
∑

a,b,x∈Fnq

χ(DaDbf(x)),

where in the last equality we used the (bijective) change of variable b 7→ b+ x.

The following is a direct consequence of Propositions 5.2 and 5.3.

Proposition 5.4. Let f : Fnq → Fq. Then

S2(f) = qn
∑
a∈Fnq

|∆f (a)|2.

The q-ary partially bent functions can be characterized in terms of the fourth power

moment of its Walsh transform only.

Theorem 5.2. Let f : Fnq → Fq with linear space Lf and let dim(Lf ) = s. Then, f

is q-ary partially bent if and only if S2(f) = q3n+s.
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Proof. Assume that S2(f) = q3n+s. Then by Proposition 5.4, we have∑
a∈Fnq

|∆f (a)|2 = q2n+s. (5.4)

By the definition of Lf , the derivative Daf at point a ∈ Lf is constant. Then, since

|z|2 = zz for z ∈ C, we have∑
a∈Lf

|∆f (a)|2 =
∑
a∈Lf

∑
x,y∈Fnq

χ(Daf(x)−Daf(y)) =
∑
a∈Lf

q2n = q2n+s. (5.5)

Combining (5.4) and (5.5), we have
∑

a/∈Lf |∆f (a)|2 = 0, equivalently, ∆f (a) = 0,

that is, Daf is balanced for all a /∈ Lf . Hence, f is q-ary partially bent. The other

direction follows from Proposition 5.1.

We are ready to give the following natural consequence over Fq.

Proposition 5.5. Let f : Fnq → Fq with linear space Lf and let dim(Lf ) = s where

s is an integer with 0 ≤ s ≤ n. Then, f is q-ary partially bent if and only if f is q-ary

s-plateaued. In particular, f is q-ary bent if and only if f is q-ary 0-plateaued.

Proof. Assume that f is q-ary s-plateaued. Then by Lemma 5.1, we have S2(f) =

q3n+s and hence, by Theorem 5.2, f is q-ary partially bent. The other direction follows

readily from Proposition 5.1. In particular, by Remark 5.4, the second statement

follows from the first statement.

Remark 5.5. Notice that the second statement of Proposition 5.5 follows also from

the Parseval identity, which implies that q-ary plateaued is q-ary bent if and only if its

absolute Walsh transform never takes the value 0.

Remark 5.6. By Proposition 5.5, characterizations of a q-ary plateaued function are

valid for any q-ary bent and q-ary partially bent.

In the light of Propositions 5.1 and 5.5, the following can be identified.

Remark 5.7. Let f : Fnq → Fq with linear space Lf and let dim(Lf ) = s. Then, f is

q-ary partially bent if and only if |χ̂f (ω)|2 ∈ {0, qn+s} for all ω ∈ Fnq . Here, we can

say that f is q-ary s-partially bent.

The multiplicity of the absolute Walsh coefficient of a q-ary partially bent function is

as follows (see Lemma 5.1).
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Lemma 5.3. Let f : Fnq → Fq be a q-ary partially bent function with linear space Lf
and let dim(Lf ) = s. Then for ω ∈ Fnq , |χ̂f (ω)|2 takes qn−s times the value qn+s and

qn − qn−s times the value 0.

Remark 5.8. The set of q-ary bent functions is a proper subset of the set of q-ary

partially bent functions. Namely, a q-ary partially bent function with nonzero lin-

ear translators is not a q-ary bent function. Similarly, the set of q-ary partially bent

functions is a proper subset of the set of q-ary plateaued functions. Namely, q-ary

s-plateaued functions with dim(Lf ) < s are not q-ary partially bent functions.

The sequence of the Walsh power moments of a q-ary partially bent function is a

simple geometric sequence, which follows directly from Lemma 5.3.

Corollary 5.2. Let f : Fnq → Fq be q-ary partially bent with linear space Lf and let

dim(Lf ) = s. Then for every positive integer i, we have Si(f) = qn(i+1)+s(i−1) and

for all integers i ≥ 1 and j ≥ 2, Si(f)Sj(f) = Si+1(f)Sj−1(f).

Proof. By Lemma 5.3, for all positive integers i, we have Si(f) = qn−s(qn+s)i =

qn(i+1)+s(i−1). Clearly, the following

Si(f)Sj(f) = qn(i+1)+s(i−1)qn(j+1)+s(j−1) = qn(i+j+2)+s(i+j−2) and

Si+1(f)Sj−1(f) = qn(i+2)+siqnj+s(j−2) = qn(i+j+2)+s(i+j−2)

are equal for all i ≥ 1 and j ≥ 2. Hence, the result follows.

We now give a bound stating the trade-off between the number of the nonzero values

of the autocorrelation function and the size of the Walsh support of q-ary functions.

Carlet [12] gave this bound for every Boolean function, and it is satisfied by Boolean

partially bent functions (for the p-ary case, see [25]). Recall that Supp(χ̂f ) = {ω ∈
Fnq | χ̂f (ω) 6= 0} and Nχ̂f = #Supp(χ̂f ). We denote by Supp(∆f ) the set of

elements a ∈ Fnq such that Daf is unbalanced, i.e., the autocorrelation of f at point a

is nonzero:

Supp(∆f ) := {a ∈ Fnq | ∆f (a) 6= 0}. (5.6)

Denote by N∆f
the size of Supp(∆f ).
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Theorem 5.3. Let f : Fnq → Fq. Then

qn ≤ N∆f
∗ Nχ̂f , (5.7)

with an equality if and only if for all b ∈ Fnq , the derivative Dbf is either balanced or

constant, that is, f is q-ary partially bent.

Proof. By Proposition 2.2 (vi), |χ̂f (0)|2 =
∑

a∈Fnq
∆f (a). Then by (5.6), we have

|χ̂f (0)|2 ≤ qnN∆f
. Notice thatN∆f

is invariant if f(x) is replaced with f(x)− ω · x
for all ω ∈ Fnq , and hence,

|χ̂f (ω)|2 ≤ qnN∆f
. (5.8)

Then, since
∑

ω∈Fnq
|χ̂f (ω)|2 ≤ maxb∈Fnq (|χ̂f (b)|2)Nχ̂f , by (5.8) and using the Parse-

val identity, we have

q2n ≤ max
b∈Fnq

(|χ̂f (b)|2)Nχ̂f ≤ qnN∆f
∗ Nχ̂f . (5.9)

This completes the proof of the first assertion.

For the equality case, assume that the bound (5.7) holds. Then (5.9) implies that

maxb∈Fnq (|χ̂f (b)|2)Nχ̂f = q2n. By the Parseval identity, for all ω ∈ Supp(χ̂f ) we have

|χ̂f (ω)|2 = maxb∈Fnq (|χ̂f (b)|2), that is, there exists an integer s such that |χ̂f (ω)|2 =

qn+s for all ω ∈ Supp(χ̂f ), i.e., f is s-plateaued. By Lemma 5.1, Nχ̂f = qn−s, and

hence, N∆f
= qs by (5.7). For all ω ∈ Supp(χ̂f ), by Proposition 2.2 (v), we have

|χ̂f (ω)|2 =
∑
a∈Fnq

∆f (a)χ(ω · a)

=
∑

a∈Supp(∆f )

∆f (a)χ(ω · a) +
∑

a/∈Supp(∆f )

∆f (a)χ(ω · a),

where the latter is zero by (5.6). Hence, for all ω ∈ Supp(χ̂f ),∑
a∈Supp(∆f )

∑
x∈Fnq

χ(Daf(x)− ω · a) = qn+s.

Then for all a ∈ Supp(∆f ), we have
∑

x∈Fnq
χ(Daf(x) − ω · a) = qn for all ω ∈

Supp(χ̂f ), that is, Daf(x) = ω · a for all x ∈ Fnq , i.e., Daf is constant. Notice that

Daf is balanced for all a /∈ Supp(∆f ) by (5.6). Hence, f is q-ary partially bent.

Conversely, assume that f is q-ary partially bent. Then, Supp(∆f ) is the set of linear
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translators of f and there exists an integer s such thatN∆f
= qs, that is, the dimension

of linear space of f is equal to s. By Lemma 5.3, we have Nχ̂f = qn−s. Hence, the

bound (5.7) holds.

Remark 5.9. A function f is q-ary partially bent if and only if |∆f (a)| ∈ {0, qn} for

all a ∈ Fnq .

We now give a powerful characterization of q-ary partially bent functions by means

of their second-order derivatives (see [21] for a Boolean bent function).

Theorem 5.4. Let f : Fnq → Fq with linear space Lf and let dim(Lf ) = s. Set

θf (x) =
∑
a,b∈Fnq

χ(DbDaf(x))

for all x ∈ Fpn . Then, f is q-ary partially bent if and only if θf (x) = qn+s for all

x ∈ Fnq .

Proof. Put θ = qn+s. For all x ∈ Fnq , θf (x) = θ if and only if for all x ∈ Fnq ,∑
a,b∈Fnq

χ(f(a+ b− x)− f(a)− f(b)) = θχ(−f(x))

(by the (bijective) change of variables: a 7→ a − x and b 7→ b − x); equivalently, for

all x ∈ Fnq ∑
a,b∈Fnq

χf (a)χf (b)χg(x− a− b) = θχf (x),

where we defined g(y) := f(−y) for all y ∈ Fnq . Equivalently, using the convolution

product (see Definition 2.4), for all x ∈ Fnq

(χf ⊗ χf ⊗ χg) (x) = θχf (x). (5.10)

By Theorem 2.1, the Fourier transform of left-hand side of (5.10) is χ̂f (ω) χ̂f (ω)χ̂g(ω)

for all ω ∈ Fnq . Notice that for all ω ∈ Fnq , χ̂f (ω) = χ̂f (−ω) by Proposition 2.2 and

χ̂g(ω) = χ̂f (−ω) since g(y) = f(−y) for all y ∈ Fnq . By Lemma 2.4, for all x ∈ Fnq ,

(5.10) holds if and only if for all ω ∈ Fnq

χ̂f (ω) χ̂f (ω)χ̂f (ω) = θχ̂f (ω).

Therefore, for θf = qn+s, θf (x) = θ for all x ∈ Fnq if and only if |χ̂f (ω)|2 ∈ {0, θ}
for all ω ∈ Fnq , that is, f is q-ary partially bent.
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It is worth noting that Theorem 5.4 approves that any q-ary quadratic function is a

q-ary partially bent function since the second-order derivative of quadratic function is

constant.

The following seems to be more practical than Theorem 5.4.

Theorem 5.5. Let f : Fnq → Fq with linear space Lf and let dim(Lf ) = s. Then, we

have

q2n+s ≤
∑

a,b,x∈Fnq

χ(DbDaf(x))

with an equality if and only if f is q-ary partially bent.

Proof. Because of the fact that Daf is constant for all a ∈ Lf , we have∑
a∈Lf

∑
b,x∈Fnq

χ(DbDaf(x)) = q2n+s. (5.11)

Meanwhile, ∑
a/∈Lf

∑
b,x∈Fnq

χ(DbDaf(x)) ≥ 0 (5.12)

with an equality if and only if Daf is balanced for all a /∈ Lf . Combining (5.11) and

(5.12), the proof is complete.

Corollary 5.3. Let f : Fnq → Fq with linear space Lf and let dim(Lf ) = s. Then,

we have

q2n+s ≤
∑
a∈Fnq

|∆f (a)|2

with an equality if and only if f is q-ary partially bent.

Proof. For all a ∈ Lf , because Daf is constant, |∆f (a)|2 = q2n. As in the proof of

Theorem 5.5, we have ∑
a∈Lf

|∆f (a)|2 = q2n+s, (5.13)

∑
a/∈Lf

|∆f (a)|2 ≥ 0 (5.14)

with an equality if and only if ∆f (a) = 0; i.e., Daf is balanced for all a /∈ Lf .

Combining (5.13) and (5.14), the proof is complete.
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In view of Proposition 5.3, Theorem 5.5 and Corollary 5.3 are equivalent. The fol-

lowing is an immediate consequence of Proposition 5.4 and Corollary 5.3.

Corollary 5.4. Let f : Fnq → Fq with linear space Lf and let dim(Lf ) = s. Then

q3n+s ≤ S2(f),

with an equality if and only if f is q-ary partially bent.

The link given in Proposition 3.9 can be extended to q-ary case.

Proposition 5.6. Let f : Fnq → Fq. Then for all x ∈ Fnq ,∑
ω∈Fnq

χ(f(x)− ω · x)χ̂f (ω) |χ̂f (ω)|2 = qn
∑
a,b∈Fnq

χ(DaDbf(x)). (5.15)

Proof. By the definition of χ̂f , for all x ∈ Fnq , the left-hand side of (5.15) is∑
a,b,c∈Fnq

χ(f(x)− f(a)− f(b) + f(c))
∑
ω∈Fnq

χ(ω · (a+ b− c− x))

= qn
∑
a,b∈Fnq

χ(f(x)− f(a)− f(b) + f(a+ b− x))

= qn
∑
a,b∈Fnq

χ(DaDbf(x)),

where we used that
∑

ω∈Fnq
χ(ω · (x − a − b + c)) is null if c 6= a + b − x in the

first equality, and (a, b, x) 7→ (a+ x, b+ x, x) is a permutation of (Fnq )3 in the second

equality. The result now follows.

The following corollary is a direct consequence of Theorem 5.4 and Proposition 5.6.

Corollary 5.5. Let f : Fnq → Fq with linear space Lf and let dim(Lf ) = s. Then,

we have for all x ∈ Fnq

q2n+s ≤
∑
ω∈Fnq

χ(f(x)− ω · x)χ̂f (ω) |χ̂f (ω)|2,

with an equality if and only if f is q-ary partially bent.

We now give an example of q-ary partially bent functions.
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Example 5.3. Let p be an odd prime, m ≥ 2 and n ≥ 2 be integers and q = pm. Let

f be an arbitrary Fq-quadratic form from Fqn to Fq given by

f(x) = Trq
n

q (a0x
2 + a1x

q+1 + a2x
q2+1 + · · ·+ abn2 cx

qb
n
2 c+1).

As in Example 3.3, by [7, 8], we have an algorithm to construct f with radical

Wf = {x ∈ Fqn : f(x+ y) = f(x) + f(y),∀y ∈ Fqn} (5.16)

of prescribed dimension s over Fq for each given integer s with 0 ≤ s ≤ n − 1. For

λ ∈ F?pm , the component function fλ from Fpn to Fp given by fλ(x) = Trp
m

p (λf(x))

is an Fp-quadratic form with radical

Wfλ = {x ∈ Fpn : fλ(x+ y) = fλ(x) + fλ(y),∀y ∈ Fpn}. (5.17)

For a Fq-quadratic form f on Fqn and λ ∈ F?q , the radicalWf in (5.16) is the set of

the roots of the equation

a0x+ a1x
q + (a1x)q

−1

+ a2x
q2 + (a2x)q

−2

+ · · ·+ abn2 cx
qb
n
2 c +

(
abn2 cx

)q−bn2 c
(5.18)

in Fqn andWfλ in (5.17) is the set of the roots of the equation

λa0x+ λa1x
q + (λa1x)q

−1

+ λa2x
q2 + · · ·+ λabn2 cx

qb
n
2 c +

(
λabn2 cx

)q−bn2 c
(5.19)

(see e.g., [7, Lemma 2.1]). As λ ∈ F?q , it is easy to observe from (5.18) and (5.19)

thatWf =Wfλ . Therefore, we obtain vectorial s-plateaued function F from Fpmn to

Fpm (notice that F (x) = f(x) for all x ∈ Fpn). This shows existence of an algorithm

to construct vectorial s-plateaued functions F for any integer s with 0 ≤ s ≤ n− 1.

5.3 Characterizations of q-Ary Plateaued Functions over Fq

This section gives an extension of some characterizations of p-ary plateaued func-

tions given in Chapter 3 to q-ary case. We provide many characterizations of q-ary

plateaued functions by means of their derivatives, Walsh power moments and autocor-

relation functions. We believe that they provide useful information about the structure

of q-ary plateaued.
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We make a preliminary but useful remarks. For every nonnegative integers i and A,

we have∑
ω∈Fnq

(
|χ̂f (ω)|2 − A

)2

|χ̂f (ω)|2i = Si+2(f)− 2ASi+1(f) + A2Si(f) ≥ 0.(5.20)

For any positive integer i, there exists a positive integer A such that

Si(f)A2 − 2Si+1(f)A+ Si+2(f) = 0 (5.21)

if and only if f is q-ary s-plateaued, where A = qn+s. To exhibit a link between the

Walsh power moments of q-ary plateaued functions, we shall consider some particular

values of i in (5.20). More precisely, for A = qn+s, where s is an integer with

1 ≤ s ≤ n, and

• for i = 1, f is q-ary s-plateaued if and only if S3(f) = 2qn+sS2(f)− q4n+2s,

• for i = 2, then f is q-ary s-plateaued if and only if S4(f) = 2qn+sS3(f) −
q2n+2sS2(f),

• for i = 3, then f is q-ary s-plateaued if and only if S5(f) = 2qn+sS4(f) −
q2n+2sS3(f).

If S2(f) ≥ q3n+s, then S3(f) ≥ q4n+2s. More precisely, if S2(f) = q3n+s, then

S4(f) ≥ q5n+3s.

More generally, for every nonnegative integers A, i and j,∑
ω∈Fnq

(
|χ̂f (ω)|2 − A

)2j

|χ̂f (ω)|2i ≥ 0. (5.22)

We consider some particular values of A, i and j in (5.22). For A = qn, i = 0 and

j ≥ 1, f is q-ary bent if and only if the inequality (5.22) is an equality. Indeed, for

s ≥ 1, A = qn+s, i ≥ 1 and j ≥ 1, f is q-ary s-plateaued if and only if the inequality

(5.22) becomes an equality.

Clearly, Lemma 5.1 suggests that the sequence of the Walsh power moments of q-ary

plateaued function is a simple geometric sequence (see the proof of Corollary 5.2).

Corollary 5.6. Let f : Fnq → Fq be q-ary s-plateaued. Then for every integer i ≥ 1,

Si(f) = qn(i+1)+s(i−1).
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The Cauchy-Schwarz Inequality gives the following inequality, and its equality case

yields characterizations of q-ary plateaued functions.

Theorem 5.6. Let f : Fnq → Fq. Then for every integer i ≥ 1, Si+1(f)2 ≤
Si+2(f)Si(f), where the equality holds for one (and hence for all) i ≥ 1 if and only

if f is q-ary plateaued.

Proof. By Theorem 3.1, for p1 = p2 = 2, put xk = |χ̂f (ω)|i and yk = |χ̂f (ω)|i+2 for

all ω ∈ Fnq , then we have∑
ω∈Fnq

|χ̂f (ω)|2i+2

2

≤
∑
ω∈Fnq

|χ̂f (ω)|2i
∑
ω∈Fnq

|χ̂f (ω)|2i+4,

that is, Si+1(f)2 ≤ Si(f)Si+2(f), where the equality holds for one (and hence for

all) i ≥ 1 if and only if for all ω ∈ Fnq , |χ̂f (ω)|2i = d |χ̂f (ω)|2i+4 for some d ∈ R+;

equivalently, for all ω ∈ Fpn , |χ̂f (ω)|2 is either the same positive integer or 0, i.e., f

is q-ary plateaued.

Remark 5.10. Notice that Theorem 5.6 can be also derived from (5.21). The reduced

discriminant of (5.21), Si+1(f)2 − Si+2(f)Si(f) ≤ 0, with an equality if and only if

f is q-ary plateaued.

The plateaued-ness of a q-ary function can be checked only by using the fourth and

sixth power moments of its Walsh transform.

Theorem 5.7. Let f : Fnq → Fq. Then, f is q-ary s-plateaued if and only if S2(f) =

q3n+s and S3(f) = q4n+2s. In fact, f is q-ary plateaued if and only if S2(f)2 =

q2nS3(f).

Proof. Assume that f is q-ary s-plateaued. Then, the assertion directly follows from

Corollary 5.6. Conversely, by (5.20) with A = qn+s at i = 1, we have∑
ω∈Fnq

(
|χ̂f (ω)|2 − qn+s

)2

|χ̂f (ω)|2 = S3(f)− 2qn+sS2(f) + q2n+2sS1(f) = 0,

where in the second equality we used the Parseval identity. Hence, |χ̂f (ω)|2 ∈
{0, qn+s} for all ω ∈ Fnq , that is, f is q-ary s-plateaued.

The second statement follows from Theorem 5.6, in the case of i = 1, and using the

Parseval identity.
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More precisely, as in the proof of Theorem 5.6, applying the Cauchy-Schwarz In-

equality for xk = |χ̂f (ω)| and yk = |χ̂f (ω)|2i+1 for all ω ∈ Fnq , we have Si+1(f)2 ≤
S1(f)S2i+1(f) for i ≥ 1, where the equality holds for one (and hence for all) i ≥ 1

if and only if for all ω ∈ Fnq , |χ̂f (ω)|2 = d |χ̂f (ω)|4i+2 for some d ∈ R+; equiva-

lently, for all ω ∈ Fpn , |χ̂f (ω)|2 is either the same positive integer or 0, i.e., f is q-ary

plateaued. Hence this implies the following theorem in view of the Parseval identity.

Corollary 5.7. Let f : Fnq → Fq. Then for every integer i ≥ 1, we have

Si+1(f)2 ≤ q2nS2i+1(f),

where the equality holds for one (and hence for all) i ≥ 1 if and only if f is q-ary

plateaued.

The following corollary follows from Corollaries 5.6 and 5.7.

Corollary 5.8. Let f : Fnq → Fq. Then f is q-ary s-plateaued if and only if Si+1(f) =

qn(i+2)+si and S2i+1(f) = qn(2i+2)+2is for one (and hence for all) positive integer i.

We now give a strong characterization of q-ary plateaued functions in terms of their

second-order derivatives. To do this, we extend Theorem 5.4 (see Section 5.2) for

any integer s with 0 ≤ s ≤ n as follows. For the proof of Theorem 5.8, the reader

is referred to the proof of Theorem 5.4. It can be also proven without using the

convolution product (see the proof of Theorem 3.6 for the p-ary case).

Theorem 5.8. Let f : Fnq → Fq. Then, f is q-ary s-plateaued if and only if for all

x ∈ Fnq , ∑
a,b∈Fnq

χ(DbDaf(x)) = qn+s.

Clearly, Theorem 5.8 suggests the following result.

Corollary 5.9. Let f : Fnq → Fq be q-ary s-plateaued. Then∑
a,b,x∈Fnq

χ(DbDaf(x)) = q2n+s.

The following is a direct consequence of Corollary 5.6 and Theorem 5.8.
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Corollary 5.10. Let f : Fnq → Fq. Set θf (x) =
∑

a,b∈Fnq
χ(DbDaf(x)) for all x ∈ Fnq .

Then, f is q-ary plateaued if and only if for all x ∈ Fnq ,

S2(f) = q2nθf (x). (5.23)

Proof. Assume that f is q-ary s-plateaued. Then, we have S2(f) = q3n+s by Corol-

lary 5.6, and θf (x) = qn+s for all x ∈ Fnq by Theorem 5.8. Hence, (5.23) holds for

all x ∈ Fnq . Conversely, assume that (5.23) holds for all x ∈ Fnq , that is, θf (x) = θ

is constant for all x ∈ Fnq , where θ = q−2nS2(f). Thus, by Theorem 5.8, f is q-ary

plateaued.

Remark 5.11. Let f : Fnq → Fq. For all x ∈ Fnq , at point (a, b) ∈ (Fnq )2, we have

DbDaf(x) = Daf(b) − Daf(x) because of the (bijective) change of variable b 7→
b−x. Hence, the characterizations of q-ary plateaued functions by their second-order

derivatives can be given by their first-order derivatives, which makes easier the check

of the plateaued-ness of q-ary functions.

Theorem 5.8 has a crucial role in proving the following characterizations of q-ary

plateaued functions.

Theorem 5.9. Let f : Fnq → Fq. Then f is q-ary plateaued if and only if for all

α ∈ Fnq \ {0}, ∑
ω∈Fnq

χ̂f (α + ω)χ̂f (ω) |χ̂f (ω)|2 = 0. (5.24)

Proof. For all α ∈ Fnq \ {0}, the left-hand side of (5.24) is∑
x,a,b,c∈Fnq

χ(f(x)− f(a) + f(b)− f(c)− α · x)
∑
ω∈Fnq

χ(ω · (x− a+ b− c))

= qn
∑

x,a,b∈Fnq

χ(f(x)− f(a) + f(b)− f(x− a+ b)− α · x),

where we used that
∑

ω∈Fnq
ξ

Trq
n

p (−ω(x−a+b−c))
p =

 qn if c = x− a+ b,

0 otherwise.
Hence, since (x, a, b) 7→ (x, x+ a, x+ a+ b) is a permutation of (Fnq )3, it is equal to

qn
∑
x∈Fnq

∑
a,b∈Fnq

χ(DbDaf(x))χ(α · x),
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which is the Fourier transform at α ∈ Fnq \ {0} of the function G : Fnq → C defined

as G(x) := qn
∑

a,b∈Fnq
χ(DbDaf(x)) for x ∈ Fnq . By Remark 3.4, (5.24) holds for

all α ∈ Fnq \ {0} if and only if G is constant; equivalently by Theorem 5.8, f is q-ary

plateaued.

Corollary 5.11. Let f : Fnq → Fq. Then, f is q-ary plateaued if and only if for all

x ∈ Fnq

S2(f) = qn
∑
ω∈Fnq

χ(f(x)− ω · x)χ̂f (ω) |χ̂f (ω)|2. (5.25)

Proof. Assume that f is q-ary s-plateaued. By Corollary 5.6, S2(f) = q3n+s. On the

other hand, for all x ∈ Fnq ,∑
ω∈Fnq

χ(f(x)− ω · x)χ̂f (ω) |χ̂f (ω)|2 = qn+s
∑
ω∈Fnq

χ(f(x)− ω · x)χ̂f (ω)

= qn+s
∑
y∈Fnq

χ(f(x)− f(y))
∑
ω∈Fnq

χ(ω · (y − x)) = q2n+s

since
∑

ω∈Fnq
ξ

Trq
n

p (ω(y−x))
p is null if y−x 6= 0. Hence, the assertion holds. Conversely,

assume that (5.25) holds for all x ∈ Fnq , that is, the function G : Fnq → C defined as

G(x) :=
∑
ω∈Fnq

χ(f(x)− ω · x)χ̂f (ω)|χ̂f (ω)|2

is constant for all x ∈ Fnq . The Fourier transform of G at α ∈ Fnq is given as

Ĝ(α) =
∑
ω∈Fnq

∑
x∈Fnq

χ(f(x)− x · (α + ω))χ̂f (ω) |χ̂f (ω)|2

=
∑
ω∈Fnq

χ̂f (α + ω)χ̂f (ω) |χ̂f (ω)|2.

Notice that by Remark 3.4, Ĝ(α) = 0 for any α ∈ Fnq \ {0}. Hence, by Theorem 5.9,

f is q-ary plateaued.

In the light of Proposition 5.6, the characterizations given in Corollaries 5.10 and 5.11

are equivalent.

The following is an immediate consequence of Theorem 5.8 and Proposition 5.6.
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Corollary 5.12. Let f : Fnq → Fq. Then, f is q-ary s-plateaued if and only if for all

x ∈ Fnq ∑
ω∈Fnq

χ(f(x)− ω · x)χ̂f (ω) |χ̂f (ω)|2 = q2n+s.

We end this section by characterizing q-ary plateaued functions in terms of their au-

tocorrelation functions. According to the definition of plateaued functions, f is q-ary

plateaued of the amplitude µ if and only if the two functions |χ̂f |4 and µ2|χ̂f |2 are

equal; equivalently, their Fourier transforms are equal by Lemma 2.4.

The Fourier transform of the function |χ̂f (b)|2 =
∑

x,y∈Fnq
χ(f(x)−f(y)−b ·(x−y))

is given by

̂|χ̂f (a)|2 =
∑
b∈Fnq

|χ̂f (b)|2χ(b · a)

=
∑
x∈Fnq

∑
y∈Fnq

χ(f(x)− f(y))
∑
b∈Fnq

χ(b · (x+ a− y)) = qn∆f (a)

where in the last equality we used that
∑

b∈Fnq
χ(b · (x+ a− y)) is null if y 6= x+ a.

Hence, the Fourier transform of |χ̂f |4 is

̂|χ̂f |2|χ̂f |2 = q−n
(
|̂χ̂f |2 ⊗ |̂χ̂f |2

)
= q−n

(
qn∆f ⊗ qn∆f

)
= qn

(
∆f ⊗∆f

)
(5.26)

where in the first equality we used Theorem 2.1. Then we conclude the following.

Theorem 5.10. Let f : Fnq → Fq. Then, f is q-ary plateaued of the amplitude µ if

and only if for all x ∈ Fnq∑
a∈Fnq

∆f (a)∆f (x− a) = µ2∆f (x). (5.27)

Proof. As we said above, f is q-ary plateaued of the amplitude µ if and only if |χ̂f |4

and µ2|χ̂f |2 are equal; equivalently by Lemma 2.4, ∆f ⊗ ∆f = µ2∆f ; equivalently

by Proposition 2.2 (iv), (∆f ⊗∆f )(x) = µ2∆f (x) for all x ∈ Fnq . The proof follows

from Definition 2.4.

The Fourier transform of |χ̂f |6 is given by

̂|χ̂f |2|χ̂f |4 = q−n
(
|̂χ̂f |2 ⊗ |̂χ̂f |4

)
= qn

(
∆f ⊗∆f ⊗∆f

)
,
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where we used Theorem 2.1 in the first equality and (5.26) in the last equality. Then,

we say that f is plateaued of the amplitude µ if and only if |χ̂f |6 and µ2|χ̂f |4 are equal,

by Lemma 2.4 their Fourier transforms are equal, that is, ∆f⊗∆f⊗∆f = µ2∆f⊗∆f .

This proves the following.

Corollary 5.13. Let f : Fnq → Fq. Then, f is q-ary plateaued of the amplitude µ if

and only if for all x ∈ Fnq∑
a,b∈Fnq

∆f (a)∆f (b)∆f (x− a− b) = µ2
∑
c∈Fnq

∆f (c)∆f (x− c).

5.4 q-Ary Plateaued-type Functions over Fq

In this section, we define a Walsh type transform of a q-ary function f from Fnq to Fq
by using a primitive q-th root of unity instead of a primitive p-th root of unity. We

introduce the notion of q-ary plateaued type functions with respect to its Walsh type

transform.

Let Fq be the finite field with q elements and ζ be a generator of F?q , i.e., F?q = 〈ζ〉,
where q = pm. Then we have Fq = {0, ζ, ζ2, . . . , ζq−1}. Let ξq = e

2π
√
−1
q be a

primitive q-th root of unity in C. Let ψ be the map from Fq to C (depending on the

choice of ζ and ξq) given by

ψ(a) = ξaq :=
{ 1 if a = 0,

ξrq if a = ζr where 1 ≤ r ≤ q − 1.

This map defines the a-th power of ξq in C for a ∈ Fq. For example, let ζ ∈ F4 be

a generator of F?4. Then it is a root of primitive polynomial x2 + x + 1 over F2. We

have F4 = {0, 1, ζ, ζ + 1} and F?4 = 〈ζ〉 = {ζ, ζ2, ζ3}. For a ∈ F4, the a-th powers

of ξ4 in C are given by

ξ0
4 = 1, ξ1

4 = ξ3
4 , ξζ4 = ξ1

4 and ξζ+1
4 = ξ2

4 .

Thus, we can define a Walsh type transform of a q-ary function f : Fnq → Fq by using

ξq instead of ξp. We denote by χf the complex valued function from Fnq to C of f

defined as χf (x) = ξ
f(x)
q for all x ∈ Fnq . A Walsh type transform of f at ω ∈ Fnq with
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respect to ξq is defined by

χ̂f :Fnq → C

ω 7−→ χ̂f (ω) =
∑
x∈Fnq

χf (x)ξ−ω·xq ,

where “ · ” denotes an inner product in Fnq over Fq. Therefore, we have a Walsh type

transform of f with ξq instead of ξp. This approach allows us to define the notion of

q-ary plateaued type functions over Fq depending on ξq. A vectorial p-ary plateaued

function f from Fpmn to Fpm with the Walsh transform of its component functions

does not correspond to q-ary plateaued f from Fnq to Fq with its Walsh type transform.

Thus, we can introduce a such function f , called q-ary plateaued type function, with

respect to the Walsh type transform.

Definition 5.3. Let f be a function from Fnq to Fq and s be an integer with 0 ≤ s ≤ n.

Then, f is called q-ary plateaued type if its absolute Walsh transform takes only

one nonzero value (also possibly the value 0). In other words, f is said to be q-ary

s-plateaued type if |χ̂f (ω)|2 ∈ {0, qn+s} for all ω ∈ Fnq , and f is said to be q-ary bent

type if |χ̂f (ω)|2 = qn for all ω ∈ Fnq .
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CHAPTER 6

LINEAR CODES FROM WEAKLY REGULAR PLATEAUED

FUNCTIONS AND THEIR SECRET SHARING SCHEMES

Linear error correcting codes have many applications in consumer electronics, secret

sharing schemes, authentication codes, communication, data storage system, asso-

ciation schemes, and strongly regular graphs. The construction of these codes has

been widely studied by a large number of researchers. There are several methods

to construct linear codes, one of which is based on functions over finite fields. For

example, bent functions (mostly, quadratic and weakly regular bent functions) have

been extensively used to construct these codes. Very recently, Mesnager [58] has con-

structed a new family of three-weight linear codes from weakly regular bent functions

in arbitrary characteristic based on the first generic construction. Within this frame-

work, the main purpose of this chapter is to construct linear codes with few weights

from plateaued functions and to analyze the constructed codes for the secret sharing

schemes in arbitrary characteristic.

In this chapter, we first introduce the notion of (non)-weakly regular plateaued func-

tions and then provide the first secondary constructions of these functions in odd

characteristic. We next construct new classes of three-weight linear p-ary (resp. bi-

nary) codes from weakly regular p-ary plateaued (resp. plateaued Boolean) functions

based on the first generic construction. We also determine the weight distributions of

the constructed linear codes. We finally investigate the access structures of the secret

sharing schemes based on the dual codes of the constructed linear codes.

The results of this chapter appear in [60, 61].

123



6.1 On the (Non)-Weakly Regular Plateaued Functions over Finite Fields of

Odd Characteristic

In this section, we first introduce the notion of (non)-weakly regular plateaued func-

tions over finite fields of odd characteristic, and then give the first secondary con-

structions of these functions.

6.1.1 The Notion of (Non)-Weakly Regular Plateaued p-Ary Functions

After introducing the notion of (non)-weakly regular plateaued functions, we give

some concrete examples and properties of these functions.

We begin by recalling the notion of (non)-weakly regular bent functions in odd char-

acteristic (see, e.g., [36]). A function f : Fpn → Fp is p-ary bent if |χ̂f (ω)|2 = pn for

every ω ∈ Fpn . A p-ary bent function f is called regular if χ̂f (ω) = p
n
2 ξ

f∗(ω)
p for ev-

ery ω ∈ Fpn , and called weakly regular if there exists a complex number u having unit

magnitude (in fact, |u| = 1 and u does not depend on ω) such that χ̂f (ω) = up
n
2 ξ

f∗(ω)
p

for every ω ∈ Fpn , where f ∗ is the dual of f ; otherwise, f is called non-weakly reg-

ular bent. It is worth noting that, for a weakly regular bent function, the constant u

(defined above) can only be equal to ±1 or ±i. By [36, 37], a weakly regular bent

function f satisfies

χ̂f (ω) = ε
√
p∗
n
ξf
∗(ω)
p ,

where ε = ±1 is the sign of χ̂f , p∗ denotes
(
−1
p

)
p and f ∗ is the dual of f . In fact,

the Walsh transform coefficients of bent f satisfy

χ̂f (ω) =

 ±p
n
2 ξ

f∗(ω)
p , if n is even or n is odd and p ≡ 1 (mod 4),

±ipn2 ξf
∗(ω)
p , if n is odd and p ≡ 3 (mod 4),

where i is a complex primitive 4-th root of unity and f ∗ is the dual of f . Hence,

the regular bent functions can only be found for even n and for odd n with p ≡ 1

(mod 4). Table 6.1 lists all known weakly regular bent functions over Fpn .

Below we introduce the notion of (non)-weakly regular plateaued functions in odd

characteristic. We first recall that f is said to be p-ary s-plateaued if |χ̂f (ω)|2 ∈
{0, pn+s} for every ω ∈ Fpn , where s is an integer with 0 ≤ s ≤ n. The Walsh support
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Weakly regular bent functions n p∑bn/2c
i=0 Trp

n

p (aix
pi+1

) arbitrary arbitrary∑pk−1
i=0 Trp

n

p (aix
i(pk−1)) + Trp

n

p (δx
pn−1

e ), e|pk + 1 n = 2k arbitrary

Trp
n

p (ax
3n−1

4
+3k+1) n = 2k p = 3

Trp
n

p (xp
3k+p2k−pk+1 + x2) n = 4k arbitrary

Trp
n

p (ax
3i+1

2 ); i odd, gcd(i, n) = 1 arbitrary p = 3

Table 6.1: Known weakly regular bent functions over Fpn , p is odd

of p-ary s-plateaued f is defined by Supp(χ̂f ) = {ω ∈ Fpn : |χ̂f (ω)|2 = pn+s}. In

2016, Hyun et al. [43] have shown that the Walsh transform coefficients of p-ary

s-plateaued f satisfy

χ̂f (ω) =


±pn+s2 ξ

g(ω)
p , 0 if n+ s is even or

n+ s is odd and p ≡ 1 (mod 4),

±ipn+s2 ξ
g(ω)
p , 0 if n+ s is odd and p ≡ 3 (mod 4),

(6.1)

where i is a complex primitive 4-th root of unity and g is a p-ary function over Fpn

with g(ω) = 0 for all ω /∈ Supp(χ̂f ). It is worth noting that by the definition of

g : Fpn → Fp, it can be regarded as a mapping from Supp(χ̂f ) to Fp such that

g(ω) = 0 for all ω /∈ Supp(χ̂f ). Clearly, for all ω ∈ Supp(χ̂f ),

χ̂f (ω) ∈
{
±p

n+s
2 ξg(ω)

p ,±ip
n+s
2 ξg(ω)

p

}
.

We now introduce the notion of (non)-weakly regular plateaued functions in odd char-

acteristic, which covers a non-trivial subclass of the class of plateaued functions.

Definition 6.1. Let p be an odd prime and f : Fpn → Fp be a p-ary s-plateaued

function, where s is an integer with 0 ≤ s ≤ n. Then, f is called weakly regular

p-ary s-plateaued if there exists a complex number u having unit magnitude (in fact,

|u| = 1 and u does not depend on ω) such that

χ̂f (ω) ∈
{

0, up
n+s
2 ξg(ω)

p

}
(6.2)

for all ω ∈ Fpn , where g is a p-ary function over Fpn with g(ω) = 0 for all ω /∈
Supp(χ̂f ); otherwise, f is called non-weakly regular p-ary s-plateaued. In particular,

weakly regular p-ary s-plateaued f is called regular p-ary s-plateaued if u = 1 in

(6.2).
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Since χ̂f (ω) = 0 for ω /∈ Supp(χ̂f ), it is safe to say that f is regular s-plateaued if

χ̂f (ω) = p
n+s
2 ξ

g(ω)
p for all ω ∈ Supp(χ̂f ), and f is weakly regular s-plateaued if there

exists a complex number u having unit magnitude (in fact, u can only be equal to ±1

or ±i and u does not depend on ω) such that

χ̂f (ω) = up
n+s
2 ξg(ω)

p (6.3)

for all ω ∈ Supp(χ̂f ), where g is a p-ary function over Supp(χ̂f ). By (6.1), regular

s-plateaued functions can only exist for even n + s and for odd n + s with p ≡ 1

(mod 4).

We can derive from (6.3) the following lemma, which has a significant role in finding

the Hamming weights of the codewords of a linear code (see Section 6.3).

Lemma 6.1. Let p be an odd prime and let f : Fpn → Fp be weakly regular s-

plateaued. For all ω ∈ Supp(χ̂f ),

χ̂f (ω) = ε
√
p∗
n+s

ξg(ω)
p ,

where ε = ±1 is the sign of χ̂f , p∗ denotes
(
−1
p

)
p and g is a p-ary function over

Supp(χ̂f ).

Proof. The critical point of this proof is the fact that u does not depend on ω ∈
Supp(χ̂f ) in (6.3). In view of (6.1), there are two cases:

• Assume n+ s is even or n+ s is odd and p ≡ 1 (mod 4). Clearly by (2.5), we

have
(
−1
p

)n+s

= 1 and by (6.1), we have u = ±1 in (6.3). Hence, ε
√
p∗
n+s

=

ε
√

1
√
pn+s = u

√
pn+s, where ε = ±1.

• Assume n+s is odd and p ≡ 3 (mod 4). Clearly by (2.5), we have
(
−1
p

)
= −1

and by (6.1), we have u = εi in (6.3), where ε = ±1. Hence,

ε
√
p∗
n+s

= ε
√
−1

n+s√
pn+s = εin+s√pn+s = u

√
pn+s.

The assertion follows from (6.3).

Lemma 6.2. Let p be an odd prime and let f : Fpn → Fp. The notion of weakly regu-

lar 0-plateaued functions coincides with the notion of weakly regular bent functions.
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Proof. Assume that f is weakly regular 0-plateaued. Then, there exists a complex

number u with |u| = 1 such that for all ω ∈ Fpn , χ̂f (ω) ∈ {0, upn2 ξg(ω)
p }, where g is

a p-ary function over Fpn and u does not depend on ω. By the Parseval identity, since

|z|2 = zz for z ∈ C, we have

p2n =
∑
ω∈Fpn

|χ̂f (ω)|2 =
∑

ω∈Supp(χ̂f )

|up
n
2 ξg(ω)
p |2 =

∑
ω∈Supp(χ̂f )

pn|u|2ξg(ω)
p ξ

g(ω)
p

=
∑

ω∈Supp(χ̂f )

pnξ0
p =

∑
ω∈Supp(χ̂f )

pn,

which implies #Supp(χ̂f ) = pn. Hence, χ̂f (ω) = up
n
2 ξ

g(ω)
p for all ω ∈ Fpn , where

|u| = 1 and g is a p-ary function over Fpn , i.e., f is weakly regular bent.

By MAGMA in [5], we obtain several concrete examples of a regular plateaued func-

tion.

Example 6.1. The function f(x) = Tr33

3 (ζ5x11 + ζ20x5 + ζ11x4 + ζ2x3 + ζx2), where

F?33 = 〈ζ〉 with ζ3 +2ζ+1 = 0, is regular 3-ary 1-plateaued with χ̂f (ω) ∈ {0, 9ξg(ω)
3 }

for all ω ∈ F33 , where g is an unbalanced 3-ary function. Indeed, it is easily seen that

Supp(χ̂f ) = {0, ζ4, ζ6, ζ9, ζ16, ζ17, ζ21, ζ24, ζ25} and

χ̂f (0) = 9ξ
g(0)
3 = 9 where g(0) = 0,

χ̂f (ζ
4) = 9ξ

g(ζ4)
3 = 9 where g(ζ4) = 0,

χ̂f (ζ
6) = 9ξ

g(ζ6)
3 = 9ξ3 where g(ζ6) = 1,

χ̂f (ζ
9) = 9ξ

g(ζ9)
3 = 9ξ3 where g(ζ9) = 1,

χ̂f (ζ
16) = 9ξ

g(ζ16)
3 = 9 where g(ζ16) = 0,

χ̂f (ζ
17) = 9ξ

g(ζ17)
3 = 9 where g(ζ17) = 0,

χ̂f (ζ
21) = 9ξ

g(ζ21)
3 = 9 where g(ζ21) = 0,

χ̂f (ζ
24) = 9ξ

g(ζ24)
3 = −9ξ3 − 9 where g(ζ24) = 2,

χ̂f (ζ
25) = 9ξ

g(ζ25)
3 = −9ξ3 − 9 where g(ζ25) = 2.

By MAGMA in [5], we obtain several concrete examples of a weakly regular plateaued

function.

Example 6.2. The function f(x) = Tr33

3 (ζx13 +ζ7x4 +ζ7x3 +ζx2), where F?33 = 〈ζ〉
with ζ3 + 2ζ+ 1 = 0, is weakly regular 3-ary 1-plateaued with χ̂f (ω) ∈ {0,−9ξ

g(ω)
3 }

for all ω ∈ F33 , where g is an unbalanced 3-ary function. We have Supp(χ̂f ) =
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{0, ζ6, ζ10, ζ11, 2, ζ19, ζ23, ζ24, 1} and

χ̂f (0) = −9ξ3 where g(0) = 1,

χ̂f (ζ
6) = −9ξ3 where g(ζ6) = 1,

χ̂f (ζ
10) = −9ξ3 where g(ζ10) = 1,

χ̂f (ζ
11) = −9 where g(ζ11) = 0,

χ̂f (2) = 9ξ3 + 9 where g(2) = 2,

χ̂f (ζ
19) = 9ξ3 + 9 where g(ζ19) = 2,

χ̂f (ζ
23) = 9ξ3 + 9 where g(ζ23) = 2,

χ̂f (ζ
24) = −9ξ3 where g(ζ24) = 1,

χ̂f (1) = 9ξ3 + 9 where g(1) = 2.

The following lemma has a crucial role in determining the weight distributions of the

constructed linear codes (see Section 6.3). Recall that the inverse Walsh transform of

f is defined by:

ξf(x)
p =

1

pn

∑
ω∈Fpn

χ̂f (ω)ξTrp
n

p (ωx)
p . (6.4)

Lemma 6.3. Let p be an odd prime and f : Fpn → Fp be weakly regular s-plateaued.

Then for x ∈ Fpn , ∑
ω∈Supp(χ̂f )

ξg(ω)+Trp
n

p (ωx)
p = u−1p

n−s
2 ξf(x)

p ,

where |u| = 1 and g is a p-ary function over Fpn with g(ω) = 0 for all ω ∈ Fpn \
Supp(χ̂f ).

Proof. Since f is weakly regular s-plateaued, for all ω ∈ Supp(χ̂f ) we have χ̂f (ω) =

up
n+s
2 ξ

g(ω)
p , where |u| = 1 and g is a p-ary function over Fpn with g(ω) = 0 for all

ω ∈ Fpn \ Supp(χ̂f ). By the inverse Walsh transform in (6.4), we have

u−1p
n+s
2 ξ

f(x)
p = u−1p

n+s
2

1

pn

∑
ω∈Fpn

χ̂f (ω)ξTrp
n

p (ωx)
p

= u−1p
n+s
2

1

pn

∑
ω∈Supp(χ̂f )

up
n+s
2 ξg(ω)

p ξTrp
n

p (ωx)
p

= ps
∑

ω∈Supp(χ̂f )

ξg(ω)+Trp
n

p (ωx)
p ,

where we used in the second equality that χ̂f (ω) = 0 for all ω ∈ Fpn \Supp(χ̂f ).
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Recall that constructions from "scratch" are called primary. On the contrary, sec-

ondary constructions use already constructed functions to build new ones.

6.1.2 Secondary Constructions of (Non)-Weakly Regular Plateaued p-Ary Func-

tions

This section presents the first secondary constructions of plateaued p-ary functions.

We shall construct new (non)-weakly regular plateaued functions over finite fields of

odd characteristic.

Direct Sum of Plateaued p-Ary Functions. The direct sum construction is the first

secondary construction for Boolean bent functions given by Dillon [30] and Rothaus

[72]. Such a construction has been extended first by Tan et al. [75] for p-ary bent

functions and then by Carlet [15] for Boolean plateaued functions.

In the following, we give the concept of the so-called direct sum of p-ary functions.

Definition 6.2. Let p be an odd prime and both m and n be positive integers. Let

f : Fpn → Fp and g : Fpm → Fp. Then the direct sum of f and g is the map h from

Fpn × Fpm to Fp defined as h(x, y) = f(x) + g(y) for x ∈ Fpn and y ∈ Fpm .

Now, we shall use the direct sum to construct new (non)-weakly regular plateaued

p-ary functions over a larger field from two given ones over smaller fields. But above,

we emphasize that the Walsh transform of a function derived from the direct sum can

be easily expressed. Indeed, for (a, b) ∈ Fpn × Fpm , it can be directly seen that

χ̂h(a, b) =
∑

x∈Fpn ,y∈Fpm

ξp
h(x,y)−a·x−b·y =

∑
x∈Fpn

ξp
f(x)−a·x

∑
y∈Fpn

ξp
f(y)−b·y

= χ̂f (a)χ̂g(b),

(6.5)

where an inner product (a, b) · (x, y) in Fpn × Fpm is defined as the sum of the inner

products a · x in Fpn and b · y in Fpm .

Theorem 6.1. Let f : Fpn → Fp be s1-plateaued and g : Fpm → Fp be s2-plateaued,

where 0 ≤ s1 ≤ n and 0 ≤ s2 ≤ m. Let h be the direct sum of f and g from Fpn+m to

Fp. Then, h is (s1 + s2)-plateaued.
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Proof. We first make a preliminary observation. It can be easily checked that we have

Supp(χ̂h) = Supp(χ̂f ) × Supp(χ̂g). Namely, for (a, b) ∈ Fpn × Fpm , we have that

(a, b) ∈ Supp(χ̂h) if and only if a ∈ Supp(χ̂f ) and b ∈ Supp(χ̂g). Now for all

(a, b) ∈ Supp(χ̂h), we have a ∈ Supp(χ̂f ) and b ∈ Supp(χ̂g), and hence by (6.5),

|χ̂h(a, b)|2 = |χ̂f (a)χ̂g(b)|2 = |χ̂f (a)|2|χ̂g(b)|2 = pn+m+s1+s2 ,

which completes the proof.

Remark 6.1. Note that in this subsection we use the notation f ′ to denote a p-ary

function g over Supp(χ̂f ) in (6.3) in the Walsh spectrum of plateaued f .

The following proposition shows that the direct sum of a non-weakly regular plateaued

function and a weakly regular plateaued function is non-weakly regular plateaued.

Proposition 6.1. Let f : Fpn → Fp be non-weakly regular s1-plateaued and g :

Fpm → Fp be weakly regular s2-plateaued. Then, h : Fpn+m → Fp is non-weakly

regular (s1 + s2)-plateaued.

Proof. Since f is non-weakly regular s1-plateaued, for all a ∈ Supp(χ̂f ), we have

χ̂f (a) = uap
n+s1

2 ξ
f ′(a)
p where |ua| = 1 and f ′ is a p-ary function over Supp(χ̂f ).

Since g is weakly regular s2-plateaued, for all b ∈ Supp(χ̂g), we have χ̂g(b) =

up
m+s2

2 ξ
g′(b)
p where |u| = 1 and g′ is a p-ary function over Supp(χ̂g). Hence, by (6.5)

and the above discussion, for all (a, b) ∈ Supp(χ̂h), we have

χ̂h(a, b) = χ̂f (a)χ̂g(b) = ua,bp
n+m+s1+s2

2 ξh
′(a,b)
p

where ua,b = uau (in fact, |ua,b| = 1 and ua,b depends on (a, b) ∈ Supp(χ̂h)) and

h′(a, b) = f ′(a) + g′(b) is a p-ary function over Supp(χ̂h). Hence, h is a non-weakly

regular (s1 + s2)-plateaued function over Fpn+m .

The following proposition shows that the direct sum of a (weakly) regular function

and a weakly regular (but not regular) function is weakly regular (but not regular).

Proposition 6.2. Let f : Fpn → Fp be (weakly) regular s1-plateaued and g : Fpm →
Fp be weakly regular (but not regular) s2-plateaued. Then, h : Fpn+m → Fp is a

weakly regular (s1 + s2)-plateaued (but not regular) function.
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Proof. As in the proof of Proposition 6.1, for all (a, b) ∈ Supp(χ̂h), we have

χ̂h(a, b) = up
n+m+s1+s2

2 ξh
′(a,b)
p

where |u| = 1, (in fact, u ∈ {−1,±i} does not depend on (a, b) ∈ Supp(χ̂h)) and

h′(a, b) = f ′(a)+g′(b) is a p-ary function over Supp(χ̂h). The proof is complete.

As observed in Propositions 6.1 and 6.2, one can construct new (non)-weakly regular

plateaued functions over a larger field from given ones over smaller fields.

Semi-Direct Sum of Plateaued p-Ary Functions. As an extension of the direct sum

construction, the semi-direct sum construction was proposed for bent functions in

[24]. This is the following.

Definition 6.3. [24] Let f : Fpn → Fp, g : Fpm → Fp and F : Fpn → Fpm be

functions. Then, the semi-direct sum h : Fpn × Fpm → Fp of f and g is defined as

h(x, y) = f(x) + g(y + F (x)).

Below, we present the expression of the Walsh transform of the semi-direct sum of

two p-ary functions.

Proposition 6.3. Let f : Fpn → Fp, g : Fpm → Fp and F : Fpn → Fpm be functions.

Then for (a, b) ∈ Fpn+m , the Walsh transform of the semi-direct sum h : Fpn×Fpm →
Fp of f and g defined as h(x, y) = f(x) + g(y + F (x)) is given by

χ̂h(a, b) = χ̂Fb(a)χ̂g(b),

where Fb is the map from Fpn to Fp defined as Fb(x) = f(x) + b · F (x) for all

b ∈ Supp(χ̂g) and Fb is the zero function for all b /∈ Supp(χ̂g).

Remark 6.2. We have that (a, b) ∈ Supp(χ̂h) if and only if a ∈ Supp(χ̂Fb) and

b ∈ Supp(χ̂g).

In the following, we show that the semi-direct sum construction can be used to design

plateaued functions in arbitrary characteristic.

Theorem 6.2. Let f : Fpn → Fp be s1-plateaued and let g : Fpm → Fp be s2-

plateaued. Let F : Fpn → Fpm and let h be the semi-direct sum of f and g. Let Fb be

as in Proposition 6.3. Then, h is (s1 + s2)-plateaued if and only if Fb is s1-plateaued

for all b ∈ Supp(χ̂g).
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Proof. Since g is s2-plateaued, we have |χ̂g(b)|2 = pm+s2 for all b ∈ Supp(χ̂g). Then

by Proposition 6.3, |χ̂Fb(a)|2 = pn+s1 for all a ∈ Supp(χ̂Fb), i.e., Fb is s1-plateaued

for all b ∈ Supp(χ̂g) if and only if

|χ̂h(a, b)|2 = |χ̂Fb(a)χ̂g(b)|2 = |χ̂Fb(a)|2|χ̂g(b)|2 = pn+m+s1+s2

for all (a, b) ∈ Supp(χ̂h), i.e., h is (s1 + s2)-plateaued over Fpn+m . The proof is

complete.

Below, we construct new (non)-weakly regular plateaued functions over a larger field

from given ones over smaller fields.

Corollary 6.1. Let f : Fpn → Fp be weakly regular s1-plateaued and let g : Fpm →
Fp be weakly regular s2-plateaued. Let F : Fpn → Fpm and let h be the semi-direct

sum of f and g. Let Fb be as in Proposition 6.3. Then, h is non-weakly regular

(s1 + s2)-plateaued if and only if Fb is (non)-weakly regular s1-plateaued for all

b ∈ Supp(χ̂g).

Proof. Since g is weakly regular s2-plateaued, for all b ∈ Supp(χ̂g), we have χ̂g(b) =

up
m+s2

2 ξ
g′(b)
p where |u| = 1, (in fact, u does not depend on b) and g′ is a p-ary

function over Supp(χ̂g). Assume Fb is (non)-weakly regular s1-plateaued for all

b ∈ Supp(χ̂g). Then, for all a ∈ Supp(χ̂Fb), we have χ̂Fb(a) = ua,bp
n+s1

2 ξ
F ′b(a)
p where

|ua,b| = 1 (in fact, it depends on b ∈ Supp(χ̂g) and possibly on a ∈ Supp(χ̂Fb)) and

F ′b is a p-ary function over Supp(χ̂Fb). Hence, in view of Proposition 6.3 and Remark

6.2, for all (a, b) ∈ Supp(χ̂h), we have

χ̂h(a, b) = χ̂Fb(a)χ̂g(b) = va,bp
n+m+s1+s2

2 ξh
′(a,b)
p

where |va,b| = 1, (in fact, va,b = uua,b and va,b depends on (a, b) ∈ Supp(χ̂h)) and

h′(a, b) = F ′b(a) + g′(b) is a p-ary function over Supp(χ̂h). Hence, h is a non-weakly

regular (s1 +s2)-plateaued function over Fpn+m . The other direction follows from the

above arguments.

We now propose new secondary construction of p-ary plateaued functions, as an ex-

tension of the semi-direct sum construction given in Definition 6.3. Our construc-

tion is as follows. Let f : Fpn → Fp, g : Fpm → Fp, let F : Fpm → Fpn and
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G : Fpn → Fpm be functions. We define a function h : Fpn × Fpm → Fp by

h(x, y) = f(x+ F (y)) + g(y +G(x)). (6.6)

We start by giving the expression of the Wash transform of h.

Proposition 6.4. Let f : Fpn → Fp and g : Fpm → Fp, let F : Fpm → Fpn and

G : Fpn → Fpm be functions. Then, for (a, b) ∈ Fpn × Fpm , the Walsh transform of

the function h : Fpn × Fpm → Fp defined by (6.6) is given by

χ̂h(a, b) = χ̂Fb(a)χ̂Ga(b),

where Fb : Fpn → Fp is defined as Fb(x) = f(x) + b · G(x) for all b ∈ Supp(χ̂Ga)

and it is the zero function for all b /∈ Supp(χ̂Ga), and Ga : Fpm → Fp is defined as

Ga(y) = g(y) + a · F (y) for all a ∈ Supp(χ̂Fb) and it is the zero function for all

a /∈ Supp(χ̂Fb).

Proof. For all (a, b) ∈ Fpn × Fpm , we have

χ̂h(a, b) =
∑

(x,y)∈Fpn×Fpm

ξh(x,y)−(a,b)·(x,y)
p =

∑
x∈Fpn ,y∈Fpm

ξf(x+F (y))−a·x+g(y+G(x))−b·y
p

=
∑
x∈Fpn

ξf(x)+b·G(x)−a·x
p

∑
y∈Fpm

ξg(y)+a·F (y)−b·y
p

=
∑
x∈Fpn

ξFb(x)−a·x
p

∑
y∈Fpm

ξGa(y)−b·y
p = χ̂Fb(a)χ̂Ga(b),

where in the third equality we used the bijective change of variables: x 7→ x− F (y)

and y 7→ y −G(x). This completes the proof.

Remark 6.3. If F and G are the zero functions, then this construction reduces to the

direct sum construction. If F or G is the zero function, then this construction reduces

to the semi-direct sum construction.

Remark 6.4. Notice that (a, b) ∈ Supp(χ̂h) if and only if a ∈ Supp(χ̂Fb) and b ∈
Supp(χ̂Ga).

The following constructions of (non)-weakly regular bent and plateaued functions

follow from Proposition 6.4 and Remark 6.4.

Proposition 6.5. Let f : Fpn → Fp and g : Fpm → Fp be bent, and let F : Fpm → Fpn

and G : Fpn → Fpm be functions. If Fb and Ga are bent functions where Fb : Fpn →
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Fp is defined as Fb(x) = f(x)+b ·G(x) for all b ∈ Fpn andGa : Fpm → Fp is defined

as Ga(y) = g(y) + a · F (y) for all a ∈ Fpm , then h is bent over Fpn+m .

Theorem 6.3. Let f : Fpn → Fp and g : Fpm → Fp be plateaued functions. Let

Fb, Ga and h be as in Proposition 6.4. If Fb and Ga are plateaued functions for all

b ∈ Supp(χ̂Ga) and a ∈ Supp(χ̂Fb), respectively, then h is plateaued over Fpn+m .

The following proposition provides the construction of a non-weakly regular plateaued

function from given a non-weakly regular plateaued function and a (weakly) regular

plateaued function.

Proposition 6.6. Let f : Fpn → Fp be s1-plateaued and g : Fpm → Fp be s2-

plateaued. Let Fb, Ga and h be as in Proposition 6.4. Assume that Fb is non-weakly

regular s1-plateaued for all b ∈ Supp(χ̂Ga) and Ga is (weakly) regular s2-plateaued

for all a ∈ Supp(χ̂Fb). Then, h is non-weakly regular (s1+s2)-plateaued over Fpn+m .

Recursive Constructions of (Non)-Weakly Regular Plateaued p-Ary Functions.

In this part, we construct (non)-weakly regular plateaued p-ary functions from given

ones. In 2009, a construction method of binary bent functions from given near-bent

functions was given in [49], and then in 2012, this method was generalized in [22] to

arbitrary characteristic by obtaining p-ary bent functions from given p-ary near-bent

functions. This is as follows.

Let fi : Fpn → Fp be functions for all i ∈ {0, . . . , p − 1} such that for 0 ≤ j 6= k ≤
p− 1,

Supp(χ̂f j) ∩ Supp(χ̂f k) = ∅.

We define F : Fpn × Fp → Fp by

h(x, y) = (p− 1)

p−1∑
i=0

y(y − 1) . . . (y − (p− 1))

y − i
fi(x). (6.7)

The Walsh transform of h at (a, b) ∈ Fpn × Fp was computed in [22]:

χ̂h(a, b) =
∑
y∈Fp

ξ−byp χ̂fy(a).

We now use the construction presented above to produce the first construction of

(non)-weakly regular plateaued p-ary functions from p given (non)-weakly regular

plateaued p-ary functions with pairwise disjoint Walsh supports.

134



Let fi : Fpn → Fp be s-plateaued functions for all i ∈ {0, . . . , p − 1} such that

Supp(χ̂f j) ∩ Supp(χ̂f k) = ∅ for 0 ≤ j 6= k ≤ p− 1, where s is an integer with 1 ≤
s ≤ n. Notice that Supp(χ̂f i) = {a ∈ Fpn : χ̂f i(a) 6= 0} and #Supp(χ̂f i) = pn−s

for all i ∈ {0, . . . , p− 1}. Hence, we have

#

(
p−1⋃
i=0

Supp(χ̂f i)

)
=

p−1∑
i=0

#Supp(χ̂f i) = pn+1−s,

and the set
⋃p−1
i=0 Supp(χ̂f i) is the proper subset of Fpn for an integer s > 1. Then,

the Walsh support of h : Fpn × Fp → Fp is given by

Supp(χ̂h) =

{
(a, b) ∈ Fpn × Fp : a ∈

p−1⋃
i=0

Supp(χ̂f i) and b ∈ Fp

}

=

p−1⋃
i=0

Supp(χ̂f i)× Fp,

and #Supp(χ̂h) = pn+1−(s−1). It is worth noting that the Walsh spectrum of h is

given by

spec(h) =

p−1⋃
i=0

⋃
b∈Fp

ξ−bip spec(fi).

Remark 6.5. Note that (a, b) ∈ Supp(χ̂h) if and only if a ∈ Supp(χ̂f i) for exactly

one i ∈ Fp and b ∈ Fp.

We can construct an (s − 1)-plateaued function over Fpn+1 from p given s-plateaued

functions over Fpn , where s is an integer with 1 ≤ s ≤ n.

Theorem 6.4. Let fi : Fpn → Fp for all i ∈ {0, . . . , p − 1} and h : Fpn × Fp → Fp
defined by (6.7). If fi is s-plateaued for all i ∈ {0, . . . , p − 1}, then h is (s − 1)-

plateaued.

Proof. Using the expression of the Wash transform of h and by Remark 6.5, for all

(a, b) ∈ Supp(χ̂h), since each a belongs to Supp(χ̂f y) for exactly one y ∈ {0, . . . , p−
1}, for this y we have

χ̂h(a, b) = ξ−byp χ̂fy(a),

and hence, |χ̂h(a, b)|2 = |ξ−byp χ̂fy(a)|2 = pn+s = pn+1+(s−1). Hence, h is (s − 1)-

plateaued over Fpn+1 .
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We can construct a non-weakly regular plateaued function from some given weakly

regular plateaued functions.

Corollary 6.2. Let fi : Fpn → Fp for all i ∈ {0, . . . , p − 1} and h : Fpn × Fp → Fp
defined by (6.7). Let s be an integer with 1 ≤ s ≤ n. If fi is weakly regular s-

plateaued for all i ∈ {0, . . . , p− 1}, then h is non-weakly regular (s− 1)-plateaued.

Proof. As in the proof of Theorem 6.4, for all (a, b) ∈ Supp(χ̂h),

χ̂h(a, b) = ξ−byp χ̂fy(a) = ξ−byp uyp
n+s
2 ξ

f ′y(a)
p = uyp

(n+1)+(s−1)
2 ξ

f ′y(a)−by
p

where |uy| = 1, (in fact, uy depends on (a, b) ∈ Supp(χ̂h)) and h′(a, b) = f ′y(a)− by
is a p-ary function over Supp(χ̂h). Hence, h is non-weakly regular (s− 1)-plateaued

over Fpn+1 .

Remark 6.6. In Corollary 6.2, if fi is non-weakly regular s-plateaued for all i ∈
{0, . . . , p− 1}, then h is non-weakly regular (s− 1)-plateaued.

The following construction given in [22, 24] combines n variable p bent functions to

construct an (n + 2) variable one bent function. Let fi : Fpn → Fp be functions for

all i ∈ {0, . . . , p− 1}. Let h : Fpn × Fp2 → Fp be the function defined as

h(x, y) = fy2(x) + y1y2 (6.8)

where x ∈ Fpn and y = (y1, y2) ∈ Fp2 . For (a, b) ∈ Fpn × Fp2 , the Walsh transform

of h is

χ̂h(a, b) = pξ−b1b2p χ̂fb1 (a), (6.9)

where b = (b1, b2) ∈ Fp2 .

Remark 6.7. Notice that (a, b) ∈ Supp(χ̂h) if and only if a ∈ Supp(χ̂fb1 ) where

b = (b1, b2) ∈ Fp2 .

Below, we consider this construction for plateaued functions.

Theorem 6.5. Let fi : Fpn → Fp be functions for all i ∈ {0, . . . , p − 1} and let

h : Fpn × Fp2 → Fp defined by (6.8). Then, h is s-plateaued if and only if fi is

s-plateaued for all i ∈ {0, . . . , p− 1}.
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Proof. For all (a, b) ∈ Supp(χ̂h), we have χ̂h(a, b) = pξ−b1b2p χ̂fb1 (a), and hence,

|χ̂h(a, b)|2 = |pξ−b1b2p χ̂fb1 (a)|2 = p2|χ̂fb1 (a)|2.

Hence, h is (n + 2) variable s-plateaued if and only if fb1 is n variable s-plateaued

for all b1 ∈ {0, . . . , p− 1}.

We can construct a non-weakly regular plateaued function from given weakly regular

plateaued functions based on the above construction.

Proposition 6.7. Let fi : Fpn → Fp be functions for all i ∈ {0, . . . , p − 1} and

let h : Fpn × Fp2 → Fp defined by (6.8). If fi is weakly regular s-plateaued for all

i ∈ {0, . . . , p−1}, then h is a non-weakly regular s-plateaued function. In particular,

fi is weakly regular s-plateaued with the same complex number u (see Definition 6.1)

for all i ∈ {0, . . . , p− 1} if and only if h is weakly regular s-plateaued.

Proof. Assume that fi is weakly regular s-plateaued for all i ∈ {0, . . . , p− 1}. Then

for all a ∈ Supp(χ̂fi), we have

χ̂fi(a) = uip
n+s
2 ξ

f ′i(a)
p ,

where |ui| = 1, (in fact, ui does not depend on a ∈ Fpn) and f ′i is a p-ary function

over Supp(χ̂fi). For all (a, b) ∈ Supp(χ̂h), by (6.9) we have

χ̂h(a, b) = pξ−b1b2p χ̂fb1 (a) = pξ−b1b2p ub1p
n+s
2 ξ

f ′b1
(a)

p = ub1p
n+2+s

2 ξ
f ′b1

(a)−b1b2
p

where |ub1| = 1, (in fact, ub1 depends on (a, b) ∈ Supp(χ̂h)) and h′(a, b) = f ′b1(a)−
b1b2 is a p-ary function over Supp(χ̂h); equivalently, h is non-weakly regular s-

plateaued over Fpn+2 . In particular, the second statement follows from (6.9) and the

first statement.

Given n variable p plateaued functions, the following new construction produces (n+

4) variable one plateaued function. Let fi : Fpn → Fp be functions for all i ∈
{0, . . . , p− 1}. Let h : Fpn × Fp4 → Fp be the function defined as

h(x, y) = fy4(x) + y1y2 + y3y4, (6.10)

where y = (y1, y2, y3, y4) ∈ F4
p.

Now we present further possibilities of constructions of (non)-weakly regular bent

and plateaued functions based on the above construction.
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Theorem 6.6. Let fi : Fpn → Fp be functions for all i ∈ {0, . . . , p − 1} and let

h : Fpn × Fp4 → Fp defined by (6.10). Then, h is s-plateaued if and only if fi is

s-plateaued for all i ∈ {0, . . . , p− 1}.

Proof. For (a, b) ∈ Fpn × Fp4 , the Walsh transform χ̂h(a, b) of h is equal to∑
x,y∈Fpn

ξh(x,y)−(a,b)·(x,y)
p =

∑
x∈Fpn

ξ
fy4 (x)−a·x
p

∑
y1,y2,y3,y4∈Fp

ξy1y2+y3y4−b1y1−b2y2−b3y3−b4y4
p

=
∑
x∈Fpn

ξ−a·xp

∑
y2∈Fp

ξ−b2y2p

∑
y1∈Fp

ξy1(y2−b1)
p

∑
y4∈Fp

ξ
fy4 (x)−b4y4
p

∑
y3∈Fp

ξy3(y4−b3)
p


=
∑
x∈Fpn

ξ
fb3 (x)−a·x
p

(
pξ−b1b2p

) (
pξ−b3b4p

)
= p2ξ−b1b2−b3b4p χ̂fb3 (a).

Notice that (a, b) ∈ Supp(χ̂h) if and only if a ∈ Supp(χ̂fb3 ) where b = (b1, b2, b3, b4) ∈
F4
p. Hence, the result follows as in the proof of Theorem 6.5.

Corollary 6.3. Let fi : Fpn → Fp be functions for all i ∈ {0, . . . , p − 1} and let

h : Fpn × Fp4 → Fp be defined by (6.10). Then, h is bent if and only if fi is bent for

all i ∈ {0, . . . , p− 1}.

We can derive a non-weakly regular plateaued function from given weakly regular

plateaued functions based on the above construction. The following can be easily

proven as in the proof of Proposition 6.7.

Proposition 6.8. Let fi : Fpn → Fp be functions for all i ∈ {0, . . . , p − 1} and let

h : Fpn × Fp4 → Fp be defined by (6.10). If fi is weakly regular s-plateaued for all

i ∈ {0, . . . , p−1}, then h is a non-weakly regular s-plateaued function. In particular,

fi is weakly regular s-plateaued with the same complex number u (see Definition 6.1)

for all i ∈ {0, . . . , p− 1} if and only if h is weakly regular s-plateaued.

6.2 On the First Generic Construction of Linear Codes from Functions over Fp

In this section, we review the construction of linear codes involving special functions

over finite fields based on the first generic construction.

In the literature, there are mainly two generic constructions (say, first and second)

of linear codes from functions over finite fields (see [31]). We now recall the first
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generic construction, which is obtained by considering a code C(h) over Fp involving

a polynomial h from Fq to Fq (where q = pm) defined by

C(h) = {c = (Trqp(ah(x) + bx))x∈F∗q : a ∈ Fq, b ∈ Fq}.

The resulting code C(h) from h is a linear code of length q − 1 and its dimension is

upper bounded by 2m which is reached in many cases. This is the following. It is

worth mentioning that the importance of the first generic construction is supported by

Delsarte’s Theorem [29].

For any α, β ∈ Fqn (where q = pm), we define a function

fα,β : Fqn −→ Fq
x 7−→ fα,β(x) := Trq

n

q (αΨ(x)− βx),

where Ψ is a polynomial from Fqn to Fqn such that Ψ(0) = 0. Then we also define a

linear code CΨ over Fq as:

CΨ := {c̃α,β = (fα,β(ζ1), fα,β(ζ2), . . . , fα,β(ζqn−1)) : α, β ∈ Fqn},

where ζ1, . . . , ζqn−1 are the elements of F?qn and c̃α,β denotes a codeword of CΨ.

Very recently, Mesnager [58] has proposed an approach for constructing linear codes

with special types of functions based on the first generic construction. With this

approach, we will construct linear codes from plateaued functions in arbitrary char-

acteristic in the next section. We first recall this approach based on the first generic

construction.

Remark 6.8. Clearly, the length of the linear code CΨ is qn − 1.

Proposition 6.9. If the polynomial Ψ : Fqn → Fqn has no linear component, then CΨ

has dimension 2n over Fq.

Proof. We observe that c̃α,β = 0 if and only if for all i ∈ {1, . . . , qn − 1},

Trq
n

q (αΨ(ζi)− βζi) = 0⇐⇒ Trq
n

q (αΨ(x)− βx) = 0, for all x ∈ F?qn

⇒ Trq
n

p (αΨ(x)− βx) = 0, for all x ∈ Fqn

⇒ Trq
n

p (αΨ(x)) = Trq
n

p (βx), for all x ∈ Fqn .

Hence, c̃α,β = 0 implies that the component of Ψ associated with α 6= 0 is linear

or null and coincides with x 7→ Trq
n

p (βx). Hence, to ensure that the zero codeword
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appears only once (when α = β = 0), it is enough to show that no component

function of Ψ is identically 0 or linear. Then this implies that all codewords c̃α,β are

pairwise distinct. Hence, the dimension of CΨ is 2n.

The Hamming weights of the codewords of CΨ of length qn − 1 can be expressed

by the Walsh transform of trace functions involving the map Ψ. We keep the above

notations in the following proposition.

Proposition 6.10. Let ψa be a function from Fqn to Fp defined by

ψa(x) = Trq
n

p (aΨ(x)),

where a ∈ Fqn and Ψ : Fqn → Fqn with Ψ(0) = 0. For all α, β ∈ Fqn ,

wt(c̃α,β) = qn − 1

q

∑
ω∈Fq

χ̂ψωα(ωβ).

Proof. Obviously, fα,β(0) = 0 since Ψ(0) = 0. For all α, β ∈ Fqn , we have

wt(c̃α,β) = #{x ∈ F?qn : fα,β(x) 6= 0}

= #{x ∈ Fqn : fα,β(x) 6= 0}

= qn −#{x ∈ Fqn : fα,β(x) = 0}

= qn −
∑
x∈Fqn

1

q

∑
ω∈Fq

ξp
Trqp(ωfα,β(x)),

where the last equality follows from the fact that the sum of characters is q if fα,β(x) =

0, and 0 otherwise. Meanwhile, we have∑
x∈Fqn

∑
ω∈Fq

ξp
Trqp(ωfα,β(x)) =

∑
ω∈Fq

∑
x∈Fqn

ξp
Trqp(ωTrq

n

q (αΨ(x)−βx)) =

∑
ω∈Fq

∑
x∈Fqn

ξp
Trq

n

p (ωαΨ(x)−ωβx) =
∑
ω∈Fq

∑
x∈Fqn

ξp
ψωα(x)−Trq

n

p (ωβx) =
∑
ω∈Fq

χ̂ψωα(ωβ),

where we used the transitivity and the linearity of the trace function Trq
n

p . This com-

pletes the proof.

We consider a subclass of the class of the linear codes CΨ. We assumem = 1 (i.e., q =

p) and α ∈ Fp. Let ψ1(x) = Trp
n

p (Ψ(x)) be a p-ary function such that a polynomial

Ψ : Fpn → Fpn with Ψ(0) = 0 has no linear component. Then, we have

fα,β(x) = αψ1(x)− Trp
n

p (βx)
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and define a subcode Cψ1 of CΨ as follows:

Cψ1 := {c̃α,β = (fα,β(ζ1), fα,β(ζ2), . . . , fα,β(ζpn−1)) : α ∈ Fp, β ∈ Fpn}, (6.11)

where ζ1, . . . , ζpn−1 are the elements of F?pn . The linear code Cψ1 of length pn − 1

over Fp defined by (6.11) is a k-dimensional subspace of Fnp , where k = n + 1, and

denoted by [pn− 1, n+ 1]p. In view of Proposition 6.10, the Hamming weights of the

codewords of Cψ1 are given as follows. We keep the above arguments in the following

proposition.

Proposition 6.11. For c̃α,β ∈ Cψ1 ,

• if α = 0, we have wt(c̃0,0) = 0 and wt(c̃0,β) = pn − pn−1 for all β ∈ F?pn ,

• if α ∈ F?p, we have for all β ∈ Fpn

wt(c̃α,β) = pn − pn−1 − 1

p

∑
ω∈F?p

σω
(
σα(χ̂ψ1(α

−1β))
)
,

where α−1 is the multiplicative inverse of α ∈ F?p and σa is the automorphism

of the cyclotomic field Q(ξp) for a ∈ F?p.

Proof. By Proposition 6.10, for all α ∈ Fp and β ∈ Fpn , we have

wt(c̃α,β) = pn − 1

p

∑
ω∈Fp

χ̂ψωα(ωβ).

Clearly, the Walsh transform of the zero function (denoted by 0) at a point b ∈ Fpn is

χ̂0(b) =
∑
x∈Fpn

ξ−bxp = pnδ0,b,

where δi,j denotes the Dirac symbol defined by δi,j = 1 if i = j, and 0 otherwise.

Then obviously χ̂0(0) = pn. Meanwhile, we have∑
ω∈Fp

χ̂ψωα(ωβ) = pn +
∑
ω∈F?p

χ̂ψωα(ωβ) = pn +
∑
ω∈F?p

∑
x∈Fpn

ξTrp
n

p (ωαΨ(x)−ωβx)
p

= pn +
∑
ω∈F?p

∑
x∈Fpn

ξωTrp
n

p (αΨ(x)−βx)
p = pn +

∑
ω∈F?p

σω(χ̂ψα(β)).

If α = 0, then

wt(c̃0,β) = pn − pn−1 − 1

p

∑
ω∈F?p

σω(χ̂0(β)) = pn − pn−1 − pn−1(p− 1)δ0,β.
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Hence, we obtain wt(c̃0,0) = 0 and for β 6= 0, wt(c̃0,β) = pn − pn−1.

For α 6= 0, we have

σα(χ̂ψ1(α
−1β)) = σα

∑
x∈Fpn

ξψ1(x)−Trp
n

p (α−1βx)
p

 =
∑
x∈Fpn

ξαψ1(x)−Trp
n

p (βx)
p

= χ̂αψ1(β) = χ̂ψα(β).

Hence, for all α ∈ F?p and β ∈ Fpn , we have

wt(c̃α,β) = pn − pn−1 − 1

p

∑
ω∈F?p

σω
(
σα
(
χ̂ψ1(α

−1β)
))
.

In the following section, we use the above construction method based on the first

generic construction to construct linear codes from plateaued functions.

6.3 New Classes of Three-Weight Linear Codes From Plateaued Functions

We construct new classes of linear codes with few weights from plateaued functions

in arbitrary characteristic and determine their weight distributions. We shall analyze

separately the binary case in Subsection 6.3.1 and the odd case in Subsection 6.3.2.

6.3.1 A New Class of Binary Three-Weight Linear Codes from Plateaued Boolean

Functions

This subsection provides a new class of binary linear codes with few weights from

plateaued Boolean functions with their weight distributions.

Let p = 2 and let Ψ be a polynomial over F2n with Ψ(0) = 0. Assume that

ψ1(x) = Tr2n

2 (Ψ(x))

is an s-plateaued Boolean function, where n+s is an even integer with 0 ≤ s ≤ n−2

for n ≥ 2. We consider the linear code Cψ1 defined by (6.11). For α ∈ F2 and β ∈
F2n , we compute the Hamming weights of the codewords and the weight distribution

of Cψ1 . By Proposition 6.11, clearly
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• if α = 0, we have wt(c̃0,0) = 0 and wt(c̃0,β) = 2n−1 for β 6= 0,

• if α = 1 and β ∈ F2n , we have wt(c̃1,β) = 2n−1 − 1
2
χ̂ψ1(β).

Hence, by Lemma 2.6 we have for all β ∈ F2n ,

wt(c̃1,β) =


2n−1 − 2

n+s−2
2 , 2n−s−1 + 2

n−s−2
2 times,

2n−1, 2n − 2n−s times,

2n−1 + 2
n+s−2

2 , 2n−s−1 − 2
n−s−2

2 times.

The following theorem formalizes the Hamming weights of the codewords and the

weight distribution of Cψ1 .

Theorem 6.7. Let p = 2 and let Cψ1 be the binary linear [2n − 1, n+ 1] code defined

by (6.11). Assume that ψ1 is an s-plateaued Boolean function, where n+ s is an even

integer with 0 ≤ s ≤ n− 2 for n ≥ 2. Then, the Hamming weights of the codewords

and the weight distribution of Cψ1 are as in Table 6.2.

Hamming weight w Multiplicity Aw
0 1

2n−1 2n+1 − 2n−s − 1

2n−1 − 2
n+s−2

2 2n−s−1 + 2
n−s−2

2

2n−1 + 2
n+s−2

2 2n−s−1 − 2
n−s−2

2

Table 6.2: The Hamming weights of the codewords and the weight distribution of
Cψ1 when p = 2 and n+ s is even.

Below, we give a 3-plateaued Boolean function and a corresponding binary linear

code.

Example 6.3. Let Ψ(x) = ζ18x5 + ζ2x3 be the polynomial over F25 , where F?25 = 〈ζ〉
with ζ5 +ζ2 +1 = 0. Then, ψ1(x) = Tr25

2 (Ψ(x)) is the 3-plateaued Boolean function,

and so the set Cψ1 in (6.11) is the binary three-weight linear code with parameters

[31, 6, 8], weight enumerator 1+3y8+59y16+y24 and weight distribution (1, 3, 59, 1).

Hence, the Hamming weights of the codewords and the weight distribution of Cψ1 are

as in Table 6.3.

We now consider the case when p is an odd prime. In odd characteristic, not every p-

ary plateaued function can be used in this construction method because of their Walsh
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Hamming weight w Multiplicity Aw
0 1
16 59

8 3

24 1

Table 6.3: The Hamming weights of the codewords and the weight distribution of
Cψ1 when p = 2, n = 5 and s = 3.

transform values. Thereby, we should use the super subclass of the class of plateaued

functions, which is the class of weakly regular plateaued functions.

6.3.2 New Classes of Three-Weight Linear p-Ary Codes from Weakly Regular

Plateaued Functions

In this subsection, we construct new classes of linear p-ary codes with few weights

from weakly regular plateaued p-ary functions and determine their weight distribu-

tions.

From now on, we assume that p is an odd prime and a p-ary function

ψ1(x) = Trp
n

p (Ψ(x)) (6.12)

is weakly regular s-plateaued, where s is an integer with 0 ≤ s ≤ n−2 for n ≥ 2 and

Ψ is a polynomial over Fpn with Ψ(0) = 0. We consider the linear code Cψ1 defined

by (6.11).

We first compute the Hamming weights of c̃α,β for all α ∈ Fp and β ∈ Fpn , and then

determine the weight distribution of Cψ1 . In view of Proposition 6.11, if α = 0, we

have wt(c̃0,0) = 0 and wt(c̃0,β) = pn − pn−1 for β ∈ F?pn . And for all α ∈ F?p and

β ∈ Fpn , we have

wt(c̃α,β) = pn − pn−1 − 1

p

∑
ω∈F?p

σω
(
σα(χ̂ψ1(α

−1β))
)
. (6.13)

To compute this, we first need the following lemma.

Lemma 6.4. Let f : Fpn → Fp be s-plateaued. Define the sets Z(χ̂f ) := {(α, β) ∈
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F?p × Fpn : χ̂f (α
−1β) = 0} and

S(χ̂f ) := {(α, β) ∈ F?p × Fpn : χ̂f (α
−1β) 6= 0},

where α−1 is the multiplicative inverse of α ∈ F?p. Then, the sizes ofZ(χ̂f ) and S(χ̂f )

are equal respectively to (p− 1)(pn − pn−s) and (p− 1)pn−s.

Proof. By Lemma 2.5, we have #{β ∈ Fpn : χ̂f (β) = 0} = pn − pn−s and

#Supp(χ̂f ) = pn−s, where Supp(χ̂f ) = {β ∈ Fpn : χ̂f (β) 6= 0}. Notice that

for each α ∈ F?p, the element β ∈ Fpn can be viewed as α−1β, that is, Fpn = {α−1β :

β ∈ Fpn}. Hence, we have #Z(χ̂f ) = (p−1)(pn−pn−s) and #S(χ̂f ) = (p−1)pn−s.

The proof is complete.

We should now consider two cases: the Walsh transform value of plateaued ψ1 is

either zero or nonzero. For all α ∈ F?p and β ∈ Fpn , we have the following.

If χ̂ψ1(α
−1β) = 0, i.e., (α, β) ∈ Z(χ̂ψ1), then we have wt(c̃α,β) = pn − pn−1, that is,

the number of codewords with Hamming weight pn − pn−1 is the size of Z(χ̂ψ1) by

Lemma 6.4.

If χ̂ψ1(α
−1β) 6= 0, i.e., (α, β) ∈ S(χ̂ψ1); equivalently, α−1β ∈ Supp(χ̂ψ1), then by

Lemma 6.1,

χ̂ψ1(α
−1β) = ε

√
p∗
n+s

ξg(α
−1β)

p , (6.14)

where ε = ±1, p∗ denotes
(
−1
p

)
p and g is a p-ary function over Supp(χ̂ψ1). Notice

that we have

σα(
√
p∗
n+s

) = σα(
√
p∗)n+s =

(
α

p

)n+s√
p∗
n+s

.

Then we get

σω (σα(χ̂ψ1(α
−1β))) = σω

(
ε
(
α
p

)n+s√
p∗
n+s

ξ
αg(α−1β)
p

)
=

ε
(
α
p

)n+s

σω(
√
p∗
n+s

)ξ
ωαg(α−1β)
p = ε

(
α
p

)n+s (
ω
p

)n+s√
p∗
n+s

ξ
ωαg(α−1β)
p .

Note that
(
a
p

)n+s

= 1 and
√
p∗
n+s

=
√
pn+s if n + s is even; otherwise,

(
a
p

)n+s

=(
a
p

)
for a ∈ F?p. Hence, by (6.13) we have

wt(c̃α,β) =

 pn − pn−1 − ε1
p

(
α
p

)√
p∗
n+s∑

ω∈F?p

(
ω
p

)
ξ
ωαg(α−1β)
p , if n+ s odd,

pn − pn−1 − εpn+s2
−1
∑

ω∈F?p
ξ
ωαg(α−1β)
p , if n+ s even.

We now investigate two cases.
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• Assume n+ s odd. If g(α−1β) = 0, then

wt(c̃α,β) = pn − pn−1 − ε1
p

(
α
p

)√
p∗
n+s

∑
ω∈F?p

(
ω

p

)
= pn − pn−1,

where we used
∑

ω∈F?p

(
ω
p

)
= 0. If g(α−1β) 6= 0, then we have

∑
ω∈F?p

(
ω

p

)
(ξωp )αg(α

−1β) = σαg(α−1β)

∑
ω∈F?p

(
ω

p

)
ξωp

 = σαg(α−1β)(
√
p∗)

=

(
αg(α−1β)

p

)√
p∗,

where we used
∑

ω∈F?p
(ω
p
)ξωp =

√
p∗. Hence,

wt(c̃α,β) = pn − pn−1 − ε1
p

√
p∗
n+s+1

(
α2

p

)(
g(α−1β)

p

)
= pn − pn−1 − ε

(
−1
p

)n+s+1
2

p
n+s−1

2

(
g(α−1β)

p

)
,

where we used the fact that
(
α
p

)(
α
p

)
=
(
α2

p

)
in the first equality, and p∗ =(

−1
p

)
p and

(
α2

p

)
= 1 in the second equality.

• Assume n+ s even. If g(α−1β) = 0, then we have

wt(c̃α,β) = pn − pn−1 − εp
n+s−2

2 (p− 1).

If g(α−1β) 6= 0, we have
∑

ω∈F?p
ξ
αωg(α−1β)
p = −1 since

∑p−1
j=0 x

j is the minimal

polynomial of ξp over Q. Hence, we have wt(c̃α,β) = pn − pn−1 + εp
n+s−2

2 .

The following theorem collects the Hamming weights of the codewords of Cψ1 .

Theorem 6.8. Let Cψ1 be the linear p-ary code defined by (6.11). Assume that ψ1 in

(6.12) is weakly regular p-ary s-plateaued with 0 ≤ s ≤ n − 2 for n ≥ 2. Then, for

all α ∈ Fp and β ∈ Fpn , the Hamming weights of c̃α,β are given as follows.

For α = 0, we have wt(c̃0,0) = 0 and wt(c̃0,β) = pn − pn−1 for β 6= 0.

For α ∈ F?p and β ∈ Fpn ,

if (α, β) ∈ Z(χ̂ψ1), i.e., α−1β /∈ Supp(χ̂ψ1), then we get wt(c̃α,β) = pn − pn−1,

if (α, β) ∈ S(χ̂ψ1) , i.e., α−1β ∈ Supp(χ̂ψ1), then

• when n+ s is odd,

wt(c̃α,β) =

 pn − pn−1, if g(α−1β) = 0,

pn − pn−1 − ε
(
−1
p

)n+s+1
2

p
n+s−1

2

(
g(α−1β)

p

)
, if g(α−1β) ∈ F?p,
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• when n+ s is even,

wt(c̃α,β) =

 pn − pn−1 − ε(p− 1)p
n+s−2

2 , if g(α−1β) = 0,

pn − pn−1 + εp
n+s−2

2 , if g(α−1β) ∈ F?p,

where ε = ±1 and g is a p-ary function over Supp(χ̂ψ1) by (6.14) and α−1 is

the multiplicative inverse of α ∈ F?p.

Our next aim is to determine the weight distributions of the constructed code Cψ1

given in Theorem 6.8. To do this, we need to compute the number of ω ∈ Supp(χ̂ψ1)

such that g(ω) = j for all j ∈ Fp. Set

Ng(j) := #{ω ∈ Supp(χ̂ψ1) : g(ω) = j}. (6.15)

Since #Supp(χ̂ψ1) = pn−s, we have

p−1∑
j=0

Ng(j) = pn−s. (6.16)

Remark 6.9. If g is balanced over Supp(χ̂ψ1), Ng(j) = pn−s−1 for all j ∈ Fp.

If g is unbalanced over Supp(χ̂ψ1), the following proposition allows us to compute

the Ng(j) for all j ∈ Fp. By Lemma 6.3, we have∑
ω∈Supp(χ̂ψ1

)

ξg(ω)+Trp
n

p (ωx)
p = εvp

n−s
2 ξψ1(x)

p , (6.17)

where ε = ±1 denotes the sign of χ̂ψ1 and v ∈ {1, i} in C.

Proposition 6.12. Under the above notations and the assumption that g is unbalanced

over Supp(χ̂ψ1), we have the following. If n− s is even, then

Ng(j) =

 pn−s−1 + εp
n−s−2

2 (p− 1), j = 0,

pn−s−1 − εpn−s−2
2 , j ∈ F?p.

If n− s is odd, then

Ng(j) =

 pn−s−1, j = 0,

pn−s−1 + εp
n−s−1

2

(
j
p

)
, j ∈ F?p,

where ε = ±1 is the sign of χ̂ψ1 .
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Proof. By (6.17), for x = 0 we have∑
ω∈Supp(χ̂ψ1

)

ξg(ω)
p = εvp

n−s
2 ξψ1(0)

p ,

equivalently,

p−1∑
j=0

Ng(j)ξjp = εvp
n−s
2 ,

where we used ψ1(0) = 0. Hence, we have

p−1∑
j=0

Ng(j)ξjp − εvp
n−s
2 = 0. (6.18)

If n− s is even, then v = 1 by (6.1). Because
∑p−1

j=0 x
j is the minimal polynomial of

ξp over Q, then for all j ∈ F?p we have

Ng(j) = a, and Ng(0) = a+ εp
n−s
2

for some constant a. By (6.16), we get a+ εp
n−s
2 + (p− 1)a = pn−s from which we

deduce that a = pn−s−1 − εpn−s2
−1.

If n− s is odd, then v =

 1, if p ≡ 1 (mod 4),

i, if p ≡ 3 (mod 4).

Recall the well-known identity: (see, e.g., [50])

p−1∑
j=0

(
j

p

)
ξjp =


√
p; if p ≡ 1 (mod 4),

i
√
p, if p ≡ 3 (mod 4),

that is,
∑p−1

j=0

(
j
p

)
ξjp = v

√
p. Thus, (6.18) can be rewritten as

p−1∑
j=0

Ng(j)ξjp − εp
n−s−1

2

p−1∑
j=0

(
j

p

)
ξjp = 0;

equivalently,

p−1∑
j=0

ξjp

(
Ng(j)− εp

n−s−1
2

(
j

p

))
= 0.

Then for all j ∈ F?p, we have Ng(j) = Ng(0) + εp
n−s−1

2

(
j
p

)
. By (6.16), we obtain

p−1∑
j=0

Ng(j) = pNg(0) + εp
n−s−1

2

p−1∑
j=0

(
j

p

)
= pn−s.
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Thus, since
∑p−1

j=0

(
j
p

)
= 0, we get Ng(0) = pn−s−1. Hence, the proof is complete.

In the light of Remark 6.9 and Proposition 6.12, we can determine the weight distribu-

tions of the constructed linear code given in Theorem 6.8. We investigate separately

the case n+ s is an even integer and the case n+ s is an odd integer.

Theorem 6.9. Let Cψ1 be the linear p-ary code defined by (6.11). Assume that ψ1

in (6.12) is a weakly regular p-ary s-plateaued, where n + s is an even integer with

0 ≤ s ≤ n − 2 for n ≥ 2. Then, the Hamming weights of the codewords and the

weight distributions of the linear [pn − 1, n + 1]p code Cψ1 are as in Tables 6.4 and

6.5 if g is unbalanced and balanced over Supp(χ̂ψ1), respectively, where ε = ±1 is

the sign of χ̂ψ1 .

Hamming weight w Multiplicity Aw
0 1

pn − pn−1 pn+1 − pn−s(p− 1)− 1

pn − pn−1 − ε(p− 1)p
n+s−2

2 pn−s−1(p− 1) + εp
n−s−2

2 (p− 1)2

pn − pn−1 + εp
n+s−2

2 (pn−s − pn−s−1)(p− 1)− εpn−s−2
2 (p− 1)2

Table 6.4: The Hamming weights of the codewords and the weight distribution of
Cψ1 when p is odd and n+ s is even for unbalanced g

Hamming weight w Multiplicity Aw
0 1

pn − pn−1 pn+1 − pn−s(p− 1)− 1

pn − pn−1 − ε(p− 1)p
n+s−2

2 pn−s−1(p− 1)

pn − pn−1 + εp
n+s−2

2 (pn−s − pn−s−1) (p− 1)

Table 6.5: The Hamming weights of the codewords and the weight distribution of
Cψ1 when p is odd and n+ s is even for balanced g

Proof. By Theorem 6.8, the numbers of codewords with Hamming weight 0 and of

Hamming weight pn − pn−1 are equal respectively to 1 and pn − 1 + #Z(χ̂ψ1) =

pn+1 + pn−s − pn−s+1 − 1. We now determine the weight distribution of Cψ1 for
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(α, β) ∈ S(χ̂ψ1), i.e., α−1β ∈ Supp(χ̂ψ1). Set

Z(g) := {(α, β) ∈ S(χ̂ψ1) : g(α−1β) = 0},
S(g) := {(α, β) ∈ S(χ̂ψ1) : g(α−1β) 6= 0}.

(6.19)

By Lemma 6.4, we have #Z(g) = (p − 1)Ng(0) and #S(g) = (p − 1)pn−s −
#Z(g). Assume that g is unbalanced over Supp(χ̂ψ1). Then, sinceNg(0) = pn−s−1+

εp(n−s−2)/2(p− 1) by Proposition 6.12, we have

#Z(g) = pn−s−1(p− 1) + εp
n−s−2

2 (p− 1)2,

and #S(g) = (pn−s − pn−s−1)(p − 1) − εp(n−s−2)/2(p − 1)2. Hence, by Theorem

6.8, the numbers of codewords with Hamming weight pn− pn−1− ε(p− 1)p(n+s−2)/2

and with Hamming weight pn − pn−1 + εp(n+s−2)/2 are equal to #Z(g) and #S(g),

respectively. Hence, the proof of the first assertion is complete.

Assume that g is balanced over Supp(χ̂ψ1). By Remark 6.9, Ng(0) = pn−s−1, and so

we have #Z(g) = pn−s−1(p − 1) and #S(g) = (pn−s − pn−s−1) (p − 1). Hence, as

in the first case, the second assertion follows.

Remark 6.10. In Theorem 6.9, the minimum Hamming distance of Cψ1 is given by

d =

 pn − pn−1 − (p− 1)p
n+s−2

2 , if ε = 1,

pn − pn−1 − pn+s−2
2 , if ε = −1.

We now give a weakly regular 3-ary 1-plateaued function and a corresponding linear

3-ary code for p = 3 and n = 3.

Example 6.4. Let Ψ : F33 → F33 be the map defined by Ψ(x) = ζ22x13 + ζ7x4 + ζx2,

where F?33 = 〈ζ〉 with ζ3 + 2ζ + 1 = 0. The function ψ1(x) = Tr33

3 (Ψ(x)) is the

weakly regular 3-ary 1-plateaued with

χ̂ψ1(ω) ∈ {0,−9ξ
g(ω)
3 }

for all ω ∈ F33 , where g is the unbalanced 3-ary function. Then, the set Cψ1 in (6.11)

is the three-weight linear 3-ary code with parameters [26, 4, 15]3, weight enumerator

1 + 16y15 + 62y18 + 2y24 and weight distribution (1, 16, 62, 2). Hence, the Hamming

weights of the codewords and the weight distribution of Cψ1 are as in Table 6.6.
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Hamming weight w Multiplicity Aw
0 1
18 62

24 2

15 16

Table 6.6: The Hamming weights of the codewords and the weight distribution of
Cψ1 when p = 3, n = 3 and s = 1.

The following theorem determines the weight distributions of the constructed linear

code given in Theorem 6.8 when n+ s is an odd integer.

Theorem 6.10. Let Cψ1 be the linear p-ary code defined by (6.11). Assume that

ψ1 in (6.12) is a weakly regular p-ary s-plateaued, where n + s is an odd integer

with 0 ≤ s ≤ n − 1. Then, the Hamming weights of the codewords and the weight

distributions of [pn−1, n+1]p code Cψ1 are as in Tables 6.7 and 6.8 if g is unbalanced

and balanced over Supp(χ̂ψ1), respectively, where ε = ±1 is the sign of χ̂ψ1 and

η =
(
−1
p

)n+s+1
2

= ±1.

Hamming weight w Multiplicity Aw
0 1

pn − pn−1 pn+1 − pn−s−1(p− 1)2 − 1

pn − pn−1 − εηp
n+s−1

2 1
2
(pn−s−1 + εp

n−s−1
2 )(p− 1)2

pn − pn−1 + εηp
n+s−1

2 1
2
(pn−s−1 − εp

n−s−1
2 )(p− 1)2

Table 6.7: The Hamming weights of the codewords and the weight distribution of
Cψ1 when p and n+ s are odd for unbalanced g

Hamming weight w Multiplicity Aw
0 1

pn − pn−1 pn+1 − pn−s−1(p− 1)2 − 1

pn − pn−1 − εηp
n+s−1

2 1
2
pn−s−1(p− 1)2

pn − pn−1 + εηp
n+s−1

2 1
2
pn−s−1(p− 1)2

Table 6.8: The Hamming weights of the codewords and the weight distribution of
Cψ1 when p and n+ s are odd for balanced g

Proof. Recall that the setZ(g) and the valueNg(j) were defined in (6.19) and (6.15),
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respectively. By Lemma 6.4, we have #Z(g) = (p − 1)Ng(0), where Ng(0) =

pn−s−1 (see Remark 6.9 and Proposition 6.12). Hence by Theorem 6.8, the number

of codewords with Hamming weight pn − pn−1 is

pn − 1 + #Z(χ̂ψ1) + #Z(g) = pn+1 + 2pn−s − pn−s+1 − pn−s−1 − 1.

Moreover, the number of codewords with Hamming weight pn− pn−1− εηp(n+s−1)/2

and of Hamming weight pn − pn−1 + εηp(n+s−1)/2 is equal respectively to∑
j∈{1,...,p−1},( jp)=1

(p− 1)Ng(j)

and ∑
j∈{1,...,p−1},( jp)=−1

(p− 1)Ng(j).

If g is unbalanced, then by Proposition 6.12, respectively to:∑
j∈{1,...,p−1},( jp)=1

(p− 1)(pn−s−1 + εp
n−s−1

2 ) =
(p− 1)2

2
(pn−s−1 + εp

n−s−1
2 )

and ∑
j∈{1,...,p−1},( jp)=−1

(p− 1)(pn−s−1 − εp
n−s−1

2 ) =
(p− 1)2

2
(pn−s−1 − εp

n−s−1
2 ).

If g is balanced, then by Remark 6.9, respectively to: (p−1)2

2
pn−s−1 and (p−1)2

2
pn−s−1.

The proof is complete.

Remark 6.11. In Theorem 6.10, the minimum Hamming distance of Cψ1 is given by

d = pn − pn−1 − pn+s−1
2 . Its multiplicity depends on the values ε = ±1 and η = ±1

in the case of unbalanced g.

Remark 6.12. If we assume only the weakly regular bent-ness in this section, then

we can obviously recover the results given in [58] by Mesnager. Therefore, this sec-

tion can be viewed as an extension of [58] to the notion of weakly regular plateaued

functions.

6.4 Secret Sharing Schemes from the Constructed Linear Codes

In this section, we investigate the access structures of the secret sharing schemes

based on the dual codes of the constructed linear codes from plateaued functions.
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Remark 6.13. In the light of the results given in Section 2.7.2, the construction of lin-

ear codes all of whose nonzero codewords are minimal has a significant importance.

Such linear codes generate secret sharing schemes with “nice” access structures.

Below, we first show that all nonzero codewords of the constructed linear codes are

minimal for almost all cases (in the light of Lemma 2.7) and then describe the access

structures of the secret sharing schemes based on the dual codes (in the light of Theo-

rem 2.2). We consider separately the linear codes Cψ1 given in Theorems 6.7, 6.9 and

6.10.

The Constructed Binary Linear Code in Theorem 6.7. The following theorem

shows that all nonzero codewords of the constructed binary linear code from plateaued

Boolean function are minimal for almost all cases.

Theorem 6.11. Let Cψ1 be the binary linear [2n − 1, n + 1, 2n−1 − 2(n+s−2)/2] code

given in Theorem 6.7. Then, all nonzero codewords of Cψ1 are minimal for n ≥ 4 and

0 ≤ s ≤ n− 4.

Proof. From Table 6.2, we have wmin = 2n−1 − 2(n+s−2)/2 and wmax = 2n−1 +

2(n+s−2)/2. For 0 ≤ s ≤ n− 4 and n ≥ 4, we get

1

2
<
wmin

wmax

=
2n−1 − 2(n+s−2)/2

2n−1 + 2(n+s−2)/2

since 3 · 2(n+s)/2 < 2n. Hence, by Lemma 2.7, all nonzero codewords of Cψ1 are

minimal for n ≥ 4 and 0 ≤ s ≤ n− 4.

The following corollary identifies the access structure of the secret sharing scheme

based on the dual code of the constructed binary linear code.

Corollary 6.4. Let Cψ1 be the binary linear [2n − 1, n + 1, 2n−1 − 2(n+s−2)/2] code

given in Theorem 6.7 and let G = [g0,g1, . . . ,g2n−2] be its generator matrix. Let C⊥ψ1

be its dual [2n − 1, 2n − n − 2, d⊥] code, where d⊥ denotes the minimum Hamming

distance of C⊥ψ1
. Assume n ≥ 4 and 0 ≤ s ≤ n − 4. In the secret sharing scheme

based on C⊥ψ1
:

• The number of participants is 2n − 2, and there exist 2n minimal access sets.
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• If d⊥ = 2, the access structure is given as follows: If gi, 1 ≤ i ≤ 2n − 2, is a

multiple of g0, then Pi must be in all minimal access sets; otherwise, Pi must

be in 2n−1 out of 2n minimal access sets.

• If d⊥ ≥ 3, for any fixed 1 ≤ t ≤ min{n, d⊥ − 2}, every set of t participants is

involved in 2n−t out of 2n minimal access sets.

Proof. By Theorem 6.11, every nonzero codeword of Cψ1 is minimal for n ≥ 4 and

0 ≤ s ≤ n− 4. Hence, the desired results follow directly from Theorem 2.2.

The Constructed Linear p-Ary Code in Theorem 6.9. We now prove that all

nonzero codewords of the constructed linear p-ary codes from weakly regular plateaued

functions are minimal for almost all cases. There are two cases: ε = 1 and ε = −1.

Theorem 6.12. Let Cψ1 be the linear [pn − 1, n+ 1, pn − pn−1 − (p− 1)p(n+s−2)/2]p

p-ary code given in Theorem 6.9 for ε = 1. Then all nonzero codewords of Cψ1 are

minimal for n ≥ 4 and 0 ≤ s ≤ n− 4.

Proof. For ε = 1, we have wmin = pn − pn−1 − (p − 1)p(n+s−2)/2 and wmax =

pn − pn−1 + p(n+s−2)/2. The inequality

p− 1

p
<
wmin

wmax

=
pn − pn−1 − (p− 1)p(n+s−2)/2

pn − pn−1 + p(n+s−2)/2

can be reduced to (p+ 1)p(n+s)/2 < pn. If n ≥ 4 and 0 ≤ s ≤ n− 4, clearly we have

(p + 1)p(n+s)/2 < pn for an odd prime p. By Lemma 2.7, all nonzero codewords of

Cψ1 are minimal for n ≥ 4 and 0 ≤ s ≤ n− 4.

We describe the access structure of the secret sharing scheme based on the dual code

of the constructed linear p-ary code.

Corollary 6.5. Let Cψ1 be the linear [pn − 1, n + 1, pn − pn−1 − (p− 1)p(n+s−2)/2]p

p-ary code given in Theorem 6.9, and let G = [g0,g1, . . . ,gpn−2] be its generator

matrix. Let C⊥ψ1
be its dual [pn − 1, pn − n − 2, d⊥]p code, where d⊥ denotes the

minimum Hamming distance of C⊥ψ1
. Assume n ≥ 4 and 0 ≤ s ≤ n− 4. In the secret

sharing scheme based on C⊥ψ1
:
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• The number of participants is pn − 2, and there exist pn minimal access sets.

• If d⊥ = 2, the access structure is given as follows: If gi, 1 ≤ i ≤ pn − 2, is a

multiple of g0, then Pi must be in all minimal access sets; otherwise, Pi must

be in (p− 1)pn−1 out of pn minimal access sets.

• If d⊥ ≥ 3, for any fixed 1 ≤ t ≤ min{n, d⊥ − 2}, every set of t participants is

involved in (p− 1)tpn−t out of pn minimal access sets.

Proof. By Theorem 6.12, every nonzero codeword of Cψ1 is minimal for n ≥ 4 and

0 ≤ s ≤ n− 4. Hence, the desired results follow directly from Theorem 2.2.

Theorem 6.13. Let Cψ1 be the linear [pn−1, n+1, pn−pn−1−p(n+s−2)/2]p p-ary code

given in Theorem 6.9 for ε = −1. Then all nonzero codewords of Cψ1 are minimal for

n ≥ 4 and 0 ≤ s ≤ n− 4.

Proof. For ε = −1, we have wmin = pn− pn−1− p(n+s−2)/2 and wmax = pn− pn−1 +

(p − 1)p(n+s−2)/2. As in the proof of Theorem 6.12, for n ≥ 4 and 0 ≤ s ≤ n − 4,

we have

p− 1

p
<
wmin

wmax

=
pn − pn−1 − p(n+s−2)/2

pn − pn−1 + (p− 1)p(n+s−2)/2

since (p2−p+1)p(n+s)/2 < pn(p−1). Hence, by Lemma 2.7, all nonzero codewords

of Cψ1 are minimal for n ≥ 4 and 0 ≤ s ≤ n− 4.

Similarly, the following corollary describes the corresponding access structure.

Corollary 6.6. Let Cψ1 be the linear [pn − 1, n + 1, pn − pn−1 − p(n+s−2)/2]p p-ary

code given in Theorem 6.9, and let G = [g0,g1, . . . ,gpn−2] be its generator matrix.

Let C⊥ψ1
be its dual [pn − 1, pn − n − 2, d⊥]p code, where d⊥ denotes the minimum

Hamming distance of C⊥ψ1
. Assume n ≥ 4 and 0 ≤ s ≤ n − 4. In the secret sharing

scheme based on C⊥ψ1
:

• The number of participants is pn − 2, and there exist pn minimal access sets.

• If d⊥ = 2, the access structure is given as follows: If gi, 1 ≤ i ≤ pn − 2, is a

multiple of g0, then Pi must be in all minimal access sets; otherwise, Pi must

be in (p− 1)pn−1 out of pn minimal access sets.
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• If d⊥ ≥ 3, for any fixed 1 ≤ t ≤ min{n, d⊥ − 2}, every set of t participants is

involved in (p− 1)tpn−t out of pn minimal access sets.

Proof. By Theorem 6.13, every nonzero codeword of Cψ1 is minimal for n ≥ 4 and

0 ≤ s ≤ n− 4. Hence, the desired results follow directly from Theorem 2.2.

The Constructed Linear p-Ary Code in Theorem 6.10. The following theorem

proves that all nonzero codewords of the constructed linear p-ary code from weakly

regular plateaued function are minimal for almost all cases.

Theorem 6.14. Let Cψ1 be the linear [pn−1, n+1, pn−pn−1−p(n+s−1)/2]p p-ary code

given in Theorem 6.10. Then all nonzero codewords of Cψ1 are minimal for n ≥ 3

and 0 ≤ s ≤ n− 3.

Proof. There are two cases: ε = η and ε = −η. For both values of εη = ±1, we have

that wmin = pn − pn−1 − p(n+s−1)/2 and wmax = pn − pn−1 + p(n+s−1)/2. Then the

inequality

p− 1

p
<
wmin

wmax

=
pn − pn−1 − p(n+s−1)/2

pn − pn−1 + p(n+s−1)/2
,

can be reduced to (2p − 1)p(n+s+1)/2 < pn(p − 1). If n ≥ 3 and 0 ≤ s ≤ n − 3, we

can easily show this inequality for an odd prime p. Hence, by Lemma 2.7, all nonzero

codewords of Cψ1 are minimal for n ≥ 3 and 0 ≤ s ≤ n− 3.

The following corollary describes the access structure of the secret sharing scheme

based on the dual code of the linear p-ary code.

Corollary 6.7. Let Cψ1 be the linear [pn − 1, n + 1, pn − pn−1 − p(n+s−1)/2]p p-ary

code given in Theorem 6.10, and let G = [g0,g1, . . . ,gpn−2] be its generator matrix.

Let C⊥ψ1
be its dual [pn − 1, pn − n − 2, d⊥]p code, where d⊥ denotes the minimum

Hamming distance of C⊥ψ1
. Assume n ≥ 3 and 0 ≤ s ≤ n − 3. In the secret sharing

scheme based on C⊥ψ1
:

• The number of participants is pn − 2, and there exist pn minimal access sets.
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• If d⊥ = 2, the access structure is given as follows: If gi, 1 ≤ i ≤ pn − 2, is a

multiple of g0, then Pi must be in all minimal access sets; otherwise, Pi must

be in (p− 1)pn−1 out of pn minimal access sets.

• If d⊥ ≥ 3, for any fixed 1 ≤ t ≤ min{n, d⊥ − 2}, every set of t participants is

involved in (p− 1)tpn−t out of pn minimal access sets.

Proof. By Theorem 6.14, every nonzero codeword of Cψ1 is minimal for n ≥ 3 and

0 ≤ s ≤ n− 3. Hence, the desired results follow directly from Theorem 2.2.

Remark 6.14. Consequently we obtained linear codes Cψ1 all of whose nonzero code-

words are minimal if n ≥ 4 and 0 ≤ s ≤ n − 4. Hence, the secret sharing schemes

based on the dual codes C⊥ψ1
have “nice” access structures given in Theorem 2.2.
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CHAPTER 7

CONCLUSION

Bent and plateaued functions have attracted attention since their introduction in the

literature due to their role in diverse domains of Boolean and vectorial functions for

sequences and cryptography like correlation immune functions and orthogonal arrays

(since the order of resiliency and nonlinearity is strongly bounded only by plateaued

functions), APN functions and substitution-boxes (since plateaued APN functions

in odd dimension are almost bent), and because, like partially-bent functions, they

represent a natural class for generalizing at the same time bent functions and quadratic

functions, but they form a larger class than partially-bent functions, also including all

semi-bent and near-bent functions. However, their structure is still complicated to

characterize and, little is known about these functions already in characteristic 2 and

still more in arbitrary characteristic. In view of given their importance, it is worth

noting that they have not been studied in detail in a general framework. In this thesis,

we brought out further new results on plateaued functions in arbitrary characteristic,

with the aim of handling the plateaued-ness property of functions and getting various

tools for their future construction.

The main objectives of this thesis are to bring further results on the characterization

of plateaued (vectorial) functions, and to construct linear codes from weakly regular

plateaued functions, in arbitrary characteristic. We hope that this thesis has reduced

to a degree the gap between the interest of the notion of plateaued function and what

is known on it.

To sum up, the contributions of this thesis are explicitly given as follows.
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In Chapter 3, we obtained a large number of characterizations of bent and plateaued

functions in terms of their Walsh power moments, second-order derivatives and auto-

correlation functions. We next provided several characterizations of vectorial bent

and plateaued functions by using the value distributions of their derivatives, and

Walsh power moments and autocorrelation functions of their nonzero component

functions. We believe that these characterizations are considerably useful to under-

stand the structure of these functions and to design such functions in arbitrary char-

acteristic. We hope that these characterizations will pave the way to construct new

plateaued functions. Actually, using one of these characterizations, we observed the

non-existence of a homogeneous cubic bent function (and a (homogeneous) cubic

plateaued function for some cases) in odd characteristic.

In Chapter 4, we first showed the non-existence of a function whose absolute Walsh

transform takes exactly three distinct values (one being is zero), and next introduced

a new class of functions whose absolute Walsh transform takes exactly four distinct

values (one being is zero).

In Chapter 5, we first redefined the notions of partially bent and plateaued functions

over Fq, with q a prime power. Next we gave a concrete example of a 4-ary plateaued,

but not vectorial plateaued Boolean function. Moreover, we provided a large number

of characterizations of q-ary partially bent and q-ary plateaued functions in terms of

their derivatives, Walsh power moments and autocorrelation functions.

In Chapter 6, we obtained a new class of three-weight binary linear codes from

plateaued Boolean functions with their weight distributions. In odd characteristic,

we introduced the notion of (non)-weakly regular plateaued functions, and then pro-

vide the secondary and recursive constructions of these functions. Next, we made

use of weakly regular plateaued functions to construct three-weight linear codes and

then determined the weight distributions of the constructed linear codes. This is the

first time construction of linear codes from weakly regular plateaued functions in odd

characteristic. They are inequivalent to the known ones (since there is no linear code

with obtained parameters) in the literature as far as we know. We finally analyzed the

constructed linear codes for secret sharing schemes, and thereby described the access

structures of the secret sharing schemes based on the dual codes of these codes.

160



REFERENCES

[1] R. Anderson, C. Ding, T. Helleseth, and T. Klove. How to build robust shared
control systems. Designs, Codes and Cryptography, 15(2):111–124, 1998.

[2] A. Ashikhmin and A. Barg. Minimal vectors in linear codes. IEEE Transactions
on Information Theory, 44(5):2010–2017, 1998.

[3] A. Ashikhmin, A. Barg, G. Cohen, and L. Huguet. Variations on minimal
codewords in linear codes. Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes, pages 96–105, 1995.

[4] G. R. Blakley. Safeguarding cryptographic keys. In Proceedings of the national
computer conference, volume 48, pages 313–317, 1979.

[5] W. Bosma, J. Cannon, and C. Playoust. The magma algebra system i: The user
language. Journal of Symbolic Computation, 24(3):235–265, 1997.

[6] L. Budaghyan. Construction and Analysis of Cryptographic Functions.
Springer, 2015.

[7] E. Çakçak and F. Özbudak. Some artin–schreier type function fields over finite
fields with prescribed genus and number of rational places. Journal of Pure and
Applied Algebra, 210(1):113–135, 2007.

[8] E. Çakçak and F. Özbudak. Curves related to coulter’s maximal curves. Finite
Fields and Their Applications, 14(1):209–220, 2008.

[9] R. Calderbank and W. Kantor. The geometry of two-weight codes. Bulletin of
the London Mathematical Society, 18(2):97–122, 1986.

[10] A. Canteaut, C. Carlet, P. Charpin, and C. Fontaine. On cryptographic properties
of the cosets of r (1, m). IEEE Transactions on Information Theory, 47(4):1494–
1513, 2001.

[11] A. Canteaut, P. Charpin, and G. M. Kyureghyan. A new class of monomial bent
functions. Finite Fields and Their Applications, 14(1):221–241, 2008.

[12] C. Carlet. Partially-bent functions. Designs, Codes and Cryptography,
3(2):135–145, 1993.

[13] C. Carlet. Boolean functions for cryptography and error correcting codes.
Boolean models and methods in mathematics, computer science, and engineer-
ing, 2:257–397, 2010.

161



[14] C. Carlet. Vectorial boolean functions for cryptography. Boolean models and
methods in mathematics, computer science, and engineering, 134:398–469,
2010.

[15] C. Carlet. Boolean and vectorial plateaued functions and apn functions. IEEE
Transactions on Information Theory, 61(11):6272–6289, 2015.

[16] C. Carlet and C. Ding. Nonlinearities of s-boxes. Finite fields and their appli-
cations, 13(1):121–135, 2007.

[17] C. Carlet, C. Ding, and J. Yuan. Linear codes from perfect nonlinear mappings
and their secret sharing schemes. IEEE Transactions on Information Theory,
51(6):2089–2102, 2005.

[18] C. Carlet and S. Dubuc. On generalized bent and q-ary perfect nonlinear func-
tions. In Finite Fields and Applications, pages 81–94. Springer, 2001.

[19] C. Carlet and S. Mesnager. Four decades of research on bent functions. De-
signs, Codes and Cryptography, 78(1):5–50, 2016.

[20] C. Carlet, S. Mesnager, F. Özbudak, and A. Sınak. Explicit characterizations for
plateaued-ness of p-ary (vectorial) functions. In Second International Confer-
ence on Codes, Cryptology and Information Security (C2SI-2017), In Honor of
Claude Carlet, pages 328–345. Springer, 2017.

[21] C. Carlet and E. Prouff. On plateaued functions and their constructions. In FSE,
pages 54–73. Springer, 2003.

[22] A. Çesmelioglu, G. McGuire, and W. Meidl. A construction of weakly and
non-weakly regular bent functions. J. Comb. Theory, Ser. A, 119(2):420–429,
2012.
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