
DETECTION AND IDENTIFICATION OF GREENHOUSE GASES USING 

INFRARED HYPERSPECTRAL IMAGERY 
 

 

 

A THESIS SUBMITTED TO 

THE GRADUATE SCHOOL OF INFORMATICS OF 

THE MIDDLE EAST TECHNICAL UNIVERSITY 

BY 

 

 

YUSUF GÜR 
 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE 

OF MASTER OF SCIENCE 

IN 

THE DEPARTMENT OF INFORMATION SYSTEMS 
 

 
 
 
 
 
 

DECEMBER 2017 
  



 

  



DETECTION AND IDENTIFICATION OF GREENHOUSE GASES USING INFRARED 

HYPERSPECTRAL IMAGERY 
 
Submitted by YUSUF GÜR in partial fulfillment of the requirements for the degree of Master 

of Science in Information Systems Department, Middle East Technical University by, 
 
Prof. Dr. Deniz Zeyrek Bozşahin 
Dean, Graduate School of Informatics 

 
Prof. Dr. Yasemin Yardımcı Çetin 
Head of Department, Information Systems 
 
Prof. Dr. Yasemin Yardımcı Çetin 
Supervisor, Information Systems Dept., 

METU 

 

 
Examining Committee Members: 
 
Assoc.Prof. Dr. Banu Günel Kılıç  
Information System Dept., METU 
 
Prof. Dr. Yasemin Yardımcı Çetin 
Information System Dept., METU 
 
Assoc.Prof. Dr. Selim Aksoy  
Computer Engineering Dept., BİLKENT UNV. 
 
Assoc.Prof. Dr. Okan Ertürk  
Chemical Engineering Dept., METU 
 
Assist.Prof. Dr. Ahmet Güneş  
Mechatronics Engineering Dept., ATILIM UNV. 
 

Date:                    _14 December 2017 
 

 

 





iii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

I hereby declare that all information in this document has been obtained 

and presented in accordance with academic rules and ethical conduct. I 

also declare that, as required by these rules and conduct, I have fully 

cited and referenced all material and results that are not original to this 

work. 
 

 
 
 
 
 

Name, Last name:   Yusuf GÜR 
 
 
 

Signature              :         
  



iv 
 

ABSTRACT 

 
DETECTION AND IDENTIFICATION OF GREENHOUSE GASES USING 

INFRARED HYPERSPECTRAL IMAGERY 
 

 

GÜR, YUSUF 

MSc., Department of Information Systems 

Supervisor: Prof. Dr. Yasemin YARDIMCI ÇETİN 
 

December 2017, 99 pages 
 
Recently, one of the most critical global environment problems is human and 
ecological exposure to hazardous wastes from urban, agricultural, industrial and 
military activities. These wastes often include greenhouse gases like water vapor, 
carbon dioxide, methane, nitrous oxide, ozone and other organic chemicals. To protect 
the environment from those gases, hyperspectral imaging can be applied due to its 
ability to extract large amount of spatial and spectral information. Detection of gases 
emitted into the atmosphere is a widely studied problem. These studies generally use 
external information about the scene to determine missing parameters in order to detect 
and identify gases. In this study, unsupervised detection and identification possibility 
of different greenhouse gases emitted from various sources in selected regions with 
infrared hyperspectral imagery will be investigated. 
 
Keywords: Gas Detection, Hyperspectral Imagery, Detection & Identification, 
Greenhouse Gases. 
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ÖZ 

 
KIZILÖTESİ HİPERSPEKTRAL GÖRÜNTÜLEME KULLANILARAK SERA 

GAZLARININ TESPİTİ VE TANIMLANMASI 

 

 

GÜR, YUSUF 

Yüksek Lisans, Bilişim Sistemleri Bölümü 

Tez Yöneticisi: Prof. Dr. Yasemin YARDIMCI ÇETİN 
 

Aralık 2017, 99 sayfa 

 

Son zamanlarda, insanların ve ekolojinin maruz kaldığı en kritik küresel sorunlardan 
birisi yaşam alanı, tarım, sanayi ve askeri faaliyetlerden kaynaklanan tehlikeli 
atıklardır. Bu atıklar genellikle su buharı, karbon dioksit, metan, azot oksit ve ozon 
gibi sera gazları ve diğer organik kimyasallar içerir. Doğayı korumak için, bu gazların 
tespiti ve tanımlanması amacıyla sahnenin çok miktarda konumsal ve spektral bilgisini 
elde etmek için hiperspektral görüntülemeyi kullanabiliriz. Atmosfere yayılan gazların 
tespiti çokça çalışılmaktadır. Bu çalışmalarda gazların tespit ve tanımlanması amacıyla 
sahne hakkında dışarıdan elde edilen bilgiler ile eksik parametreleri belirlenmeye 
çalışılmaktadır. Bu çalışmada, kızılötesi hiperspektral görüntüleri ile seçilen 
bölgelerdeki, farklı kaynaklardan salınan sera gazlarının tespiti ve tanımlanması 
imkânı araştırılacaktır. 
  
Anahtar Sözcükler: Gaz Tespiti, Hiperspektral Görüntüleme, Tespit & Tanımlama, 
Sera Gazları.   
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CHAPTER 1 

CHAPTER 

1. INTRODUCTION 

1.1. Motivation 

The developments in sensor technology have enabled hyperspectral sensors operating 
in different regions of the electromagnetic spectrum with high spectral and spatial 
resolutions to be utilized in different sectors including quality inspections, remote 
sensing and biomedicine. Spatial and spectral resolution of these sensors are improving 
continuously, providing detailed information related to the energy absorption, 
reflection and emission characteristics of materials present in the scene. In this way, 
the energy (light or heat) emission or reflection characteristics of objects in the scene 
can be examined in detail as compared to multispectral or panchromatic sensors.  
 
This information density in the spectral domain increases the automatic identification 
accuracy of the investigated objects in the scene. In recent years, in addition to solid 
and liquid substances, examination of compounds in gaseous-form by hyperspectral 
sensors is an emerging research area. Determination and identification of gaseous 
compounds especially by infrared hyperspectral imagery is showing high promise. As 
different gases depict characteristic energy absorption features in the infrared region, 
identification and quantification of the absorption becomes feasible. These 
hyperspectral imageries include environmental pollution, greenhouse gases as well as 
various gases that can be used in CBRN (Chemical, Biological, Radiological and 
Nuclear) assaults. Hyperspectral imagery, especially obtained from infrared bands, are 
preferred for gas detection applications as an alternative to in-site analyzes for power 
plants, the manufacturing industry and the transportation sector due to cost and time 
advantages. 

1.2. Scope of the Thesis 

Within the scope of this thesis, detection and identification of pollutants and 
greenhouse gases with hyperspectral sensors operating in the LWIR and MWIR band 
is targeted. In spite of liquids and solids radiate different amount of light in 
VNIR/SWIR region; gases depict different characteristic energy absorption features in 
the infrared region. Detection, classification and identification of these gases with 
remote sensing techniques in addition to traditional on-site inspections methods with 
Hyperspectral imagers operating in LWIR and MWIR are intended. The target gases 
are Sulfur Hexafluoride (F6S), Ethylene (C2H4), Butane (C4H10), Methanol (CH3OH) 
and Carbon Dioxide (CO2). Nitrous Oxide (N2O) a greenhouse gas, is not investigated 
as we do not have real hyperspectral remote sensing images including Nitrous Oxide. 
The main objective of this study is to detect and identify mentioned gases 
automatically on hyperspectral remote sensing images.  
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1.3. Outline of the Thesis 

This document is organized as five chapters including introduction, background, 
methodology, experiments and conclusion. After general information about gas 
detection and remote sensing, the aim of this thesis is stated in this chapter. Chapter 2 
defines IFTS camera and explains radiance model used in gas detection problems. 
Chapter 2 also presents the gas detection and identification studies in the literature. 
Chapter 3 explains the proposed gas detection method in detail. Chapter 4 gives 
information about data sets and presents the experimental gas detection results by 
comparing the proposed algorithm and literature. Finally, the research is concluded 
with a summary of our contributions and future works are mentioned in Chapter 5.  
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CHAPTER 2 

 

2. BACKGROUND 

2.1. Hyperspectral Imaging 

Regular grayscale cameras create images as a function of two spatial coordinates x and 
y (Intensity). We see the scenes by combining the intensity of appropriate red, green 
and blue spectral bands in the visible spectrum. Therefore, color scenes consist of the 
intensity I (x, y, λ) depending on two spatial coordinates and spectral band λ. 
Multispectral and hyperspectral cameras are providing capability of using more 
spectral bands for identification of different materials. Actually, there is no explicit 
difference between hyperspectral and multispectral imagery (see(Hagen & Kudenov, 
2013)). Multispectral imagery has more than three and less than ten spectral bands 
whereas, hyperspectral imagery has more than ten spectral bands which are 
contiguous. In this thesis, hyperspectral imagery will be used for detection and 
identification of gases. 
Hyperspectral imaging sensors provide data cubes that includes both spectral and 
spatial information of a scene. These data cubes can be used for detection of targets in 
many military and civilian applications. Every material reflects, absorbs or emits some 
amount of radiation (radiance) that varies along a large number of continuous spectral 
bands. It is aimed to detect target materials by using hyperspectral imagery in 
appropriate spectral bands. Basically, a hyperspectral imaging systems consist of the 
radiation source (generally sun), the atmospheric path, the imaged surface and the 
imaging sensor. With considering sun as a radiation source, sun’s emitted energy as a 
function of wavelength is termed the solar spectrum. The solar energy propagates from 
sun to the target surface through the atmosphere. This energy interacts with the surface 
and according to the material it is reflected/transmitted/absorbed. It passes back 
through the atmosphere and reaches to the imaging sensor where it is converted to the 
digital form as named radiance spectrum (see in Figure 1). 
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Figure 1 Hyperspectral Imagery (taken from [Manolakis et. al.]) 

Hyperspectral sensors provide degraded spatial resolution to improve spectral 
resolution. Therefore, it can be easily used if spectral information of target is more 
reliable than shape information (see (Manolakis, Marden, & Shaw, 2003)). 
Hyperspectral data cubes are three-dimensional data structures formed as spatial-
spatial-spectral components (see Figure 2). We can plot a single pixel on data cube to 
get spectral signature or we can visualize a single band to observe specific material 
view.  

 
Figure 2 Hyperspectral Data Cube (taken from [Manolakis et. al]) 

2.2. FTIR 

Hyperspectral sensors provide extensive spectral information in the sense of energy 
emission and reflection characteristics of the targeted objects in different regions of 
the electromagnetic spectrum. This specialty makes them useful for gas detection 
applications as well as solid and liquid materials detection issues. Hyperspectral 
images especially in infrared spectral region is preferable for gas detection problems 
as gases reveal significant emission and absorption characteristics in these regions. 
Information about devices used in hyperspectral remote sensing are mentioned in the 
literature (see (Hagen & Kudenov, 2013)). Specifically, two types of devices, 
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operating in mentioned spectral regions, used for detection of gases can be 
distinguished (see (Systems, Measurement, Mariusz Kastek, Tadeusz Piątkowski, 
2011)). One of them is a typical thermal camera additionally equipped with a filter 
system, thermal camera with a tunable filter or thermal camera and a set of optical 
filters. The other type is based on Fourier spectroscopy principles. Camera plus filters 
has constant imaging windows identified by filter amount and has slow operation 
period through filter rotation issues as disadvantage; on the contrary, if high spectral 
resolution is not required (dedicated for detecting specific gas) it is a cost-effective 
solution. Camera with tunable filters has complicated optical design. The product of 
its resolution and transmission is higher than camera plus filters but lower than 
Fourier-transform devices. Also, its acquisition rate is higher while its spectral 
resolution is lower. Fourier-transform devices have comparable resolution with 
previous types but it has a complicated data processing technique through mainly used 
for research and development systems.  
FTIR devices provide high resolution with equal cost and the absence of mismatches 
of various color images due to movement of platform in camera with tunable filters. 
FTIR technique, used to obtain spectral information, is an interference based technique 
that uses a Michelson interferometer for mixing an incoming signal with the same 
signal with different discrete time delays and produce an interferogram which is a time 
domain waveform related to the power spectrum Fourier transform of the scene. The 
schematic diagram regarding to the used layout of a Michelson interferometer used by 
Imaging Fourier transform spectroradiometer HyperCam is shown in Figure 3.  

 
Figure 3 Block diagram of imaging Fourier-transform spectroradiometer. (taken from [Kastek et. al.]) 
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2.2. Radiance Model 

2.2.1. Measured Energy At Sensor 

In remote sensing problems, there are three ways for calculating a sensor radiance 
according to energy conservation rules in Kirchhoff Law (see Figure,4-6).  
 

 
Figure 4 Energy Conversation 

Symbol R stands for reflection, symbol t stands for transmission and symbol 𝛼 stands 
for absorption where the absorption/emission ratio is constant and expressed by 
emissivity (ε). 
 

 
Figure 5 Energy Conversation of Solids 

 

 
Figure 6 Energy Conversation of Gases 

 
The measurements for gas monitoring applications, implemented in a controlled 
environment, are capable in obtaining absorbance and transmittance values of target 
gases. FTIR cameras only collect radiation from the scene occurred by the energy of 
the vibrating gas molecules, so they are not able to measure these values directly and 
cannot be directly used in remote sensing applications of gases. We need to obtain the 
transmittance or absorbance characteristics of the target gases from the radiance data 
of the scene for the remote sensing of gas purposes. 
In this thesis, measurement from a ground-based platform is concerned as physical 
problem of interest. The model of the gas emission/absorption scene of interest in 
Figure 7 is given  in the literature(see (Tremblay et al., 2010)).  
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Figure 7 The Gas Radiance Model 

 

The general formula given in the literature is 

L(λ) =  L𝑔(λ) +  L𝑏+𝑔(λ) +   L𝑎𝑡𝑚(λ),     (2.1)  

where: L(λ) is the radiance value of the gaseous pixel, L𝑔(λ) is the self-emitted gas 
plume radiance, L𝑏+𝑔(λ) is the self-emitted background radiance through the plume, 
and L𝑎𝑡𝑚(λ) is self-emitted atmospheric effects at wavelength λ. 

The self-emitted gas plume radiance can be given as:  

L𝑔(λ) =  τ1(λ)  ε𝑔(λ)B(λ, T𝑔 ),      (2.2)  

where: τ1(λ)  is the transmittance of atmosphere between gas plume and camera, 
 ε𝑔(λ) is the emissivity value of gas, and B(λ, T𝑔 ) is the Blackbody Radiance of the 
gas at temperature value T𝑔  of the gas plume in Kelvin at wavelength λ. 

The self-emitted background radiance can be given as:  

L𝑏+𝑔(λ) =   ε𝑏(λ)B(λ, T𝑏 )τ1(λ)τ2(λ),     (2.3)  

where: τ2(λ) is the transmittance of atmosphere between background and gas plume, 
 ε𝑏(λ) is the emissivity value of background, and B(λ, T𝑏 ) is the Blackbody Radiance 
of the temperature value T𝑏  of the background in Kelvin at wavelength λ.  

According to formulas (2.1 - 2.3) the general radiance formula can be expressed as:  

L(λ) = τ1(λ)[ε𝑔(λ)B(λ, T𝑔 ) + τ2(λ)τ𝑔(λ)ε𝑏(λ)B(λ, T𝑏)] + L𝑎𝑡𝑚(λ, T𝑎𝑡𝑚 )  (2.4)  

Beer’s Law  

In order to reveal the transmissivity characteristic of the gas, firstly the energy (photon 
number) emitted from the light source is measured in the absence of gas (I0), then the 
gas sample is released between the light source and the detector and amount of the 
energy coming from the light source reaches to the spectrophotometer is measured. 
The ratio of these two measurements is called transmissivity. 
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𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑣𝑖𝑡𝑦 =
I

𝐼0
          (2.5) 

where: 𝐼0 is the value measured by the spectrophotometer without the gas sample, and 
I is the value measured when the gas sample is present. 

The absorption signature of the gas sample can be obtained by using the obtained 
transmissivity data with the following equation, 

𝐴𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 = − log(𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑣𝑖𝑡𝑦)     (2.6) 

In addition to all of these, the gas cloud’s transmission 𝜏𝑔  can be computed from the 
spectral properties of the included chemical species with Beers’ Law, 

𝜏𝑔(𝜆) = exp(− ∑ 𝛼𝑖(𝜆)𝐶𝑖𝑑)       (2.7) 

where: 𝐶𝑖 is the average concentration of the targeted chemical compound (i) over the 
path length 𝑑 and 𝛼𝑖(𝜆) is the wavenumber-dependent absorption coefficient. 

Likewise, we can compute the gas cloud’s emissivity ε𝑔 , which is equal to its 
absorption, with the following equation. 

ε𝑔(𝜆) = 1 −  𝜏𝑔 (𝜆)         (2.8) 

If the plume is optically-thin, the Beer’s law relationship (see (Eq.2.7)), can be 
calculated by its first-order linear approximation as given below(see(Niu, Golowich, 
Ingle, & Manolakis, 2011)):  

ε𝑔(𝜆) = 1 − 𝜏𝑔 (𝜆) = 1 − exp (−𝛼𝑖(𝜆)𝐶𝑖)     
 (2.11)  

Additionally, thermal equilibrium condition is a very common situation in real world 
situations (see (Niu, 2013)) as T𝑝 of every plume approaches T𝑎𝑡𝑚 and they become 
equal after sufficient time. Moreover, the atmospheric terms are negligible or same for 
all objects in the scene as the objects in scene are relatively close to the camera and 
the up welled radiance may be dropped since the term is also minimal(see (Kastek, 
Piatkowski, & Polakowski, 2011)) 

The advantages of these assumptions are both efficient and easy to implement for 
understanding the remote sensing of gas problem. With all of the assumption 
mentioned above, general equation of gas detection problem (see (Eq.2.4)) becomes:  

L(λ) = τ1(λ)[(1 − 𝛼𝑖(𝜆)𝐶𝑖𝑑)B(λ, T𝑔 ) + (𝛼𝑖(𝜆)𝐶𝑖𝑑)ε𝑏(λ)B(λ, T𝑏)] (2.12)  

In gas detection problems, it is important to understand terms given in equation (2.12). 
Temperature values of background and gas materials are important as gases appear in 
either emission or absorption depending on temperature contrast between the 
background and the gas components in the scene. Actually, we receive background 
radiance at sensor as disrupted by gases in the scene like given below (see Figure 8-
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10). Scenario 1 demonstrates detection by gas absorption situation (see Figure 8), 
scenario 2 demonstrates non-detection situation (see Figure 9) and scenario 3 
demonstrates detection by gas emission situation (see Figure 10). 
 

  
Figure 8 Detection by Absorption (taken from [Telops Hypercam Training 2014]) 

 
Figure 9 Non-detection (taken from [Telops Hypercam Training 2014]) 
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Figure 10 Detection by Emission (taken from [Telops Hypercam Training 2014]) 

2.3. Literature Survey 

In this section, we provide an overview about the gas detection, identification and 
quantification methods. Several methods for remote sensing of gas plumes are 
presented in the literature. Both active and passive methods are implemented for this 
purpose. In all methods, there are some common parts such as the need of temperature, 
atmospheric conditions and background reflectance specifications for physical 
implementations; on the other hand, machine learning implementations need 
information about possible reference signatures and information of the spatial 
coordinates of gas pixels.  
Pogorzala (see (Pogorzala, 2004)) presents an algorithm that identifies the pre-detected 
gas pixels in effluent plumes by using linear least-squares regression techniques in 
DIRSIG synthetic images for gases including NH3 and Freon-114. DIRSIG images are 
generated under the following three assumptions; first of all, the plume is spatially 
constructed by using the gas concentration. This concentration follows an exponential 
decay it the downwind direction therewithal the width increases as the plume travels 
further and follows a Gaussian distribution in the across-track direction. Two steps 
methodology used; firstly for unmixing, matrix regression is implemented then for 
detection phase unconstrained stepwise linear regression and F-test are conducted. 
Vallières (see (Vallières et al., 2005)) presents detection/identification and 
quantification algorithms which are used for hyperspectral imagers that operate in the 
thermal infrared region. Telops FIRST-LW Sensor Data with 4 cm-1 spectral resolution 
is used for gases include CH3OH, SF6, O3, FREON, CG, NH3, DMMP, CWA, TEP 
and H2O. Three steps methodology used; firstly, data is converted to brightness 
temperature map and background sign is removed, then clutter match filter / spectral 
angle mapper is implemented on the data and lastly 2-d bi-dimensional convolution 
with a boxcar-shaped filtering is used by finishing with thresholding. 
Farley (see (Farley et al., 2007)) presents remote sensing of chemical results obtained 
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by FIRST (Field-portable Imaging Radiometric Spectrometer Technology) 
sensor which is developed by Telops. Telops FIRST-LW Sensor Data with 4 cm-1 
spectral resolution used for gases include SF6, NH3, SF6-NH3 mixed, TEP, DMMP and 
SO2. Four steps methodology is used; firstly, radiance data is converted to brightness 
temperature and background removal algorithm implemented, then clutter matched 
filter/spectral angle mapper procedures are used for discriminating gas containing 
pixels, then boxcar-shaped filtering is used for 2-d bi-dimensional convolution and 
finally, thresholding is applied on resulting data. 
Spisz and his friends (see (Spisz et al., 2007)) present a usable standoff 
detection/identification algorithm for varied chemical compounds by the use of various 
field measurements. Telops FIRST-LW Sensor Data with 4 cm-1 spectral resolution 
used for gases include AA, SF6, NH3, mix of SF6 and NH3, Phosgene, TEP and 
DMMP. Three steps methodology is used; firstly, pre-release data cube is taken before 
the release of gases and implemented principal components analysis to find 
background vectors, then match filter and spectral angle mapper scores of data is 
computed and finally, for gas detection/identification step-wise regression is 
conducted. 
Rotman and his friends (see (Sagiv, Rotman, & Blumberg, 2008)) analyzed existing 
algorithms and composed a remote sensing application which involves 
detection/identification and quantification of different effluent gases on Telops 
FIRST-LW Sensor Data with SO2 and CO2 gases at distances of 400m and 1700m. 
Three steps methodology is used; firstly critical wavelengths are localized, then 
correlation coefficient metric is used to detect highly concentrated pixels, then 
matched filter is used with the new reference signature for detection of target gases 
and finally, a least square model is used for generating relative pixel content by curve 
fitting the detected gases signature to the data pixel. 
Tremblay (see (Tremblay et al., 2010)) present gas detection/identification and 
quantification algorithms used for identifying the gas released by distant stacks and 
for quantifying their mass flow rates with an IFTS. They used Telops FIRST-LW 
Sensor Data with 4 cm-1 spectral resolution for gases released from a chimney. Three 
steps methodology is used; firstly, plume free pixels are selected on the center of 
chimney to estimate atmospheric parameters, then plume free pixels are selected to 
estimate background signature and lastly plume is localized in the image by physical 
model given in paper.  
Hirsch and Agassi (see (Hirsch & Agassi, 2010)) present a unique algorithm which 
does not need clear background information to detect/identify the target gaseous 
plumes. Telops FIRST-LW Sensor Data with 4 cm-1 spectral resolution for gases 
include CHF3 and SF6 which are in about 60m distance is used. Five steps 
methodology used; firstly, divisive hierarchical spectral-spatial decomposition with K-
means and spatial segmentation is implemented on data, then each segment’s spectral 
analysis is conducted, then a physical model is used for calculating the transmission 
of each segment, then correlation between calculated transmission and target gas 
signature is calculated and finally, thresholding is applied on calculated correlation 
results. 
Rotman (see (Feinmesser & Rotman, 2010)) uses Sagiv’s (see(Sagiv et al., 2008)) 
algorithm and add new procedure to enhance performance. This procedure uses the 
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“stepwise regression” method combined with detection/identification methods. Telops 
FIRST-LW Sensor Data with 225 spectral bands for gases include CO2, F12, F114, H2O, 
N2O, NH3, O3, SO2 and NO2 is used. Three steps methodology is used; firstly, in order 
to find gases step-wise regression is used, then black body radiation is processed on 
signatures and step-wise regression is implemented again, then shift fitting method is 
used to identify gases and finally compare results with signatures of target gases. 
Kastek and his friends (see (Systems, Measurement, Mariusz Kastek, Tadeusz 
Piątkowski, 2011)) presents a usable method for detecting gases in turbulent stack 
plumes by using Telops FIRST-LW Sensor Data with 4 cm-1 spectral resolution for 
gases include NO2, CO2 and mix of Propane and Butane. Four steps methodology is 
used; firstly, apparent temperature of each pixel is calculated, then for each pixel 
Planck’s blackbody curve is generated by using the highest result of temperature 
values, then each pixel value is divided by calculated blackbody curve, finally, general 
physical model is used for detection of gases. 
Rotman and Kuflik (see (Kuflik & Rotman, 2012)) present a study that aims to find 
the needed minimal number of spectral bands for detecting a specific gas in a 
hyperspectral cube, in order to develop a hyperspectral gas sensor in the future. 
Synthetic data is created with CO2 in the study by using three steps; firstly, they created 
five different cubes using various triangle shaped background vectors in different 
pixels, then created images are multiplied by a random uniformly distributed constant 
in the interval (0,1) in order to represent different effects and finally they added a 
random normally distributed constant for each pixel. After creating synthetic data 
constrained energy minimization and correlation from non-gas pixels are implemented 
for detection. 
Sabbah and his friends (see (Sabbah et al., 2012)) presents a detection/identification 
algorithm that combines spectral and spatial information without the need of 
background signature. HI 90 data with methane and SF6 gas is used. Five steps 
methodology is used; at the beginning, data is converted to brightness temperature 
map, then a Gaussian filter with size 3X3 pixels and full width half maximum 5 pixels 
is applied, then the temporal averages of each pixel on brightness temperature map is 
calculated by using multiple images regarding the same scene, then correlation 
coefficient of the gas signatures with the signatures on the image are calculated and 
finally, threshold is implemented on results. 
Messinger (see (Messinger, n.d.)) presents a study that extends O’Donnell’s (see 
(O’Donnell, 2004)) work by using real hyperspectral images of complex industrial 
facilities. Airborne Hyperspectral Imager (AHI) data for gases including methane, 
propane, butane, ethane, sulfur dioxide, ethylene, propylene and benzene is used. Four 
steps methodology employed; firstly, MODTRAN software is used for estimating the 
surface temperature through the identification of “background” region, then target gas 
signatures are calculated for every combination of temperature contrast and 
concentration path length, then geometric projection scheme is used for reducing 
number of signatures and finally, in attempt to detection maximum distance method 
(MaxD) is used. 
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CHAPTER 3 

 

3. METHODOLOGY 

In this section, proposed algorithm to be used in this thesis will be mentioned with its 
steps.  

3.1. Proposed Method 

The frequently used gas model given in (Tremblay et al., 2010) is utilized for detection 
of gases in the literature. However, some parameters required in the model cannot be 
obtained easily in remote sensing applications causing the model to be impractical and 
some solutions require user interaction. Therefore, we propose to estimate some of 
these parameters in order to improve the reference model.  
Proposed method begins with brightness-temperature map generation and Planck 
curve computation. Then, current radiance data value is converted to emissivity value 
by black-body radiation curve compensation algorithm as preprocessing step discussed 
in Section 3.2.1. The method continues with hierarchically clustering and 
segmentation discussed in Section 3.2.2. MinCEntropy clustering algorithm is used for 
dividing the data into two clusters by distinguishing pixels according to their spectral 
similarity with using classification algorithms. This step is followed by a connected 
components analysis for segmentation. The iterative clustering and segmentation 
process continues until all segments’ sizes are smaller than a threshold determined 
before test. As discussed in Section 3.2.3 all segments are considered as potential gas 
and background pairs. The gas and background segment pairs highly correlated with 
the reference signature are selected as the detected gas emission region. The flowchart 
of the proposed system is demonstrated in Figure 11.



 

   
Figure 11 Proposed M

ethod Flow
chart 

  

 

 

30

 



 
 

31 

3.1.1. Pre-Processing 

3.1.1.1.Brightness Temperature 

In the literature, most of the studies use radiance information of hyperspectral data for 
gas detection and quantification applications. However Harig and Matz (see (Harig & 
Matz, 2001)) suggest that using brightness temperature map of the data instead of 
radiance data is more suitable for remote sensing of gas purposes. In the meantime, 
radiance spectrum of the hyperspectral data does not have fixed margins as a baseline. 
This makes signature based detection algorithms more difficult. On the other hand, the 
emission spectra of many surfaces are high and nearly constant in the range of 650 cm-

1 − 1500 cm-1 so they are almost similar with the spectrum of brightness temperature 
and the spectrum of the blackbody of these objects are nearly fixed. Also, the 
background spectrum becomes the baseline of the brightness temperature spectrum of 
the relevant hyperspectral data. Based on these descriptions, brightness temperature of 
the data is generated by the following equation:  

T(𝜆, 𝐿) =
𝑐2𝜆

ln(
𝑐1𝜆3

𝐿
+1)

          (3.1)  

where 𝑐1 and 𝑐2: constants, 𝜆: wavenumber, 𝐿: radiance data. 

3.1.1.2.Planck Curve 

The theory of heat radiation (see (Planck, 1914)) reveals that the radiance data is 
affected by the temperature on thermal radiation in LWIR bands that is entitled as 
Planck’s curve and it figures the theoretical blackbody curve obtained from Planck’s 
formula given below:  

B(𝜆, 𝑇) =
𝑐1𝜆3

exp(
𝑐2𝜆

𝑇
)−1

          (3.2)  

where 𝑐1 and 𝑐2: constants, 𝜆: wavenumber. 

3.1.1.3.Black-Body Radiation Curve Compensation 

In order to detect the target gases, we need to compensate the atmospheric effects in 
the In order to detect the target gases, we need to compensate the Black-Body 
Radiation Curve in regarding to compensate atmospheric effects in the data due to 
existence of various gases characteristics in LWIR and MWIR region. For this 
purpose, Black-Body Radiation Curve Compensation algorithm (see (Omruuzun & 
Yardimci Cetin, 2015)) will be used. According to mentioned algorithm, a theoretical 
black body curve is constructed by the ambient temperature value provided from 
hyperspectral imagery header file and this curve is used for eliminating radiance values 
changes by means of temperature effects with formula given below:  

 𝐶𝜆 =
BB𝑚𝑎𝑥

B(𝜆,𝑇)
𝑆𝜆    (3.3) 
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where ; 𝜆: wavenumber and 𝐶𝜆 : Corrected radiance value at 𝜆, BBmax : Maximum 
radiance value on the Black-Body curve, B(𝜆, 𝑇) : Black-Body radiance value at 𝜆, 
and 𝑆𝜆 : Radiance value measured by the hyperspectral sensor at 𝜆.  

3.1.2. Clustering and Segmentation 

3.1.2.1.Clustering By Using minCEntropy 

As mentioned in Chapter 2.2, the gaseous pixels radiance in the data cube includes 
background emissivity and it is also affected by the temperature of the background. 
Therefore, separating background from the emission region becomes crucial in gas 
detection problems. We predicate our clustering approach according to a study on 
detection of gaseous plumes and background by using hierarchical clustering (see 
(Hirsch & Agassi, 2010)). The algorithm divides the data into two clusters in each 
iteration, and forwards the clusters to the segmentation step explained in Chapter 
3.1.2.2. The segments larger than a predefined threshold are sent back to the clustering 
step. This iteration provides using of a fixed number of clusters in the clustering 
method. Hirsch et al. implements k-means (see (Zhang & Rudnicky, 2002)) algorithm 
for clustering, assumes the data is linearly separable, that selects the central points and 
assign the data according to their distances to the centers by using minimization of the 
sum of squares of the Euclidean distance between the samples and the cluster centers. 
However, this approach is not applicable for real-life problems because of the high 
dimensionality of the hyperspectral imagery. Additionally, if k-means algorithm is 
executed repeatedly, different results will be obtained. In this thesis for clustering part 
minCEntropy (see (Vinh & Epps, 2010)) clustering algorithm, an objective-function-
oriented approach, is being used. MinCEntropy assigns the data according to their 
similarity to the cluster members by maximizing of the sum of average similarities 
judged by Gaussian kernel between the cluster members and the sample. Main 
distinctness of minCEntropy is that it makes no assumption on data distribution used 
despite being built upon information measures and suggests heuristic to set the kernel 
and quality-diversity trade-off parameter. Results of minCEntropy on the same data 
are very decisive and do not change. 

3.1.2.2.Segmentation 

After clustering the data in each iteration, each cluster is spatially segmented according 
to their connectivity (see (Jähne, 1991)) with the assumption that the real-life gas 
emission region, the connected pixels of the gas including pixels, must be in the same 
segment. All the segments smaller than the predefined threshold is labeled and 
remaining segments are sent back to clustering step. Successive clustering and 
segmentation continues iteratively until all the segments found are smaller than the 
threshold value. Concurrently, background of the emission is labeled as a segment.  

3.1.3. Detection and Identification 

After clustering and segmentation step, detection and identification of target gases 
start. Several hypotheses are created by searching all segments as background and gas 
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emission region pairs. For each segment, by assuming that segment contains gas and 
all the other segments contain background, the transmittance value is calculated with 
equation 3.4. Therefore, for each segment segmentCount-1 number of different 
transmittance value is calculated with equation 3.4 which is derived from equation 
2.12. As the emissivity values of pixels are used in the algorithm, the temperature 
related variables are dropped from the formula and equation 3.4 is derived. 
Subsequently the correlations between the calculated transmittance values and 
reference gas signature is measured (see (Gatti & Donati, 1971)) in order to determine 
the most correlated pair with the equation given in 3.5  

𝜏𝑡𝑎𝑟𝑔𝑒𝑡 =
ε𝑖(λ)

ε𝑗(λ)
          (3.4)  

where 𝜏𝑡𝑎𝑟𝑔𝑒𝑡: transmittance value of target segment, ε𝑖(λ), ε𝑗(λ): emissivity values of 
target segment and other segments.  

𝑐𝑜𝑟𝑟 =
∑ ∑ (𝐴𝑥𝑦−𝐴)(𝐵𝑥𝑦−𝐵)𝑦𝑥

√(∑ ∑ (𝐴𝑥𝑦−𝐴)2)𝑦𝑥 (∑ ∑ (𝐵𝑥𝑦−𝐵)2
𝑦𝑥

       (3.5)  

where A: target segment transmittance value, B: reference gas signature 
transmittance value, 𝐴 and 𝐵 are mean values of regarding vectors. 

Maximum correlation value of the pixels is labeled as the detection rate of target gas. 
The final detection is implemented with Otsu thresholding (see (Otsu, 1979) ) method 
which determines appropriate threshold point TP that maximizes the given expression 
by 

𝑅𝑎𝑡𝑖𝑜 (𝑇𝑃) =
(𝜇.𝜔(𝑇𝑃)−𝜇(𝑇𝑃))2

𝜔(𝑇𝑃).𝜇(𝑇𝑃)
        (3.6)  

where 𝜔(𝑇𝑃) = ∑ 𝑃𝑖,
𝑇𝑃
𝑖=0  𝜇(𝑇𝑃) = ∑ 𝑃𝑖 , 𝜇𝑁

𝑖=𝑇𝑃+1 = ∑ 𝑃𝑖  𝑁
𝑖=0  while N is the maximum 

possible quantization levels. N = 255 for 8-bit image components and Pi is the 
probability of pixels in the hyperspectral image.  
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CHAPTER 4 

CHAPTER 

4. EXPERIMENTS 

In this section, spectral libraries used in this thesis and data cubes used as Data Sets 
will be introduced first. Then proposed algorithm results will be presented by 
comparing frequently used gas detection results. 

4.1. Sources of Data 

4.1.1. Spectral Library 

In this thesis, the Pacific Northwest National Labs (PNNL) infrared reference database 
and the U.S. National Institute of Standards and Technology (NIST) infrared reference 
database are used as spectral libraries through they are designed for hyperspectral 
imagery, commonly used in hyperspectral community and publicly available at 
http://nwir.pnl.gov and http://webbook.nist.gov/chemistry. 
In this thesis five gases are chosen based on three criteria:  

1. The gas must have samples as detected by the TELOPS Hypercam.  

2. The gas must be present in the FTIR datasets provided by UDI.  

3. The gas must be present in PNNL/NIST Infrared Spectral Library. 

These gases are Sulfur Hexafluoride (F6S), Ethylene (C2H4), Butane (C4H10), 
Methanol (CH3OH) and Carbon Dioxide (CO2). PNNL and NIST spectra of target 
gases are given in Figures 12-16. Unfortunately, detection of Nitrous Oxide cannot be 
conducted as we do not have real hyperspectral imagery including Nitrous Oxide. 

http://nwir.pnl.gov/
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Figure 12 Sulphur Hexafluoride PNNL Absorption Spectra 

 
Figure 13 Ethylene PNNL Absorption Spectra 
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Figure 14 Butane PNNL Absorption Spectra 

 
Figure 15 Methanol NIST Absorption Spectra 



 
 

38 

 
Figure 16 Carbon Dioxide PNNL Absorption Spectra 

4.1.2. Data Sets 

In this study, existing data sets are provided by UDI which are taken with Telops FTIR 
Camera mentioned in Section 2.1.2. There are 6 different data cubes containing 
Methanol, Sulphur Hexafluoride-Ethylene, two scenes with CO2, one Butane and one 
data cube which has same scene as butane containing data cube but no gases exhaled. 
Data cube information are obtained from the header files provided by FTIR Camera. 
 

4.1.2.1. Data Cube 1 

Spectral Range : 877 cm-1-1285 cm-1 
Band Number  : 124 Bands 
Ambient Temperature : 300 K 
Width * Height : 200 * 200 pixel 
Spectral Resolution : 4 cm-1 
Distance  : ~2-3m 
Gas Types  : Methanol 



 
 

39 

 
Figure 17 Data Cube 1 

 
Figure 18 Data Cube 1 Broadband Image 

4.1.2.2.Data Cube 2 

Spectral Range : 851 cm-1-1288 cm-1 
Band Number  : 171 Bands 
Ambient Temperature : 302 K 
Width * Height : 200 * 200 pixel 
Spectral Resolution : 4 cm-1 
Distance  : ~2-3m 
Gas Types  : Sulfur - Ethylene 
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Figure 19 Data Cube 2 

 
Figure 20 Data Cube 2 Broadband Image 

 

4.1.2.3.Data Cube 3 

Spectral Range : 876 cm-1-1285 cm-1 
Band Number  : 124 Bands 
Ambient Temperature : 310 K 
Width * Height : 128 * 128 pixel 
Spectral Resolution : 4 cm-1 
Distance  : ~2-3m 
Gas Types  : Butane 
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Figure 21 Data Cube 3 

 
Figure 22 Data Cube 3 Broadband Image 

4.1.2.4.Data Cube 4 

Spectral Range : 876 cm-1-1285 cm-1 
Band Number  : 124 Bands 
Ambient Temperature : 310 K 
Width * Height : 128 pixel * 128 pixel 
Spectral Resolution : 4 cm-1 
Distance  : ~2-3m 
Gas Types  : No gas 
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Figure 23 Data Cube 4 

 
Figure 24 Data Cube 4 Broadband Image 

4.1.2.5.Data Cube 5 

Spectral Range : 1799 cm-1-3345 cm-1 
Band Number  : 797 Bands 
Ambient Temperature : 291 K 
Width * Height : 320 pixel * 256 pixel 
Spectral Resolution : 2,3 cm-1 
Distance  : 5m 
Gas Types  : Carbon Dioxide 
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Figure 25 Data Cube 5 

 
Figure 26 Data Cube 5 Broadband Image 

4.1.2.6.Data Cube 6 

Spectral Range : 2022 cm-1-2869 cm-1 
Band Number  : 255 Bands 
Ambient Temperature : 394 K 
Width * Height : 320 pixel * 256 pixel 
Spectral Resolution : 4 cm-1 
Distance  : ~5m 
Gas Types  : Carbon Dioxide 
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Figure 27 Data Cube 6 

 
Figure 28 Data Cube 6 Broadband Image 

4.2. Experimental Results 

In this section proposed method and state of the art method in literature will be 
compared visually. Firstly, all the data cubes are processed with the proposed method 
by setting cluster size 50,250,500 and 1000 pixels. Then all the data cubes are 
processed with the algorithm used frequently in the literature which takes background 
region of data cube as an input to implement equation 2.12 on the data cube pixels. 
Henceforth, proposed method herein referred to as Algorithm 1; state of the art method 
taken from literature herein referred to as Algorithm 2.  
The flowchart of the Algorithm 2 is demonstrated in Figure XX. Algorithm 2 firstly 
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converts radiance data to brightness temperature map as pre-processing step, then data 
and referred gas signature are cropped according to the spectral channels that referred 
gas shows distinct characteristics. Afterwards background region is selected by the 
user manually to determine background signatures. After all the steps transmittance 
values calculated by using equation 2.12. Finally, correlation coefficient is calculated 
by using equation 3.5 for each pixel.  
 

 
Figure 29 Algorithm 2 Flowchart 

 
For each data set, clustering results and detection results of Algorithm 1 both colored, 
Otsu implemented and Histogram of each result, detection results of Algorithm 2 both 
colored and Otsu implemented, cropped target gas spectrum, gas and background 
including pixels spectrum and transmittance and absorbance values calculated with 
equation 2.12 from gas including pixels are presented. In gas detection problems, it is 
difficult to determine and get exact ground truth as gas materials propagate in the scene 
according to different variables and cannot be observed in IR images or RGB images 
directly. Therefore, detection results will be interpreted and compared visually. In 
colored images, hot colors represent high detection results therewithal in Otsu 
implemented images, light colors represent high detection results.  
During the experiments atmospheric transmittance characteristics, a sample given in 
Figure 30, is not considered as a variable but especially in carbon dioxide detection 
problem it is seen that this variable directly affects the results. 
 

 
Figure 30 Sample Atmospheric Transmittance Spectrum ([taken from Gagnon et al.]) 
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4.2.1. Data set 1 

In experiment 4.2.1, methanol is oscillated as controlled.  

Number of segments according to the threshold values are given below: 

Threshold size 50 => 10118  Threshold size 250 => 7095 

Threshold size 500 => 6051  Threshold size 1000 => 5080 

As seen in detection results, results of algorithm 1 does not significantly differentiate 
between 250 segments result and 500 segments result. It can be observed that 
algorithm 1 is successful in detection of methanol gas in the scene. When compared 
with algorithm 1, algorithm 2 has similar detection results in detection of methanol gas 
in the scene.  

4.2.1.1.Algorithm 1 

Table 1 Data cube 1 minCEntropy Results Comparison 

 
Figure 31 Data cube 1 minCEntropy Results 

with Threshold 50 

 
Figure 32 Data cube 1 minCEntropy Results 

with Threshold 250 

 
Figure 33 Data cube 1 minCEntropy Results 

with Threshold 500 

 
Figure 34 Data cube 1 minCEntropy Results 

with Threshold 1000 
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Table 2 Data cube 1 Detection Results Comparison 

 
Figure 35 Data cube 1 Detection Results with 

Threshold 50 

 
Figure 36 Data cube 1 Detection Results with 

Threshold 250 

 
Figure 37 Data cube 1 Detection Results with 

Threshold 500 

 
Figure 38 Data cube 1 Detection Results with 

Threshold 1000 

 
Table 3 Data cube 1 Detection Results Comparison (Otsu) 

 
Figure 39 Data cube 1 Detection Results with Threshold 50 (Otsu) 



 
 

48 

 
Figure 40 Data cube 1 Detection Results with Threshold 50 (Histogram)  

 
Figure 41 Data cube 1 Detection Results with Threshold 250 (Otsu) 

 
Figure 42Data cube 1 Detection Results with Threshold 250 (Histogram)  
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Figure 43 Data cube 1 Detection Results with Threshold 500 (Otsu) 

 
Figure 44 Data cube 1 Detection Results with Threshold 500 (Histogram)  

  
Figure 45 Data cube 1 Detection Results with Threshold 1000 (Otsu) 
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4.2.1.2.Algorithm 2 

 
Figure 47 Data cube 1 Detection Results with Algorithm 2 

  
Figure 48 Data cube 1 Detection Results with Algorithm 2 (Otsu) 

 
  

 
Figure 46 Data cube 1 Detection Results with Threshold 1000 (Histogram)  
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4.2.1.3.Cropped Target Gas Spectrum 

 

 

Figure 49 Cropped Target Gas Spectrum 
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4.2.1.4.Background-Gas Including Pixel Spectrums 

 

Figure 50 Background&Gas Including Pixel Spectrums 

4.2.1.5.Calculated Transmittance and Absorbance Values of Gas Including Pixels  

 
Figure 51 Data cube 1 Calculated Gas 

Transmittance 

 
Figure 52 Data cube 1 Calculated Gas 

Absorbance 
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4.2.2. Data set 2 

In experiment 4.2.2, Sulfur Hexafluoride and Ethylene are oscillated as controlled.  

Number of segments according to the threshold values are given below: 

Threshold size 50 => 6056  Threshold size 250 => 3971 

Threshold size 500 => 3476  Threshold size 1000 => 3007 

As seen in detection results, Algorithm 1 results does not significantly differentiate 
between 250 segments result and 500 segments result for Sulfur Hexafluoride and 
Ethylene. It can be observed that algorithm 1 is successful in detection of both Sulfur 
Hexafluoride and Ethylene gases in the scene. When compared with algorithm 1, 
algorithm 2 is not as successful as algorithm 1 as hot colors scattered too much in 
detection of both Sulfur Hexafluoride and Ethylene gases in the scene.  

4.2.2.1.Algorithm 1 

Table 4 Data cube 2 minCEntropy Results Comparison 

 

 
Figure 53 Data cube 2 minCEntropy Results 

with Threshold 50 

 
Figure 54 Data cube 2 minCEntropy Results 

with Threshold 250 

 
Figure 55 Data cube 2 minCEntropy Results 

with Threshold 500 

 
Figure 56 Data cube 2 minCEntropy Results 

with Threshold 1000 
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Table 5 Data cube 2 Detection Results Comparison (Sulfur) 

 
Figure 57 Data cube 2 Detection Results with 

Threshold 50 (Sulfur) 

 
Figure 58 Data cube 2 Detection Results with 

Threshold 250 (Sulfur) 

 
Figure 59 Data cube 2 Detection Results with 

Threshold 500 (Sulfur) 
 

Figure 60 Data cube 2 Detection Results with 
Threshold 1000 (Sulfur) 

 
Table 6 Data cube 2 Detection Results Comparison (Otsu) (Sulfur) 

 
Figure 61 Data cube 2 Detection Results with Threshold 50 (Otsu) (Sulfur) 
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Figure 62 Data cube 2 Detection Results with Threshold 50 (Histogram) (Sulfur)  

  
Figure 63 Data cube 2 Detection Results with Threshold 250 (Otsu) (Sulfur) 

 
Figure 64 Data cube 2 Detection Results with Threshold 250 (Histogram) (Sulfur)  
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Figure 65 Data cube 2 Detection Results with Threshold 500 (Otsu) (Sulfur) 

 
Figure 66 Data cube 2 Detection Results with Threshold 500 (Histogram) (Sulfur)  

  
Figure 67 Data cube 2 Detection Results with Threshold 1000 (Otsu) (Sulfur) 
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Figure 69 Data cube 2 Detection Results with 

Threshold 50 (Ethylene) 

 
Figure 70 Data cube 2 Detection Results with 

Threshold 250 (Ethylene) 

 
Figure 71 Data cube 2 Detection Results with 

Threshold 500 (Ethylene) 

 
Figure 72 Data cube 2 Detection Results with 

Threshold 1000 (Ethylene) 

 

 
Figure 68 Data cube 2 Detection Results with Threshold 1000 (Histogram) (Sulfur)  

Table 7 Data cube 2 Detection Results Comparison (Ethylene) 
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Table 8 Data cube 2 Detection Results Comparison (Otsu) (Ethylene) 

 
Figure 73 Data cube 2 Detection Results with Threshold 50 (Otsu) (Ethylene) 

 
Figure 74 Data cube 2 Detection Results with Threshold 50 (Histogram) (Ethylene)  

  
Figure 75 Data cube 2 Detection Results with Threshold 250 (Otsu) (Ethylene) 
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Figure 76 Data cube 2 Detection Results with Threshold 250 (Histogram) (Ethylene)  

 
Figure 77 Data cube 2 Detection Results with Threshold 500 (Otsu) (Ethylene) 

 
Figure 78 Data cube 2 Detection Results with Threshold 500 (Histogram) (Ethylene)  
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Figure 79 Data cube 2 Detection Results with Threshold 1000 (Otsu) (Ethylene) 

 
Figure 80 Data cube 2 Detection Results with Threshold 1000 (Histogram) (Ethylene)  
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4.2.2.2.Algorithm 2 

 
Figure 81 Data cube 1 Detection Results with Algorithm 2 Sulfur Hexafluoride 

  
Figure 82 Data cube 1 Detection Results with Algorithm 2 Sulfur Hexafluoride (Otsu) 

 

 
Figure 83 Data cube 2 Detection Results with Algorithm 2 Ethylene 

  
Figure 84 Data cube 2 Detection Results with Algorithm 2 Ethylene (Otsu) 
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4.2.2.3.Cropped Target Gas Spectrum 

 

Figure 85 Cropped Target Gas Spectrum Sulfur Hexafluoride 

 

Figure 86 Cropped Target Gas Spectrum Ethylene 
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4.2.2.4.Background-Gas Including Pixel Spectrums 

 

Figure 87 Background&Gas Including Pixel Spectrums 

  



 
 

64 

4.2.2.5.Calculated Transmittance and Absorbance Values of Gas Including Pixels  

 
Figure 88 Data cube 2 Calculated Gas 

Transmittance Sulfur Hexafluoride 

 
Figure 89 Data cube 2 Calculated Gas 

Absorbance Sulfur Hexafluoride 

 
Figure 90 Data cube 2 Calculated Gas 

Transmittance Ethylene 

 
Figure 91 Data cube 2 Calculated Gas 

Absorbance Ethylene 
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4.2.3. Data Set 3 

In experiment 4.2.3, Butane is oscillated from a cylinder.  

Number of segments according to the threshold values are given in below: 
Threshold size 50 => 3389  Threshold size 250 => 1741 
Threshold size 500 => 1266  Threshold size 1000 => 693 

As seen in detection results, Algorithm 1 results does not significantly differentiate 
between 250 segments result and 500 segments result for Butane. It can be observed 
that algorithm 1 is successful in detection of Butane gas in the scene. When compared 
with algorithm 1, algorithm 2 has similar detection results in detection of Butane gas 
in the scene. 

4.2.3.1.Algorithm 1 

Table 9 Data cube 3 minCEntropy Results Comparison 

 
Figure 92 Data cube 3 minCEntropy Results 

with Threshold 50 

 
Figure 93 Data cube 3 minCEntropy Results 

with Threshold 250 

 
Figure 94 Data cube 3 minCEntropy Results 

with Threshold 500 

 
Figure 95 Data cube 3 minCEntropy Results 

with Threshold 1000 
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Table 10 Data cube 3 Detection Results Comparison 

 
Figure 96 Data cube 3 Detection Results with 

Threshold 50 

 
Figure 97 Data cube 3 Detection Results with 

Threshold 250 

 
Figure 98 Data cube 3 Detection Results with 

Threshold 500 

 
Figure 99 Data cube 3 Detection Results with 

Threshold 1000 

 
Table 11 Data cube 3 Detection Results Comparison (Otsu) 

 
Figure 100 Data cube 3 Detection Results with Threshold 50 (Otsu) 
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Figure 101 Data cube 3 Detection Results with Threshold 50 (Histogram)  

 
Figure 102 Data cube 3 Detection Results with Threshold 250 (Otsu) 

 
Figure 103 Data cube 3 Detection Results with Threshold 250 (Histogram)  
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Figure 104 Data cube 3 Detection Results with Threshold 500 (Otsu) 

 
Figure 105 Data cube 3 Detection Results with Threshold 500 (Histogram)  

  
Figure 106 Data cube 3 Detection Results with Threshold 1000 (Otsu) 
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4.2.3.2.Algorithm 2 

 
Figure 108 Data cube 3 Detection Results with Algorithm 2 

  
Figure 109 Data cube 3 Detection Results with Algorithm 2 (Otsu) 

 
  

 
Figure 107 Data cube 3 Detection Results with Threshold 1000 (Histogram)  
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4.2.3.3.Cropped Target Gas Spectrum 

 

Figure 110 Cropped Target Gas Spectrum Butane 
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4.2.3.4.Background-Gas Including Pixel Spectrums 

 

Figure 111 Background&Gas Including Pixel Spectrums 

4.2.3.5.Calculated Transmittance and Absorbance Values of Gas Including Pixels  

 
Figure 112 Data cube 3 Calculated Gas 

Transmittance 

 
Figure 113 Data cube 3 Calculated Gas 

Absorbance 
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4.2.4. Data set 4 

In experiment 4.2.4, same scene condition is used as experiment 4.2.3; but there is not 
any gas oscillated from a cylinder. 

Number of segments according to the threshold values are given below: 
Threshold size 50 => 3445  Threshold size 250 => 1652 
Threshold size 500 => 1270  Threshold size 1000 => 751 

As seen in detection results, Algorithm 1 results do not significantly differentiate 
between 250 segments result and 500 segments result for Butane. It can be observed 
that both algorithm 1 and algorithm 2 does not detect any butane gas in the scene as it 
should be. This situation proves that both detection results are reliable as in the same 
scene conditions they can detect if gas is oscillated or not. 

4.2.4.1.Algorithm 1 

Table 12 Data cube 4 minCEntropy Results Comparison 

 
Figure 114 Data cube 4 minCEntropy Results 

with Threshold 50 

 
Figure 115 Data cube 4 minCEntropy Results 

with Threshold 250 

 
Figure 116 Data cube 4 minCEntropy Results 

with Threshold 500 

 
Figure 117 Data cube 4 minCEntropy Results 

with Threshold 1000 
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Table 13 Data cube 4 Detection Results Comparison 

 
Figure 118 Data cube 4 Detection Results with 

Threshold 50 

 
Figure 119 Data cube 4 Detection Results with 

Threshold 250 

 
Figure 120 Data cube 4 Detection Results with 

Threshold 500 

 
Figure 121 Data cube 4 Detection Results with 

Threshold 1000 

 
Table 14 Data cube 4 Detection Results Comparison (Otsu) 

 
Figure 122 Data cube 4 Detection Results with Threshold 50 (Otsu) 
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Figure 123 Data cube 4 Detection Results with Threshold 50 (Histogram)  

  
Figure 124 Data cube 4 Detection Results with Threshold 250 (Otsu) 

 
Figure 125 Data cube 4 Detection Results with Threshold 250 (Histogram)  
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Figure 126 Data cube 4 Detection Results with Threshold 500 (Otsu) 

 
Figure 127 Data cube 4 Detection Results with Threshold 500 (Histogram)  

  
Figure 128 Data cube 4 Detection Results with Threshold 1000 (Otsu) 
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4.2.4.2.Algorithm 2 

 
Figure 130 Data cube 4 Detection Results with Algorithm 2 

  
Figure 131 Data cube 4 Detection Results with Algorithm 2 (Otsu) 

 
  

 
Figure 129 Data cube 4 Detection Results with Threshold 1000 (Histogram) 
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4.2.4.3.Cropped Target Gas Spectrum 

 

 

Figure 132 Cropped Target Gas Spectrum 
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4.2.4.4.Background-Gas Including Pixel Spectrums 

 

Figure 133 Background&Gas Including Pixel Spectrums 

4.2.4.5.Calculated Transmittance and Absorbance Values of Gas Including Pixels  

 
Figure 134 Data cube 4 Calculated Gas 

Transmittance 

 
Figure 135 Data cube 4 Calculated Gas 

Absorbance 

 
  



 
 

79 

4.2.5. Data set 5 

In experiment 4.2.5, carbon dioxide is oscillated from a cylinder.  

Number of segments according to the threshold values are given below: 
Threshold size 50 => 10335  Threshold size 250 => 8930 
Threshold size 500 => 8875  Threshold size 1000 => 8830 

It can be observed that algorithm 1 results are unsatisfactory in detection of carbon 
dioxide gas in general. On the other hand, better results achieved according to the 500 
segments and 1000 segments results. When compared with algorithm 1, algorithm 2 
has similar results in detection of carbon dioxide gas in the scene but detected segments 
are scattered excessively. It is evaluated that the reason of detection failure is about 
the carbon dioxide characteristics. Atmosphere initially has widely carbon dioxide and 
also atmospheric transmittance values are almost zero on the spectral bands (2300 cm-

1 – 2400 cm-1), given in figure 29, that carbon dioxide depicts distinguishing 
characteristics therefore it gets difficult to differentiate the gas from background. Even 
tough Algorithm 1 results are consistent with reality it needs to be improved. 

4.2.5.1.Algorithm 1 

Table 15 Data cube 5 minCEntropy Results Comparison 

 

 
Figure 136 Data cube 5 minCEntropy Results 

with Threshold 50 

 
Figure 137 Data cube 5 minCEntropy Results 

with Threshold 250 

 
Figure 138 Data cube 5 minCEntropy Results 

with Threshold 500 

 
Figure 139 Data cube 5 minCEntropy Results 

with Threshold 1000 
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Table 16 Data cube 5 Detection Results Comparison 

 
Figure 140 Data cube 5 Detection Results with 

Threshold 50 

 
Figure 141 Data cube 5 Detection Results with 

Threshold 250 

 
Figure 142 Data cube 5 Detection Results with 

Threshold 500 

 
Figure 143 Data cube 5 Detection Results with 

Threshold 1000 

 
Table 17 Data cube 5 Detection Results Comparison (Otsu) 

 

Figure 144 Data cube 5 Detection Results with Threshold 50 (Otsu) 
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Figure 145 Data cube 5 Detection Results with Threshold 50 (Histogram)  

  

Figure 146 Data cube 5 Detection Results with Threshold 250 (Otsu)  
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Figure 147 Data cube 5 Detection Results with Threshold 250 (Histogram)  

  

Figure 148 Data cube 5 Detection Results with Threshold 500 (Otsu)  
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Figure 149 Data cube 5 Detection Results with Threshold 500 (Histogram)  

  

Figure 150 Data cube 5 Detection Results with Threshold 1000 (Otsu) 

 

Figure 151 Data cube 5 Detection Results with Threshold 1000 (Histogram)  
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4.2.5.2.Algorithm 2 

 
Figure 152 Data cube 5 Detection Results with Algorithm 2 

  
Figure 153 Data cube 5 Detection Results with Algorithm 2 (Otsu) 

4.2.5.3.Cropped Target Gas Spectrum 

 

Figure 154 Cropped Target Gas Spectrum 
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4.2.5.4.Background-Gas Including Pixel Spectrums 

 

Figure 155 Background&Gas Including Pixel Spectrums 

4.2.5.5.Calculated Transmittance and Absorbance Values of Gas Including Pixels  

 
Figure 156 Data cube 5 Calculated Gas 

Transmittance 

 
Figure 157 Data cube 5 Calculated Gas 

Absorbance 
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4.2.6. Data set 6 

In experiment 4.2.6, carbon dioxide is oscillated from a car exhaust. 

Number of segments according to the threshold values are given below: 
Threshold size 50 => 6286  Threshold size 250 => 3488 
Threshold size 500 => 2432  Threshold size 1000 => 1749 

As seen in detection results, Algorithm 1 results do not significantly differentiate 
according to the segment sizes. It can be observed that algorithm 1 is unsuccessful in 
detection of carbon dioxide gas in the scene. When compared with algorithm 1, 
algorithm 2 is also unsuccessful but better than algorithm 1 results in detection of 
carbon dioxide gas in the scene. It can be observed that target gas is detected with high 
false alarm rate. It is evaluated that the reason of detection failure is about the carbon 
dioxide characteristics. Atmosphere initially has widely carbon dioxide and also 
atmospheric transmittance values are almost zero on the spectral bands (2300 cm-1 – 
2400 cm-1), given in figure 29, that carbon dioxide depicts distinguishing 
characteristics therefore it gets difficult to differentiate the gas from background. Also, 
the temperature difference which directly effects the detection rate can be very low. 

4.2.6.1.Algorithm 1 

Table 18 Data cube 6 minCEntropy Results Comparison 

 
Figure 158 Data cube 6 minCEntropy Results 

with Threshold 50 

 
Figure 159 Data cube 6 minCEntropy Results 

with Threshold 250 

 
Figure 160 Data cube 6 minCEntropy Results 

with Threshold 500 

 
Figure 161 Data cube 6 minCEntropy Results 

with Threshold 1000 
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Table 19 Data cube 6 Detection Results Comparison 

 
Figure 162 Data cube 6 Detection Results with 

Threshold 50 

 
Figure 163 Data cube 6 Detection Results with 

Threshold 250 

 
Figure 164 Data cube 6 Detection Results with 

Threshold 500 

 
Figure 165 Data cube 6 Detection Results with 

Threshold 1000 

 
Table 20 Data cube 6 Detection Results Comparison (Otsu) 

 

Figure 166 Data cube 6 Detection Results with Threshold 50 (Otsu) 
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Figure 167 Data cube 6 Detection Results with Threshold 50 (Histogram)  

 

Figure 168 Data cube 6 Detection Results with Threshold 250 (Otsu) 
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Figure 169 Data cube 6 Detection Results with Threshold 250 (Histogram)  

 

Figure 170 Data cube 6 Detection Results with Threshold 500 (Otsu) 
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Figure 171 Data cube 6 Detection Results with Threshold 500 (Histogram)  

  

Figure 172 Data cube 6 Detection Results with Threshold 1000 (Otsu) 

 

Figure 173 Data cube 6 Detection Results with Threshold 1000 (Histogram)  
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Algorithm 2 

 
Figure 174 Data cube 6 Detection Results with Algorithm 2 

  
Figure 175 Data cube 6 Detection Results with Algorithm 2 (Otsu) 
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4.2.6.2.Cropped Target Gas Spectrum 

 

 

Figure 176 Cropped Target Gas Spectrum 

4.2.6.3.Background-Gas Including Pixel Spectrums 

 

Figure 177 Background&Gas Including Pixel Spectrums 
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4.2.6.4.Calculated Transmittance and Absorbance Values of Gas Including Pixels  

 
Figure 178 Data cube 6 Calculated Gas 

Transmittance 

 
Figure 179 Data cube 6 Calculated Gas 

Absorbance 
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CHAPTER 5 
CHAPTER 

5. CONCLUSION 

Target spectral signature for solid and liquids substances are searched on datacubes by 
resolving the degradation although target gas substances' spectral signatures are not 
searched directly. The decompositions on the signatures of the materials on the back 
of the gas are identified in order to determine which gas can cause those 
decompositions. This decomposition can be in both directions (absorption or emission) 
according to the temperature differences between gas cloud and background. 
It is also possible that this decomposition has a constantly different effect on the same 
background even if we include the assumption that the temperature of the gases gets 
equal to the atmospheric temperature as they move away from the source, and that it 
falls exponentially in its construction as they move away from the source.  
In addition, the same gas can be seen on different background signatures in the same 
scene which makes the problem even more complicated and making it very difficult. 
Finally, the atmospheric effects are negatively affecting the detection rate as the target 
gases can be present in atmosphere initially and transmittance of the atmosphere can 
be very low in the bands that target gases depicts its characteristics. 
Although many studies in the literature have mentioned that atmospheric effects are 
eliminated by various algorithms and that atmospheric effects can be ignored in the 
near distance, these algorithms require many parameters besides the captured image. 
For modeling of the atmosphere at the time datacube is obtained, getting the 
temperature, humidity, gas availability, etc. parameters on the same time has great 
importance. 
In this thesis, as different from studies in the literature a new method is suggested for 
detection and identification of target gases automatically in hyperspectral imagery 
without any assumption of variables in the scene or the size/position of plume. Despite 
previous studies make assumptions about temperature equalities like gas temperature 
and ambient temperature is equal, we do not deal with this equality by using BB 
Radiation Curve Compensation algorithm to drop the temperature variables for 
detecting target gases on image. After this preprocessing step, hierarchical spectral-
spatial clustering is implemented to decompose the data into small segments for 
detection and identification of the plumes if present in the scene. By using all other 
segments in order to calculate the possible gas transmittance for a segment, we do not 
deal of separate background and gas regions. It is a fully automatic method to detect 
gases in the scene. The datacubes are processed with various different gas signatures 
and it is seen that false alarm rate for detecting the wrong gas in the scene is 
comparably low. 
The other distinguishing specialty is implementing the Otsu thresholding (see (Otsu, 
1979)) with 3 level on the resulting detection data which separate data in more than 
two class in order to get better results. As the first thresholding provide separating the 
data according to maximum variance difference, second thresholding differentiate gas 
including region from the background region with high accuracy. 
The data set provided by UDI using Telops FTIR Hypercam is used to test the proposed 
algorithm. Algorithm is implemented on 6 different hyperspectral images. One image 
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includes methanol gas, one image includes sulfur-ethylene gases mixture, two image 
includes carbon dioxide gas, one image includes butane gas and last image does not 
include any gas. One of the other greenhouse gas Nitrous Oxide cannot be tested since 
we do not have a hyperspectral image including Nitrous Oxide.  
Proposed algorithm had prospering and decisive results except carbon dioxide gas. 
Even though the effect of atmospheric temperature on the hyperspectral image is 
eliminated by the applied black-body radiation curve compensation algorithm, the 
temperature difference between the background and the gas temperature still has a 
great effect on gas detection. Because of this, we consider that the target gas cannot be 
detected in CO2 containing image which has a car on the scene in addition the 
atmospheric transmittance gets nearly zero where CO2 depicts its characteristics. 

5.1. Future Works  

As future works, carbon dioxide and other greenhouse gases which is not tested can 
be studied on new hyperspectral images with various different scene compositions. 
Also For detection of carbon dioxide, unsupervised atmospheric compensation can be 
implemented on those hyperspectral images as the major limitation on detecting those 
gases is atmospheric effects on the data. After atmospheric compensation, quantitative 
analysis of greenhouse gases on hyperspectral imagery will be conducted. 
Also, in order to measure the results metrically, data that has ground truth can be used 
for getting F-measure results. This can be provided by fully controlled environment 
and fully controlled oscillation. 
For the final detection results we implemented Otsu thresholding twice on detection 
result data. Another method can be utilized for obtaining more prospering results by 
testing more hyperspectral images.  
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APPENDICES 

 

APPENDIX A 

 

GLOSSARY 

  
Radiance: 
Radiant intensity measured in a specific direction per unit projected area. Measured 
in watts/steradian/m2. 
 
Reflectance: 
The ratio of a given wavelength of light reflected by a surface to the light incident on 
a surface, expressed as a percentage.  
 
Blackbody: 
Blackbody is a body whose absorbs all radiation incident upon it. Blackbody 
radiation at a given wavelength depends only on the temperature and a blackbody 
emits more radiation than any other type of an object at the same temperature;  
 
Planck Function: 
Planck Function gives the intensity (or radiance) emitted by a blackbody having a 
given temperature.  
 
Brightness Temperature: 
Brightness Temperature is defined as the temperature of a blackbody that emits the 
same intensity as measured. For a blackbody: brightness temperature = kinetic 
temperature ( Tb= T)  
 
Transmittance: 
The fraction of radiation that remains after the radiation has traveled a certain path in 
the medium.  
 
Emissivity: 
The ratio of the emission of a real body to the emission of the blackbody is called 
(specific) emissivity ε and depends on the wavelength.  
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