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ABSTRACT

A COMPARATIVE STUDY ON TIGHTLY COUPLED VISUAL AIDED
INERTIAL NAVIGATION SYSTEMS FOR UNMANNED AERIAL VEHICLES

İNCE, TALHA
M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Afşar Saranlı

JANUARY 2018, 123 pages

An Inertial Navigation System (INS) is a combination of hardware (accelerometers
and gyroscopes) and algorithms to calculate the position, orientation and velocity of
a mobile platform. Because of the need to integrate the measurements over time,
INS is subjected to cumulative error characteristics, hence cannot provide an accu-
rate navigation solution over long durations. Global Positioning System (GPS) is
often used for long time-long distance problems aiding INS. GPS relies on external
signals received from satellite networks which gives bounded error. Unfortunately,
these signals can be jammed, spoofed or may not be available at indoor applications.
Hence, alternatives to the GPS sensor are required. Such a recent alternative is the
camera sensor, resulting in Visual Aided Inertial Navigation System (VINS). VINS
aims to provide accurate navigation solution using a fusion of imaging and inertial
sensor data. The main goal of this thesis is to analyze and increase the performance
of VINS sensor fusion algorithms on an unmanned aerial vehicle (UAV). For this pur-
pose, a realistic simulation environment is implemented and different VINS methods
are comparatively studied. Extensive simulation studies are conducted to characterize
the performance of map-based and mapless VINS methods and to study the effects of
performance critical parameters. Finally, a modified Gaussian Mixture Filter and fea-
ture region selection method are proposed for increasing the performance of VINS.
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ÖZ

İNSANSIZ HAVA ARAÇLARI İÇİN SIKICA BAĞLI GÖRSEL YARDIMLI
ATALETSEL SEYRÜSEFER SİSTEMLERİ ÜZERİNE KARŞILAŞTIRMALI BİR

ÇALIŞMA

İNCE, TALHA
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Afşar Saranlı

Ocak 2018 , 123 sayfa

Ataletsel Seyrüsefer Sistemi (ASS) hareketli bir platformun pozisyon, yönelim ve hı-
zını hesaplamak için donanım (ivmeölçer ve dönüölçer) ve algoritmalardan oluşan bir
seyrüsefer tekniğidir. ASS, ölçümlerin zaman üzerinden integralini alması sebebiyle
biriken bir hata karakteristiğine sahiptir. Bu sebeple uzun süreli seyirlerde hassas bir
seyrüsefer çözümü sağlayamaz. ASS’yi desteklemek için uzun süre ve uzun mesafeli
problemlerde Küresel Konumlandırma Sistemi (KKS) kullanılır. KKS uydu ağların-
dan sınırlı hata ile aldığı küresel bilgiye bağımlıdır. Bu sinyaller karıştırılabilir, aldatı-
labilir veya kapalı mekan uygulamalarında alınamayabilir. Bu sebeple KKS algılayı-
cısına bir alternatif gerekmektedir. Böyle güncel bir alternatif Görsel Yardımlı Atalet-
sel Seyrüsefer Sistemi’ni (GYAS) meydana getiren kamera algılayıcısıdır. GYAS gö-
rüntüleme ve ataletsel algılayıcıları kullanarak hassas seyrüsefer çözümü sağlamayı
amaçlar. Bu tezin amacı bir insansız hava aracı üzerinde GYAS algılayıcı birleştirme
yöntemlerini analiz etmek ve performanslarını artırmaktır. Bu amaçla, gerçekçi bir
benzetim ortamı gerçeklenmiş ve farklı GYAS yöntemleri karşılaştırmalı olarak ça-
lışılmıştır. Harita tabanlı ve haritasız GYAS yöntemlerinin performanslarını ortaya
koymak ve performans açısından önemli değişkenleri çalışmak için geniş çaplı ana-
lizler yürütülmüştür. Son olarak GYAS’ın performansını artırmak için değiştirilmiş
bir Gauss Karışım Filtresi ve bir öznitelik bölgesi seçim yöntemi sunulmuştur.
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ŷk Innovation or measurement residual

Sk Innovation [or residual] covariance

Kk Kalman gain

xxiii



x̂k|k Updated state prediction

P k|k Updated covariance prediction

N(a, b) Normal Distribution having mean a and standart deviation b

P 0|0 Initial state covariances

dm Distance between the mobile platform and visual landmark

P zz Pixel location uncertainty covariance

P xx State covariance

ynm Position of visual landmark in n-frame

g() Visual landmark position function

δz Pixel location error

δd Distance error

Gynmx Derivative of position of landmark m in n-frame w.r.t. naviga-
tion solution

Gynx Derivative of positions of landmarks in n-frame w.r.t. naviga-
tion solution

Gynmzm Derivative of position of landmark m in n-frame w.r.t. pixel
measurement

Gynz Derivative of positions of landmarks in n-frame w.r.t. pixel
measurements

Gynmdm Derivative of position of landmark m in n-frame w.r.t. distance
between the mobile platform and landmark m

Gynd Derivative of position of landmarks in n-frame w.r.t. distance
between the mobile platform and landmarks

Gynmψ Derivative of position of landmark m in n-frame w.r.t. attitude
error

Gynmv Derivative of position of landmark m in n-frame w.r.t. velocity

Gynmp
n Derivative of position of landmark m in n-frame w.r.t. position

in n-frame

Gynmp
llh Derivative of position of landmark m in n-frame w.r.t. position

expressed in geodesic coordinate system

L Number of dimensions

χi i-th sigma point

γi Propagated sigma point covariance

µx Mean value of the state distribution

χ0 Central sigma point

χi Off-center sigma points

xxiv



λ Scaling parameter

β Secondary scaling parameter

α Spreading parameter

γi Propagated i-th sigma point

W
(m)
i Weight of i-th sigma point for mean calculation

W
(c)
i Weight of i-th sigma point for covariance calculation

xxv



xxvi



CHAPTER 1

INTRODUCTION

1.1 Introduction

Navigation is a field of study that focuses on the process of monitoring the move-

ment of a mobile platform from one place to another [4]. Navigation solution which

includes position, velocity and attitude of the mobile platform is used by a pilot to

reach the destination point. In order to generate a navigation solution, a navigation

technique must be defined.

Required precision of the navigation solution differs for every application. For exam-

ple, meter level precision may be redundant for a vessel’s navigation while centimeter

level precision may be a requirement for a military application. According to the re-

quired precision and available sensors on the mobile platform, different navigation

techniques can be used.

In this thesis, a navigation technique on an unmanned aerial vehicle (UAV) is stud-

ied. UAVs use an inertial measurement unit (IMU) which contains accelerometers

and gyroscopes to monitor the rotation and the acceleration of the mobile platform.

Navigation technique using IMU to cumulatively calculate the navigation solution is

referred as Inertial Navigation System (INS). Because of the need to integrate the

IMU measurements which contains bias and noise over time, INS has divergent error

characteristics as shown in Figure 1.1. Hence it must be aided with another nav-

igation technique for long time - long distances problems. Traditional approaches

use Global Positioning System (GPS) for aiding INS. However, GPS signals can be

jammed, spoofed or may not be received at indoor applications. Mobile platform to

be controlled may not have a GPS sensor because of size, weight, power consump-

tion or cost constraints. Hence an alternative navigation technique must be used if the

mobile platform is desired be to operated under GPS-denied conditions.
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(a) Only INS Pos. Error Std. Dev. (b) Only INS Vel. Error Std. Dev.

(c) Only INS Att. Error Std. Dev.

Figure 1.1: INS Error D4ivergence

A key parameter for the navigation technique selection is the availability of the re-

quired sensors on the mobile platform. Most of the UAVs uses cameras for various

tasks. Using this available sensor, a method for aiding INS inspired by the nature is

proposed in literature. Visual Aided Inertial Navigation Systems (VINS) provide a

navigation solution using imaging and inertial sensors. VINS is a navigation aid in-

dependent from external sources. This standalone system attracted more researchers

as the computer vision, information fusion, data association algorithms, signal pro-

cessing and sensor technologies are developed.

1.2 Scope, Contributions and Assumptions

The study considers Visual Aided Inertial Navigation (VINS) which is outlined in

Figure 1.2. The primary focus of our study is the Sensor Fusion block illustrated in
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the figure where a Bayesian approach in the form of estimation filters is utilized. We

also consider some problems associated with the Measurement and Data Association

block.

External 
World

Imaging 
Sensor

Range 
Sensor

Computer 
Vision 

Noise

Noise

Sensor Fusion

AccelerometersGyroscopes

Noise Bias Noise Bias

Strapdown Model

Measurement Noise 
Covariance R(k)
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navigation solution
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Velocity
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Position

Process Noise 
Covariance
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Range Sensor Error 
Covariance C(k)

Position
Error

Velocity
Error

Attitude
Error

Data 
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Figure 1.2: Sub-systems of Visual Aided Inertial Navigation. The Thesis Focus is

indicated in the center as the sensor fusion block.

Within this context, the thesis contributions can be summarized as follows:

• We develop a carefully constructed scenario based simulation environment where

a realistic camera model is combined with IMU data from a flight simulator.

The IMU data itself is borrowed from an external simulator that uses precise

strapdown equations to transform platform flight data into IMU data.

• We make use of the multi-sensor data supplied by our simulator to compar-

atively study Bayesian Gaussian filters (namely Extended Kalman and Un-

scented Kalman Filters) to evaluate data fusion performance,

• We also study these filters for two different VINS structures, namely Map

Based and Mapless VINS,

• We consider performance limiting factors, such as number of landmarks, num-

ber of tracked frames, camera noise as well as landmark position uncertainty,

• We propose a novel Gaussian-Sum Filter for the considered problem dimension

and comparatively study its performance,

• We propose a feature selection algorithm to deal with the fast moving camera

problem on straight flight profile.
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In our study we assume that there exist no data association errors. This assumption

can be justified for the considered problem domain which can make use of available

navigation solution and its uncertainties to associate the data from different images.

Data association errors can be avoided by applying measurement gating and sample

consensus algorithms.

Although real flight tests are not performed due to lack of available facilities, a realis-

tic simulation environment is implemented. Hence we believe that proposed methods

are realizable and conducted analyses are generalizable for having a stable and accu-

rate navigation solution on a VINS.

1.3 Outline of Thesis

In the introduction part, significance of the thesis problem was discussed, scope and

contributions of this study was given. The rest of the thesis is organized as follows:

In Chapter 2, a detailed review of related work is presented.

In Chapter 3, inertial navigation system equations, perturbation analysis to obtain

error states for indirect filters and inertial measurement unit model are given.

In Chapter 4, the sensor fusion methods are explained. Camera model is presented

and a feature region selection method is also proposed in this chapter.

In Chapter 5, followed methodology is explained in detail. Specifications of simulated

UAV, IMU and camera models are given. Results of comparative evaluation of sensor

fusion filters and detailed analysis of selected parameters are presented.

In Chapter 6, results are summarized and studies which can be conducted after this

thesis are stated.
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CHAPTER 2

LITERATURE REVIEW

VINS is an estimation theory problem which is a joint study of control and statistical

signal processing theory. In VINS, navigation solution errors of INS are tried to

be estimated and corrected by the information extracted from visual measurements.

In order to establish a VINS, 5 main subproblems shown in Figure 2.1 need to be

addressed. Studies in literature can be categorized according to solutions they suggest

for one or more of these subproblems.

Figure 2.1: Subproblems of VINS

VINS techniques can be classified into two categories according to existence of vi-

sual landmark’s position information before operation. The problem of recovering

the navigation solution of the mobile platform with respect to landmarks with known

positions is referred as map-based VINS. In map-based VINS, images of terrain un-

der trajectory of UAV or descriptors of position fixed landmarks are available to the

mobile platform before starting navigation operation. This approach requires a pre-

planning phase. "Digital Scene Matching Area Correlator (DSMAC)" is a map-based
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VINS, proposed in [5]. DSMAC uses position fixed terrain images for correcting plat-

form’s navigation solution. Images captured during flight are correlated with a terrain

image database, loaded to mobile platform before flight. Map-Based VINS suffers

from low precision at data association. DSMAC uses static morphological properties

of position fixed scenes and has extensive preplanning phase before flight to solve

low data association precision problem. Accuracy of the DSMAC is suggested as few

tens of meters [18]. Map-Based VINS using position fixed images suffers from mem-

ory and high computational complexity problems. In order to solve these problems,

feature point based solutions are proposed in literature [41], [8]. Compared to stor-

ing terrain images of all of the trajectory, feature based solutions have more abstract

representation of a map. But they may suffer from data association problems.

Having position information of visual landmarks before flight might not be possible

for all applications. Moreover, representation of this information like position fixed

images or feature descriptors might not be accurate enough to match during opera-

tion. Additionally information provided by the map, like position of visual landmarks

might not provide information with enough accuracy to fulfill application’s naviga-

tion solution precision criteria. Therefore, a more standalone approach referred as

mapless VINS is proposed as an alternative to map-based VINS. This method shows

similarities to Structure from Motion (SfM) techniques [45]. But rather than creat-

ing a visual map, mapless VINS focuses on refinement of navigation solution of the

mobile platform. Mapless VINS creates temporary feature point maps and applies

Simultaneous Localization and Mapping(SLAM) algorithm to refine navigation solu-

tion of the mobile platform while refining temporary maps. Numerous studies in can

be found in literature about mapless VINS.(see e.g. [52], [55], [6], [14])

VINS can be further categorized into "tightly-coupled" and "loosely-coupled" ver-

sions depending on how the navigation solution(state) is transferred into camera sen-

sor measurements (i.e. the type of measurement model).

In loosely coupled VINS, translational and rotational displacements of the camera

are calculated from pixel measurements. Loosely coupled integration is studied un-

der visual odometry and egomotion topics [45]. In loosely coupled Map-Based VINS,

problem of estimating position and attitude of the mobile platform is studied under
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"Perspective N Point Problem(PnP)" or "Perspective N Line Problem (PnL)" topics.

PnP uses points while PnL uses lines as reference visual inputs. To solve PnP or

PnL problems, iterative or non-iterative approaches are applied for minimizing the

defined cost function which generally consist of constrained reprojection error be-

tween model and measurement. Non-iterative techniques shows more sensitivity to

image noise compared to iterative techniques while iterative techniques have the risk

of not converging to global minimum [56]. In loosely coupled mapless VINS, camera

translation and rotation is calculated between sequential frames using feature point

matches [50], [43], [47].

While loosely coupled VINS calculates the camera translation and rotation explicitly,

tightly coupled VINS uses perspective camera model as observation model. Perspec-

tive camera model relates the navigation solution and pixel measurements directly in

a nonlinear fashion. In tightly coupled map-based VINS, feature points with known

positions are used [27]. In tightly coupled mapless VINS, feature points used as land-

marks are extracted during flight. These features are matched between consecutive

frames. Then updated pixel values are directly used without explicitly calculating

camera movement. (see e.g. [52], [22], [23])

Computational complexity of tightly coupled approach is far less than loosely cou-

pled approach. In [7], Chu et. al. compares the performance of tightly and loosely

coupled VINS. Results show that tightly coupled approach can provide more accurate

navigation solution while loosely coupled approach is more stable.

Scale ambiguity is a problem that needs to be addressed in mapless VINS studies.

A representation of this problem can be found in Figure 2.2. Given two images for

consecutive measurements from ti moment and ti+1, any camera movement from line

l1 to l2 indicated on Figure 2.2 is indistinguishable without depth information.

In order to solve scale ambiguity problem, feature points must be introduced to VINS

in 3D. In map-based VINS, this information is already provided to system before

flight. Altought, a map is not provided in mapless VINS, temporary feature point

maps must be constructed in 3D. Since imaging sensor projects 3D world into a 2D

plane, range information must be retrieved for reprojecting pixel coordinates to 3D
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Figure 2.2: Scale Ambiguity Problem

world. In VINS, proposed solutions for retrieving range information can be classified

into two categories as estimation and measurement based methods.

Using stereo cameras for retrieving range information in VINS is an option proposed

in [52] [50] [31] . Range estimation using stereo camera setup may suffer from stereo

baseline limits and feature matching errors. Stereo baseline (distance between camera

pairs) limits the maximum range that can be calculated using stereo geometry. This

can limit the usage of stereo cameras for the applications where platform and imaged

terrain is distant like UAVs. Data association errors can also cause range estimation

errors.

Usage of stereo camera setup might not be possible for all UAV applications because

of size, cost and power consumption constraints. Different depth estimation solutions

are proposed in literature for the mobile platform where only a monocular camera

exists.
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Range can be calculated under the assumption that ground level is flat. This assump-

tion can be valid under assumption that platform is flying at relatively high altitudes

[58], [8], [55]. Barometric altimeter can also be used for reducing the range esti-

mation uncertainties where ground level is assumed to be flat. Therefore, studies

making flat ground level assumption, mostly uses a UAV having barometric altime-

ter. Although using multiple sensors, flat ground level assumption causes high range

estimation uncertainties.

Another alternative for depth estimation when only monocular camera exists on plat-

form uses Digital Terrain Model (DEM) [15], [35], [29]. DEM maps contains 3D

representation of terrain surface. Using the intersection of line of sight (LoS) of cam-

era and DEM map, range can be calculated. Range estimation uncertainty depends on

the fixed uncertainty of the map as well as the position and orientation uncertainties

of the mobile platform.

Motion stereo is a range estimation method when multiple cameras are not available

on the mobile platform. Stereo geometry is constructed with the help of estimated

position and attitude of the mobile platform. Madison et. al. derives motion stereo

equations and their uncertainties for a VINS system in [14]. In this study, failure

modes of motion stereo are also discussed. [30] derives the relation between three

camera views, called Trifocal Tensor, and motion stereo to solve scale ambiguity

problem. In motion stereo, depth estimation uncertainty depends on position and

orientation uncertainties of the mobile platform while uncertainty of traditional stereo

vision with two cameras depends only on uncertainty of placement of cameras.

Another interesting method is using multiple platforms to construct a stereo geometry

for range estimation. A federated filter framework with master and local filters by

cooperating landmark information from multiple platforms is proposed in [2]. Stereo

geometry between two platforms are also used for estimating the range information.

In [48], a mapless VINS without using SLAM approach is proposed using range

estimation from multiple vehicles.

Range uncertainty is directly proportional to the mobile platform’s navigation solu-

tion’s uncertainty in motion stereo, DEM based range estimation and multi-platform

stereo. Using a range sensor enables us to eliminate the effects of the mobile plat-
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form’s navigation solution’s uncertainty. Two different sensor types are proposed in

VINS studies focused on UAVs. Laser Range Finder is a sensor using laser pulses

to measure distance between sensor and targeted point. It provides a single measure-

ment from a scene. Since generally camera and range finder optics are geometrically

aligned, range measurement belongs to a pixel at the line of sight of camera. In

[57], a gimbaled laser range finder method is proposed for solving scale ambiguity

on VINS. Range information of pixels not receiving range measurement is estimated

using imaging sensor’s intrinsic parameters and height assumptions on terrain. There-

fore range estimation errors cannot be avoided using laser range finder.

LiDAR (Light Detection and Ranging) is an electronic instrument which can provide

depth information of all individual pixels and an intensity image for a scene. LiDAR

sensors are optimal for estimating the feature point’s 3D position in the sense that

they provide full range information of the scene without any range estimation errors.

Because of this advantage, LiDAR is proposed method in VINS literature [10], [11],

[49] and also used in this study for range estimation.

There exist two sources of information in VINS. First, INS is the main source of

information to form navigation solution. The second source is the measurements

which aids to INS with information obtained from camera and data association. The

information from these two sources must be fused by using a mathematical frame-

work which is referred as sensor fusion(or information fusion) filter. Sensor fusion

filters try to estimate the unknown probability density function of the state recur-

sively over time using incoming measurements and mathematical process model by

applying probabilistic approaches [9]. Methods proposed in literature differs in terms

of stability, state error, computational complexity and assumptions where filters are

designed to operate under.

Kalman filter(KF) is one of the most common sensor fusion methods used in many

applications. KF assumes that the process noise and measurement noise are zero

mean Gaussian white noise sequence. Initial state, process noise and measurement

noise are assumed to be jointly independent. State equations and measurement model

is assumed to be linear. Although linearity assumption doesn’t hold for most of the
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real world problems, KF is convergent and optimal in the sense of state error if as-

sumptions are satisfied.

In order to extend the KF to nonlinear real world problems, a solution is taking the

linear part of the system by linearizing it around estimated state. This approach is

referred as Extended Kalman Filtering (EKF). Linearization errors causes subopti-

mal performance in terms of state errors and stability in EKF. For highly nonlinear

systems, the effect of linearization errors are greater compared to simpler nonlinear

systems, since fidelity of the system representation is decreased more by linearization.

Visual aided Inertial Navigation Systems are nonlinear systems in terms of both state

equations and measurement model. Using Extended Kalman Filter is proposed in lit-

erature by many studies. Studies using EKF as sensor fusion filter in VINS propose

different solutions for increasing the stability, decreasing the navigation solution er-

rors and computational cost. As an example; linearization errors in EKF based VINS

causes unobservability along certain directions. These directions differs for assump-

tions and measurement model of the used EKF framework. In [32], Roumeliotis et.

al. studies the observability properties of standard EKF based Tightly coupled VINS

and proposes a observability constrained VINS(OC-VINS) to avoid gaining spurious

information which can lead inconsistency in the filter. Linearization errors may re-

duce the observable directions. Number of unobservable directions are forced to stay

same by applying an observability constrain which modifies measurement and state

transition matrices in OC-VINS.

In [52], Veth proposed using Jacobian matrices, uncertainties of navigation solution

and uncertainties of landmark positions to define an ellipsis around the feature to be

matched which limits the search region and decrease the number of wrong matches.

This increase on performance of data association also refines the performance of

VINS. The purposed method also decreases the computational cost of feature match-

ing, since feature to be matched in previous image is searched in just a small part of

the image. If this method is not applied, ideally distance between descriptors of all

features in previous and current images should be calculated. This yields poor data

association performance and high computational cost.
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In order to cope with linearization errors introduced to system with EKF, an alter-

native approach based on Unscented Transform (UT) is proposed by [54]. This ap-

proach is referred as Unscented Kalman Filter (UKF). UKF still assumes that process

noise and measurement noise are zero mean Gaussian white noise sequence and ini-

tial state, process noise and measurement noise are assumed to be jointly independent

but eliminates assumption of having linear state equations and measurement model.

In every prediction step, state density is sampled at multiple points with UT. These

sample points are referred as sigma points. Sigma points are propagated via nonlinear

equations of system and weighted sum of these sigma points are used for calculating

the mean and uncertainty of propagated state. In [12], Ebcin compared the EKF with

UKF for a tightly coupled mapless VINS. Results shows that UKF over performs

EKF in terms of increasing stability and decreasing navigation solution error.

EKF and UKF makes Gaussianity assumption for the state distribution and limits the

number of components that can be utilized for modeling the state distribution. These

assumptions and limitations can be eliminated using weighted sum of Gaussian com-

ponents as proposed in [1]. This approach is referred as Gaussian Mixture Filter

(GMF) or Gaussian Sum Filter (GSF) in literature. GMF also makes linearity as-

sumption about system. From this point of view, it corresponds to utilizing weighted

sum of multiple Extended Kalman Filters.

In [34], Kwok. et al. proposes using GMF for 2D mobile robot localization and

mapping. Number of Gaussian components for minimizing the computational cost

introduced as a result of using multiple components is tried to be held minimum with

a method called sequential probability ratio test in this study.

Components of GMF are not dynamically generated as in UKF. Weights of some

components are dominated by other components after a few weight updates. In this

case propagating components with lower weights is not efficient. As the number of

dominant component increases, filter loses advantage of having multiple components.

This is referred as sample degeneracy problem. In order to solve this problem in GMF,

applying resampling is proposed in [37].

For the systems neither linear nor having zero mean Gaussian errors, particle filters

(PF) are proposed. PF samples the probability density of current state to generate par-
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ticles representing this density. These particles are propagated according to the state

dynamics and weighted according to measurements. The number of particles allowed

in system determines the accuracy of estimated state density. But, the required num-

ber particles increases exponentially with the state dimension. Roughly, each particle

corresponds to a single Kalman filter in terms of computational cost added to naviga-

tion computer. In a 6 DOF mobile platform using SLAM technique, (9+3×k) states,

where k representing number of landmarks, exists. Therefore, unless a marginaliza-

tion technique like Rao-Blackwellized Particle Filtering is not used, PF is not suitable

for real time implementation of SLAM based VINS. Hence PFs will not be studied

under this thesis.
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CHAPTER 3

REVIEW OF INERTIAL NAVIGATION SYSTEM MODELING

Inertial navigation system (INS) is a system composed of hardware and algorithms

to cumulatively calculate the navigation solution of a platform. INS consists of two

main blocks: navigation computer and inertial sensors.

Navigation computer is the electronic system which calculates the navigation solu-

tion with the help of a navigation technique. If external information is not provided,

navigation techniques use dead reckoning method. Dead reckoning is the process of

calculating the mobile platform’s position, attitude and velocity of the mobile plat-

form using previous navigation solution and estimated change on this solution over a

time period.

Change on the navigation solution over a time period can be obtained either in two

ways. First approach uses physical dynamics of the mobile platform which indirectly

relates physical dynamics and navigation solution. For example, using diameter of

wheels and number of rotations of motor shaft, linear displacement and velocity of

a wheeled robot can be calculated. For a flying vehicle, this process would be more

complex.

The other approach uses inertial measurement units (IMU). IMU is composed of gy-

roscopes and accelerometers to directly measure translational acceleration and an-

gular rate of the mobile platform . This sensor is rigidly attached, in other words

"strapped down" to the mobile platform. Measurements from this sensor can be in-

tegrated to calculate current navigation solution. Navigation technique using this ap-

proach is referred as "strapdown" inertial navigation system in literature [51]. Model-

ing complexity of strapdown INS is far less than first approach since physical dynam-

ics of the mobile platform are not considered the while deriving navigation equations.

This enables us to keep state transition equations more precise and simpler. Because
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of these advantages, navigation state transitions are modeled using strapdown equa-

tions in UAVs.

Strapdown equations consist of nonlinear differential equations of position, velocity

and attitude of the platform under accelerometer and gyroscope measurements of

IMU. These equations will be referred as state dynamics or state dynamic equations

for the rest of this thesis. IMU measurements are transformed to related coordinate

frames and cumulatively integrated to calculate the current states. While deriving

strapdown equations, Coriolis force and centripetal force of the Earth must be taken

into account in order to navigate over long distances and durations at high precision.

An important part of VINS consists of the Inertial Navigation equations, often called

"INS mechanization"[51]. INS equations define the dynamics of navigation solution

of the mobile platform under inertial measurements. INS equations with their error

perturbations constitute the part of VINS shown by Eq. 3.1. A method referred as the

Indirect (Error State) Kalman Filter attempts to estimate the errors of INS for each

time step and correct the corresponding navigation states accordingly. This further

requires modeling the IMU error sources and their interaction with INS equations. In

this chapter, we are summarizing the main results related with these methods in order

to facilitate the development of the Visual aided approach to this problem (which

strongly relates with the measurement equation Eq. 3.2).

xk = fk(xk−1,uk−1 + wk) (3.1)

zk = hk(xk) + vk (3.2)

3.1 Background Information

3.1.1 Reference Frames

Reference frames describe the coordinate system which navigation information be-

longs. In a navigation system, rotation and translation must be given with the infor-

mation of reference axes. For example, IMU provides measurements with respect to

the body of the mobile platform but platform navigates with respect to the Earth.

Right-handed reference frames used in this study are explained in this section.
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Figure 3.1: Inertial, Earth and Navigation Frames [51]

• The inertial frame (i-frame): Origin of i-frame is located at the center of the

Earth. This reference frame is defined by xi, yi and zi axes. Axes are non-

rotating with respect to the fixed stars. zi axis is coincident with the Earth’s

polar axis. Gyroscopes provide turn rate of the body frame with respect to

i-frame.

• The Earth centered Earth fixed frame (e-frame, ECEF): Origin of the e-frame

is located at the center of the Earth. e-frame is defined by xe, ye ans ze axes.

ze axis is coincident with the Earth’s polar axis. The axis xe lies along the

intersection of Greenwich meridian with the Earth’s equatorial plane. The Earth

frame rotates, with respect to the inertial frame, at a rate of Ω about the axis zi

[51].

• The navigation frame (n-frame, NED): Origin of the n-frame is located on the

mobile platform for attitude and velocity representations. Axes of n-frame lie

along north, east and down (NED) direction with respect to the mobile platform.

Hence axes rotate as the mobile platform moves. n-frame is selected as the

reference frame for attitude and velocity dynamics of the platform in this study.

Position of the mobile platform in n-frame, pn, is calculated with respect to

a fixed point in geodesic coordinate system rather than an origin fixed on the

mobile platform. Directions of axes still show NED but determined according
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to the position of the reference point on the Earth. This frame will be used for

managing the relations between landmark and platform position in a coordinate

system using metric unit.

• The body frame (b-frame): Origin of the b-frame is located on the mobile

platform. b-frame is defined by xb, yb and zb axes. xb axis lies along nose and

yb lies along right wing of the platform as shown in Figure 3.2. Accelerometers

provide the specific force measurements which is indicated by vector quantity

fb in body frame.

Figure 3.2: Body Reference Frame

• The camera frame (c-frame): Origin of the c-frame is located at camera lens.

Z axis lies along camera LoS and y-axis lies along top of camera as shown in

Figure 3.3.

Figure 3.3: Camera Frame

• Geographic Coordinate System: In order to navigate over long distances and

durations at high precision on the Earth, position data must be expressed in a

coordinate system which models the shape of the Earth. Such an alternative is

Geographic Coordinate System. Geographic Coordinate System is a coordinate

system where position data is expressed in latitude, longitude and height above

sea level. Longitude and latitude are angles measured from the Earth’s center

to a point on the Earth’s surface. Lines of constant latitude and longitude are
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called parallels and meridians. [51]. World Geodetic System of 1984 (WGS-

84) is used as Geographic Coordinate System in this study. Parameters of the

WGS-84 Earth model is defined as in Table 3.1.

(a) Latitude and Longitude Representations [51] (b) Semi-major and Semi Minor Axes of Earth [51]

Figure 3.4: Geographic Coordinate System

Table 3.1: WGS-84 model [51]
Length of the semi-major axis, R 6378137.0m
Length of the semi-minor axis, r = R(1− f) 6356752.3142m
Flattening of the ellipsoid, f = (R− r)/R 1/298.257223563
Major eccentricity ofthe ellipsoid, e = [f(2− f)]1/2 0.0818191908426
Earth’s rate Ω 7.292115× 10−5 rad/s
Meridian radius of curvature , RN RN = R(1−e2))

(1−e2sin2L)3/2

Transverse radius of curvature, RE RE = R
(1−e2sin2L)1/2

Latitude of the platform L

3.1.2 Direction Cosine Matrices

A Direction Cosine Matrix (DCM) is 3x3 matrix used for transforming a vector from

one reference frame to another. Basically, DCM rotates the vector about roll,pitch and

yaw directions of operand vector respectively. A DCM transforming a vector from

b-frame to n-frame is given in Eq. 3.3.

Cn
b =


c11 c12 c13

c21 c22 c23

c31 c31 c33

 (3.3)

fn = Cn
b fb (3.4)
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Properties of direction cosine matrices are very useful for deriving equations in navi-

gation systems. These properties are given below:

Cn
b = (Cb

n)T = (Cb
n)−1 (3.5)

Cn
b = Cn

eCe
b (3.6)

det(Cn
b ) = 1 (3.7)

DCMs for rotating a vector about yaw, pitch and roll axes separately are given below:

rotation ψ about z axes, yaw, C1 =


cosψ sinψ 0

−sinψ cosψ 0

0 0 1

 (3.8)

rotation θ about y axes, pitch,C2 =


cosθ 0 −sinθ

0 0 1

sinθ 0 cosθ

 (3.9)

rotation φ about x axes, roll, C3 =


1 0 0

0 cosφ sinφ

0 −sinφ cosφ

 (3.10)

To obtain a DCM transforming a vector from one reference frame to another, order

of rotations applied about independent axes must be followed on multiplications of

DCMs. A DCM, transforming a vector in n-frame to b-frame can be composed as

in Eq. 3.11 if yaw, pitch and roll convention is used respectively for the rotation

sequence.

Cb
n = C3C2C1 (3.11)

Similarly using first property of DCM stated in Eq. 3.5, Cn
b can be written as:

Cn
b = CT

1 CT
2 CT

3 (3.12)
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Cn
b =


cosψ −sinψ 0

sinψ cosψ 0

0 0 1



cosθ 0 −sinθ

0 0 1

−sinθ 0 cosθ




1 0 0

0 cosφ −sinφ
0 sinφ cosφ

 (3.13)

Euler angles can also be derived from DCMs. Using numeric representations of ele-

ments of DCM given in 3.3, equations of Euler angles are written below:

φ = arctan[
c32

c33

] (3.14)

θ = arctan[−c31] (3.15)

ψ = arctan[
c21

c11

] (3.16)

3.2 Strapdown System Modeling

Strapdown equations model the dynamics of navigation information under IMU mea-

surements in detail. Strapdown model includes transforming calculated or measured

quantities to related frames and models: change of gravitational field over the Earth,

centripetal force experienced by the mobile platform because of rotation of the Earth,

geometric shape of the Earth, effects of moving w.r.t. a rotating frame. This ex-

tensiveness of the strapdown model enables the mobile platform to navigate in high

precision over long distances and durations.

In strapdown equations, differential equations of three navigation variables each hav-

ing 3 dimensions are derived. These variables are:

• attitude: roll φ, pitch θ and yaw ψ angles from body to navigation frame

• velocity: north vN , east vE and down vD velocities in navigation frame

• position: L latitude, l longitude and h height above sea level in geographic

coordinate system.
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Representing position, velocity and attitude as p, v and θ respectively, state vector for

a more generic control system would be expected as follows:

x =
[
θ θ̇ v v̇ p ṗ

]T
(3.17)

Because of ṗ = v, the term ṗ is not included as an extra state element in strapdown

INS. Since v̇ is the translational acceleration supplied by accelerometers and θ̇ is the

turn rate supplied by gyroscopes, these terms can be included in input term u of the

control system. Therefore INS state vector is:

x =
[
θ v p

]T
(3.18)

In the following section, strapdown equations representing state equations of naviga-

tion system 3.1 will be summarized. One can refer to [51] for details of derivations

of strapdown equations. Since these derivations are out of focus of this thesis, only

equations and short explanations of equation elements will be presented.

3.2.1 Attitude Dynamics

Attitude of the mobile platform is tracked in Euler angles from body to navigation

frame. Attitude is propagated in DCM form as shown in 3.19:

Ċ
n

b = Cn
bΩ

b
nb (3.19)

where:

Ωb
nb = [×ωbnb] (3.20)

Ωb
nb =


0 −ωz ωy

ωz 0 ωx

−ωy ωx 0

 (3.21)

Explicit equation of ωbnb, turn rate of b-frame w.r.t. n-frame, is written as:

ωbnb = ωbib − Cb
n[ωnie + ωnen] (3.22)

where ωbib is turn rate of b-frame w.r.t. the i-frame and directly obtained from gy-

roscope measurements, ωnie is turn rate of e-frame w.r.t i-frame and it is written as:
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ωnie = [ΩcosL 0 − ΩsinL]T (3.23)

where Ω is the turn rate of Earth given in Table 3.1. ωnen is turn rate of the n-frame

w.r.t. e-frame. ωnen can be written explicitly as shown in 3.24.

ωnen =
[

vE
RE+h

−vN
RN+h

−vEtanL
RN+h

]T
(3.24)

where L is latitude and h is altitude of the platform. Equations of meridian and

traverse radius of curvature, which are RE and RN respectively, are given in Table

3.1.

The term adding upωnie andωnen defines the effect of navigating w.r.t. a rotating frame

which is referred as Coriolis acceleration and also defines the effect of centripetal

acceleration on attitude dynamics of platform originated from Earth’s rotation.

After calculating Cn
b using equations given above, roll, pitch and yaw angles of plat-

form can be obtained separately from calculated DCM using Eq. 3.14 , 3.15 and

3.16.

3.2.2 Velocity Dynamics

Dynamics of velocity are tracked in n-frame in meter/sec unit along north, east and

down directions respectively. Velocity dynamics is written as below:

v̇ne = Cn
b fb − [2ωnie + ωnen]× vne + gnl (3.25)

vne = [vN vE vD]T (3.26)

where the term [2ωnie + ωnen] defines the effect of navigating w.r.t. a rotating frame.

fb = [fN fE fD]T represents specific force(acceleration) measured by accelerometers.

. The term gl represents the local gravity vector including mass attraction force and

centripetal force caused by rotation of the Earth is written as:

gl = [0 0 gh]
T (3.27)

gh =
g(0)

(1 + h/R0)2
(3.28)
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g(0) = 9.780318(1 + 5.3024× 10−3sin2L− 5.9× 10−6sin22L) (3.29)

where L is latitude of the mobile platform.

3.2.3 Position Dynamics

Position dynamics can be easily expressed after deriving velocity dynamics. Trans-

ferring velocity information in n-frame to geographic coordinate system yields:

L̇ =
vN

RN + h
(3.30)

˙̀ =
vEsecL

RE + h
(3.31)

ḣ = −vD (3.32)

where L is latitude position of the platform, ` is longitude position of the platform, h

is altitude above sea level.

3.3 Perturbation Analysis

In a control system, small "perturbations" about a state can be approximated by using

Taylor Series. Perturbation Analysis is a method based on Taylor Series approxima-

tion and used for obtaining dynamics of state errors.

Consider continuous nonlinear differential equation of a state space representation of

system:

ẋ = f(x(t),u(t), t) (3.33)

Because of the input noise and its cumulative effect on states, state values are repre-

sented as the sum of true value of state x̄(t) and an error term δx as shown in Eq.

3.34. Also input is decomposed as true value and error term as shown in Eq. 3.35.

x(t) = x̄(t) + δx (3.34)

u(t) = ū(t) + δu (3.35)
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Writing state and input with small error "perturbations" Eq. 3.34, 3.35 to Eq. 3.33

yields:

ẋ = f(x̄(t) + δx, ū(t) + δu, t) (3.36)

Applying Taylor Series approximation to Eq. 3.36 gives:

ẋ = f(x̄(t), ū(t), t) + F (t)δx+B(t)δu+ ε (3.37)

where,

F (t) =
∂f

∂x

∣∣∣∣
x̄(t),ū(t),t

=


∂f1
∂x1

· · · ∂f1
∂xn

... . . . ...
∂fn
∂x1

· · · ∂fn
∂xn


∣∣∣∣∣∣∣∣
x̄(t),ū(t),t

(3.38)

B(t) =
∂f

∂u

∣∣∣∣
x̄(t),ū(t),t

=


∂f1
∂u1

· · · ∂f1
∂un

... . . . ...
∂fn
∂u1

· · · ∂fn
∂un


∣∣∣∣∣∣∣∣
x̄(t),ū(t),t

(3.39)

and ε term is linearization error, F (t) and B(t) are Jacobian matrices about true

values of state and input respectively. But in real case, values x̄(t) and ū(t) are never

known as this was the problem from the beginning. Hence Jacobians are calculated

about erroneous state values, since this is the only available information.

Eq. 3.37 can be decomposed as the dynamics of true state and dynamics of error

terms as shown below:

ẋ = ˙̄x(t) + δẋ (3.40)

Since dynamics of only true state is:

˙̄x = f(x̄(t), ū(t), t) (3.41)

Using Eq. 3.37, Eq.3.40 and 3.41, error state dynamics can be written as:

δẋ ≈ F (t)δx+B(t)δu (3.42)

Knowing dynamics of state errors allows us to correct them using sensor fusion filters

explained in Chapter 5.

3.3.1 Perturbation Analysis of Navigation Variables

Indirect filters attempt to estimate and correct navigation solution errors. Dynamics of

errors must be derived using perturbation analysis for this estimation and correction
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process. The errors in INS’s attitude, velocity and position arises from 3 main sources:

bias and random walk of IMU, discretization error owing to derivation of strapdown

equations in continuous time and state initialization errors before flight [18].

Effect of the state errors cannot be written as an additive term to state equations since

propagation of states are modeled using differential equations. Hence, these errors

have their own dynamics.

One can find detailed derivations of perturbation equations for navigation variables

in [51]. Here only the equations will be given. In [51], perturbation equations are

linearized by omitting second order error terms which is the interested case of this

study.

Dynamics of attitude errors, ψ, is expressed as:

ψ̇ ≈ −ωnin ×ψ + δωnin −Cn
b δω

n
ib (3.43)

where ωnin is the turn rate of n-frame w.r.t. i-frame and obtained by ωnin = ωnie +ωnen.

δωnib is gyroscope’s random walk vector.

Dynamics of velocity errors, δv, is expressed as:

δv̇n = [×fn]ψ +Cn
b δf

b (3.44)

where [×fn] is skew-symmetric form of accelerometer measurements and δf b is

accelerometer’s random walk vector.

After writing dynamics of velocity errors, dynamics of position errors in n-frame can

be easily written as:

δṗn = δvn (3.45)

Dynamics of position error in n-frame must be transferred to geodesic coordinate sys-

tem, since position is tracked in geodesic coordinate system. Position of the mobile

platform expressed in geodesic coordinate system will be represented by pllh.

δL̇ =
1

RN + h
δvN −

vN
(RN + h)2

δh (3.46)

δ ˙̀ =
1

(RE + h)cos(L)
δvE +

vE · tanL
(RE + h)cos(L)

δL− vE
(RE + h)2cos(L)

δh (3.47)
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δḣ = −δvD (3.48)

3.3.2 Error State Matrices

Error state equations are written in the matrix form for state space representation and

discretized for later using in covariance propagation step of Bayesian filters. Using

error state dynamics of strapdown equations Eq. 3.42 is written as:

δẋ = F (t)δx+G(t)δu (3.49)

where,

δx =
[
δα δβ δγ δvN δvE δvD δL δl δh

]T
(3.50)

δu =
[
δωx δωy δωz δfx δfy δfz

]T
(3.51)

Note that δωnib and δf b are gyroscope and accelerometer measurement errors respec-

tively. Using Eqs. 3.43 and 3.44, G(t) which represents the input noise influence

matrix and can be written using convention defined in Eq. 3.3 as follows:

G(t) =

−Cn
b 0

0 Cn
b

 =



−c11 −c12 −c13 0 0 0

−c21 −c22 −c23 0 0 0

−c31 −c32 −c33 0 0 0

0 0 0 c11 c12 c13

0 0 0 c21 c22 c23

0 0 0 c31 c32 c33


(3.52)

Taking the derivative of error state transition equation’s terms according to state vari-

ables, using the property of cross product defined in Eq. 3.53, chain rule and equations

given in Section 3.3.1 , error state transition matrix F (t) can be calculated as in Eq.

3.54.

a× b = [×a]b =


0 −a3 a2

a3 0 −a1

−a2 a1 0



b1

b2

b3

 (3.53)

where a and b are operand vectors.
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3.4 Discretization of Error State Matrices

Dynamics of a control system modeled in continuous time must be transferred to dis-

crete time in order to implement the system in a real time digital processing unit such

as FPGA, DSP etc. These processing units compute the values of states at discrete

time instants. Therefore continuous time linear differential equation given in Eq. 3.49

is transfered to:

δxk+1 = F kδxk +wk (3.55)

Since δẋ represents the change on error state in an infinitesimal time interval and

δx[k + 1] directly represents the value of error state at next time step, error state

transition matrix in continuous time F (t) and error state transition matrix in discrete

time F k are different.

For discretizing Eq. 3.49, we begin by taking integral over sampling period to calcu-

late error state solution:

δx(t) = Φ(t0, t)δx(t0) +

∫ t

t0

Φ(t0, τ)G(τ)w(τ)dτ (3.56)

where the sampled error state transition matrix is Φ(t0, t) is defined as the integral of

error state transition matrix over sampling period. Under the assumption that F (t)

and its integral over a sampling period commutes [24]:

F (t)

∫ t

t0

F (τ)dτ =

(∫ t

t0

F (τ)dτ

)
F (t) (3.57)

Φ(t0, t) can be written as:

Φ(t0, t) = e
∫ t
t0
F (τ)dτ (3.58)

Since IMU can provide outputs at high frequency, Eq. 3.57 holds for our application.

Knowing that samples are taken at equal time steps, writing t0 = kT , t = (k + 1)T

and δx(kT ) = δxk to Eq. 3.56 yields:

δxk+1 = Φ((k + 1)T, kT )δxk +

∫ (k+1)T

kT

Φ(kT, τ)G(τ)w(τ)dτ (3.59)

The second term representing the effect of noise on error state solution in Eq. 3.59

can be written as:

wk =

∫ (k+1)T

kT

Φ(kT, τ)G(τ)w(τ)dτ (3.60)
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The discretized input noise covariance matrixQk must be calculated as the covariance

of new noise sequence wk as written below:

Qk =

∫ (k+1)T

kT

Φ(kT, τ)G(τ)QGT (τ)Φ
′
(kT, τ)dτ (3.61)

where Φ
′
(t0, t) is the discretized transpose of error state transition matrix and shown

as:

Φ
′
(t0, t) = e

∫ t
t0
F (τ)T dτ (3.62)

Continuous time error state transition matrix and noise influence matrix can be as-

sumed to be constant between sampling steps when sampling intervals are short. This

reduces Eq. 3.58 and Eq. 3.62 to:

Φs
k = eF (kT )T (3.63)

Qs
k =

∫ (k+1)T

kT

eF (kT )[(k+1)T−τ ]G(kT )QG(kT )T eF
T (kT )[(k+1)T−τ ]dτ (3.64)

To be able to calculate the Eq. 3.63 and Eq. 3.64 in a discrete time computation unit,

Taylor series approximation of matrix exponential can be used [36]. This approxima-

tion is written as:

F k = I + F (t0)T +
F (t0)2T 2

2!
+ ... (3.65)

Gk = G(t0)QG(t0)TT +
(F (t0)G(t0)QG(t0)T +G(t0)QG(t0)TF (t0)T )T 2

2!
+ ...

(3.66)

This concludes the derivation of discretized error state transition and input noise co-

variance matrices.

Note that discretization process can yield covariance matrices which are not positive

semidefinite and asymmetric. In order to increase the stability of sensor fusion filter,

these matrices can be forced to be positive semidefinite and symmetric. This can be

achieved by using closest positive semidefinite and symmetric matrix to discretized

matrix instead of directly using discretized matrix. A detailed method for calculating

closest positive semidefinite and symmetric matrix is explained in Appendix B.
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3.5 Modeling Inertial Sensor Measurements

IMU is a sensor combined of 3 orthogonal accelerometers and 3 orthogonal gyro-

scopes. Accelerometers provide translational accelerations in 3 orthogonal axes and

gyroscopes provide turn rates about 3 orthogonal axes. IMU measurements are dis-

torted by different error sources which causes error divergence of INS because of its

cumulative nature. In this chapter, models of these error sources will be given.

Depending on navigation solution accuracy requirement of the application, different

types IMUs can be used. Grade of an IMU specifies the magnitude of errors expe-

rienced by measurements. IMUs can be classified into 5 main categories as marine,

navigation(or aviation), intermediate, tactical and automotive grade. Accuracy and

cost gradually decreases from marine to automotive grade IMUs. An example table

showing typical accelerometer and gyroscope biases for different grades of IMU can

be found in Table 3.2

Table 3.2: Typical Accelerometer and Gyro Biases for Different Grades of IMU [18]
Accelerometer Bias Gyro Bias

IMU Grade mg ms−2 deg hr−1 rads−1

Marine 0.01 10−4 0.001 5× 10−9

Aviation 0.03 − 0.1 3× 10−4 − 10−3 0.01 5× 10−8

Intermediate 0.1 − 1 10−3 − 10−2 0.1 5× 10−7

Tactical 1− 10 10−2 − 10−1 1− 100 5× 10−6 − 5× 10−4

Automotive > 10 > 10−1 > 100 > 5× 10−4

Probability distributions of IMU error sources are crucial for navigation aid methods.

For example Bayesian filters, like Kalman filters, makes zero mean Gaussian distribu-

tion assumption for statistical characteristics of errors, covariances representing the

uncertainty on estimation is also affected by IMU measurement error distributions.

Therefore, modeling IMU measurements and their error’s probability distributions

are important parts of VINS.

The magnitude of error sources is a major factor determining the stability and naviga-

tion solution error performance upper bounds of a navigation aid. Using IMUs with

higher accuracy enables a filter to estimate navigation information with less error and

have more convergent characteristic.
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Tactical grade IMUs are commonly used in UAVs and aided with GPS. Hence, to be

compatible with this common usage and observe the advantages offered by VINS in

a more explicit way, a low cost tactical grade IMU which has specifications shown in

Table 5.2 is modeled and used in simulations of this study.

Gyroscope and accelerometer errors have different models. Errors on gyroscopic

measurements, δω, can be written as in Eq. 3.67.
δωx

δωy

δωz

 = BG +Bg


αx

αy

αz

+ SG


ωx

ωy

ωz

+MG


ωx

ωy

ωz

+wG (3.67)

whereBG is fixed bias error,Bg is a matrix containing g-dependent bias coefficients

relating acceleration of the mobile platform to turn rate errors, SG is constant scale

factor matrix multiplying true angular rates with a constant scale to model its effect

on gyroscope errors, MG is skew-symmetric matrix representing the mounting and

cross-coupling error between axes of gyroscope. wG is the 3x1 vector representing

the gyroscope’s random walk.

Errors on specific forces in other words measured accelerations, δf can be written as

in Eq. 3.68.


δfx

δfy

δfz

 = BA + SA


αx

αy

αz

+MA


αx

αy

αz

+wA (3.68)

where BA is fixed bias error, SA is constant scale factor matrix multiplying true

accelerations with a constant scale to model its effect on accelerometer errors,MA is

skew-symmetric matrix representing the mounting and cross-coupling error between

axes of accelerometer. wA is the 3x1 vector representing the accelerometer’s random

walk.

More detailed IMU error models can be found in [51]. But for this study, convention

in VINS studies will be followed and only major error sources will be modeled in

simulations. These error sources are bias and random walk vectors of gyroscopes and

accelerometers.
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Gyroscope and accelerometers bias vectors are assigned at every start-up of IMU

sensor. In other words they are only drawn from a random distribution at the be-

ginning of simulation. These vector are added to measurement as a constant error

term. Because of this constant addition, IMU errors statistical distribution becomes

a "non-zero" Gaussian distribution which violates the Kalman filter based sensor fu-

sion algorithm’s assumption. Another error term, random walk vector, is drawn from

a zero mean Guassian distribution at every INS step and added to measurement val-

ues.

Error terms must be added to true measurements modeled by an IMU simulator in

correct units. Statistics of IMU error terms provided by manufacturer in specification

sheets are mostly not given in SI units [18]. Hence appropriate unit conversions must

be applied to information provided by manufacturer according to units of measure-

ments in simulation.
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CHAPTER 4

FUSION OF IMAGING AND INERTIAL MEASUREMENTS

In VINS, INS is aided by visual measurements. In order to perform this, required

navigation information from visual measurements must be extracted and fused with

INS using a framework which is referred as sensor fusion filter in literature. A very

simple example for information fusion can be using mean of the information obtained

from different sources. A more elegant way can be weighting the measurements

according to their uncertainties. Modern methods use uncertainties involved in the

system and follow a probabilistic approach.

Recursive Bayesian Estimation, also called Bayes filter, is an information fusion

method based on Bayes Rule given in Eq. 4.1. In Recursive Bayesian Estimation,

distribution of the true state is tried to be estimated based on the information of the

previous state, which constitutes "given" part of the equation 4.1, and current mea-

surement. A mobile robot moving on a grid composed of landmarks can be as an

example for Recursive Bayesian Estimation. When the robot starts its operation, nav-

igation state errors and uncertainties increase until it sees first landmark. When the

first landmark is detected, errors are corrected and uncertainties are decreased by

using the information obtained from this landmark. If landmark is "distinctive" in

terms of its position, then robot gets more accurate information which decreases its

navigation information errors and uncertainties.

p(x|y) =
p(y|x)p(x)

p(y)
(4.1)

A special case of Bayes Filter assuming that error sources of system have zero mean

Gaussian distribution and system is linear is a well-known concept referred as Kalman

filter. Kalman filter offers an optimal solution for the systems satisfying to its assump-

tions. This optimality involves guaranteed convergence of covariances and minimum

possible state error by using available information. However, most of the real life

systems are not linear. Therefore, different extensions to Kalman filter are proposed
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in literature like Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF) and

Guassian Mixture Filter (GMF).

Indirect filters attempt to estimate and correct navigation information errors by using

the error states as explained in Chapter 3. Hence, perturbation analysis applied for

deriving error dynamics. In the following section, observation model for modeling

the camera measurements will be given and the perturbation analysis will be applied

for using it in Indirect Bayesian filters.

4.1 Observation Model

In a control system, observation model, indicated by hk in Eq. 3.2, establishes the

mathematical relation between states and measurements. There are two commonly

used observation models in VINS literature as explained in Chapter 2. In loosely

coupled approach, rotation and translation are calculated from the camera measure-

ments and used as output vector, indicated by zk in Eq. 3.2. Second approach, referred

as tightly coupled VINS, directly uses pixel values without explicitly calculating the

navigation states from measurements. In this study tightly coupled approach is fol-

lowed. Therefore mathematical relation between navigation states and pixel measure-

ments must be derived.
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Figure 4.1: Perspective Projection Model

Basically, camera is a sensor projecting 3D environment to a 2D plane. Several dif-

ferent camera projection models are proposed in literature, e.g. weak perspective

projection, orthographic projection, paraperspective projection and perspective pro-

jection. All projection models except perspective projection make assumptions about

depth and depth variance of the imaged scene to decrease the computational complex-
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Figure 4.2: Image Plane

ity of specific applications. Hence, the accuracy of perspective projection is higher

compared to the other projection models.

Fig. 4.1 shows the projection of a scene point onto image plane which forms pixel

measurements. Equations defining perspective projection model which constitutes

mathematical relation between position of imaged scene point and pixel measurement

are given below.

s̄pix =
1

scz
T pix
c s

c (4.2)

scz =
[
0 0 1

]
sc (4.3)

T pix
c =


f
sx

0 resx
2

0 f
sy

resy
2

0 0 1

 (4.4)

where sc is the coordinates of a point in c-frame, T pix
c is the intrinsic camera matrix

defining camera properties, spix is unnormalized pixel coordinates of the projected

point in image-frame, f is the focal length, sx and sy are pixel pitches, resx and

resy are camera resolutions in x and y directions respectively and scz is z coordinate

of point in c-frame, in other words depth. Note that 12perspective projection is a

nonlinear transformation since it contains element scz, from sc operand vector.

In perspective projection, two different parameter sets are used: external and internal

parameters. Intrinsic parameters are defined by T pix
c which projects a point in c-

frame to image plane using perspective projection equations. Extrinsic parameters

define the rotation and translation of camera in 3D world. Using extrinsic parameters
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any point in n-frame is transferred to c-frame as follows:

sc = Cc
b[C

b
n(sn − pn)− T b

c] (4.5)

where pn is the position of the mobile platform in n-frame, sn is the coordinates of a

scene point in n-frame, T b
c is the translation from b-frame to c-frame, in other words

position of c-frame in b-frame, Cb
n is the DCM defining rotation from n-frame to

b-frame and Cc
b is the DCM defining rotation from b-frame to c-frame. By using

extrinsic and intrinsic parameters, nonlinear perspective projection equation can be

finally defined as:

s̄pix = h(sc,T pix
c ) (4.6)

Adding measurement noise v to s̄pix models real measurement as:

z = s̄pix + v (4.7)

4.1.1 Perturbation Analysis on Perspective Camera Model

Indirect filters use error states to estimate and correct the system errors. Therefore,

observation model relating error states and measurements must be derived by apply-

ing perturbation analysis to perspective projection model.

Perturbation equation of the perspective projection model can be written based on the

equations defined in Section 3.3 as:

δzk = Hkδxk + vk (4.8)

Hk =
∂h

∂x

∣∣∣∣
x̄k

=


∂h1
∂x1

· · · ∂h1
∂xn

... . . . ...
∂hn
∂x1

· · · ∂hn
∂xn


∣∣∣∣∣∣∣∣
x̄k

(4.9)

where Hk is the linearized perspective projection matrix and vk is the measurement

noise. In order to deriveHk, Eq. 4.6 must be linearized about states of VINS.

In robotics, Simultaneous Localization and Mapping (SLAM) is a widely used algo-

rithm for "simultaneously" calculating the robot’s navigation information and map-

ping its surrounding. The underlying idea of SLAM algorithm is incorporating the
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position of landmarks into the state vector. Thus, SLAM algorithm can estimate both

navigation information and position of landmarks, in other words map, simultane-

ously. Both mapless and map-based VINS use SLAM approach. Hence, perspective

projection equation (4.6) will be linearized about both in navigation states and posi-

tion of landmarks.

Linearized perspective projection matrix in VINS is composed of 4 Jacobian matri-

ces which are derivative of nonlinear perspective projection equation with respect to

attitude error, velocity, position and landmark positions respectively.

Hk =
[
∂h
∂ψ

∂h
∂v

∂h
∂pllh

∂h
∂yn

]
=
[
Hzψ Hzvn Hzpllh Hzyn

]
(4.10)

where yn is position of landmark in n-frame. The definitions of landmark and plat-

form position in n-frame are consistent and origin is fixed to a point in geodesic

coordinate system.

Derivative of the nonlinear perspective projection equation with respect to attitude

error is written by using chain and Quotient rules of derivative as follows:

Hzψ =
∂h

∂ψ
=
scz

∂sc

∂ψ
− sc

[
∂sc

∂ψ

]
z

(szc)
2

(4.11)

Derivative of the imaged scene point with respect to attitude error, ∂sc

∂ψ
, will be es-

tablished based on assumption that derivative of state and its error state are approx-

imately equal. This assumption comes from concepts explained in Section 3.3 and

expressed as below:
∂δsc

∂ψ
≈ ∂sc

∂ψ
(4.12)

Imaged scene point position error δsc is written as:

δsc = s̃c − sc (4.13)

where s̃c is the estimated position of the imaged scene point in c-frame and expressed

as:

s̃c = Cc
bC̃

b

n[yn − pn] (4.14)

C̃
b

n is the estimated DCM. Under the assumption of small angles of misalignment

[51], C̃
b

n is defined as:

C̃
n

b = [I3×3 − [×ψ]]Cn
b (4.15)
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where I3×3 is a 3× 3 identity matrix and [×ψ] is the skew-symmetric form of attitude

error vector. Transposing C̃
n

b and applying definition of skew-symmetric matrices

gives:

C̃
b

n = Cb
n[I3×3 + [×ψ]] (4.16)

Substituting Eq.4.16 into Eq. 4.14 gives:

s̃c = Cc
bC

b
n[I3×3 + [×ψ]][yn − pn] (4.17)

Position of the 4imaged scene point in c-frame can be redefined by assuming that

translation between camera and body is, T b
c, is zero.

sc = Cc
bC

b
n[yn − pn] (4.18)

This concludes definitions of sc and s̃c. Using these definitions, Eq. 4.13 can be

explicitly written as:

δsc = Cc
bC

b
n[×ψ][yn − pn] (4.19)

Assuming that 4.12 holds and using rule of cross-product in Eq. 3.53, final form of
∂sc

∂ψ
can be written as:

∂sc

∂ψ
=

∂

∂ψ
[−Cc

bC
b
n[×(yn − pn)]ψ]

= −Cc
bC

b
n[×(yn − pn)]

(4.20)

Velocity of the platform can cause unwanted affects like "motion blur" on image. But

perspective projection equations are established in discrete time and does not take

image degradations into account. Hence jacobian matrixHzv representing derivative

of nonlinear perspective projection equations w.r.t. velocity of the platform, is a zero

matrix.

Hzv =
∂h

∂v
= 03×3 (4.21)

Derivative of nonlinear perspective projection equations w.r.t. position of the plat-

form is written by using chain rule, since Eq. 4.5 is written in n-frame but position

information of platform is maintained at geodesic coordinate system.

Hzp =
∂h

∂pllh
=

∂h

∂pn
pn

pllh
=
scz

∂sc

∂pn
− sc

[
∂sc

∂pn

]
z

(szc)
2

pn

pllh
(4.22)
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Rightmost term of 4.22 can be calculated using Eqs. 3.30, 3.31 and 3.32 as:

pn

pllh
=


RN + h 0 0

0 (RE + h)cos(L) 0

0 0 −1

 (4.23)

Taking derivative of Eq.4.5 w.r.t. position of platform in n-frame yields:

∂sc

∂pn
= −Cc

bC
b
n (4.24)

Since position of landmarks in n-frame is also incorporated into state vector in SLAM,

observation model must also be linearized about these states. Since landmarks stands

as imaged scene points the term sn becomes yn andHzy is expressed as:

Hzy =
∂h

∂yn
=
scz

∂sc

∂yn
− sc

[
∂sc

∂yn

]
z

(szc)
2

(4.25)

Taking derivative of Eq.4.5 w.r.t. position of landmark in n-frame yields:

∂sc

∂yn
= Cc

bC
b
n (4.26)

This concludes the pertubation analysis of the perpective projection model. This

equations are crucial for Kalman Filter’s update step which relates the state and co-

variance predictions with measurements.

4.1.2 Derivation of Landmark Position Covariance

Sensor fusion filters try to fuse the information by weighting the different sources.

These weights are determined according to uncertainties of the sources. Therefore

landmark position covariances play a vital role on determining the weight of the visual

measurements in VINS.

Derivation of landmark position covariance differs for map-based VINS and mapless-

VINS. In mapless-VINS, landmark position covariance is calculated when landmark

is first extracted from the imaged scene. This covariance depends on pixel measure-

ment, depth information, most importantly the navigation solution of the mobile plat-

form and its uncertainty. A landmark position covariance can be defined as follows:

P yy = E[δyδyT ] (4.27)
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where δy represents the landmark position error. Number of landmarks tracked in

VINS must be more than 4 in order to have an observable system. Therefore multiple

landmarks are used in this study. These landmarks will be managed with the index

m.

In order to derive landmark position error for calculating landmark position covari-

ance, perturbation analysis must be applied to position of landmark. Position of land-

mark m in n-frame is calculated as follows:

ynm = pn +Cn
b (T b

c + dmC
b
cT

c
pixzm) (4.28)

where dm represents the distance between the mobile platform and landmark m. The

nonlinear relation giving the position of landmark in n-frame will be represented with

the function g:

ynm = g(pn,Cn
b ,T

b
c, dm,C

b
c,T

c
pix, zm) (4.29)

Applying perturbation analysis explained in Section 3.3 to Eq. 4.28 gives:

δynm = Gynmxδx+Gynmzδz +Gynmdmδd (4.30)

where δz is measurement noise, Gynmx, Gynmz, Gynmdm are derivatives of position of

landmarkm in n-frame w.r.t. navigation solution, pixel measurement and the distance

between the mobile platform and landmark m respectively.

The derivative of position of landmark m in n-frame w.r.t. navigation solution is

composed of three subparts: derivatives of position of landmark w.r.t. attitude error,

velocity and position expressed in geodesic coordinate system respectively.

Gynmx = [Gynmψ Gynmv Gynmp
llh ] (4.31)

Derivative of the position of landmarkmw.r.t. attitude error can be written as follows:

Gynmψ =
∂ynm
∂ψ

= Cn
b (×[T b

c + dmC
b
cT

c
pixzm]) (4.32)

Since the position of landmark m is independent from the velocity of the mobile

platform. Derivate is a zero matrix:

Gynmv = 03×3 (4.33)
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Eq. 4.28 gives the position of landmark m in frame. In order to calculate the effect of

position of platform in geodesic coordinate system, chain rule must be used:

Gynmp
llh =

∂ynm
∂pn

∂pn

∂pllh
(4.34)

Differentiating Eq. 4.28 w.r.t. pn gives identity matrix. This shows that position error

in n-frame transformed to landmark position error as a shift.

∂ynm
∂pn

= I3×3 (4.35)

Substituting Eq. 4.35 to Eq. 4.34 gives:

Gynmp
llh =

∂pn

∂pllh
(4.36)

Equation transforming geodesic coordinate system to n-frame were defined in Eq.

4.24. This results:

Gynmp
llh =


RN + h 0 0

0 (RE + h)cos(L) 0

0 0 −1

 (4.37)

Differentiating Eq. 4.28 w.r.t. pixel measurement of landmark m gives:

Gynmzm =
∂ynm
∂zm

(4.38)

Eq. 4.38 can be written explicitly as follows:

Gynmzm = dmC
n
bC

b
cT

c
pix

I2×2

01×2

 (4.39)

Differentiating Eq. 4.28 w.r.t. distance between the mobile platform and landmark m

can be shown as:

Gynmdm =
∂ynm
∂dm

(4.40)

Gynmdm = Cn
bC

b
cT

c
pixzm (4.41)

This concludes the derivation influence matrices Gynmx, Gynmz, Gynmdm . The covari-

ance matrix including all landmarks uncertainties can be calculated using Eq. 4.27

and Eq. 4.30 as follows:

P yy = GyxP xxG
T
yx +GyzRG

T
yz +GydP ddG

T
yd (4.42)
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where:

Gyx =


Gyn1x

...

Gynmx

 (4.43)

Gyz =


Gyn1 z1

...

Gynmzm

 (4.44)

Gyd =


Gyn1 d1

...

Gynmdm

 (4.45)

P xx =


Pψψ Pψψ Pψψ

P vψ P vv P vp

P pψ P pv P pp

 (4.46)

Distance uncertainty of LiDAR can be represented by a scalar. Hence P dd can be

written in terms of standard deviation of distance measurement σd as:

P dd = σ2
d (4.47)

Cross-correlation terms between landmark positions and navigation variables are cal-

culated by taking expected value of error terms:

P xy = E[δxδyT ] (4.48)

P yx = E[δyδxT ] (4.49)

Expected values of error term are zero E[δx] = 0, E[δz] = 0. Substituting Eq. 4.30

into Eqs. 4.50 and 4.51, cross-covariance terms can be calculated as:

P xy = P xxG
T
yx (4.50)

P yx = GyxP xx (4.51)

Landmark position covariance and cross correlation matrices are calculated when a

new landmark is initialized to a filter. After initializing landmarks, covariance matrix
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in Eq. 4.46 becomes:

P xx =

P xx P xy

P yx P yy

 (4.52)

P xx =


Pψψ Pψψ Pψψ Pψy

P vψ P vv P vp P vy

P pψ P pv P pp P py

P yψ P yv P yp P yy

 (4.53)

Positions of landmarks in map-based VINS are loaded to the mobile platform before

flight and determined using a map or an external device like an handheld GPS. Be-

cause of the position uncertainties of landmarks originated from the method used in

preplannig phase of map-based VINS, positions of landmarks must be incorporate

into sensor fusion filter in order to refine the positions of landmarks using SLAM

approach.

Unlike mapless-VINS, errors on positions of landmarks are independent from navi-

gation solution in map-based VINS. Therefore cross-covariance terms becomes:

P xy = 03×3 (4.54)

P yx = 03×3 (4.55)

If position of the visual landmarks are determined with a method having independent

errors in all axes such as handheld GPS, off-diagonal terms in matrix representing

position uncertainties becomes zero.

Pyy =


Pyn1yn1 0 0

0
. . . 0

0 0 Pynmynm

 (4.56)

where individual landmark position error variance matrices are:

Pynmynm =


σNm

2
0 0

0 σEm
2

0

0 0 σDm
2

 (4.57)
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4.2 Extended Kalman Filter

Kalman Filter is an information fusion method using system control model, series of

measurements and statistical information of error sources. It is based on Bayes rule

and aims to estimate the states in an optimal manner under several assumptions. KF

assumes that the system is linear and error sources behave according to zero mean

Gaussian distribution. Since linearity assumption is not valid for most real life sys-

tems, an extended version of this filter, namely Extended Kalman filter(EKF) is pro-

posed in literature. It is based on linearizing the nonlinear system about current state

and applying the KF equations. Errors are still assumed to have zero mean Gaussian

distribution and independent from each other.

Extended Kalman Filter is composed of prediction and innovation steps. Prediction

step propagates the state and its covariance using state transition dynamics and iner-

tial sensor’s error distribution. Innovation step have two main parts. Firstly, expected

measurements are calculated using current state, previous measurements and obser-

vation model. After estimating current measurements, using difference the between

estimated measurement and real measurement, correction is calculated and applied

on current state. Standard EKF equations are given below.

Prediction step:

State prediction:

x̂k|k−1 = f(x̂k−1|k−1,uk) (4.58)

State covariance prediction:

P k|k−1 = F kP k−1|k−1F
T
k +Qk (4.59)

Innovation step:

Measurement estimate:

ẑk|k−1 = h(x̂k|k−1) (4.60)

Innovation (or measurement) residual:

ŷk = zk − ẑk|k−1 (4.61)

Innovation (or residual) covariance:

Sk = HkP k|k−1H
T
k +Rk (4.62)
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Kalman gain:

Kk = P k|k−1H
T
kS
−1
k (4.63)

Updated state prediction:

x̂k|k = x̂k−1|k−1 +Kkŷk (4.64)

Updated estimation prediction:

P k|k = [I −KkHk]P k|k−1 (4.65)

In this study, an alternative form of EKF namely Indirect (Error State) Extended

Kalman Filter (I-EKF) is used. I-EKF aims to estimate and correct the errors on nav-

igation solution using error states. In order to establish an I-EKF framework, error

state dynamics were derived by applying perturbation techniques on INS equations in

Chapter 3 and observation model relating error states and measurements was derived

by applying perturbation analysis to perspective projection model in Sec. 4.1.1.

State-space representation of error states is written in the following form:

δxk+1 = F kδxk +Gkδuk (4.66)

δzk = Hkδxk + vk (4.67)

Error sources are assumed to have zero mean Gaussian distribution:

δuk ∼ N(0,Qk) vk ∼ N(0,R) (4.68)

Prediction step of I-EKF slightly differs from standard EKF. In I-EKF, initial error

estimate, δx0|0, is a zero vector and the value of input noise, δu[k], assumed to have

zero mean. Hence, error state prediction is not performed. Instead, INS equations are

propagated to obtain the current navigation information.

P xx is propagated in the same way as in standard EKF using discretized error state

transition matrix and discretized input noise covariance matrix Qk. Initial state co-

variance matrix P 0|0 is composed of initial variances representing uncertainties of

attitude, velocity and position.
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Figure 4.3: VINS Operation

Expected value of measurement error is always zero since error state mean is assumed

to be zero. Hence innovation definition becomes:

ŷk = δzk (4.69)

But since δzk = zk − ẑk|k−1, innovation is calculated in the same way as in standard

EKF.

Since δx̂k−1|k−1 = 0, updated value of error estimate δx̂k|k is calculated as follows:

δx̂k|k = Kkŷk (4.70)

After calculating the updated value of error estimate, navigation solution is updated

accordingly. Hence error estimate, δx̂k|k, again remains zero vector until the next

innovation step. Fig. 4.3 shows the general operation of VINS. A UAV having a gim-

baled camera is demonstrated at three different time measurement steps t1, t2 and t3.

Gimbaled camera is rotated downwards around pitch axis in order to observe same

scene for the maximum period of time. At measurement step t1, landmarks are ex-

tracted. If a landmark map is loaded on the platform, extracted landmark descriptors

at t1 are matched with the map. Expected pixel measurements are calculated from

known positions of landmarks and estimated navigation solution of UAV. Positions

of landmarks are incorporated into state vector. Landmark position covariances are

incorporated into state covariance matrix. Difference between the expectations and

measurements are used for updating the error state estimate. Positions of landmarks

are also refined.

In mapless-VINS, positions of the landmarks are calculated and incorporated into

state vector at t1 measurement step. Since there is no previous information about

landmarks, expectation cannot be calculated at t1 measurement step. Therefore error
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state cannot be updated. Positions of landmarks in n-frame are calculated and incor-

porated into state vector. Landmark position covariance matrices are calculated as

explained in Section 4.1.2 and incorporated into state covariance matrix. UAV propa-

gates only INS equations between measurement steps t1 and t2. At measurement step

t2, expected pixel positions of previously extracted landmarks are calculated. After

this step data association is carried out by matching landmark descriptors extracted

at t1 step and t2. Innovation representing the difference between expected pixel po-

sitions and real pixel positions obtained with data association is calculated. Value of

innovation and Kalman gain is multiplied in order to obtain updated value of error

state. Updated value of error state is used for updating positions of landmarks in

n-frame and navigation solution.

Measurement step t3 is repetition of t2 for both mapless and map-based VINS. But

error updates are more consistent compared to previous step since updates are calcu-

lated from a landmark set with refined positions.

VINS can get updates from same landmark sets until physical limitations of camera

gimbal is reached. Number of updates that mapless VINS gets is one step less than

map-Based VINS. This originates from the fact that first measurement step of the

mapless VINS only initialize the position of landmarks and can’t have an expectation

of pixel coordinates of landmarks.

Main flowchart of SLAM based VINS using Indirect Extended Kalman Filter (I-EKF)

can be found in Fig. 4.5. Input block is elaborated at Fig. 4.4. Detailed steps

regarding the propagation block are given at Fig. 4.6 and update block is expanded

on Fig. 4.7.
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Figure 4.7: I-EKF Based VINS Update Flowchart

4.3 Unscented Kalman Filter

EKF is a widely used sensor fusion technique for nonlinear systems. In EKF, state

distribution is represented with a Gaussian random variable(GRV). Estimated mean of

the distribution is propagated using linearized nonlinear system as shown in Fig. 4.8

Linearization of highly nonlinear system can cause sub-optimal performance or even
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divergence of state estimation error. Linearizing the system adds a computation cost

to computation unit. Moreoever, linearization of highly nonlinear models increases

the complexity of system. Therefore an alternative algorithm referred as Unscented

Kalman Filter(UKF) proposed by Uhlmann et. al [28] offers higher accuracy and

lower complexity.

Figure 4.8: Propagation GRV with EKF

UKF is a derivative free sensor fusion technique. The name UKF refers to unscented

transform(UT) which is a method for efficiently sampling the GRV. UT approximates

the GRV with a deterministically calculated set of points referred as sigma points.

Minimum set of sigma points contain 2L+1 elements where L represents the number

of dimensions of nonlinear system. Sigma points are propagated through nonlinear

function as shown in Fig. 4.9.

Figure 4.9: Propagation of Sigma Points through Nonlinear Function

γi = f(χi) (4.71)

where χi and γi represent the i-th sigma point and the propagated i-th sigma point

respectively. Sigma points also cover the mean and covariance of the distribution and

calculated as follows:

χ0 = µx (4.72)

where χ0 represents the central sigma point and equals to estimated mean of state

distribution µx.

χi = x+ (
√

(L+ λ)P xx)i i = 1, 2, ..., L (4.73)

53



χi = x+ (
√

(L+ λ)P xx)i−L i = L+ 1, L+ 2, ..., 2L (4.74)

where χi are off-center sigma points, (
√

(L+ λ)P xx)i is i-th column of offset ma-

trix, λ is scaling parameter and calculated as shown below:

λ = α2(L+ κ)− L (4.75)

α determines the spread of sigma points around mean and usually set to a small value

1 ≤ α ≤ 1e− 04 [53]. κ is secondary scaling parameter and usually set to (3−L) or

0. Estimated state is calculated by weighted sum of propagated sigma points and state

covariance is calculated by sum of weighted difference of propagated sigma points as

follows:

µx ≈
2L∑
i=0

W
(m)
i γi (4.76)

P xx ≈
2L∑
i=0

W
(c)
i (γi − µx)(γi − µx)T +Qk (4.77)

where W (m)
i is the weight of i-th sigma point for mean calculation and W (c)

i is the

weight of i-th sigma point for covariance calculation. Weights for mean and covari-

ance are calculated as follows:

W
(m)
0 = λ/(L+ λ) (4.78)

W
(c)
0 = λ/(L+ λ) + (1− α2 + β) (4.79)

W
(m)
i = W

(c)
i = λ/(2 · (L+ λ)) i = 1, ..., 2L (4.80)

where β is parameter used for incorporating prior knowledge of distribution of state.

Optimal value of β equals to 2 for the systems having states with Gaussian distri-

bution. Central component is weighted with greater values compared to off-center

components since probability of central component is higher.

Innovation step of UKF fuses visual measurement and INS information without lin-

earizing the observation model. Exptected measurements for all sigma points are

calculated as follows.

νi = h(xi) (4.81)
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where νi is expected measurement of i-th sigma point. Expected measurement is

calculated by weighted sum of expected measurements from sigma points.

ẑk|k−1 =
2L∑
i=0

W
(m)
i νi (4.82)

Innovation covariance is calculated as follows:

Sk =
2L∑
i=0

W
(c)
i (νi − ẑk|k−1)(νi − ẑk|k−1)T +R (4.83)

Cross-covariance between state and measurement is calculated as shown below:

P xẑ =
2L∑
i=0

W
(c)
i (χi − µx)(νi − ẑk|k−1)T (4.84)

Kalman gain of UKF utilizes from cross covariance and innovation covariance and it

is written as:

Kk = P xẑSk
−1 (4.85)

Updated state is calculated as follows:

x̂k|k = x̂k−1|k−1 +Kkŷk (4.86)

where ŷk is the innovation as explained before and calculated same as in EKF as:

ŷk = zk − ẑk|k−1 (4.87)

where zk is the measurement at time step k.

P k|k = P k−1|k−1 −KkSk
−1KT

k (4.88)

While offering higher level of approximation and lower complexity, UKF also has

disadvantages. Number of dimensions in SLAM based VINS is calculated as

(9 + 3× num of landmarks). Since minimum number of landmarks has to be used

in order to have an observable VINS is equals to 4, minimum number of sigma points

propagated on SLAM based VINS with UKF can be calculated as 43 which roughly

corresponds to 43 times greater computational cost compared to EKF.

In [20] Gustafsson et. al. gives counterexample for the hypothesis of Uhlmann et. al

in [28], which proposes: "Any set of sigma points that encodes the mean and covari-

ance correctly calculates the projected mean and covariance correctly to the second
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order ". They show that UT does not give the correct covariances even for quadratic

function g(x) = xxT with GRV. This covariance error can cause suboptimal perfor-

mance.

Modification on prediction and innovation steps for using error states which are ex-

plained in Section 4.2 can be easily adapted to UKF. Hence details will not be re-

peated. Main flowchart of SLAM based VINS using Indirect Unscented Kalman

Filter(I-UKF) can be found in Fig. 4.11. Inputs block is elaborated at Fig. 4.4. Prop-

agation block’s detailed steps are given at Fig. 4.10 and update block is expanded on

Fig. 4.12.

Generate error state transition matrix F(k)
& input noise influence matrix G(k)

Discretize Q and force to be symmetric pos. def.

Propagate INS equations


i

kk 1|1  v
i

kk 1|1  p
i

kk 1|1 

)(kF )(kG

][kQ

P kk 1|1 

(3.19, 3.26, 3.31, 3.32, 3.33)

(3.53, 3.55)Q

Compute sigma points

iSigma <= Num. of sigma points

Yes


i

kk 1|  v
i

kk 1| 
p

i

kk 1| 

Save propagated sigma point

Calculate mean state and error covariance

No


1| kk v kk 1|  p

kk 1|  P kk 1|1 

(4.72, 4.73, 4.74)

(4.76, 4.77)

P kk 1|  P kk 1| 
][kQ 




W

P kk 1|1 


1| kk v kk 1|  p

kk 1| 

L 

(3.65, 3.66)

Figure 4.10: I-UKF Based VINS Prediction Flowchart
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4.4 Gaussian Mixture Filter

Bayesian approaches which represent the state with a single Gaussian variable may

end up with unsatisfactory results for highly nonlinear systems. An alternative ap-

proach namely Gaussian Mixture Filter (GMF) or Gaussian Sum Filter (GSF) in lit-

erature, offering a better representation of state density is proposed by Alspach et.

al. in [1]. GMF approximates the posterior density of system state with the weighted

sum of Gaussian components. Moreover it eliminates the assumption that posterior

density of state is Gaussian.

Subproblems associated with the GMF can be summarized as follows:
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• Initialization of Gaussian components and their weights,

• Choosing number of Gaussian components,

• Choosing weighting method of Gaussian components,

• Choosing weight update method.

Initial density of state must be sampled in a way that first samples efficiently repre-

sents the initial density and have enough Gaussian components for the state densities

at proceeding steps. Unscented Transform (UT) offers an efficient approximation to

Gaussian density if an appropriate parameter set is used. Weight can be assigned

uniformly or UT weights can be used directly.

Number of Gaussian components must be choosen high enough to efficiently repre-

sent the state but computational complexity must be held low enough to implement

and run the system in a real time with a computation unit. Studies in literature pro-

poses using minimum 22n+1 particles to efficiently represent the state density for par-

ticle filter which has exactly the same problem. However, this proposal cannot be

applied to SLAM based VINS since system is high dimensional. In this study, 200

components are used in GMF. Initial components are composed of sigma points of un-

scented transform and random components chosen around mean according to initial

covariances. Altought starting with similar components by following this approach,

UKF and GMF differs after first INS step, since components are not dynamically

generated at GMF.

In mapless VINS where all landmarks are initialized with respect to mobile platform’s

position and attitude, UKF and GMF follow different strategies. Sigma points are

dynamically generated at every INS step of UKF and they also cover probability

density function of position of landmarks but initialized with respect to one state

which is weighted sum of sigma points. Landmarks are initialized individually for

all components in GMF since components are not dynamically generated and their

hypothesis about navigation state is different.

State prediction of GMF propagates mean and covariance of Gaussian components

until a measurement is received. After initialization, all GMF components are propa-
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gated via nonlinear system dynamics individually as follows:

x̂ik|k−1 = fk(x̂
i
k−1|k−1,uk) (4.89)

where x̂ik−1|k−1 represents the mean of i-th Gaussian component. Similarly propaga-

tion of covariance of i-th Gaussian component P i
k−1|k−1 is written as below:

P i
k|k−1 = F kP

i
k−1|k−1F

T
k +Qk (4.90)

In order to obtain a final decision about system state and its covariance, weighted sum

of components is used.

x̂k|k−1 =
N∑
i=1

wix̂
i
k|k−1 (4.91)

P k|k−1 =
N∑
i=1

wi[P
i
k|k−1 + (x̂k|k−1 − x̂ik|k−1)(x̂k|k−1 − x̂ik|k−1)T ] (4.92)

Innovation step updates state, weights and components of GMF when measurement

is received. The expected measurement for i-th Gaussian component is calculated as

follows:

ẑik|k−1 = h(x̂ik|k−1) (4.93)

where ẑik|k−1 represents the predicted measurement calculated from i-th Gaussian

component. Innovation (or measurement) residual for i-th component is calculated as

follows:

ŷik = zik − ẑ
i
k|k−1 (4.94)

Innovation (or residual) covariance of i-th component can be written as:

Sik = H i
kP

i
k|k−1H

i
k

T
+Rk (4.95)

where H i
k is the linearized perspective projective matrix w.r.t i-th Gaussian compo-

nent. Normalized innovation square used for filtering and weighting the components

is written as:

NIS = ŷTi Si
−1ŷi (4.96)

Selection of weighting method for GMF components plays an important role on error

characteristic and stability of filter. This study follows the traditional approach in

literature proposed for both particle filters and GMFs. GMF components are weighted
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according to normalized innovation square (NIS) value of components. Weights of

the components are calculated as:

wi = wpi ∗
1√

(2π)l |Si|
e−0.5(ŷTi Si

−1ŷi) (4.97)

where wi is the unnormalized new weight, wpi weight before update, l is the number

of dimensions, |Si| is the determinant of matrix Si, Si is innovation covariance and

ŷi is innovation of i-th component. GMF is a system with memory as one can see

immediately from Eq. 4.97. The NIS value represents the possibility of having a

true state under observation (measurement) and vice versa. Therefore it provides an

information about how close a state estimate to its true value. NIS values are calcu-

lated for all Gaussian component individually. Means and covariances of components

which cannot pass Chi-Square test are not updated. This is because of they increase

navigation solution errors even if their weights are small and there is not an optimal

way of weighting. Therefore they are not allowed to contribute Gaussian sum.

Kalman gain of components which can pass Chi-Square test are calculated as follows:

Ki
k = P i

k|k−1H
i
k

T
Sik
−1 (4.98)

State and covariance prediction of i-th Gaussian component is updated as follows:

x̂ik|k = x̂ik−1|k−1 +Ki
kŷ

i
k (4.99)

P i
k|k = [I −Ki

kH
i
k]P

i
k|k−1 (4.100)

Decreasing the effect of components with higher NIS values causes lack of compo-

nents for efficiently representing the state density. This is a well-known phenomenon

in literature and referred as "sample degeneracy" problem.

Solution proposed in the literature for sample degeneracy problem is replacing the in-

effective components with useful ones. This is referred as "resampling". Resampling

for GMF is proposed in several studies (i.e. [40], [37]) and also used in this study.

Main flowchart of SLAM based VINS using Indirect Gaussian Mixture Filter(I-GMF)

can be found in Fig. 4.14. Since propagation and update steps for individual Gaus-

sian components are same with I-EKF, detailed steps can be found in Figs. 4.6 and
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4.7 respectively. Inputs block is elaborated in Fig. 4.4 and resampling algorithm ’s

detailed flowchart is given in Fig. 4.13.

W
'

Resample attitude, velocity, position, covariances and landmark position
var = var(indices)

P kk

'

|


'

|kk v kk

'

|
p

kk

'

|


'

|kk v kk

'

|
p

kk

'

|

W

y
'

P yx

'

Pxy

'

P yy

'

y
'

P yx

'

Pxy

'

P yy

'

P kk

'

|

Normalize weights

Calculate effective sample size

W

ESS

ESS < ESS threshold

Apply systematic resampling to weights

Yes

Resampled weight indices




W
WW

'

'

(4.101)

(Fig. 4.12)

Figure 4.13: Resampling Main Flowchart
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4.4.1 Resampling

Filter weights tend to be dominated by fewer number of components having higher

weights. This makes most of the components ineffective and cause loosing advantage

of using multiple components in filter. This problem is referred as sample depletion

or sample degeneracy in literature. In order to solve this problem, components with

lower weights can be replaced with the components with the higher weights. This

approach is referred as "resampling".

Weight of a component represents its probability of being true state. Therefore com-

ponents having higher weights replicated more on resampled component set. Differ-

ent resampling schemes such as multinominal resampling, residual resampling, strati-

fied resampling and systematic resampling are proposed in literature. These methods

follows different strategies for determining number of component repetitions in re-

sampled set.

Resampling algortihms are applied when effective number of components falls below

a predetermined threshold. This threshold is typically selected as a ratio of number

of components such as %90.

Effective number of components can be determined with the help of variance of com-

ponent weights as below [19]:

Neff =
N

1 +N2var(W )
(4.101)

where N represents the number of components and W represents the set of weights.

Eq. 4.101 reaches its maximum value when all weights are equal which makes vari-

ance term zero and Neff = N and it is indirectly proportional with the variance of

weight set.

Results of papers where resampling methods are comparatively studied shows that

systematic resampling outperforms in term of mean square errors of states compared

to other methods [26], [33]. This result is also verified in this study. Therefore system-

atic resampling is used. In order to keep the integrity of the subject, only systematic

resampling will be elaborated in this section.
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Figure 4.15: Systematic Resampling Flowchart [3]

Systematic resampling aims to minimize the variance term in the denominator of

Eq. 4.101 to maximize the effective number of samples [42]. It moves along CDF

of weights and samples distribution. While moving along CDF, if sampled point

corresponds to a new CDF interval, corresponding interval’s component is replicated

otherwise deleted. Systematic resampling flowchart [3] is provided in Fig. 4.15 .

Although resampling is the most common method, there are also other methods pro-

posed in literature in order to solve sample degeneracy problem. Some examples are;

adding independent zero mean and constant variance Gaussian noise to components

after resampling which is referred as jittering [46], modifying noise covariances used

in filter and regularization method proposed in [38] convolves each component with

a kernel after resampling to diversify the components.

65



4.5 An Efficient Feature Region Selection Method for Simultaneously Local-

ization and Mapping

Visual Aided Inertial Navigation Systems use landmark based maps. These may con-

sist of low-level visual landmark points such as blobs and corners or may be land-

marks based on an image patch that can be consistently matched between frames.

Feature matching both refines the position, velocity and attitude of the mobile plat-

form as well as refining or estimating from scratch the positions of these visual land-

marks in the global navigation frame. Tracking a visual landmark as long as possible

enables the system to get updates from this landmark hence improving all joint esti-

mates. In order to track visual landmarks as long as possible, we propose a feature

region selection method that considers both the quality as well the position of the

landmark within the image frame.

On fast moving mobile platforms, observing the same scene for a long time is not

possible. In order to obtain high estimation performance, these landmarks must be

observed for multiple frames. This may be possible only with a very high frame-rate

(with matching computational performance) or with a gimbaled (movable) camera

system that can keep the features inside the frame longer. Because of prohibitive

computational burden of the former approach, the latter one is the considered ap-

proach in our study.
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Figure 4.16: Camera Gimbal Angle Control and Imaging Geometry in terms of Ver-

tical Field of View
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Fig. 4.16 shows a possible camera gimbal control method for observing the same

scene for a long time. Camera gimbal can be moved along roll axis of c-frame define

in Fig. 3.3. In this way, center of the scene defined by Os in Fig. 4.16 is tracked and

similar scene is observed for a long time.

If ground plane assumption is made, imaged scene with an angled camera corresponds

to a trapezoid on the Earth. If the imaged scene at i-th step shown by mi trapezoid

in Fig. 4.16 is tracked by moving the camera gimbal along roll axis of c-frame,

mi trapezoid shrinks along both perpendicular and horizontal axis as the platform

moves towards p̃f . The final imaged scene at f-th step shown by m̃f and mi trapezoid

overlaps as shown in Fig. 4.16. Note that this assumption holds when mobile platform

moves along same direction from i-th step to f-th step.
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Figure 4.17: Images are projection of trapezoid areas in real world to 2D image plane.

Images of these trapezoid areas actually transferred to pixels by optoelectronic sys-

tems. This transfer is shown in Fig. 4.17. Borders of final image which overlaps with

i-th image can be estimated if the last angle of gimbal in roll axis is known. This

corresponds physical gimbal angle limit in our case.

This estimation can be used in data association as a feature region selection constraint.

Since only the feature points inside of the estimated borders will be visible in final

image, feature points started to be tracked in i-th step can be selected by using these

estimated borders. A filter selecting the features estimated to be visible in the final

image is written in terms of the quantities defined in Fig. 4.17 as:
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f(pixx, pixy) =


(pixx, pixy) [(1− b

′

a′
) resx

2
≤ pixx ≤ resx

2
+ d

′

c′
resx

2
]&

[(1− f
′

e′
) resy

2
≤ pixy ≤ resy

2
+ f

′

e′
resy

2
]

delete feature point, otherwise

(4.102)

The imaged area of a pixel in real world is referred as pixel footprint. The footprint

of each pixel is different and increases along x-axis of image plane. The length ratio

of mi and m̃f trapezoid under and above the Os are also different. Parts of trapezoids

in Fig. 4.17 are defined and Eq. 4.102 is written accordingly. Lengths of variables

defined on trapezoid is proportional to lengths defined on image plane. Therefore it

is possible to write:
b
′

a′
=
b

a
,
d
′

c′
=
d

c
,
f
′

e′
=
f

e
(4.103)

Fig. 4.16, pi shows the position of the mobile platform and θci represents the gimbal

angle in roll axis at i-th step. The camera field of view along vertical axis of image

plane is fv. ri shows the slant range between origin of c-frame and Os. θ̃cf is the

camera gimbal limit in roll axis of the camera. rf shows calculated the slant range

between origin of c-frame and Os at f-th frame. In terms of these variables, lengths

on Fig. 4.17 constituting elements of Eq. 4.102 can be written as:

a = ricos(θci)−
risin(θci)

sin(θci + fv
2

)
cos(θci +

fv
2

) (4.104)

b = r̃fcos(θ̃cf )−
r̃fsin(θ̃cf )

sin(θ̃cf + fv
2

)
cos(θ̃cf +

fv
2

) (4.105)

c =
risin(θci)

sin(θci −
fv
2

)
cos(θci −

fv
2

)− ricos(θci) (4.106)

d =
r̃fsin(θ̃cf )

sin(θ̃cf −
fv
2

)
cos(θ̃cf −

fv
2

)− r̃fcos(θ̃cf ) (4.107)

Although trapezoid extents along vertical axis, in order to simply the calculations,

length of trapezoid along horizontal axis assumed to be constant and equal to it length

at Os as shown in Fig. 4.18.
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Figure 4.18: Imaging Geometry in terms of Horizontal Field of View

In Fig. 4.18, fh represent the camera field of view along horizontal axis of image

plane. The lengths defined along horizontal axis in Fig. 4.17 is written as:

e = ritan(fh/2) (4.108)

f = r̃f tan(fh/2) (4.109)

The slant range between origin of c-frame and Os at f-th frame is calculated as:

r̃f = ri
sin(θci)

sin(θ̃cf )
(4.110)

Substituting r̃f into Eqs. 4.105, 4.107 and 4.109 yields:

b = ri
sin(θci)

sin(θ̃cf )
cos(θ̃cf )− ri

sin(θci)

sin(θ̃cf + fv
2

)
cos(θ̃cf +

fv
2

) (4.111)

d = ri
sin(θci)

sin(θ̃cf −
fv
2

)
cos(θ̃cf )− ri

sin(θci)

sin(θ̃cf )
cos(θ̃cf +

fv
2

) (4.112)

f = ri
sin(θci)

sin(θ̃cf )
tan(

fh
2

) (4.113)

Elements of Eq. 4.102 can be calculated by substituting derived lengths into Eq.

4.102:
b

a
=
cot(θ̃cf )− cot(θ̃cf + fv

2
))

cot(θci)− cot(θci + fv
2

))
(4.114)

d

c
=
cot(θ̃cf −

fv
2

)− cot(θ̃cf )

cot(θci −
fv
2

)− cot(θci)
(4.115)
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f

e
=
sin(θci)

sin(θ̃cf )
(4.116)

This concludes the derivation of elements of Eq. 4.102. The method can also be

referred as visibility filter.

Proposed method not only maximizes the number of track frames, it also selects the

feature points affected minimally by imaging sensor’s measurement errors since optic

errors increase as moved away from center of optic elements.
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CHAPTER 5

COMPARATIVE EVALUATION OF VINS ALGORITHMS IN A
SIMULATION ENVIRONMENT

5.1 Methodology

In order to construct a simulation experimental environment to comparatively test

VINS scenarios and data fusion algorithms, one needs to have the following simula-

tion components:

1. A selection of flight scenarios (trajectories and ground feature points),

2. An IMU data simulator, generating IMU sensor data consistent with flight tra-

jectory,

3. A camera simulator to transform ground feature points into image sensor mea-

surements,

4. A camera gimbal simulator to simulate camera motion to determine its line-of-

sight,

5. Implementation of an INS-only navigation sub-system,

6. Implementation of alternative existing and proposed VINS feature detection

and Bayesian data fusion algorithms.

Due to the lack of available facilities and real-data, we are required to work in a sim-

ulation environment. Therefore, the reliability of our results depend on the fidelity of

the simulation environment as well as on the algorithms tested. To increase our con-

fidence in the simulation implementation, we followed a unit testing approach where

we have tried to validate each enumerated stage of the simulation independently as

described below.
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1. We have selected a number of scenarios covering meaningful operational test

cases. These will be described briefly in this section,

2. The IMU data generator was supplied by the institution supporting this study

and was beyond our focus. We consider this sub-system to be fairly reliable as

it has been extensively tested apriori to the present study.

3. The camera simulator is a simple pinhole camera model, implementing the per-

spective projection of 3D world feature points into point measurements on the

sensor. Lens distortion is neglected due to the small field-of-view of the optics

in our application,

4. The camera gimbal is modeled with a simple pitch-yaw motion that can follow

a feature "scene" on the ground to keep the feature point content as constant as

possible. In practice, the content will vary due to changing distance (camera

field-of-view) and imaging geometry.

5. We have implemented ourselves a full INS-only navigation sub-system by im-

plementing well established strapdown equations explained in Chapter 3.2. The

accuracy of this sub-system is validated by comparing its output at certain way-

points with the ground truth supplied by the external IMU data generator in the

form of a validation file.

6. Considering the Bayesian fusion algorithms in the study, we have firstly im-

plemented a fairly standard GPS-INS fusion algorithm following the Indirect

Kalman Filtering approach. This is less complex than the VINS problem, hence

gives us opportunity to validate our approach.

7. In order to verify the integration of camera model and gimbal control model

to sensor fusion filter, Map-Based VINS which is less complex compared to

mapless VINS is implemented. Performance versus critical design parameters

are analyzed. Since expectation of performance analyses are satisfied, camera

integration is determined to be successful.

8. As the final step, mapless VINS is implemented and analyzed. A Gaussian

Filter Framework and a feature region selection method were proposed.
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Since gyroscope and accelerometer of the IMU have different error characteristics,

performance differs for each flight profiles. Therefore analyses are conducted on 3

flight profiles given in Fig. 5.1. Length of all paths approximately equal and 27

kilometers.

(a) Straight flight profile simulates a 89 seconds straight flight profile

(b) Mixture flight profile simulates a 92 seconds sine-wave like flight profile

(c) Elliptic flight profile simulates a 116 seconds flight profile containing circular and straight sub

profiles

Figure 5.1: Tested Flight Profiles
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All tests are performed on a simulated UAV having configurations given in Table 5.1.

Table 5.1: Tested UAV Configuration
UAV Parameters Values
Flight Speed 300m/s (∼0.88 Machs)
Flight Altitude Above Ground Level 1500 m
Depth Sensor LIDAR
Depth Sensor Accuracy 0.1 m

The navigation solution error mean and standard deviation of aided system in VINS

depends on specifications of IMU. In this study a low cost tactical grade IMU is

chosen and IMU error sources are modeled according to datasheet provided by man-

ufacturer.

Table 5.2: IMU Specifications
IMU Specifications Value
IMU Frequency 100 Hz
Accelerometer Bias 1× 10−3 g

Accelerometer Random Walk 85× 10−6 g

Gyroscope Bias 1◦/hr

Gyroscope Random Walk 0.125◦/
√
hz

A hypothetical camera with a realizable field of view is considered and used in our

experiments. Distortion parameters were neglected due to having a narrow viewing

angle.

Table 5.3: Simulated Camera Configurations
Camera Parameters Values
Camera Resolution 1280 x 720
Camera Processing Frame Rate 1 Hz
Camera Field of View 10◦ x 10 ◦

Measurement Noise N(0, 0.5)

In order to improve estimation performance, one needs to keep the same landmarks

longer within the frame. For this the camera gimbal tracks the set of landmarks in

view until it reaches its angular limit. When the limit is reached, the gimbal moves
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back to its starting angle. This angular sweep corresponds in our simulations to a

number of image frames.

Measurements are generated by projecting the positions of landmark points which are

blob-based features like SIFT and SURF feature points onto image plane pixel points

and adding pixel position noise on top. Positions of landmarks are assigned in the

vicinity of ground plane but in random manner.

Initial navigation solution errors have zero mean Gaussian distribution with standard

deviations given in Table 5.4:

Table 5.4: Initial Navigation Solution Error Standard Deviations
Variable Std
Latitude 50 m

Longitude 50 m

Height 100 m

Roll/Pitch/Yaw 0.005◦

Lat. / Lon./ Height Velocity 0.5 m/s

GMF used in simulations is composed of linear combination of 200 Gaussian com-

ponents. Systematic resampling is applied when effective number of Gaussian com-

ponents fall below 180.

Number of dimensions in UKF, L equals to 45 since 12 landmarks are used. Since

L = 45, 91 sigma points are propagated. Parameters of UKF is set to α = 10−1,

β = 2 , κ = 10000. Using this parameter set yields weighting central component of

sigma points 110 times more than off-central sigma points.

Because of space considerations, only straight flight profile’s analysis results will be

shown in figures. Mean of last 200 INS step’s navigation solution errors and standard

deviations will be given in tables for showing the results of mixture and elliptic flight

profiles.

Finally, all Monte Carlo simulations were run on a computer with hardware setup; i7-

5700HQ @ 2.7 GHz CPU, 8GB-DDR3 RAM using MATLAB 2016a environment.
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5.1.1 Evaluation of EKF based GPS-INS Integration

GPS-INS integration is a navigation technique that integrates the external position

information provided by the satellite networks to navigation solution of INS using a

sensor fusion filter. It is relatively a simpler system compared to VINS, since less

number of sub-systems and operations are included. Therefore before implementing

a VINS, an EKF based loosely coupled GPS-INS integration system is implemented

in order to verify the Bayesian sensor fusion filter, linearization and discretization of

error state dynamics and other operations that will establish a basis for VINS. GPS

sensor errors are modelled as zero mean 5 meter standard deviation Gaussian random

variable. 50 Monte Carlo runs are carried out.

(a) RMS Position Error (b) RMS Attitude Error

(c) RMS Velocity Error

Figure 5.2: Straight Flight Profile: GPS-INS Integration RMS Navigation Solution

Errors
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(a) RMS Position Error (b) RMS Attitude Error

(c) RMS Velocity Error

Figure 5.3: Straight Flight Profile: GPS-INS Integration Std. Dev. of Navigation

Solution Errors

Fig. 5.2 and 5.3 shows the RMS and standard deviation of navigation solution errors.

Since GPS provides an external position information it is possible to decrease the

position and velocity errors to vicinity of zero. This expectation is also verified in our

simulations as shown in Fig. 5.2.

EKF based loosely coupled GPS-INS integration is able to refine the roll and pitch

errors since they remain observable under all circumtances but yaw axis become un-

observable when the mobile platform has constant flight velocity [13] [17]. Under

the straight flight profile scenario of this study, the mobile platform almost moves at

constant velocity since it doesn’t have to accelerate for slowing down or speeding up

for reaching the defined flight velocity at the beginning of flight.
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(a) RMS Position Error (b) RMS Attitude Error

(c) RMS Velocity Error

Figure 5.4: Mixture Flight Profile: GPS-INS Integration RMS Navigation Solution

Errors

Attitude errors about all axes are able to be refined in straight flight profile however

because of the low observability, refinement about roll axis is lower. In mixture flight

profile, mobile platform have to accelerate for turning maneuvers, therefore refine-

ments in yaw axis are higher because of higher observability as shown in Fig. 5.4 and

5.5.

These results show that our Bayesian filter is not getting any spurious information and

other sub-systems are integrated correctly. Therefore they are decided to be suitable

to establish a more complex system which is the VINS in our study.
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(a) RMS Position Error (b) RMS Attitude Error

(c) RMS Velocity Error

Figure 5.5: Mixture Flight Profile: GPS-INS Integration Std. Dev. of Navigation

Solution Errors

5.2 Simulations on Map Based VINS

The performance in map based VINS are determined by many factors. Some of these

factors are given below:

• Error sources; IMU errors, pixel measurement error, range error etc.,

• Data association accuracy,

• Slant range between landmark and the mobile platform,

• Selection of sensor fusion filter,

• Parameters related with sensor fusion filter such as number of landmarks, num-

ber of tracked frames etc..
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In order to study these parameters and sensor fusion filter on map-based VINS, sim-

ulations are conducted and presented in this section.

5.2.1 Effect of Measurement Noise on Map-Based VINS Performance

Pixel measurement error is one of the key parameters that determines performance

upper bounds of VINS in term of navigation solution error. In order to investigate the

sensivity of VINS on UAV applications to this variable, simulations are conducted.

The effect of pixel measurement error on the performance of VINS is also related to

slant range between UAV and landmark in linear fashion. The back projected position

error of landmark is directly proportional to the distance between UAV and landmark.

Hence uncertainty of the information which will be provided to sensor fusion filter

by landmark increases with this distance. In this study, distance between UAV and

the region where landmarks are initially observed is approximately 2600 meters and

decreases as UAV approaches to this region.

Pixel measurement error’s standard deviation is set to 8 different values between

0.001 and 2.5 pixels. 50 monte carlo runs for each value are carried out. Norm of

mean and standard deviation of navigation solution error are analyzed for different

flight profiles. It is observed that minimum, intermediate and maximum values of

simulated errors are enough to represent the results. Legends of the figures show the

values of simulated pixel measurement error standard deviations.
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(a) RMS Position Error (b) RMS Velocity Error

(c) RMS Attitude Error

Figure 5.6: Straight Flight Profile: RMS Navigation Solution Errors versus Pixel

Errors(color traces)

Figure 5.6 shows norm of navigation solution error means versus different values

of measurement error standard deviations for straight flight profiles. Results show

that error levels and magnitudes of error oscillations increases exponentially with the

increase of pixel measurement error for all navigation variables.

An interesting outcome is overshoot characteristics. Although having lower error

bound for small measurement error standard deviations, overshoot of velocity error

is higher. This originates from the fact that navigation solution error is higher in

transition region and true states are needed to be searched in wider space. In that

region, relying more on an external information might not provide accurate informa-

tion. Therefore higher values of measurement error covariance smooths the errors on

this transition region.
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(a) Std of Position Error Norm (b) Std of Velocity Error Norm

(c) Std of Attitude Error Norm

Figure 5.7: Straight Flight Profile: Std. Dev. of Navigation Solution Error Norms

versus Pixel Errors(color traces)

Figure 5.7 shows standard deviation of navigation solution error norms versus dif-

ferent values of measurement error standard deviations for all flight profiles. Results

show same characteristics with the mean of navigation error solution. Hence impli-

cations from error norm results are valid for standard deviation given in Fig. 5.7

Observations are valid for all flight profiles. Therefore only norm of mean and stan-

dard deviation of error levels are provided for mixture and ellipsis flight profiles at

Tables 5.5 and 5.6. All monte carlo runs have convergent error characteristic. There-

fore stability results are not given as individual figures.
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Table 5.5: Mixture Flight Profile: RMS and Std of Navigation Solution Errors
Attitude Error Velocity Error Position Error

Pixel Error Cov. µe σ2
e µe σ2

e µe σ2
e

pixel rad rad2 m/s (m/s)2 m m2

0.001 3.09E-05 1.2E-05 0.02523 0.0109 0.029496 0.014695
0.25 0.00035 0.0002 0.25510 0.1017 1.5824 0.639092
2.5 0.00116 0.0006 0.58231 0.2331 5.6209 2.367605

Table 5.6: Ellipsis Flight Profile: RMS and Std of Navigation Solution Errors
Attitude Error Velocity Error Position Error

Pixel Error Cov. µe σ2
e µe σ2

e µe σ2
e

pixel rad rad2 m/s (m/s)2 m m2

0.001 2.69E-05 8.32E-06 0.02573 0.00968 0.0276 0.01408
0.25 0.00042 0.00017 0.30499 0.09258 2.61412 1.01298
2.5 0.00122 0.00053 0.54954 0.18545 8.04655 3.17083

5.2.2 Joint Analysis of Landmarks Position Uncertainty and Number of Tracked

Landmarks on Map-Based VINS Performance

In map based VINS, landmark’s position informations must be loaded to mobile plat-

form before flight. Because of the uncertainties of measurement devices and errors

on fixing position information to visual data at post processing step of preplaning

phase, landmark positions can only be known with an uncertainty. Because of having

non-zero mean and non-Gaussian distribution, having landmark position uncertainty

violates the assumption of EKF. Therefore it is one of the reasons causing sub optimal

performance in sensor fusion.

A method for decreasing the effect of landmark position uncertainty can be increasing

the number of landmarks used in filter. EKF shares its "belief" to every landmark. It

relies less on every landmark for the case where more landmarks are used. Hence

effect of getting an update from a landmark having higher position error decreases.

Moreover, fusing more external information can provide more accurate information to

filter. Therefore by increasing the number of landmarks, it is possible to compensate

the performance degradation caused by landmarks having more erroneous position

information.
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In Fig. 5.8, an example case is presented. info1, info2 and info3 show the informa-

tion provided by 3 landmarks indicated with lm1, lm2 and lm3 respectively. Ellipses

show the uncertainty around the information provided by landmark to filter. The in-

formation used by filter lies in intersection on ellipses. Intersection area represents the

uncertainty of information. Number of ellipses increases with number of landmarks

used in filter and intersection area decreases with number of ellipsis. This means that

uncertainty on information provided to filter decreases with the increase on number

of landmarks.
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Figure 5.8: Advantage of Using Multiple Landmarks

In order to gain a deeper insight to concept explain above, number of landmark and

landmark position uncertainty were jointly studied. 50 monte carlo runs for each

standard deviation value were carried out. Norm of mean and standard deviation of

navigation solution errors for each simulated value were analyzed for different flight

profiles.

Simulations were conducted for 5 different values of landmark position uncertainties.

It is observed that minimum, intermediate and maximum of simulated values are

enough to represent the results. Legends of the Fig. 5.9 shows the values of simulated

landmark position uncertainties.
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(a) RMS Position Error (b) RMS Velocity Error

(c) RMS Attitude Error

Figure 5.9: Straight Flight Profile: RMS Navigation Solution Errors versus Number

of Landmarks (x-axis) and Std. Dev. of Landmark Position Errors (color traces)

Figure 5.9 shows RMS navigation solution error versus number of landmark used in

filter for straight flight profile.

Results verifies the expectations. Using more landmarks in filter can provide lower

RMS navigation solution error for different values of landmark position uncertain-

ties. RMS navigation solution error of 3 landmarks is noticeably higher compared to

higher number of landmarks. This result also verifies the literature which proposes to

use minimum 4 landmarks in order to have full observability.
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(a) Std. Dev. of Position Error Norm (b) Std. Dev. of Velocity Error Norm

(c) Std. Dev. of Attitude Error Norm

Figure 5.10: Straight Flight Profile: Std. Dev. of Navigation Solution Errors versus

Num. of Landmarks (x-axis) and Std. Dev. of Landmark Pos. Errors (color traces)

Standard deviation of navigation solution versus different number of landmarks is

given Fig. 5.10. Results show that using more landmarks in filter also decreases

the standard deviation of navigation solution error. As the number of landmarks in-

creases, error characteristic becomes more linear under increase of landmark position

uncertainty.

Landmark position uncertainty increases the error levels and standard deviations ex-

ponentially as shown in Fig. 5.11 and 5.12 when number of landmarks used in filter is

low. Using more landmarks damps the exponential increase of error under increase of

landmark position uncertainty and can provide an almost linear error characteristic.
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(a) RMS Position Error (b) RMS Velocity Error

(c) RMS Attitude Error

Figure 5.11: Straight Flight Profile: RMS Navigation Solution Errors versus Std.

Dev. of Landmark Pos. Errors(x-axis) and Number of Landmarks(color traces)

(a) Std. Dev. of Position Error Norm (b) Std. Dev. of Velocity Error Norm

(c) Std. Dev. of Attitude Error Norm

Figure 5.12: Straight Flight Profile: Std. Dev. of Navigation Solution Errors versus

Std. Dev. of Landmark Pos. Errors(x-axis) and Num. of Landmarks(color traces)
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Same conclusions are appeared to be valid for all flight profiles. Therefore RMS and

standard deviation of errors at the end of mixture and ellipsis flight profiles will be

presented in tabular form at Tables 5.7 - 5.12. All monte carlo runs have convergent

error characteristic. Therefore stability results are not presented individually.

Table 5.7: Mixture Flight Profile: RMS and Std. Dev. of Position Error
Pos. Unc.(m) 1 3 5

Unit rad rad2 m/s (m/s)2 m m2

Num. Landm. µe σ2
e µe σ2

e µe σ2
e

4 21.24043 9.7063 60.9462 32.1794 95.5557 47.7832
11 8.717538 4.2935 26.1794 10.7895 44.2156 21.4653
20 6.060835 2.7603 18.3662 8.64023 28.3750 12.3956

Table 5.8: Mixture Flight Profile: RMS and Std. Dev. of Velocity Error
Pos.Unc.(m) 1 3 5

Unit rad rad2 m/s (m/s)2 m m2

Num. Landm. µe σ2
e µe σ2

e µe σ2
e

4 1.537985 0.73593 4.27804 2.25976 6.83874 3.43857
11 0.693274 0.32468 2.03675 0.87308 3.62635 1.81679
20 0.488725 0.21203 1.52227 0.69689 2.28525 0.99907

Table 5.9: Mixture Flight Profile: RMS and Std. Dev. of Attitude Error
Pos. Unc.(m) 1 3 5

Unit rad rad2 m/s (m/s)2 m m2

Num. Landm. µe σ2
e µe σ2

e µe σ2
e

4 0.00420 0.00204 0.00977 0.00542 0.01525 0.00831
11 0.00178 0.00089 0.00521 0.00214 0.00817 0.00409
20 0.00123 0.00054 0.00379 0.00199 0.00565 0.00250

Table 5.10: Ellipsis Flight Profile: RMS and Std. Dev. of Position Error
Pos. Unc.(m) 1 3 5

Unit rad rad2 m/s (m/s)2 m m2

Num. Landm. µe σ2
e µe σ2

e µe σ2
e

4 32.0159 21.0312 90.0498 52.2506 148.329 80.9260
11 8.8679 3.33418 32.1461 18.1507 47.7569 22.5724
20 6.8768 2.85356 21.3924 9.01141 34.5266 13.9994
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Table 5.11: Ellipsis Flight Profile: RMS and Std. Dev. of Velocity Error
Pos. Unc.(m) 1 3 5

Unit rad rad2 m/s (m/s)2 m m2

Num. Landm. µe σ2
e µe σ2

e µe σ2
e

4 1.7015 1.1646 4.6787 2.7027 7.5793 4.2698
11 0.4958 0.1940 1.5958 0.8598 2.4020 1.2058
20 0.3905 0.1798 1.0557 0.4724 1.7097 0.7147

Table 5.12: Ellipsis Flight Profile: RMS and Std. Dev. of Attitude Error
Pos. Unc.(m) 1 3 5

Unit rad rad2 m/s (m/s)2 m m2

Num. Landm. µe σ2
e µe σ2

e µe σ2
e

4 0.0047 0.0031 0.0139 0.0079 0.0244 0.0143
11 0.0014 0.0005 0.0049 0.0028 0.0074 0.0035
20 0.0010 0.0004 0.0032 0.0013 0.0052 0.0022

5.2.3 Comparative Evaluation of Sensor Fusion Filters on Map-Based VINS

The core framework that determines the stability and error of the fused information is

sensor fusion filter. In chapter 4, detailed information about sensor fusion filters were

presented.

Sensor fusion filters performs optimally when all assumptions of filter is satisfied.

However both map-based and mapless VINS violates the assumptions of studied

Bayiesian filters because of non-zero mean and non-Gaussian error sources. These

assumptions were presented in 4. Some other factors such as linearizion and dis-

cretization also causes performance degradation in terms of stability and navigation

solution error.

In order to study the effect of sensor fusion filter selection on Map-Based VINS, sim-

ulations are conducted. Results of these simulations are analyzed in term of RMS

and standard deviation navigation solution error under different sensor fusion filters.

In these simulations, a landmark map is assumed to be available before navigation

operation. 12 landmarks with known positions are tracked during 30 frames. New

landmarks with known position are initialized to filter after 30 frames. A landmark

position error with 1 meter standard deviation is added to known positions of land-
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marks on each axes individually to increase the fidelity of simulation. 50 Monte Carlo

runs for each filter are carried out.

(a) RMS Position Error (b) RMS Velocity Error

(c) RMS Attitude Error

Figure 5.13: Straight Flight Profile: RMS Navigation Solution Errors of Different

Sensor Fusion Filters and only INS

Figure 5.13 shows the comparison of RMS navigation solution error under different

sensor fusion filters and the only INS for straight flight profile. Results show that

all aiding methods are able to refine the navigation solution and have better perfor-

mance compared to only INS. Since map based VINS provides an external position

information to UAV, it is possible to reduce the position, velocity and attitude errors.

The UKF and proposed GMF take the advantage of better approximation to state

distribution and settles down to lower error level compared to EKF. The proposed

GMF overperforms compared to other filters in terms of all navigation variables. This

result is followed by UKF and EKF respectively.
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(a) Std. Dev. of Position Error Norm (b) Std. Dev. of Velocity Error Norm

(c) Std. Dev. of Attitude Error Norm

Figure 5.14: Straight Flight Profile: Std. Dev. of Navigation Solution Error Norms of

Different Sensor Fusion Filters and only INS

Figure 5.14 shows comparison of standard deviation of navigation solution error un-

der EKF, UKF, GMF and only INS for straight flight profile. Results are compatible

with RMS error. The proposed GMF method can also provide lower standard devia-

tion compared to other filters. This result is followed by UKF and EKF.

Peak of error ripples corresponds to steps where new landmarks are initialized to

filter. The positions of these landmarks are also refined during track sequence.

Observations are approximately valid for all flight profiles. Therefore only RMS and

standard deviation of error levels are provided for mixture and ellipsis flight profiles

at tables 5.14 and 5.15.
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Table 5.13: Straight Flight Profile: RMS and Std. Dev. of Navigation Solution Errors
of Different Sensor Fusion Filters and only INS

Att. Err. Vel. Err. Pos. Err.
Unit rad rad2 m/s m/s2 m m2

µe σ2
e µe σ2

e µe σ2
e

EKF 9.97E-05 3.63E-05 0.308882 0.106726 0.48896 0.214605
UKF 8.76E-05 4.37E-05 0.15476 0.060401 0.389503 0.152762
GMF 2.99E-05 1.3E-05 0.072173 0.028361 0.192261 0.08401
INS 0.00097 0.000423 1.827929 0.626795 173.0205 73.78661

Table 5.14: Mixture Flight Profile: RMS and Std. Dev. of Navigation Solution Errors
of Different Sensor Fusion Filters and only INS

Att. Err. Vel. Err. Pos. Err.
Unit rad rad2 m/s m/s2 m m2

µe σ2
e µe σ2

e µe σ2
e

EKF 0.000111 4.57E-05 0.300653 0.126049 0.476419 0.21741
UKF 7.73E-05 3.54E-05 0.130628 0.054579 0.472584 0.195584
GMF 2.72E-05 1.15E-05 0.070553 0.029127 0.197727 0.097527
INS 0.00103 0.000419 1.704476 0.678559 143.5549 48.99185

Table 5.15: Ellipsis Flight Profile: RMS and Std. Dev. of Navigation Solution Errors
of Different Sensor Fusion Filters and only INS

Att. Err. Vel. Err. Pos. Err.
Unit rad rad2 m/s m/s2 m m2

µe σ2
e µe σ2

e µe σ2
e

EKF 0.000135 6.26E-05 0.345452 0.136547 0.886044 0.45479
UKF 7.84E-05 3.1E-05 0.086232 0.033472 0.367314 0.197827
GMF 2.35E-05 1.16E-05 0.03991 0.018377 0.240945 0.122842
INS 0.000867 0.000345 1.679603 0.793392 180.4135 74.34071

All filters show 100 percent convergence. Therefore an extra table is not provided for

stability results.

The proposed GMF and UKF propagates multiple components and represents instan-

taneous state density better compared to EKF. The proposed GMF takes the advantage

of using more components and other improvements at initialization and update steps

and it is able to performs better in term of all navigation variables at all flight profiles.

But these filters increase the computational cost of the system.
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Although faster systems can be implemented using more efficient software and hard-

ware architectures, in order to provide an insight for the computational cost of each

filter, the average INS step intervals are measured using MATLAB’s timer functions.

Results are presented in Table 5.16.

Table 5.16: The Average Time Intervals for Each INS Step of VINS
UKF EKF GMF

Step Interval (ms) 28.63 0.29809 61.945119

Since 12 landmarks are used in simulations, while EKF propagates single compo-

nent, UKF and GMF propagate 91 and 200 components respectively. Ratio between

number of components approximately holds for the ratio between measured times of

EKF, UKF and GMF in Table 5.16. Since extra operations like resampling and dy-

namic sigma point generation included in GMF and UKF, ratio of time intervals are

slightly above the ratio of components.

5.3 Simulations on Mapless VINS

In order to study the sensor fusion filters and performance critical parameters of map-

less VINS, simulations are conducted and results are presented in this section. In

these simulations, landmarks set’s positions and covariances are initialized using in-

stantaneous navigation solution during flight in a standalone manner.

The performance of mapless VINS is determined by similar factors with the map-

based VINS. These factors were given in Sec. 5.2. But in map-based VINS, initial

position uncertainty of landmarks are independent from the mobile platform’s naviga-

tion solution. However in mapless VINS, since landmarks are initialized with respect

to mobile platform’s navigation solution, it is strongly correlated with the position

uncertainty of landmarks as explained in Sec. 4.1.2. These causes difference in per-

formance of the map-based and mapless VINS.

Since mapless VINS cannot provide an external and independent global position in-

formation to UAV, it is not possible to reduce the position error of the mobile platform

in mapless-VINS but position error divergence can be damped. Another words, posi-

tion error difference of initial and final position error where flight path is completed
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should be low. Therefore for mapless VINS position error difference will be evaluated

as the performance criteria.

5.3.1 Effect of Number of Landmarks on Mapless VINS Performance

In mapless VINS, positions of landmarks are calculated with respect to navigation

solution of the platform and don’t have to be loaded to mobile platform before flight.

Therefore a pre-planning phase is not required in mapless VINS. This makes map-

less VINS favorable concept under many circumstances. However not providing an

external information comes with the cost of decrease on accuracy/stability of navi-

gation solution and increase on landmark position uncertainty. Errors on landmarks

positions are correlated with; slant range between landmark and the mobile platform,

errors on mobile platform’s navigation solution and measurements. Since every land-

mark is initialized once, landmark position error have non-zero and non-Gaussian

distribution. This violates the assumptions of Bayesian filters used in this study, it

is one of the reasons causing suboptimal performance in sensor fusion of mapless

VINS.

As explained in Sec. 5.2.2, it is possible to compensate the effect of position uncer-

tainty by applying SLAM and using higher number of landmarks in sensor fusion

filter. Since every landmark also increases the computational cost because of in-

creasing dimensions of filter, a limit must be introduced to number of landmarks for

implementing a real time system.

In order to investigate the effect of number of landmarks used in sensor fusion filter

of mapless VINS, simulation are conducted. 50 monte carlo runs for each number of

landmark value are carried out. RMS and standard deviation of navigation solution

error are analyzed for different flight profiles.
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(a) RMS Position Error Difference (b) RMS Velocity Error

(c) RMS Attitude Error

Figure 5.15: Straight Flight Profile: RMS Navigation Solution Error versus Number

of Landmarks

Fig.5.15 shows the norm of navigation solution error mean under different number of

landmarks. Red constant line shows the RMS error of only INS .

Results show that number of landmarks must be held above a number to perform bet-

ter than only INS in terms of attitude error. Refinements of attitude error is observed

to be successful after using 8 landmarks.

RMS position error performance is saturated after a certain number of landmarks

used in filter. However RMS velocity and attitude error continues to decrease with

the increase on number of landmarks.
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(a) Std. Dev. of Position Error Norm (b) Std. Dev. of Velocity Error Norm

(c) Std. Dev. of Attitude Error Norm

Figure 5.16: Straight Flight Profile: Std. Dev. of Navigation Solution Error Norms

versus Number of Landmarks

Similar results are observed for the standard deviation of navigation solution error

given in Fig. 5.16. Advantage of using higher number of landmarks can be observed

better in terms of standard deviation of velocity and attitude errors. Similar to RMS

error characteristic, standard deviation of attitude error can be decreased below the

only INS if more than 8 landmarks are used in filter.

Characteristics of RMS and standard deviation of navigation solution error under in-

crease on number of landmarks is similar for all flight profiles. Simulations are con-

ducted for 14 different number of landmarks values. It is observed that minimum,

intermediate and maximum of simulated values are enough to represent the results.

Therefore only RMS and standard deviation of error levels are provided for mixture

and ellipsis flight profiles at Tables 5.17 and 5.18.
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Table 5.17: Mixture Flight Profile: RMS and Std. Dev. of Navigation Solution Error
versus Number of Landmarks

Attitude Error Velocity Error Position Error
Unit rad rad2 m/s m/s2 m m2

Num LM. µe σ2
e µe σ2

e µe σ2
e

3 0.00226 0.001458 3.941911 3.221569 40.98149 27.22951
12 0.001058 0.000514 1.293103 0.657861 23.86867 12.07363
25 0.000817 0.000353 1.229557 0.612692 16.77811 7.416489

Table 5.18: Ellipsis Flight Profile: RMS and Std. Dev. of Navigation Solution Error
versus Number of Landmarks

Attitude Error Velocity Error Position Error
Unit rad rad2 m/s m/s2 m m2

Num LM. µe σ2
e µe σ2

e µe σ2
e

3 0.00129 0.000721 1.493344 0.537917 31.98809 20.37654
12 0.000614 0.000312 1.363193 0.458553 13.39592 6.334202
25 0.000307 0.000228 1.303281 0.164384 11.61019 5.947553

Table 5.19 shows the convergence percentages of all paths under different number

of landmarks. Although simulations are conducted for 14 different values, because

of space considerations stability of 10 selected values are presented in tabular form.

Results show that in order to have a stable EKF based mapless VINS under all flight

scenarios, more than 8 landmarks are required.

Table 5.19: Convergence Percentages under Different Number of Landmarks for All
Flight Profiles

Num. of Landm 3 4 5 7 8 9 10 15 20 25
Straight Flight Prof. 64 90 98 100 98 100 100 100 100 100
Mixture Flight Prof. 60 84 90 98 96 94 92 96 94 96
Ellipsis Flight Prof. 62 74 84 88 92 96 98 90 92 98

5.3.2 Effect of Number of Tracked Frames on Mapless VINS Performance

Visual Aided Inertial Navigation Systems jointly refine the navigation solution and

positions of landmarks if SLAM approach is applied. SLAM integrates the positions

of landmarks into sensor fusion filter by including landmark positions into state vec-

tors and landmark position covariance matrix into state covariance matrix. As long as

system is observable, landmark positions are refined at every frame if landmarks are

visible and successfully matched to their pixel coordinates in previous frame. There-
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fore number of frames that landmarks are tracked is crucial for getting an update

from a landmark with higher position accuracy. Since landmark positions in map-

less VINS are calculated with respect to mobile platform’s navigation solution, their

position uncertainty is generally greater than landmarks in map-based VINS. Hence

refining landmark positions is crucial in mapless VINS.

Number of tracked frames also determines many parameters of the system related

with mobile platform’s mechanical design, electronics hardware and flight speed,

flight altitude etc. Hence an optimum number of frames must determined at designing

phase of VINS.

In order to investigate the effect of number of frames that landmarks are tracked on

the performance of sensor fusion filter of mapless VINS, simulation are conducted.

50 monte carlo runs for each number of frame are carried out. RMS and standard

deviation of navigation solution error are analyzed for different flight profiles.

(a) RMS Position Error Difference (b) RMS Velocity Error

(c) RMS Attitude Error

Figure 5.17: Straight Flight Profile: RMS Navigation Solution Error versus Number

of Tracked Frames
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Fig. 5.17 shows the norm of navigation solution error mean under different number of

frames that landmarks are tracked for straight flight profile. Red constant line in each

figure shows the only INS error. Results show that RMS error can only be decreased

below only INS error after a certain number of tracked frames which is determined

to be 4 for position, 10 for velocity and 12 for attitude error on our scenario. After

specified number of tracked frames, performance is observed as almost saturated for

attitude and velocity error but RMS position error continuous to decrease.

Fig. 5.18 shows the standard deviation of navigation solution error norm under differ-

ent number of tracked frames for straight flight profile. Specified numbers of tracked

frames required for refining RMS navigation solution error in our scenarios are ap-

peared to be same for standard deviation of navigation solution error.

(a) Std. Dev. of Position Error Difference Norm (b) Std. Dev. of Velocity Error Norm

(c) Std. Dev. of Attitude Error Norm

Figure 5.18: Straight Flight Profile: Std. Dev. of Navigation Solution Error versus

Number of Tracked Frames
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Characteristics of RMS and standard deviation of navigation solution error under in-

crease on number of tracked is observed to be similar for all flight profiles. Therefore

only RMS and standard deviation of navigation solution error at the end of mixture

and ellipsis flight profiles are presented at Tables 5.20 and 5.21.

Table 5.20: Mixture Flight Profile: RMS and Std. Dev. of Navigation Solution Error
versus Number of Tracked Frames

Attitude Error Velocity Error Position Error
Unit rad rad2 m/s m/s2 m m2

Num Frames µe σ2
e µe σ2

e µe σ2
e

3 0.0026 0.0008 2.4473 1.1123 36.8551 8.4353
17 0.0009 0.0004 1.3361 0.5606 17.71747 8.1298
35 0.0007 0.0003 1.2305 0.4845 13.75221 7.1161

Table 5.21: Ellipsis Flight Profile: RMS and Std. Dev. of Navigation Solution Error
versus Number of Tracked Frames

Attitude Error Velocity Error Position Error
Unit rad rad2 m/s m/s2 m m2

Num Frames µe σ2
e µe σ2

e µe σ2
e

3 0.00682 0.002303 3.2570 1.5417 61.6663 30.7052
17 0.00013 8.35E-05 0.5719 0.5017 25.0770 16.4692
35 9.3E-05 5.14E-05 0.3364 0.1808 9.2469 4.8240

Table 5.22 shows the convergence percentages of all flight profiles under different

number of landmarks. Results show that in order to have a stable EKF based mapless

VINS under all flight scenarios, landmarks are required to be tracked more than 12

frames.

Table 5.22: Convergence Percentages under Different Number of Frames for All
Flight Profiles

Num. of Fr. 3 5 7 9 13 15 17 20 25 30 35
Straight Flight Prof. 4 22 56 92 92 96 96 100 100 100 100
Mixture Flight Prof. 40 82 82 80 85 90 96 100 100 96 100
Ellipsis Flight Prof. 22 32 16 28 78 76 80 92 96 100 100

5.3.3 Comparative Evaluation of Sensor Fusion Filters on Mapless VINS

The EKF, UKF and proposed GMF follows different strategies to represent the instan-

taneous state density as explained before. In mapless VINS, performance is strongly

related with the incorporation of landmark positions into state vector. This incorpora-
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tion step differs for every Bayesian filter used in this study. For example, EKF follows

the basic strategy since it only consist of single component. However UKF and GMF

propagates and benefit from multiple components and follows different strategies to

initialize the landmark positions and their uncertainties.

Since UKF calculates the sigma points at every INS step, landmark positions and

covariances must be initialized according to mean state and mean covariance. Oth-

erwise it is meaningless to initialize landmarks according to temporary components

(sigma points) since these components will be lost in the upcoming steps. Initialized

landmark positions are diversified at every propagation step with the dynamically

generated sigma points according to landmark position covariances.

Components of GMF are not dynamically generated and they carry different hypothe-

ses for navigation solution. Since landmarks positions are calculated with respect to

navigation solution of the mobile platform, all components have different hypotheses

about initial landmark positions and their uncertainties. If landmark positions are cal-

culated with respect to only mean navigation solution and mean covariances, all com-

ponents except mean component would have high normalized innovation square(NIS)

values, which is a measure of difference between expected measurement and actual

measurement, and eventually these components would stop getting updates from mea-

surement because of NIS threshold.

Differences in SLAM approach is crucial for mapless VINS because of landmark

positions are unknown. These filters makes also different assumption as explained in

Chapter 4. In order to study these differences, sensor fusion filters are comparatively

studied in this section. Results of these simulations are analyzed in term of RMS

and standard deviation navigation solution errors using 50 Monte Carlo runs for each

filter. In this simulations, a landmark map is assumed to be not available before

navigation operation. 12 landmarks are tracked during 30 frames and their positions

are calculated during flight. New landmarks are initialized to filter after 30 frames.
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(a) RMS Position Error (b) RMS Velocity Error

(c) RMS Attitude Error

Figure 5.19: Straight Flight Profile: RMS Navigation Solution Error under Different

Sensor Fusion Filters and Only INS

Fig. 5.19 and 5.20 shows comparison of different sensor fusion filters in terms of

RMS and standard deviation of navigation solution error respectively. Results show

that implemented filters are successful at aiding INS.

Nonlinearity in Mapless VINS problem is higher compared to map-based VINS.

Therefore UKF shows better results compared to other filters in terms of all navi-

gation variables. UKF and GMF are observed to less susceptible to landmark ini-

tialization compared to EKF by taking the advantage of using more components and

making less assumptions about state density.
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(a) Std. Dev. of Pos. Error Diff. Norm (b) Std. Dev. of Vel. Error Norm

(c) Std. Dev. of Attitude Error Norm

Figure 5.20: Straight Flight Profile: Std. Dev. of Navigation Solution Error Norms

under Different Sensor Fusion Filters and Only INS

Unlike in map-based VINS, the advantages of proposed GMF cannot be observed in

mapless VINS. This results from the fact that there is not an optimal way of weight-

ing different components and solving other problems such as sample degeneracy and

component initialization in GMF. However GMF still performs betters than EKF for

velocity and attitude errors and it can show best performance in terms of certain nav-

igation variables in other flight profiles as shown in at tables 5.24 and 5.25.

Because of the error sources which violate the assumption of UKF, error levels of

UKF slightly increases with INS steps. But these error levels still remain noticeably

lower compared to other filters.
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Table 5.23: Straight Flight Profile: RMS and Std of Navigation Solution Error
Att. Err. Vel. Err. Pos. Err.

Unit rad rad2 m/s m/s2 m m2

µe σ2
e µe σ2

e µe σ2
e

EKF 0.000743 0.000372 1.412809 0.580519 15.67982 8.053901
UKF 0.000177 7.39E-05 0.188418 0.061531 5.670387 2.219307
GMF 0.000329 0.000155 0.736536 0.473376 20.23883 10.62102
INS 0.00097 0.000423 1.827929 0.626795 97.45366 38.31953

Table 5.24: Mixture Flight Profile: RMS and Std of Navigation Solution Error
Att. Err. Vel. Err. Pos. Err.

Unit rad rad2 m/s m/s2 m m2

µe σ2
e µe σ2

e µe σ2
e

EKF 0.000727 0.00035 1.84306 0.70051 16.03049 7.535479
UKF 0.00014 5.65E-05 0.172759 0.071476 4.585546 2.23276
GMF 0.000311 0.000149 0.521651 0.293783 19.6097 10.54954
INS 0.00103 0.000419 1.704476 0.678559 84.34644 34.57703

Table 5.25: Ellipsis Flight Profile: RMS and Std of Navigation Solution Error
Att. Err. Vel. Err. Pos. Err.

Unit rad rad2 m/s m/s2 m m2

µe σ2
e µe σ2

e µe σ2
e

EKF 0.000472 0.000262 0.967186 0.522699 10.21357 4.951266
UKF 0.000393 0.000183 0.262077 0.134253 4.154502 1.836126
GMF 0.000236 8.01E-05 0.58151 0.451823 19.64156 10.97029
INS 0.000867 0.000345 1.679603 0.793392 115.4948 53.27032

While calculating RMS and standard deviation of navigation solution error, only

Monte Carlo runs satisfying the stability conditions explained in Appendix A are

taken into account. Stability of compared sensor fusion filters are given in Table 5.26.

Table 5.26: Stability Percentages of Different Sensor Fusion Filters on Mapless VINS
Stability (%) UKF EKF GMF

Straight Flight Profile 100 100 84
Mixture Flight Profile 100 94 78
Ellipsis Flight Profile 100 90 70

UKF shows superior stability performance compared to other filters. This results also

verifies the literature. Unfortunately, the proposed GMF is observed to be less stable

because of the reasons explained above.
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Although faster systems can be implemented using efficient software and hardware

architectures, in order to provide an insight for the computational cost of each filter,

the average step intervals are measured using MATLAB’s timer functions. Results

are presented in Table 5.27.

Table 5.27: The Average Time Intervals for Each Step of VINS
UKF EKF GMF

Step Interval (ms) 31.54874 0.29809 65.57381615

Computational cost is higher compared to map-based VINS, since landmark positions

and their covariances are also calculated during flight.
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CHAPTER 6

CONCLUSION AND FUTURE WORKS

In this thesis, we investigated the effect of performance critical parameters and sensor

fusion filters on the stability and navigation solution error of VINS. Study was con-

ducted on a simulation environment which was composed of simulated IMU, camera,

camera gimbal, INS only navigation sub-system and sensor fusion filters. Monte

Carlo simulations were run in order to characterize the VINS performance under the

tested parameters and sensor fusion filters. Results of Monte Carlo runs were evalu-

ated in terms of RMS and standard deviation of navigation solution error and stability.

All simulations were conducted for three different flight profiles.

The problem was investigated in two different domains. First domain was the map-

based VINS where a landmark set with known positions is available before flight.

Positions of landmarks carry uncertainties because of visual position-fixing and mea-

surement errors. In this study, statistics of the landmarks position uncertainties were

assumed to be available before flight and SLAM approach was used for refining the

position of landmarks in map-based VINS. In order to study the effect of performance

critical parameters of map-based VINS, simulations were conducted with EKF. The

effect of measurement error was studied under selected flight and imaging geome-

try. RMS and standard deviation of navigation solution error and their oscillations

were determined to be increased under the increase of pixel measurement error. The

effect of the number of landmarks and landmark position uncertainty were jointly

studied and it was found out that increasing number of landmarks used in the filter

can compensate and linearize the increase in navigation solution error caused by high

landmark position uncertainty. All simulations which were conducted with EKF have

shown convergent error characteristics in map-based VINS.

The second domain was mapless-VINS where a landmark set is not available before

flight and landmark positions and the uncertainties are calculated with the help of
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instantaneous navigation solution of the mobile platform during flight. Position er-

ror in mapless VINS cannot be decreased due to unavailability of independent global

position information. However attitude and velocity errors can be refined. Since land-

mark positions are initialized with respect to navigation solution, their initial position

uncertainty is higher compared to landmarks of map-based VINS. Hence, the number

of frames where the same landmarks are refined carries an important role in mapless

VINS. Number of frames also determines many important electronic and mechanical

parameters while designing a VINS. It is shown that a certain number of frames must

be exceeded for performing better than only INS. It was shown that after a certain

number of tracked frames, performance is saturated for our scenarios. The effect of

the number of landmarks used in sensor fusion filter was also analyzed for mapless

VINS. Increasing number of the landmarks especially refined the velocity and the

attitude of the mobile platform in our simulations.

After revealing the need of exceeding a number of tracked frames for maximizing

the performance of VINS, we proposed a feature region selection algorithm that con-

tributes maximizing number of frames which landmarks are tracked. Since some

feature points will become out of sight due to imaging geometry during flight, these

landmarks should not be tracked. We built on these ideas and proposed a feature

region selection algorithm which uses gimbal angles and camera parameters for se-

lecting the features that will remain visible during track.

A Gaussian Mixture Filter was proposed. Proposed filter make use of unscented

transform and other components sampled around mean according to initial covari-

ances for initialization of components and applies resampling scheme when effective

number of components falls below a certain level. Unlike UKF, it also initializes

landmarks individually for all components. In order to characterize the performance

of proposed GMF, UKF and EKF on mapbased and mapless VINS, simulations were

conducted. For both types of VINS, all filters are able to refine the navigation solu-

tion compared to only INS. UKF and GMF perform better in terms of the RMS and

standard deviation of navigation solution error compared to EKF. GMF overperforms

for all navigation variables and flight profiles in map-based VINS. However looses its

advantage in mapless VINS. This result originates from the fact that there is not an

optimal way of weighting and resampling the Guassian components.
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As a future direction of this study, real flight tests can be conducted. During real flight

tests, synchronized visual data, range information and IMU data can be collected and

processed in offline manner in order to verify the theoretical outcomes of this study.

In this study, range information was assumed to be available for all landmarks us-

ing a LiDAR sensor. An interesting study would be comparison of different range

sensors and range estimation methods under different sensor fusion algorithms. With

such a study, the range estimation accuracy needed for having a stable VINS can be

determined.

Performance of the GMF can be improved by propagating weighted sum of UKFs

which can further diversify the state hypotheses of GMF. A drawback of UKF based

GMF would be increase on computational cost which makes real time implementation

not realizable. This problem can be solved by applying a marginalization method like

Rao-Blackwellization which decreases the number of components by applying con-

ditional independence assumption between navigation states and positions of land-

marks. Considering these potential improvements, an extension to this study can be

increasing the stability and the accuracy of the navigation solution on GMF based

mapless VINS by applying more refinements on the filtering algorithm and finding

an appropriate component weighting method.

As a further analysis, a loosely coupled VINS, which calculates the rotation and the

translation of the mobile platform explicitly from measurements, can be implemented

and compared with the results of this study.
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APPENDIX A

Chi-Square Goodness of Fit Test

Pearson’s Chi Square test investigates how well the hypothesis that states value or

distribution of observation fits the expected distribution of observation. It categorizes

this hypothesis as true or false. Chi Square test can be used when tested variable

follows Chi-Square distribution.

Chi Square distribution is the distribution of sum of squares of k independent nor-

mal random variables. [21]. If Y1, ..., Yk are independent, standard normal random

variables, then the sum of their squares:

Q =
k∑
i=1

Y 2
i (A.1)

is distributed according to the Chi-Squared distribution with k-degrees of freedom

and denoted as: Q ∼ χ2(k) or Q ∼ χ2
k. Probability density function of Chi Square

distribution has an essential role in goodness of fit tests and it is calculated as:

f(x; k) =

xk/2−1e−x/2

2k/2Γ(k/2)
, x > 0

0, otherwise
(A.2)

Where Γ() denotes the Gamma Function. Chi Square probability density function is

given in Figure A.1
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Figure A.1: PDF of Chi Square Distribution

A test statistics is a measure used in statistical hypothesis testing. It is believed to

have Chi Square distribution in Pearson’s Chi Square test. Chi Square goodness of fit

test is conducted simply by comparing the test statistics with the value of Chi-Square

density with k degree of freedom at selected value of level of confidence. Level of

confidence determines the threshold for the probability of test statistics. If test statis-

tics probability is lower than level of confidence, hypothesis is classified as wrong. It

is typically selected as 0.05. Degree of freedom is the number of independent dimen-

sions at the observation that specifies the state of the system. In VINS, dimension

of measured pixel coordinates determines the degree of freedom which is two times

number of tracked landmarks.

Violating assumptions of a sensor fusion filter can yield divergence of the state errors.

Monte Carlo runs where divergence is detected should be excluded while calculating

mean and standard deviation of state errors in order to characterize the system cor-

rectly. Converge percentage of Monte Carlo runs should be presented separately.

In [39] ,Niu et. Al. proposed that Normalized Innovation Square(NIS) of Kalman

Filter based sensor fusion methods follows Chi Square distribution. Normalized in-

novation squared is defined as:

NISk = zTk S
−1
k zk (A.3)

Here zk is the innovation another words difference between measurement and pre-

diction and Sk is the innovation covariance matrix.In [44], Niu et. al. proposed that
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applying Chi Square test to every individual update step can mislead the divergence

check because of the temporal error peaks. Hence applying an averaging filter on NIS

values was proposed. Degree of freedom is calculated as the multiplication of output

dimension and averaging window size of the filter.

It was verified that using divergence checking method proposed in [44] provides suit-

able divergence check results. p-value was selected as suggested value 0.05 and win-

dow size is selected as 3.
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APPENDIX B

Computing Closest Symmetric and Positive Semidefinite Matrix

Theorem: Every covariance matrix is a symmetric positive semi-definite matrix.

Proof: Let the vector setX = {x1,x2, ....,xk} is composed of random vectors where

xi εR
n. Mean vector mx is calculated as:

mx =
1

k

k∑
i=1

xi (B.1)

The covariance matrix {C εRn ×Rn} of vector setX is defined as:

C =
1

k

k∑
i=1

(xi −mx)(xi −mx)T (B.2)

Definition: {A ε Rn × Rn} is called positive semi-definite if uAuT ≥ 0 for

{∀ u εRn}

uTCu = uT (
1

k

k∑
i=1

(xi −mx)(xi −mx)T )u

=
1

k

k∑
i=1

uT (xi −mx)(xi −mx)Tu

=
1

k

k∑
i=1

((xi −mx)Tu)T ((xi −mx)Tu)

=
1

k

k∑
i=1

((xi −mx)Tu)2 ≥ 0

(B.3)

Therefore the covariance matrix C is positive semi-definite.

If yth element of xi is defined as xi(y), it is possible to write:

E{(xi(y)−mx(y))(xi(z)−mx(z)) = E{(xi(z)−mx(z))(xi(y)−mx(y)) (B.4)

Therefore covariance matrix is also symmetric.
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Covariance matrices are symmetric positive definite when they first initialized to fil-

ter. But propagating the covariance matrices removes symmetric positive definiteness

mainly because of discretization and computational accuracy. In order to increase the

numerical stability of a filter, covariance matrix can be checked at every propagation

step and forced to be positive semidefinite.

There are different methods for checking symmetric positive definiteness of a matrix.

The most computationally efficient method is proposed to be checking if Cholesky

decomposition of a matrix exists. Cholesky decomposition decomposes a matrix A

by representing this matrix as the product of a lower triangular matrixL with real and

positive diagonal entries and its conjugate transpose L∗

A = LL∗ (B.5)

Writing Cholesky decomposition explicitly yields:
L11 0 0

L21 L22 0

L31 L32 L33



L11 L21 L31

0 L22 L32

0 0 L33

 =


L2

11 L21L11 L31L11

L21L11 L2
21 +L2

22 L31L21 +L32L22

L31L11 L31L21 +L32L22 L2
31 +L2

32 +L2
33


(B.6)

Diagonal entries of this matrix can be written as[16]:

Ljj =

√√√√Ajj −
j−1∑
k=1

L2
jk (B.7)

Since matrixL has to have real and positive diagonal entries, the expression in square

root in Eq. B.7 is always greater than or equal to zero if such decomposition exists.

MatrixA is real and positive semi-definite if such decomposition exist. Thi as shown

below:

xAx∗ = xLL∗x∗

= (xL)(xL)∗

= ‖xL‖2

≥ 0

(B.8)

A covariance matrix can be forced to be positive semi-definite by using nearest pos-

itive semi-definite matrix to original covariance matrix. A method is proposed by
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Higham in [25]. Higham states that: "The nearest symmetric positive semidefinite

matrix in the Frobenius norm to an arbitrary real matrixA is shown to be (B+H)/2,

where H is the symmetric polar factor of B = (A +AT )/2". Algorithm consist of

following steps:

1. Symmetrize matrixA by:

B = (A+AT )/2 (B.9)

2. Calculate symmetric polar factor of matrixB

• Calculating the singular value decomposition ofB:

B = UΣV T (B.10)

where Σ is diagonal and V is unitary matrices.

• Calculate symmetric polar factor:

H = V ΣV T (B.11)

3. Find closest positive semi-definite matrix to matrixA:

Â = (B +H)/2 (B.12)

4. Ensure the symmetry:

Ã = (Â+ Â
T

)/2 (B.13)
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