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ABSTRACT 

 

BELIEF PROPAGATION DECODING OF POLAR CODES UNDER 

FACTOR GRAPH PERMUTATIONS  

 

 

Peker, Ahmet Gökhan 

MSc., Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Melek Diker Yücel 

 

January 2018, 88 pages 

 

Polar codes, introduced by Arıkan, are linear block codes that can achieve the 

capacity of symmetric binary-input discrete memoryless channels with low encoding 

and decoding complexity. Polar codes of block length 𝑁 are constructed by channel 

polarization method, which consists of channel combining and splitting operations to 

obtain 𝑁 polarized subchannels from 𝑁 copies of binary-input discrete memoryless 

channels. As 𝑁 grows, symmetric channel capacities of the polarized subchannels 

converge to either 0 or 1. Polar codes are also close cousins of Reed-Muller codes 

and start to differ from each other for 𝑁 ≥ 32. 

Encoding and decoding of polar or Reed-Muller codes can be performed by using a 

factor graph, obtained from the n-th Kronecker product 𝐺𝑁 = 𝐹⊗𝑛 of 𝐹 = [
1 0
1 1

] 

with 𝑁 = 2𝑛. Such a factor graph contains 𝑛 = log2 𝑁 stages; hence, by changing 

the order of stages with respect to each other, 𝑛! different factor graphs can be 

obtained. In the literature, some decoders using multiple factor graphs instead of a 

single factor graph are suggested. Therefore, it is of interest whether i) the 𝐾 × 𝑁 

generator matrix of the code chosen by 𝐾 active bits at the input of the encoder, and 
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ii) the sum of the capacities of the 𝐾 active channels that connect each input bit to the 

output vector of the encoder are invariant under stage permutations. In this study, we 

give an alternative proof of the fact that the answer to the first question is positive. It 

is also shown that the sum of the capacities of the 𝐾 active channels is not invariant 

under stage permutations.   

Belief Propagation decoding performances on single and multiple factor graph 

decoders of polar and Reed-Muller codes over binary erasure channels are evaluated 

and compared. For multiple factor graph decoders, practical choice of factor graph 

sets that gives the best performance with low complexity is examined. 

 

Keywords: Polar Codes, Reed-Muller Codes, Belief Propagation, Factor Graph 

  



vii 

 

ÖZ 

 

KUTUPSAL KODLARIN FAKTÖR GRAFİĞİ PERMÜTASYONLARIYLA 

İNANÇ YAYILIMI KOD ÇÖZÜMÜ 

 

 

Peker, Ahmet Gökhan 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Melek Diker Yücel 

 

Ocak 2018, 88 sayfa 

 

Arıkan tarafından tanıtılan kutupsal kodlar ikili-girişli ayrık hafızasız kanalların 

kapasitesine düşük kodlama ve kod çözme karmaşıklığı ile ulaşabilen doğrusal blok 

kodlardır. Kod sözcüğü uzunluğu 𝑁  olan kutupsal kodlar, kanal birleştirme ve bölme 

operasyonlarından oluşan kanal kutuplaşması metoduyla, ikili-girişli ayrık hafızasız 

kanalların 𝑁 kopyasından 𝑁 polarize alt kanal elde edilerek oluşturulur. 𝑁 

büyüdükçe, polarize alt kanalların simetrik kanal kapasiteleri 0 ya da 1’e yakınsar. 

Kutupsal kodlar ayrıca Reed-Muller kodların yakın akrabalarıdır ve 𝑁 ≥ 32 için 

birbirinden farklılaşmaya başlarlar. 

Kutupsal veya Reed-Muller kodların kodlaması ve çözülmesi, 𝑁 = 2𝑛 için 𝐹 =

[
1 0
1 1

] matrisinin 𝑛’inci Kronecker çarpımından elde edilen 𝐺𝑁 = 𝐹⊗𝑛 matrisinden 

elde edilen bir faktör grafik gösterimi kullanılarak gerçekleştirilebilir. Böyle bir 

faktör grafiği 𝑛 = 𝑙𝑜𝑔2 𝑁 kademe içerir; dolayısıyla kademelerin birbirine göre 

sırasını değiştirerek 𝑛! farklı grafik gösterimi elde edilebilir. Literatürde, tek bir 

faktör grafiği yerine çoklu faktör grafikleri kullanan bazı kod çözücüler 

önerilmektedir. Bu sebeple, i) kodlayıcının girişindeki 𝐾 aktif ikilin seçtiği 𝐾 ×  𝑁 
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boyutlu kod üreteç matrisinin ve ii) kodlayıcının her giriş ikilini çıkış vektörüne 

bağlayan 𝐾 aktif kanalın kapasite toplamının, kademe permütasyonları ile değişip 

değişmediği merak konusudur. Bu çalışmada, ilk sorunun cevabının olumlu olduğu 

farklı bir yoldan kanıtlanmıştır. Ayrıca, 𝐾 aktif kanalın kapasite toplamının, kademe 

permütasyonlarına bağlı olarak değişebileceği gösterilmiştir. 

Kutupsal ve Reed-Muller kodların tek ve çok faktör grafikli kod çözücülerinin ikili 

silinti kanalı üzerindeki İnanç Yayılımı çözücü performansları değerlendirilmiş ve 

karşılaştırılmıştır. Çok faktör grafikli kod çözücülerinde, düşük karmaşıklıkla en iyi 

performansı veren faktör grafiği kümelerinin pratik seçimi incelenmiştir. 

 

Anahtar Sözcükler: Kutupsal Kodlar, Reed-Muller Kodlar, İnanç Yayılımı, Faktör 

Grafikler  
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CHAPTER 1 

 

 

      INTRODUCTION 

 

 

 

Communication systems aim to send data reliably over a noisy channel. The block 

diagram for a basic communication system is given in Figure 1.1, in which the 

source encoder eliminates the redundant information from the source. Channel 

encoder then adds some redundancy to the source-encoded data before transmission 

to send it reliably over a noisy channel. At the receiver, the channel decoder tries to 

remove the channel noise and obtain what is sent from the transmitter. Finally, the 

output of the channel decoder is processed by the source decoder, to recover the 

original source data. 

 

Figure 1.1: Block diagram of a basic communication system 

The channel, that is illustrated Figure 1.1, can be described as a medium over which 

the information is transmitted. It is defined mathematically by a transition probability 

function 𝑊(𝑦|𝑥) for 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌; where 𝑋 denotes the input alphabet, and 𝑌 

denotes the output alphabet.   

Throughout the thesis, we will consider binary erasure channels (BEC), which are in 

the class of binary-input discrete memoryless channels. 
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1.1. Channel Coding 

Shannon, in his seminal work, discussed how to achieve reliable communication over 

a noisy channel  [Shannon, 1948]. He obtained the capacity of a channel and related 

it to the maximum rate for sending data reliably. If the transmission information rate 

is less than the channel capacity, then it is possible to transmit data in a noisy 

environment reliably with arbitrarily small error probability.  

Theorem 1.1 (Channel Coding Theorem) [Shannon, 1948]: 

Let 𝑊 be a discrete memoryless channel. The capacity, 𝐶, of a discrete memoryless 

channel is given by  

𝐶 = 𝐼(𝑊) = 𝐼(𝑋; 𝑌) 

An (𝑀,𝑁) code that is transmitted over the channel 𝑊:𝑋 → 𝑌 consists of following: 

1. An index set {1,2, … ,𝑀} for representing messages. 

2. An encoding function 𝑓: {1,2, … ,𝑀} → 𝑋𝑁 for generating codeword. 

3. A decoding function 𝑔: 𝑌𝑁 → {1,2, … ,𝑀} 

The rate of an (𝑀,𝑁) code is calculated as 𝑅 =
𝑙𝑜𝑔2 𝑀

𝑁
 bits per transmission. 

There is a nonnegative channel capacity 𝐶 associated with each discrete memoryless 

channel, such that for all the rates 𝑅 less than the capacity, information data can be 

transmitted over the channel and be reconstructed with an arbitrarily small 

probability of error. All the rates below the capacity 𝐶 are achievable. ∎ 

Since Shannon’s work, main aim is to search capacity-achieving codes with low 

encoding and decoding complexity. A detailed review of channel coding theory and 

the coding schemes till 2007 are given in [Costello, 2007]. 
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The initial research in channel coding is concentrated on obtaining linear codes with 

good algebraic properties, such as large minimum Hamming distance. Hamming 

codes [Hamming, 1950], Golay codes [Golay, 1949], Reed-Muller codes ([Reed, 

1954], [Muller, 1954]), BCH codes [Bose and Ray-Chaudhuri, 1960] and Reed-

Solomon codes [Reed and Solomon, 1960] can be shown as examples for algebraic 

codes.  

Another research path in channel coding is focused on Shannon’s random coding 

approach that is also called probabilistic coding.  Probabilistic coding is concentrated 

on finding classes of codes that optimize average performance as a function of 

encoding and decoding complexity. Convolutional codes, product codes, 

concatenated codes, trellis-coded modulation, and trellis decoding of block codes are 

examples for this this type of coding schemes. 

A big step towards the channel capacity has been achieved by the introduction of 

Turbo codes [Berrou, 1993]. They are a class of codes that can perform very close to 

the Shannon limit with linear decoding complexity. Shortly thereafter, Gallagher’s 

LDPC codes are rediscovered along with low-complexity iterative decoding 

[MacKay and Neal, 1996] that can attain near-Shannon-limit performance. 

The source and channel encoder blocks have to work on data with large block 

lengths to get small error probabilities. Having large block lengths affect complexity 

in encoding and decoding. For practical applications, communication system is 

required to have low computational complexity. We focus our attention on polar 

codes, which is one of the latest advances in coding theory. 

1.2. Polar Codes 

Polar codes introduced by Arıkan are linear block codes with low encoding and 

decoding complexity that can achieve the capacity of symmetric binary-input 

discrete memoryless channels (B-DMC’s) [Arıkan, 2009].  
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Polar codes can be considered as a generalization of the Reed-Muller (RM) codes 

([Arıkan, 2008], [Hussami, 2009]). The 𝐾 × 𝑁 generator matrix 𝐺𝑃 of the (𝑁, 𝐾) 

polar code where 𝑁 = 2𝑛 is constructed choosing 𝐾 rows of the matrix 𝐺𝑁 = 𝐹⊗𝑛, 

which is the n-th Kronecker product of 𝐹 = [
1 0
1 1

]. The generator matrix of RM 

codes is also formed by selecting rows of 𝐺𝑁. The main difference between polar and 

RM codes is that, while the RM codes choose all rows of 𝐺𝑁 with Hamming weights 

over a specific value, the choice for polar codes depends on channel capacities. 

Polar codes are constructed by the channel polarization method that consists of two 

phases, channel combining and channel splitting. The idea in channel polarization is 

to obtain 𝑁 polarized subchannels from 𝑁 copies of binary-input discrete 

memoryless channels. As 𝑁 grows, the symmetric channel capacities of distinct 

channel converges to either 0 or 1 after channel combining and splitting operations. 

The basic idea of polar coding is to transmit data only through channels, whose 

channel capacities approaches to 1. The inputs of the remaining channels are frozen; 

i.e., not used for sending information. Encoding and decoding of the polar codes with 

blocklength 𝑁 = 2𝑛, can be performed using special factor graphs (FG’s) with n 

stages that correspond to 𝐺𝑁 transformation.  

Two common decoding algorithms for polar codes are the successive cancellation 

(SC) and belief propagation (BP) algorithms.  The SC decoder has serial architecture, 

and hence, it has disadvantages such as the high latency and limited throughput.  

Belief  Propagation (BP) is a message-passing algorithm that can be run on the 

mentioned factor graphs having n stages. The BP decoding algorithm for the RM 

codes proposed by Forney [Forney, 2001] is also applicable to the polar codes.  

The message passing schedules and error performances under finite lengths are 

examined in [Eslami and Pishro-Nik, 2013]. BP decoding with min-sum (MS) 

approximation is reviewed in [Yuan and Parhi, 2013] and a performance-improved 

scaled min-sum (SMS) polar decoding algorithm is presented. The XJ-BP decoding 

algorithm in [Xu et al., 2015] simplifies min-sum BP decoding and it produces the 
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same decoding performance of the scaled min-sum algorithm with reduced 

complexity. Convential BP decoding algorithm requires large number of iterations 

and it causes high computational complexity. In [Abbas et al., 2015] and [Lin et al., 

2015], low-complexity BP decoding algorithms for polar codes are proposed to 

decrease the average number of computations. The soft-cancellation (SCAN) 

decoding method in [Fayyaz and Barry, 2014] is another decoding method to reduce 

the computational complexity of BP decoders. However, SCAN decoder is serial in 

nature as opposed to conventional BP decoder, which has parallel architecture, and it 

causes much longer decoding latency. In [Abbas et al., 2017], an early stopping 

scheme is proposed for BP decoders. This method decreases the required number of 

iterations, it also reduces the energy consumption and decoding latency. Moreover, 

in [Sha et al., 2016], a modified BP polar decoder that performs as well as the 

conventional BP decoder is proposed by combining adjacent processing stages in the 

factor graph into a new stage. 

Arıkan compares the performance of polar codes with Reed-Muller codes under BP 

decoding at short block lengths [Arıkan, 2008]. Korada discusses why the 

performance of BP decoders is better than that of SC decoders; and considers BP 

decoding with multiple factor graphs (multi-FG’s), where different stage 

permutations of an FG are employed. He observes that performance of the multi-

factor graph BP decoder is improved significantly by using log2 𝑁 factor graphs 

corresponding to all possible cyclic stage permutations [Korada, 2009].  

In this thesis, Belief Propagation algorithm is used for decoding polar and RM codes 

on single and multiple FG’s generated by 𝐺𝑁 = 𝐹⊗𝑛, where 𝐹 = [
1 0
1 1

]. The use of 

multiple FG’s provokes the stimulating question of whether two parameters remain 

invariant under stage permutations:  

i) the 𝐾 × 𝑁 generator matrix chosen by 𝐾 active bits at the input of the encoder, and 

ii) the sum of capacities of the 𝐾 active channels that connect each input bit to the 

output vector of the encoder.  
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One may notice that a positive answer to the first question warrants that all FG 

encoders implement the same linear code; whereas an affirmative answer to the 

second question supports the polar code concept of activating the maximum-capacity 

channels, while freezing the low-capacity ones. 

1.3    Aim and Organization of the Thesis 

Remembering that factor graph (FG) representations of polar and RM codes with 

blocklength 𝑁 = 2𝑛, consist of 𝑛 stages; and multi-FG decoders use some of the 𝑛! 

factor graphs that are formed by permuting the stage order; goals of this study can be 

summarized as: 

• To discuss whether i) the 𝐾 × 𝑁 generator matrix of the (𝑁, 𝐾) polar code 

and ii) the sum of the capacities of the 𝐾 active channels are invariant under 

stage permutations.  

• To examine the choice of suitable values for the number 𝑀 of the FG’s in 

multi-FG Belief Propagation (BP) decoding over binary erasure channels and 

to discuss the choice of the best set of FG’s for multi-FG decoding. 

• To evaluate and compare BP decoding performances on single-FG and multi-

FG decoders of the RM and polar codes over binary erasure channels. 

The thesis is organized as follows: 

In Chapter 2, construction of the polar codes by channel polarization method is 

reviewed. Encoding of polar codes is summarized and the factor graph 

representation, which is used both in their encoding and decoding, is described. 

Belief Propagation (BP) decoding algorithm, that is performed based on the factor 

graph representation, is explained. The chapter ends with a discussion about the 

relation between the two important parameters for the construction of polar codes 
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over binary erasure channels; namely, Bhattacharyya parameters and the symmetric 

channel capacities. 

The 𝐾 × 𝑁 generator matrix 𝐺𝑃 of the (𝑁, 𝐾) polar is constructed by selecting 𝐾 

basis vectors from the 𝑁 × 𝑁 transformation matrix 𝐺𝑁 = 𝐹⊗𝑛 according to 

information bit indices. In Chapter 3, we discuss whether the generator matrix 𝐺𝑃 of 

an (𝑁, 𝐾) code alters, when the stage order of the factor graph is changed while 

keeping the positions of the information bits the same as those of the reference factor 

graph, RFG. We give an alternative proof the fact that 𝐺𝑁 is invariant under stage 

permutations and so is 𝐺𝑃, provided that the information bit positions are kept the 

same as those of the RFG.  

In Chapter 4, performances of polar and Reed-Muller codes over a BEC with a given 

erasure rate (𝜖) are evaluated, using the Belief Propagation (BP) algorithm on factor 

graphs. Two parameters are used to classify the factor graphs:  capacity sum of the 𝐾 

transmission paths and the total number of frozen variables on the factor graph 

implementation. Effects of these two parameters on the BP decoder are investigated. 

Single-FG decoders that use a single factor graph and multiple-FG decoders that 

employ a pre-chosen set of 𝑀 > 1 factor graphs are engaged to evaluate the BP 

decoding performances of polar and Reed-Muller codes. Practical choice of 𝑀 and 

factor graph sets for multi-FG decoders that gives the best decoding performances 

with low complexity is discussed. 

Finally, Chapter 5 concludes the study by summarizing the main contributions 

mentioned in each chapter. 
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CHAPTER 2 

 

 

POLAR CODES 

 

 

 

In this chapter, construction of polar codes is summarized with reference to Arıkan 

[Arıkan, 2009] and Korada [Korada, 2009]. 

In Section 2.1, construction of polar codes by using channel polarization method is 

explained briefly. Channel combining and splitting operations to obtain 𝑁 polarized 

subchannels from 𝑁 copies of binary-input discrete memoryless channels are 

described. In Section 2.2, we display how to calculate the capacities of 𝑁 

subchannels after channel combining and splitting operations. In Section 2.3, the 

encoding of polar codes is summarized, and the factor graph representation, which is 

employed both in their encoding and decoding, is described. Belief propagation (BP) 

decoding algorithm that is used in this study is explained in Section 2.4. Finally, 

Section 2.5 discusses the relation between two important parameters for the 

construction of polar codes over binary erasure channels (BEC); namely, the 

symmetric capacity and the Bhattacharya parameters. 

We use 𝑊:𝑋 → 𝑌 to represent a binary-input discrete memoryless channel (B-DMC) 

with input alphabet 𝑋, output alphabet 𝑌 and transition probabilities 𝑊(𝑦|𝑥) for 𝑥 ∈

𝑋, 𝑦 ∈ 𝑌. Input alphabet 𝑋 will always be {0,1}. 𝑊𝑁 will denote the channel 

corresponding to 𝑁 uses of 𝑊, that can be shown as 𝑊𝑁: 𝑋𝑁 → 𝑌𝑁 with transition 

probability 𝑊𝑁(𝑦1
𝑁|𝑥1

𝑁) = ∏ 𝑊(𝑦𝑖|𝑥𝑖)
𝑁
𝑖=1 . Upper case letters such as 𝑋, 𝑌 will be 

used for showing random variables; and lower case letters such as 𝑥, 𝑦, to represent 

their realizations (sample values). 

In the following, 𝑢1
𝑁 will denote a row vector (𝑢1, 𝑢2, … , 𝑢𝑁) and 𝑢𝑖

𝑗
 will denote the 

subvector (𝑢𝑖 , … , 𝑢𝑗) for 1 ≤ 𝑖, 𝑗 ≤ 𝑁. For a given 𝑢1
𝑁 and a set of indices 𝑈 ⊂
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{1, … ,𝑁}, 𝑢𝑈 will be used to denote the subvector (𝑢𝑖: 𝑖 ∈ 𝑈). All vectors, matrices 

and operations will be over 𝐺𝐹(2).  

The Kronecker product of an 𝑚-by-𝑛 matrix of 𝐴 = [𝐴𝑖𝑗] and an 𝑟-by-𝑠 matrix of 

𝐵 = [𝐵𝑖𝑗] is described as 

𝐴 ⊗ 𝐵 = [
𝐴11𝐵 ⋯ 𝐴1𝑛𝐵

⋮ ⋱ ⋮
𝐴𝑚1𝐵 ⋯ 𝐴𝑚𝑛𝐵

] 

which is an 𝑚𝑟-by-𝑛𝑠 matrix. 

For a given B-DMC 𝑊, the symmetric capacity (the mutual information between the 

input and output of  𝑊) is given as  

𝐼(𝑊) = 𝐼(𝑋; 𝑌) ≜ ∑ ∑
1

2𝑥∈𝑋𝑦∈𝑌 𝑊(𝑦|𝑥) log
𝑊(𝑦|𝑥)

1

2
𝑊(𝑦|0)+

1

2
𝑊(𝑦|1)

  .              (2.1) 

2.1 Channel Polarization 

Polar codes are constructed by using channel polarization method. Channel 

polarization is an operation by which one transforms 𝑁 independent copies of a 

given binary-input discrete memoryless channel (B-DMC) 𝑊 into a second set of 𝑁 

channels {𝑊𝑁
(𝑖): 1 ≤ 𝑖 ≤ 𝑁} that show a polarization effect in the sense that, as 𝑁 

becomes large, the symmetric capacity {𝐼(𝑊𝑁
(𝑖))} converges to 0 or 1 for all but a 

vanishing fraction of indices 𝑖. This operation is called as channel polarization and it 

consists of two phases which are channel combining and channel splitting phases. 

Basic Channel Transformation 

Polar codes are constructed by recursive steps. In the first step, two independent 

copies of 𝑊 are combined and  a new channel 𝑊2: 𝑋
2 → 𝑌2 is obtained by applying 
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the transform 𝐺2. Let 𝑋1
2 be the input to two independent copies of 𝑊 and 𝑌1

2 be the 

output, then 𝑋1
2 = 𝑈1

2𝐺2 and 𝐺2 = [
1 0
1 1

] is the n-th Kronecker product 𝐺𝑁 = 𝐹⊗𝑛 

of 𝐹 = [
1 0
1 1

] with 𝑁 = 2𝑛, and 𝑛 = 1. This phase is defined as channel combining. 

Channel combining of two channels is plotted in Figure 2.1. 

 

Figure 2.1: Basic channel transform with N = 2. 

Obtained new channel 𝑊2 is defined by transition probabilities: 

𝑊2(𝑦1
2|𝑥1

2) = ∏𝑊(𝑦𝑖|𝑥𝑖) = 𝑊(𝑦1|𝑢1 ⊕ 𝑢2)𝑊(𝑦2|𝑥2)

2

𝑖=1

 

By applying the chain rule, the mutual information between the input and the output 

of the 𝑊2 channel can be written as 

𝐼(𝑈1
2; 𝑌1

2) = 𝐼(𝑈1; 𝑌1
2) + 𝐼(𝑈2; 𝑌1

2|𝑈1) 

𝐼(𝑈1
2; 𝑌1

2) = 𝐼(𝑈1; 𝑌1
2) + 𝐼(𝑈2; 𝑌1

2, 𝑈1) 

𝐼(𝑈1; 𝑌1
2) and 𝐼(𝑈2; 𝑌1

2, 𝑈1) terms can be interpreted as the mutual informations of 

the new subchannels 𝑊2
(1)

: 𝑋 → 𝑌2 and 𝑊2
(2)

: 𝑋 → 𝑋 × 𝑌2  

The new subchannels 𝑊2
(1)

 and 𝑊2
(2)

are illustrated in Figure 2.2 and 2.3. 

𝑊2
(1)

subchannel has 𝑈1 and 𝑌1
2 as an input and output, with 𝑈2 considered as noise. 

Also, 𝑊2
(2)

subchannel has 𝑈2 as an input and 𝑌1
2 as an output, with 𝑈1 being 
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available at the decoder. This phase of splitting 𝑊2 into the subchannels 𝑊2
(1)

and 

𝑊2
(2)

 is defined as channel splitting.   

 

Figure 2.2: 𝑊2
(1)

subchannel after channel splitting with N =2. 

 

Figure 2.3: 𝑊2
(2)

subchannel after channel splitting with N =2. 

Capacity of the new 𝑊2 channel can be computed as 

𝐼(𝑊2) = 𝐼(𝑈1
2; 𝑌1

2) = ∑𝐼(𝑋𝑖, 𝑌𝑖) = ∑𝐼(𝑊)

2

𝑖=1

= 2𝐼(𝑊)

2

𝑖=1

 

The new subchannels 𝑊2
(1)

 and 𝑊2
(2)

 satisfy the following transmission of the rate 

property:  

𝐼(𝑊2
(1)

)  ≤ 𝐼(𝑊) ≤ 𝐼(𝑊2
(2)

) 
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Recursive Channel Transformation 

In the previous part, channel combining, and splitting operations are applied for 

block length 𝑁 = 2; 𝑊2
(1)

and 𝑊2
(2)

subchannels are constructed. In this part, for 𝑁 

equals to any power of two, 𝑁 = 2𝑛, construction of a series of N subchannels will 

be shown by using channel combining and splitting operations recursively. 

In the second step of recursive construction, for 𝑁 = 4, with using two identical 

copies of 𝑊2, 𝑊4: 𝑋
4 → 𝑌4 is generated with transition probabilities 

𝑊4(𝑦1
4|𝑥1

4) = 𝑊2(𝑦1
2|𝑢1 ⊕ 𝑢3, 𝑢2 ⊕ 𝑢4)𝑊2(𝑦3

4|𝑢3, 𝑢4) 

 

Figure 2.4: 𝑊4 channel which is generated by combining two copies of 𝑊2.  

Obtaining 𝑊4 channel by channel combining is illustrated in Figure 4. The mapping 

𝑢1
4 → 𝑥1

4 for 𝑊4 channel can be written as 𝑥1
4 = 𝑢1

4𝐺4 where the transition matrix 

𝐺4 = [

1 0 0 0
1 1 0 0
1
1

0 1
1 1

0
1

] is obtained as the n-th Kronecker product 𝐺𝑁 = 𝐹⊗𝑛 of 𝐹 =

[
1 0
1 1

] with 𝑁 = 2𝑛, and 𝑛 = 2. 
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For 𝑁 = 2𝑛, the channel combining is done in a recursive manner and 𝑊𝑁: 𝑋𝑁 → 𝑌𝑁 

is generated by combining two identical copies of 𝑊𝑁/2. 

Transition probabilities for the channel 𝑊𝑁: 𝑋𝑁 → 𝑌𝑁 are defined as 

𝑊𝑁(𝑦1
𝑁|𝑢1

𝑁) = 𝑊𝑁/2(𝑦1
𝑁/2

|𝑢1
𝑁/2

⊕ 𝑢(𝑁/2)+1
𝑁 )𝑊𝑁/2(𝑦(𝑁/2)+1

𝑁 |𝑢(𝑁/2)+1
𝑁 ) 

where 𝑢1
𝑁/2

= {𝑢1, 𝑢2, … , 𝑢𝑁/2} and 𝑢(𝑁/2)+1
𝑁 = {𝑢(𝑁/2)+1, 𝑢(𝑁/2)+2, … , 𝑢𝑁}.  

The overall mapping 𝑢1
𝑁 → 𝑥1

𝑁, from the input of the synthesized channel 𝑊𝑁 to the 

input of binary-input discrete memoryless channels 𝑊, is also linear and can be 

represented by 𝑥1
𝑁 = 𝑢1

𝑁𝐺𝑁 using the n-th Kronecker product 𝐺𝑁 = 𝐹⊗𝑛 of 𝐹 =

[
1 0
1 1

] with 𝑁 = 2𝑛. The synthesized channel 𝑊𝑁 is plotted in Figure 2.5.  

 

Figure 2.5: The synthesized channel 𝑊𝑁 after channel combining operations.  

After obtaining the synthesized channel 𝑊𝑁, the next step is splitting 𝑊𝑁 into a set of 

𝑁 subchannels 𝑊𝑁
(𝑖): 𝑋 → 𝑌𝑁 × 𝑋𝑖−1, 1 ≤ 𝑖 ≤ 𝑁, defined by transition probabilities 
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𝑊𝑁
(𝑖)

(𝑦1
𝑁 , 𝑢1

𝑖−1|𝑢𝑖) ≜ ∑
1

2𝑁−1

𝑢𝑖+1
𝑁 ∈𝑋𝑁−𝑖

𝑊𝑁(𝑦1
𝑁|𝑢1

𝑁) 

where (𝑦1
𝑁 , 𝑢1

𝑖−1) represents the output of 𝑊𝑁
(𝑖)

and (𝑢𝑖) denotes the input of 𝑊𝑁
(𝑖)

.  

Capacity of the synthesized channel 𝑊𝑁 can be written as 

𝐶(𝑊𝑁) = 𝐼(𝑈𝑁; 𝑌𝑁) = 𝐼(𝑋𝑁; 𝑌𝑁) = 𝑁𝐶(𝑊). 

With applying the chain rule of mutual information, capacity of 𝑊𝑁 is split as 

𝐶(𝑊𝑁) = 𝐼(𝑈𝑁; 𝑌𝑁) = ∑ 𝐼(𝑈𝑖; 𝑌
𝑁 , 𝑈𝑖−1)𝑁

𝑖=1 , 

where subchannels after channel splitting operation are defined as 𝑊𝑖: 𝑈𝑖 →

(𝑌𝑁 , 𝑈𝑖−1) for 1 ≤ 𝑖 ≤ 𝑁 as illustrated in Figure 2.6. 

 

Figure 2.6: The subchannel 𝑊𝑖  after splitting of the synthesized channel 𝑊𝑁. 
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So, 𝑁 copies of binary-input discrete memoryless channels 𝑊 transform into a set of 

𝑁 distinct channels {𝑊𝑁
(𝑖): 1 ≤ 𝑖 ≤ 𝑁} with channel combining and splitting 

operations. As 𝑁 goes to infinity, the channel polarization theorem is formalized by 

Arıkan as follows [Arıkan, 2009]. 

Theorem 2.1: For any B-DMC W, as 𝑁 goes to infinity through powers of two, the 

channels {𝑊𝑁
(𝑖)} polarize in the sense that, for any fixed 𝛿 ∈ (0,1), the fraction of 

indices 𝑖 ∈ {1,… ,𝑁} for which 𝐼(𝑊𝑁
(𝑖)) ∈ (1 − 𝛿, 1] goes to 𝐼(𝑊) and the fraction 

for which 𝐼(𝑊𝑁
(𝑖)) ∈ (0, 𝛿] tends toward 1 − 𝐼(𝑊). That is,  

lim
𝑁→∞

 Number of indices 𝑖 ∈ {1, … , 𝑁} with 𝐼(𝑊𝑁
(𝑖)) ∈ (1 − 𝛿, 1] 

𝑁
= 𝐼(𝑊), 

lim
𝑁→∞

 Number of indices 𝑖 ∈ {1, … , 𝑁} with 𝐼(𝑊𝑁
(𝑖)) ∈ (0, 𝛿] 

𝑁
= 1 − 𝐼(𝑊) . 

This theorem shows that as 𝑁 goes to infinity, the symmetric capacity of each 

individual channel converges almost surely to 0 or 1. 

2.2. Calculating the Capacities of 𝑵 Subchannels 𝑾𝑵
(𝒊)

 over a BEC 

In this part, capacities of the 𝑁 subchannels {𝑊𝑁
(𝑖): 1 ≤ 𝑖 ≤ 𝑁} obtained after channel 

combining and splitting operations will be computed for a binary erasure channel 𝑊 

with erasure probability 𝜖, which is abbreviated by BEC(𝜖). 

For 𝑁 = 2, subchannels 𝑊2
(1)

 and 𝑊2
(2)

 plotted in Figure 2.2 and 2.3 will be denoted 

by 𝑊2
(1)

= 𝑊− and 𝑊2
(2)

= 𝑊+. Then, for 𝑁 = 4, descendants of 𝑊− will be called 

𝑊−−,𝑊−+ and those of 𝑊+ will be named as 𝑊+−,𝑊++. For N=4, synthesized 

channel 𝑊4 after channel combining is plotted in Figure 2.7, and subchannels after 

splitting, in Figure 2.8.  
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Figure 2.7: Synthesized channel 𝑊4 by combining two copies of 𝑊2.  

 

Figure 2.8: Subchannels after channel splitting for 𝑁 = 4.  

For a binary erasure channel BEC(𝜖), channel capacity equals to 𝐼(𝑊) = 1 − 𝜖, 

where 𝜖 is the erasure probability. For 𝑁 = 2, obtained channels after channel 

splitting, 𝑊− and 𝑊+ are also BEC’s with erasure probabilities 𝜖− and 𝜖+. For 𝑊− 

channel, from Figure 2.2, one can observe that 𝑢1 = 𝑥1 + 𝑥2. So, 𝑢1 is not an 

erasure, when both  𝑥1 and 𝑥2 are not erasures. For 𝑊+ channel, that is shown in 

Figure 2.3,  𝑢2 = 𝑥2. If  𝑥2 is an erasure, then 𝑢2 will also be an erasure. 

Erasure probabilities of  𝑊− and 𝑊+ channels are calculated as 𝜖− ≜ 1 −

(1 − 𝜖)2 = 2𝜖 − 𝜖2 and 𝜖+ ≜ 𝜖2. Capacities of 𝑊− and 𝑊+ are equal to  1 − 𝜖−and 

1 − 𝜖+ respectively.   



18 

 

For 𝑁 = 4; 𝑊−−,𝑊−+, 𝑊+−,𝑊++ subchannels are generated after channel 

combining and splitting operations. These channels are also BEC’s and their erasure 

probabilities are calculated by using erasure probabilities 𝜖− and 𝜖+ of 𝑊− and 𝑊+ 

𝜖−− = 2(𝜖−) − (𝜖−)2 

𝜖−+ = (𝜖−)2                                                                           

𝜖+− = 2(𝜖+) − (𝜖+)2 

𝜖++ = (𝜖+)2                                                                            

In general, channel capacities {𝐼(𝑊𝑁
(𝑖))} of the subchannels 𝑊𝑁

(𝑖), for 1 ≤ 𝑖 ≤ 𝑁, 

are   calculated using the recursive relations, 

                                                         𝐼(𝑊𝑁
(2𝑖)) = 2𝐼(𝑊𝑁/2

(𝑖)) − 𝐼(𝑊𝑁/2
(𝑖))2 

𝐼(𝑊𝑁
(2𝑖−1)) = 𝐼(𝑊𝑁/2

(𝑖))2, 

where 𝐼(𝑊1
(1)) = 𝐼(𝑊) = 1 − 𝜖. 

2.3. Polar Code Encoding 

In the previous parts, we have obtained series of channels that are polarized, where 

the symmetric capacities 𝐼(𝑊𝑁
(𝑖)) of each individual channel {𝑊𝑁

(𝑖)} converges to 0 or 

1. By using the polarization effect, polar codes are constructed for a block length 

𝑁 = 2𝑛, where 𝑛 ≥ 0. The basic idea of polar coding is to send data only through 

channels {𝑊𝑁
(𝑖): 1 ≤ 𝑖 ≤ 𝑁}, whose symmetric channel capacity 𝐼(𝑊𝑁

(𝑖)) approaches 

to 1. The inputs of the remaining channels are frozen; i.e., not used for sending 

information. Hence, (𝑁, 𝐾) polar codes are produced by freezing  𝑁 − 𝐾 lowest 

capacity paths of the structure defined by 𝑦1
𝑁 = 𝑢1

𝑁𝐺𝑁 , where 𝐺𝑁 = 𝐹⊗𝑛 is the 𝑛-th 

Kronecker product of 𝐹 = [
1 0
1 1

]. 
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Factor Graph (FG) Representation of Polar Codes 

Encoding and decoding of a polar code with a blocklength 𝑁 = 2𝑛, can be performed 

using a graph that corresponds to 𝑦1
𝑁 = 𝑢1

𝑁𝐺𝑁 transformation. As an example, for 

𝑁 = 8, the synthesized channel 𝑊8, that is constructed recursively is illustrated in 

Figure 2.9. 

 

Figure 2.9: The synthesized channel 𝑊8 that is constructed by 𝑦1
8 = 𝑢1

8𝐺8 transformation. 

The synthesized channel 𝑊8, that is illustrated in Figure 2.9, is generated by 

combining two copies of 𝑊4; and 𝑊4 is produced by combining two copies of 𝑊2. 

So, the construction of 𝑊8 can be divided into three stages and can be implemented 

by the factor graph representation given Figure 2.9, which is redrawn in Figure 2.10 

using 3 columns of Z connections, where each column corresponds to a stage. In 

Figure 2.10, each Z connection connects two inputs to two outputs. In general, a 
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polar code with a blocklength 𝑁 = 2𝑛 has 𝑛 = 𝑙𝑜𝑔2
𝑁 stages. We name the stages as 

1, 2, …, 𝑛 [Doğan 2015], where Stage 1 contains the smallest Z’s with adjacent 

inputs and Stage 𝑛 contains the largest Z’s that connects input nodes separated by 

2𝑛−1 = 𝑁/2. Hence, we call the synthesized channel 𝑊8  obtained by 𝑦1
8 = 𝑢1

8𝐺8 

transformation as implemented in Figure 2.10, the “3-2-1” factor graph.  

 

Figure 2.10. Graph representation of the transformation 𝑦1
8 = 𝑢1

8𝐺8. 

For a polar code with blocklength 𝑁 = 2𝑛, one can form 𝑛! different graph 

representations by changing the order of stages with respect to each other. For 

example, a polar code with block length 𝑁 = 8 has 6 different factor graph (FG) 

implementations as illustrated in Figure 2.11; where the FG’s in the first line are 

named as “1-2-3”, “1-3-2”, “2-1-3” and those in the second line correspond similarly  

to “2-3-1”, “3-1-2”, “3-2-1” factor graphs. 
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Figure 2.11: 6 different factor graph (FG) representations for a polar code with blocklength 𝑁 = 8.  

Selection of Channels for Sending Information and Constructing the Generator 

Matrix 

After obtaining 𝑁 subchannels {𝑊𝑁
(𝑖): 1 ≤ 𝑖 ≤ 𝑁}, (𝑁, 𝐾) polar codes are generated 

by choosing 𝐾 channels with the highest capacities. Let 𝒜 refer to the information 

set, which is a subset of {1, … ,𝑁}. 𝐾 is the code dimension and it specifies the size 

of 𝒜. Information vector, denoted as 𝑖1
𝐾, is sent from inputs 𝑢𝒜 and the remaining 

𝑁 − 𝐾 channels are frozen.  𝒜𝑐 refers to the frozen set, which is an (𝑁 − 𝐾)-element 

subset of {1, … , 𝑁}. In the design of polar codes, the frozen vector 𝑢𝒜𝑐 is selected as 

the 0 vector. 

Arıkan uses the Bhattacharyya parameters in the construction of polar codes [Arıkan, 

2008]. The Bhattacharyya parameter Z(W) defined as 

𝑍(𝑊) = ∑√𝑊(𝑦|0)𝑊(𝑦|1)

𝑦

 ,                                   (2.2) 
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takes values between 0 and 1. For a given BEC(𝜖), if 𝑍(𝑊) ≤ 𝜖, then this channel is 

considered as almost noiseless. In the opposite case, for 𝑍(𝑊) ≥ 1 − 𝜖, the 

corresponding channel is considered as pure-noisy.   

For a blocklength 𝑁 = 2𝑛, after the computation of the transformation matrix 𝐺𝑁 =

𝐹⊗𝑛, where 𝐹 = [
1 0
1 1

], the rows of 𝐺𝑁 are labelled from top to bottom as 𝑖 =

1,2, … ,𝑁. Then, the Bhattacharyya parameters of all bit channels are calculated in 

the form of 𝑍𝑁 = (𝑍𝑁,𝑖 , 1 ≤ 𝑖 ≤ 𝑁) by using the recursive formula 

𝑍2𝑘,𝑖 = {
2𝑍𝑘,𝑖 − 𝑍𝑘,𝑖

2  , 1 ≤ 𝑖 ≤ 𝑘

𝑍𝑘,𝑖−𝑘
2 , 𝑘 + 1 ≤ 𝑖 ≤ 2𝑘

  for = 1,2, 22, … , 2𝑛−1 .                (2.3) 

The initial condition 𝑍1,1 is equal to 𝜖 for the BEC(𝜖). Bhattacharya parameters of all 

bit-channels are computed by (2.3). Then, the 𝐾 × 𝑁 generator matrix 𝐺𝑃 is 

constructed by choosing 𝐾 rows of the matrix 𝐺𝑁, whose indices correspond to the 

bit-channels with 𝐾 smallest values of the Bhattacharya parameters. 

For the BEC(𝜖), the highest-capacity channels of the “𝑛-…2-1” FG also have the 

least possible Bhattacharya parameters [Arıkan 2009]; but the same claim cannot be 

made for other FG’s with different stage orders. The relation between the 

Bhattacharyya parameters 𝑍(𝑊) and the symmetric capacities 𝐼(𝑊) of different 

FG’s will be demonstrated for 𝑁 = 8 in Section 2.5. 
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Figure 2.12. Channel capacities of the (8, 4) polar code. 

To illustrate the selection of the information and frozen bits by an example, “3-2-1” 

FG of a (8, 4) polar code and corresponding capacities over BEC(0.35) is given in 

Figure 2.12. Channel capacities of 8 subchannels are calculated and 𝐾 = 4 channels 

with the highest capacities are selected to send information. According to the 

computed channel capacities, the information bit indices are 𝒜 = {4,6,7,8} and 

inputs 𝑖1
4 = (𝑢4, 𝑢6, 𝑢7, 𝑢8) are used to send information. Channels that have the four 

lowest capacity values are colored red. The frozen bits indices are 𝒜𝑐 = {1,2,3,5} 

and inputs (𝑢1, 𝑢2, 𝑢3, 𝑢5) are frozen, by fixing their values to 0.   

2.4. Belief Propagation Decoding Algorithm 

Polar codes are commonly decoded by the successive cancellation (SC) or Belief 

Propagation (BP) decoding algorithms. The SC algorithm is more popular because of 

its low complexity compared to the BP algorithm, but it also has disadvantages such 

as high latency and limited throughput due to its serial decoding nature. In our 
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simulations with polar and Reed-Muller (RM) codes, we have used the BP decoding 

algorithm (on FG’s mentioned in Section 2.3) as summarized in the following. 

Belief  Propagation (BP) is a message-passing algorithm, which is used for decoding 

graph-based codes. For a code with block length 𝑁 = 2𝑛, the FG contains 𝑛 stages 

and each stage has 𝑁 input and 𝑁 output nodes. Output of the 𝑖th stage equals to the 

input of the (𝑖 + 1)th stage. There are 𝑛𝑁 check nodes and the number of total 

variable nodes is (𝑛 + 1)𝑁. As an example, all possible factor graphs for 𝑁 = 23 

have been drawn in Fig 2.11; consisting of 𝑛 = 3 stages. We redraw the 3-2-1 factor 

graph by denoting the variable nodes and check nodes with circles and rectangles 

respectively in Fig 2.13. 

 

Figure 2.13: 3-2-1 factor graph with representing variable and check nodes. 

In Fig. 2.13, the bits on the leftmost column represent the input of the FG. Each stage 

consists of 𝑁/2 = 4 processing elements, which correspond to the Z connections 

with two input and two output nodes in the FG representations. Details of the 

processing element of BP decoder is given in Fig. 2.14, where the input and output of 

the node (𝑖, 𝑗), where 𝑖 = 0,… , 𝑛 shows the stage number and 𝑗 = 1,…𝑁, are 

denoted by 𝑣𝐼(𝑖, 𝑗) and 𝑣𝑂(𝑖, 𝑗).  
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Figure 2.14: Details of the processing element for the BP decoder 

The left-directed message passing the node (𝑖, 𝑗) is represented by  𝐿𝑖,𝑗 and the right-

directed message crossing the node (𝑖, 𝑗) is denoted as 𝑅𝑖,𝑗. These two types of 

messages (or log-likelihood ratios (LLRs)) move and update iteratively between 

adjacent nodes. In Fig. 2.14, 𝐿𝑣𝐼(𝑖,𝑗)
𝑡  and 𝐿𝑣𝐼(𝑖,𝑘)

𝑡  show the right-to-left probability 

messages coming to the input nodes 𝑣𝐼(𝑖, 𝑗) and 𝑣𝐼(𝑖, 𝑘), where t corresponds to the 

iteration number. The other probability messages that move towards left, 𝐿𝑣𝑂(𝑖,𝑗)
𝑡−1  and 

𝐿𝑣𝑂(𝑖,𝑘)
𝑡−1 , are passed from the output nodes 𝑣𝑂(𝑖, 𝑗) and 𝑣𝑂(𝑖, 𝑘). Left-to-right 

messages are denoted as 𝑅𝑣𝑂(𝑖,𝑗)
𝑡 , 𝑅𝑣𝑂(𝑖,𝑘)

𝑡 , 𝑅𝑣𝐼(𝑖,𝑗)
𝑡−1  and 𝑅𝑣𝐼(𝑖,𝑘)

𝑡−1  in the processing 

element representation.  During the belief propagation process, these message 

probabilities are updated and calculated as [Zhang, 2014] 

𝐿𝑣𝐼(𝑖,𝑗)
𝑡 = 𝐿𝑣𝑂(𝑖,𝑗)

𝑡−1 ⨂[𝐿𝑣𝑂(𝑖,𝑘)
𝑡−1 ⊙ 𝑅𝑣𝐼(𝑖,𝑘)

𝑡−1 ], 

𝐿𝑣𝐼(𝑖,𝑘)
𝑡 = [𝑅𝑣𝐼(𝑖,𝑗)

𝑡−1 ⨂𝐿𝑣𝑂(𝑖,𝑗)
𝑡−1 ] ⊙ 𝐿𝑣𝑂(𝑖,𝑘)

𝑡−1 , 

𝑅𝑣𝑂(𝑖,𝑗)
𝑡 = 𝑅𝑣𝐼(𝑖,𝑗)

𝑡−1 ⨂[𝑅𝑣𝐼(𝑖,𝑘)
𝑡−1 ⊙ 𝐿𝑣𝑂(𝑖,𝑘)

𝑡−1 ], 

𝑅𝑣𝑂(𝑖,𝑘)
𝑡 = [𝑅𝑣𝐼(𝑖,𝑗)

𝑡−1 ⨂𝐿𝑣𝑂(𝑖,𝑗)
𝑡−1 ] ⊙ 𝑅𝑣𝐼(𝑖,𝑘)

𝑡−1  .                                 (2.4) 

Two operations ⨂ and ⊙ used in equations (2.4) are defined as 

(𝑝𝑥⨂𝑝𝑦)(0) = 𝑝𝑥(0) × 𝑝𝑦(0) + 𝑝𝑥(1) × 𝑝𝑦(1), 

(𝑝𝑥⨂𝑝𝑦)(1) = 𝑝𝑥(0) × 𝑝𝑦(1) + 𝑝𝑥(1) × 𝑝𝑦(0), 

(𝑝𝑥 ⊙ 𝑝𝑦)(0) = 𝑝𝑥(0) × 𝑝𝑦(0),                                    

   (𝑝𝑥 ⊙ 𝑝𝑦)(1) = 𝑝𝑥(1) × 𝑝𝑦(1) .                                                        (2.5) 
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In equations (2.5), 𝑝𝑥(0) is the probability of “variable 𝑥 equals 0”, and 𝑝𝑥(1) is the 

probability of “variable 𝑥 = 1”. 

BP decoding algorithm that we have used can be summarized as follows. 

Firstly, input frozen bits on the leftmost column of the FG are assigned 0. In the 

intermediate stages of the FG, if all bits added to one node from the previous stage 

are frozen, then this node also becomes frozen. In Figure 2.15, frozen variables are 

illustrated on the processing element of the BP decoder for 4 possible situations, 

where frozen nodes are colored red.  

 

Figure 2.15: Frozen variables of the processing element for 4 different situations. 

After finding all frozen variables in the FG representation, one assigns 0 to all frozen 

variables and they remain 0 throughout the BP decoding algorithm.  

Decoding starts from the rightmost end of the FG. Received word, 𝑣𝑂(𝑛, 𝑗) for 𝑗 =

1,2, … ,𝑁, is the output of the last (𝑛’th) stage of the FG. We assign 0.5 for all 

erasures. In our decoding algorithm that uses the same procedure as in [Doğan, 2015] 

and [Xu et al., 2015], we start from the output nodes that correspond to the rightmost 

column of the FG and proceed to the leftmost by shifting only the left-directed 

messages, from the output of the last stage to input of the first stage. Initial 
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probabilities 𝐿𝑣𝑜(𝑛,𝑗)
0  of left messages are determined according to the received word 

𝑟(𝑖) as 

𝐿𝑣𝑜(𝑛,𝑗)
0 = {

0    𝑖𝑓 𝑟(𝑖) = 0

1    𝑖𝑓 𝑟(𝑖) = 1

0.5  𝑖𝑓 𝑟(𝑖) = 𝑒

  , 

at the output of the last stage. Then, the algorithm shifts messages from the input of 

the first stage to the rightmost of the FG with only right-oriented messages; and a 

single iteration is completed when the right-oriented messages reach the output 

nodes.  

Left and right messages are updated by (2.4) during the iteration process. After 

completing one iteration, the decoding algorithm checks whether there is an erasure 

at output nodes 𝑣𝑂(𝑛, 𝑗) for 𝑗 = 1,2, … , 𝑁 or not. If there is no erasure, the decoding 

algorithm stops. If there is still an erasure, decoding algorithm continues shifting 

messages from right to left and left to right until it reaches the pre-assigned 

“maximum number of iterations”. We observe that after a certain number of 

iterations, the number of the undecoded words does not decrease and their erasures 

cannot be corrected. The maximum number of iterations that the decoding algorithm 

needs to perform is assigned at the beginning, depending on the length 𝑁 of the 

codeword, and the erasure rate 𝜖 of the binary erasure channel.  

2.5. Relation Between the Bhattacharya Parameters and the Capacity Over 

Binary Erasure Channels  

For the binary erasure channel BEC(𝜖) shown in Figure 2.16, the relationship 

between the channel capacity 𝐼(𝑊) and the Bhattacharya Parameter 𝑍(𝑊) is 

explained in this section. 
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Figure 2.16: Binary erasure channel BEC(𝜖) 

For a BEC(𝜖), input and output alphabets are 𝑋 = {0,1}, 𝑌 = {0,1, 𝑒} respectively.  

So, Bhattacharyya parameter for a BEC is calculated as  

𝑍(𝑊) =  √𝑊(0|0)𝑊(0|1)  + √𝑊(𝑒|0)𝑊(𝑒|1) + √𝑊(1|0)𝑊(1|1)  . 

𝑊(0|0)𝑊(0|1) and 𝑊(1|0)𝑊(1|1) = 0, so, 𝑍(𝑊) =  √𝑊(𝑒|0)𝑊(𝑒|1) =  𝜖.  

In other words, 𝑍(𝑊) equals to the erasure probability of the binary erasure channel. 

Moreover, the capacity of the BEC(𝜖) is calculated as 

𝐶 = 𝑚𝑎𝑥 𝐼(𝑋; 𝑌) = 𝑚𝑎𝑥(𝐻(𝑋) − 𝐻(𝑋|𝑌))  

If 𝑌 = 0 or 𝑌 = 1, then 𝑋 is known exactly, so  𝐻(𝑋|𝑌 ≠ 𝑒) = 0. Moreover, 

𝐻(𝑋|𝑌 = 𝑒) = 𝐻(𝑋), so 

𝐻(𝑋|𝑌) = 𝐻(𝑋|𝑌 ≠ 𝑒)𝑃(𝑌 ≠ 𝑒) + 𝐻(𝑋)𝑃(𝑌 = 𝑒) 

                                              = 𝐻(𝑋)𝑃(𝑌 = 𝑒) 

                                              = 𝐻(𝑋) × 𝜖 

and 𝐼(𝑋; 𝑌) equals 

𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) = (1 − 𝜖)𝐻(𝑋) 

                                                    ≤ 1 − 𝜖 

Hence 𝐶 = 𝑚𝑎𝑥 𝐼(𝑋; 𝑌) = 1 − 𝜖.  
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So, the capacity 𝐼(𝑊) of the binary erasure channel (BEC) is equal to  1 − 𝑍(𝑊). 

For 𝑁 = 2𝑛, 𝑛 ≥ 0, 1 ≤ 𝑖 ≤ 𝑁 and BEC(𝜖), Bhattacharya parameters can be 

computed through the recursion 

𝑍(𝑊𝑁
(2𝑖−1)) = 2𝑍(𝑊𝑁/2

(𝑖)) − 𝑍(𝑊𝑁/2
(𝑖))2 

𝑍(𝑊𝑁
(2𝑖)) = 𝑍(𝑊𝑁/2

(𝑖))2                                                           (2.6) 

where 𝑍(𝑊1
(1)) = 𝜖. Also, channel capacities {𝐼(𝑊𝑁

(𝑖))} can be computed using the 

recursive relations  

𝐼(𝑊𝑁
(2𝑖)) = 2𝐼(𝑊𝑁/2

(𝑖)) − 𝐼(𝑊𝑁/2
(𝑖))2 

                                    𝐼(𝑊𝑁
(2𝑖−1)) = 𝐼(𝑊𝑁/2

(𝑖))2, 

where 𝐼(𝑊1
(1)) = 1 − 𝑍(𝑊1

(1)
) = 1 − 𝜖. These recursions can be used to show that 

𝐼(𝑊𝑁
(𝑖)) = 1 − 𝑍(𝑊𝑁

(𝑖)) for a BEC [Arıkan, 2009]. However, this relation between 

the Bhattacharya parameters and channel capacities is obtained for the synthesized 

channel 𝑊𝑁, which is represented by the “n-...-2-1” stage ordered FG. 

As was mentioned in Section 2.3, for polar (or RM) codes of blocklength 𝑁 = 2𝑛, 

there are 𝑛! different FG’s. By changing the stage order of an FG, the order of 

channel capacities may also change. For the synthesized channel 𝑊8, which is 

represented by the 3-2-1 factor graph, channel capacities of each subchannel over 

BEC(0.35) was given in Figure 2.12. We now present in Table 2.1, the channel 

capacities for 𝑁 = 8 over BEC(0.35) for each of the 6 possible FG’s.  One observes 

that each FG has a different order of channel capacities.  

On the other hand, Bhattacharya parameters, which are obtained by using (2.6), do 

not change with changing stage order and they remain the same for all FG’s. In Table 

2.1, capacities that match with 1 − 𝑍(𝑊𝑁
(𝑖)) values are given in bold numbers to 
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demonstrate that only the reference 3-2-1 FG satisfies the equality: 𝐼(𝑊𝑁
(𝑖)) = 1 −

𝑍(𝑊𝑁
(𝑖)). 

Table 2.1: Channel capacities over BEC(0.35) of all factor graphs as compared to (1─ Bhattacharya 

parameters) for 𝑁 = 8. 

Input Bit 

Positions 

(𝑖) 
1 − 𝑍(𝑊𝑁

(𝑖)) 

𝐼(𝑊𝑁
(𝑖)) 

for  

3-2-1 

Factor 

Graph 

𝐼(𝑊𝑁
(𝑖)) 

for 
3-1-2 

Factor 

Graph 

𝐼(𝑊𝑁
(𝑖)) 

for 
2-3-1 

Factor 

Graph 

𝐼(𝑊𝑁
(𝑖)) 

for  

2-1-3 

Factor 

Graph 

𝐼(𝑊𝑁
(𝑖)) 

for  

1-3-2 

Factor 

Graph 

𝐼(𝑊𝑁
(𝑖)) 

for  

1-2-3 

Factor 

Graph 

1 0.0319 0.0319 0.0319 0.0319 0.0319 0.0319 0.0319 

2 0.5929 0.5929 0.4442 0.5929 0.4442 0.3251 0.3251 

3 0.4442 0.4442 0.5929 0.3251 0.3251 0.5929 0.4442 

4 0.9702 0.9702 0.9702 0.9471 0.8888 0.9471 0.8888 

5 0.3251 0.3251 0.3251 0.4442 0.5929 0.4442 0.5929 

6 0.9471 0.9471 0.8888 0.9702 0.9702 0.8888 0.9471 

7 0.8888 0.8888 0.9471 0.8888 0.9471 0.9702 0.9702 

8 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 

 

For an (𝑁, 𝐾) polar code designed over a BEC, the choice of the 𝐾 information bits 

depends on the channel capacities and the Bhattacharya parameters. Relation 

𝐼(𝑊𝑁
(𝑖)) = 1 − 𝑍(𝑊𝑁

(𝑖)), 𝑖 = 1,… ,𝑁,   that is valid for the “𝑛-...-2-1” stage ordered 

factor graph [Arıkan, 2009] ensures that channels with highest capacities also have 

the least possible Bhattacharya parameters. Therefore, channels of the “𝑛-...-2-1” FG 

that are selected to send information, have the largest symmetric capacities  

𝐼(𝑊𝑁
(𝑖)), and the smallest Bhattacharya parameters 𝑍(𝑊𝑁

(𝑖)).  

Because of this 𝐼(𝑊𝑁
(𝑖)) = 1 − 𝑍(𝑊𝑁

(𝑖)) characteristic of the “𝑛-...-2-1” factor 

graph, we call it the reference factor graph (RFG), and adjust the input information 

bit positions of all other FG’s of the polar code according to this reference FG. 

As mentioned in Section 2.3, the information bit indices corresponding to the largest-

capacity bit channels on the reference factor graph (RFG) of the (𝑁, 𝐾) polar encoder 

select 𝐾 basis vectors from the 𝑁 × 𝑁 transformation matrix 𝐺𝑁 = 𝐹⊗𝑛, which 
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construct the 𝐾 × 𝑁 generator matrix 𝐺𝑃. A question of interest to be discussed in 

Chapter 3 is, whether the transformation matrix 𝐺𝑁 differs or remains the same for 

FG’s with different stage permutations. Although stage transitions seem to be linear, 

it is not clear whether these linear transitions are permutable without affecting the 

overall transformation matrix 𝐺𝑁, because 𝑁 × 𝑁 matrix multiplication is not 

commutative in general. 
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CHAPTER 3 

 

 

2. TRANSFORMATION MATRIX FOR DIFFERENT STAGE 

PERMUTATIONS 

 

 

 

In this chapter, we discuss whether the generator matrix 𝐺𝑃 of an (𝑁, 𝐾) code 

changes, when the stage order of the FG is changed while keeping the positions of 

the information bits the same as those of the reference, “𝑛-...-2-1” factor graph. Since 

the information bit positions are fixed, selected row indices from the transformation 

matrix 𝐺𝑁 remain the same for all stage permutations. This implies that if 𝐺𝑁 is 

invariant under stage permutations, so is the generator matrix 𝐺𝑃.  

For polar codes, the effect of stage permutations on the encoder graph is discussed, 

and permutation-invariance of the transformation matrix 𝐺𝑁 = 𝐹⊗𝑛 is proved in 

[Vangala, 2014] by using the properties of the Kronecker product operation.  In this 

chapter, we use a different approach to prove the invariance of the transformation 

matrix under stage permutations. In Section 3.1, we decompose the transformation 

matrix 𝐺𝑁 into stage matrices 𝐺𝑁
(𝑖)

 and discuss their properties. In Section 3.2, by 

using the properties of the stage matrices, we show that 𝑛! different factor graphs 

have the same transformation matrix 𝐺𝑁; in other words, both the 𝑁 × 𝑁 

transformation matrix 𝐺𝑁, and the 𝐾 × 𝑁 generator matrix 𝐺𝑃 are invariant under 

stage permutations, provided that the input information bit positions are kept fixed.  

3.1. Decomposition of the Transformation Matrix 𝑮𝑵 into Stage Matrices 𝑮𝑵
(𝒊)

 

In this section, we factor the overall transformation 𝐺𝑁 into n stage matrices for a 

block length 𝑁 = 2𝑛, where each stage is represented by a particular  𝑁 × 𝑁 matrix. 
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We call the transformation matrix of the 𝑖′th stage, the stage matrix 𝐺𝑁
(𝑖)

, for 1 ≤ 𝑖 ≤

𝑛. To simplify the description of a stage matrix 𝐺𝑁
(𝑖)

, we start with an example for 

𝑁 = 8.  

Example 3.1: For 𝑁 = 8, one can construct the stage matrices 𝐺8
(1)

, 𝐺8
(2)

, 𝐺8
(3)

 

corresponding to three stages. Referring to the 1-2-3 factor graph (that is the first 

diagram in Figure 2.11), let us call the input vector 𝑢1
8, and the outputs of the 1st, 2nd 

and 3rd stages 𝑎1
8, 𝑏1

8, and 𝑦1
8 respectively. Notice that the basic Z structure 

represented by 𝐹 = [
1 0
1 1

] is implemented by the smallest size Z’s in Stage 1 of the 

graph. So, calling the input 𝑢1
𝑁 , and the output of Stage 1, 𝑎1

𝑁, corresponding input-

output relation can be expressed as 𝑎1
8 = 𝑢1

8𝐺8
(1)

, where the 8 × 8 stage matrix 𝐺8
(1)

is 

obtained by repeating four 2x2 submatrices (F), shown below in bold and normal 

letters successively as 

𝐺8
(1)

=

[
 
 
 
 
 
 
 
𝟏 𝟎 0 0 0 0 0 0
𝟏 𝟏 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 𝟏 𝟎 0 0
0 0 0 0 𝟏 𝟏 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1]

 
 
 
 
 
 
 

. 

Stage 2 contains 4 larger size Z’s, represented by 3 × 3 submatrices 𝐹(2) =

[
𝟏 0 𝟎
0 0 0
𝟏 0 𝟏

], obtained by lengthening F with an all-zero second row and all-zero 

second column. Corresponding stage matrix 𝐺8
(2)

 describes the input-output relation 

𝑏1
8 = 𝑎1

8𝐺8
(2)

 of Stage 2, where we use bold and normal letters for four (𝑁/2)  

successive Z connections 
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𝐺8
(2)

=

[
 
 
 
 
 
 
 
𝟏 0 𝟎 0 0 0 0 0
0 1 0 0 0 0 0 0
𝟏 0 𝟏 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 𝟏 0 𝟎 0
0 0 0 0 0 1 0 0
0 0 0 0 𝟏 0 𝟏 0
0 0 0 0 0 1 0 1]

 
 
 
 
 
 
 

. 

 Stage 3 has the input-output relation 𝑦1
8 = 𝑏1

8𝐺8
(3)

 where the stage matrix, 𝐺8
(3)

, is 

formed using four  5×5 submatrices 𝐹(3) =

[
 
 
 
 
𝟏 0 0 0 𝟎
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
𝟏 0 0 0 𝟏]

 
 
 
 

 obtained by 

lengthening 𝐹 with all-zero 2nd, 3rd, 4th rows and all-zero 2nd, 3rd, 4th columns. These 

four (𝑁/2) submatrices are shown below in 𝐺8
(3)

, again by successive bold and 

normal letters, as 

𝐺8
(3)

=

[
 
 
 
 
 
 
 
𝟏 0 0 0 𝟎 0 0 0
0 1 0 0 0 0 0 0
0 0 𝟏 0 0 0 𝟎 0
0 0 0 1 0 0 0 0
𝟏 0 0 0 𝟏 0 0 0
0 1 0 0 0 1 0 0
0 0 𝟏 0 0 0 𝟏 0
0 0 0 1 0 0 0 1]

 
 
 
 
 
 
 

. 

 

Notice that the overall transformation matrix of the 1-2-3 factor graph can now be 

obtained by substituting the input-output relation of the 2nd and 1st stages into that of 

the 3rd stage as 𝑦1
8 = 𝑏1

8𝐺8
(3)

= 𝑎1
8𝐺8

(2)
𝐺8

(3)
= 𝑢1

8𝐺8
(1)

𝐺8
(2)

𝐺8
(3)

= 𝑢1
8𝐺8. Hence, 

𝐺8
(1)

𝐺8
(2)

𝐺8
(3)

= 𝐺8.  

After this example for 𝑁 = 8, we generalize the descriptions of the submatrices 𝐹(𝑖) 

and the stage matrices 𝐺𝑁
(𝑖) in Definition 3.1 and Definition 3.2.  

 



36 

 

Definition 3.1 - Submatrices 𝑭(𝒊), 𝒊 = 𝟏,… , 𝒏 : 

𝑀𝑖 × 𝑀𝑖 submatrices 𝐹(𝑖) with 𝑀𝑖 = 2𝑖−1 + 1 of the form 𝐹(𝑖) =

[
 
 
 
 
𝟏 0 … 0 𝟎
0 0 … 0 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 … 0 0
𝟏 0 … 0 𝟏]

 
 
 
 

 

are generated by lengthening F with (𝑀𝑖 − 2) all-zero rows and (𝑀𝑖 − 2) all-zero 

columns. The matrix 𝐹(𝑖) = {𝑓𝑗𝑘}, 𝑗, 𝑘 = 1,… ,𝑀𝑖, has all-zero entries except the 

three unity entries; i.e., 𝑓11 = 𝑓𝑀𝑖,1
= 𝑓𝑀𝑖𝑀𝑖

= 1. Notice that 𝐹(1) = 𝐹 , and all 

submatrices 𝐹(𝒊) are lower triangular just like F. 

Definition 3.2 - Stage Matrices 𝑮𝑵
(𝒊)

, 𝒊 = 𝟏,… , 𝒏 : 

𝑁 × 𝑁 stage matrices 𝐺𝑁
(𝑖)

 are formed by successively inserting 𝑀𝑖 × 𝑀𝑖 submatrices 

𝐹(𝑖) to proper diagonal positions of an all-zero 𝑁 × 𝑁 matrix so that none of the 

unity elements of the submatrices overlap. The submatrix size 𝑀𝑖 = 2𝑖−1 + 1, where 

𝑖 = 1, … , 𝑛, is less than 𝑁 = 2𝑛 for 𝑛 > 1; and 𝐺𝑁
(𝑖)

 contains 𝑁/2 non-overlapping 

𝑀𝑖 × 𝑀𝑖 submatrices of the form 

𝐹(𝑖) =

[
 
 
 
 
𝟏 0 … 0 𝟎
0 0 … 0 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 … 0 0
𝟏 0 … 0 𝟏]

 
 
 
 

. 

Insertion of the 𝑁/2 submatrices 𝐹(𝑖)  into an all-zero 𝑁 × 𝑁 matrix is such that the 

first element 𝑓11
(𝑖)

 of 𝐹(𝑖) is equated to the first 2𝑖−1 successive diagonal elements, 

𝑔𝑗𝑗
(𝑖)

, for 𝑗 = 1,… , 2𝑖−1, and the following 2𝑖−1 successive diagonal positions are 

skipped. This procedure is repeated until all diagonal positions of 𝐺𝑁
(𝑖)

 are filled with 

one’s. 
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Examples of 𝑮𝑵
(𝒊)

 for 𝒊 = 𝟏, 𝟐, 𝟑:  

• The first element 𝑓11
(1)

 of the original 𝐹 = 𝐹(1) matrix is inserted into the 1st, 

3rd, 5th … and (𝑁 − 1)st diagonal positions of an all-zero 𝑁 × 𝑁 matrix, by 

skipping its 2nd, 4th, 6th, … 𝑁th diagonal elements, which are already occupied 

by 𝑓22
(1)

 of the previous insertions. 𝐺𝑁
(1)

 is formed when all diagonal entries 

are filled with 1’s. 

• Similarly, the first element 𝑓11
(2)

 of the 3 × 3  𝐹(2) matrix is inserted into the 

1st, 2nd and 5th, 6th … and (𝑁 − 3)rd, (𝑁 − 2)nd diagonal elements of an all-

zero 𝑁 × 𝑁 matrix  by skipping its 3rd, 4th, … and (𝑁 − 1)th , 𝑁th … diagonal 

positions. 𝐺𝑁
(2)

 is formed when all diagonal entries are filled with 1’s. 

• The 5 × 5 matrix 𝐹(3) is inserted into the 1st, 2nd , 3rd, 4th, …., (𝑁 − 7)th, (𝑁 −

6)th, (𝑁 − 5)th, (𝑁 − 4)th rows/columns of an all-zero 𝑁 × 𝑁 matrix by 

skipping its 5th , 6th, 7th , 8th … rows/columns until 𝐺𝑁
(3)

is formed. 

Properties of the Stage Matrix 𝑮𝑵
(𝒊)

= {𝒈𝒋𝒌
(𝒊)}, 𝒋, 𝒌 = 𝟏,… ,𝑵:     

1. It is lower triangular, since each lower triangular submatrix 𝐹(𝑖) is inserted 

into a diagonal element of 𝐺𝑁
(𝑖)

 having the same row/column index. 

2. All diagonal elements 𝑔𝑗𝑗
(𝑖)

 are equal to 1. 

3. There are 𝑁 +
𝑁

2
 nonzero elements of 𝐺𝑁

(𝑖)
 that are equal to one. 𝑁 of them are 

on the diagonal, remaining 
𝑁

2
 one’s are on the m’th subdiagonal, having the 

elements 𝑔𝑗,(𝑗−𝑚)
(𝑖)

, where  𝑚 = 2𝑖−1 and 𝑗 = (2𝑖−1 + 1),… , 𝑁. 

4. 
𝑁

2
 one’s on the (2𝑖−1)’th subdiagonal have the specific positions defined by 

𝑔
𝑗,(𝑗−2𝑖−1)

(𝑖)
= {

1,    𝑖𝑓 (𝑗 − 1)𝑚𝑜𝑑(2𝑖) ≥  2𝑖−1

0,                                              𝑒𝑙𝑠𝑒
}. 
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3.2. Invariance of the Transformation Matrix 𝐆𝐍 under Stage Permutations 

Now we will remember the mathematical definitions of “persymmetry” and “flip 

transpose” and prove a sequence of lemmas to arrive at the main conclusion given by 

Corollary 3.1 of Proposition 3.1; that is, the input-output relation describing any of 

the n-stage-factor graphs is invariable under the permutation of stages. In other 

words, all of the 𝑛! different factor graphs have the same transformation matrix 𝐺𝑁 in 

their input-output relation 𝑦1
𝑁 = 𝑢1

𝑁𝐺𝑁. 

Definition 3.3 (Flip Transpose and Persymmetric Matrices): 

Flip transpose 𝐴𝐹 of a matrix 𝐴 = {𝑎𝑖𝑗} is defined as 𝐴𝐹 = 𝐵 = {𝑏𝑖𝑗} =

{𝑎𝑁−𝑗+1,   𝑁−𝑖+1}.  

If 𝐴 is a persymmetric matrix, its elements satisfy 𝑎𝑖𝑗 = 𝑎𝑁−𝑗+1,   𝑁−𝑖+1 for all 𝑖, 𝑗 =

1, … , 𝑁. Hence, 𝐴 = 𝐴𝐹  and 𝐴 is symmetrical with respect to its skew diagonal 

combining the upper right element 𝑎1𝑁 to the lower left element 𝑎𝑁1. 

Notice that the identity matrix 𝐼 is both symmetric and persymmetric; that is 𝐼𝐹 =

𝐼𝑇 = 𝐼. 

One can also show that the “flip transpose of a product”, (𝐴𝐵)𝐹 = 𝐵𝐹𝐴𝐹 can be 

found by the same rule applied to the “transpose of a product”; i.e., (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇. 

Lemma 3.1: For a blocklength 𝑁 = 2𝑛, the transformation matrix 𝐺𝑁 of the “1-2-…-

𝑛” factor graph can be calculated as 𝐺𝑁 = 𝐺𝑁
(1)

𝐺𝑁
(2)

… 𝐺𝑁
(𝑛)

. 

Proof:  

For a blocklength 𝑁 = 2𝑛, the input-output relation is defined by the transformation  

𝑦1
𝑁 = 𝑢1

𝑁𝐺𝑁. 
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To simplify notation, we denote the 𝑁 bit input and output vectors of the first stage 

by 𝑋1 & 𝑌1, those of the second stage by 𝑋2 & 𝑌2 and those of the 𝑛’th stage by 𝑋𝑛 & 

𝑌𝑛. If the stages are in the order “1-2-…-𝑛”, corresponding input-output equations 

are 

𝑌1 = 𝑋1𝐺𝑁
(1)

,  𝑌2 = 𝑋2𝐺𝑁
(2)

, … , 𝑌𝑛 = 𝑋𝑛𝐺𝑁
(𝑛)

, where 𝑌𝑛 = 𝑦1
𝑁 , 𝑋1 = 𝑢1

𝑁 , and 𝑋𝑖 =

𝑌𝑖−1 for 𝑖 = 2,… , 𝑛. Hence the input-output equation from the first to the second 

stage can be written as 𝑌2 = 𝑋2𝐺𝑁
(2)

= 𝑌1𝐺𝑁
(2)

= 𝑋1𝐺𝑁
(1)

𝐺𝑁
(2)

. 

Now assuming that the input-output equation from Stage 1 to Stage (𝑛 − 1) is  

𝑌𝑛−1 = 𝑋1𝐺𝑁
(1)

𝐺𝑁
(2)

…  𝐺𝑁
(𝑛−1)

, 

one can compute the overall input-output relation as 

𝑌𝑛 = 𝑋𝑛𝐺𝑁
(𝑛)

= 𝑌𝑛−1𝐺𝑁
(𝑛)

= 𝑋1𝐺𝑁
(1)

𝐺𝑁
(2)

…  𝐺𝑁
(𝑛−1)

𝐺𝑁
(𝑛)

 

which shows that the overall transition matrix is 𝐺𝑁 = 𝐺𝑁
(1)

𝐺𝑁
(2)

…  𝐺𝑁
(𝑛−1)

𝐺𝑁
(𝑛)

. 

In the following part, our aim is to show that the multiplication order of these stage 

matrices can be changed without affecting the overall transformation. Hence the 

factor graphs implemented by 𝑛! different stage permutations have the same input-

output relation. Following definitions and lemmas are needed to approach this aim 

step by step. 

Lemma 3.2 Submatrix 𝐹(𝑖) of an arbitrary 𝑖𝑡ℎ stage, 1 ≤ 𝑖 ≤ 𝑛, is a persymmetric 

matrix. 
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Proof:  

The 𝑀𝑖 × 𝑀𝑖 submatrices 𝐹(𝑖) =

[
 
 
 
 
𝟏 0 … 0 𝟎
0 0 … 0 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 … 0 0
𝟏 0 … 0 𝟏]

 
 
 
 

, with 𝑀𝑖 = 2𝑖−1 + 1, are 

generated by lengthening F with (𝑀𝑖 − 2) all-zero rows and (𝑀𝑖 − 2) all-zero 

columns,  So, 𝐹(𝑖) has all-zero entries 𝑓𝑗𝑘  except the three unity entries; i.e., 𝑓11 =

𝑓𝑀𝑖1
= 𝑓𝑀𝑖𝑀𝑖

= 1. The element 𝑓𝑀𝑖1
  is on the skew diagonal and the equation 𝑓11 =

𝑓𝑀𝑖𝑀𝑖
 satisfies the condition of persymmetry. Hence, 𝐹(𝑖)’s are symmetric about their 

cross diagonal (combining the upper right-end entry 𝑓1𝑀𝑖
 to the lower left-end entry 

𝑓𝑀𝑖1
); i.e., they are persymmetric, hence (𝐹𝑀𝑖×𝑀𝑖

(𝑖) )
𝐹

= 𝐹𝑀𝑖×𝑀𝑖

(𝑖)
. 

Lemma 3.3 The stage matrix 𝐺𝑁
(𝑖)

 of an arbitrary 𝑖𝑡ℎ stage, 1 ≤ 𝑖 ≤ 𝑛, is also a 

persymmetric matrix. 

Proof: 

For 𝑛 = 1, there is a single stage and the stage matrix equals to 𝐹 = [
1 0
1 1

]. It is a 

persymmetric matrix, because it is symmetrical with respect to its skew-diagonal. 

For 𝑛 = 2, block length is  𝑁 = 2𝑛 = 4 and there are two stage matrices; 𝐺4
(1)

 and 

𝐺4
(2)

: 

𝐺4
(1)

= [

𝟏 0 0 0
𝟏 𝟏 0 0
0 0 𝟏 0
0 0 𝟏 𝟏

],        𝐺4
(2)

= [

𝟏 0 0 0
0 𝟏 0 0
𝟏 0 𝟏 0
0 𝟏 0 𝟏

]. 

Stage matrices; 𝐺4
(1)

 and 𝐺4
(2)

, satisfy 𝑎𝑖𝑗 = 𝑎𝑁−𝑗+1,   𝑁−𝑖+1 for all 𝑖, 𝑗 = 1,… , 𝑁 = 4, 

so, they are persymmetric (for 𝑛 = 3, persymmetry can be observed in Example 3.1). 



41 

 

We also observe that 𝐺8
(1)

and 𝐺8
(2)

 stage matrices can respectively be written in terms 

of 𝐺4
(1)

and 𝐺4
(2)

 stage matrices as 

𝐺8
(1)

= [
(𝐺4

(1)
)4×4 (0)4×4

(0)4×4 (𝐺4
(1)

)4×4

],  𝐺8
(2)

= [
(𝐺4

(2)
)4×4 (0)4×4

(0)4×4 (𝐺4
(2)

)4×4

]. 

In general, when increasing the stage number from 𝑛 to 𝑛 + 1, block length increases 

from 2𝑛 = 𝑁 to 2𝑛+1 = 2𝑁. For an arbitrary 𝑖𝑡ℎ stage, 1 ≤ 𝑖 ≤ 𝑛, dimensions of the 

submatrix 𝐹(𝑖) does not change with increasing stage number. 𝐺2𝑁
(𝑖)

 is generated by 

inserting 𝐹(𝑖) to the first 2𝑖−1 successive positions (in diagonal entries with starting 

from 𝑔11) and skipping the following 2𝑖−1 successive positions. From 𝑔11 to 𝑔𝑁𝑁, by 

inserting 𝐹(𝑖) to the first 2𝑖−1 successive positions and skipping the following 2𝑖−1 

successive positions, we obtain the stage matrix 𝐺𝑁
(𝑖)

, in which 𝐹(𝑖)’s is repeated 

2𝑛−1 times. From 𝑎𝑁+1,𝑁+1 to 𝑎2𝑁,2𝑁, 𝐹(𝑖)’s are inserted 2𝑛−1 times in the same 

manner and again we obtain 𝐺𝑁
(𝑖)

 stage matrix. In total, 𝐹(𝑖)’s are repeated 2𝑛  times 

in 𝐺2𝑁
(𝑖)

 and 𝐺2𝑁
(𝑖)

 can be written in terms of the stage matrix 𝐺𝑁
(𝑖)

 as 

𝐺2𝑁
(𝑖)

= [
(𝐺𝑁

(𝑖)
)𝑁×𝑁 (0)𝑁×𝑁

(0)𝑁×𝑁 (𝐺𝑁
(𝑖)

)𝑁×𝑁

]. 

In order to prove Lemma 3.3 by induction, we first observe the persymmetry for 𝑛 =

1, 2. Then we let 𝑛 = 𝑘, corresponding to the block length 𝑁 = 2𝑘, and assume that, 

the stage matrix of an arbitrary 𝑖𝑡ℎ stage, 1 ≤ 𝑖 ≤ 𝑛, 𝐺𝑁
(𝑖)

 is persymmetric; that is 

((𝐺𝑁
(𝑖))

𝑁×𝑁
)𝐹 = 𝐺𝑁

(𝑖)
. 

For 𝑛 = 𝑘 + 1, block length equals to 2𝑘+1 = 2 × 2𝑘 = 2𝑁 and we need to show 

that the stage matrix of an arbitrary 𝑖𝑡ℎ stage, 1 ≤ 𝑖 ≤ 𝑘 + 1,  𝐺2𝑁
(𝑖)

 is persymmetric. 

One can write the stage matrix of the 𝑖𝑡ℎ stage, 𝐺2𝑁
(𝑖)

 for 1 ≤ 𝑖 ≤ 𝑘, as  



42 

 

𝐺2𝑁
(𝑖)

= [
(𝐺𝑁

(𝑖)
)𝑁×𝑁 (0)𝑁×𝑁

(0)𝑁×𝑁 (𝐺𝑁
(𝑖)

)𝑁×𝑁

] 

By taking the flip-transpose of 𝐺2𝑁
(𝑖)

, we obtain 

                                      (𝐺2𝑁
(𝑖)

)𝐹 = [
((𝐺𝑁

(𝑖))
𝑁×𝑁

)𝐹 ((0)𝑁×𝑁)𝐹

((0)𝑁×𝑁)𝐹 ((𝐺𝑁
(𝑖))

𝑁×𝑁
)𝐹

] 

= [
(𝐺𝑁

(𝑖)
)𝑁×𝑁 (0)𝑁×𝑁

(0)𝑁×𝑁 (𝐺𝑁
(𝑖)

)𝑁×𝑁

] 

Using the persymmetry assumption in the last line, we observe that (𝐺2𝑁
(𝑖)

)𝐹 = 𝐺2𝑁
(𝑖)

, 

hence, the stage matrix 𝐺2𝑁
(𝑖)

 is persymmetric for an arbitrary 𝑖𝑡ℎ stage, 1 ≤ 𝑖 ≤ 𝑘.  

For 𝑖 = 𝑘 + 1, where 2𝑘+1 = 2𝑁, using the properties of the stage matrices, 𝐺2𝑁
(𝑘+1 )

 

can be written as 

𝐺2𝑁
(𝑘+1)

=

[
 
 
 
 
 
 
 
 
1 0 0 0 0 0 ⋯ 0 0
0 1 0 0 0 ⋯ ⋯ 0 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮ ⋮
0 ⋯ 0 1 0 0 ⋯ 0 0
1 0 ⋯ 0 1 0 0 0 0
0 1 0 ⋯ 0 1 0 0 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 1 0 ⋯ 0 1 0
0 0 ⋯ 0 1 0 ⋯ 0 1]

 
 
 
 
 
 
 
 

 

𝐺2𝑁
(𝑘+1)

 has 2𝑁 unity entries on the diagonal (from 𝑎11 to 𝑎2𝑁,2𝑁) and 𝑁 one’s on the 

subdiagonal (from 𝑎1,𝑁+1 to 𝑎𝑁,2𝑁). Therefore,  𝐺2𝑁
(𝑘+1)

 can be partitioned into four 

 𝑁 × 𝑁 blocks as: 

𝐺2𝑁
(𝑘+1)

= [
𝐼𝑁×𝑁 (0)𝑁×𝑁

𝐼𝑁×𝑁 𝐼𝑁×𝑁
] 

By taking the flip-transpose of 𝐺2𝑁
(𝑘+1)

, one obtains 
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(𝐺2𝑁
(𝑘+1)

)𝐹 = [
(𝐼𝑁×𝑁)𝐹 ((0)𝑁×𝑁)𝐹

(𝐼𝑁×𝑁)𝐹 (𝐼𝑁×𝑁)𝐹 ] = [
𝐼𝑁×𝑁 (0)𝑁×𝑁

𝐼𝑁×𝑁 𝐼𝑁×𝑁
] = 𝐺2𝑁

(𝑘+1)
 

So, the flip-transpose of the stage matrix, 𝐺2𝑁
(𝑘+1 )

 equals to itself and it is 

persymmetric. Hence, the assumption which is made for 𝑛 = 𝑘, also holds for 𝑛 =

𝑘 + 1, and 𝐺2𝑁
(𝑖)

 is a persymmetric matrix for an arbitrary 𝑖𝑡ℎ stage, 1 ≤ 𝑖 ≤ 𝑘 + 1. 

We have thus shown by induction that the stage matrix of an arbitrary 𝑖𝑡ℎ stage, 1 ≤

𝑖 ≤ 𝑛,  𝐺𝑁
(𝑖)

 is a persymmetric matrix. 

Not only the stage matrices, but their products are also persymmetric as 

demonstrated for a blocklength 𝑁 = 8 in Example 3.2 and proved in Lemma 3.4. 

Example 3.2:  

For a blocklength 𝑁 = 8, where 𝑛 = 3, there are three stage matrices; 𝐺8
(1)

, 𝐺8
(2)

, 𝐺8
(3)

. 

The pairwise products of stage matrices can be found as: 

𝐴 = 𝐺8
(1)

𝐺8
(2)

=

[
 
 
 
 
 
 
 
𝟏 0 0 0 0 0 0 0
𝟏 𝟏 0 0 0 0 0 0
𝟏 0 𝟏 0 0 0 0 0
𝟏 𝟏 𝟏 𝟏 0 0 0 0
0 0 0 0 𝟏 0 0 0
0 0 0 0 𝟏 𝟏 0 0
0 0 0 0 𝟏 0 𝟏 0
0 0 0 0 𝟏 𝟏 𝟏 𝟏]

 
 
 
 
 
 
 

 

𝐵 = 𝐺8
(1)

𝐺8
(3)

=

[
 
 
 
 
 
 
 
𝟏 0 0 0 0 0 0 0
𝟏 𝟏 0 0 0 0 0 0
0 0 𝟏 0 0 0 0 0
0 0 𝟏 𝟏 0 0 0 0
𝟏 0 0 0 𝟏 0 0 0
𝟏 𝟏 0 0 𝟏 𝟏 0 0
0 0 𝟏 0 0 0 𝟏 0
0 0 𝟏 𝟏 0 0 𝟏 𝟏]
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𝐶 = 𝐺8
(2)

𝐺8
(3)

=

[
 
 
 
 
 
 
 
𝟏 0 0 0 0 0 0 0
0 𝟏 0 0 0 0 0 0
𝟏 0 𝟏 0 0 0 0 0
0 𝟏 0 𝟏 0 0 0 0
𝟏 0 0 0 𝟏 0 0 0
0 𝟏 0 0 0 𝟏 0 0
𝟏 0 𝟏 0 𝟏 0 𝟏 0
0 𝟏 0 𝟏 0 𝟏 0 𝟏]

 
 
 
 
 
 
 

 

One observes that the pairwise product matrices 𝐴, 𝐵 and 𝐶 are all persymmetric 

because elements of these matrices satisfy 𝑎𝑖𝑗 = 𝑎𝑁−𝑗+1,   𝑁−𝑖+1 for all 𝑖, 𝑗 = 1,… ,8. 

Lemma 3.4: Product 𝐺𝑁
(𝑟)

𝐺𝑁
(𝑠)

 of the stage matrices 𝐺𝑁
(𝑟)

 and 𝐺𝑁
(𝑠)

 of two arbitrary 

stages (1 ≤ 𝑟, 𝑠 ≤ 𝑛 and 𝑟 ≠ 𝑠) is persymmetric. 

Proof: In order to make the proof by induction, we first show that for 𝑛 = 2, 

𝐺4
(𝑟)

𝐺4
(𝑠)

 is persymmetric for all 1 ≤ 𝑟, 𝑠 ≤ 𝑛. 

For 𝑛 = 2 and block length 𝑁 = 4, there are two stage matrices; 𝐺4
(1)

 and 𝐺4
(2)

. 

Product of 𝐺4
(1)

 and 𝐺4
(2)

 equals to a persymmetric matrix, which is symmetrical with 

respect to its cross diagonal.  

𝐺4
(1)

𝐺4
(2)

= [

𝟏 0 0 0
𝟏 𝟏 0 0
𝟏 0 𝟏 0
𝟏 𝟏 𝟏 𝟏

] = 𝐺4
(2)

𝐺4
(1)

 

Note that this multiplication is also commutative as will be generalized in 

Proposition 3.1. Let us now assume that the product of the stage matrices 𝐺𝑁
(𝑟)

𝐺𝑁
(𝑠)

 of 

two arbitrary stages (1 ≤ 𝑟, 𝑠 ≤ 𝑛 and 𝑟 ≠ 𝑠) is persymmetric for  𝑛 = 𝑘, 𝑘 ≥ 1 and 

𝑁 = 2𝑘.  

For 𝑛 = 𝑘 + 1, blocklength equals to 2(𝑘+1) = 2𝑁. Then, 2𝑁 × 2𝑁 stage matrices of 

the 𝑟th and 𝑠th stages for 1 ≤ 𝑟, 𝑠 ≤ 𝑘, 𝐺2𝑁
(𝑟)

 and 𝐺2𝑁
(𝑠)

, are equal to 
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𝐺2𝑁
(𝑟)

= [
(𝐺𝑁

(𝑟)
)𝑁×𝑁 (0)𝑁×𝑁

(0)𝑁×𝑁 (𝐺𝑁
(𝑟)

)𝑁×𝑁

],  𝐺2𝑁
(𝑠)

= [
(𝐺𝑁

(𝑠))𝑁×𝑁 (0)𝑁×𝑁

(0)𝑁×𝑁 (𝐺𝑁
(𝑠))𝑁×𝑁

] 

Then, the product of 𝐺2𝑁
(𝑟)

 and 𝐺2𝑁
(𝑠)

equals 

𝐺2𝑁
(𝑟)

𝐺2𝑁
(𝑠)

= [
(𝐺𝑁

(𝑟)
𝐺𝑁

(𝑠))𝑁×𝑁 (0)𝑁×𝑁

(0)𝑁×𝑁 (𝐺𝑁
(𝑟)

𝐺𝑁
(𝑠))𝑁×𝑁

] 

The flip-transpose of 𝐺2𝑁
(𝑟)

𝐺2𝑁
(𝑠)

 equals to 

      (𝐺2𝑁
(𝑟)

𝐺2𝑁
(𝑠))

𝐹

= [
((𝐺𝑁

(𝑟)
𝐺𝑁

(𝑠))
𝑁×𝑁

)
𝐹

((0)𝑁×𝑁)𝐹

((0)𝑁×𝑁)𝐹 ((𝐺𝑁
(𝑟)

𝐺𝑁
(𝑠)

)
𝑁×𝑁

)
𝐹] 

               = [
(𝐺𝑁

(𝑟)
𝐺𝑁

(𝑠))𝑁×𝑁 (0)𝑁×𝑁

(0)𝑁×𝑁 (𝐺𝑁
(𝑟)

𝐺𝑁
(𝑠))𝑁×𝑁

] 

 We obtain that (𝐺2𝑁
(𝑟)

𝐺2𝑁
(𝑠))

𝐹

= 𝐺2𝑁
(𝑟)

𝐺2𝑁
(𝑠)

. So, the product of two stage matrices 𝐺2𝑁
(𝑟)

 

and 𝐺2𝑁
(𝑠)

 is persymmetric for two arbitrary stages (1 ≤ 𝑟, 𝑠 ≤ 𝑘 and 𝑟 ≠ 𝑠). 

For 𝑛 = 𝑘 + 1, there is an additional stage for 𝑖 = 𝑘 + 1, and  𝐺2𝑁
(𝑘+1 )

 can be written 

as 

𝐺2𝑁
(𝑘+1)

= [
𝐼𝑁×𝑁 (0)𝑁×𝑁

𝐼𝑁×𝑁 𝐼𝑁×𝑁
]. 

Product of 𝐺2𝑁
(𝑘+1 )

 and the stage matrix of an arbitrary stage 𝐺2𝑁
(𝑗)

,  1 ≤ 𝑗 ≤ 𝑘 equals 

to: 

     𝐺2𝑁
(𝑘+1)

𝐺2𝑁
(𝑗)

= [
𝐼𝑁×𝑁 (0)𝑁×𝑁

𝐼𝑁×𝑁 𝐼𝑁×𝑁
] [

(𝐺𝑁
(𝑗)

)
𝑁×𝑁

(0)𝑁×𝑁

(0)𝑁×𝑁 (𝐺𝑁
(𝑗)

)
𝑁×𝑁

] 
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               = [
𝐼𝑁×𝑁 (𝐺𝑁

(𝑗)
)
𝑁×𝑁

(0)𝑁×𝑁

𝐼𝑁×𝑁 (𝐺𝑁
(𝑗)

)
𝑁×𝑁

𝐼𝑁×𝑁 (𝐺𝑁
(𝑗)

)
𝑁×𝑁

] 

= [
(𝐺𝑁

(𝑗)
)
𝑁×𝑁

(0)𝑁×𝑁

(𝐺𝑁
(𝑗)

)
𝑁×𝑁

(𝐺𝑁
(𝑗)

)
𝑁×𝑁

]       

By taking the flip-transpose of 𝐺2𝑁
(𝑘+1)

𝐺2𝑁
(𝑗)

, we obtain 

(𝐺2𝑁
(𝑘+1)

𝐺2𝑁
(𝑗)

)
𝐹

= [
((𝐺𝑁

(𝑗)
)
𝑁×𝑁

)
𝐹

((0)𝑁×𝑁)𝐹

((𝐺𝑁
(𝑗)

)
𝑁×𝑁

)
𝐹

((𝐺𝑁
(𝑗)

)
𝑁×𝑁

)
𝐹]                     

                     = [
(𝐺𝑁

(𝑗)
)
𝑁×𝑁

(0)𝑁×𝑁

(𝐺𝑁
(𝑗)

)
𝑁×𝑁

(𝐺𝑁
(𝑗)

)
𝑁×𝑁

] = 𝐺2𝑁
(𝑘+1)

𝐺2𝑁
(𝑗)

 

Flip-transpose of 𝐺2𝑁
(𝑘+1)

𝐺2𝑁
(𝑗)

 equals to itself, so 𝐺2𝑁
(𝑘+1)

𝐺2𝑁
(𝑗)

 is also persymmetric. We 

obtain that for 𝑛 = 𝑘 + 1, the product of two stage matrices 𝐺2𝑁
(𝑟)

 and 𝐺2𝑁
(𝑠)

 is 

persymmetric for two arbitrary stages (1 ≤ 𝑟, 𝑠 ≤ 𝑘 + 1 and 𝑟 ≠ 𝑠). 

It shows that for 𝑛 = 𝑘 + 1, assumption that is made for 𝑛 = 𝑘, 𝑘 ≥ 1 holds.  By the 

principle of induction, it is true for all  𝑛 ≥ 1. 

Proposition 3.1: 

Product of the stage matrices 𝐺𝑁
(𝑖)

, for 1 ≤ 𝑖 ≤ 𝑛, is commutative; i.e.; 𝐺𝑁
(𝑖)

𝐺𝑁
(𝑗)

=

𝐺𝑁
(𝑗)

𝐺𝑁
(𝑖)

.                                     

Proof:  

The stage matrices  𝐺𝑁
(𝑖)

 are persymmetric matrices, 𝑔𝑖𝑘 = 𝑔𝑁−𝑘+1,𝑁−𝑖+1 for all 𝑖, 𝑘; 

as shown in Lemma 3.3. 
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Let 𝐴 = 𝐺𝑁
(𝑟)

= {𝑔𝑖𝑗} ∈ GF(2) and 𝐵 = 𝐺𝑁
(𝑠)

= {𝑔𝑖𝑗
′ } ∈ GF(2) be the stage matrices 

of two arbitrary stages for 1 ≤ 𝑟, 𝑠 ≤ 𝑛 and 𝑟 ≠ 𝑠.  

Calling 𝐴𝐵 = 𝐶 and 𝐵𝐴 = 𝐷, the entries 𝑐𝑖𝑗 and 𝑑𝑖𝑗  of 𝐶 and 𝐷 matrices are 

computed as 

𝑐𝑖𝑗 = ∑ 𝑎𝑖𝑘𝑏𝑘𝑗 
𝑁
𝑘=1    and 𝑑𝑖𝑗 = ∑ 𝑏𝑖𝑘𝑎𝑘𝑗 

𝑁
𝑘=1 . 

Flip-transpose of a persymmetric matrix equals to itself; i.e., 𝐴𝐹 = 𝐴, where 𝐴𝐹 

shows the flip-transpose of 𝐴, which flips 𝐴 across its skew diagonal. So, if  

𝐴 = {𝑎𝑖𝑗}, then 𝐴𝐹  = {𝑎𝑁−𝑗+1,𝑁−𝑖+1}. 

From Lemma 3.4, we know that the product of stage matrices is also persymmetric, 

so 𝐶 and 𝐷 matrices are persymmetric matrices. Hence,   

𝐶 = 𝐶𝐹 = (𝐴𝐵)𝐹 = 𝐵𝐹𝐴𝐹 = 𝐵𝐴 = 𝐷 ,                                        (3.1) 

where the last line in (3.1) follows because the flip-transposes of the 

persymmetric 𝐴 and 𝐵 matrices are equal to themselves. 

So, 𝐴 = 𝐺𝑁
(𝑟)

, and 𝐵 = 𝐺𝑁
(𝑠)

 are commutative 𝑁 × 𝑁 matrices; i.e., 𝐺𝑁
(𝑟)

𝐺𝑁
(𝑠)

=

𝐺𝑁
(𝑠)

𝐺𝑁
(𝑟)

 for 1 ≤ 𝑟, 𝑠 ≤ 𝑛. 

Corollary 3.1: 

For a block length 𝑁 = 2𝑛, the transformation matrix 𝐺𝑁 of the “1-2-…-n” factor 

graph calculated as 𝐺𝑁 = 𝐺𝑁
(1)

𝐺𝑁
(2)

… 𝐺𝑁
(𝑛)

 remains fixed for all other factor graphs 

with different stage orders. 

Proof: 

In Proposition 3.1, we show that the stage matrices 𝐺𝑁
(𝑖)

 commute under 

multiplication.  By using the commutative property, in 𝐺𝑁 = 𝐺𝑁
(1)

𝐺𝑁
(2)

… 𝐺𝑁
(𝑛)

, one 
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can pairwise change the order of 𝐺𝑁
(𝑖)

’s to obtain 𝑛! different permutations. Hence, 

the overall transformation matrix 𝐺𝑁 remains fixed under stage permutations. 

It is now clear that (log2𝑁)!  different FG representations of an (𝑁, 𝐾) polar code 

with fixed frozen bit and information bit positions of the RFG yield the same 

generator matrix 𝐺𝑃; however, since the capacity ranking of transmission paths may 

change as mentioned in Chapter 2 and shown in Table 2.1 (see p.30), the capacity 

sum (CS) of the 𝐾 largest-capacities may change from one FG to the other as will be 

revealed in the next chapter.  
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CHAPTER 4 

 

 

SET CHOICE FOR MULTIPLE FACTOR GRAPH BP DECODING 

 

 

 

In this chapter, we investigate the performance dependence of the BP decoder upon 

two parameters: the capacity sum (CS) [Doğan 2015] and the number of frozen 

variables (FV) of the implemented factor graph. For the factor graph (FG) 

implementation of an (𝑁, 𝐾) code, the “capacity sum-CS” is defined as the sum of 

the capacities of the 𝐾 transmission paths [Doğan, 2015] and FV is the “total number 

of frozen variables”. Since 𝑁 − 𝐾 input frozen bits form a subset of frozen variables 

in the overall graph, FV ≥ 𝑁 − 𝐾.  

We simulate single-FG (1-FG) and multiple-FG (𝑀-FG) decoders to evaluate the BP 

decoding performance of polar and Reed-Muller codes. Single-FG decoder uses a 

single factor graph; but multiple-FG decoder employs a pre-chosen set of 𝑀 > 1 

factor graphs, where all FG’s within the set are used one after the other to decode a 

received word. 

It is of interest to examine which choice of CS and FV values of the factor graphs 

gives the best single-FG and multiple-FG BP decoding performances. Dependence of 

the BP decoder performance on FV and CS values was previously discussed in 

[Doğan, 2015]. As expected, 𝑀-FG decoder performance improves with increasing 

𝑀 at the cost of increased complexity. So practical values of 𝑀 should be kept small 

although there exists a large variety of (log2𝑁)! factor graphs. The value of 𝑀 can 

be optimized according to the needs of the user; so we examine performance 

dependence of the BP decoder on 𝑀. The criterion for the choice of 𝑀 factor graphs 

among (log2𝑁)! alternatives is another question that we seek for an answer. As 

differently from Doğan’s choice of FG’s, we restrict our search space to FG’s with 

the highest number of frozen variables. 
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In Section 4.1 and 4.2, the capacity sum (CS) and the number of frozen variables 

(FV) parameters are briefly explained with simple examples for small values of 𝑁 = 

8, 16, and 32. We then use the CS and FV parameters to classify the factor graphs of 

the (8, 𝐾), (16, 8) and (32, 16) codes. For the (32, 16) polar codes over BEC(0.35), 

we group factor graphs with the same FV value into 5 “equi-FV sets” and those with 

the same CS value into 10 "equi-CS sets". Similar classification is made in Section 

4.3 for the (32, 16) RM codes, but it results in a single equi-CS set and a single equi-

FV set; i.e., CS and FV values of the RM codes remain the same for all 120 FG’s.  

In Section 4.4, single-FG and 𝑀-FG BP decoding performances of the (64, 32) and 

(128, 64) adaptive polar codes over BEC(0.35) are assessed. For evaluating 1-FG 

decoding performances, one FG from each equi-FV set is selected, and the effect of 

FV on the BP decoder is examined. For 𝑀-FG decoding, FG's in the maximum equi-

FV set are used to evaluate the decoding performance. Factor graphs in the 

maximum equi-FV set are ranked in decreasing order of CS values and 𝑀-FG 

decoder uses the first 𝑀 factor graphs from this set. Number of FG’s; i.e., 𝑀, is 

increased in steps of 4 and the choice of the optimum number of FG's is discussed for 

the (64, 32) and (128, 64) adaptive polar codes. In Section 4.5, single-FG and 𝑀-FG 

BP decoding performances of the (128, 64) Reed-Muller codes are examined and 

obtained results for 𝑀-FG BP decoding are compared with the performance of the 

(128, 64) polar codes. Lastly, in Section 4.6, the set of FG’s in 𝑀-FG decoders are 

reduced to 4-element equi-CS sets and for the (64, 32) adaptive polar code over 

BEC(0.35), 1-FG and 4-FG BP decoding performances of equi-CS sets are 

evaluated. 

4.1 Capacity Sum of the K Active Paths of an (𝑵,𝑲) Code  

It was mentioned in Section 2.3 that for the factor graph (FG) representation of an 

(𝑁, 𝐾) polar code, 𝑛 = log2𝑁 stages are used; so 𝑛! different FG’s can be 

constituted by changing the order of stages with respect to each other. Each stage can 
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be considered as a column of Z connections, where a Z connection connects two 

inputs to two outputs. In [Doğan, 2015], the stages are named as 1, 2, …, 𝑛, where 

Stage 1 contains the smallest Z’s with adjacent inputs and Stage 𝑛 contains the 

largest Z’s that connects input nodes separated by 2𝑛−1. Depending on the positions 

of these stages with respect to each other, the corresponding FG is called “1-2-...-𝑛” 

factor graph, “𝑛-…-2-1” factor graph, etc. 

As explained in Section 2.2, 𝑁 channel capacities 𝐼(𝑈𝑖; 𝑌
𝑁 , 𝑈𝑖−1) = 𝐼(𝑊𝑁

(𝑖)) are 

calculated by channel combining and splitting operations. To design a polar code, 𝐾 

information bits with the least possible Bhattacharya parameters are chosen and sent 

over 𝐾 channels. In Section 2.5, we have discussed that for a BEC, 𝑛-...-2-1 factor 

graph satisfies the relation: 𝐼(𝑊𝑁
(𝑖)) = 1 − 𝑍(𝑊𝑁

(𝑖)) between channel capacities and 

Bhattacharya parameters [Arıkan, 2009]. Hence, the choice of 𝐾 active bits with 

minimum Bhattacharya parameters is equivalent to the choice of 𝐾 maximum-

capacity paths over a BEC, for the n-...-2-1 factor graph. Consequently, the 

parameter defined in [Doğan 2015] as the “Capacity Sum-CS” denoting the sum of 

the capacities of the 𝐾 transmission paths is maximum for the 𝑛-...-2-1 factor graph. 

Therefore, we have named the n-...-2-1 factor graph as our “reference factor graph - 

RFG”. 

Ranking of the computed 𝑁 channel capacities 𝐼(𝑊𝑁
(𝑖)) = 𝐼(𝑈𝑖; 𝑌

𝑁 , 𝑈𝑖−1) may 

change from one FG to another, although the set of 𝑁 capacities remains the same. 

Since the positions of the selected 𝐾 channels are fixed for all 𝑛! different FG’s, 

capacity sum (CS) of these 𝐾 transmission paths may change with changing stage 

order. We reason that the CS value of a factor graph can be successfully used in 

differentiating how effective the related factor graph (or implementation) of the polar 

code is.    

In Table 4.1, we have chosen 𝑁 = 8 over a BEC(0.35) and computed 8 channel 

capacities of 3!  = 6 different factor graphs. One observes that 8 elements of the 

channel capacity set remain the same, but their positions change.  
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Table 4.1: Channel capacities over BEC(0.35) of all factor graphs for 𝑁 = 8 

 

 

 

Input Bit 

Positions 

Channel Capacities For  

 

3-2-1 FG  

 

3-1-2 FG 

 

2-3-1 FG 

 

2-1-3 FG 

 

1-3-2 FG 1-2-3 FG 

1 0.0319 0.0319 0.0319 0.0319 0.0319 0.0319 

2 0.5929 0.4442 0.5929 0.4442 0.3251 0.3251 

3 0.4442 0.5929 0.3251 0.3251 0.5929 0.4442 

4 0.9702 0.9702 0.9471 0.8888 0.9471 0.8888 

5 0.3251 0.3251 0.4442 0.5929 0.4442 0.5929 

6 0.9471 0.8888 0.9702 0.9702 0.8888 0.9471 

7 0.8888 0.9471 0.8888 0.9471 0.9702 0.9702 

8 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 

 

Table 4.2: For the (8, 𝐾) polar codes, capacity sums (CS) over BEC(0.35) of all factor graphs 

(𝑵,𝑲) 

 

Capacity Sums For  

 

3-2-1 FG  

 

3-1-2 FG 

 

2-3-1 FG 

 

2-1-3 FG 

 

1-3-2 FG 1-2-3 FG 

 (8,1)  0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 

 (8,2)  1.9700 1.9700 1.9469 1.8886 1.9469 1.8886 

 (8,3)  2.9171 2.8588 2.9171 2.8588 2.8357 2.8357 

 (8,4)  3.8059 3.8059 3.8059 3.8059 3.8059 3.8059 

 (8,5)  4.3988 4.2501 4.3988 4.2501 4.1310 4.1310 

 

In Table 4.2, we tabulate the CS values of the (8, K) adaptive polar codes over 

BEC(0.35). Capacity sums of the 𝐾 transmission channels may change from one FG 

to the other, as observed in Table 4.2, because the channel capacities are permuted 

with changing stage order (as shown in Table 4.1), whereas the active bit positions 

are fixed and chosen with respect to the reference, 3-2-1 FG.  

From Table 4.2, one can observe that the 3-2-1 reference graph has the maximum CS 

value as expected, for all values of 𝐾. On the other hand, some other FG’s can also 

have the maximum CS value as shown by bold numbers in Table 4.2. For instance, 

all factor graphs of the (8, 1) polar (or RM) code select the same maximum CS path, 

which is the 8th input bit with capacity 0.9998. Similarly, all factor graphs of the 
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(8,4) polar (or RM) code select the same 4 paths, which are the maximum capacity 

paths (corresponding to the input bits 8, 7, 6 and 4 in Table 4.1, in varying order) and 

their CS values are therefore the same. Moreover, for 𝐾 = 2, the 3-1-2 FG has the 

same CS value as the reference 3-2-1 FG; and for 𝐾 = 3 and 5, the 2-3-1 FG has the 

maximum CS value equal to that of the reference FG.  

Factor graphs of an (𝑁, 𝐾) polar code can be grouped into sets of equal capacity 

sums. Doğan calls each set consisting of FG’s with the same CS value, an "equi-CS 

set" [Doğan 2015]. For instance, there is only one equi-CS set containing 6 FG’s for 

the (8, 1) and (8, 4) codes shown in Table 4.2; whereas the (8, 5) code has 3 equi-CS 

sets (with the CS values of 4.3988, 4.2501 and 4.1310) each consisting of 2 FG’s.  

4.2 Number of Frozen Variables in the Factor Graph of an (N, K) Code 

𝑁 − 𝐾 frozen bits at the input of a factor graph may produce other frozen nodes at 

the following stages. If all bits merging at a given node are frozen, then this node 

also becomes frozen. Total number of frozen bits in the factor graph gives “the 

number of frozen variables-FV” of the factor graph. The number of frozen variables 

FV is greater than or equal to 𝑁 − 𝐾. Unlike the number of frozen bits at the input, 

FV depends on the stage order of the factor graph and it can vary from one FG to 

another.  

For the (8, 4) polar (and RM) code, there exist 6 different FG’s. Frozen variables of 

all FG’s are shown in Figure 4.1 (where Stage 3 has adders for the most distant bits, 

and Stage 1 has adders for adjacent bits). One can observe that the number of frozen 

variables is FV = 6 and it doesn’t change with changing FG for the (8, 4) polar (and 

RM) code.  
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Figure 4.1: Frozen variables of all factor graphs for the (8,4) polar (and RM) code. 

On the other hand, if we examine the FV’s of a (8, 3) polar code (notice that there is 

no RM code with parameters (8, 3)), we can see a change from one FG to the other. 

For instance, FV= 7 for 1-2-3 and 1-3-2 FG’s in Figure 4.2, whereas FV= 13 for 2-

3-1 and 3-2-1 FG’s.  

 

Figure 4.2: Frozen variables of all factor graphs for the (8,3) polar code. 

To further illustrate the change of FV with changing factor graph, we have increased 

the blocklength 𝑁 to 16. In Figure 4.3, all frozen variables are depicted for the 4-3-2-
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1 and 1-2-3-4 factor graphs of a (16, 8) polar code (again, notice that there is no RM 

code with parameters (16, 8)). Although 8 input frozen bits are the same for 1-2-3-4 

and 4-3-2-1 FG’s, starting from the second stage, the number and positions of the 

frozen variables differ such that 4-3-2-1 factor graph has FV=18 and 1-2-3-4 factor 

graph has FV=10.  

Factor graphs of an (𝑁, 𝐾) polar code can be divided into sets according to their 

FV’s, as well as their CS values. We will call each set consisting of FG’s with the 

same FV value, an "equi-FV set". 

 

Figure 4.3: Frozen variables of 4-3-2-1 (FV=18) and 1-2-3-4 (FV=10) FG’s for the (16,8) polar code. 

For the (16, 8) adaptive polar code over BEC(0.35), distribution of equi-CS and equi-

FV sets are given in Table 4.3. Equi-CS sets contain 6 FG’s and they are the subsets 

of equi-FV sets. So, one can observe more than one equi-CS sets having the same 

value of FV. For instance, in Table 4.3, the first and second equi-CS sets have the 

same FV = 18. 
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Table 4.3: Distribution of equi-CS and equi-FV sets for the (16, 8) polar code over BEC(0.35). 

 

Equi-FV set no. FV CS 

Number of 

FG’s in the 

equi-CS set 

Number of 

equi-CS sets in 

the equi-FV set 

 

1 

18 

 

7.66 6 
2 

7.41 6 

2 14 7.21 6 1 

3 10 7.05 6 1 

3 Equi-FV sets ←      Total     → 24 FG’s 4 Equi-CS sets 

 

Similarly, one can form 120 different factor graphs for the (32, 16) polar code over 

BEC(0.35), which can be partitioned into 10 "equi-CS sets", each having 12 FG’s 

with equal CS values. Distribution of equi-FV and equi-CS sets among 120 factor 

graphs for the (32, 16) adaptive polar code over BEC(0.35) is given in Table 4.4.  

One observes 5 different FV values for the (32, 16) adaptive polar code over 

BEC(0.35). Again, notice that an equi-FV set may contain more than one equi-CS 

sets; i.e., equi-CS sets are subsets of equi-FV sets. CS values of the (32, 16) adaptive 

polar code given in Table 4.4 are sketched in Figure 4.4 versus FV.  

Table 4.4: Distribution of equi-CS and equi-FV sets for the (32, 16) polar code over BEC(0.35).  

 

Equi-FV set no. FV CS 

Number of 

FG’s in the 

equi-CS set 

Number of 

equi-CS sets in 

the equi-FV set 

1 44 15.67 12 1 

 

2 

36 15.48 12 
2 

36 15.23 12 

 

3 

32 15.32 12 

3 32 15.07 12 

32 14.88 12 

 

4 

 

28 15.18 12 

3 28 14.94 12 

28 14.78 12 

5 24 14.70 12 1 

5 Equi-FV sets ←      Total     → 120 FG’s 10 Equi-CS sets 
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Figure 4.4: CS versus FV values of the (32, 16) adaptive polar code over BEC(0.35). 

4.3 Capacity Sum (CS) and Number of the Frozen Variables (FV) for Reed-

Muller Codes 

For 𝑁 = 2𝑛, 𝑁 × 𝑁 matrix 𝐺𝑁 was defined in Chapter 2 as 𝐺𝑁 = 𝐹⊗𝑛 where 𝐹 =

[
1 0
1 1

]. The generator  matrices  of both  polar  and  Reed-Muller (RM)  codes  are  

obtained  by  suitably  selecting rows from 𝐺𝑁. The 𝑟’th order RM code RM (𝑟, 𝑛) is 

the linear code with generator matrix 𝐺𝑅𝑀, which is obtained by selecting rows of 𝐺𝑁 

with Hamming weights ≥ 2𝑛−𝑟. The blocklength of the code is 𝑁 = 2𝑛, with the 

information word length 𝐾 = ∑ (𝑛
𝑖
)𝑟

𝑖=0 . 

As explained in Section 2.3, the generator matrix 𝐺𝑃 of an (𝑁, 𝐾) polar code is 

constructed by choosing 𝐾 rows of the matrix 𝐺𝑁, whose indices correspond to bit-

channels with the least possible Bhattacharya parameters and the maximum channel 

capacities over a BEC for the reference FG [Arıkan, 2009].  
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Similarly to the polar codes, one can use one of the 𝑛! factor graphs in the encoder 

and BP decoder of (𝑁, 𝐾) RM codes. The capacity sum (CS) and the number of the 

frozen variables (FV) are computed likewise; CS equals to the sum of the capacities 

of the 𝐾 transmission paths and total number of frozen variables in the factor graph 

corresponds to FV. 

For a block length 𝑁 = 8, selecting the rows of transformation matrix 𝐺8 according 

to maximum Hamming weights coincide with choosing the codewords from 𝐺𝑁 by 

minimum Bhattacharya parameters. Therefore, generator matrices of the (8, 4) polar 

and RM codes are the same. Difference between the polar and RM codes start to be 

observed for 𝑁 = 32. Generator matrices of the (32, 16) RM and polar codes are 

given in Table 4.5; where the two different codewords on top of the generator 

matrices are colored in red. For the (32, 16) polar code, a specific 4-weight codeword 

is selected from 𝐺𝑁 = 𝐹⊗5 instead of a specific 8-weight codeword of the RM code.  

Table 4.5: Generator matrices of the (32, 16) RM and polar codes 

 

For the (32, 16) adaptive polar code, distribution of the equi-CS and equi-FV sets 

were given in Table 4.4 of the previous section, where 120 factor graphs are grouped 

into 10 different equi-CS and 5 distinct equi-FV sets. On the other hand, for the 
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(32,16) RM code, CS = 15.58 and FV = 30 values remain the same for all of the 120 

FG’s as shown in Table 4.6. Order of channel capacities may vary with changing 

stage order, but total capacity of the selected 16 channels remains the same. Input 

frozen bit positions are identical for all FG’s of the polar (or RM) codes. However, 

although positions of the inner frozen variables can change from one FG to another, 

their total number remains the same for the (32, 16) RM code (Table 4.6); and does 

not change as in the case of the (32, 16) adaptive polar code (see Table 4.4).  

Table 4.6: Distribution of equi-CS and equi-FV sets for the (32, 16) RM code.  

 

Equi-FV set no. FV CS 

 Number of 

FG’s in the 

equi-CS set 

Number of 

equi-CS sets in 

the equi-FV set 

1 30 15.58 120 1 

1 Equi-FV set ←      Total     → 120 FG’s 1 Equi-CS set 

 

We perform some simulations to understand the effects of FV and CS of the chosen 

factor graph on the performance of BP decoders. Factor graphs, which have the 

highest CS values, are in accordance with the design philosophy of polar codes that 

chooses the highest-capacity paths. We expect that BP decoders using these FG’s to 

perform better and faster, since they also have the highest number of frozen 

variables. In the following sections, BP decoding performances will be evaluated and 

the effects of FV and CS values of the factor graphs to be used in BP decoders will 

be observed. 

4.4 Performance of Single-FG versus Multiple-FG Decoders in the 

Maximum Equi-FV Set of Polar Codes 

We call the BP decoder that uses a specific factor graph, a “single-FG (or 1-FG) 

decoder”. On the other hand, a “multiple-FG (or M-FG) decoder” employs a pre-

chosen set of 𝑀 > 1 factor graphs, where all FG’s within the set are used 

successively to decode an erased word, until all erasures are filled or the 𝑀th (i.e., the 

last) FG is used. 
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In our simulations, each bit of a generated codeword is erased randomly, with a 

given erasure probability 𝜖. Erased codewords are decoded by using single-FG or M-

FG BP decoders and the performance is measured by the number of remaining 

undecoded words.  

In this section, we present some single-FG and 𝑀-FG simulation results for the BP 

decoding performance of the (64, 32) and (128, 64) polar codes, where the 𝑀-FG 

decoder attempts to rationally choose 𝑀 factor graphs among 𝑛! different 

permutations (720 choices for 𝑁 = 64 and 5040 choices for 𝑁 = 128).  

In the BP decoding algorithm, we observe that after certain number of iterations, the 

number of remaining undecoded words does not change. Required number of BP 

iterations for the polar codes over a BEC(𝜖) with three different block lengths (𝑁 = 

32, 128, 512) has been examined in [Doğan, 2015]. He evaluated BP decoding 

performances for the erasure probabilities up to 𝜖 = 0.5, with using “1-2-...-𝑛” and 

“𝑛-…-2-1” factor graphs and he determined the minimum sufficient number of 

iterations. Table 4.7 presents the required number of iterations for the (32, 16), (128, 

64) and (512, 256) polar codes over BEC(0.35), according to [Doğan, 2015].  

Table 4.7: Minimum sufficient number of round iterations for the BP decoding of rate 1/2 polar codes 

over BEC(0.35) with using “1-2-...-𝑛” and “𝑛-…-2-1” factor graphs. 

Factor 

Graph 

(32, 16) 

polar code 

(128, 64) 

polar code 

(512, 256) 

polar code 

1-2-...-𝑛 6 13 20 

𝑛-…-2-1 5 8 9 

 

In our simulations, we utilized high-FV and high-CS valued FG’s; hence, 1-2-...-𝑛 

factor graph that requires relatively higher number of iterations was not in our FG 

set. So, for the BP decoding of the (64, 32) and (128, 64) codes over BEC(0.35), we 

have employed 15 round iterations, which are more than sufficient. 
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4.4.1 (64, 32) Adaptive Polar Code  

Performance dependence of the 1-FG decoder on the number of frozen variables has 

been evaluated in [Doğan, 2015], where he presented results showing that the 

performance of the BP decoder increases while the number of frozen variables 

increases.   

For the (64, 32) polar code, 6! = 720 different factor graphs exist. There are 180 

different CS values for the erasure rate 𝜖 = 0.35, and 720 FG’s are grouped into 10 

equi-FV sets, containing 48, 84 or 96 FG’s as shown in Table 4.8. The number of 

equi-CS sets is much larger, there are 180 different CS values for 𝜖 = 0.35, where 

each equi-CS set is a subset of an equi-FV set, contains 4 FG’s and distributed in 720 

FG’s as displayed in Table 4.8. 

Table 4.8: Distribution of the number of frozen variables (FV) for the erasure rate 𝜖 = 0.35 among 

720 factor graphs of the (64, 32) adaptive polar code. 

 

Equi-FV set no. FV 

Number of 

FG’s in the 

equi-CS set 

Number of 

equi-CS sets 

in the equi-

FV set 

Maximum and 

Minimum CS Values 

1 88 48 12 31.6594, 30.4173 

2 84 84 21 31.5661, 30.0330 

3 80 48 12 31.4439, 29.6940 

4 76 96 24 31.1861, 29.5418 

5 72 84 21 31.0339, 29.4336 

6 68 84 21 30.6115, 29.0113 

7 64 96 24 30.5033, 28.8591 

8 60 48 12 30.3511, 28.6012 

9 56 84 21 30.0121, 28.4791 

10 52 48 12 29.6279, 28.3858 

10 Equi-FV sets ← Total → 720 FG’s 
180 Equi-CS 

sets 
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To observe the effect of FV on the BP decoder, 10 FG’s with different FV’s are 

selected from each equi-FV set and their 1-FG decoding performances are evaluated. 

1000 codewords are generated over BEC(0.35) and the number of undecoded words 

for each FV are plotted in Figure 4.5.  

 

Figure 4.5: Single-FG BP performance versus FV for the (64, 32) adaptive polar code over 

BEC(0.35).  

Figure 4.5 shows that with increasing number of frozen variables, remaining number 

of undecoded words decrease substantially. One observes that the factor graphs with 

the highest FV value give the best single-FG BP decoding performance. Performance 

advantage of the highest FV decoder (FV = 88) over the lowest FV decoder (FV = 

52) is almost 26% ((450 − 190)/1000 words).   

For the (64, 32) adaptive polar code over BEC(0.35), the maximum FV value is 88 

and there are 48 factor graphs that have this highest FV, as shown in Table 4.8. In the 

next experiment, we have used these 48 factor graphs of the best equi-FV set to 

evaluate the 𝑀-FG decoding performances for 𝑀 = 4𝑘, and 𝑘 = 1, 2, … , 12.  
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Initially, we rank the 48 FG’s that have the maximum FV’s in decreasing order of CS 

values. 𝑀-FG decoder employs the first 𝑀 factor graphs from this set. The 

experiment is repeated for 20 trials (20 different erasure patterns) over BEC(0.35), 

where each pattern contains 1000 codewords. In each trial, the number of undecoded 

words out of 1000 erased words is found (firstly by the 1-FG decoder and then) by 

the 4-FG, 8-FG, … decoders, each time increasing the number of FG’s, 𝑀, in steps 

of 4 until all FG’s in the equi-FV set are exhausted. Resulting performance graphs 

for 20 trials are given in Figure 4.6.  

 

Figure 4.6: Performance of 𝑀-FG decoders in 20 trials for the (64,32) adaptive polar code over 

BEC(0.35) for 𝑀 = 1, 4, 8, 12, … , 48, where the first 𝑀 factor graphs ranked in decreasing CS order 

are used among the 48 maximum FV graphs (FV = 88). 
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From Figure 4.6, one observes that using all 48 factor graphs, in the best case (the 

lowest curve) there remains 110 undecoded words out of 1000 erased words and in 

the worst case, the number of undecoded words is 142. So, we observe a 3.2% 

change in performance depending on the specific erasure pattern of these 20 trials.  

On the other hand, performance of the 48-FG decoder seems ≈6% superior to that of 

the 1-FG decoder in all trials, because the average number of undecoded words out 

of 1000 reduce from ≈185 to ≈127. Similarly, performance advantage of the 12-FG 

decoder over the 1-FG decoder is around ≈5% in all 20 trials. Hence, in spite of the 

higher complexity with respect to 1-FG case, if one ventures on employing the 𝑀-FG 

decoder instead of 1-FG, it seems sufficient to choose 𝑀 = 12 rather than 𝑀 = 48, 

since the 1% performance advantage of the 48-FG decoder over 12-FG is not 

significant to account for the 4-times-increased decoder complexity, 𝑂(𝑀𝑁 log𝑁).  

4.4.2 (128, 64) Adaptive Polar Code  

In this part, we evaluate the BP decoding performance of 1-FG and 𝑀-FG decoders 

for the (128, 64) adaptive polar code over BEC(0.35), and compare it with the 

performance found for the (64, 32) adaptive polar code. 

Number of stages for 𝑁 = 128 is 𝑛 = 7, so the encoder and decoder of the (128, 64) 

polar code can be implemented by 𝑛! = 7! different FG’s. Distribution of the number 

of frozen variables among 7! = 5040 factor graphs and FG’s that have the highest FV 

are given in Appendix A.  For the (128, 64) polar code, there are 28 different FV 

values. We randomly pick one FG from each equi-FV set to evaluate the single-FG 

decoding performance. As in the previous part, 1000 codewords are generated over 

BEC(0.35) and the number of undecoded words out of 1000 erased words are 

sketched for the selected FG’s in Figure 4.7. Single-FG decoding performances for 

the (128, 64) polar code show that remaining number of undecoded words 

significantly decreases while the FV value of the corresponding FG increases, as in 

the case of the (64, 32) polar code. Performance advantage of the highest FV decoder 
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(FV = 210) over the lowest FV decoder (FV = 98) is approximately 58% as opposed 

to the 26% of the (64, 32) polar code; hence, employment of FG’s with the highest 

FV in BP decoding is supported strongly.  

 

Figure 4.7: Single-FG BP performance versus FV for the (128, 64) adaptive polar code over 

BEC(0.35).  

For the erasure rate 𝜖 = 0.35, the highest FV value is 210 for the (128, 64) adaptive 

polar code and number of FG’s with FV= 210 is 72. For evaluating 𝑀-FG decoding 

performances, 72 factor graphs within this highest equi-FV set are employed. 72 

FG’s are grouped into 18 equi-CS sets over BEC(0.35), where the same CS value is 

shared by 4 different FG’s.  

72 factor graphs are ordered in decreasing order of CS values and M-FG decoder 

performance of the first 𝑀-FG’s over BEC(0.35) for 𝑀 = 4𝑘, 𝑘 = 1,…, 18 is found. 

Simulations are repeated for 10 different sets of 1000 erased codewords and 

performance in terms of the number of undecoded words is depicted in Figure 4.8.  
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Figure 4.8: Performance of 𝑀-FG decoders in 10 trials for the (128,64) polar code over BEC(0.35) 

and for 𝑀 = 1, 4, 8,…,72, where the first 𝑀 factor graphs ranked in decreasing CS order are used 

among the 72 maximum-FV graphs (FV = 210). 

From Figure 4.8, one observes that using all 72 factor graphs, there remains 124 

undecoded words out of 1000 erased words in the best case (lowest curve) and 153 in 

the worst case. So, there is already a 2.9% change in performance depending upon 

the specific erasure pattern of these 10 trials.  

By multiple-FG decoding using all 72 factor graphs, average of 10 trials show a 

reduction in the remaining number of undecoded words from 160 to only 133 among 

1000 erased codewords. Figure 4.8 also shows that the performance does not 

improve significantly for 𝑀 > 16. There is less than 3% performance improvement 

of the 16-FG decoder over the single-FG BP decoder; which doesn’t seem sufficient 

to justify the use of 16-FG decoder instead of 1-FG.  
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For the (64, 32) and (128, 64) adaptive polar codes over BEC(0.35), average BP 

decoding performances are summarized in Table 4.9. 

Table 4.9: BP decoding performances of (64, 32) and (128, 64) adaptive polar codes over BEC(0.35) 

by using maximum equi-FV sets (average results out of 1000 erased codewords over 20 trials for the 

(64, 32) code and 10 trials for the (128, 64) code) 

Set Choice 

(64, 32) adaptive polar code (128, 64) adaptive polar code 

Single-RFG 

decoder  

12-FG decoder using 12 

highest CS valued FG's in 

the max. equi-FV set 

Single-RFG 

Decoder  

16-FG decoder 

using 16 highest 

CS valued FG's 

in the max. 

equi-FV set 

Number of 

undecoded 

words out of 

1000 

185 133 160 135 

                    

It seems that increasing the number 𝑀 of FG’s in 𝑀-FG decoders does not result in 

significant performance improvement over 1-FG’s in case of the polar codes. In 

Section 4.6, we restrict the set of FG’s in 𝑀-FG decoders to 4-element equi-CS sets 

and investigate the performance for 𝑁 = 64. Before that, we repeat the above 

experiments for the 𝑀-FG decoding of RM codes in Section 4.5. 

4.5 Performance of Single-FG versus Multiple-FG Decoders for the Reed-

Muller Codes 

RM codes can also be decoded by BP decoders as polar codes. In this section, single-

FG and multiple-FG BP decoding performances of RM codes are evaluated, and 

compared with the performance of polar codes. 

It was mentioned in Section 4.3 that if active input bits (hence the remaining frozen 

bits) are chosen so as to generate the RM codes, all 𝑛! different factor graphs have 

the same FV and CS values. For the (128, 64) RM code, corresponding capacity sum, 
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CS is 62.15; and the number of frozen variables, FV equals 140. Because of the 

constant values of CS and FV, we expect that single-FG BP decoding performance of 

RM codes to be similar for all FG’s. As an example, 20 factor graphs, 10 from the 

maximum equi-FV set (FV=210) and 10 from the minimum equi-FV set (FV=98) of 

the (128, 64) adaptive polar code, are used for decoding. Table 4.10 gives the 

performance of 20 single-FG decoders for the (128, 64) RM code over BEC(0.35) in 

terms of the number of undecoded words out of 1000. As expected, 1-FG decoding 

performances of the selected 20 FG’s are very similar to each other.  

Table 4.10: Single-FG BP decoding performances of 20 FG’s for the (128,64) RM code over 

BEC(0.35).  

Factor 

Graph 

Number of 

Undecoded words 

7654321 573 

7654231 576 

7653421 558 

7645321 565 

7645312 565 

7645231 566 

7643521 551 

6754321 573 

6754312 575 

6754231 576 

1254376 551 

1254367 546 

1253476 550 

1253467 542 

1245376 563 

1243576 574 

1243567 571 

1235476 557 

1235467 550 

1234576 578 

 

For evaluating the 𝑀-FG BP decoding performance of the (128, 64) RM code in 

similar conditions to that of the (128, 64) adaptive polar code over BEC(0.35), 10 

different sets of 1000 erased words over BEC(0.35) are generated. For each set of 
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1000 erased words, 𝑀-FG BP decoding is performed by using the 72 FG’s within the 

maximum equi-FV set of the (128, 64) adaptive polar code over BEC(0.35). The 

number of undecoded words at the 𝑀-FG decoder output is found for 𝑀 = 1 and 

𝑀 = 4𝑘, where 𝑘 = 1,… ,18 and sketched in Figure 4.9 for 10 trials corresponding 

to 10 different erasure patterns. 

 

Figure 4.9: Performance of M-FG decoders in 10 trials for the (128,64) Reed-Muller codes over 

BEC(0.35), for 𝑀 = 1, 4, 8,…,72, using the 72 FG’s in the maximum equi-FV set of the (128, 64) 

adaptive polar codes. 

Considering the average of 10 patterns in Figure 4.9, the number of undecoded words 

at the 𝑀-FG decoder output of the (128, 64) RM code reduces almost by 28% as 𝑀 

increases from 1 to 72. However, although the 𝑀-FG BP decoding performance of 

the RM code improves considerably with increasing 𝑀, it is still far from the 1-FG 

performance of the adaptive polar code with similar parameters.  
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To have a fair comparison, remembering that the selected 72 FG’s of this experiment 

have FV = 210 for the frozen-bit-choice of the (128, 64) adaptive polar code, but 

FV = 140 for the frozen-bit-choice of the (128, 64) RM code; we repeat the polar 

code experiment within smaller-valued equi-FV sets.   

We select two equi-FV sets (with FV = 142 and FV = 138) of the (128, 64) polar 

code over BEC(0.35), and find the 𝑀-FG decoder performances for 𝑀 = 1 and 𝑀 =

4𝑘, where 𝑘 = 1,… ,18. In each equi-FV set, 72 highest-CS valued FG’s are ranked 

in the order of decreasing CS, and the 𝑀-FG decoding performances of (128, 64) 

polar codes over BEC(0.35) are evaluated in terms of the undecoded words out of 

1000 erased words. Average performance over 10 trials is given in Figure 4.10 for 

the RM decoder (with FV = 140) and polar decoders in 3 equi-FV sets (FV = 138, 

142, 210). 

 

Figure 4.10: Average performance of M-FG BP decoders over a BEC(0.35) in 10 trials for the 

(128,64) Reed-Muller codes and (128,64) adaptive polar codes within equi-FV sets (with FV=210, 

142, 138). 
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One observes from Figure 4.10 that BP decoding performance of the (128, 64) polar 

code is significantly better than that of the RM code, even when one restricts the 

decoder FG’s to the small-valued equi-FV sets (FV = 138 and FV = 142) that have 

similar FV to that of the (128, 64) RM code (FV = 140).  

Single-FG BP decoding performance of the (128, 64) RM code seems approximately 

18% worse than the performances of polar codes with similar FV, and 42% worse 

than that of the polar code with the maximum FV; whereas (say) 12-FG decoding 

performance of the (128, 64) RM code is almost 18% worse than the performances of 

polar codes with similar FV; and 30% worse than that of the polar code within the 

maximum equi-FV set.  

𝑀-FG BP decoding performance of (128, 64) RM codes improves significantly as 𝑀 

increases from 1 to 72. It is of interest whether 𝑀-FG BP decoding performances of 

the RM codes can be as good as BP decoding performances of the polar code. To 

answer this, we increase 𝑀 up to 152 and performances of 𝑀-FG decoders for 

(128,64) RM code and (128,64) polar code are given in Figure 4.11 The results are 

obtained for one pattern, which contains 1000 codewords, over BEC(0.35). 

 

Figure 4.11: Performance of M-FG decoders for the (128,64) Reed-Muller codes and (128,64) polar 

codes over BEC(0.35), for 𝑀 = 1, 4, 8,…,152 
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From Figure 4.11, one observes that the number of undecoded words at the 𝑀-FG 

decoder output of the (128, 64) RM code decreases nearly by 41% as 𝑀 increases 

and 152-FG decoding performance of the RM code is approximately the same as the 

1-FG performance of the adaptive polar code with similar parameters. So, multiple 

FG-BP decoding performances of RM codes can be good as polar codes with using 

multiple factor graphs, but it has much higher complexity compared to the polar 

codes. 

4.6 BP Decoding Performances of Equi-CS Sets  

In Section 4.4, single-FG and multi-FG BP decoding performances in the best equi-

FV set have been evaluated for the (64, 32) adaptive polar code over BEC(0.35) and 

it was observed that 𝑀-FG decoding with large values of 𝑀 doesn’t provide any 

noticeable advantage. One may still be interested in exploring the performance of 𝑀-

FG BP decoders with small values of 𝑀. In this section, we compare the 

performance of 4-FG decoders to those of the (best and worst) 1-FG decoders within 

the same set. 

For the (64, 32) adaptive polar code over BEC(0.35), distribution of  FV values are 

given in Table 4.8 of Section 4.4.1, where one observes that each equi-FV set can be 

divided into smaller sets with equal CS values. 48 FG’s with the maximum FV (=

 88) are grouped into 12 equi-CS sets, and each equi-CS set contains the specific 4 

FG’s shown in Table 4.11.  

In this section, we investigate the single and 4-FG BP decoding performances in 

these maximum-FV and equi-CS sets, that are composed of four FG’s. 
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Table 4.11: Factor graphs in all equi-CS sets of the first equi-FV set of the (64, 32) adaptive polar 

code designed over BEC(0.35). 

Equi-CS 

set no. Factor graph FV CS 

1 654321, 654231, 645321, 645231 88 31.6594 

2 653421, 652431, 643521, 642531 88 31.5098 

3 654312, 654213, 645312, 645213 88 31.4286 

4 653241, 652341, 643251, 642351 88 31.2945 

5 653412, 652413, 643512, 642513 88 31.2641 

6 654132, 654123, 645132, 645123 88 31.2133 

7 651432, 651423, 641532, 641523 88 30.8992 

8 653214, 652314, 643215, 642315 88 30.8180 

9 653142, 652143, 643152, 642153 88 30.8126 

10 651342, 651243, 641352, 641253 88 30.6630 

11 653124, 652134, 643125, 642135 88 30.5818 

12 651324, 651234, 641325, 641235 88 30.4173 

 

Within each equi-CS set, we evaluate three performance figures: The number of 

undecoded words by i) the best 1-FG, ii) the worst 1-FG and iii) 4-FG BP decoders. 

Table 4.12 shows the average performance over 20 different erasure patterns in each 

equi-CS set. “Best 1-FG” and “Worst 1-FG” columns show the best and the worst 

single-FG decoding performances of the factor graphs in each set. 4-FG decoder 

gives the multiple BP decoding performance of 4 factor graphs.  Each erasure pattern 

consists of 1000 erased codewords and the average BP decoding performances over 

20 patterns are shown in Table 4.12, in terms of the number of undecoded words 

among 1000 erased codewords for the BEC(0.35). 
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Table 4.12: Average BP decoding performance over 20 erasure patterns of the best, worst and 4-FG 

decoders of equi-CS sets for the (64, 32) code over BEC(0.35) (average results out of 1000 erased 

codewords over 20 trials). 

Equi-CS 

set no. CS FV 

Best 1-FG 

in the equi-

CS set 

Worst 1-FG 

in the equi-

CS set 

4-FG decoder 

in the equi-CS 

set 

1 31.66 88 181.75 185.90 168.45 

2 31.51 88 184.70 193.10 155.65 

3 31.43 88 182.95 190.05 148.40 

4 31.29 88 190.75 199.15 159.50 

5 31.26 88 186.50 198.95 136.50 

6 31.21 88 207.25 213.75 176.80 

7 30.90 88 243.60 254.15 189.75 

8 30.82 88 205.80 216.85 153.55 

9 30.81 88 215.60 231.55 140.15 

10 30.66 88 251.20 268.55 161.95 

11 30.58 88 226.05 240.20 144.00 

12 30.42 88 262.40 276.85 170.10 

 

Factor graphs, which have the highest CS values, suit the philosophy of a polar code 

that chooses the highest-capacity paths. We expect that the BP decoders using these 

factor graphs to perform better and faster. In Table 4.12, the best single BP decoding 

performance is obtained by a factor graph in the equi-CS set #1 (182 undecoded 

words out of 1000 erased words). So, the factor graph with the highest CS and FV 

values gives the best single BP decoding performance as expected. 

On the other hand, if we look at the multiple-BP decoding performances, one can 

observe that the best 4-FG BP decoding performance belongs to the equi-CS set #5 

(136 undecoded words out of 1000 erased words) with ≈5% performance 

improvement over the best single-FG BP decoder. Startlingly, 4-FG BP decoding 

performance of the highest equi-CS set is not as good as that of the equi-CS set #5. 

This experiment is repeated for different erasure rates to determine whether 4-FG BP 

decoding performance of the equi-CS set #5 is the best. Equi-CS sets that we obtain 

for 𝜖 =0.35 are not the same for all erasure rates. We have observed that each CS 

value is shared by 12 different factor graphs from 𝜖 = 0.1 to 0.25. Starting from   
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𝜖 = 0.3 up to 0.5, factor graphs are divided into equi-CS sets with 4 graphs and FG’s 

in each equi-CS set are identical to the equi-CS sets for 𝜖 = 0.35, but the order of 

equi-CS sets, that is given in Table 4.11, is not the same for all erasure rates. 

Average 4-FG decoding performances of 12 equi-CS sets over 20 erasure patterns 

are given in Table 4.13 for 5 different erasure rates; 𝜖 = 0.30, 0.35, 0.40, 0.45 and 

0.50. Equi-CS set numbers are fixed for all erasure rates according to order of equi-

CS sets for 𝜖 = 0.35. Surprisingly, average 4-FG BP decoding performance of the 

equi-CS set #5 is the best for all erasure rates.  

Table 4.13: Average BP decoding performance over 20 erasure patterns of the 4-FG decoders of equi-

CS sets for the (64, 32) code over 5 different erasure rates. (average results out of 1000 erased 

codewords over 20 trials). 

Equi-CS 

set no. as 

to 𝝐 = 

0.35 

4-FG 

decoder 

for 𝝐 = 

0.30 

4-FG 

decoder 

for 𝝐 = 

0.35 

4-FG 

decoder 

for 𝝐 =
 0.40 

4-FG 

decoder 

for 𝝐 =
 0.45 

4-FG 

decoder 

for 𝝐 = 

0.50 

1 65.10 168.45 376.10 629.05 843.15 

2 58.85 155.65 357.70 609.20 824.25 

3 54.15 148.40 346.50 604.70 819.10 

4 59.85 159.50 363.25 617.10 836.05 

5 48.20 136.50 330.85 586.25 805.50 

6 66.85 176.80 390.60 645.55 842.70 

7 73.80 189.75 409.10 597.50 853.45 

8 53.70 153.55 337.35 664.15 838.60 

9 48.70 140.15 358.30 615.40 810.15 

10 59.35 161.95 377.45 638.25 841.20 

11 49.15 144.00 343.25 604.55 826.50 

12 60.50 170.10 390.35 652.50 859.25 

 

In Section 4.4.1, while using the maximum equi-FV set, we have decided that the 

multiple-FG decoder with 12 factor graphs is sufficient and there remains nearly 133 

undecoded words out of 1000 erased words with 12-FG decoder. So, 𝑀-FG BP 

decoding performance of the best equi-CS set is approximately the same as the 

maximum equi-FV set for 𝑁 = 64, with 3 times lower complexity. Performances of 

equi-CS sets and equi-FV sets for the (64, 32) adaptive polar code over BEC(0.35) 

are summarized in Table 4.14. 
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Table 4.14: Performances of some 𝑀-FG BP decoders for the (64, 32) adaptive polar code over 

BEC(0.35) by using maximum-FV-valued FG’s (average results out of 1000 erased codewords over 

20 trials). 

Set Choice 

48-FG decoder using 

all FG’s in the equi-

FV set #1 

12-FG decoder 

using 12 FG’s with 

the highest CS 

4-FG decoder 

using the equi-

CS set #1 

4-FG decoder 

using the equi-CS 

set #5 

Number of 

undecoded 

words out of 

1000 

127 133 168 136 

 

We observe that, with increasing block length 𝑁, the number of the factor graphs in 

equi-CS sets decreases as shown in Table 4.15 for the (32, 16), (64, 32), (128, 64), 

(256, 128) and (512, 256) adaptive polar codes over BEC(0.35).  

Table 4.15: Number of factor graphs in the maximum equi-FV set and in equi-CS sets from block 

length 𝑁 = 32 to 𝑁 = 512 for adaptive polar codes over BEC(0.35). 

  
(32,16) 

polar code 

(64,32) 

polar code 

(128,64) 

polar code 

(256,128) 

polar code 

(512,256) 

polar code 

Number of FG's 

in the maximum 

equi-FV set 

12 48 72 36 24 

Number of FG's 

in equi-CS sets 
12 4 4 2 1 

  

Therefore, for the 𝑀-FG decoding of larger block length-codes, equi-CS sets are not 

meaningful. Instead, choosing a small number of highest-CS-valued FG’s within the 

maximum equi-FV set seems reasonable.  

4.7 Comparison of the Multi-FG BP Decoding Performance of the (64, 32) 

Adaptive Polar Code with Doğan’s Work 

In Doğan’s work [Doğan, 2015], factor graphs with large CS and FV values are used 

for multi-FG BP decoding. He uses a pre-trained criteria, while choosing the best 
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performing factor graphs. For a (64, 32) adaptive polar code over a BEC(0.34375), 

his genie-chosen 5 factor graphs are given in Table 4.16 (reproduced from [Doğan, 

2015]). In his simulations, 1000 codewords are generated and the number of erasures 

is fixed to 22 for each word. 

Table 4.16: 1-FG to 5-FG BP decoding performances (in terms of the number of undecoded words 

out of 1000 erased words) of Doğan’s genie-chosen 5 factor graphs for the (64, 32) code with 22 

erasures per codeword reproduced from [Doğan, 2015]. 

Factor 

Graph 
FV CS 

Number of 

undecoded 

words 

Number of 

remaining 

undecoded 

words 

624531 84 31.388 100 100 

643251 88 31.294 91 75 

643512 88 31.264 87 53 

645132 88 31.213 101 47 

624513 84 31.112 102 46 

 

In Table 4.16, the number of undecoded words column shows the single-FG BP 

decoding performances of each factor graph, whereas the last column shows the 

cumulative performance of the related row and preceding ones. By using all 5 FG’s, 

number of undecoded words out of 1000 erased words is decreased up to 46.  

Since the choice of such sets depending on previously recorded performance is not so 

practical, we prefer a more systematic selection, such as using the FG’s with the 

highest number of frozen variables, ranked in decreasing order of CS values in 𝑀-FG 

decoders. We have already evaluated the 𝑀-FG decoding performances of the (64, 

32) adaptive polar code over BEC(0.35) for such FG’s, chosen with respect to the 

criterion of “the highest-FV followed by high-CS values”, in Section 4.4.1. 

To make a more detailed and fair comparison with Table 4.16, we generate 1000 

erased words by erasing exactly 22 bits of each codeword of the (64, 32) code as in 

[Doğan, 2015]. Then, we perform 1-FG and M-FG BP decoding using the FG’s of 

the maximum-FV set ranked in decreasing order of CS values. Corresponding BP 
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decoding performances of the first 20 highest-CS-valued FG’s within the maximum 

equi-FV set are given in Table 4.17 in terms of the number of undecoded words. 

Table 4.17: BP decoding performances (in terms of the number of undecoded words out of 1000 

erased words) of the first 20 highest-CS-valued FG’s with maximum FV for the (64, 32) code with 22 

erasures per codeword. 

Factor 

Graph  
FV CS 

Number of 

undecoded 

words 

Number of 

remaining 

undecoded 

words 

654321 88 31.699 90 90 

654231 88 31.699 95 77 

645231 88 31.699 95 77 

645321 88 31.699 90 77 

643521 88 31.560 94 73 

642531 88 31.560 93 66 

653421 88 31.560 98 66 

652431 88 31.560 97 66 

645213 88 31.485 92 52 

645312 88 31.485 97 46 

654312 88 31.485 97 46 

654213 88 31.485 92 46 

643251 88 31.355 98 46 

642351 88 31.355 99 45 

653241 88 31.355 104 45 

652341 88 31.355 104 45 

643512 88 31.331 104 45 

642513 88 31.331 93 45 

653412 88 31.331 106 45 

652413 88 31.331 93 45 

 

Best single BP decoding performance is obtained by FG’s with the highest CS and 

FV values (90 undecoded words out of 1000 erased words). In Table 4.17, last 

column shows that the remaining number of undecoded words does not change 

significantly for 𝑀 ≥ 10, and 10-FG performance is similar to that of Doğan’s genie-

chosen set, which corresponds to ≈5% performance improvement over single-FG 

decoders. 
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CHAPTER 5 

 

 

CONCLUSION 

 

 

 

For a polar code with blocklength 𝑁 = 2𝑛, 𝑛! different factor graph representations 

can be constituted by changing the order of stages with respect to each other. In this 

thesis, we discuss whether the generator matrix 𝐺𝑃 of the (𝑁, 𝐾) polar code and the 

sum of capacities of the 𝐾 active channels are invariant under these stage 

permutations. Invariance of 𝐺𝑃 ensures that corresponding factor graphs generate the 

same linear code; whereas keeping the capacity-sum at its maximum value supports 

the polar code idea of activating the maximum-capacity channels, while freezing the 

low-capacity ones. 

Transformation matrix 𝐺𝑁 of the factor graph, which is the n-th Kronecker product 

𝐺𝑁 = 𝐹⊗𝑛 of 𝐹 = [
1 0
1 1

], contains Z-type of connections with 2 inputs and 2 

outputs. Naming the stages of a factor graph as 1, 2, …, 𝑛 [Doğan 2015], where 

Stage 1 contains the smallest Z’s with adjacent inputs and Stage 𝑛 contains the 

largest Z’s that connect input nodes separated by 2𝑛−1 = 𝑁/2; one may distinguish 

an FG with its related stage order. For instance, the “n-…2-1” factor graph is the 

reference FG, and its transformation matrix 𝐺𝑁 can be decomposed into stage 

matrices 𝐺𝑁
(𝑖)

; such that 𝐺𝑁 = 𝐺𝑁
(𝑛)

…𝐺𝑁
(2)

𝐺𝑁
(1)

. In Chapter 3, we prove that stage 

matrix multiplication 𝐺𝑁
(𝑖)

𝐺𝑁
(𝑗)

 is commutative; therefore, 𝐺𝑁 is invariant under stage 

permutations. In other words, all 𝑛! factor graphs have the same transformation 

matrix 𝐺𝑁.  

Generator matrix 𝐺𝑃 of an (𝑁, 𝐾) polar code is constructed by selecting 𝐾 rows of 

the transformation matrix 𝐺𝑁. Selected row indices correspond to the active 

information bits and the remaining 𝑁 − 𝐾 bits are frozen. Hence, with the same 
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frozen and active bits, the generator matrix 𝐺𝑃 is invariant under stage permutations, 

and all 𝑛! FG encoders generate the same linear code. However, corresponding CS 

and FV values may differ from one FG of a polar code to the other. 

For the FG implementation of an (𝑁, 𝐾) code, the “capacity sum-CS” is defined as 

the sum of the capacities of the 𝐾 transmission paths [Doğan, 2015] and FV is the 

“total number of frozen variables”. The positions of the selected 𝐾 channels are fixed 

for all 𝑛! FG’s; but the capacity sum (CS) of these 𝐾 transmission paths may change 

with changing stage order. Likewise, the number of frozen variables (FV) depends 

on the stage order of the factor graph and it can change from one FG to another. We 

use the CS and FV values of a factor graph in differentiating how efficient the related 

FG decoder of the polar code is; because keeping the capacity-sum at its maximum 

value supports the polar code concept of activating the maximum-capacity channels, 

while freezing the low-capacity ones. Factor graphs with the same FV value are 

grouped into “equi-FV sets” and those with the same CS value are gathered into 

"equi-CS sets". 

In Chapter 4, we evaluate and compare BP decoding performances on single (1-FG) 

and multiple factor graph (𝑀-FG) decoders of the RM and polar codes over a binary 

erasure channel. For polar codes, we also examine the choice of the best values of 𝑀 

for multiple-FG BP decoding over the BEC and investigate the choice of the best set 

of FG’s for multiple-FG BP decoding. 

For polar codes, single-FG decoder gives significantly better performance with 

increasing number of frozen variables. For the multiple-FG decoders, as differently 

from Doğan’s choice of FG’s, we restrict our search space to FG’s with the highest 

number of frozen variables. Increasing the number of FG’s in 𝑀-FG decoders does 

not result in significant performance improvement over 1-FG’s, i.e., for the (128, 64) 

adaptive polar codes over BEC(0.35), there is less than 3% performance 

improvement of the 16-FG decoder over the single-FG decoder; which is not enough 

to justify the use of 16-FG decoder instead of 1-FG 
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For the (64, 32) adaptive polar codes, reducing the set of FG’s in multiple-FG 

decoders to 4-element equi-CS sets gives better results. 4-FG BP decoding 

performance of the best performing equi-CS set, is almost similar to that of the 12-

FG decoder with 12 highest-CS-valued FG’s within the maximum equi-FV set, 

although it has 3 times lower complexity. For the 𝑀-FG decoding of larger block 

length-codes, equi-CS sets disappear, and selection of a small number of highest-CS-

valued FG’s within the maximum equi-FV set seems promising. 

For the RM codes, all 𝑛! different factor graphs have the same FV and the same CS 

values. Because of the constant values of CS and FV, single-FG decoding 

performances of all FG’s are similar. As opposed to polar codes, 𝑀-FG decoding 

performance of Reed-Muller codes improves considerably with increasing 𝑀; 

however, it can approach the 1-FG performance of the adaptive polar code with 

similar parameters for quite high 𝑀 (≈152) over BEC(0.35). 

Factor graphs, which have the highest CS values, conform the attitude of polar codes 

that chooses the highest-capacity paths; hence, one expects that BP decoders using 

these factor graphs to perform better. However, for the (64, 32) polar codes over 

binary erasure channels with various erasure rates, we have observed in Section 4.6 

that the 4-FG decoder, which uses the fifth-highest-CS-valued equi-CS set, performs 

slightly better than the 4-FG decoder that employs the highest-CS-valued equi-CS 

set. Many trials with different channels and different erasure patterns resulted in 

similar results, equi-CS set #5 always had this small advantage over set #1 for an 

unexplained reason. 

It is a future work to examine the structure of FG’s in the best performing sets, and 

determine better selection criteria for multiple-FG decoders. Invariability of CS and 

FV values with respect to the factor graph stage permutations of Reed-Muller codes 

also needs to be proved. 
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APPENDIX A 

 

 

FACTOR GRAPHS OF THE MAXIMUM EQUI-FV SET AND FV 

DISTRIBUTION FOR THE (128, 64) ADAPTIVE POLAR CODE  

 

 

 

For the (128, 64) adaptive polar code over BEC(0.35), 𝑛! =  7! = 5040 different FG’s 

can be implemented. In Section 4.4.2, BP decoding performance, using FG's of the 

maximum equi-FV set, for the (128, 64) adaptive polar code over BEC(0.35) is 

evaluated. Factor graphs that have the highest FV value are presented in Table A.1 

and distribution of the number of frozen variables among 5040 factor graphs is given 

in Table A.2. 

Table A.1: Factor graphs in the maximum equi-FV set for the (128, 64) adaptive polar code with 

𝜖=0.35. 

Factor Graphs FV CS 

6745321, 6754321, 7645321, 7654321 210 63.7043 

6743521, 6753421, 7643521, 7653421 210 63.5861 

6745231, 6754231, 7645231, 7654231 210 63.4057 

6745312, 6754312, 7645312, 7654312 210 63.3012 

6743512, 6753412, 7643512, 7653412 210 63.1289 

6743251, 6753241, 7643251, 7653241 210 63.0892 

6742531 ,6752431, 7642531, 7652431 210 63.0049 

6742351, 6752341, 7652341, 7642351 210 62.8065 

6745132, 6754132, 7645132, 7654132 210 62.5524 

6745213, 6754213, 7645213, 7654213 210 62.5195 

6743152, 6753142, 7653142, 7643152 210 62.1039 

6745123, 6754123, 7645123, 7654123 210 62.0692 

6743215, 6753214, 7643215, 7653214 210 61.9594 

6742513, 6752413, 7642513, 7652413 210 61.9120 

6742315, 6752314, 7652314, 7642315 210 61.5242 

6743125, 6753124, 7643125, 7653124 210 61.4313 

6742153, 6752143, 7642153, 7652143 210 60.6754 

6742135, 6752134, 7642135, 7652134 210 60.4860 
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Table A.2: Distribution of the number of frozen variables (FV) for the (128, 64) adaptive polar code 

with erasure rate 𝜖 =0.35 among 5040 factor graphs. 

FV Number of the FG’s 
Maximum and Minimum CS 

Values 

210 72 63.7043, 60.4860 

206 72 63.6297, 60.3828 

202 120 63.5654, 60.1537 

198 96 63.5122, 60.4111 

194 192 63.4479, 60.1236 

190 120 63.3734, 59.9573 

186 264 63.1533, 59.2942 

182 168 62.8258, 58.7738 

178 192 62.4509, 58.6319 

174 144 62.3322, 58.1320 

170 336 62.1136, 58.1184 

166 168 61.6304, 58.0956 

162 288 61.7713, 57.6797 

158 120 61.7147, 57.4161 

154 288 61.5782, 57.4785 

150 48 61.0129, 57.3914 

146 456 61.4195, 57.2532 

142 120 61.3008, 57.2943 

138 384 61.0700, 56.7822 

134 96 61.1300, 56.9483 

130 312 60.8570, 56.4660 

126 48 57.9701, 56.5059 

122 288 59.8194, 56.2410 

118 144 59.5619, 56.6240 

114 96 58.9773, 56.6316 

110 96 59.0316, 56.2428 

106 192 58.9414, 55.9530 

98 120 57.7028, 55.8789 

 

 

 




