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ABSTRACT

DYNAMIC SEA CLUTTER SIMULATION AT LOW GRAZING ANGLES

Erdoğan, Muhammed Z.

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Sencer Koç

January 2018, 100 pages

High-amplitude clutter signals may be observed during radar operation due to envi-

ronmental objects having large surface areas. By Doppler processing, modern radars

can discriminate between echoes from mobile targets and echoes from stationary ob-

jects like mountains, buildings and so on. However, there is no simple way to do this

discrimination for sea clutter since sea is always on the move. Therefore, statistical

and empirical models are frequently used to characterize sea clutter. Yet, such models

are unlikely to predict sea clutter accurately, particularly in complex sea conditions.

In this thesis, we approach this issue in a different way. Dynamic simulation of sea

clutter is performed to obtain more accurate results. In this simulation, sea surface

is modeled depending on time-varying environmental factors, like sea wave height.

Therefore, change of clutter is compatible with temporal and spatial correlation of

sea surface. Then, a model is suggested to mimic realistic sea clutter parameters like

normalized radar cross sections and Doppler frequency shifts. By applying the sug-

gested model to the generated sea surface in certain time periods, complex radar data

matrix is constructed. Finally, the simulation results are analyzed and compared to
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some of the available experimental data for different scenarios, and good agreement

is observed.

Keywords: Dynamic Sea Surface, Dispersion Relation, GIT Model, Visibility Anal-

ysis, Radar Cross Section, Doppler Spread Modeling, Spectrogram
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ÖZ

DÜŞ ÜK SIYIRMA AÇILARINDA D˙ ˙ ˙ ˙ ˙INAMIK DENIZ KARGAŞ ASI BENZETIMI

Erdoğan, Muhammed Z.

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Sencer Koç

Ocak 2018 , 100 sayfa

Radar çalışması esnasında, büyük yüzey alanlı çevre elemanlarından kaynaklı yüksek

genlikli kargaşa sinyalleri gözlenebilir. Günümüz radarları Doppler işleme ile hare-

ketli hedeflerden oluşan yankıları, durağan olan dağ, bina vb. kaynaklı yankılardan

ayırt edebilir. Fakat deniz sürekli hareket halinde olduğu için bu tip basit yöntem-

lerle bir ayrıştırma yapmak söz konusu değildir. Bu yüzden, istatistiksel ve ampirik

modeller deniz kargaşasını karakterize etmek için kullanılır. Ancak, bu tip modelle-

rin karmaşık deniz koşullarında, deniz kargaşasını doğru bir biçimde öngörebilmeleri

için deniz yüzeyinin ayrıntılı bir modeli gereklidir. Bu tezde, bu konuyu farklı bir

bakış açısıyla ele almaktayız. Daha doğru sonuçlar elde etmek için deniz kargaşa-

sının dinamik olarak benzetimi yapılmaktadır. Bu benzetimde deniz yüzeyi çevresel

etmenlere, özellikle deniz dalga yüksekliğinin zaman içerisindeki değişimine bağlı

kalınarak modellenmiştir. Dolayısıyla, kargaşanın değişimi, deniz yüzeyinin zaman-

sal ve uzaysal ilintisiyle uyumlu olmaktadır. Bundan sonraki aşamada düzgelenmiş

radar kesit alanı ve Doppler frekans kayması gibi deniz kargaşası parametrelerinin

gerçekçi bir şekilde modellemesi yapılmıştır. Önerilen modelin, üretilen deniz yüze-
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yine belirli zaman aralıklarında uygulanmasıyla birlikte karmaşık radar veri matrisi

elde edilmiştir. Son olarak, farklı senaryolar için elde edilen sonuçlar analiz edilip,

mevcut birkaç deneysel veriyle karşılaştırılmış ve sonuçların uyumlu olduğu gözlen-

miştir.

Anahtar Kelimeler: Dinamik Deniz Yüzeyi, Dağılma Bağıntısı, GIT Modeli, Görü-

nürlük Analizi, Radar Kesit Alanı, Doppler Saçılım Modelleme, Spektrogram

viii



To my family

ix



ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my supervisor Prof. Sencer Koç for

his guidance, criticism, advice, continuous support and insights that made this study

possible.

I would like to thank the committee members Prof. Mustafa Kuzuoğlu, Prof. Özlem
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CHAPTER 1

INTRODUCTION

Sea clutter poses many problems during the detection operation of radars especially

for the small targets like boats, buoys and so on. This issue does not only depend

on the time-varying amplitude of the sea clutter, but also it depends on the dynamic

behavior of the Doppler shifts due to the changing status of the sea surface. Although

land clutter mostly can be suppressed by using Moving Target Indicator (MTI) due to

being mostly non-mobile environment, sea clutter requires adaptive MTI processing

to diminish the effects of the clutter, for which the filter parameters vary in time.

Therefore, better characterization of the sea clutter has been demanded for decades to

improve the clutter suppression of such radar signal processing tools.

Researchers have endeavored to characterize sea clutter in terms of grazing angle,

radar frequency, polarization and various environmental parameters. The amplitude

characteristics of the sea clutter is mostly qualified by the reflectivity parameter, σ0

(a.k.a. normalized radar cross-section (NRCS)). The direct solution for the σ0 can be

obtained by solving the Maxwell’s harmonic time dependent integral equations. The

calculations for a such way is very difficult even if the Perfect Electrical Conductor

(PEC) condition is assumed for the sea surface [1]. Holliday et al. [2] developed

an iterative numerical method, namely forward-backward method, to solve MFIE

(magnetic field integral equation) for PEC surfaces. Yet, the calculations are still

complex, computationally slow and cover only 1D surfaces. According to Ward et

al. [1], physical optics (Kirchoff) approximation and composite model suggested by

Wright and Valenzula is not valid at low grazing angles (LGAs) due to multipath,

shadowing and polarization dependent behavior of the sea clutter. Arikan et al. [3]
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utilizes the two scale roughness model and physical optics to obtain NRCS at various

frequencies and grazing angles. However, shadowing effect is neglected for grazing

angles less than 18◦, and grazing angles less than 3◦ have not been covered in [3].

Empirical and statistical models for the amplitude characterization of the sea clut-

ter have become more practical and efficient solutions for this problem. The Georgia

Institute of Technology (GIT) model suggested by Horst et al. [4] has been widely ac-

cepted as a proper model to characterize mean σ0 with respect to grazing angle, radar

frequency, angle between sea waves and radar direction, and so called Sea State (SS).

The term sea state is used to describe the arduousness of the sea surface. Nathanson

[5] presents data tables of average reflectivity for different polarizations, sea states,

radar frequencies and needless to say grazing angles. These tables give rise to NRL

(Naval Research Laboratory) sea clutter model as there are discrepancies between the

collected average reflectivity data and the GIT model’s results especially for the sea

states lower than 3 [6]. There are many other empirical models to characterize the

mean reflectivity, σ0, some of which are examined in Chapter 3.

Considering as a random process, sea clutter amplitude variation can be described

by the distributions like Rayleigh, Log-normal, Weibull and Gamma. The amplitude

statistics depends on the detector type, size of the radar resolution cell, operational

frequency and the roughness of the sea surface [7]. The statistical models are con-

structed based on the empirical data. In the literature, distributions of the analyzed

sea clutter mostly resemble to log-normal, Weibull and K-distributions [8]. Also,

the simulation results for different grazing angles presented in [9] resemble mostly

Log-normal distribution, K-distribution and Weibull distribution.

In addition to the amplitude characteristics, the Doppler characterization of the sea

clutter is generally made up from the empirical data. The study of Pidgeon et al.

[10] can be accepted as a milestone that shows the dependency of the Doppler shifts

and bandwidth on the polarization, sea waveheight, wind speed, angle between sea

wave direction and radar propagation direction. From their measurements in 1991,

Lee et al. [11] able to separate so called Bragg scattering mechanism from non-Bragg

scattering mechanisms of the sea clutter in the Doppler frequency domain. Further-

more, they conclude that non-Bragg returns for horizontal polarization dominates the
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one in the vertical polarization. Walker [12] observes that three different scattering

mechanism dominates the clutter returns in Doppler domain from the wind-wave tank

measurements. He also models the Doppler spectra combined up two or three Gaus-

sian line shapes depending on the polarization in [13]. A more practical model de-

veloped by Whitrow [14] scales the model of Walker in [13] by the factors obtained

from the graphical results of Rozenburg’s wave tank measurements [15]. Whitrow

[14] also relates the average RCS (radar cross section) to the Doppler spectral pa-

rameters such as Bragg peak frequency and spike bandwidth. These mechanisms and

parameters are given in detail Chapter 3 and 4, respectively. In recent years, with the

increasing number of shared measurement data by the like of Council for Scientific

and Industrial Research (CSIR), South Africa field experiment datasets [16], more

refined Doppler spectra models for the sea clutter have been introduced. Watts et al.

[17] relate the mean Doppler frequency to the local clutter return power at medium

grazing angles in 2016.

In this thesis, we have proposed a sea clutter model that adaptively changes the scat-

tering parameters in compliance with a generated dynamic 3D sea surface. To achieve

that, first we apply geometric optics and modified GIT model to the generated sea

surface and obtain RCS matrix whose dimensions are range and time. Then, we

generate Doppler spectra by using the obtained RCS matrix within the methods of

Whitrow [14]. Since we attempt to mimic CSIR’s sea clutter datasets collected at low

grazing angles [16], some modifications on the parameters have been made. We also

observe from the datasets in [16] that the local clutter intensities affect the Doppler

shifts. Hence, we model the Doppler shifts similar to the findings of Watts [17]. After

that, we generate correlated clutter returns by performing Fourier synthesis of com-

plex Gaussian process with the modeled spectra. To validate the performed synthesis,

conservation of energy is ensured through Monte Carlo iterations. Finally, by apply-

ing all mentioned processes to the each range bin, we complete the complex radar

data matrix.
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1.1 Outline

The organizational flow of this work is presented as follows. In Chapter 2, some terms

related to sea and environment conditions like significant waveheight and sea state are

explained. Then, in Section 2.2 physical phenomena of dispersion relation and sea

wave spectrum are discussed. Finally, in Section 2.3 the generation of 3D sea surface

by using WAFO and WAFOL [18, 19] toolboxes is presented with the demonstration

of generated sample sea surfaces.

In Chapter 3, brief review of sea clutter theory is given. Firstly, amplitude character-

istics of sea clutter is investigated in Section 3.2. Calculation of the clutter amplitude

and empirical sea clutter models and their comparison are examined in this section.

Secondly, in Section 3.3, Doppler characteristics of sea clutter is examined through

the introduced scattering mechanisms. Finally, concept and construction of radar data

matrix are probed in Section 3.4.

Chapter 4 intensifies on the proposed sea clutter model. The procedures and aims are

introduced in Section 4.1. Section 4.2 shows how we compute the RCS values of each

range bin and time interval from the generated sea surface. In this section, grazing

angle calculation, application of empirical model and visibility analysis have been

discussed. After that, generation of correlated Doppler shifts based on the suggested

Doppler characteristics is analyzed in Section 4.3. Finally, scope and limitations of

the suggested model are discussed in Section 4.4.

In Chapter 5, simulation results of the proposed model for the generated scenarios are

presented. Also, some of the results are compared with the available data [16]. Ini-

tially, RCS results are demonstrated and compared via histograms in Section 5.1. Af-

ter that, Doppler shift results are inspected through spectrograms and mean Doppler

shifts are compared graphically in Section 5.2. Finally, in Section 5.3, analysis of sea

wave physics from the simulation results is monitored.

In the end, this study is concluded in Chapter 6 by making comments and evaluations

on the proposed model, simulation results and the future studies.
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CHAPTER 2

MODELING SEA SURFACES

In this chapter, generation of time-varying (dynamic) sea surface to create scenarios

for the proposed clutter simulations, and background information about sea waves are

investigated. Initially, some terms and basic concepts regarding sea wave structures

and environmental conditions are defined. Then, mathematics lying behind the sea

surface waves like sea surface spectrum and spreading is examined. After that, key

algorithms used to obtain realistic and time-varying structure of sea surfaces for this

work, are presented. Finally, some simulation samples of resulting sea surfaces are

given.

2.1 General Concept of Sea Waves

For this study, sea surface and its time dependency must be well-defined in order

to obtain more desirable clutter model. Therefore, some terminology related to sea

structure and sea conditions must be comprehended. First, sea wave structure is dis-

cussed. In Figure 2.1, one dimensional sea wave is illustrated.

One needs to distinguish between wave and surface elevation from Figure 2.1 to clar-

ify the terms of wave height H , period T , and length L. Surface elevation is the

instant elevation of the sea surface relative to the zero reference level, while the wave

is surface elevation profile between two successive upward or downward reference

level crossings in a certain time interval.

The wave height, H (as in Fig. 2.1), is defined as the vertical distance between
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Figure 2.1: 1D sea surface at a specific point of observation [20].

maximum and minimum peaks of surface elevation in a wave. Similarly, the wave

period, T (as in Fig. 2.1), is the duration between two successive zero crossings

of the wave at a fixed location of the surface [20]. In analogy to the wave period,

which is in time domain, spatial period or wave length, L, is the distance between

two successive crests at an instant [5]. Another important term is the Significant

Wave Height (SWH), H1/3, which is the average of the highest one-third of waves in

a wave record. This term is used to determine sea state, defined later on this section.

SWH is given by

H1/3 =
1

N/3

N/3∑
i=1

Hi (2.1)
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where i is the rank number of the wave, that is, i = 1 is the highest wave, i = 2 is the

second highest wave in the wave record [20]. Nathanson [5] states that a widespread

approximation for wind generated waves is H1/3 = 4σh, where σh denotes the stan-

dard deviation of the wave heights.

To characterize the sea surface in both spatial and temporal domain, one needs to

define temporal and spatial wavenumber terms, which are essential to generate and

analyze sea surfaces as discussed in Section 2.2. Temporal frequency is defined in

terms of wave period by ω = 2π/T ; whereas spatial wavenumber is determined

from the wavelength by k = 2π/L [5]. In addition to these fundamental sea surface

descriptions, to better analyze the sea clutter, some terms concerning sea conditions

must be defined [1, 5, 21]:

Wind Wave: Waves arousing from the wind blowing on a water surface that leads to

random sea surface height profile.

Swell: Having almost sinusoidal shape and having larger wavelength than standard

local wind waves, swells occur from the wind waves that move out of the area

where they are originally excited.

Gravity Wave: Essential waves excited due to motion of Earth and gravity acting

on water mass. If wavelength of sea waves is greater than approximately 2 cm,

these waves are called as gravity waves.

Capillary Waves: Ripple waves that occur due to surface tension and have wave-

length less than 2 cm.

Whitecaps: As their front face rolling backwards, breaking waves on the open sea

are called as whitecaps due to their foamy appearance. Whitecaps are highly-

related to wind conditions.

Fetch: The distance over which the wind has been blowing with a constant speed

and direction.

Duration: This term refers to how long a time the wind has been blowing with a

constant speed and direction.
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Fully Developed Sea: Equilibrium state reached after adequate fetch and duration

for given wind force.

Sea State: The scale of the roughness of the sea surface, generally determined from

the present largest wave heights. Beaufort Scale can be given as counter exam-

ple to sea state, since while it scales wind speed, it is confused with sea state

scale. Occasionally, Beaufort scale can give approximate result on sea state.

However, the sea state is determined from the sea waves itself, not the wind.

Sea states and descriptions are given for different sea scales in Table 2.1, and

Table 2.2.

Table2.1: World Meteorological Organization (WMO) Sea State [22].

SS SWH (m) Description

0 0 Calm - glassy

1 0 - 0.1 Calm - rippled

2 0.1 - 0.5 Smooth - wavelets

3 0.5 - 1.25 Slight

4 1.25 - 2.5 Moderate

5 2.5 - 4 Rough

6 4 - 6 Very rough

7 6 - 9 High

8 9 - 14 Very high

9 >14 Phenomenal

WMO Sea State, as in Table 2.1, shows the sea states for wind waves; however,

Douglas Scale, as in Table 2.2 calculates the sea states by taking swells into account

besides the wind waves.

2.2 Wave Spectrum of Sea Surface

Being a stochastic process, spectral analysis for sea surface should be apprehended to

generate such random surfaces. The spectrum shows the energy distribution on both

spatial and temporal frequency domains.
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Table2.2: Douglas Sea State [1].

SS SWH (ft) Wind Speed (kn) Fetch (nmi) Duration (h) Description

1 0 - 1 0 - 6 - - Smooth

2 1 - 3 6 - 12 50 5 Slight

3 3 - 5 12 - 15 120 20 Moderate

4 5 - 8 15 - 20 150 23 Rough

5 8 -12 20 - 25 200 25 Very rough

6 12 - 20 25 - 30 300 27 High

7 20 - 40 30 - 50 500 30 Very high

8 >40 >50 700 35 Precipitous

Sea surface can be represented by a superposition of arbitrary sinusoidal waves that

have different amplitudes, frequencies, phases and directions. Fourier series expres-

sion can be used to represent rough sea surface as [23]:

η̃(t) =
N∑
i=1

ãi cos (ωit+ α̃i). (2.2)

Where, η̃(t) is the surface elevation at instant t and at a fixed point, ãi is the Rayleigh

distributed amplitude of ith component, ωi is the temporal frequency of ith compo-

nent, α̃i is the uniformly distributed random phase of the ith component, N is the

number of total wave components.

Equation 2.2 yields stationary, Gaussian 1D surface elevation at a specific point of

observation. To describe realistic 3D moving waves, the horizontal dimension com-

ponent, that is, x, y-space dependency, should be inserted in Eq. 2.2 as

η̃(x, y, t) =
N∑
i=1

M∑
j=1

ãi,j cos (ωit− kix cos θj − kiy sin θj + α̃i,j) (2.3)

where k is the spatial wavenumber, and θ represents the direction of propagation.

Adding space components to the 1D random phase and amplitude model of sea sur-

face would introduce two more indices in the summation (i.e., for spatial wavenum-

ber, k and direction, θ, there would be different indices than temporal frequency, ω,

separately). However, spatial wavenumber and temporal frequency are related by the
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so called dispersion relation; hence, index for spatial wavenumber, k and index for

temporal frequency, ω, are the same [20].

2.2.1 Dispersion Relation

The temporal frequency of sea wave, ω, is related to the spatial wavenumber, k, by

the dispersion relation [20]. The dispersion relation is

ω2 = gk tanh kd (2.4)

where d is the water depth and g is the gravitational acceleration.

There are two practical approximations that can be made on Eq. 2.4 [24]:

• Deep-water approximation: If the water depth d is much larger than the water

wavelength L, this approach is valid. In this case, d � L, kd � 1, and

tanh (kd) = 1. Applying these assumptions on Eq. 2.4 yields:

ω2 = gk. (2.5)

• Shallow-water approximation: If the water depth d is much smaller than the

water wavelength L, this approach is valid. In this case, d � L, kd � 1, and

tanh (kd) = kd. Applying these assumptions on Eq. 2.4 yields:

ω2 = k2gd. (2.6)

2.2.2 Spectrum Models for Sea Surfaces

Based on parameters like wind speed, fetch and water depth, several formulation for

wave spectra has been suggested. Most of the wave spectra is in the following form:

S(ω) =
A

ω5
e−B/ω

4

. (2.7)

Variance of the spectrum defined also as the area under the spectrum, can be charac-

terized with respect to SWH, H1/3. Therefore, wind speed can be used in the formu-

lation of sea spectrum since SWH depends on it [25] as this relation can be observed
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from sea state scale Tables 2.1 and 2.2. Bearing these considerations in mind, sev-

eral spectrum models based on measurements and observations are explained in the

following sections.

2.2.2.1 Pierson-Moskowitz Spectrum

After performing various measurements in the North Atlantic, Pierson and Moskowitz

have characterized the sea spectrum based on the assumption that the sea is fully-

developed [26]. This approach is rather simple than other sea spectrum models due

to fully-developed sea assumption. Based on the many data collected under steady

wind speed conditions, calculated wave spectrum is plotted in Figure 2.2 [27]. For

Figure 2.2: Fully developed sea spectrum at different wind speeds according to L.

Moskowitz (1964) [27].

the plots given in Fig. 2.2, a good approximation is provided by [23]

S(ω) =
2παg2

ω5
exp [

−5

4
(
ωp
ω

)4] (2.8)

where ω is the angular frequency, ωp is the peak angular frequency of the spectrum,

g = 9.81 m/s2 is the gravitational acceleration, α = 8.1× 10−3 is Philip’s constant.

Peak frequency ωp and peak period Tp is related with wind speed U as:

ωp =
0.855g

U
Tp =

2π

ωp
=

U

0.136g
(2.9)

11



To obtain variance of the sea surface elevation, S(ω) should be integrated over all ω

[27]:

σ2
h =

∫ ∞
0

S(ω)dω = 2.47× 10−3U
4

g2
. (2.10)

Recall that H1/3 = 4σh, so the SWH is:

H1/3 = 0.22
U2

g
. (2.11)

The wind speed dependency of both peak period and SWH for Pierson-Moskowitz

spectrum is given in Figure 2.3. These relationships are used to generate sea surface

in the next section.

Figure 2.3: Relationship between H1/3, Tp and U for PM Spectrum [27].

2.2.2.2 JONSWAP Spectrum

In conjunction with Joint North Sea Wave Observation Project (JONSWAP), Hassel-

man et al. stated that even if fully-developed sea condition is valid, wave to wave

interactions like white-capping would be still notable [28]. In addition, Pierson-

Moskowitz spectrum cannot model limited fetch conditions due to the fully-developed

sea assumption. However, JONSWAP spectrum relates parameters like angular peak

frequency to fetch along with the wind speed, and it has a sharper spectrum shape.

The suggested spectrum is illustrated in Figure 2.4 (Numbers given in Fig. 2.4 are the
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station number, not distance. As distance to shore, namely fetch, increases with the

increasing station number). The formula given below is for the JONSWAP spectrum,

Figure 2.4: Wave spectrum of a continuously developing sea at different fetches pro-

posed by Hasselman et al. (1973) [27].

and its similarity to Pierson-Moskowitz spectrum is obvious. The basic difference

from the Pierson-Moskowitz spectrum is the introduction of the peak enhancement

factor, r. It must also be noted that the relation between different parameters in JON-

SWAP spectrum is different from the Pierson-Moskowitz spectrum as

S(ω) =
αg2

ω5
exp

[
−5

4

(ωp
ω

)4
]
γr, (2.12a)

r = exp

[
−(ω − ωp)2

2σ2ω2
p

]
(2.12b)

where the parameters determined from the measurements are [27]

γ = 3.3, (2.13a)

σ =

0.07, if ω ≤ ωp,

0.09, otherwise,
(2.13b)

α = 0.076

(
U2

Fg

)0.22

, (2.13c)

ωp = 22

(
g2

FU

)1/3

(2.13d)
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in which, F is the fetch, g is the gravitational acceleration, and U is the wind speed.

Since JONSWAP spectrum is more realistic and more extensive for different environ-

ment conditions, this model is used in the generation of sea surface in this study.

In the foregoing discussion, one dimensional spectrum models is inspected; how-

ever to create 3D sea surface, one needs two dimensional sea surface spectrum. The

sea surface can be represented as a 2D Fourier series in terms of random Gaussian

components, temporal frequency ω, spatial wavenumber k, and spreading direction

θ as given in Eq. 2.3. As examined in Section 2.2.1, temporal frequency is related

to spatial wavenumber through the dispersion relation. Therefore, 2D spectrum can

be represented in terms of temporal frequency and spreading direction. In the next

section, directional spreading concept is clarified.

2.2.3 Directional Spreading

Direction of sea wave motion gives rise to angular distribution in spectrum that can

be represented by a spreading function. Two dimensional sea surface spectrum can

be written in terms of 1D spectrum S1D(ω) and spreading function D(ω, θ) as [18]:

S2D(ω, θ) = S1D(ω)D(ω, θ). (2.14)

Recall that total energy for 2D spectrum should remain same as in the previous 1D

case, since spreading function only distributes the spectrum in different angles/direc-

tions, but it neither amplifies nor attenuates the spectrum. This essential condition for

the determination of spreading function [29] is:∫ ∞
−∞

∫ π

−π
S(ω, θ)dωdθ =

∫ ∞
−∞

∫ π

−π
S(ω)D(ω, θ)dωdθ =

∫ ∞
−∞

S(ω)dω. (2.15)

There are numerous spreading function types like cosine-squared, Mitsuyasu, Donelan

and Hasselman. Donelan and cosine-squared spreading functions are frequency inde-

pendent; thus, these ones do not represent spectral density appropriately, especially at

peak frequency. Mitsuyasu and Hasselman spreading functions both have dependency

on frequency; yet, only Mitsuyasu spreading is investigated since this spreading type

is employed during the generation of the sea surface.
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2.2.3.1 Mitsuyasu Spreading Function

This frequency dependent function, which is actually based on cosine-squared spread-

ing function, is expressed as

D(ω, θ) =
Γ(s+ 1)

2
√
πΓ(s+ 0.5)

[
cos2

(
θ − θ0

2

)]s
(2.16)

where θ0 represents the wind direction, Γ(s) symbolizes the Gamma function, and

parameter s governs the directional energy distribution over the frequencies as fol-

lows:

s =


9.77

(
ω

ωp

)−2.5

if ω ≤ ωp,

6.97

(
ω

ωp

)5

if ω > ωp.

(2.17)

From Eq. 2.17, s reflects that angular spreading increases at frequencies close to the

peak spectral frequency, and it decreases at frequencies below than the peak frequency

of the wave spectrum [29].

2.3 Generation of Sea Surfaces

In this study, WAFO [18] and WAFOL [19] toolboxes are utilized to generate sea

surface, and these toolboxes work jointly in the MATLABTM environment. The tool-

boxes are generally used to create oceanic waters. However, CSIR’s experimental

data [1] used for comparing the simulated clutter in Chapter 5 is obtained from coastal

waters. Environmental conditions like SWH, peak wave period and water depth can

be adjusted for the generated sea surfaces. In order not to distort the dispersion re-

lation, approximate depth of water where data is collected is entered as water depth

(approximately 30 m). In addition, for fully developed seas, relations based on wind

speed are used to determine the SWH and peak period of the generated sea surface,

as can be seen in Figure 2.3. However, for coastal waters wind speed may not match

these curves. As given in the experimental reports of field tests conducted by CSIR

[1], measured SWH is not consistent with the given wind speed according to the

curves. Yet, peak period point on the curve corresponding to the measured SWH
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matches to the observed peak wave period. Therefore, given SWH and peak period is

directly used for the generation of sea surface.

In addition to setting various environmental conditions during the sea surface gener-

ation process, WAFO toolbox enables users to adjust different mechanisms like spec-

trum type, spreading type, front-to-back asymmetry of sea wave. As stated on the

previous sections, JONSWAP spectrum and frequency dependent Mitsuyasu spread-

ing is used throughout the entire work. Resulting directionally spreaded wavenumber

spectrums of the WAFO generated sea surfaces are shown in Figure 2.5 for respec-

tively 0◦ and 45◦ spreading directions.

Normalized JONSWAP spectrum for 0° direction
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Figure 2.5: Normalized directional spread spectrum of generated sea surface for both

0◦ spreading direction, and 45◦ spreading direction.

WAFO toolbox [18] models the sea surface’s stationary mechanisms while treating

sea surface as Gaussian stochastic process. The Gaussian 2D wave generated by
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WAFO represented in time t and space x as

z(t, x) = m+
N∑
i=0

√
SiRi cos (kix− ωit+ α̃i) (2.18)

where Ri is independent Rayleigh distributed amplitudes, Si is weight factor of JON-

SWAP spectral density S(ω), and m is the mean surface height.

On the other hand, WAFOL toolbox adds both horizontal and vertical motion to the

static sea surface by employing Gauss-Lagrange model [19]. Horizontal process,

l(t, x) is dependent on the vertical Gaussian process, z(t, x). Indeed, horizontal pro-

cess l(t, x) is obtained by linear filter application to the vertical process z(t, x). This

is where non-Gaussian characteristics of Lagrange waves are added. The applied fil-

ter has complex response and front-back asymmetry, which causes peaked crests and

shallower troughs, is given to the generated waves with the additional lα/ω2 term in

the filter response. Therefore, the filter response having dependency on frequency ω

and water depth h is given as:

H(ω) = p(ω)ejθ(ω) = j
cosh (hk)

sinh (hk)
+ lα/ω

2. (2.19)

If the term lα is set to zero, then no front-to-back asymmetry would be obtained as

generated sea waves appear smoother. The horizontal process generated by WAFOL

[19] is presented as:

l(t, x) =
N∑
i=0

√
(S(ωi)∆ω)p(ωi)Ri cos (kix− ωit+ α̃i + θ(ωi)). (2.20)

Given Lagrange and Gaussian waves are 2D waves, that is the processes are composed

of only x component of the space and time component t. The 3D versions of these

processes can be handled in the same sense. Since the equations and relations for 3D

Gauss-Lagrange processes are very complex, one can found them in [19].

3D model of randomly generated sea surfaces at a certain instant is presented in Fig-

ure 2.6. Note that axes of Fig. 2.6 are not scaled. In addition, top view images of the

sea surfaces at different instants are given in Figure 2.7 and Figure 2.8 for respectively

0◦ and 45◦ spreading directions.
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Figure 2.6: 3D view of generated sea surfaces (lα = 0.75).
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Figure 2.7: Top view of generated sea surface (lα = 0.75), moving with angle of 0◦,

at different instants.
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Figure 2.8: Top view of generated sea surface (lα = 0.75), moving with angle of 45◦,

at different instants.
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CHAPTER 3

THEORETICAL BACKGROUND OF CLUTTER

3.1 Introduction to Clutter

Before proceeding the outline of this chapter, the term clutter should be defined prop-

erly. Clutter is defined as the unwanted returns from the environment which deterio-

rate the detection of echoes from target [8]. The scattering properties of clutter vary

with radar parameters like frequency and polarization, and also by the environmental

conditions such as steadiness and reflectivity. Most generic way to represent scatter-

ing properties is the use of polarization scattering matrix as in Eq. 3.1, which consists

of polarization, amplitude and phase terms as [30]:

S =

√σHHejφHH
√
σHV e

jφHV

√
σV He

jφV H
√
σV V e

jφV V

 . (3.1)

In this thesis, we only investigate VV polarization. Due to having lack of experi-

mental data to compare with our results, the other polarization types are not covered

in this study. Therefore, only
√
σV V e

jφV V part of the scattering matrix is examined

and modeled. Since the region of interest is only the sea surface, all clutter terms are

considered as surface clutter.

Amplitude characteristics of the sea surface clutter in the next section which presents

the fundamental computations for
√
σV V . After that, Doppler characteristics of the

sea clutter are investigated which directly affects the phase term ejφV V of the reflec-

tivity parameter. Finally, radar data matrix which is combined from the complex

reflectivity parameters, is presented.
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3.2 Amplitude Characteristics of the Sea Clutter

In this section, initially the amplitude calculations of the clutter regardless of being

sea or land. Then, the empirical models for the sea surface reflectivity and their

comparison are given.

3.2.1 Amplitude Computation for the Clutter

The calculations presented in this subsection are valid for both land and sea surface

clutter.

Surface clutter’s amplitude depends on the illuminated area. To measure and compare

the effects of surface clutter, the clutter RCS is divided by the illuminated area to

obtain the clutter reflectivity (sometimes referred to as normalized RCS, NRCS) and

is denoted by σ0 [8]. The radar range equation for the backscatter power from surface

clutter is given by

C =
PtGAeσ0Ac

(4π)2R3
(3.2)

where Pt is the transmitted power, G is the antenna gain, Ae is the effective antenna

aperture, R is the range, Ac is the illuminated clutter area. So, if one obtains σ0 and

Ac, received clutter power can be estimated which may give prior knowledge about

clutter properties of the operational environment.

One of the key parameters to determine Ac, is the grazing angle. The angle between

the incident ray and the tangent to the sea surface in the plane defined by the incident

ray and the surface normal is referred to grazing angle [31]. Its complementary an-

gle is called incidence angle, which is the angle between the inbound radiation and

normal to the sea surface. Grazing angle also has a great impact on σ0 as discussed

in the next section. At low grazing angles, length and width of circular arc sector

shaped clutter area is illustrated in Figure 3.1. Radar resolution cell is comprised of

range resolution cτ/2, assuming no pulse compression, and angle resolution RθB. At

large distances and LGAs, the clutter area can be approximated by a rectangle and it

is given by the equation

Ac = RθAZBW (cτ/2) sec(ψg) (3.3)
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Figure 3.1: (a) Length for clutter area, (b) width for clutter area [8].

where clutter area’s length is determined by τ : pulse width, ψg: grazing angle, and c:

propagation velocity (almost equal to light speed), while its width is determined by

R: range, and θAZBW : azimuth beamwidth [8].

Since nowAc is determined, one should characterize σ0 to estimate backscatter power

from the clutter. It is almost impossible to directly compute the value of the reflectiv-

ity term; thus, empirical models have been proposed especially for the sea clutter.

3.2.2 Empirical Sea Clutter Models

Due to randomness of sea surface, it is difficult to make a model for NRCS - σ0.

Besides, to determine σ0, the electromagnetic computation methods like method of

moments (MoM) and finite element method (FEM) could be very time-consuming

so that these methods may not be the best choice for modeling dynamic sea surfaces

[32]. Therefore, based on the experimental observations, empirical models have been

developed in which σ0 have shown dependency on wind direction, sea conditions,
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grazing and look angle, and so on [1].

There are several empirical models, yet GIT model is employed in this study. In

the following parts, empirical models with their mathematical expressions are given.

After that, empirical models are compared to enlighten why GIT model is chosen for

the simulation.

3.2.2.1 NRL Model

Naval Research Laboratory researchers developed an empirical sea clutter model by

parameterizing Nathanson’s experimental results for σ0. The main aim is to provide

a model that fits these experimental results better than the GIT model especially at

lower sea states. The model is valid at the grazing angles from 0.1◦ to 10◦ in the

frequency range of 0.5 GHz to 35 GHz [6]. The suggested expression for the vertical

polarization is in the form of [33]

σ0
V V = c1 + c2 log sinα +

(c3 + c4α) log f

1 + c5α + c6SS
+ c7(1 + SS)

1

2 + c8α + c9SS (3.4)

where α is the grazing angle, f is the radar frequency, and SS is the sea state. Con-

stants used in Eq. 3.4 is given in Table 3.1:

Table3.1: Optimized constant parameters for the NRL model.

Constants For VV Polarization

c1 -48.56

c2 26.30

c3 29.05

c4 -0.5183

c5 1.057

c6 0.04839

c7 21.37

c8 0.07466

c9 0.04623
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3.2.2.2 GIT Model

This model is the most commonly used one to determine mean NRCS at LGAs. The

model is valid from 1 GHz to 100 GHz and for the grazing angles from 0.1◦ to 10◦.

It is combined from three separate factors: Wind speed factor, Aw, multipath or in-

terference factor, Ai, and wind direction factors, Au, which are functions of several

parameters [14].

The model, as given in [1], starts with conversion of the sea state, SS, to the wind

speed, U , and average wave height, hav, in meters:

U = 3.16SS0.8, (3.5)

hav = 0.00452U2.5. (3.6)

There is a roughness parameter that is used in multipath (interference) factor, Ai:

σφ = (14.4λ+ 5.5)
φgrhav
λ

(3.7)

where λ is the radar wavelength and φgr is the grazing angle in radians.

The multipath (interference) term, Ai, is given by:

Ai =
σ4
φ

1 + σ4
φ

(3.8)

Wind direction term, Au, is

Au = exp (0.2 cos (θw)(1− 2.8φgr)(λ+ 0.015)−0.4) (3.9)

where θw is the wind direction with respect to the radar look direction.

The last factor, wind speed factor, Aw is:

Aw =

 1.94U

1 +
U

15.4


1.1

(λ+ 0.015)0.4

. (3.10)

All of these factors are combined up to yield σ0 in dB, for the both horizontal and

vertical polarizations as:

σ0
HH = 10 log (λφ0.4

gr AiAuAw)− 54.09, (3.11)

σ0
V V = σ0

HH − 1.05 ln (hav + 0.015) + 1.09 ln (λ) + 1.27 ln (φgr + 0.0001) + 9.7

(3.12)
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3.2.2.3 TSC Model

This model is also based on Nathanson’s data whose structure resembles the GIT

model. However, the TSC model involves the parametric calculations which are com-

posed of the data collected under ducting conditions. Grazing angle is covered from

0◦ to 10◦, while the frequency is on the 0.5 GHz to 35 GHz range [1]. NRCS equa-

tions for the TSC model as follows:

σ0
HH = 10 log(1.7× 10−5φ0.5

gr GuGwGA/(3.2808λrad + 0.05)1.8), (3.13)

σ0
V V =



σ0
HH − 1.73 ln (8.225σz + 0.05) + 3.76 lnλrad

+2.46 ln (sinφgr + 0.0001) + 24.2672 f < 2GHz,

σ0
HH − 1.05 ln (8.225σz + 0.05) + 1.09 lnλrad

1.27 ln (sinφgr + 0.0001) + 10.945 f ≥ 2GHz

(3.14)

where

σz = 0.03505SS1.95, σα = 4.5416φgr(3.2808σz + 0.25)/λrad,

GA = σ1
α.5/(1 + σ1

α.5), U = 3.189SS0.8, Q = φ0.6
gr ,

A1 = (1 + (λrad/0.00914)3)0.1, A2 = (1 + (λrad/0.00305)3)0.1,

A3 = (1 + (λrad/0.00914)3)Q/3, A4 = 1 + 0.35Q,

A = 2.63A1/(A2A3A4), Gw = [(1.9438U + 4)/15]A,

Gu =

1 φgr = π/2,

exp (0.3 cos θw exp (−φgr/0.17)/(10.7636λ2
rad + 0.005)0.2) φgr < π/2

(3.15)

λrad is the radar wavelength, φgr is the grazing angle, θw is the radar look direction

w.r.t. wind direction, and SS is the Douglas sea state. NRCS values do not diminish

rapidly with decreasing grazing angle in TSC model due to taking ducting effects into

account.
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3.2.2.4 Hybrid Model

This model has agreement with both Nathanson’s data and the GIT model. It is valid

up to grazing angles of 30◦ [1].

σ0 = σ0
ref +Kg +Ks +Kp +Kd (3.16)

in which σ0
ref is a reference reflectivity which is validated for sea state 5, grazing angle

of 0.1◦, upwind condition, and VV polarization. Kg, Ks, Kp and Kd are parameters

dependent on grazing angle φgr, polarization, sea state SS, radar look direction with

respect to wind direction θw. Then,

σ0
ref =

24.4 log f − 65.2 f ≤ 12.5GHz

3.25 log f − 42 f > 12.5GHz
(3.17)

φref = 0.1 (3.18)

φt = arcsin (0.0632λrad/σh)180/π (3.19)

where φref is the reference angle, φt is the transitional angle. λrad is the radar wave-

length, and σh = 0.031SS2 which stands for the rms wave height. After that,

If φt ≥ φref , Kg =


0 φ < φref

20 log(φ/φref ) φref ≤ φ ≤ φt

20 log(φt/φref ) + 10 log(φ/φref ) φt ≤ φ ≤ 30◦

(3.20)

If φt < φref , Kg =

0 φ ≤ φref

10 log(φ/φref ) φ > φref
(3.21)

Ks = 5(SS − 5) (3.22)

For VV pol., Kp = 0 (3.23)

Kd = (2 + 1.7 log(0.1/λrad))(cos θw − 1) (3.24)

3.2.3 Comparison of Empirical Models

Generally, almost all of the empirical sea clutter models are functions of sea state

or wind speed, grazing angle, radar frequency, polarization and wind direction. All

comparisons are made with the assumption of VV polarization and upwind condition.
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NRCS, σ0 versus grazing angle graphs are given in Figure 3.2 for sea states 1, 2 and

3, at 6 GHz radar frequency. Figure 3.2 shows that as grazing angle increases σ0

Figure 3.2: σ0 vs. grazing angle at f=6 GHz, for sea states 1,2,3.

value increases. In Figure 3.3 σ0 against frequency graphs for different sea states

at 1.5◦ grazing angle are demonstrated. It can be deduced from Figure 3.3 that the

Figure 3.3: σ0 vs. frequency at 1.5◦ grazing angle, for sea states 1,2,3.

clutter return increases with increasing frequency. In Figure 3.2 and 3.3, one can

also see that GIT model underestimates σ0 at low sea states with respect to the other

empirical models, especially at lower frequencies and lower grazing angles. This
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could be due to not taking evaporation ducts into account [34]. Since no evaporation

duct situation is assumed in the proposed clutter model, GIT model is eligible for the

work. In addition, since the aim of the suggested model is to create a simulation that

dynamically adapts itself to the sea surface, used empirical model should contain sea

surface height term. GIT and Hybrid models are the only well-accepted empirical

models that contain sea surface wave height term. However, Hybrid model contains

some terms to model the effects of evaporation ducts [34]. Consequently, the GIT

model is the most appropriate choice for the purpose and scope of this study.

3.3 Doppler Characteristics of the Sea Clutter

Due to being static, land clutter results in zero mean Doppler shift which cause almost

no difference between phase terms given in Eq. 3.1 for different regions of the mon-

itored area. However, because of being always on the motion, Doppler spectrum of

the sea clutter may vary from depending on both space and time. Doppler shifts mod-

eled on Chapter 4, give rise to diversity of phases for different sectors of modeled sea

as non-zero mean Doppler shifts are valid generally. Most particularly, there can be

seen large differences in the center Doppler frequency when wind direction changes.

There are three different conditions with respect to difference between radar look di-

rection and wind direction that gives idea where the mean Doppler frequency shift

lies on the spectrum:

Upwind: When radar look direction opposes the wind direction. Positive mean

Doppler shift is expected.

Downwind: When radar look direction is along the wind direction. Negative mean

Doppler shift is expected.

Cross-wind: When radar look direction is perpendicular to the wind direction. Zero

mean Doppler shift is expected.

Evidently, this information is not sufficient to characterize sea clutter in both ampli-

tude domain and Doppler frequency domain. Generally, clutter reflectivity increases

with increasing radar frequency and grazing angle. On the next section, empirical
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approaches to model magnitude of sea clutter are presented. To characterize sea clut-

ter, especially for Doppler spectra, Ward and Walker et al. described three types of

scattering mechanisms, namely Bragg, whitecaps and sea spikes [35]. On the Chapter

4, the terminology of scattering mechanisms as defined in [35] are adopted.

3.3.1 Bragg Scattering

Bragg scattering mechanism mentioned in [35] is indeed a composite scattering model

that contains large and small scale components. The large component is due to large

swells (gravity waves) which can be handled by Bragg resonance scattering mecha-

nism. Bragg resonance scattering model treat these long-wavelength water waves as

sinusoidals when the Bragg resonance condition is met. Bragg resonance condition

is:

nλradar = 2λwater cosψg, n = 0, 1, 2... (3.25)

where λradar is the radar wavelength, λwater is sea surface wavelength, and ψg is the

grazing angle. When this condition is met, according to Bragg scattering mechanism,

scattered waves deploy constructive interference as it can be seen from Figure 3.4.

At microwave frequencies, where the resolution of the radar increases, Bragg reso-

nance scattering mechanism is no more sufficient to characterize the clutter, since it

can only model the large scale component. Composite model features small gravity

waves and capillary waves as small scale component. Composite model treats sea

surface as small ripples riding on large sea swells. Small perturbation method is ap-

plied to small scale component, while geometric or physical optics is applied to the

large scale component.

The simple Bragg scattering mechanism described in [35], does not fit to many exper-

imental observations by itself, especially for high-wind conditions and HH polariza-

tion. Therefore, it is concluded that there is non-Bragg mechanism that collaborates

with Bragg mechanism in order to give rise to the experimentally observed phenom-

ena [8] and [31].
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Figure 3.4: Schematic drawing of Bragg resonance scattering mechanism [31].

3.3.2 Whitecaps and Sea Spike Scattering

Non-Bragg scattering occurs due to breaking waves or waves which are about to

break, both having long wavelength. Non-Bragg scattering mechanisms can be dis-

tinguished by their duration. Some of these mechanisms last about hundred millisec-

onds, then fade out swiftly; however, others continue about one to few seconds [31].

In the literature, non-Bragg scattering is referred to sea spikes. Yet, since they show

different characteristics, non-Bragg scattering is split into whitecaps scattering and

sea spike scattering as described in [35].

Whitecap scattering is due to whitecaps popping-out of breaking waves, which last in

the order of seconds. It is polarization independent and causes larger mean RCS and

Doppler frequency shift than Bragg scattering.

Lasting about one to two hundred milliseconds, sea spike scattering is due to crests

of waves about to break. RCS due to this burst scattering is highly polarization de-

pendent, that is HH pol. yields much higher RCS values than VV polarization [35].
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3.4 Radar Data Matrix

Recall that the term (cτ/2) in Eq. 3.3 represents range resolution, and range resolu-

tion can be related to the pulse width τ , since throughout this study no pulse com-

pression is assumed. Pulse width can be considered as time sampling interval of the

radar receiver, that is, if one scatterer is detected at t0 seconds, another scatterer can

be detected at least the time of t0 + τ seconds. Thus, if radar receiver takes samples

from time t0 to tn = t0 + nτ , this corresponds to taking samples from range R0 to

Rn = R0 + n(cτ/2). The range interval from R0 to Rn, from which radar receiver

extracts I/Q (in-phase/quadrature) data, is called the range strip, and it consists of n

range bins. These range bins are referred to fast-time samples. Radar receiver can

extract all I and Q data for each range bin from the transmission of a single pulse. In

most applications, using a single pulse not sufficient to gather enough energy from

the target return. Therefore, pulse trains are employed. Assuming radar transmits

m successive pulses, there are m samples from a single range bin, separated by PRI

(pulse repetition interval) in time. Hence, m successive pulses from a range cell form

a data vector in the so called slow-time dimension. As fast time’s sampling interval is

pulse width (and accordingly range resolution, cτ/2), slow time’s sampling interval

is PRI. Since radar PRI is much higher than pulse width, it s easy to see why these are

called fast and slow time [30]. Figure 3.5 below may be helpful to better grasp these

concepts. Both fast and slow time I/Q samples yield m × n dimensional complex

data matrix shown in Figure 3.6. This complex data matrix is required to demonstrate

evident time-variance of resulting clutter model in Chapter 5.
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Figure 3.5: Demonstration of fast and slow time during radar transceiving operation.
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Figure 3.6: Radar data matrix in m x n dimensions [30].
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CHAPTER 4

PROPOSED SEA CLUTTER MODEL

4.1 Introduction and Algorithmic Workflow

As mentioned in Chapter 1 “Introduction", the main motivation of this study is to

model realistic sea clutter, that is, the simulated sea clutter model adapts itself on the

scale of sea surface crests and troughs dynamically. For this purpose, experimental

radar measurements at Overberg Test Range performed by CSIR [16] are selected

as sample data. The key reason why these measurements are used in this study is

that researchers at CSIR constructed complex radar data matrix based on their mea-

surements. As complex data matrix has slow-time component (can be considered

as real-time), the researchers reported RCS vs. time and range graphs (as in Figure

4.1-a), and power spectral density of clutter vs. time at specific range bin graphs

(an example of which is shown in Figure 4.1-b). The proposed model for sea clutter

mainly aims to incorporate the time-varying phenomena of sea surface to generate a

simulated clutter that reasonably conforms with the measurements both in amplitude

and frequency (Doppler) domain. After the construction of the model, it is desired to

present results as in [16], that is, graphs of the proposed clutter model’s amplitude and

Doppler shifts with respect to time and/or range can be compared with the displayed

results in [16]. To obtain such time-varying clutter model, following work sequence

is performed:

1. Realization of the sea surface,

2. Obtaining grazing angles on the generated sea surface and applying empirical

sea clutter model,
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Figure 4.1: Graphs for CFA014 Data taken from [16], (a)- Amplitude of the clutter

vs. range-time, (b)- Doppler frequency shift of the clutter w.r.t time at range bin: 50

(corresponds to the range of 3735 m).

3. Determination of illuminated and shadow regions (visibility analysis) and ap-

plying required attenuation to the σ0 values of shaded regions,

4. Composing clutter amplitudes of both illuminated and shadow regions,

5. Giving the Doppler spreads, based on obtained clutter amplitudes which is the

variance of the resulting complex scattering parameter
√
σV V e

jφV V ,

Recall that step 1 is discussed in Chapter 2. Step 2 and step 3 are explained in the

next section.

4.2 Clutter Amplitude Extraction from Sea Surface

In this section, calculation of grazing angle for the sea surface using the geometric

optic assumption is explained. Then, application of the GIT model to the sea surface

is discussed. And, finally, separation of illuminated and shadow regions is described,

again based on the geometric optics assumption. Calculated clutter amplitudes are

attenuated for shadow regions.
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4.2.1 Grazing Angle Calculation and Applying GIT Model

With the assumption of geometric optics, radar is considered as a point source. Rays

emanating from this source, are incident on the sea surface which is gridded. General

scenario scene used for simulation of proposed model is illustrated in Figure 4.2, in

which incident rays on sea surface grids can be seen.

Figure 4.2: Sample scene of simulation and illustration of incident rays on sea surface.

To determine grazing angles, surface normals must be computed at first. Surface

normals are computed for the patches illustrated in the top view part of Fig. 4.3 (as

yellow dashed rectangles), whose centers are referred to vertices in this study. Thus,

vertices are selected as sea surface grids. For the vertex pm,n, where m and n are grid

numbers in the x and y directions, respectively, unit surface normal is determined by
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the cross product of grid edge vectors:

~pm+1,n − ~pm,n = (pm+1,n(x)− pm,n(x))âx + (4.1)

(pm+1,n(y)− pm,n(y))ây +

(pm+1,n(z)− pm,n(z))âz = ~A,

~pm,n+1 − ~pm,n = (pm,n+1(x)− pm,n(x))âx + (4.2)

(pm,n+1(y)− pm,n(y))ây +

(pm,n+1(z)− pm,n(z))âz = ~B,

n̂x,y,z =
~A× ~B

| ~A× ~B|
(4.3)

where first vector ~A is a vector from point pm,n to next x–axis point pm+1,n, while

second vector ~B is a vector from point pm,n to next y–axis point pm,n+1.

Similarly, unit vectors of incident rays for the each vertex is calculated by:

~Ix,y,z =
~pm,n − ~psource
|~pm,n − ~psource|

(4.4)

where ~psource is position vector of the radar. Surface normals and incident ray vec-

tors are scaled with respect to sea surface grids and shown in Figure 4.3. Figure 4.3

shows that incident vectors are almost perpendicular to surface normals. This is ex-

pected for low grazing angles. To obtain grazing angles at each vertex, one requires

to determine the angle between the incident ray and the surface normal at the point

of incidence. This angle is the incidence angle and its complementary is the grazing

angle. Incidence angle is obtained by:

φi(x, y) = arctan 2

(
||~Ix,y,z × n̂x,y,z||
~Ix,y,z · n̂x,y,z

)
. (4.5)

Then, grazing angle can be determined by:

φgr(x, y) = 90◦ − φi(x, y) (4.6)

Incidence angles larger than 90◦ occur from back faces of the sea surface crests for

the up-wind condition. On the other hand, such incidence angles are due to the front

faces of the sea surface crests for the down-wind condition. It is assumed that grazing

angles smaller than 0.1◦ are rounded up to 0.1◦ (Recall that the value 0.1◦ is the

minimum limit of which GIT model can be applied). However, before rounding up

38



420 440 460 480 500 520 540 560
x(m)

60

70

80

90

100

y(
m

)

Top View

1

1.5

2

2.5

z(m)

Sea Surface Incident Rays on Surface Vertices Normals of Surface Vertices

420 440 460 480 500 520 540 560
x(m)

0

1

2

3

4

z(
m

)

Front View - Unscaled

Figure 4.3: Surface normals and incident rays.

grazing angles lower than 0◦ to 0.1◦, an attenuation function is created based on the

grazing angles. The attenuation function (Fig. 4.4) is as follows:

ATT(φgr(x, y)) =

tanh 1/Γ(0.2φgr(x, y)) if φgr(x, y) > 0

10−4 otherwise
(4.7)

The function and its parameters are selected as in 4.7 to approximate the statistical

amplitude models for sea clutter (see Chap. 5 for more details). Even though attenu-

ation factor matrix is formed for all vertices, σ0 values of non-visible vertices, which

are determined by performing the visibility analysis (see Sec.4.2.2), are scaled by the

assigned attenuation factors. The reason why we define the attenuation function in

a such way can be understood with the following example. Assuming up-wind sea

condition, consider two vertices that are non-visible: Let one vertex is on the back

face of the sea surface, while the other is on the front face of the sea surface. Grazing

angle of vertex on the back face is always negative, while the grazing angle of the

other is always positive initially. The radar waves may be diffracted to the vertex on

the front face regardless of being visible. Yet, such diffraction is not possible for the

vertex on the back face. Therefore, vertices on front faces are less attenuated. The
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Figure 4.4: Attenuation function w.r.t. grazing angle

function also provides smooth transition that does not disrupt the continuity of mod-

eled clutter returns. That is, while observing the returns from trough to crest or from

back face to front face of the sea surface, RCS do not increase or decrease instantly.

The application of this function as an attenuation matrix is investigated on Sec. 4.2.3

particularly.

Once the grazing angles are extracted from the generated sea, the GIT model can be

used to determine the average surface reflectivity of sea surface patches. However,

some modifications on the GIT model inputs should be made. The GIT model uses the

wind speed and average wave height (hav) that are related to the sea state as expressed

in Eq. 3.5. Our goal is to employ the developed model for the non-oceanic waters

also, which directly eliminates the fully developed sea assumption (for reasons given

in Section 2.3), and the relations between wind speed, sea state and average wave

height in Eq. 3.5 will not be true for such cases. In addition, sea state is not a fine

measure to adjust other parameters since it can only take integer values. Therefore,

we will use the SWH H1/3 as input of the model instead of the sea state. The wind

speed U and the average wave height hav are then given by:

hav = H1/3/1.6, (4.8)

U = 8.67h0.4
av . (4.9)

Eq. 4.8 is mentioned in [2], while Eq. 4.9 is referred in [3]. In addition to these
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modifications, wind direction term, used in Eq. 3.9, in GIT model is replaced with the

wave direction since wind direction and wave direction may not match occasionally.

Wave direction is used as input θw instead of wind direction.

With these modifications in the GIT model (will be referred to modified GIT from

now on), average reflectivity of each patch represented by each vertex is determined

by applying inputs SWH, θw, extracted grazing angles, and operational frequency to

the modified GIT model. This done for each vertex regardless of that vertex being

illuminated or not. If the vertex is not in direct line of sight from the radar, it is

in the shadow region and attenuation due to shadowing should be included which is

discussed in the next section.

4.2.2 Visibility Analysis

To determine if a vertex is illuminated or it is in the shadow region, viewshed analysis

is applied. A viewshed is the area that is visible from a given location, and viewshed

analysis is determination of the viewshed for the given observation location [36]. One

can determine visibility of each vertex separately, as in Fig. 4.5. This can be done by

the following steps:

1. Draw a line from point of observation to the vertex of interest (Let this point be

Pint in Fig. 4.5).

2. Determine the slopes for virtual points where the line passes through (Green

transparent dots in Fig. 4.5). This is done by interpolating slopes of nearest

two vertices.

3. Check whether any of the calculated slopes on the drawn line is greater than

the slope of the vertex of interest.

This basic method is called R3 algorithm. As this algorithm walks through all of the

vertices to check visibility, it is computationally very slow. For this study, another

viewshed algorithm is tested which is relatively faster than the R3 method.
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Pm,n;obs

Pint

Figure 4.5: Schematic for R3 viewshed algorithm from observation point Pm,n.

4.2.2.1 X-Draw Algorithm

This method converts R3 algorithm’s two-dimensional calculations into single di-

mension by using recursion. Algorithm splits vertices into layers that are nested rings.

Layers get larger as they move further away from the observation point. Algorithm

walks through each vertex on a layer, then move onto the next layer. Diagrams for

X-Draw algorithm are presented in Fig. 4.6. X-Draw algorithm’s process flow is as

follows:

1. Initially set the accumulated slope to −∞ at the observation point, Pm,n. Also,

let this point to be origin, O.

2. Move to the first layer, slopes are accumulated and these slopes are set to be

maximum before proceeding to the next layer. All vertices are visible for the

first layer.

3. After moving to the second layer, consider vertex PL2
m+1,n−2 as the point of in-

terest, whose visibility depends on the maximum slopes of the lines joining

from origin, O, to the nearest neighbor points (PL1
m,n−1 and PL1

m+1,n−1) in pre-

vious layer. The algorithm interpolates the maximum slopes of OPL1
m,n−1 and

OPL1
m+1,n−1 (which are same as their own slopes) to calculate maximum slope
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accumulated for vertex OPL2
m+1,n−2 on the previous layer (first layer in this case).

Call this slope as MSpi, maximum accumulated slope for point of interest. If

the slope of the line joining Pm,n to PL2
m+1,n−2, Spi is greater than MSpi, the

vertex indexed PL2
m+1,n−2 is visible. Also, for the next layer, MSpi is set to be

Spi, which will be used for the calculations in the next layer. On the other hand,

if MSpi is greater than the Spi, the point PL2
m+1,n−2 is set to be invisible, and

maximum slope for OPL2
m+1,n−2 remains same (MSpi).

4. This process is repeated until each point on each layer is inspected by the algo-

rithm [37].

L3

L2

L1
L1

L2

L3

Pm,n-1
L1

Pm,n; obs (O)

(a) (b)

Pm+1,n-1
L1

Pm+1,n-2
L2 Pm+2,n-2

L2

Pm+2,n-3
L3

Figure 4.6: X-Draw algorithm diagram: (a)-Layers and dependency of sample vertex,

(b)-Dependency flow in X-Draw

In X-Draw algorithm, each point on new layer depends on the nearest neighbors on

previous layer. And since maximum slopes are accumulated for each layer, this im-

plies preceding layers affect the visibility of vertices on succeeding layers. This de-

pendency is illustrated in Fig. 4.6-b. To give an example for such dependency, con-

43



sider vertex PL3
m+2,n−3 in Fig. 4.6-a. Line of sight from the observation point to the

point PL3
m+2,n−3 is determined by the slopes on red-dashed line. For the first layer,

corresponding virtual interpolation line’s slope MSL1i is determined from the slopes

of OPL1
m,n−1 and OPL1

m+1,n−1. For the second layer, MSL2i is determined from the max-

imum slopes of OPL2
m+1,n−2 and OPL2

m+2,n−2. If MSL1i is larger than MSL2i, MSL2i is

updated as MSL1i. Otherwise, MSL2i remains same. If slope of OPL3
m+2,n−3, is larger

than MSL2i, this point is set as visible. In the other case, it is set as invisible. This

algorithm is less complex, and the problem can be handled as one dimensional case

which makes it computationally very fast. However, the trade-off for speed is the

accuracy [37]. It can be shown that the R3 algorithm has O(N3) complexity and

is accurate but X-draw has O(N2) complexity and is approximate, as stated in the

literature, [38].

As an example, a randomly generated sea surface is shown in Fig. 4.7-left. The

observation point is located at (−3000 m, 75 m and 67 m) Cartesian coordinates. Il-

luminated and shadow regions for this scene are indicated in Fig. 4.7-right, where

black regions are shaded, white regions are illuminated.

Figure 4.7: (Left) Top view of sample scenario sea surface, (Right) X-Draw viewshed

visualization - white: illuminated region, black: shadow region.

44



4.2.3 Amplitudes of Illuminated and Shadow Regions

For the sample scene given in Fig. 4.2, where source is located at (−3000 m, 75 m

and 67 m) coordinates, angle coverage for all range bins is illustrated in Fig. 4.8.

Although all vertices of the simulated sea surface area are traced with incident rays,

due to angle resolution of the radar, σ0 of vertices closer to the radar may be excluded

during the calculation of RCS (uncovered areas in Fig. 4.8).
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Figure 4.8: Comparison of real-life (black) and assumed (red) sea surface coverage

of a radar.

Since the distance of the radar to the closest range of interest is 3 km as shown by

the solid black arc in Fig. 4.8), the arc is almost linear. Therefore, in this study, sea

scene is handled as a trapezoidal area. As a result of this, regular grids are employed

instead of polar grids, which eases the computations.

In the simulations, the range resolution is chosen to be 15 m, with a corresponding

pulse width of 0.1 µs. Hence, vertices are separated by 15 m from each other in range
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direction which is assumed to be the x-axis in this study. Grids in y-axis are separated

by 5 m from each other, but the number of grids within a resolution cell depends on

the distance from the radar and the azimuth beamwidth of the radar.

The RCS of a radar resolution cell is computed as:

NRCS(x, y, t) = GIT(f, φgr(x, y, t), θw,SWH)vissea(x, y, t)+

GIT(f, φgr(x, y, t), θw,SWH)nonvissea(x, y, t)ATT(φgr(x, y, t)) (4.10)

RCS(x, t) =

yfin(x)∑
i=yini(x)

NRCS(x, yi, t)Apatch (4.11)

For Eq. 4.10, GIT function denotes applied modified GIT model at calculated graz-

ing angles in a certain instant. Other parameters of this function is radar frequency,

φgr(x, y), θw, and lastly given SWH. vissea(x, y, t) represents a two-dimensional vis-

ibility matrix of sea surface, while nonvissea(x, y, t) represents non-visibility matrix

of sea surface in a certain time. These matrices are obtained by the mentioned view-

shed algorithm and represent binary values according to the visibility of the patch of

interest. ATT(φgr(x, y, t)) is the matrix of attenuation factors which are applied to the

non-visible vertices. Recall that these factors vary according to the initial grazing an-

gle value (before rounding up to 0.1◦). For Eq. 4.11, Apatch corresponds to patch area

and is the confined area of vertices determined by (yi+1 − yi)(Range Resolution).

All patch areas in a range bin form the radar resolution cell area. The number of

patches to form the radar resolution cell area depends on the range. For example, 7

patches form radar resolution cell at the range of 3000 m, while 11 patches form radar

resolution cell at the range of 4440 m. NRCS(x, y, t) is the computed σ0 over both

illuminated and shadow regions. Summation starting point yini(x) and ending point

yfin(x) represent trapezoidal starting and ending grid points, that depend on x (range

bin).

For upwind condition, sample extracted initial RCS matrix in range and time domain

is given in Fig. 4.9.
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Figure 4.9: Result of initial RCS extraction in range and time domain.

4.3 Doppler Modeling of Extracted Clutter Amplitudes

In Sec. 4.2, calculation of the 2D RCS(x, t) in both time and range domain is dis-

cussed. The time step of computed 2D RCS(x, t), namely the initial RCS variance

matrix, is set by the time step of generated sea surface’s motion. Sea surface motion

duration step is limited by WAFO toolbox. However, since the sea surface changes

very slowly with respect to radar PRF (pulse repetition frequency), the time step used

in these calculations is rather large, but small enough to reveal any changes on the

sea surface. In addition, applying the calculations mentioned on the previous sections

to the sea surface having motion with duration step size of PRI is computationally

expensive. Yet, our aim is to simulate the clutter return for a radar; therefore, we

need the variation of the RCS with a step size of PRI. We choose the PRI as 200 µs

to compare our results with the data in [16]. For this purpose, we interpolate the RCS

obtained in time. The selected interpolation method is the piecewise cubic interpola-

tion that preserves the shape of RCS against time curve.

After this interpolation, phases are added, which result in observable Doppler shifts
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on the frequency spectrum, in relation to the mechanisms mentioned in Chap. 3

- Sec. 3.3. Added phases should be correlated in time to obtain realistic Doppler

spectra for sea clutter. Thus, first mean Doppler parameters like peak frequencies

and bandwidths are obtained. Then, by using Fourier Synthesis method generation of

correlated random phases is realized.

4.3.1 Mean Doppler Parameters of the Model

Recall that HH and cross polarization components are not covered in this work. The

main reasons for that are lack of experimental data for HH and cross polarizations,

simplifying scattering mechanism terms for Doppler shifts, and not to extend the

presented analysis results in this study. So, only VV polarization is discussed and ex-

amined. Since sea spike scattering mechanism is not significant for VV polarization,

only Bragg and whitecaps scattering mechanisms are considered for Doppler struc-

ture of data matrix. Walker [12] assigns Gaussian distribution for each mechanism as

follows:

SB(f) = PB exp

(
−(f − fB)2

W 2
B

)
, (4.12)

SW (f) = PW exp

(
−(f − fW )2

W 2
W

)
(4.13)

in which, subscripts B and W denote Bragg and whitecap components respectively.

While f refers to the Doppler frequency domain, fB and fW are Doppler frequencies

corresponding to the phase velocity of Bragg and whitecap mechanisms. WB and

WW are Doppler bandwidth of the mechanisms, whereas PB and PW are the spectral

amplitudes of mechanisms. In study [13], these two spectral components merge into

total vertical polarization spectrum density as:

SΨ(f) = SB(f) + SW (f). (4.14)

Whitrow [14] constructs a Doppler model, to which Doppler parameters of the pro-

posed model mainly adhere, based on Walker’s argument given in Equations 4.12,

4.13 and 4.14. For constructed Doppler model in [14], Bragg component generally

controls peak and width of the Doppler spectra for vertical polarization. Whitrow

[14] scales peak frequencies and bandwidths of Gaussian spectrum, ΨV (f), using

graphical results of Rozenberg’s [15] wave tank measurements as follows:
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• Fitting Bragg spectrum’s peak frequency,

– For upwind direction:

fuB = (17.36 + 10.59U0.29 + 0.0153U3.05)0.021/λradar, (4.15)

– For downwind direction:

fdB = (22.83 + 2.84U)0.021λradar, (4.16)

where λradar refers to operating wavelength of the radar, and superscripts u and

d represents upwind and downwind directions. To give angular dependency on

the Doppler shift, Eq. 4.15 and Eq. 4.16 may be combined as:

fB0 =

f
u
B cos θw, for 0 ≤ θw ≤ π/2

fdB cos θw, for π/2 ≤ θw ≤ π
(4.17)

In this expression, θw refers to the angle between radar look direction and sea

wave direction.

• Fitting whitecap spectrum’s peak Doppler shift,

– For upwind direction:

fuW = (−39.43 + 57.48
√
U − 5.69U)0.021/λradar. (4.18)

– For downwind direction:

fdW = (22.83 + 2.84U)0.021/λradar. (4.19)

Similar to the case in Bragg mechanism,

fW0 =

f
u
W cos θw, for 0 ≤ θw ≤ π/2

fdW cos θw, for π/2 ≤ θw ≤ π
(4.20)

• Fitting Bragg spectrum’s Doppler bandwidth,

– For upwind direction:

W u
B = 5.28U . (4.21)

– For downwind direction:

W d
B = 3.92U . (4.22)
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Merging these results by a sinusoidal transition yields:

WB0 =
W u
B +W d

B

2
+
W u
B −W d

B

2
cos θw

= (4.6 + 0.68U cos θw)0.021/λradar. (4.23)

• Fitting whitecap spectrum’s Doppler bandwidth,

– For upwind direction:

W u
W =

6.15U, for U < 5.97

36.7, for U > 5.97
(4.24)

– For downwind direction:

W d
W = 3.92U . (4.25)

Combining above results in a smooth transition with angle gives:

WW0 =

(5.035 + 1.115 cos θw)U0.021/λrad, U < 5.97

(18.35 + 1.96U + (18.35− 1.96U) cos θw)0.021/λrad, U > 5.97

(4.26)

Whitrow [14] further modifies this wave tank parameters, because spectral data seems

to have larger frequency shifts in open seas. Factors to modify are:

• Bragg peak frequency, fB0 factor - 1.3,

• Whitecap peak frequency, fW0 factor - 2.7 for upwind, and 2.3 for downwind,

Observed bandwidths from experimental data are also much lower than the findings

in [14] because the environment where experiments were conducted is coastal waters.

Therefore, bandwidths are scaled in this work as follows:

• Bragg bandwidth, WB0 factor - 0.55,

• Whitecap bandwidth, WW0 factor - 0.9.

Given peak frequencies of whitecap scattering almost always larger than the peak fre-

quencies of Bragg mechanism. Furthermore, these frequencies are stable for given
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wind speed, relative radar look angle θw, and operational radar wavelength [14]. That

is, instantaneous deviations on sea surface wave heights do not affect Doppler fre-

quencies. However, strong correlation between peak Doppler frequency and intensity

of clutter returns is observed for some experimental data in [16]. Normalized clutter

intensity and estimated peak frequencies for CFA002 data of [16] are given in Fig.

4.10 to show the mentioned correlation. It is assumed that maximum clutter return

Figure 4.10: Correlation between normalized clutter return (left) and estimated peak

Doppler frequencies (right).

occurs at peak frequencies in this study. In [17], a formula that relates the mean

frequencies to the clutter return is given as:

fm(xn) = A+Bxn + r (4.27)

where xn is the normalized local clutter return, A and B are constants, and r is a

Gaussian random variable with zero mean and standard deviation, σr. For the pro-

posed model, peak frequencies of Bragg and whitecap mechanisms are separately

handled by using the initial frequency parameters fB0 and fW0 as:

fB = ABfB0 + (1− AB)fB0xn| cos θw|+ rB, (4.28)

fW = AWfW0 + (1− AW )fW0xn| cos θw|+ rW (4.29)

where xn is the ratio of the local clutter return to the mean clutter return. The local

clutter return is calculated by averaging the return for a given range cell over a small
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time window [17]. rB and rW are the added zero mean Gaussian random variables.

The parameters are selected to get a rough resemblance between the simulation results

and CSIR data [16]:

AB = 0.25, AW = 0.45, (4.30)

σrB = 2, σrW = 3. (4.31)

On the other hand, Doppler bandwidth is independent from the clutter intensity.

Therefore, only Gaussian random variance with zero mean and standard deviation

of %5 of WB0 is added to the Bragg component’s bandwidth. No change is made on

whitecap bandwidth.

In addition to the frequency and bandwidth Doppler parameters, relation between

Bragg spectra amplitude, PB, and whitecap spectra amplitude, PW is given as [14]:

PW
PB

∣∣∣∣∣
θw

= 0.437
U

10

(
1 + cos θw

2

)
+ 0.0417

U

7

(
1− cos θw

2

)
. (4.32)

This relation holds in general; however, if one examines the experimental results of

[16], it can be seen in Fig. 4.11 that spectral amplitudes of whitecaps may exceed the

Bragg ones. In Fig. 4.11 blue line represents normalized mean Doppler spectra,S(f),

for all range bins, red dashed line represents normalized mean Doppler spectra for

range bin 27. Therefore, PB to PW ratio given in 4.32 should be randomized. Ratio in

4.32 is called as [PW/PB]0 and considered as an initial value. For the proposed model,

[PW/PB]Rayl ratio has been designated as Rayleigh distributed random variables with

the scale parameter of 1.2 × [PW/PB]0 to approximate our results to the empirical

results in [16]. The distribution of [PW/PB]Rayl ratio is shown in Fig. 4.12.

4.3.2 Generation of Correlated Doppler Shifts

Since the proposed model’s aim is to generate complex random variables,
√
σV V e

jφV V ,

correlated phases for given amplitude (variance), σV V , is achieved by employing

Fourier synthesis method in [1]. Fundamentally, the method is application of a fil-

ter, whose response is determined by the desired spectral power density. Relation

between power spectra of the input and output processes is given as:

SΨ(f) = |H(f)|2SGwn(f) (4.33)
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Figure 4.12: Histogram of [PW/PB]Rayl w.r.t. [PW/PB]0.
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for which, filter response is selected as the square root of the desired output response,

|H(f)| =
√
SΨ(f). Since the input is white Gaussian noise its power spectral density

is flat and is set to unity to obtain desired output response.

By Fourier inversion, desired complex parameter is in the form of:

ψ(t) =

Nf∑
i=1

α(fi)g̃wni
e−j2πfit (4.34)

where α(fi) represents Fourier series coefficient of ψ(t), and g̃wni
is complex Gaus-

sian having unity variance. fi = ∆fi is the discrete frequency whose domain is

defined in [−PRF/2,PRF/2]. PRF is defined as 1/PRI. PRF is chosen to be 5 kHz

in the simulations, as in [16]. Superscript Nf refers to the length of observation win-

dow in time whose steps, i, is in PRI. The observation duration, tobs = PRI × Nf ,

can be accepted as the time interval for which Doppler characteristics of sea surface

is considered as stationary. To be specific, ψ(t) is the complex data for certain time

observation window, tobs. Collecting and sequencing ψ(t) values successively from

window to window, result in a complex data vector for a single range bin. That is,

obtained complex vector corresponds to a single row in the complex data matrix.

Expression of α(fi) in terms of desired output spectra is given later in this section.

Recall that desired spectra is the bimodal Doppler spectra given in Eq. 4.14. By

integrating the desired spectra over all frequencies, one obtains [14]:

PT =

∫ ∞
−∞

SΨ(f)df = PBWB

√
π + PWWW

√
π = σV V . (4.35)

Being determined in 4.2, σV V is the RCS magnitude for a single range bin, which is

also total power, PT , for that range bin. Hence, one can determine Bragg amplitude

parameter, PB:

PB =
σV V

√
π

(
WB +WW

PW
PB

) (4.36)

by injecting the defined [PW/PB]Rayl into
PW
PB

. Then, again using the same relation

whitecap amplitude, PW can be decided.

After determining all parameters, consider the basic relation between autocorrelation
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function and power spectral density:

PT =

∫ ∞
−∞

SΨ(f)df = E(ψ(t)ψ(t)∗). (4.37)

Therefore, autocorrelation of desired complex parameter, Rψ(0), equals to the ex-

tracted clutter RCS of single range bin, σV V . This relation is used for all range bins

in the computation of complex data matrix. To ensure conservation of average power,

α(fi) coefficients are determined by using relations in Eq. 4.35 and Eq. 4.37. To

determine α(fi), following steps are carried:

E(ψ(t)ψ(t)∗) = E

 Nf∑
i=1

α(fi)g̃wni
e−j2πfi

×
 Nf∑
k=1

α∗(fk)g̃
∗
wnk

ej2πfk

 (4.38)

= E

 Nf∑
i=1

|α(fi)|2|g̃wni
|2
 =

Nf∑
i=1

|α(fi)|2|g̃wni
|2. (4.39)

Due to having unity magnitude, |g̃wni
|2 equals to 1. Thus, Eq.4.39 results in:

Nf∑
i=1

|α(fi)|2 = σV V =

∫ ∞
−∞

SΨ(f)df . (4.40)

Multiplying both sides with ∆f , which is defined as fi+1 − fi:

Nf∑
i=1

|α(fi)|2∆f ' ∆f

∫ ∞
−∞

SΨ(f)df . (4.41)

For each window in time, sized Nf , assuming Riemann sum holds as integral (and

notice that frequencies above PRF/2 and below −PRF/2 yield 0 spectral amplitude):∫ ∞
−∞
|α(fi)|2df = ∆f

∫ ∞
−∞

SΨ(f)df . (4.42)

Hence, the coefficient α(fi) can be written in the form of:

α(fi) =
√

∆fSΨ(fi). (4.43)

Recall that frequency domain [−PRF/2,PRF/2] is divided into Nf intervals. There-

fore, discrete frequency difference ∆f equals to PRF/Nf . As a result of these find-

ings,

α(i) =

√
SΨ

(
iPRF
Nf

)
PRF
Nf

. (4.44)
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So obtained complex vector, which has not been declared as complex data row vector

of complex data matrix, ψ(t) is:

ψ(t) =

Nf∑
i=1

√
SΨ

(
iPRF
Nf

)
PRF
Nf

g̃wni
e−j2πfit. (4.45)

SweepingNf length window over time and concatenating obtained ψ(t) to each other

results in a complex data vector for the interested range bin.

After performing these processes, 100 Monte Carlo iterations are realized to observe

whether average power of modeled complex vectors approximates to the RCS value.

In Figure 4.13, this conservation of power can be observed. Blue lines represent

power of each Monte Carlo realization. By averaging them, one can show there is

small discrepancy between average power and windowed RCS, σV V , for which win-

dow size Nf is 1024.

The mentioned procedures are applied to all range bins in order to complete complex

data matrix. For the upwind condition, proposed Doppler spread is illustrated in Fig.

4.14 as a time-Doppler plot.
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Figure 4.13: Conservation of average power, as green dashed line refers to average

RCS values of 100 iterations, while red line refers to initially extracted σV V values.
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Figure 4.14: Time vs. Doppler result of the proposed model at range gate 54 (corre-

sponds to the range of 3810 m).

4.4 Discussion on the Limitations of the Proposed Model and Some Consider-

ations

As almost all of the models for the sea clutter has some constraints, the proposed

model has the following limitations some of which arise from the limits of underlying

models (see Section 3.2.2 for more detail):

• The modified GIT model fails to give appropriate results for sea states lower

than 3 [6], and sea states higher than 6 [39].

• The proposed model is valid for grazing angles between 0.1◦ and 10◦ which is

again limited by the used modified GIT model [14].

• The radar frequency range of the proposed model is 1 GHz to 10 GHz again

limited by the GIT model [14].

• The patches used to calculate the RCS of the generated sea surface must be

small enough to observe variations on the sea surface, that is, the edge length of

a patch must be at least five times smaller than the wavelength of the generated

sea waves [9, 40]. In this study, we have examined our model with a patch size
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of 5 m× 15 m for sea wave wavelength of approximately 105 m (corresponding

SS is 5). This patch size is appropriate to observe the changes on sea surface

for SS 5. The main reason is to mimic the conditions given in [16], since we

compare the simulation results of the proposed model with the experimental

data in Chapter 5. The environmental conditions and radar parameters are given

in the scenarios mentioned on the next chapter. Our model is limited to sea

states above 3 by the GIT model, which corresponds to sea wave wavelength

of approximately 30 m. Therefore, patch dimensions smaller than 5 m× 5 m

should never be necessary. Smaller patch size can be selected for lower sea

states, as long as limitations of WAFO toolboxes [18, 19] are not exceeded.

• Dimension of the sea surface patches must not exceed radar resolution cell

dimensions, not to obtain same amplitude (texture) for adjacent range bins. In

this study, we have assumed radar uses 0.1 µs pulse width which corresponds to

15 m range resolution; thus, selected sea patch dimensions are eligible for the

study.

In this study, we have not covered HH, HV and VH polarizations. Although GIT

model provides σHH parameter as a function of environmental parameters, it does

not give the cross polarization parameters. The reasons why we did not implement

HH polarization case can be listed as follows:

• Experimental data in [16], used to compare our results with, does not contain

any results for HH polarization.

• Simplifying the proposed model by discarding the sea spike scattering term

from Walker’s Doppler spectra model [13] in Eq. 4.14.

• To shorten the scope of the analysis results presented in Chapter 5.

The mentioned reasons do not pose any obstacle to construct the model for HH po-

larization and analyze the results. They are mainly due to narrow down the scope of

the study.
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CHAPTER 5

SIMULATION RESULTS

In this chapter, simulation results are presented based on the calculations and assump-

tions made for the proposed model. First of all, the RCS values of the proposed model

and experimental data of [16] are given in range-time graphs. NRCS, σ0 statistics for

both simulation results and experimental datasets are investigated via normalized his-

tograms. Then, we attempt to fit statistical amplitude distributions that characterize

sea clutter to the resulting normalized histograms. Secondly, by using spectrogram

(see Appendix A), time-Doppler graphs of resulting complex data matrices are exam-

ined. Then, mean spectra of the simulation results and available data are examined

and compared with the ones mentioned in the literature. Finally, dispersion relation

of sea surfaces are analyzed through the clutter amplitudes of both proposed model

and experiment data in [16].

Before proceeding the results, the simulation scenarios must be introduced. There

are four scenarios to be simulated. Two of these scenarios (scenario 1 and 2) are

emulated from the CSIR’s field experiments [16]. Results of these two scenarios are

compared through the presented graphs and histograms. On the other hand, due to

lack of experimental data, last two scenarios are not compared with any empirical

result. Basic assumptions and parameters (almost all of them considered as same

with the parameters in [16]) for all four scenarios are as follows:

• Starting point of the generated sea surface for each scenario is taken as the

reference coordinate (0 m, 0 m).

• Radar location in all the scenarios is fixed and is chosen to be (−3000 m, 75 m),
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which is referenced to the starting point of the generated sea surface. Also, they

are placed at the height of 67 m.

• All sea surfaces is generated with SWH, H1/3 =3.4 m as in [16], and peak

period Tp =9 s. Given value for the peak period is also an approximation to

the observed Tp from the results of [16]. Sea depth is assumed to be 30 m, as

experiments in [16] mostly surveyed at coastal waters. Front-back asymmetry

ratio is selected as lα = 0.5, not to obtain sinusoidal shaped sea surfaces.

• Generated sea surfaces extend in range (on x-axis) of 1440 m. Extension of the

surfaces in y-dimension is about 165 m.

• Radar look direction is 0◦, that is, radar boresight is on the x-axis.

• Transmitted radar pulses are at 6.9 GHz frequency.

• PRI value for the pulses is taken as 200 µs. Thus, PRF is 5 kHz.

• PW of the pulses is 0.1 µs. Hence, range resolution is 15 m.

• Azimuth beamwidth, θAZBW , is 2◦

• Observation window duration tobs is assumed as 0.2 s, that gives window length,

Nf = 1000 for 200 µs PRI value.

• Wind speed, U , is not given in the scenarios, since for the proposed model U is

determined from the given SWH.

Only parameter that distinguishes the four scenarios is the supplementary angle of the

difference between radar look direction and the angular direction of sea waves, which

has already been denoted as θw. This difference is achieved by the generation of sea

waves in distinct directions. The simulation scenarios with respect to θw values are

presented in Table 5.1.

For scenarios 1 and 2, there are available few experimental data; however, one should

remind that large amount of data is needed to make fair comparison while working

with random processes. Unfortunately, no experimental data is found for the scenarios

3 and 4. Scenario for crosswind condition, where θw equals to 90◦, is not examined

since amplitude of the sea clutter may not be distinguished from the noise floor.
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Table5.1: Simulation scenarios and conditions.

Scenario # θw in ◦ Condition

Scenario 1 2 Upwind

Scenario 2 42 Upwind-Crosswind

Scenario 3 80 Nearly Crosswind

Scenario 4 179 Downwind

5.1 Simulation Results for Clutter Amplitudes

After modeling the Doppler shifts by the proposed sea clutter model mentioned in

Chapter 4, magnitude of the complex data matrix can be represented as distribution

of RCS, σV V , in both range and time. Scenarios 1 and 2 are compared with the

experimental datasets of [16] in range-time domain, as amplitude distributions of

simulation result and empirical data for a given scenario are quite similar. Scenario

3 and 4 cannot be validated due to lack of experimental data. In addition, resulting

RCS matrices are further used in section 5.3 to ensure that dispersion relation holds

for our simulation.

Along with the RCS plots, NRCS σ0 values of simulation results for each scenario

and available experimental datasets are also examined through the normalized his-

tograms. The histograms shown in this section are normalized with respect to the

probability density functions (pdf) of data so that the sum of histogram values multi-

plied by histogram bin size is unity. NRCS values are also normalized for histogram

plots, by dividing them to the mean of the used samples, which corresponds to σ0/σ0.

Statistical amplitude distributions of Log-Normal, Gamma and Weibull distributions

are fitted for each normalized histogram as these distributions provide a good fit for

σ0 values mostly. On the other hand, K-distribution which is commonly accepted as

having the best fitting pdf for the sea clutter amplitude statistics, is held out of the

scope of this study. This is because envelope of the K-distribution is given by the

texture component (see Appendix B), and considering the observation times in the

resulting RCS matrices, Gamma distribution is sufficient to statistically model the

amplitude of the generated sea clutter. In addition, the Gamma distribution is less

complex than the K-distribution. The parameters of fitted distributions are estimated

61



via Maximum Likelihood Estimates (MLE) method. Distribution that fits best to the

given NRCS samples is determined by the comparison of the Log-likelihood (LL)

parameters. This parameter gives an intuition that fitted distribution having highest

LL value for given data samples provides best fit with respect to other fitted distribu-

tions [41, 42]. We have utilized the Statistics Toolbox of MATLABTM to determine

this parameter for each distribution given. Finally, we check the similarities of the fit-

ted distributions to the results for both data and model by applying the Symmetrized

Kullback-Leibler (SKL) divergence method.

5.1.1 Range vs. Time Result for Scenario 1

The scenario is emulated from the CFA16-002 experimental dataset of CSIR [16].

One can notice the similarity between RCS matrix of the proposed model for scenario

1, shown in Fig. 5.1, and RCS matrix of the experimental data, shown in Fig.5.2.

One can estimate the wave direction from the graphs given below. High amplitudes

occur mostly due to the crest faces that look towards radar (upwind). As these high

amplitudes appear moving from further range bin to closer range bin, which indicates

the upwind situation.

Figure 5.1: Amplitude of resulting complex matrix in range and time for scenario 1.

The log-scaled normalized histograms of obtained σ0/σ0 values for both simulation

result and experimental data CFA16-002 of [16] are presented in Fig. 5.3 and 5.4,
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Figure 5.2: Amplitude of experiment data in range and time (CFA16-002 of [16]).

respectively. For these histograms, σ0 values are also normalized by dividing it to the

sample mean value.

Figure 5.3: Amplitude statistics of the simulation result scenario 1 - Normalized his-

togram and fitted distribution curves.

For the simulation result, Gamma distribution provides the best fit for σ0 statistics

with respect to the other investigated distributions as Gamma distribution yields the

highest Log-likelihood value (as seen on Fig. 5.3). For the fitted Gamma distribution,

the shape parameter, a equals to 0.44, and the scale parameter, b equals to 2.275.
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Figure 5.4: Amplitude statistics for the CFA16-002 dataset of [16] - Normalized his-

togram and fitted distribution curves.

For the CFA16-002 dataset of [16], as resulting highest LL parameter, Log-normal

distribution provides the best fit for σ0 statistics with respect to the other examined

distributions (as seen on Fig. 5.4). For the fitted Log-normal distribution, the log

mean parameter, µ equals to −1.955, and the log standard deviation parameter, σ

equals to 2.221.

5.1.2 Range vs. Time Result for Scenario 2

This scenario is emulated from the CFA16-015 experimental dataset of CSIR [16].

RCS matrix of the proposed model for scenario 2 is given in Fig. 5.5, and amplitude

of experimental data CFA16-015 is shown in Fig. 5.6. Notice the difference between

previous scenario and this scenario, as slopes of high amplitudes, which are results of

crests mostly, in time decrease and amplitudes due to troughs increase.

The log-scaled normalized histograms of obtained σ0/σ0 values for both simulation

result and experimental data CFA16-015 of [16] are illustrated in Fig. 5.7 and 5.8,

respectively.

For the simulation result, Weibull distribution yields highest LL value. So, it provides

the best fit for σ0 statistics with respect to the other investigated distributions (as seen
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Figure 5.5: Amplitude of resulting complex matrix in range and time for scenario 2.
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Figure 5.6: Amplitude of experiment data in range and time (CFA16-015 of [16]).
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Figure 5.7: Amplitude statistics of the simulation result for scenario 2 - Normalized

histogram and fitted distribution curves.

Figure 5.8: Amplitude statistics for the CFA16-015 dataset of [16] - Normalized his-

togram and fitted distribution curves.
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on Fig. 5.7). For the fitted Weibull distribution, the shape parameter, a equals to

0.828, and the scale parameter, b equals to 0.9.

For the CFA16-015 dataset of [16], Log-Normal distribution provides the best fit for

σ0 statistics with respect to the other examined distributions (as seen on Fig. 5.8).

Comparison of the goodness of the fits are again determined from the obtained Log-

likelihood parameters. For the fitted Log-normal distribution, the log mean parameter,

µ equals to −2.02, and the log standard deviation parameter, σ equals to 2.1.

5.1.3 Range vs. Time Result for Scenario 3

RCS matrix for this hypothetical scenario is illustrated in Fig. 5.9. Observe the

irregularities in the amplitude distribution, that is, for a single range bin crest-trough-

crest or trough-crest-trough pattern is observed. It is estimated that these patterns are

formed due to cross-wind condition.

Figure 5.9: Amplitude of resulting complex matrix in range and time for scenario 3.

The log-scaled normalized histogram of obtained σ0/σ0 values for the simulation

result is given in Fig. 5.10.

Comparison of the obtained Log-likelihood parameters (as seen on Fig. 5.10) shows

that Weibull distribution provides the best fit for σ0 statistics with respect to the other

inspected distributions. For the fitted Weibull distribution, the shape parameter, a
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Figure 5.10: Amplitude statistics for the simulation of scenario 3 - Normalized his-

togram and fitted distribution curves.

equals to 0.931, and the scale parameter, b equals to 0.967.

5.1.4 Range vs. Time Result for Scenario 4

RCS matrix for the hypothetical scenario 4 is demonstrated in Figure 5.11. Notice

the difference between Fig. 5.1 and 5.11, as for this case high amplitudes are due to

the back faces of the crests which move away from the hypothetic radar.

Figure 5.11: Amplitude of resulting complex matrix in range and time for scenario 4.
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The log-scaled normalized histogram of obtained σ0/σ0 values for the simulation

result can be viewed in Fig. 5.12.

Figure 5.12: Amplitude statistics for the simulation of scenario 4 - Normalized his-

togram and fitted distribution curves.

Comparison of the obtained LL parameters (as seen on Fig. 5.12) shows that Weibull

distribution provides the best fit for σ0 statistics with respect to the other inspected

distributions. For the fitted Weibull distribution, the shape parameter, a equals to

0.609, and the scale parameter, b equals to 0.687.

5.1.5 Comments on Amplitude Results

The simulation results resemble the empirical results [16] in the sense of presented

range-time graphs. Almost all range-time plots give an idea about the direction of sea

waves. Resulting normalized histograms provide a good fit for the well-accepted sea

clutter amplitude distributions. For the scenario 1, our results are quite compatible

with the CFA16-002 data of [16]. For this scenario, best-fitted distributions (Gamma

for our simulation, Log-normal for the CFA16-002 data of [16]) with the presented

parameters are shown in Fig. 5.13. The distributions are normalized based on the

probability.

Symmetrized Kullback-Leibler distance [43, 44] between two fitted distributions is
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Figure 5.13: Comparison of the fitted amplitude distribution curves for the simulation

result and CFA16-002 data [16].

calculated to measure the similarity of these distributions. Since the SKL distance is

not an absolute measure, we have added a normal distribution (N (0.4, 0.1)), which

does not fit neither to data nor to model, to interpret the value of SKL distance cor-

rectly. To calculate this distance, we have selected 1000 equally spaced samples, xi,

between 10−3 and 1, and evaluated probability values at these sample points, P (xi),

for all distributions. The Kullback-Leibler distance is calculated using these sample

values and the formula given below:

KL(P,Q) =
∑
i

P (xi) ln(
P (xi)

Q(xi)
) (5.1)

SKL(P,Q) =
KL(P,Q) + KL(Q,P )

2
(5.2)

where P and Q are probability values corresponding to two distributions. Calculated

SKL distance between Log-normal distribution fitted to CFA16-002 data [16] and

Gamma distribution fitted to amplitude of the model for scenario 1 is about 0.07. The

SKL distance between the mentioned Log-normal distribution and irrelevant normal

distribution is computed as 1.87. Secondly, we have increased the maximum limit of

the samples from 1 to 10. As tail of the distribution curves diminish, SKL distances

increases. For this case, while the SKL distance between distributions fitted to model

and data increases to 0.12, the SKL distance between distribution fitted to data and

irrelevant normal distribution increases beyond the largest number that can be repre-
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sented by double precision arithmetic, as a result of relatively small tail probability

of the given normal distribution. Note that these distances only provide inference on

the similarity between two distributions for given sample interval. Obviously, drawn

normal distribution is not even close to be a fit to the given data; however, we can say

that fitted distribution to amplitude of the our model provides a good fit to the fitted

distribution to the data for the selected sample intervals.

SKL distance is also calculated for scenario 2. While the result is 0.24 for x values

taken from 10−3 to 1, it is 0.3 for x interval from 10−3 to 10. Therefore, our model

has provided a better approximation to the data for scenario 1 according to chosen

sample interval.

For scenario 3 and 4, one can say that the range-time RCS graphs are similar to the

ones in the previous scenarios, and again the extracted amplitude statistics provide

acceptable results.

5.2 Simulation Results for Clutter Doppler Shifts

After obtaining the complex matrix, one can show Doppler frequency shifts of the

sea clutter in time by utilizing the method of spectrogram. The results shown in the

following subdivisions are obtained by spectrogram with non-overlapping windows

whose sizes are selected as 1024 sample points. In addition, one should have in mind

that each shown time vs. Doppler graph presents results for only single range bin. At

the end of this section, mean Doppler spectrums of the proposed model for all four

scenarios are presented, and compared with the results of Whitrow [14].

5.2.1 Doppler Frequency Results for Scenario 1

For scenario 1, Doppler shifts in time domain is presented as in Figure 5.14, and the

result for its counterpart from the experiment is given in Figure 5.15.

Results shown in Fig. 5.14 and in Fig. 5.15 are only for single range bin. As one can

observe the positive Doppler shift from Fig. 5.14, since upwind condition is valid for

scenario 1.
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Figure 5.14: Simulation result of Time vs. Doppler frequency at range bin 55 for

scenario 1.

Figure 5.15: Time vs. Doppler frequency graph at range bin 54 for the experiment

dataset of CFA16-002 [16]).
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Since the created case is very similar to the upwind condition, in Figures 5.16 and

5.17 mean Doppler spectra of both the simulation and CFA16-002 data of [16] can be

compared with the mean Doppler spectra data and model proposed to fit that data in

[14].

Figure 5.16: Mean Doppler spectra of both the simulation result for the scenario 1

and the CFA16-002 data of[16].

The Doppler spectra of the proposed model shows significant resemblance with the

model and data in [14] besides the empirical CFA16-002 data of [16]. The two-sided

spectrum in Fig. 5.16 reflects that the spectrum is modeled as a mixture of Bragg and

whitecaps Gaussian spectra, and the presented spectrum in Fig. 5.17 verifies it.

5.2.2 Doppler Frequency Results for Scenario 2

For scenario 2, example of Doppler shifts in time domain for a single range bin can

be given as in Figure 5.18, and its counterpart from the experiment data CFA16-015

[16] is given in Figure 5.19.

Notice the mean Doppler shift approach to zero mean with respect to the previous

case. Mean Doppler spectra of the proposed model and the CFA16-015 data of [16]

is illustrated in Fig. 5.20. There is neither model nor data spectra given in [14] that

we can compare the results with.
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Figure 5.17: Mean Doppler spectra of both the model and the data in [14] for the

upwind condition - dashed lines represent the data used in [14], solid line represents

the model in [14].

Figure 5.18: Simulation result of Time vs. Doppler frequency at range bin 85 for

scenario 2.
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Figure 5.19: Time vs. Doppler frequency graph at range bin 54 for the experiment

dataset of CFA16-015 [16]).

Figure 5.20: Mean Doppler spectra of both the simulation result for the scenario 2

and the CFA16-015 data of [16].
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There is an ambiguity for the mean Doppler spectra of the CFA16-015 data of [16].

The reason for this may be the noise increasing noise floor and irregularities in the

collected clutter returns. The mean Doppler frequency of the simulated spectra shifts

to the zero mean level as expected.

5.2.3 Doppler Frequency Results for Scenario 3

Since there is no available data to compare for the scenario 3, spectrogram result and

histograms are given only for the proposed model’s resulting matrix. At range bin 75,

Doppler shifts in time domain can be viewed in Fig. 5.21.

Figure 5.21: Simulation result of Time vs. Doppler frequency at range bin 75 for

scenario 3.

One can observe that Doppler shifts occur around the zero-mean. This situation is

expected since this scenario represents the almost cross-wind case. The mean Doppler

spectra of the simulation result for this scenario is given in Fig. 5.22.

5.2.4 Doppler Frequency Results for Scenario 4

Since there is no available data to compare for the scenario 4, spectrogram result and

histograms are given only for the proposed model’s resulting matrix. At range bin 55,
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Figure 5.22: Mean Doppler spectra of the simulation result for the scenario 3.

Doppler shifts in time domain can be viewed in Fig. 5.23.

Figure 5.23: Simulation result of Time vs. Doppler frequency at range bin 55 for

scenario 4.

One can observe that Doppler shifts occur at negative frequencies. This situation

is expected since this scenario represents the down-wind case. The mean Doppler

spectra of the simulation result for this scenario is shown in Fig. 5.24, and it can be

compared with the mean Doppler spectra of the model and data given in Fig 5.25.

The model curve given in Fig. 5.25 (as solid line), which fits properly to the data pre-
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Figure 5.24: Mean Doppler spectra of the simulation result for the scenario 4.

Figure 5.25: Mean Doppler spectra of both the model and the data in [14] for the

downwind condition - dashed lines represent the data used in [14], solid line repre-

sents the model in [14].
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sented in the same figure, ensures that our Doppler spectra is valid for the downwind

condition.

5.3 Dispersion Relation Analysis

In this section, we aimed to ensure that sea wave dispersion relation holds for the sim-

ulations. For this purpose, the amplitudes of a simulated clutter returns are analyzed

by applying 2D FFT. For each scenario, resulting spectral image in spatial-temporal

frequency domain is presented. One can observe from the resulting images that there

are linear relations between temporal and spatial frequencies. This indicates that the

coastal water approximation is valid for the dispersion relation, as ω = k
√
gd holds.

From the appeared line in the resulting image, we determine the radial velocity using

the group velocity relation vg = ∆ω/∆k, which is given in [20]. Simplifying the

angular frequencies to the frequencies results in:

vr = ∆ω/∆k =
2πft
2πfs

= ft/fs. (5.3)

For the Eq. 5.3, ft represents temporal frequency and fs represents spatial frequency.

Radial velocity for the sea waves is related to sea wave velocity as:

vr = vw cos θw (5.4)

where vw is the velocity of the sea waves and θw is the angle between radar look

direction and sea wave direction.

There are two more techniques to determine radial velocity for the given scenarios.

First, by using the relation 5.4, we can relate the radial velocity of a scenario to the

radial velocity of another scenario as long as the only difference between the scenarios

is due to θw value. For example, we can determine the radial velocity for the second

scenario, from the one obtained for the scenario 1 as vg2 = vg1 cos θw can be assumed

(since we have upwind condition for the first scenario). Second, by using the 2D

range time intensity graphs given in Sec. 5.1, one can observe the wavelength and

the period of the sea waves. As wavelength and period are related to the angular

spatial and temporal frequencies (fs = 1/λwater, ft = 1/Twater), one can determine

the magnitude of the radial velocity. For example, high amplitudes represent the
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front faces for the scenario 1, while the low amplitudes mostly due to back faces and

troughs. The wavelength of the sea waves can be determined by the observation of

a slice of time and measuring the distance between two crests or troughs. Similarly,

the period of the sea waves can be measured by the observation of a slice of range.

Results for these two methods are also given in the following sub-sections.

Before moving onto the scenarios, temporal and spatial domain must be defined.

Temporal frequency range is −2500 Hz to 2500 Hz, which is limited by the half

of PRF. Spatial frequency limits are determined from the range resolution that is

used in the simulations. The limits are −1
2

(cτ/2) = −0.0333 m−1 to 1
2
(cτ/2) =

−0.0333 m−1. Temporal frequency resolution is determined from the number of

pulses used, and spatial frequency resolution is determined from the number of used

range bins. Another important note is that sample points are taken from the appeared

line of the spectral image by visual inspection, and shown images are scaled in tem-

poral frequency.

5.3.1 Dispersion Relation Analysis for Scenario 1

The normalized spectrum of the proposed model’s amplitude matrix (RCS) for sce-

nario 1 is illustrated in Fig. 5.26, while its counterpart from CFA16-002 data of [16]

is given in Fig. 5.27.

By taking two data points from the each appeared line on created images, spatial and

temporal frequency changes are determined:

• For the proposed model, temporal frequencies selected on the appeared line

are as ft1 = −0.25 Hz and ft2 = 0.35 Hz. Chosen spatial frequencies are as

fs1 = −0.0228 m−1 and fs2 = 0.0235 m−1. So, the differences are given as

follows:

∆ft = 0.6 Hz, ∆fs = 0.046 m−1. (5.5)

Calculation of the radial velocity of the sea waves for the proposed model is as:

vrM1 =
∆ft
∆fs

= 13.04 m/s. (5.6)
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Figure 5.26: Normalized spectrum intensity of the simulated RCS for scenario 1, in

spatial-temporal frequencies.

Figure 5.27: Normalized spectrum intensity of the CFA16-002 data [16] RCS, in

spatial-temporal frequencies.
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One can also estimate the magnitude of the radial velocity from the obtained

range intensity graphs in Sec. 5.1. From Fig. 5.1, inspected sea wave wave-

length and period are approximately as follows:

λwater = 135 m, Twater = 9.2 s. (5.7)

Using ft/fs = λwater/Twater transition, the obtained radial velocity with this

method equals to 14.67 m/s, and is consistent with the one obtained from the

spectral image.

• For the CFA16-002 data of [16], temporal frequencies selected on the appeared

line are as ft1 = 0.35 Hz and ft2 = 0.35 Hz. Chosen spatial frequencies are as

fs1 = −0.029 m−1 and fs2 = 0.028 m−1.

∆ft = 0.7 Hz, ∆fs = 0.057 m−1. (5.8)

Calculation of the radial velocity for the data is given as follows:

vrD1 =
∆ft
∆fs

= 12.28 m/s. (5.9)

Estimated sea wavelength and period from Fig. 5.2 are approximately as fol-

lows:

λwater = 135 m, Twater = 10.7 s. (5.10)

Using ft/fs = λwater/Twater transition, the obtained radial velocity equals to

12.62 m/s, and is consistent with the one obtained from the spectral image.

The selected SWH for our simulation corresponds to the wind speed of 11-13 m/s,

which we consider as wave speed. Normally, wind speed is given as U = 8.18m/s

for CFA16-002 data of [16]. Yet, the radial velocity obtained for the data verifies our

assumptions. If we do not modify the GIT model that uses SWH as input, we would

not get compatible radial velocity with the one obtained from the data, that is, greater

discrepancy between them would be expected.

In addition, obtained radial velocities show real sea wave velocities in deed. As be-

ing positive and high, these radial velocities reflect that the sea waves move directly

towards radar.
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5.3.2 Dispersion Relation Analysis for Scenario 2

The normalized spectrum of the proposed model’s RCS for scenario 2 is illustrated in

Fig. 5.26, while its counterpart from CFA16-015 data of [16] is given in Fig. 5.27.

Figure 5.28: Normalized spectrum intensity of the simulated RCS for scenario 2, in

spatial-temporal frequencies.

• For the proposed model, temporal frequencies selected on the appeared line

are as ft1 = −0.05 Hz and ft2 = 0.15 Hz. Chosen spatial frequencies are as

fs1 = −0.0095 m−1 and fs2 = 0.0102 m−1. The radial velocity of the sea

waves is given as:

∆ft = 0.2 Hz, ∆fs = 0.0197 m−1

vrM2 =
∆ft
∆fs

= 10.1760 m/s. (5.11)

The result in Eq. 5.11 can also be validated through using the radial velocity,

vrM1 and θw = 42◦:

vrM1 cos θw = 9.69 m/s. (5.12)

In addition, using the estimated sea wave wavelength (90 m) and period (8.54 s)

from Fig. 5.5, and using ft/fs = λwater/Twater transition, radial velocity is ob-

tained and it equals to 10.54 m/s. Obtained radial velocities shows consistence

which verifies the generated sea surface for the second scenario.
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Figure 5.29: Normalized spectrum intensity of the CFA16-015 data [16] RCS, in

spatial-temporal frequencies.

• For the CFA16-015 data of [16], temporal frequencies selected on the appeared

line are as ft1 = −0.15 Hz and ft2 = 0.25 Hz. Chosen spatial frequencies are

as fs1 = −0.0249 m−1 and fs2 = 0.0221 m−1. The radial velocity of the sea

waves is computed as:

∆ft = 0.4 Hz, ∆fs = 0.047 m−1

vrD2 =
∆ft
∆fs

= 8.51 m/s. (5.13)

The result in Eq. 5.13 can also be validated by using the obtained radial velocity

of the CFA16-002 data in [16] and θw = 42◦:

vrD1 cos θw = 9.13 m/s. (5.14)

Moreover, using the determined sea wave wavelength of 105 m and period of

9.64 s from Fig. 5.5, and using ft/fs = λwater/Twater transition, radial ve-

locity is obtained and it equals to 10.89 m/s. Obtained radial velocities shows

consistence for the experimental data as it is expected.

5.3.3 Dispersion Relation Analysis for Scenario 3

The normalized spectrum of the proposed model’s RCS for scenario 3 is illustrated in

Fig. 5.30.
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Figure 5.30: Normalized spectrum intensity of the simulated RCS for scenario 3, in

spatial-temporal frequencies.

One can notice the line becomes more parallel as it reflects the fact that the radial

velocity of sea waves decreases near to zero level. Since the temporal resolution is

low, determining the radial velocity from the resulting spectral image is very difficult.

Thus, only the expected radial velocity is given for this scenario as:

vrM3 cos θw = 2.26 m/s. (5.15)

Also, it is difficult to extract sea wave wavelength and period from the Fig. 5.9. Since

the scenario is based on almost cross-wind condition, the period of generated sea

waves cannot be estimated from single range bin.

5.3.4 Dispersion Relation Analysis for Scenario 4

The normalized spectrum of the proposed model’s RCS for scenario 4 is illustrated in

Fig. 5.31.

Notice the difference between the lines appeared in Fig. 5.26 and Fig. 5.31. The

reason for this situation is the generated sea surfaces for the scenario 1 and scenario

4 move towards opposite directions. As this scenario represents the downwind condi-

tion, the expected radial velocity is negative. Obviously, the slope of the line appeared

in Fig. 5.31 is negative, that indicates our basic expectation has already been met.
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Figure 5.31: Normalized spectrum intensity of the simulated RCS for scenario 4, in

spatial-temporal frequencies.

Temporal frequencies selected on the appeared line are as ft1 = 0.35 Hz and ft2 =

−0.25 Hz. Chosen spatial frequencies are as fs1 = −0.0214 m−1 and fs2 = 0.022 11 m−1.

∆ft = 0.6 Hz, ∆fs = 0.0435 m−1 (5.16)

Calculation of the radial velocity for the proposed model is given as follows:

vrM4 =
∆ft
∆fs

= −13.79 m/s. (5.17)

The radial velocity found almost equals to the negative of the radial velocity calcu-

lated in 5.6, vrM4 = −vrM1, as expected.

In addition, using the approximate sea wave wavelength of 135 m and period of 8.62 s

determined from Fig. 5.11, and using ft/fs = λwater/Twater transition, the magnitude

of the radial velocity (radial speed) is obtained and it equals to 15.66 m/s. Obtained

radial velocities verify the validation of the generated down-wind sea surface.

5.3.5 Comments on Dispersion Relation Analysis

The simulation results basically show that the dispersion relation holds and mentioned

coastal water approach is valid. The obtained radial velocities are logical. Slopes of
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the appeared lines are compatible with the direction of the generated sea waves for

each scenario. The occurred discrepancies may be due to as follows:

• Low resolution of temporal and spatial frequencies,

• Randomness of generated sea surfaces,

• Sample points chosen by visual inspection of the spectral images.

5.4 Brief Evaluation of The Simulation Results

Simulation results compared with the experimental data and/or the results in literature

show that the proposed sea clutter model is valid. Other simulation results that are

not compared in this work also indicate that modeled Doppler shifts are acceptable

as well as the obtained amplitude and radial velocity results. In the simulation time

aspect, our algorithms operate fast during the simulations. To give an example, for

a scenario containing sea surface motion of ten seconds and ninety-six range bins,

the total simulation duration lasts about thirty seconds on a computer having 16 GB

RAM.
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CHAPTER 6

CONCLUSIONS

Sea clutter has been a problematic issue during the detection of targets, especially at

low grazing angles. Over the decades, characterization and simulation of sea clutter

have been made to lower its effects on detection and recognition of the targets. How-

ever, the general trend of such characterizations is to model sea clutter statistically,

that is, amplitude and Doppler shifts of the clutter are generally modeled in terms

of mean and standard deviation values for a given environmental condition. These

statistical values are extracted in a long observation time, and therefore such models

cannot characterize the sea clutter scattering parameters based on the instantaneous

physical sea surface. In addition, applying computational EM methods like FEM

or MOM to determine scattering parameters of the sea surfaces for a short time is

computationally expensive.

In this thesis, we proposed a new model that enables one to observe changes in the

clutter’s amplitude and Doppler shifts which are compatible with the sea surface it-

self. To this end, the geometric optics is applied to the dynamic sea surfaces generated

by using WAFO and WAFOL toolboxes. Resulting grazing angles are used as inputs

of the modified GIT model besides of radar frequency, angle between radar and sea

wave direction, significant wave height. Modified GIT model is applied for each

patch to obtain NRCS values. These NRCS values may be attenuated based on the

visibility analysis performed by X-Draw algorithm. The attenuation is applied to the

non-visible sea surface patches according to the obtained grazing angles. The am-

plitude variance of the proposed model is then determined by computing the RCS of

each range bin. In addition to these, Doppler spectra of the clutter are modeled based

89



on the resulting amplitude variance matrix and given environmental conditions. Mean

Doppler spectra are defined by the two component Gaussian spectrums, however; the

fluctuations on the spectra are given by the obtained RCS values. In addition, some

modifications are made on the mean parameters to enhance the similarity between the

proposed model and the presented experimental results. Fourier synthesis method is

employed to obtain complex scattering parameter from the resulting amplitude vari-

ance and Doppler spectra. During the synthesis, we ensure that the average power

is conserved. Then, the complex radar data matrix is constructed concatenating each

range bin data. Lastly, we give discussions on the limitations of the suggested model.

In this study, we also showed the simulation results of four different scenarios. The

sea waves in each scenario move towards different direction, while the other condi-

tions are chosen to be same. The simulation results for each scenario is compared

with either the empirical data or the ones shown in the literature. The simulation re-

sults can be categorized in three groups. The first group is the amplitude, RCS, results

which are presented in range-time graphs. Moreover, NRCS values obtained from the

resulting RCS matrices are illustrated in histograms. By fitting the statistical clutter

amplitude models like Weibull, Log-normal and Gamma distributions, we verified

that our amplitude results are acceptable in the statistical manner. The second group

is the Doppler spectra analysis of the simulation results. The comparisons of time-

Doppler graphs are made in order to examine the changing Doppler shifts in a short

observation time. Furthermore, resulting mean Doppler spectra for each scenario are

plotted with the ones obtained from the available empirical data and compared with

the mean Doppler spectra of sea clutter presented in the literature, if available. The

third and final group is the dispersion relation analysis which implies the calculation

of the radial velocity of the sea waves. This analysis is performed to validate our sea

surface model, as obtained radial velocities are reasonable and compatible with the

ones obtained from the experimental data. Almost all simulation results demonstrate

that the proposed model for the sea clutter is feasible and it shows good agreement

with the compared data. Moreover, duration of the simulation for a mentioned sce-

nario indicates the computational rapidness of the suggested algorithms.
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6.1 Future Studies

In this thesis, we make some assumptions during the calculation of the clutter returns,

and we limited the scope of the study. Therefore, one can enhance the proposed model

in a more adaptive way as follows:

• The model can be expanded to the medium and high grazing angles.

• The model can be adapted to the different polarizations like HH, HV and VH

polarizations.

• The model can be integrated with other target detection algorithms to simulate

small target detection on the sea surface.

• For low sea states, other empirical or statistical models may be employed to

characterize the sea clutter more accurately.

• Ray tracing algorithms can be used to observe the multipath effects on the sea

clutter besides the shadowing, which is performed via viewshed algorithms in

our work.
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APPENDIX A

SPECTROGRAM

Being visualized as 2D magnitude representation, the spectrogram provides spectral

information on the signal of interest at different time instants [45]. The spectrogram

can be used to analyze time-frequency characteristics of signals, especially having

frequency agility. It is the magnitude squared of the short-time Fourier transform

(STFT) of the signal. The STFT of a signal for corresponding range profile is [45]:

STFT (t,W ) =

∫
s(t′)W (t′ − t)exp(−jωt′)dt′ (A.1)

where W (.) is a short-time window function.

The spectrogram is defined as the magnitude square of the short-time Fourier trans-

form, |STFT (t,W )|2.
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APPENDIX B

SOME STATISTICAL DISTRIBUTIONS USED TO MODEL

SEA CLUTTER

B.1 Rayleigh Distribution

It is the basic type of amplitude statistics that models the both land and sea clutter.

It represents the envelope of a Gaussian random process. The model becomes more

valid when resolution cell size gets larger [8]. The distribution is given as follows:

p(x) =
2x

b2
exp

(
−x

2

b2

)
, x ≥ 0 (B.1)

where b is the scale parameter.

B.2 Log-Normal Distribution

This distribution is constructed to model Non-Rayleigh clutter amplitude [8]. It is

represented by the following equation:

p(x) =
1

xσ
√

2π
exp
−(lnx− µ)2

2σ2
, x ≥ 0 (B.2)

where µ is the logarithmic mean, and σ is the logarithmic standard deviation.

B.3 Weibull Distribution

The Weibull distribution is the simplest one that fits both land and sea clutter mea-

surements accurately. This distribution provides better fit than both log-normal and
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Rayleigh in most conditions [8]. The distribution is as follows:

p(x) =
a

b

(x
b

)a−1

exp
(
−
[x
b

]a)
, x ≥ 0 (B.3)

where a is the shape parameter, b is the scale parameter.

B.4 Gamma Distribution

The exponential and the chi-squared distributions are special cases of this distribution.

The envelope of the K-distribution is provided by this distribution. The equation for

this distribution is given as follows:

p(x) =
1

baΓ(a)
xa−1 exp

(
−x
b

)
, x ≥ 0 (B.4)

where a is the shape parameter, b is the scale parameter.

B.5 K Distribution

K-distribution is formed from the speckle and texture components. The speckle com-

ponent varies fast on the order of milliseconds, and it is represented by Rayleigh dis-

tribution. On the other hand, the texture component, which is represented by Gamma

distribution, varies slowly on the order of seconds [8]. The K-distribution is given as

follows:

p(x) =
2b

Γ(v)

(
bx

2

)v
Kv−1(bx), x ≥ 0 (B.5)

where v is the shape parameter, b is the scale parameter.
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