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ABSTRACT 

 

 

INTERACTING MULTIPLE MODEL PROBABILISTIC DATA 

ASSOCIATION FILTER USING RANDOM MATRICES FOR EXTENDED 

TARGET TRACKING 

 

 

 

 

Özpak, Ezgi 

M.S., Department of Electrical and Electronics Engineering 

     Supervisor: Assoc. Prof. Dr. Umut Orguner 

 

January 2018, 86 pages 

 

In this thesis, an Interacting Multiple Model – Probabilistic Data Association 

(IMM-PDA) filter for tracking extended targets using random matrices is 

proposed. Unlike the extended target trackers in the literature which use multiple 

alternative partitionings/clusterings of the set of measurements, the algorithm 

proposed here considers a single partitioning/clustering of the measurement data 

which makes it suitable for applications with low computational resources.  

When the IMM-PDA filter uses clustered measurements, a predictive likelihood 

function for the extent measurements is necessary for hypothesis probability 

calculation. Alternative predictive likelihood functions proposed in the literature 

for this purpose are surveyed and their shortcomings are identified in the thesis. 

Then an alternative predictive likelihood function is proposed and its advantage is 
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illustrated on simulations running IMM-PDA filters with different predictive 

likelihood functions on a scenario involving a fighter aircraft launching a missile.  

When a single partitioning/clustering is used before the tracking operation as is 

the case for the tracker proposed in the thesis, the clusters corresponding to close 

targets might be merged by the pre-clustering step, which might lead to track loss 

in the tracker. For overcoming this problem, a specific algorithm is proposed for 

handling close targets and its performance is illustrated on a simple scenario. 

 

Keywords: Extended Target Tracking, Bayesian Approach, Object Extension, 

Data Association, Random Matrices, Clustering 
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ÖZ 

 

 

BÜYÜK HEDEF TAKİBİ İÇİN RASLANTISAL MATRİSLER 

KULLANAN ETKİLEŞİMLİ ÇOKLU MODEL OLASILIKSAL VERİ 

EŞLEME FİLTRESİ 

 

 

 

Özpak, Ezgi 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi :Doçent. Dr. Umut Orguner 

 

Ocak 2018, 86 sayfa 

 

Bu tezde, rastgele matrisler ile ifade edilen büyük hedefleri izlemek için 

Etkileşimli Çoklu Model - Olasılıksal Veri Eşleme (IMM-PDA) filtresi 

önerilmiştir. Literatürdeki çok sayıdaki   bölümlenmiş / kümelenmiş ölçüm 

gruplarını kullanan büyük hedef izleyicilerin aksine burada önerilen algoritma, 

düşük hesaplama kaynakları olan uygulamalar için ölçüm verisini uygun hale 

getiren tek bir bölümleme / kümeleme işlemini ele alır. 

IMM-PDA filtresi kümelenmiş ölçümleri kullanırken, hipotez olasılığının 

hesaplanabilmesi için yayılan ölçümlerin olabilirlik fonksiyonuna ihtiyaç duyar. 

Bu amaçla bu tezde, literatürde önerilen alternatif olabilirlik fonksiyonları 

araştırılıp ve bu fonksiyonların eksiklikleri tespit edilmiştir. Daha sonra, alternatif 

bir olabilirlik fonksiyonu önerilmiş ve bu fonksiyonun avantajı, füze başlatan bir 

savaş uçağını içeren senaryoda, farklı olabilirlik fonksiyonlarını kullanan IMM-
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PDA filtrelerinin bulunduğu simülasyonlar üzerinde gösterilmiştir. 

Tezde önerilen izleyici durumunda olduğu gibi, izleme işlemi öncesinde tek bir 

bölümleme / kümeleme kullanıldığında, yakın hedeflere karşılık gelen kümeler, 

ön kümeleme adımıyla birleştirilip, izleyicide izin kaybedilmesine yol açabilir. Bu 

sorunun üstesinden gelmek için, yakın hedeflerin izlenmesini sağlayan özel bir 

algoritma önerilmiş ve bu algoritmanın performansı basit bir senaryo üzerinde 

gösterilmiştir. 

 

Anahtar Kelimeler: Büyük Hedef Takibi, Bayesian Yaklaşımı, Hedef Boyutu, 

Ölçüm İlişkilendirme, Rastgele Matrisler, Kümeleme 
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CHAPTER 1 

 

 

1. INTRODUCTION 

 

 

 

Radar systems send electromagnetic signals to the environment and receive their 

echo from the targets. After processing the echo, measurements that may belong 

to the target, clutter or false alarms are obtained. Target tracking algorithm 

estimates the state of the target by using these measurements. Herein, there is 

generally the assumption that the target is a point source. In other words, a target 

results in at most a single measurement. One reason of this assumption is that the 

resolution of the radar system may not be sufficient to detect multiple 

observations over a big target. However, new radar systems, such as sea 

surveillance radar systems, have high resolution, which leads to multiple 

measurements from a single target in many sensor reports. In the literature, the 

targets which generate multiple measurements in the sensor reports are called as 

extended targets.  

In a standard target tracking algorithm, the target’s state is estimated by using the 

measurements which are in a predefined region around the predicted measurement 

of the target. This region is called the gate for the target. In the case there are 

many measurements in the gate, data association is necessary to select the correct 

measurement belonging to the target. Some well-known data association methods 

are Probabilistic Data Association (PDA), Joint Probabilistic Data Association 

(JPDA) and Multiple Hypothesis Tracking (MHT). All of these data association 

methods assume that the target is a point target, i.e., it is not an extended target. 

This thesis proposes an efficient PDA based extended target tracking algorithm.  
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1.1 Organization of the Thesis 

 

In the thesis, first the previous studies about extended target tracking are reviewed 

in Chapter 2.  In Chapter 3, the problem of target tracking is explained under the 

assumption of a point target. Details about the main steps of the tracking 

algorithm such as gating, Kalman filter, IMM and PDA can be found in this 

chapter. Since the extended target tracking algorithm used in the thesis uses 

similar versions of these methods, this chapter gives background information 

about the studies in the thesis in addition to a general target tracking algorithm. In 

Chapter 4, existing methods used for extended target tracking in the literature are 

reviewed. Chapter 5 gives the proposed extended target tracking algorithm in this 

thesis. In Chapter 6, simulation results are presented. Finally, in last Chapter 7, 

conclusions are drawn according to the results in Chapter 6 and possible ideas for 

future work are given.  
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CHAPTER 2 

 

 

2. LITERATURE SURVEY 

 

 

 

Objective of this chapter is to present a review of the studies on extended target 

tracking. In radar systems, point target assumption is not valid if the resolution of 

the radar is higher than the spatial extension of the extended target. An extended 

target is defined as a target resulting in more than one measurements in a scan [1]. 

In order to solve the extended target tracking problem, several methods have been 

proposed in the literature [2]. These methods are surveyed in the following 

sections. 

 

2.1 Single Extended Target Tracking Algorithms 

 

In a radar system, measurements scattered from the target are distributed over the 

target extent and this information can be used to extract the target shape. This idea 

is given by [3] saying that the spread of measurements fits a Gaussian probability 

density and [4] uses Kalman filter (to estimate kinematics) and a generalized 

version on Jointly Probabilistic Data Association (GJPDA) algorithm under this 

assumption. The difference of GJPDA than JPDA is to use all measurements 

scattered from the target instead of a single measurement. This method identifies 

data association hypotheses and updates the state vector for each hypothesis.  

[5] aims to estimate the target shape by modelling the measurements named by 

Hypersurface Model (RHM). According to RHM, measurement can lie in the 

interior of the object boundary as it can be on the boundary. A shape equation is 

defined to model a curve that represents the shape. This equation is used in a 
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Gaussian estimator such as Unscented Kalman Filter (UKF).  

[6] aims to track an extended target  or a collectively a moving target group by 

using extension estimation. This method assumes that measurements are randomly 

distributed over the target extent. A Bayesian approach for extended target 

tracking is proposed while the object extension is represented by a Symmetric 

Positive Definite (SPD) random matrix under the assumption that the target shape 

is elliptical. Object extension is added to the state vector and is also updated 

recursively as target kinematics.  

[7] argues that the object extension observed by the sensor depends on the sensor 

error as well as the target shape whereas [6] neglects the sensor error. With this 

observation, [7] improves the update equations of [6]. For the possibility of 

maneuvering target existence, Interacting Multiple Model (IMM) filter is 

modified by adding the object extension to the state.  

There is no analytic solution for an exact Bayesian update for the random matrix 

model of [7]. Due to this, [8] derives an approximate measurement update using a 

variational Bayes approximation. [8] also suggests an approximate likelihood 

function. 

[9] derives a prediction update using analytical approximations to improve on the 

heuristic prediction updates in [6] and [7]. To improve maneuvering target 

tracking performance, it also investigates the cases where the kinematic state 

depends on the object extension.  

[10] performs a study based on [6] and [7]. In [10], the extension is modeled by a 

SPD random matrix as in [6] and [7]. [10] does not neglect the measurement noise 

whereas [6] includes its effect. The main difference between [10] and [7] is the 

usage of two random matrix based models. [10] assumes that the object extension 

can change over time and depends on orientation, size and shape. So [10] uses 

different models to describe the dependence of extension on time and orientation, 

shape, size.  In order to deal with the maneuvering target problem, a multiple 

model (MM) approach is also used.  
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[18] models the extended targets as ellipsoidal and measures the down range and 

cross range extent of the ellipse. The state vector is augmented by down range and 

cross range extent. Here, a Rao-Blackwellised UKF is used to deal with the 

nonlinearity of the model. In addition, IMM filter is used to track the maneuvering 

target. 

[19] assumes that the extended target has a time varying number of 

measurements. In addition to the kinematic parameters, the shape of the target is 

also tracked. The shape of the target is modelled by Random Hypersurface Model 

for a so-called star convex extended object. 

[20] assumes that the shape of the extended target is rectangular and uses the so-

called Box Particle Filter to track an extended target.  

 

2.2 Multiple Extended Target Tracking Algorithms 

 

The study [11] achieves multiple extended target tracking using the Gaussian 

Mixture Probability Hypothesis Density filter (GM-PHD) without estimating the 

target extent. The resulting filter is called extended target GM-PHD (ET-GM-

PHD) filter.  

[12] derives a new kind of Probabilistic Multi-Hypothesis Tracker (PMHT) which 

estimates the ellipsoidal shape and the kinematics of each target simultaneously 

and uses the method called PMHT for extended objects (PMHT-E) to track 

multiple extended targets. The results show that this method is unfortunately not 

sufficient for merging or splitting targets.  

[13] aims to estimate the object extension modelled by PSD random matrix under 

assumption of elliptical target shape derived as in [6]. In [13], it is assumed that 

PHD is approximated with a Gaussian inverse Wishart mixture distribution and a 

likelihood function is derived to track multiple targets.  

[14] proposes a Gamma Gaussian Inverse Wishart PHD filter for tracking 

multiple extended targets. Here, the PHD is approximated using a Gamma 
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Gaussian Inverse Wishart mixture and measurement rates (number of 

measurements obtained from a target at each scan) are estimated in addition to the 

target kinematic and extent variables.  

[15] proposes Generalized (Jointly) Probabilistic Data Association (G(J)PDA) 

algorithm and uses object extension which is represented by PSD random matrix 

as mentioned in [7].  

[16] assumes that the target has elliptical shape and computes down-range extent 

of ellipse and then augments the state vector by adding down-range extent to the 

kinematic states.  This extra information makes enables the tracker maintain 

tracks for close targets. Here, JPDA and IMM filter with EKF are used to track 

the targets. Also, it is shown that particle filter also works. 

[17] models the extended target in terms of the translation and the rotation of the 

target. Here target is modeled as a set of points.  [17] augments the state vector by 

adding the positions of the points in the fixed reference frame to the state. A 

particle filter is used to track the target. In order to reduce the computation of the 

particle filter, a new particle weight calculation method is proposed. 

[21] uses a cardinalized probability hypothesis density (CPHD) filter to track the 

extended targets. This method is named as Extended Target Tracking CPHD 

(ETT-CPHD). The PHD for the targets is represented as a gamma Gaussian 

inverse Wishart (GGIW) mixture. 

[22] uses a Gamma Gaussian inverse-Wishart Poisson multi-Bernoulli mixture 

(GGIW-PMBM) filter to track the extended targets.  
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CHAPTER 3 

 

 

3. TARGET TRACKING 

 

 

 

A target tracking algorithm estimates the current state of a target by processing 

the measurements originated from the target. The state of the target contains 

kinematic components such as position, velocity, acceleration and the feature 

components like target type and target extension etc. 

The measurements obtained from the sensor are usually not from only the targets. 

Because of the environmental reasons, the measurements include information 

about clutter or unwanted objects such as mountains, roads, buildings or other 

targets. It is also evident that measurements are noise corrupted.  

In order to obtain the correct state of the target, trackers use filtering and data 

association methods. Before filtering, gating operation selects measurements close 

to the prediction of the target. The filtering methods estimate the current state of a 

target from the gated measurements. Kalman filter is a way of filtering and is 

usually preferred in the target tracking algorithms. Kalman filter estimates the 

kinematic information from the sets of measurements that have trajectory 

information of the target. In addition to the Kalman filter, IMM filter, which is a 

state estimation algorithm used for maneuvering targets, can be used. Data 

association methods update the target state according to generated association 

hypotheses. 

A general flowchart of a target tracking algorithm is shown in Figure 1. 
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Figure 1: The general flowchart of a target tracking algorithm [23]. 

 

 

3.1  Gating 

 

Gating [24] is a method to eliminate unlikely measurements. The measurements 

can be false or belong to other targets or unwanted objects such as buildings and 

mountains. The gate is the region created around the predicted measurement of a 

target in which measurements are allowed to be assigned to the target. All 

measurements in the gate are used to update the track by using data association 

methods. The most important benefit of the gating is to reduce later computations. 

In this study, we use ellipsoidal gates which can be formed as follows. 

Given the measurement prediction ẑk|k−1 and innovation covariance Sk|k−1, for 

ellipsoidal gating, the condition in (3.1) have to be satisfied. 

 (zk −  ẑk|k−1)TSk|k−1
−1

(zk −  ẑk|k−1) ≤ γ, (3.1) 
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where zk denotes a candidate measurement. γ is the gating threshold that is 

calculated using inverse cumulative distribution function of the Chi-Square 

distribution with the degrees of freedom (measurement dimension) evaluated at 

gating probability. The inverse chi-square cdf for a given probability p and ν 

degrees of freedom is given as 

 

γ = f −1(p|v) = {x: f(x|v) = p}, 

f(x|v) = p =  ∫
t

(v−2)
2 e−

t
2

2
v
2 Γ(

v
2)

x

0

dt. 
(3.2) 

Here, the probability p represents gating probability PG and ν is degree of freedom 

which represents the dimension of the measurement.  

Gating threshold γ is shown for some degrees of freedom and the gating 

probability 𝑃𝐺 = 0.9  in Figure 2. 

Figure 3 shows three predicted measurements with their gates and the 

measurements exceeding the threshold γ. Some gates can intersect each other and 

have common measurements as illustrated in Figure 3. 

 

 

Figure 2: Gating Threshold Values [25]. 
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Figure 3: Example Ellipsoidal Gates. 

 

3.2  Kalman Filter 

 

Kalman filter is generally used in the target tracking algorithms for estimating 

kinematic variables such as position and velocity [23][24][26][27][29]. Kalman 

filter estimates the state vectors of a linear dynamic system recursively. Kalman 

filter assumes that measurement noise wk is additive, zero mean and white with 

known covariance Rk. Kalman filter also assumes that process noise vk is 

additive, zero mean and white with known covariance Qk like the measurement 

noise. Kalman filter assumes that the state xk of the target, at time k is related to 

the prior state xk−1 at time k-1, according to the equation, 

 xk = Fxk−1 + Bkuk + vk. (3.3) 

The measurement is modeled as  

 zk =  Hkxk +  wk.                            (3.4) 

Because it is not possible to observe the state xk directly, Kalman filter determines 

xk by fusing information of the system model and the noisy measurement. 

Kalman filter also calculates the covariance matrix Pk of the posterior state 

distribution which consists of the variance and covariances related to the state 
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vector components. The diagonals of the Pk represent the variance of the elements 

of the state vector such as position, velocity etc. Other terms except the diagonals 

of Pk represent the covariance between the terms in the state vector. For linear 

systems with measurement and process noise modelled by zero mean Gaussian 

distributions, it is known that Kalman filter is the minimum mean square error 

(MMSE) optimum solution [28]. 

Kalman filter recursions are composed of two stages. The first step is the state and 

measurement prediction which is also called the time update or prediction update; 

the second step is the estimation which is also called measurement update. 

Kalman filter starts with the initial values of the state estimate and the state 

covariance matrix shown as x0|0 and P0|0 respectively. The equations for the two 

updates of the Kalman filter are given in the following. 

  

Prediction Update 

 xk|k−1 =  Fkxk−1|k−1 +  Bkuk, (3.5) 

 Pk|k−1 =  FkPk−1|k−1Fk
T + Qk. (3.6) 

Measurement Update 

 xk|k =  xk|k−1 + Kk(zk −  ẑk|k−1), (3.7) 

 Pk|k = Pk|k−1 −  KkSk|k−1Kk
T, (3.8) 

where 

 ẑk|k−1 =  Hkxk|k−1, (3.9) 

 Sk|k−1 =  HkPk|k−1Hk
T + R, (3.10) 

 Kk =  Pk|k−1 Hk
TSk|k−1

−1 . (3.11) 

 

Kalman filter algorithm is summarized in Figure 4 which is taken from [27]. 
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Figure 4: Kalman Filter Algorithm [27]. 

 

3.3  Interacting Multiple Model Filtering 

 

Interacting Multiple Model (IMM) filter is a state estimation algorithm for the 

Jump Markov linear system given below. 

 xk+1 =  F(rk+1) xk + B(rk+1) uk + vk, (3.12) 

 yk =  H(rk) xk +  D(rk) wk, (3.13) 

where xk is the state to be estimated. rk is a discrete variable taking values in the 

set {1, 2, …, n} determining the model of the target. rk is modelled as a Markov 
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chain with transition probability matrix  = [pij], 1 ≤ 𝑖, 𝑗 ≤ 𝑛 where n is the 

number of the models. 

IMM filter at each time step holds the model conditioned state estimates xk|k
i , 

model conditioned covariances Pk|k
i  and mode probabilities μk|k 

i . These quantities 

are defined as 

 xk|k
i =   E[xk| rk = i,  z0:k], (3.14) 

 Pk|k
i =   E[(xk − x̂k)( xk − x̂k)𝑇| rk = i,  z0:k], (3.15) 

 μk|k 
i =  P[ rk = i,  z0:k]. (3.16) 

Given {xk|k
i , Pk|k

i , μk|k 
i }𝑖=1

𝑛 , IMM filter calculates the new quantities 

{xk+1|k+1
i , Pk+1|k+1

i , μk+1|k+1 
i }𝑖=1

𝑛  as follows [24]. 

 

1. Calculation of mixing probabilities 

Mixing probability is conditional probability which represents that the 

target switches from model i to model j. 

 μk−1|k−1
i|j

=  
1

c̅j
 pijμk−1

i                        i, j = 1,2, … , n, (3.17) 

 c̅j =  ∑ pijμk−1
i

n

j=1

                               i, j = 1,2, … , n (3.18) 

where n is the number of models. 

2. Mixing 

Mixing is the initiation of the state vector and the covariance matrix for 

each IMM model by using mixing probability,  

 
xk−1|k−1

0j
=  ∑ xk−1|k−1

in
i=1 μk−1|k−1 

i|j
, 

j = 1,2,…,n, 

(3.19) 
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Pk−1|k−1
0j

=  ∑ μk−1|k−1
i|j

n

i=1

(Pk−1|k−1
i

+ (xk−1|k−1
i −  xk−1|k−1

0j
) (xk−1|k−1

i −  xk−1|k−1
0j

)
T

) 

  j = 1,2, … , n. 

(3.20) 

 

3. Mode-matched filtering 

Mode-matched filtering is the step which calculates the state vector and 

covariance matrix for each IMM model. Whereas xk−1|k−1
0j

 and Pk−1|k−1
0j

are 

inputs of the mode matched filter, xk|k
j

 and Pk|k
j

 are the outputs. In 

addition, normal distributed likelihood function λk
j
 is calculated in this 

step. 

 λk
j

≜ 𝒩(zk; ẑk|k−1
j

, Sk|k−1
j

). (3.21) 

Kalman Filter Equations 

- Prediction Update 

 xk|k−1
𝑗

=  F xk−1|k−1
0𝑗

, (3.22) 

 Pk|k−1
j

=  F Pk−1|k−1
0j

FT + GjQGjT
. (3.23) 

- Measurement Update 

 xk|k
𝑗

=  xk|k−1
𝑗

+ K𝑘
𝑗

(zk −  ẑk|k−1
𝑗

), (3.24) 

 Pk|k
𝑗

= Pk|k−1
𝑗

−  K𝑘
𝑗

Sk|k−1
𝑗

Kk
j 𝑇

, (3.25) 

where 

 ẑk|k−1
𝑗

=  Hkxk|k
𝑗

, (3.26) 

 Sk|k−1
𝑗

=  HkPk|k−1
𝑗

Hk
T + R, (3.27) 

 K𝑘
𝑗

=  Pk|k−1
𝑗

 Hk
T(Sk|k−1

𝑗
)−1. (3.28) 
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4. Mode probability update 

Mode probability is updated by using the likelihood λk
j
. 

 μk 
j

=  
1

c
λk

j
c̅j, (3.29) 

where c =  ∑ λk
j

c̅j
n
j=1  is a normalization constant for the mode 

probabilities. 

 

5. Combination of estimates and covariances 

The state vector and the covariance matrices calculated for each model are 

combined to calculate the IMM filter output. 

 xk|k =  ∑ xk|k
jn

j=1 μk 
j

, (3.30) 

 Pk|k =  ∑ μk 
j

(Pk|k
j

+ (xk|k
j

−  xk|k)(xk|k
j

−  xk|k)T)n
j=1 . (3.31) 

  

3.4 Probabilistic Data Association Filter 

 

Probabilistic Data Association (PDA) filter is a data association algorithm used 

for tracking targets under clutter and missing measurements [30]. The kinematic 

information of a target is estimated using the measurements in the validation 

region, i.e., the gate. The problem is that there might be multiple measurements 

with false alarms and clutter in addition to the correct measurement or there is no 

measurement. 

PDA assumes that there is only one target which has already been initialized. A 

measurement in the validation region can belong to the target or it is a false alarm. 

There is a measurement belonging to the target in the gate with detection 

probability 𝑃𝐷. At most a single measurement in the gate can belong to the target. 
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In order to update the target state PDA generates the association hypothesis 𝐻𝑖 

which are given as,  

𝐻0 : no measurement in the gate belongs to the target, i.e., all measurements are 

false alarms. 

𝐻𝑖: 𝑖𝑡ℎ measurement belongs to the target and the rest of the measurements are 

false alarms. i = 1, 2 ,…, m where m is the number of measurements in the gate. 

PDA then calculates the posterior probabilities of these hypotheses defined as 

  βk
i ≜ 𝑝(𝐻𝑖|𝑧0:𝑘), (3.32) 

where 𝑧𝑘 denotes the set of measurements at time k. PDA also calculates the 

hypothesis conditioned estimates and covariances defined as 

 xk|k
𝑖 = 𝐸 [𝑥𝑘|𝐻𝑖, 𝑧0:𝑘], (3.33) 

 Pk|k
i =   E[(xk − xk|k

𝑖 )( xk − xk|k
𝑖 )𝑇|𝐻𝑖, 𝑧0:𝑘]. (3.34) 

PDA then combines these estimates and covariances using hypothesis 

probabilities to obtain the final estimate and covariance as follows. 

  xk|k =  ∑  μk
i  xk|k

𝑖𝑚
𝑖=1 , (3.35) 

  Pk|k =  ∑  μk
i  (Pk|k

𝑖 +  (xk − xk|k
𝑖 )( xk − xk|k

𝑖 )𝑇)𝑚
𝑖=1 . (3.36) 

A single step of the PDA filter is given as follows.  

1- The association probabilities  βk
i  are calculated as follows, 

  βk
i = {

PDpk|k−1(zk
i ),    𝑖 > 0   

PFA(1 − PdPG),   i = 0
  , (3.37) 

where 

 pk|k−1(zk
i )= 𝒩(zk, ẑk|k−1, Sk|k−1). (3.38) 

pk|k−1(zk
i ) is the innovation likelihood where S is covariance matrix of 

innovation. Pd is detection probability and PG is probability that correct 

detection is in the validation region. 
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2- Hypothesis conditioned estimates and covariances are calculated as 

follows 

 xk|k
i =  xk|k−1 + Kk(zk

i −  ẑk|k−1), (3.39) 

 Pk|k
i = Pk|k−1 −  KkSk|k−1Kk

T, (3.40) 

where 

 ẑk|k−1 =  Hkxk|k−1, (3.41) 

 Sk|k−1 =  HkPk|k−1Hk
T + R, (3.42) 

 Kk =  Pk|k−1 Hk
TSk|k−1

−1 . (3.43) 

3- Overall state estimate is calculated as, 

 xk|k = ∑  βk
i xk|k

imk
i=0 = xk|k−1 +  Kk(zk

eq
−  ẑk|k−1), (3.44) 

where  

 zk
eq

=  βk
0ẑk|k−1 +  ∑ μk

i zk
imk

i=1 . (3.45) 

4- Overall state covariance matrix is calculated as, 

 
Pk|k =  ∑  βk

i [Pk|k
i + (xk|k

i −  xk|k)(xk|k
i − xk|k)T]

mk
i=1 , 

                      = ∑  βk
i Pk|k

i  
mk
i=1  +  ∑  βk

i (xk|k
i −  xk|k)(xk|k

i − xk|k)T]
mk
i=1 . 

(3.46) 

 

3.5  IMM and PDA Combination 

 

IMM-PDA filter is an algorithm which is used for tracking maneuvering targets 

under clutter and missing measurement. IMM-PDA is basically the combination 

of IMM and PDA filters. A single step of IMM-PDA filter is given as follows, 

 

1- Calculation of mixing probabilities 

Mixing probability is the conditional probability which represents the 

target model switch probability from model l to model j. 
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 μk−1|k−1
l|j

=  
1

c̅j
 pljμk−1

l ,                         l, j = 1,2, … , n, (3.47) 

 c̅j =  ∑ pljμk−1
l

n

j=1

,                          l, j = 1,2, … , n, (3.48) 

where n is the number of models. 

2- Mixing 

Mixing is the initiation of the state vector and the covariance matrix for 

each IMM model by using mixing probability,  

 
xk−1|k−1

0j
=  ∑ xk−1|k−1

ln
l=1 μk−1|k−1

l|j
 ,               

j = 1,2, … , n, 

(3.49) 

Pk−1|k−1
0j

=  ∑ μk−1|k−1
l|j

(Pk−1|k−1
l

n

i=1

+ (xk−1|k−1
l −  xk−1|k−1

0j
) (xk−1|k−1

l − xk−1|k−1
0j

)
T

),  

  j = 1,2, … , n. 

(3.50) 

3- Mode-matched filtering 

 
λk

j,i
≜ 𝒩 (zk

i ; ẑk|k−1
j

, Sk|k−1
j

), 

i = 1,2,…, mk, j=1,…,n. 

(3.51) 

where mk is the number of measurements. 

 

Kalman Filter Equations 

- Prediction Update 

 xk|k−1
𝑗

=  F xk−1|k−1
0𝑗

, (3.52) 

 Pk|k−1
𝑗

=  F Pk−1|k−1
0𝑗

𝐹𝑇 + 𝐺𝑗𝑄𝐺𝑗𝑇
. (3.53) 

The association probabilities  βk
i  are calculated for 𝑗𝑡ℎ IMM model as 

follows, 
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  βk
j,i

= {
PDpklk−1(zk

i ),    𝑖 > 0   

PFA(1 − PdPG),   i = 0
   , (3.54) 

where 

 pklk−1(zk
i )= 𝒩(zk

i , ẑk|k−1
j

, Sk|k−1
j

). (3.55) 

is the innovation likelihood where S is covariance matrix of innovation. 

Pd is detection probability and PG is probability that correct detection is in 

the validation region. 

 

- Measurement Update 

Overall state estimate for 𝑗𝑡ℎ IMM model is calculated as, 

 xk|k
j

= ∑ βk
j,i

xk|k
j,imk

i=0 = xk|k−1
j

+  Kk (zk
j,eq

−  ẑk|k−1
j

), (3.56) 

where  

 zk
j,eq

=  βk
j,0

ẑk|k−1
j

+ ∑ βk
j,i

zk
imk

i=1 . (3.57) 

Overall state covariance matrix for 𝑗𝑡ℎ IMM model is calculated as, 

 

Pk|k
j

=  ∑ βk
j,i

[Pk|k
j,i

+ (xk|k
j,i

−  xk|k
j

)(xk|k
j,i

− xk|k
j

)T]

mk

i=1

, 

=  ∑ βk
j,i

Pk|k
j,i

 
mk
i=1  +  ∑ βk

j,i
(xk|k

j,i
−  xk|k

j
)(xk|k

j,i
− xk|k

j
)T]

mk
i=1 . 

(3.58) 

4- Mode probability update 

Mode probability is updated by using the likelihood. 

 μk 
j

=  
1

c
λk

j
c̅j, (3.59) 

where c =  ∑ λk
j

c̅j
n
j=1  is the normalization constant for the mode 

probability where, 

 λk
j

=  ∑ μk
j,i

λk
j,imk

i=0 , (3.60) 

where 
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 λk
j,i

≜ 𝒩 (zk
i ; ẑk|k−1

j
, Sk|k−1

j
). (3.61) 

5- Combination of estimates and covariances 

The state vector and the covariance matrices calculated for each model are 

combined to calculate the IMM-PDA filter’s output. 

 xk|k =  ∑ xk|k
j

n

j=1

μk 
j

, (3.62) 

 Pk|k =  ∑ μk 
j

(Pk|k
j

+ (xk|k
j

−  xk|k)(xk|k
j

− xk|k)T).

n

j=1

 (3.63) 
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CHAPTER 4 

 

 

4. EXTENDED TARGET TRACKING BY USING RANDOM 

MATRICES 

 

 

 

In recent radar systems, the assumption that one target has one measurement is not 

valid if the resolution of the radar is higher compared to the spatial extension of 

the target. In modern radars, the target can cause multiple detections from scan to 

scan. From these multiple detections target’s shape information can be estimated. 

In this thesis, we assume that the shape of the extended targets is an ellipsoid and 

we use a symmetric positive definite random (SPD) matrix for representing the 

extended target shape following the recent research direction in extended target 

tracking. In this chapter we give an overview of the extended target tracking 

approaches using random matrices in the literature. 

 

4.1 Koch’s Approach 

 

In this method, the size of the target represented by a SPD matrix (Xk) is 

calculated in addition to kinematics (position and velocity) of the target, 

recursively. This is the first approach using a SPD matrix to represent the target 

extent and uses the assumption that measurement noise is Gaussian distributed 

with covariance equal to the target extent covariance. 

In Bayesian target tracking, estimation of the kinematic properties of the target is 

done by calculating the conditional posterior probability density function 

p(xk|z0:k) of the state vector. In Koch’s approach [6], the target size is estimated 
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by calculating the joint probability density function p(xk, Xk|Z0:k) of the 

kinematic and extent states iteratively. Here, xk contains the kinematic properties 

of the target which includes the positions and the velocities in a two dimensional 

Cartesian coordinate system. Zk =  {zk
i }

i=1

nk
 represents the set of nk two 

dimensional position measurements at each time k. The measurements are 

conditionally independent for each time k and are corrupted by Gaussian noise wk
i  

with zero mean and covariance Xk.  

 zk
i = Hxk +  wk

i . (4.1) 

Hence, the measurement likelihood is the normal density given as 

 p(Zk|nk, xk, Xk) =  ∏ 𝒩(zk
i ; Hxk, Xk)

nk
i=1 , 

(4.2) 

 p(Zk|nk, xk, Xk)  ∝  𝒩 (z̅k; Hxk,
Xk

nk
) xW(Z̅k; nk − 1, Xk), (4.3) 

where z̅k is the mean of measurements and Z̅k is measurement spread defined as 

 z̅k =  
1

nk
∑ zk

ink
i=1 , (4.4) 

 Z̅k =  ∑ (zk
i −  z̅k)(zk

i −  z̅k)Tnk
i=1 . (4.5) 

The Wishart distribution W(T; m, C) used above is defined as follows, 

 W(T; m, C) =  
|T|

m−p−1
2

|C|
m
2 2

mp
2 Γp(

m

2
)

exp [tr (−
1

2
TC−1)], (4.6) 

where the parameter m denotes the degrees of freedom. |T| represents the 

determinant of a square matrix T, tr(T) is the trace of a square matrix T  and 

 Γp(a) =  π
1

4
 p(p−1) ∏ Γ

p
j=1 [a +

(1−j)

2
], (4.7) 

is the multivariate generalization of the Gamma function Γ. Also, note that m >

p − 1 to make Wishart distrubuion well-defined. p is the size of the matrix T (i.e., 

T ∈ Rpxp).  
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The update equations are derived by the approach of conjugate priors which is 

applied to the measurement model in (4.2). The results of the derivations are 

given below. Firstly joint density p(xk, Xk|Z0:k) is factored as, 

 p(xk, Xk|Z0:k) =  p(xk|Xk, Z0:k) p(Xk|Z0:k). (4.8) 

The matrix variate density p(Xk|Z0:k) in (4.8) is assumed to be given as 

 p(Xk|Z0:k) = IW(Xk; vk|k, X̃k|k). (4.9) 

where the Inverse Wishart distribution denoted by IW(T; m, C)  is defined as 

 IW(T; m, C) =  
|C|

m
2

|T|
m+p+1

2 2
mp

2 Γp(
m

2
)

exp [tr (−
1

2
CT−1)], (4.10) 

where the parameter m denotes the degrees of freedom. The vector variate 

kinematic density is given as, 

 p(xk|Xk, Z0:k) =  𝒩(xk; xk|k, P̃k|k⨂Xk), (4.11) 

where, ⨂ denotes Kronecker product [32].  

With the forms of the posterior densities given above, the update equations for the 

kinematic and extent quantities are given below. 

Prediction Update: In this update, the previous updated density 

p(xk−1, Xk−1|Z0:k−1) which is defined as  

 
p(xk−1, Xk−1|Z0:k−1) = 

𝒩(xk−1; xk−1|k−1, P̃k−1|k−1⨂Xk−1) IW(Xk−1; vk−1|k−1, X̃k−1|k−1), 
(4.12) 

is updated to obtain the predicted density  p(xk, Xk|Z0:k−1) which is defined as 

 
p(xk, Xk|Z0:k−1) = 

𝒩(xk; xk|k−1, P̃k|k−1⨂Xk) IW(Xk; vk|k−1, X̃k|k−1). 
(4.13) 

This update is carried out using the following formulas, 

 xk|k−1 = Fxk−1|k−1, (4.14) 

 P̃k|k−1 =  FP̃k|k−1𝐹T + Q̃, (4.15) 
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where F denotes target kinematic state transition matrix and Q is the process noise 

covariance. 

In the extent prediction, the update equations are given as follows. 

 X̃k|k−1 =  
vk|k−1−d−1

vk−1|k−1−d−1
 X̃k−1|k−1, (4.16) 

 vk|k−1 =  e(−T/τ)vk−1|k−1. (4.17) 

Here, vk|k is the extension degrees of freedom parameter; τ is a time constant 

related to the agility of extension and T denotes sampling time.  

Measurement Update: In this update, the predicted density p(xk, Xk|Z0:k−1) 

which is defined as  

 
p(xk, Xk|Z0:k−1) = 

𝒩(xk; xk|k−1, P̃k|k−1⨂Xk) IW(Xk; vk|k−1, X̃k|k−1). 
(4.18) 

is updated to obtain the density  p(xk, Xk|Z0:k) which is defined as 

 p(xk, Xk|Z0:k) = 𝒩(xk; xk|k, P̃k|k⨂Xk) IW(Xk; vk|k, X̃k|k). (4.19) 

This update is carried out using the following formulas, 

 xk|k = xk|k−1 + (K̃k|k−1⨂ Id)(z̅k − Hxk|k−1), 
(4.20) 

 P̃k|k =  P̃k|k−1 −  K̃k|k−1S̃k|k−1K̃k|k−1
T , (4.21) 

where 

 S̃k|k−1 =  H̃P̃k|k−1H̃T +  
1

nk
   and Sk|k−1 =  S̃k|k−1Xk, (4.22) 

 K̃k|k−1
T =  P̃k|k−1H̃TS̃k|k−1

−1     and   Kk|k−1 =  K̃k|k−1 ⨂ Id, (4.23) 

 H̃ = [1 0]   and  H =  H̃⨂ Id. (4.24) 

The update equations for the extension are given as, 

 vk|k =  vk|k−1 + nk, (4.25) 

 X̃k|k = X̃k|k−1 +  S̃k|k−1
−1 Nk|k−1 +  Z̅k. (4.26) 

Here Nk|k−1 is innovations product which is defined as 
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 Nk|k−1 = (z̅k − Hxk|k−1)(z̅k − Hxk|k−1)
T

. (4.27) 

The extent estimate Xk|k is then calculated as 

 Xk|k =  
X̃k|k

vk|k − d − 1
. (4.28) 

 

4.2 Feldmann’s Approach 

 

In Koch’s approach sensor errors are not modeled and the measurement 

covariance is assumed to be equal to the target extent matrix. Hence if there is 

high amount of sensor error the estimator will overestimate the target extent. 

Because of this, Feldmann’s approach model the sensor error separately as 

opposed to Koch’s approach [7]. Since the measurements are conditionally 

independent the measurement likelihood is given as  

p(Zk|nk, xk, Xk) =  ∏ 𝒩(zk
i ; Hxk, sXk + R)

nk
i=1 . (4.29) 

Here, in addition to the explicit consideration of the measurement noise, there is 

also a scaling factor ‘s’ to adjust the contribution of the extension on the 

measurement spread. In order to account for scaling factor ‘s’, the measurements 

are shown in Figure 5 and Figure 6. In Figure 5 and Figure 6, the spreads of 1200 

measurements based on the SPD matrix X = diag ((300 m/2)2 , ((150 m / 2)2) 

with Zk~ 𝒩(Zk; 0, Xk) and Zk~ 𝒩(Zk; 0, Xk/4) are shown respectively [7].  
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Figure 5: Measurement Model 𝒩(Zk; 0, Xk) [7]. 

 

 

Figure 6: Measurement Model 𝒩(Zk; 0, Xk/4) [7]. 
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For the prediction update in Feldmann’s approach, there is the assumption that the 

estimations for kinematics and extension are independent. Thus the vector variate 

density p(xk|Xk, Zk) can be expressed as below,  

 p(xk|Xk, Z0:k) ≈ p(xk|Z0:k) ≈  𝒩(xk; xk|k, Pk|k). 
(4.30) 

Prediction Update: In this update, the previous updated density 

p(xk−1, Xk−1|Z0:k−1) which is defined as  

 
p(xk−1, Xk−1|Z0:k−1) = 

𝒩(xk−1; xk−1|k−1, Pk−1|k−1) IW(Xk−1; vk−1|k−1, Xk−1|k−1), 
(4.31) 

is updated to obtain the predicted density  p(xk, Xk|Z0:k−1) which is defined as 

 p(xk, Xk|Z0:k−1) = 𝒩(xk; xk|k−1, Pk|k−1) IW(Xk; vk|k−1, Xk|k−1). (4.32) 

This update is carried out using the following formulas, 

 xk|k−1 = Fxk−1|k−1, (4.33) 

 Pk|k−1 = Fxk−1|k−1FT + Q, (4.34) 

where F denotes the target kinematic state transition matrix. 

In the extent prediction, it is assumed that the mean of the extent does not change 

and its uncertainty increases, which gives the following update equations. 

 Xk|k−1 = Xk−1|k−1, (4.35) 

 vk|k−1 = 2 + exp (
−T

τ
) (vk−1|k−1 − 2). (4.36) 

Here, vk|k is the extension degrees of freedom parameter; τ is a time constant 

related to the agility of extension and T denotes sampling time.  

Measurement Update: In this update, the predicted density p(xk, Xk|Z0:k−1) 

which is defined as  

 p(xk, Xk|Z0:k−1) = 𝒩(xk; xk|k−1, Pk|k−1) IW(Xk; vk|k−1, Xk|k−1). (4.37) 

is updated to obtain the density  p(xk, Xk|Z0:k) which is defined as 

 p(xk, Xk|Z0:k) = 𝒩(xk; xk|k, Pk|k) IW(Xk; vk|k, Xk|k). (4.38) 
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If the extension matrix Xk was a non-random matrix and known, the kinematic 

state could be updated by standard Kalman filter equations. Since Xk is not non-

random, the measurement covariance computation part of the standard Kalman 

filter is modified by substituting Xk with Xk|k−1, which gives the kinematic 

equations below. 

 xk|k = xk|k−1 + Kk|k−1(z̅k − Hxk|k−1), (4.39) 

where  

 z̅k =
1

nk
∑ zk

jnk
j=1 , (4.40) 

is the mean of measurements. 

 Pk|k = xk|k−1 + Kk|k−1Sk|k−1Kk|k−1
T, (4.41) 

where 

 Sk|k−1 = HPk|k−1HT +
Zk|k−1

nk
, (4.42) 

where we use 
Zk|k−1

nk
 instead of measurement noise covariance R. In fact,  Zk|k−1 

includes the term R as below, 

 Zk|k−1 = sXk|k−1 + R. (4.43) 

In order to calculate the updated extension state Xk|k, the weighted sum of the 

innovation product N̂k|k−1, measurement spread Ẑk|k−1 and predicted extension 

matrix Xk|k−1 is scaled by the extent parameter vk|k as follows, 

 Xk|k =  
1

vk|k
(vk|k−1Xk|k−1 +  N̂k|k−1 + Ẑk|k−1), (4.44) 

 vk|k =  vk|k−1 + nk. (4.45) 

N̂k|k−1 and Ẑk|k−1 which are scaled versions of Nk|k−1 (defined in (4.27)) and  Z̅k 

(defined in  (4.5)) are given as follows. 

 N̂k|k−1 =  Xk|k−1
1/2

 Sk|k−1
−1/2

Nk|k−1Sk|k−1
−1/2 T

Xk|k−1
1/2 T

, (4.46) 

 Ẑk|k−1 =  Xk|k−1
1/2

 Zk|k−1
−1/2

 Z̅k Zk|k−1
−1/2 T

Xk|k−1
1/2 T

. (4.47) 
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4.3 Orguner’s Approach 

 

Feldmann’s approach is approximate and its optimality properties are not known. 

The approach given in [8] applies variational Bayesian methodology to obtain an 

approximate measurement update for the extended target tracking problem using 

random matrices. The analytical posterior distribution for the problem does not 

exist due to the covariance summation in 𝒩(zk
i ; Hxk, sXk + R). Due to this [8] 

first writes this density in the following form.    

 𝒩(z0:k
i ; Hxk, sXk + R) = ∫ 𝒩(z0:k

i ; yk
i , R) 𝒩(y0:k

i ; Hxk, sXk) dyk
i  (4.48) 

where yk
i  denotes the noise free measurement. 

Prediction Update: In this update, the same assumptions and prediction update 

formulas as Feldmann’s approach are used. In this update, the previous updated 

density p(xk−1, Xk−1|Z0:k−1) which is defined as 

 
p(xk−1, Xk−1|Z0:k−1) = 

𝒩(xk−1; xk−1|k−1, Pk−1|k−1) IW(Xk−1; vk−1|k−1, Xk−1|k−1), 
(4.49) 

is updated to obtain the predicted density  p(xk, Xk|Z0:k−1) which is defined as 

 p(xk, Xk|Z0:k−1) = 𝒩(xk; xk|k−1, Pk|k−1) IW(Xk; vk|k−1, Xk|k−1). (4.50) 

This update is carried out using the following formulas, 

 xk|k−1 = Fxk−1|k−1, (4.51) 

 Pk|k−1 = Fxk−1|k−1FT + Q, (4.52) 

where F denotes the target kinematic state transition matrix. 

In the extent prediction, it is assumed that the mean of the extent does not change 

and its uncertainty increases, which gives the following update equations. 

 Xk|k−1 = Xk−1|k−1, (4.53) 

 vk|k−1 = 2 + exp (
−T

τ
) (vk−1|k−1 − 2). (4.54) 
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Here, vk|k is the extension degrees of freedom parameter; τ is a time constant 

related to the agility of extension and T denotes sampling time.  

Measurement Update: Orguner’s approach solves this problem by computing 

p(xk, Xk,Yk|Z0:k) where Yk =  {yk
i }

i=1

nk
 is the set of noise free measurements 

instead of p(xk, Xk,|Z0:k) to get rid of the covariance summation. This approach 

uses variational approximation given as below. 

 p(xk, Xk,Yk|Z0:k) ≈ q(xk, Xk, Yk) = qx(xk). qX(Xk). qY(Yk) (4.55) 

where qx(xk), qX(Xk), qY(Yk) are the posterior densities for xk, Xk, Yk respectively 

and given as follows. 

 qx(xk) =  𝒩(xk; xk|k, Pk|k), (4.56) 

 qX(Xk) =  IW(Xk; vk|k, Xk|k), (4.57) 

 qY(Yk) = ∏ 𝒩(yk
i ; ŷk

i , Σk
y

)
nk
i=1 . (4.58) 

An  iterative solution is obtained to optimize densities qx(xk), qX(Xk), qY(Yk). 

The derivations and details for the computation of these densities are given in [8]. 

In this section, the update formulas for the estimation of kinematic and extent 

states for the (j + 1)th iteration are given. The results of the last iteration are used 

as the estimates of kinematics and extent states. 

 xk|k
(j+1)

=  Pk|k
(j+1)

(Pk|k−1
−1 xk|k−1 + nkHT(sXk)−1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ y̅k, (4.59) 

 Pk|k
(j+1)

= (Pk|k−1
−1 +  nkHT(sXk)−1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ H)−1, (4.60) 

where 

 y̅k =  
1

nk
∑ yk

ink
i=1 , (4.61) 

 Vk|k
(j+1)

=  Vk|k−1 +  
1

s
∑ (yk

i − Hxk)(yk
i − Hxk|k)T̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅nk

i=1 , (4.62) 

 vk|k
(j+1)

=  vk|k−1 + nk. (4.63) 

The expressions above use the following quantities. 
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 xk̅̅ ̅ =  xk|k
(j)

, (4.64) 

 (sXk)−1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  vk|k(sVk|k
(j)

)−1, (4.65) 

 
(yk

i − Hxk)(yk
i − Hxk|k)T̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =  (ŷk

i,(j)
− Hxk|k

(j)
)(ŷk

i,(j)
− Hxk|k

(j)
)T +

                                                       HPk|k
(j)

HT + Σk
y,(j)

 , 

(4.66) 

where 

 ŷk
i,(j+1)

=  Σk
y,(j+1)

((sXk)−1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ Hxk̅̅ ̅ +  R−1zk
i ), (4.67) 

 Σk
y,(j+1)

=  ((sXk)−1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + R−1)−1. (4.68) 

Initial conditions in the iteration are given as ŷk
i,(0)

= zk
i , Σk

y,(0)
= sXk|k−1, xk|k

(0)
=

xk|k−1, Pk|k
(0)

= Pk|k−1, vk|k
(0)

= vk|k−1, Vk|k
(0)

= V. 
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CHAPTER 5 

 

 

 

5. THE PROPOSED ALGORITHM  

 

 

 

Most extended target tracking algorithms in the literature take the list of point 

measurements from the sensor at each time step and consider their alternative 

multiple partitionings/clusterings for recursive updates. While this approach gives 

quite good results and it is close to optimal, processing of alternative partitionings 

of each measurement set is very time consuming since the number of alternative 

partitions is quite large even after discarding most of the unlikely partitions as was 

done in e.g., [11]. This computation load is currently too much for practical 

applications. 

In this thesis, we propose an alternative extended target tracking approach which 

uses the clustered point measurement data at each time step and applies the IMM-

PDA filter to this clustered data. The clustered point measurement data is 

generated with a clustering algorithm in a preprocessing step. Hence the algorithm 

proposed here uses a single partitioning/clustering result along with an IMM-PDA 

filter which makes it suitable for the applications with a low-computational 

budget.  

The structure of the proposed tracking algorithm is shown in Figure 7. 
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Figure 7: Structure of the extended target tracking algorithm proposed in 

this thesis. 

 

Here, we only consider the scenarios which can be handled using single target 

tracking algorithms such as IMM-PDA for each target. Consequently, we consider 

only the cases where the targets are sufficiently separated compared to 

measurement uncertainty, the detection probability is high and false alarm 

probability is low. With these assumptions, in the probabilistic data association, 

the joint association hypotheses will not be considered as is done in joint 

probabilistic data association filter (JPDAF). JPDA computes the measurement-

to-target association probabilities while considering the case there may be more 

than one target whereas PDA assumes that there is one target which may be 

associated with the measurement. However, it must be noted that the ideas 

presented here can be straightforwardly generalized to an IMM-JPDA algorithm 

as well. 

In the following parts of this chapter, we give the details of the proposed 

algorithm. In Section 5.1, we describe the clustering algorithm used in the thesis 

and give its pseudo-code. 

Although the consideration of the IMM-PDA with clustered measurements is 

more or less straightforward, for the calculation of the association probabilities a 

predictive likelihood function is necessary for the extent states. In Section 5.2 

Sensor Data Clustering 

 

IMM-PDA 

Filter 

 

𝑧−1 
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alternative predictive likelihood functions existing in the literature are examined 

and a new likelihood function is proposed. 

When IMM-PDA filter uses clustered measurements since alternative 

partitionings of the raw data are not considered, close targets might have been 

combined at the clustering step which might lead to track loss in the IMM-PDA 

filter. For avoiding this problem, we give a specific algorithm which 

 detects that two previously tracked targets have approached each other; 

 checks if the clustering algorithm combined the measurements of the close 

targets in a single cluster or not; 

 separates the target measurements using prior information. 

The details about this algorithm which handles close targets are given in Section 

5.3. 

In Section 5.4, a pseudo code of one-step of the overall extended tracking 

algorithm is given. 

 

5.1 Clustering Algorithm 

 

In this section, we describe the clustering algorithm used to cluster the point 

measurements given by the sensor at each time step. The clustering algorithm we 

use is distance based. If two point measurements are separated by a distance 

(between them) which is smaller than or equal to a threshold, then these two point 

measurements are considered to lie in the same cluster. A pseudo-code of the 

clustering algorithm is given in Algorithm 1. 
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Algorithm 1: Pseudo-code of the Clustering Algorithm 

 

{clusters} = Clustering(ValidationMatrix) 

- FOR unclustered measurement i 

o IF there are measurements close enough to measurement i 

 IF there is no cluster 

number of cluster = 1 

Group measurements in first cluster 

Show in which cluster each measurement is 

 END IF 

o ELSEIF there is the least one cluster 

 IF number of cluster > 1 

 IF closed measurements are in different clusters 

                     Merge clusters and delete high cluster id  

                     number of cluster = number of cluster  - 1 

                                 Update in which cluster each measurement is 

 END IF 

 END IF 

 IF any measurement close enough to each other is in a 

cluster 

                  Add new measurements to the cluster the clustered 

measurement is in 

                             Update in which cluster each measurement is 

 ELSE 

number of cluster = number of cluster  + 1 

Group new unclustered measurements in a new cluster 
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Algorithm 1 (continued) 

Update in which cluster each measurement is 

 END IF 

o END IF 

END FOR 

 

 

5.2 Predictive Likelihood Function Selection 

 

In IMM-PDA filter, a predictive likelihood function is necessary for calculating 

the association hypothesis probabilities. The predictive likelihood function can be 

mathematically expressed as 𝑝(𝑍𝑘
𝑖 |𝑍0:𝑘−1) where 𝑍𝑘

𝑖  is the set of point 

measurements in the 𝑖𝑡ℎ cluster at time 𝑘 and 𝑍0:𝑘−1 denotes all previous 

measurements. Some predictive likelihood functions proposed in the literature are 

described in the following subsections. Note that the predictive likelihood 

functions given in the thesis are approximate likelihood functions. 

 

5.2.1 Predictive Likelihood Function 1 

 

Feldmann [7] suggests a heuristic procedure which takes into account how well 

the measurement spread matches the predicted extension in order to determine the 

predictive likelihood. The predictive likelihood function p(𝑍𝑘
𝑖 |𝑍0:𝑘−1) proposed by 

Feldmann is computed as follows. 

 ∆𝑘|𝑘−1
𝑖 ≔  �̅�𝑘

𝑖  (𝑛𝑘
𝑖 − 1) Zk|k−1       

(5.1) 

 Zk|k−1 =   ( sXk|k−1 + R) 
(5.2) 
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where 𝑛𝑘
𝑖  is the number of measurements in the 𝑖𝑡ℎ cluster at time k. In addition, 

Feldmann defines the following quantity. 

 [∆𝑍𝑘
𝑖 ]  =  �̅�𝑘

𝑖 − (𝑛𝑘
𝑖 − 1)( sXk|k−1 + R). (5.3) 

Mean of [∆𝑍𝑘
𝑖 ]  is zero and variance of [∆𝑍𝑘

𝑖 ] is obtained from the Wishart density 

W(�̅�𝑘
𝑖  ; 𝑛𝑘

𝑖 − 1, sXk + R) as 

 Var [∆𝑍𝑘
𝑖 ]  (𝑛𝑘

𝑖 − 1)(tr (Zk|k−1)Zk|k−1 +  𝑍𝑘|𝑘−1
2 , (5.4) 

 Var [∆𝑘|𝑘−1
𝑖 ] Var [∆𝑍𝑘

𝑖 ] + s2(𝑛𝑘
𝑖 − 1)2Xk|k−1vk|k−1. (5.5) 

Finally the predictive likelihood function p(𝑍𝑘
𝑖 |𝑍0:𝑘−1) is given as 

 

p(𝑍𝑘
𝑖 |𝑍0:𝑘−1)  ∝ 𝒩(𝑧�̅�

𝑖 , Hxk|k−1, Sk|k−1) |2πVar [∆𝑘|𝑘−1
𝑖 ]|

−
d+1

4  

etr (-
1

2
∆𝑘|𝑘−1

𝑖 (Var [∆𝑘|𝑘−1
𝑖 ])

−1
∆𝑘|𝑘−1

𝑖 ). 

(5.6) 

   

5.2.2 Predictive Likelihood Function 2 

 

In [8], Orguner proposes the predictive likelihood function p(𝑍𝑘
𝑖 |𝑍0:𝑘−1) 

calculated as 

 p(𝑍𝑘
𝑖 |𝑍0:𝑘−1) = ∫ 𝑝(𝑍𝑘

𝑖 |𝑥𝑘, 𝑋𝑘)𝑝(𝑥𝑘, 𝑋𝑘|𝑍0:𝑘−1)𝑑𝑥𝑘𝑑𝑋𝑘. (5.7) 

Since the calculation of the integral in (5.7) is not possible, the predictive 

likelihood is approximated as 

 

p(𝑍𝑘
𝑖 |𝑍0:𝑘−1)  ≈ |2πPk|k|

1
2  |

2

s
Σk

y
|

𝑛𝑘
𝑖

2
 
|Vk|k−1|

vk|k−1

2

|Vk|k|
vk|k

2

 

exp (−
1

2
[tr(Pk|kPk|k−1

−1 ) − mx + 𝑛𝑘
𝑖 (tr(Σk

y
Rk

−1) − my)]) 

x 
Γmy(

vk|k

2
)

Γmy(
vk|k−1

2
)

(∏ 𝒩(zk
j
; ŷk

j
 , R)

𝑛𝑘
𝑖

j=1 ) x 𝒩(xk|k; xk|k−1, Pk|k). 

(5.8) 
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All the quantities used in the likelihood function above are obtained in the last 

iteration of the algorithm given between (4.59) and (4.68). 

 

5.2.3 Problem with the Existing Likelihoods and a Heuristic Fix 

 

The predictive likelihoods given in the previous sections results in a significant 

problem when they are used in a PDA algorithm due to their units. In order to 

illustrate the problem, suppose that at time 𝑘 cluster 1 and cluster 2 are associated 

to a track. In PDA we then generate three hypotheses.  

𝐻0: None of the clusters belongs to the target 

𝐻1: Cluster 1 has originated from the target and the other cluster is a false alarm.  

𝐻2: Cluster 2 has originated from the target and the other cluster is a false alarm.  

We can calculate the posterior probabilities of the hypotheses as follows.  

 

 𝑝(𝐻0|𝑍0:𝑘) =
𝛽𝐹𝐴(1 − 𝑃𝐷𝑃𝐺)

𝛽𝐹𝐴(1 − 𝑃𝐷𝑃𝐺) + 𝑃𝐷𝑝(𝑍𝑘
1|𝑍0:𝑘−1) + 𝑃𝐷𝑝(𝑍𝑘

2|𝑍0:𝑘−1)
, (5.9) 

 𝑝(𝐻1|𝑍0:𝑘) =
𝑃𝐷𝑝(𝑍𝑘

1|𝑍0:𝑘−1)

𝛽𝐹𝐴(1 − 𝑃𝐷𝑃𝐺) + 𝑃𝐷𝑝(𝑍𝑘
1|𝑍0:𝑘−1) + 𝑃𝐷𝑝(𝑍𝑘

2|𝑍0:𝑘−1)
, (5.10) 

 𝑝(𝐻2|𝑍0:𝑘) =
𝑃𝐷𝑝(𝑍𝑘

2|𝑍0:𝑘−1)

𝛽𝐹𝐴(1 − 𝑃𝐷𝑃𝐺) + 𝑃𝐷𝑝(𝑍𝑘
1|𝑍0:𝑘−1) + 𝑃𝐷𝑝(𝑍𝑘

2|𝑍0:𝑘−1)
. (5.11) 

 

Here as it is seen in the denominator of the probabilities, the quantities 

𝑝(𝑍𝑘
1|𝑍0:𝑘−1) and 𝑝(𝑍𝑘

2|𝑍0:𝑘−1) are summed. However, if the clusters 1 and 2 

have different number of measurements then these likelihoods have different 

units. Therefore, a unit inconsistency exists in the probability calculation 

operation. Notice that if the number of measurements in the 𝑖𝑡ℎ cluster is 𝑛𝑘
𝑖 , then 

the unit of 𝑝(𝑍𝑘
𝑖 |𝑍0:𝑘−1) is 

1

𝑢𝑛𝑘
𝑖  where u denotes the unit of a single measurement. 
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Hence the quantities √𝑝(𝑍𝑘
𝑖 |𝑍0:𝑘−1)

𝑛𝑘
𝑖

 would have the same unit of a single 

measurement and they can be added safely without a unit inconsistency.  As a 

result, we can consider using the modified predictive likelihood  √𝑝(𝑍𝑘
𝑖 |𝑍0:𝑘−1)

𝑛𝑘
𝑖

 

instead of the original predictive likelihood 𝑝(𝑍𝑘
𝑖 |𝑍0:𝑘−1) in the probability 

calculations to avoid unit inconsistency. With this idea, the probability 

calculations in the example given above can be written as follows.  

𝑝(𝐻0|𝑍0:𝑘) =
𝛽𝐹𝐴(1 − 𝑃𝐷𝑃𝐺)

𝛽𝐹𝐴(1 − 𝑃𝐷𝑃𝐺) + 𝑃𝐷 √𝑝(𝑍𝑘
1|𝑍0:𝑘−1)

𝑛𝑘
1

+ 𝑃𝐷 √𝑝(𝑍𝑘
2|𝑍0:𝑘−1)

𝑛𝑘
2 , (5.12) 

𝑝(𝐻1|𝑍0:𝑘) =
𝑃𝐷 √𝑝(𝑍𝑘

1|𝑍0:𝑘−1)
𝑛𝑘

1

𝛽𝐹𝐴(1 − 𝑃𝐷𝑃𝐺) + 𝑃𝐷 √𝑝(𝑍𝑘
1|𝑍0:𝑘−1)

𝑛𝑘
1

+ 𝑃𝐷 √𝑝(𝑍𝑘
2|𝑍0:𝑘−1)

𝑛𝑘
2 , (5.13) 

𝑝(𝐻2|𝑍0:𝑘) =
𝑃𝐷 √𝑝(𝑍𝑘

2|𝑍0:𝑘−1)
𝑛𝑘

2

𝛽𝐹𝐴(1 − 𝑃𝐷𝑃𝐺) + 𝑃𝐷 √𝑝(𝑍𝑘
1|𝑍0:𝑘−1)

𝑛𝑘
1

+ 𝑃𝐷 √𝑝(𝑍𝑘
2|𝑍0:𝑘−1)

𝑛𝑘
2 . (5.14) 

 

5.2.4 Predictive Likelihood Function 3 

 

In order to avoid the unit inconsistency problem of the existing likelihoods and its 

heuristic fix proposed in the previous subsection, we here propose an alternative 

heuristic predictive likelihood in this section.  

The kinematic part of the predictive likelihood we propose for the extended 

target is the same as that of Feldmann’s and can be written as 

𝑝𝑘𝑖𝑛(𝑍𝑘
𝑖 |Z0:k−1) =  𝒩(𝑧�̅�

𝑖 , 𝑧̅̂̅𝑘
𝑖 , Sk|k−1), (5.15) 

where z̅k is the mean of measurements originated from an extended target, 𝑧̅̂̅𝑘
𝑖  is 

the measurement prediction and  Sk|k−1 is defined as in (4.42). 
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The extension part of the predictive likelihood p(𝑍𝑘
𝑖 |Z0:k−1) for the extended 

target is proposed as  

 𝑝𝑒𝑥𝑡(𝑍𝑘
𝑖 |Z0:k−1) = IW(�̅�𝑘

𝑖 ; vk|k−1, Xk|k−1), (5.16) 

where �̅�𝑘
𝑖  is measurement spread for the 𝑖𝑡ℎ cluster defined in (4.5), vk|k−1 and 

Xk|k−1 are given in (4.35) and (4.36). 

The heuristic assumption herein is that the measurement spread and the extension 

should be close to each other when the measurement noise is small compared to 

the target extent. The overall predictive likelihood p(𝑍𝑘
𝑖 |Z0:k−1) is obtained by 

multiplying the kinematic part and extension part of the likelihood function as 

follows. 

 p(𝑍𝑘
𝑖 |Z0:k−1) = 𝒩(𝑧�̅�

𝑖 , 𝑧̅̂̅𝑘
𝑖 , Sk|k−1)IW(�̅�𝑘

𝑖 ; vk|k−1, Xk|k−1) 
(5.17) 

 

5.2.5 Simulation Results for Predictive Likelihood Functions 

 

In this section, we present some simulation results for the predictive likelihoods 

we presented above to highlight some properties of these likelihoods.  In the 

simulations our aim is to show the performance of the predictive likelihoods in 

rewarding the correct sized clusters and punishing wrong sized clusters. 

In the simulation, we assume that we are at time k and we have a predicted target 

posterior density which is defined as  

         p(xk, Xk|Z0:k−1) = 𝒩(xk; xk|k−1, Pk|k−1)IW(Xk; vk|k−1, Xk|k−1). (5.18) 

where the parameters xk|k−1, Pk|k−1, vk|k−1 and Xk|k−1 are given as 

xk|k−1 = [

0
20
0

20

], Pk|k−1 = [

100
0
0
0

0
10
0
0

0
0

100
0

0
0
0

10

] , Xk|k−1 = [
2500 0

0 400
] and  

vk|k−1 = 25. 
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In order measure the performance of the likelihood functions given in the previous 

sections, we generate random measurements from the scaled versions of the 

predicted extent Xk|k−1 as follows. We run 100 Monte Carlo runs to obtain the 

results. In each run, the random measurements are generated as follows. First we 

scale the predicted extent Xk|k−1 with a scale factor 𝛼 where 𝛼  changes between 

0.1 to 5.  

Uniformly spaced measurements are created in two ways inside the scaled target 

ellipsoid.  

 In the first way, uniformly spaced measurements are created in the scaled 

ellipsoid around the predicted target position as in Figure 8 where the 

sensor resolution (the distance between the measurements) of 4 meters is 

preserved.  

 In the second way, the number of measurements inside the target extent is 

preserved and the sensor resolution is scaled instead as in Figure 9. 

After creating the set of uniformly spaced measurements, each point measurement 

inside the scaled target extent is either randomly kept with probability �̅�𝑑 = 0.8 or 

deleted. In this way for each Monte Carlo run we have a random measurement set. 

Example measurement sets obtained using this method are shown in Figure 10. 

 



 
43 

 

Figure 8: First way of obtaining uniformly spaced set of measurements: 

The measurements when a) scaling factor is equal to 1 b) scaling factor is 

equal to 2. 

 

 

Figure 9: The second way of obtaining uniformly spaced set of 

measurements: The measurements when a) scaling factor is equal to 1 b) 

scaling factor is equal to 2. 
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Figure 10: The point measurements inside the scaled target extent are 

randomly kept with probability �̅�𝑑 = 0.8. 

 

The average (over the MC runs) of three predictive (log-)likelihood functions 

calculated using random measurements are given in Figure 11 and Figure 12 

respectively. As observed in the figures, the likelihood function of Orguner 

always decreases with increasing scale factor. This is rather strange because this 

means that this likelihood function would always reward smaller sized clusters 

than the predicted target extent. On the other hand, the likelihood of Feldmann is 

maximized around the scale factor 2 which is rather counter-intuitive because we 

expect the likelihood to be maximized around the scale factor 1. If one uses 

Feldmann’s likelihood in extended target tracking, this means that the tracker 

would favor larger sized clusters than the predicted target extent size. It is seen 

that the proposed likelihood function has the desired property, i.e., it is maximized 

close to the scale factor unity.  These results show that Feldmann’s and Orguner’s 

likelihoods might give counter-intuitive results when used in ETT by favoring 

larger and smaller sized clusters than the predicted target extent size, respectively.  
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Figure 11: Average log-likelihood functions calculated using the uniformly 

spaced measurements generated from the scaled target extent (the first way). 

 

 

Figure 12: Average log-likelihood functions calculated using the uniformly 

spaced measurements generated from the scaled target extent (the second 

way). 
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In order to understand whether the results given above are dependent on our data 

generation mechanism, we further investigated the predictive likelihood functions 

using different data sets. First instead of uniformly spaced measurements, we 

generated Gaussian distributed measurements with Zk~ 𝒩(Zk; 0, Xk/4 + R) 

where Xk = diag ((50 m)2 , ((20 m)2). The results are given in Figure 13 for the 

first way (extent Xk is scaled) and the second way (measurements are scaled after 

generation with the true extent Xk). In Figure 13, it is seen that the same 

conclusions above holds for Gaussian distributed measurements as well. 

Second, we obtained the results (with uniformly spaced measurements) with 

different detection probabilities. The detection probabilities were selected as 0.7, 

0.6 and 0.5. The results are shown in Figure 14 and Figure 15 for the first and 

second way of data generation, respectively. In both of the figures, it is seen that 

the results obtained above are not sensitive to the detection probability used in the 

simulations. 
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Figure 13: Average log-likelihood functions calculated using the Gaussian 

distributed measurements. 

 

 

Figure 14: Average log-likelihood functions calculated using the uniformly 

spaced measurements generated from the scaled target extent (first way) for the 

detection probabilities 0.7, 0.6 and 0.5. 
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Figure 15: Average log-likelihood functions calculated using the uniformly 

spaced measurements generated from the scaled target extent (second way) 

for the detection probabilities 0.7, 0.6 and 0.5. 

 

Finally, we repeated the experiments with different aspect ratios of the object 

extent. In these trials, all parameters are kept the same except the following: 

Aspect Ratio=1:           Xk|k−1 = [
400 0

0 400
] & vk|k−1 = 10, 

Aspect Ratio=3:           Xk|k−1 = [
3600 0

0 400
] & vk|k−1 = 30, 

Aspect Ratio=5:           Xk|k−1 = [
10000 0

0 400
] & vk|k−1 = 50. 

The results are shown for the aspect ratios 1, 3 and 5 in Figure 16 and Figure 17 

for the measurements generated using the first way and the second way 

respectively. In these results we still see that the proposed likelihood is the best 

but as the aspect ratio gets larger, the average of the proposed likelihood is 

maximized at a slightly smaller scale than unity. Hence we might predict that the 

proposed predictive likelihood might have a tendency to choose slightly smaller 

measurement clusters than the actual target extent as the true target extent gets 

more and more skewed. 
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Figure 16: Average log-likelihood functions calculated using the uniformly 

spaced measurements generated from the scaled target extent (the first way) for 

different aspect ratios. 

 

 

Figure 17: Average log-likelihood functions calculated using the uniformly 

spaced measurements generated from the scaled target extent (the second 

way) for different aspect ratios. 
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5.3 Handling of Close Extended Targets 

 

When IMM-PDA filter uses clustered measurements, errors that are made in the 

clustering step can propagate into the tracking algorithm. Consider for example, 

the case when two previously far away targets, which are tracked, get so close to 

each other that their measurements are erroneously clustered into the same cluster, 

i.e., the clusters of the individual targets are erroneously merged. In such a case, 

since there is only a single large merged cluster corresponding to two separate 

targets, the tracking algorithm will not be able to assign a cluster to one of the 

targets. In this case, the track for the target which is not assigned with a 

measurement might be dropped. In this section, in order to avoid such a track loss, 

we suggest an algorithm which  

- detects if two previously tracked targets got closer or not 

- determines if the clusters of the targets have been erroneously merged  

- if there is erroneous merging, obtains the individual target clusters from the 

merged cluster using prior extent sizes of the targets.  

The details of this algorithm are provided in the following section. 

 

5.3.1 The Algorithm Developed to Track Close Extended Targets  

 

We consider a scenario similar to the one shown in Figure 18. If two targets 

approach each other as shown in Figure 18, the clustering algorithm can give a 

single merged cluster for the two targets as shown in Figure 19. To avoid 

performance degradation in tracking, the erroneous merging should be detected 

and compensated. The algorithm presented in this section aims to do this. The 

algorithm is composed of the following steps. 

 Step 1: detects that two previously tracked targets have approached each 

other; 
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 Step 2: check if the clustering algorithm merged their clusters in a single 

cluster or not; 

 Step 3: separates the merge cluster into individual target clusters using 

prior information of estimated target extent sizes. 

Figure 18: The scenario considered for the algorithm where two targets are 

approaching each other. 
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Figure 19:The merged clusters when the targets are close to each other. 

Notice the same colored ellipsoids (which represent the same cluster) in 

the center of the figure when targets are close to each other. 

 

Step 1: Determine close targets 

In order to check if the extended targets are close to each other, at each time 

instant the following test is used on the tracked targets. 

 (𝑥𝑘|𝑘−1
1 − 𝑥𝑘|𝑘−1

2 )
𝑇

(𝑋𝑘|𝑘−1
1 + 𝑋𝑘|𝑘−1

2 )
−1

(𝑥𝑘|𝑘−1
1 − 𝑥𝑘|𝑘−1

2 ) ≶ λ. 
(5.19) 

where the quantities 𝑥𝑘|𝑘−1
1 , 𝑥𝑘|𝑘−1

2 and 𝑋𝑘|𝑘−1
1 , 𝑋𝑘|𝑘−1

2  denote the predicted 

kinematic state vectors and predicted extension matrices for the two targets. If the 

value on the left hand side is smaller than a threshold λ, the targets are declared 

sufficiently close to cause a merged cluster (in the clustering algorithm) and 

further processing is started. 

 

 

Step 2: Checking for a Merged Cluster 

In the case that two tracked targets are declared to be sufficiently close to cause a 

merged cluster (Step-1), the algorithm checks if there is only one cluster in the 
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unions of the gates of the two targets or not. If there is a single cluster in the 

unions of the gates of the two targets then the clustering algorithm is declared to 

have made the erroneous merging of the clusters of the two targets. 

 

Step 3: Re-clustering of the Merged Cluster to Recover the Individual 

Clusters of the Targets  

If there is one clustered measurement in the unions of the gates in Step 2, the 

individual measurements in the merged cluster are re-clustered using the predicted 

extent sizes of the targets using a version of the EM algorithm where the cluster 

covariances are fixed at the predicted target extent sizes.  

The measurements that the algorithm tries to re-cluster are shown as {𝑧𝑘
𝑖 }

𝑖=1

𝑚
. The 

recursion index is shown as 𝑛. The cluster weights and means at the recursion 

(𝑛 − 1) are shown as {𝑤𝑗
𝑛−1, }

𝑗=1

2
 and { 𝜇𝑗

𝑛−1}
𝑗=1

2
. The 𝑛𝑡ℎ step of the recursive 

algorithm is given as follows, 

 Responsibility computation 

 𝛾𝑖𝑗 =
𝑤𝑗

𝑛−1𝑁(𝑧𝑘
𝑖 ; 𝜇𝑗

𝑛−1, 𝑋𝑘|𝑘−1
𝑗

)

∑ 𝑤𝑗
𝑛−1𝑁 (𝑧𝑘

𝑖 ; 𝜇𝑗
𝑛−1, 𝑋𝑘|𝑘−1

𝑗
)2

𝑗=1

,           
(5.20) 

          for  𝑗 = 1,2   and 𝑖 = 1, … , 𝑚. 

 Updated weight computation 

 𝑤𝑗
𝑛 =

∑ 𝛾𝑖𝑗
𝑚
𝑖=1

∑ ∑ 𝛾𝑖𝑗
𝑚
𝑖=1

2
𝑗=1

. 
(5.21) 

 Updated mean computation 

 𝜇𝑗
𝑛 =

∑ 𝛾𝑖𝑗
𝑚
𝑖=1

∑ ∑ 𝛾𝑖𝑗
𝑚
𝑖=1

2
𝑗=1

𝑧𝑘
𝑖 . 

(5.22) 

 Stopping criterion 
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 √∑‖𝜇𝑗
𝑛 − 𝜇𝑗

𝑛−1‖
2

2

𝑗=1

≶ λ. 
(5.23) 

 If the left hand side of (5.23) is smaller than threshold λ, it is assumed that 

the algorithm has converged. So, each measurement 𝑦𝑘
𝑖  is assigned to the 

target whose index 𝑗𝑖 by using the last calculated responsibilities {𝛾𝑖𝑗| 𝑗 =

1,2   𝑖 = 1, … , 𝑚}. 

 𝑗𝑖 = arg max𝑗𝛾𝑖𝑗. (5.24) 

5.4 Pseudo Code of One Step of the Overall Extended Target Tracker 

 

In this section, a pseudo code of one step of the overall extended tracking 

algorithm proposed in this thesis is given. 

 

Algorithm 2: One Step of Overall Algorithm 

mk : Number of total measurements 

Ω : Validation matrix by mk𝑥 mk denoting the closeness of 

measurements 

nk : number of the measurements in a cluster 

{z̃k
i }

i=1

nk
 : the set of nk two dimensional clustered position measurements at 

each time k 

{zk
i }

i=1

nk
 : Re-clustered measurements by considering the track extension 

𝑧k̅
i  : Mean of the measurements in cluster i at time k 

𝑧̅̂k|k−1
j

 : Predicted measurement for target j 

Sk|k−1
j

 : Predicted measurement covariance matrix for target j 

Pk|k−1
j,l

 : Predicted state covariance matrix for target j and model l 

𝑧̅̂k|k−1
j,l

 : Predicted measurement for target j, model l 

 



 
55 

Algorithm 2 (continued) 

S_extk|k−1
j,l

 : Predicted measurement covariance matrix considering the 

extension for target j 

vk|k−1
j

 : Predicted number of the measurements in a cluster for target j 

Xk|k−1
j,l

 : Predicted extension for target j, model l 

 xk|k
j,l,i

 : Estimated state vector for target j, model l, measurement i 

 Pk|k
j,l,i

 : Estimated state covariance matrix for target j, model l, 

measurement i 

vk|k
j

 : Estimated number of the measurements in a cluster for target j 

Xk|k
j,l,i

 : Estimated extension for target j, model l, measurement i 

λk|k−1
j,l,i

 : Predicted likelihood function for target j, model l, 

measurement i 

πk|k
j,l

 : Transition probability matrix 

μk|k
j,l

 : IMM model probability 

      TS : Track status denoting tentative track, confirmed track or 

deleted track 

Set size of extension as [
2500 0

0 400
] for big target and scale it with scale 

factor 0.2 for small target. 

Set parameters as 

 𝑃𝑔=0.99, 𝑃𝐹𝐴=10−5, 𝑃𝐷=0.8 

𝑃𝑔: Gating Probability, 𝑃𝐹𝐴:False Alarm Probability, 𝑃𝐷:Detection Probability 
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Algorithm 2 (continued) 

ALGORITHMS 

1- {z̃k
i }

i=1

nk
 = Clustering(Ω) 

2- [𝑧k̅
i , {zk

i }
i=1

nk
] = Re-cluster 

(𝑥𝑘|𝑘−1
j=1

, 𝑥𝑘|𝑘−1
j=2

, 𝑃𝑘|𝑘−1
j=2

, 𝑃𝑘|𝑘−1
j=1

, 𝑋𝑘|𝑘−1
j=1

,  𝑋𝑘|𝑘−1
j=2

, {z̃k
i }

i=1

nk
) 

3- 𝑧k̅gated

i,j
 = Gating(𝑧k̅

i , 𝑧̅̂k|k−1
j

, Sk|k−1
j

) 

4- [ xk|k
j,l,i

,  Pk|k
j,l,i

, vk|k
j

, Xk|k
j,l,i

, λk|k−1
j,l,i

] = Measurement Update ( xk|k−1
j,l

, Pk|k−1
j,l

, 

vk|k−1
j

, Xk|k−1
j,l

, 𝑧k̅gated

i,j
, 𝑧̅̂k|k−1

j,l
) 

5- [ xk|k
j,l

,  Pk|k
j,l

, vk|k
j

, Xk|k
j,l

, λk|k−1
j,l

] = Data Association ( xk|k
j,l,i

,  Pk|k
j,l,i

, vk|k
j

, Xk|k
j,l,i

, 

λk|k−1
j,l,i

) 

6- [ xk|k
j,0l

,  Pk|k
j,0l

, Xk|k
j,0l

, μk|k−1
j,l

] = IMM Mixing ( xk|k
j,l

,  Pk|k
j,l

, vk|k
j

, Xk|k
j,l

, λk|k−1
j,l

, 

πk−1|k−1
j,l

) 

7- [ xk+1|k
j,l

, Pk+1|k
j,l

, vk+1|k
j

, Xk+1|k
j,l

, 𝑧̅̂k+1|k
j,l

, Sk+1|k
j,l

] = Prediction Update( xk|k
j,0l

, 

 Pk|k
j,0l

, vk|k
j

, Xk|k
j,0l

) 

8- [ xk|k
j

, Pk|k
j

, Xk|k
j

, 𝑧̅̂k+1|k
j

, Sk+1|k
j

] = Combination IMM  Models ( xk|k
j,l

, Pk|k
j,l

, 

Xk|k
j,l

, 𝑧̅̂k+1|k
j,l

, Sk+1|k
j,l

, μk|k−1
j,l

) 

9- TS = Track Maintenance (𝑧k̅gated

i,j
) 

10- 𝑧k̅rest

i = Select the Remaining Measurements (𝑧k̅gated

i,j
, 𝑧k̅

i ) 

x1|1, P1|1, v1|1, X1|1 = Initiate New Track (𝑧k̅rest

i , 𝑧k̅−1rest

i ) 

 

The details of the steps in Algorithm 2 are given below. The details of the 

clustering step was already given in Algorithm 1. 
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Algorithm 3: Re-clustering Algorithm 

 

 Determine the measurements of two close targets 

 

Input : 𝑥𝑘|𝑘−1
1 , 𝑥𝑘|𝑘−1

2 , 𝑋𝑘|𝑘−1
1 , 𝑋𝑘|𝑘−1

2 , 𝑃𝑘|𝑘−1
1 , 𝑃𝑘|𝑘−1

2 , {zk
i }

i=1

nk
 

Output: {zk
i }

i=1

nk
 

Compute the distance between two targets 

IF the targets are close enough 

o Compute threshold which equals to 3 times of predicted 

measurement covariance matrix 

o Compute the distance between centroid of measurements in the 

cluster and the targets 

o Select the measurements exceeding the threshold 

o Obtain two clusters from the remaining measurements under 

assumption that the measurements are normally distributed. 

END IF 

 

 

Algorithm 4: Gating Algorithm 

o Gate the measurements 

 

Input : 𝑧k̅
i , 𝑧̅̂k|k−1

j
, Sk|k−1

j
    

Output: 𝑧k̅gated

i  

o FOR target j 

 FOR clustered measurements i 

- Gate measurements by ellipse gate 

 END FOR 

o END FOR 
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Algorithm 5: Measurement Update Algorithm 

o Measurement Update 

 

Input :  xk|k−1
j,l

, Pk|k−1
j,l

, vk|k−1
j

, Xk|k−1
j,l

, 𝑧k̅gated

i,j
, 𝑧̅̂k|k−1

j,l
 

Output:  xk|k
j,l,i

,  Pk|k
j,l,i

, vk|k
j

, Xk|k
j,l,i

, λk|k−1
j,l,i

 

 

o FOR target j 

 FOR   IMM filter model l 

 FOR   gated and clustered measurement i 

- Update the kinematic state vector 

- Update the kinematic state covariance matrix 

- Update the extension matrix 

- Update the extension parameter 

- Compute likelihood 

 END FOR 

 END FOR 

o END FOR 

 

 

Algorithm 6: Data Association Algorithm 

o Data Association 

 

Input :  xk|k
j,l,i

,  Pk|k
j,l,i

, vk|k
j

, Xk|k
j,l,i

, λk|k−1
j,l,i

 

Output:  xk|k
j,l

,  Pk|k
j,l

, vk|k
j

, Xk|k
j,l

, λk|k−1
j,l

]  

 

o FOR target j 

 FOR   IMM filter model l 

 FOR   gated and clustered measurement i 

- Calculate association probabilities 
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Algorithm 6 (continued) 

 

- Weight estimates with association probabilities 

 END FOR 

 END FOR 

o END FOR 

 

 

Algorithm 7: IMM Mixing Algorithm 

o IMM Mixing 

 

Input :  xk|k
j,l

,  Pk|k
j,l

, vk|k
j

, Xk|k
j,l

, λk|k−1
j,l

, πk−1|k−1
j,l

 

Output: xk|k
j,0l

, Pk|k
j,0l

, Xk|k
j,0l

, μk|k−1
j,l

 

 

o FOR target j 

- Compute the mixing probabilities 

- Mix estimates 

- Compute the IMM model probabilities 

o END FOR 
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Algorithm 8: Prediction Update Algorithm 

 

o Prediction Update 

Input :  xk|k
j,0l

,  Pk|k
j,0l

, vk|k
j

, Xk|k
j,0l

 

Output:  xk+1|k
j,l

, Pk+1|k
j,l

, vk+1|k
j

, Xk+1|k
j,l

, 𝑧̅̂k+1|k
j,l

, Sk+1|k
j,l

 

o FOR target j 

 FOR   IMM filter model l 

- Predict the state vector related to kinematics 

- Predict the state covariance matrix related to kinematics 

- Predict the extension matrix 

- Predict the extension parameter 

- Predict the measurement position 

- Predict the measurement covariance 

 END FOR 

o END FOR 

 

 

Algorithm 9: Combination of IMM Models  

o Combination of IMM Models 

Input :  xk|k
j,l

, Pk|k
j,l

, Xk|k
j,l

, 𝑧̅̂k+1|k
j,l

, Sk+1|k
j,l

, μk|k−1
j,l

,  

Output:  xk|k
j

, Pk|k
j

, Xk|k
j

, 𝑧̅̂k+1|k
j

, Sk+1|k
j

 

o FOR target j 

- Combine the kinematic state vectors  

- Combine the kinematic state covariance matrices 

- Combine the extension matrices 

- Combine the predicted measurements  

- Combine the predicted measurement covariances 

o END FOR 
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Algorithm 10:Track Maintenance Algorithm 

o Tracking Maintenance 

Input : 𝑧k̅gated

i,j
 

Output: TS 

 

o FOR target j 

- M/N logic based track life 

- Confirmed track deletion 

o END FOR 

 

Algorithm 11: Selecting the Remaining Measurements 

 Selection of Rest Measurements for Updating Track 

Input : 𝑧k̅gated

i,j
, 𝑧k̅

i  

Output: 𝑧k̅rest

i  

 

o FOR target j 

- Delete gated measurements in the measurement list 

o END FOR 

 

Algorithm 12: Track Initiation Algorithm 

o Initiate Track  

 

Input : 𝑧k̅rest

i , 𝑧k̅−1rest

i  

Output: x1|1, P1|1, v1|1, X1|1 

 

All the rest after initiation are held for two points initiation. 

 

ς1|1 =  𝑧k̅rest

i  
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Algorithm 12(continued) 

 

ς̇1|1 =  
z̅1 − z̅0

T
 

x1|1 =  [
ς1|1

ς̇1|1
] 

P1|1 =  [
R R/T

R/T 2R/T2] 

X1|1 =  cov ({zk
i }

𝑖=1

𝑛𝑘
) 

v1|1 =  nk 
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CHAPTER 6 

 

 

6. SIMULATION STUDIES 

 

 

 

In this chapter, simulation studies conducted with the proposed algorithms are 

presented. The chapter is divided into two parts. The first part presents simulation 

results for the IMM-PDA filter for extended targets and the second part gives 

results of the IMM-PDA filter for extended targets with close targets.  

 

6.1 Simulation Results for the IMM-PDA Filter for Extended Targets 

 

In this section, we first give information about the simulation environment we use 

and then present the simulation results.  

 

6.2 Simulation Environment 

 

We will describe the simulation environment in three parts: 

1- Measurement Generation 

2- Target Tracking   

3- Performance Measures 

 

6.2.1 Measurement Generation 

 

We intend to generate measurements which are close to real radar data. An 

example real radar data from an extended target is shown in Figure 20. We see 



 
64 

that the measurements are spread over the target extent with uniform separation 

along the range vector and the cross-range vector. In our simulations we generate 

the extended target measurements similar to the real data shown in Figure 20. 

 

 

Figure 20: Real Radar Data. 

 

In the simulations, we consider a random scenario a realization of which is shown 

in Figure 21, where a fighter aircraft first gets away from the radar with constant 

velocity between 𝑡0 and 𝑡1 which are 1𝑡ℎ second and 28𝑡ℎ second; then launches a 

missile which is also to be tracked with the IMM-PDA filter and makes a 

coordinated turn with acceleration of 6.7 g between 𝑡1 and 𝑡2 which are 28𝑡ℎ 

second and 39𝑡ℎ second after the missile launch. Missile goes straight between 𝑡1 

and 𝑡3 which are 28𝑡ℎ second and 56𝑡ℎ second. The missile launch operation 

presents a challenge for tracking since it contains a spawned target (missile) 

which is smaller in extent than the original target (fighter aircraft). The 

measurements for the fighter aircraft and the missile are generated using the 

following parameters: 

 



 
65 

 

Figure 21: One realization of the random target tracking scenario used in 

the simulations. 

 

 The sampling time in the scenario is selected as 1 second. 

 The lengths of the semi major and minor axes of the fighter aircraft are 

selected as 25 and 10 meters respectively. For each Monte Carlo run, a 

variation that is normally distributed with zero-mean and standard 

deviation of 2.5 and 1 meters (i.e., 10% of the true size), respectively is 

added to these numbers. 

 The lengths of the semi major and minor axes of the missile are selected as 

5 and 2 meters respectively. For each Monte Carlo run, a variation that is 

normally distributed with zero-mean and standard deviation of  0.5 and 0.2 

meters (i.e., 10% of the true size), respectively is added to these numbers. 

 The fighter aircraft moves with constant velocity for a random number of 

samples before launching the missile for each run in the Monte Carlo run. 

The corresponding random number is obtained by sampling from the 
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normal distribution with mean 25 and standard deviation 10 and then 

rounding to the nearest integer. 

 The fighter aircraft maneuvers with a coordinated turn for a random 

number of samples after launching the missile for each Monte Carlo run. 

The corresponding random number is obtained by sampling from the 

normal distribution with mean 10 and standard deviation 5 and then 

rounding to the nearest integer. 

 The missile moves with constant velocity for a random number of samples 

for each Monte Carlo run. The corresponding random number is obtained 

by sampling from normal distribution with mean 25 and standard deviation 

10 and then rounding to the nearest integer. 

 The measurements for each target are generated inside the target ellipsoids 

with 2.5 meters uniform separation. After generating measurements, some 

of them are removed randomly with detection probability 0.88. 

The measurements for the false alarm process are generated using the following 

parameters. 

 The number of false measurements for each Monte Carlo run is 

determined by Poisson distribution with the mean μ =  βFAV which is 

where pFA is false alarm rate and V is volume of the surveillance region 

the radar covers [33]. We use βFA as 10−6 per unit area per scan. 

 The size of false measurements changes in each scan and each Monte 

Carlo run. The change is normal distributed with zero mean and standard 

deviation 10. 

 Quantization step is 2.5 meters. 

When the measurements are generated, they are clustered using the clustering 

algorithm presented in Section 5.1. 

In Figure 22, all clustered measurements for a single Monte Carlo run are shown. 

False measurements which are represented by circles in different colors are also 

separated. The measurements which belong to targets are represented by dark blue 
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circles. In Figure 23, a zoomed version of Figure 22 illustrates the individual 

measurements in a cluster for the fighter aircraft. The blank spots in the fighter 

aircraft cluster are caused by the non-unity detection probability which results in 

the elimination of some measurements. 

   

Figure 22: All clustered measurements in a single Monte Carlo run. 
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Figure 23: The measurements in a cluster belonging to the fighter aircraft. 

 

6.2.2 Target Tracking 

 

In this sub-section, we give the related parameters of the overall target tracking 

algorithm we used in the simulations. The target tracking algorithm uses M/N 

logic with ellipsoidal gating (with gating probability 0.99) to decide to delete, 

keep or confirm a track. The parameters for the M/N logic are 2/2 & 2/3. In other 

words, for initiating a target we need at least two consecutive measurements (2/2) 

and in order to confirm a track we need 2 measurements in the subsequent 3 

sampling times (2/3). Once we get two consecutive measurements, we initiate a 

Kalman filter from these two measurements using two-point initiation. The 

kinematic state vector xk we use has two components, 2-D position ς and 2-D 

velocity ς̇, which are initiated as follows. 

 ς1|1 = = z̅1, (6.1) 

 ς̇1|1 =  
z̅1 − z̅0

T
, (6.2) 
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where z̅1 and z̅0 denote the cluster centers obtained from the two measurements 

and T is the sampling period. 

The corresponding kinematic state covariance matrix is set to be 

 P1|1 =  [
R R/T

R/T 2R/T2], (6.3) 

where we select the measurement covariance as R = [
10 0
0 10

].  The initial extent 

state Xk and extension parameter vk are set as 

 X1|1 =  cov ({z1
i }

𝑖=1

𝑛1
), (6.4) 

 v1|1 =  n1, (6.5) 

where z1
i  denote the ith measurement in the second measured cluster and 𝑛1 is the 

number  of measurements in the cluster.  

The IMM-PDA filter as described in the pseudo-code in Section 5.4 is 

implemented with 3 different likelihood functions given in Section 5.2 and their 

performances are compared to each other. 

 

6.2.3  Performance Measures  

 

In order to measure the performance of the tracking algorithm with different 

likelihoods, we make 500 Monte Carlo (MC) runs for each method.  Root Mean 

(over MC runs) Square (RMS) errors are calculated for the kinematic and extent 

states as follows [34].  

 𝐸𝑥  ≜  √
1

𝑁
 ∑ ‖𝑥𝑘|𝑘

𝑗
− 𝑥𝑘

𝑡𝑟𝑢𝑒‖
2

𝑁

𝑗=1

, (6.6) 

 
𝐸𝑋  ≜  [

1

4𝑁
 ∑ 𝑡𝑟 ((𝑋𝑘|𝑘

𝑗
−  𝑋𝑘

𝑡𝑟𝑢𝑒)
2

)

𝑁

𝑗=1

]

1
4

. 
(6.7) 
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The RMS errors are then averaged over time to obtain the average (over time) 

RMS errors.  

In addition to the kinematic errors, data association errors are counted in the  MC 

runs. In the IMM-PDA filter, for each track, the cluster with the highest posterior 

hypothesis probability in the gate is assumed to be assigned to the track. If a track 

is assigned with a cluster that does not belong to the corresponding target at least 

for a single time instant in a MC run, the tracker is deemed to have made an 

association error in that MC run. The performance of the trackers is also evaluated 

based on the percentage of the MC runs in which they made no association error. 

The larger this percentage is, the better the performance of the corresponding 

tracker is. 

 

6.3 Simulation Results 

 

In this subsection, we present the results obtained by the trackers using different 

likelihoods by illustrating the typical results for their MC runs. The results for 

trackers with the three different likelihood functions are given in three separate 

sections. The comparisons of the results obtained by the MC runs are made in the 

fourth subsection. 

 

In the fıgures in this subsection, the following notations are used. 

- Numbers 1 and 2 denote the track ID 

- The black squares denote the position estimates of the targets 

- The red points denote the measurements 

- The green ellipses denote the estimated extension of the targets 

- The pink ellipses denote the real extension of the fighter aircraft. 

- The blue ellipses denote the real extension of the missile. 
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6.3.1 The Results of IMM-PDA filter with Feldmann’s Likelihood 

 

A typical run of the IMM-PDA filter using the Feldmann’s likelihood is shown in 

Figure 24. In Section 5.2.5, it was seen that Feldmann’s likelihood function gives 

unexpected results by assigning higher likelihoods to larger extended targets than 

the predicted target size. On the other hand, Feldmann’s likelihood gives similar 

results for smaller targets than the predicted target size. In the scenario considered 

in the thesis, when a small target (i.e., the missile) is spawned from the fighter 

aircraft, the Feldmann’s likelihood does not punish the missile measurement 

sufficiently. Hence the extension part of the likelihoods for the missile and fighter 

aircraft measurements become similar and the kinematic part of the likelihoods 

dominates. Due to this, the tracker confuses the fighter aircraft with the missile as 

seen in Figure 24.  
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Figure 24: The estimations of IMM-PDA filter with Feldmann’s 

likelihood. 

 

 

In Figure 25, which shows the zoomed view of Figure 24, it is seen that the fighter 

aircraft continues to use missile measurements. The tracker actually tries to 

initiate a new target for the fighter measurements but the initiation algorithm fails 

due to the maneuver. 
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Figure 25: Zoomed version of Figure 24. 

 

In Figure 26, the extensions of the fighter aircraft are shown before the missile 

launch. In the figure the pink ellipses represent the true extension, green ellipses 

represent the estimated extension. It is obvious that the extension computation is 

accurate for the fighter aircraft before the missile launch. In Figure 27, the 

situation after the missile launch is shown. It is observed that green ellipses which 

are much larger than the blue ellipses which represent the true extension. This 

happens due to the fact that the extent estimates take time to converge when the 

fighter aircraft is assigned with the missile measurements. 
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Figure 26: The true and the estimated extensions of the fighter aircraft 

before the missile launch.  

 

 

Figure 27: The true and the estimated extensions of the fighter aircraft 

after the missile launch.  
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6.3.2 The Results of IMM-PDA filter with Orguner’s Likelihood 

 

In the previous chapter it was seen that Orguner’s likelihood gave smaller targets 

a larger likelihood. As a result, the IMM-PDA tracker using this likelihood 

function mostly associates the cluster of the missile with the track of the fighter 

aircraft which leads to a false fighter aircraft track as illustrated in Figure 28. In 

the typical run, in Figure 28, the tracker simply thinks that fighter aircraft goes 

straight on the trajectory of the missile and a new track is created from the future 

measurements of the fighter aircraft. 

In Figure 29 and Figure 30, we show the true and the estimated extents of the 

fighter aircraft before and after the missile launch. It is seen that while the 

extension estimates match the cluster size well before the missile launch, the 

extension estimates do not converge to the measured cluster sizes after the missile 

for a long time. 

 

Figure 28: Results of a typical run of the IMM filter using Orguner’s 

likelihood. 



 
76 

 

Figure 29: Estimated and true target extents of the fighter aircraft for the 

IMM-PDA with Orguner’s likelihood before the missile launch. 

 

 

 

Figure 30: Estimated and true target extents of the fighter aircraft for the 

IMM-PDA with Orguner’s likelihood after the missile launch. 
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6.3.3 The Results of IMM-PDA filter with the Proposed Likelihood 

 

A typical run of the IMM-PDA filter using the proposed likelihood is shown in 

Figure 31. As observed the filter is capable of associating the correct cluster 

measurement to the fighter aircraft. In Figure 32 and Figure 33, it is seen that the 

extension of both tracks are computed accurately because the targets can be 

separated thanks to better data association.  

 

Figure 31: Results of a typical run of the IMM filter using the proposed 

likelihood. 
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Figure 32: Estimated and true target extents of the fighter aircraft for the 

IMM-PDA with the proposed likelihood before the missile launch. 

 

 

Figure 33: Estimated and true target extents of the fighter aircraft for the 

IMM-PDA with the proposed likelihood after the missile launch. 
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6.3.4 Monte Carlo Run Results for the IMM-PDA Filters with Different 

Likelihoods 

 

The average RMS errors and the percentage of runs with correct data association 

for the fighter aircraft and the missile are given in Table 1 and Table 2 

respectively. As observed performance measures are much better for the filters 

with the proposed likelihood than for those using the other likelihoods.  

 

Table 1: The performance measures for the fighter aircraft. 

 

 IMM-PDA with 

Feldmann’s 

Likelihood  

IMM-PDA with 

Orguner’s 

Likelihood 

IMM-PDA with 

Proposed 

Likelihood 

Percentage of Correct 

Data Association 

67% 20% 98% 

RMS position error (m)  5.7238 8.9853 3.7997 

RMS velocity error (m/s) 5.2849 8.5624 3.3133 

RMS extension error (m) 7.2129 8.5716 7.3734 

 

Table 2: The performance measures for the missile. 

 

 IMM-PDA with 

Feldmann’s 

Likelihood 

IMM-PDA with 

Orguner’s 

Likelihood 

IMM-PDA 

with Proposed 

Likelihood 

Percentage of Correct 

Data Association 

67% 20% 98% 

RMS position error (m)  28.4474 82.7754 2.7899 

RMS velocity error (m/s) 22.8347   22.5537 2.0450 

RMS extension error (m) 11.9793   120.9314 3.6440 
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6.4 Simulation Results for the IMM-PDA filter with Close Targets 

 

In this section, we consider the scenario shown in Figure 18 and Figure 19 and run 

the IMM-PDA filter (using the proposed likelihood function) with the algorithm 

for handling close targets which is described in Section 5.3. The results are shown 

in Figure 34. It is seen that the cluster separation can be done accurately which 

results in correct data association when the targets are close and the extensions of 

both tracks are computed accurately. The numbers in Figure 34 denote track 

ID/time stamp. 

 

 

Figure 34: Result of IMM-PDA filter with predicted likelihood for close 

extended targets. 
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CHAPTER 7 

 

 

7. CONCLUSIONS AND FUTURE WORK 

 

 

 

An IMM-PDA filter is proposed for tracking extended targets which uses random 

matrices for modeling the target extent. There are many alternative extended 

target trackers in the literature but these trackers use many alternative 

partitionings/clustering of the set of measurements at each scan to get close to 

optimality. The IMM-PDA filter proposed in the thesis, on the other hand, is 

specifically designed to use a single partitioning/clustering of the measurement 

data to be useful in computationally constrained applications while sacrificing 

optimality.  

When an IMM-PDA filter with kinematic and extent states uses clustered 

measurement data, the predictive likelihood function used for calculating 

hypothesis probabilities becomes very important. In this thesis, we have shown 

that the predictive likelihood functions proposed for random matrix models are 

not very suitable for this purpose. Instead we proposed an alternative predictive 

likelihood function and shown its advantages by comparing IMM-PDA filters 

using different likelihood functions. The simulation studies have shown that the 

new likelihood functions could increase the data association performance to a 

great extent compared to other likelihood functions, which improved the 

kinematic and extent state estimation performance of the IMM-PDA filter 

significantly.   
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The pre-clustering step used in the IMM-PDA filter has the side effect of 

combining the measurement clusters of close targets. Since alternative 

partitionings/clustering of the measurement set are not used, this would lead to 

track loss in the IMM-PDA filter. In order to solve this problem we have proposed 

a specific algorithm for handling close targets. This algorithm detects the close 

targets when their estimates are close and if their clusters are merged separates the 

merged clusters to avoid low tracking performance. The algorithm has shown 

good performance on an example simulation.  

Future studies that can be pursued in the subject area considered in this thesis can 

be the following: 

 The tracking algorithm presented here assumed that the tracking of 

multiple targets can be made by applying single target trackers (IMM-

PDA) for each target. A future study might apply the ideas given here to 

an IMM-JPDA algorithm. 

 It has been shown in the thesis that the predictive likelihood functions 

proposed in the literature have some shortcomings in favoring clustered 

measurements with close size to the predicted extent. This has been done 

using simulations. A theoretical analysis of the reasons for the unexpected 

behavior of these likelihood functions has been left for a future study.  

 A new predictive likelihood function was proposed in the thesis using 

heuristic arguments. Theoretically more justified likelihood functions can 

be found in a detailed future study. 

 The algorithm proposed for handling close targets in this thesis modifies 

the already clustered set of measurements based on the predicted target 

extents. A more unified framework in this respect would be to come up 

with a clustering algorithm which actually uses the predicted target 

estimates as a prior information, which is left as an interesting future 

study.  
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