
CONTROLLER AREA NETWORK WITH OFFSET SCHEDULING: IMPROVED
OFFSET ASSIGNMENT ALGORITHMS AND COMPUTATION OF RESPONSE

TIME DISTRIBUTIONS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

AHMET BATUR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

FEBRUARY 2018





Approval of the thesis:

CONTROLLER AREA NETWORK WITH OFFSET SCHEDULING:
IMPROVED OFFSET ASSIGNMENT ALGORITHMS AND COMPUTATION

OF RESPONSE TIME DISTRIBUTIONS

submitted by AHMET BATUR in partial fulfillment of the requirements for the de-
gree of Master of Science in Electrical and Electronics Engineering Department,
Middle East Technical University by,

Prof. Dr. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Tolga Çiloğlu
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ABSTRACT

CONTROLLER AREA NETWORK WITH OFFSET SCHEDULING:
IMPROVED OFFSET ASSIGNMENT ALGORITHMS AND
COMPUTATION OF RESPONSE TIME DISTRIBUTIONS

BATUR, Ahmet
M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Klaus Werner Schmidt

Co-Supervisor : Prof. Dr. Şenan Ece Güran Schmidt

February 2018, 86 pages

The Controller Area Network (CAN) is the most widely-used in-vehicle communica-

tion bus in the automotive industry. CAN enables the exchange of data among differ-

ent electronic control units (ECUs) of a vehicle via messages. The basic requirement

for the design of CAN is to guarantee that the worst-case response time (WCRT) of

each message is smaller than its specified deadline. Hereby, it is generally desired to

achieve small WCRTs that leave sufficient slack to the message deadline. In addition,

it has to be noted that it might be very unlikely that a message experiences the WCRT

when being transmitted on CAN. That is, instead of only considering the message

WCRT for the design of CAN, it is beneficial to determine the actual response-time

distribution of each message, which indicates the probability of experiencing a certain

response time.

In order to achieve small WCRTs, the idea of offset scheduling has been introduced.

In this setting, messages on CAN are released with offsets in order to avoid message

bursts that lead to undesirably large response times. In order to use offset scheduling
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efficiently, it is required to assign a suitable offset to each message. To this end, a

load distribution (LD) algorithm is proposed in the existing literature. The first con-

tribution of this thesis is the development of new algorithms for the offset assignment

on CAN. Evaluating different example scenarios, the thesis shows that the proposed

algorithms outperform the existing LD algorithm in most of the cases. As the second

contribution, the thesis studies the computation of response time distributions. First,

an algorithm for determining the exact response-time distribution of each message on

CAN is proposed. Since this algorithm comes with a high computational complexity,

it cannot be applied if there are too many messages on a CAN bus. Moreover, exper-

imental results show that the response time distribution depends mostly on the initial

phasing of the nodes. Therefore exact response time distribution as computed is not

observed in the measurements. In response to this observation, the thesis proposes

the computation of a local response time distribution and develops and implements a

weak synchronization method which bounds the phase shift between the nodes. The

resulting computed local response time distribution shows a very tight match with

measured response time distributions.

Keywords: Controller Area Network, Offset Scheduling, Worst Case Response Time,

Response Time Distribution, Weak Synchronization
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ÖZ

CAN AĞLARI İÇİN OFSET ÇİZELGELEME: GELİŞTİRİLMİŞ OFSET
ATAMA ALGORİTMALARI VE TEPKİ ZAMANI DAĞILIMI

HESAPLAMALARI

BATUR, Ahmet
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Klaus Werner Schmidt

Ortak Tez Yöneticisi : Prof. Dr. Şenan Ece Güran Schmidt

Şubat 2018 , 86 sayfa

Denetleyici Alan Ağı (CAN), otomotiv endüstrisinde en yaygın kullanılan araç-içi ha-

berleşme veriyoludur. CAN, aracın farklı elektronik kontrol üniteleri (EKÜ) arasında

mesajlar aracılığıyla veri transferi sağlar. CAN tasarımının ana ihtiyacı her mesajın

tepki zamanının belirtilen son gönderim zamanından kısa olmasını garantilemektir.

Genellikle, son gönderim zamanına yeterli serbestlik sağlayan kısa tepki zamanlarının

elde edilmesi amaçlanmaktadır. Buna ek olarak, mesajın CAN üzerinden iletilirken

en uzun tepki zamanını (worst-case response time-WCRT) deneyimlemesinin muh-

temel olmayabileceğine dikkat edilmelidir. Yani, CAN tasarımı için mesajın WCRT

değerini dikkate almak yerine her mesajın belirli bir tepki zamanını deneyimleme

olasılığını gösteren gerçek tepki zamanı dağılımını belirlemek faydalı olacaktır.

Kısa WCRT değerleri elde etmek için ofset çizelgeleme yöntemi ortaya çıkarılmıştır.

Bu yöntemle, istenmeyen uzun tepki zamanlarına yol açabilecek mesaj kümelenme-

sini önlemek için CAN mesajları ofsetlerle gönderilirler. Ofset çizelgeme yöntemini

verimli bir şekilde kullanmak için her mesaja uygun bir ofset atanması gerekmekte-
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dir. Bu amaçla, mevcut literatürde buluşsal bir yük dağılımı (load distribution-LD)

algoritması önerilmiştir. Bu tezin ilk katkısı CAN üzerinde ofset ataması için yeni

algoritmaların geliştirilmesidir. Farklı senaryo örneklerini değerlendiren bu tez çalış-

masında, bulguların çoğunda önerilen algoritmaların başarımlarının halihazırdaki LD

algoritmasından daha iyi olduğu gösterilmektedir. İkinci katkı olarak tez, tepki za-

manı dağılımlarının hesaplanmasını incelemektedir. İlk olarak, CAN üzerindeki her

bir mesajın gerçek tepki zamanı dağılımını belirlemek için bir algoritma önerilmek-

tedir. Bu algoritma yüksek bir hesaplama karmaşıklığına sahip olduğundan, bir CAN

veriyolunda çok fazla mesaj olması durumunda uygulanamamaktadır. Ayrıca, deney-

sel bulgular tepki zamanı dağılımının daha çok düğümler arasındaki faz farkının ilk

değerine bağlı olduğunu göstermektedir. Bu nedenle hesaplanan gerçek tepki zamanı

dağılımı ölçümlerde gözlenmemektedir. Buna çözüm olarak bu tez, yerel tepki za-

manı hesaplamasını önermekte ve düğümler arasındaki faz farkını sınırlayan bir zayıf

senkronizasyon metodu geliştirmekte ve uygulamaktadır. Sonuçta hesaplanan yerel

tepki zamanı dağılımlarının ölçülen tepki zamanı dağılımlarıyla oldukça iyi eşleştiği

görülmektedir.

Anahtar Kelimeler: Denetleyici Alan Ağı (CAN), Ofset Çizelgeleme, En Kötü Durum

Tepki Zamanı, Tepki Zamanı Dağılımı, Zayıf Senkronizasyon
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CHAPTER 1

INTRODUCTION

General

The most commonly used communication network in current in-vehicle applications

is the controller area network (CAN) [15, 17, 4, 14]. CAN is a priority-based non-

preemptive communication bus with a maximum data rate of 1 Mbit/s. Due to the

priority-based arbitration it is expected that low-priority CAN messages observe large

response times (RTs) [10].

When designing the communication schedule on a CAN bus, deterministic and proba-

bilistic requirements are taken into account. Most of the existing literature focuses on

deterministic requirements, whereby the main aim is to ensure that the worst-case re-

sponse time (WCRT) of each message is smaller than the message deadline. Hereby,

the deadline specifies the longest allowable time between the message generation on

the transmitter node and the reception on the receiver node [16, 4]. In addition to

this basic requirement, it is desired in practical applications to obtain small response

times with a sufficient time difference (slack) to the message deadline [5, 6, 14]. A

further desirable property is to achieve a balanced distribution of WCRTs such that

messages with the same deadline also have similar WCRTs.

The study of the probabilistic properties of message response times is based on the

observation that, although it is possible that a message experiences its WCRT, this

case is highly unlikely [12, 20]. In particular CAN messages can experience very

different response times due to two factors that introduce nondeterminism. First,

the CAN protocol inserts stuff bits during the message transmission such that the

CAN message transmission time varies with its payload data. Second, the nodes on a

1



CAN bus are not synchronized such that the phases between nodes change over time.

Hence, it is important in practice to determine the probability of certain response

times, which are summarized in the so-called response time distribution. Then, the

most relevant probabilistic requirement is to compute this response time distribution

which allows determining the probability of exceeding each possible response time.

Several research works in the literature address the stated deterministic and proba-

bilistic requirements. Regarding the deterministic requirements, the idea of offset

scheduling has been introduced [10, 11]. That is, in order to avoid messages bursts

from individual CAN nodes, the simultaneous release of messages from the same

CAN node is avoided. Instead, messages are released with an offset. In the setting of

offset scheduling, the existing literature provides algorithms for computing WCRTs

for each message [8, 19, 3, 18], assuming that the offset for each message is pre-

assigned. Considering the offset assignment, [10] presents a load distribution (LD)

heuristic that aims at minimizing the message WCRTs.

Regarding the probabilistic requirements, different problems are addressed. The work

in [13, 12] studies the probabilistic WCRT. Considering the variable bit stuffing only,

the probability of different response times in a worst-case message generation sce-

nario is determined. Although this work gives an indication about how likely it is

to observer the WCRT, it only considers a worst-case message generation scenario

and does not capture the idea of offset scheduling. The estimation of the response

time distribution for a target message that is generated by a target node is proposed in

[20]. This work is based on the definition of a characteristic message that represents

the transmission characteristics of each remote node node (not the target node). The

response time distribution is then computed using the messages of the target node and

the characteristic messages of the remote nodes. A disadvantage of this work is that

optimistic estimates of the response time distribution might be obtained.

This thesis presents contributions for both the offset assignment and the response time

distribution computation. Regarding the offset assignment, the main contribution of

this thesis is the development of new algorithms for the offset assignment on CAN.

First, three algorithms that directly assign an offset to each CAN message are pre-

sented. These algorithms use additional information compared to the existing LD
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algorithm without an observable increase in the computational run-time. Second an

algorithm that performs an iterative neighborhood search (NS) for better offset assign-

ments in order to improve the WCRT of each message is proposed. Since this algo-

rithm requires WCRT computations for each message, this algorithm has a longer (but

still practical) computational run-time than the other algorithms. In order to evaluate

the proposed algorithms, the thesis performs comprehensive computational experi-

ments. Our evaluation shows that the proposed NS algorithm provides the best offset

assignments according to the specified performance criteria in most of the cases. In

addition, it is observed that the remaining algorithms (including the existing LD al-

gorithm) can be used in most of the cases to obtain suitable offset assignments with

shorter computation times.

Regarding the probabilistic analysis, the thesis develops an original method for com-

puting the response time distribution for non-preemptive systems such as CAN. The

proposed method is based on the computation of a backlog distribution for the tar-

get message that is due to the interference of other messages and the execution time

of the target message. The method is first stated for given node phases. Then, av-

eraging over all node phases allows obtaining the overall response time distribution

for the given target message. Moreover, the thesis makes an additional observation

from practical measurements: although nodes on CAN are not synchronized, phases

between nodes remain nearly constant for a certain amount of time in the order of

several tens of minutes. The main consequence of this observation is that locally (for

a short period of time), the response time distribution of the current combination of

node phases is observed. This response time distribution then changes over time due

to the clock drift and is generally very different from the computed overall response

time distribution. As a novel contribution, this thesis proposes to evaluate the local

response time distribution and to enforce the validity of this local response time distri-

bution by a weak synchronization of all CAN nodes. As a result, it is possible to keep

the node phases within a small range and to perform a very exact computation of lo-

cal response time distribution that does not change over time. This is the first method

for the computation of response time distributions that can be evaluated computation-

ally and that shows good agreement with measured response time distributions. All

computational results in the thesis are supported by hardware measurements.
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In summary, the main contributions of the thesis are listed as follows.

1. New offset assignment algorithms for CAN with low complexity are developed

and evaluated

2. A neighborhood search algorithm for the offset assignment on CAN is proposed

3. An original algorithm for computing the response time distribution of a target

message is developed

4. The local response time distribution is defined and a tight range for node phases

is established using weak synchronization

The remainder of the thesis is organized as follows. Chapter 2 provides the necessary

background on offset scheduling on CAN and introduces the relevant performance

metrics. In addition, the existing LD algorithm is described and its potential limi-

tations are discussed. In Chapter 3, four new algorithms for the offset assignment

on CAN are proposed. The different offset assignment algorithms are compared by

means of comprehensive computation experiments. Moreover, Chapter 4 develops a

hardware measurement setup for CAN message response times and evaluates the pro-

posed algorithms. Algorithms for the computation of response time distributions for

CAN messages are developed and validated by measurements in Chapter 5. Chapter

6 gives conclusions.
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CHAPTER 2

CONTROLLER AREA NETWORKS: BACKGROUND

CAN is an asynchronous multi-master serial data bus that was designed by Robert

Bosch GmbH in 1983 and was standardized in 1993 [15]. The operation of CAN is

based on Carrier Sense Multiple Access/Collision Resolution (CSMA/CR) and the

maximum data rate of CAN is 1 Mbit/s. Fig. 2.1 depicts the layout of a standard

format CAN data frame. Each CAN frame has a frame header and contains up to

8 bytes of data. The frame header comprises a unique CAN identifier (ID) of length

11 bit or 29 bit. The ID of the message serves two purposes. First, it determines

the priority of the message among the messages contending for the bus. Second, it

identifies the message and thus receiver nodes can use a filter mechanism to discard

unnecessary messages.

Arbitration field

S
O
F

0

11-bit identifier
R
T
R

DLC 4-
bit

Control field Data field

0-8 bytes 15 bit CRC

0

r
0

1

CRC field

I
D
E

0

Ack End of frame

1 1 1 1 1 1 1

Int

1 1 11

Bits exposed to bit-stuff ing (34 control bits and 0-8 bytes of data -> 34-98 bits)

0 0 CRC delimiter bit

Known bit-values (standard format data frame)

Figure 2. CAN frame layout (standard format data frame).

the Controller Area Network (CAN). Several probabilistic
approaches for schedulability analysis of real-time systems
have been presented, e.g., [1, 7]. However, none of these
specifically address CAN.

We have in our previous work presented a method to
model the number of stuff-bits in a CAN message frame
[8, 9]. Stuff-bits are extra bits added by the CAN protocol.
There is a built in mechanism in the CAN protocol which
removes forbidden bit-patterns (e.g., patterns used for er-
ror signalling and the communication protocol) within the
message frame by “inserting” stuff-bits at specific positions.
This mechanism causes a variation in the CAN message
frame length.

When performing worst-case response-time analysis, the
worst case number of stuff-bits is traditionally used. In this
paper we will introduce a worst-case response time analysis
method which uses distributions of stuff-bits instead of the
worst-case values. This makes the analysis less pessimistic
in the sense that we obtain a distribution of worst-case re-
sponse times corresponding to all possible combinations of
stuff-bits of all message frames involved in the response-
time analysis. Using a distribution rather than a fixed value
makes it possible to select a worst-case response time based
on a desired probability � of violation, i.e., the selected
worst-case response time is such that the probability of a
response-time exceeding it is � � . Our main motivation
for calculating such probabilistic response-times is that they
allow us to reason about trade-offs between reliability and
timeliness.

However, it should be noted that this paper focuses on
a single aspect, namely a probabilistic worst-case response
time, based on using bit-stuffing distributions. There are
other parameters, including execution times and phasings of
message queuings, that have similar variations and effects
on the response-time analysis. However, our calculations
are based on the “critical instant” worst-case scenario.

Outline: Section 2 presents the traditional schedulability
analysis for CAN. In Section 3 we present the new proba-
bilistic response-time analysis, and in Section 4 the analysis
is evaluated using the SAE [11] benchmark. Finally Sec-
tion 5 concludes the paper and presents some future work.

2. Traditional Schedulability Analysis of CAN
Frames

The Controller Area Network (CAN) [10] is a broadcast
bus designed to operate at speeds of up to 1 Mbps. Data is
transmitted in frames containing between 0 and 8 bytes of
data and a number of control bits. Depending on the CAN
format (standard or extended) the number of control bits are
either 44 or 64. Between CAN frames sent on the bus, there
is also a 3 bit inter-frame space. The standard format CAN
frame (and the inter-frame space) is shown in Figure 2.

The difference between the standard and the extended
format is that the extended format has 29 identifier bits in-
stead of the 11 bits used in the standard format. The identi-
fier is required to be unique, in the sense that two simultane-
ously active frames originating from different sources (i.e.,
nodes or CAN-controllers) must have distinct identifiers.
The identifier serves two purposes: (1) assigning a prior-
ity to the frame, and (2) enabling receivers to filter frames.
For a more detailed explanation of the different fields in the
CAN frame, please consult [10, 5].

CAN is a collision-avoidance broadcast bus, which uses
deterministic collision resolution to control access to the
bus (so called CSMA/CA). The basis for the access mecha-
nism is the electrical characteristics of a CAN bus: if mul-
tiple stations are transmitting concurrently and one station
transmits a ‘0’ then all stations monitoring the bus will see
a ‘0’. Conversely, only if all stations transmit a ‘1’ will all
processors monitoring the bus see a ‘1’. During arbitration,
competing stations are simultaneously putting their identi-
fiers, one bit at the time, on the bus. By monitoring the
resulting bus value, a station detects if there is a compet-
ing higher priority frame and stops transmission if this is
the case. Because identifiers are unique within the system,
a station transmitting the last bit of the identifier without
detecting a higher priority frame must be transmitting the
highest priority queued frame, and hence can start transmit-
ting the body of the frame.

2.1. Classical CAN Bus Analysis

Tindell et al. [13, 14, 15] present analysis to calculate
the worst-case latencies of CAN frames. This analysis is

Figure 2.1: Standard Format CAN Data Frame.

Together, the maximum frame duration for b data bytes is [4]

C = (55 + 10b)τbit (11-bit); C = (80 + 10b)τbit (29-bit). (2.1)

CAN nodes can start a message transmission whenever the bus is idle. If multiple

nodes start to transmit simultaneously, a non-destructive bit-wise arbitration is ap-

plied on the CAN IDs such that the CAN ID with the lowest binary value wins the

arbitration. A node loosing the arbitration retransmits its frame when the bus becomes

idle again.
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2.1 Scheduling Model

We assume that a setM of CAN messages has to be transmitted on a CAN network

with data rate B bits/sec. The corresponding bit time is denoted as τbit = 1/B.

From the networking perspective, the relevant parameters of each message M ∈ M
are given by the recurrence period TM , the message length LM in bit, the deadline

DM and the node that generates the message NM . Here, TM is considered as the

minimum inter-arrival time of message M , which denotes the message period for

periodic messages. DM is the longest allowable time from the message generation

to the end of its successful transmission. Assuming a time unit of 1 ms, TM and DM

are measured in ms. We further write MD = {M ∈ M|DM = D} for the set of

messages with deadline D. Each message M ∈ M has a unique priority PM such

that messages with a smaller value of PM have a higher priority. The bus load on

CAN is defined as

bl =
∑
M∈M

LM

TM
. (2.2)

2.2 Scheduling with Offsets

The classical usage of CAN is such that whenever a message is generated by a task

running on an ECU, it is directly released to the respective CAN hardware buffer and

it enters the CAN arbitration. As a consequence, it is possible that bursts of messages

can be released by an ECU, leading to long response times for the messages of the

burst and, at the same time, blocking messages from other ECUs. The idea of offset

scheduling [10, 11] was introduced in order to circumvent this problem. On each

ECU, time windows (TWs) that repeat periodically are introduced. Then, instead of

allowing message releases at any time, each message M ∈ M is assigned to specific

TWs starting from a base offset OM . In this thesis, we assume that TWs have a

duration of 1 ms. The base offset denotes the position of each message with respect

to the first TW and the number of TWs of a node N ∈ N is given by its hyperperiod

HPN as the least common multiple of its message periods:

HPN = lcm({pM |M ∈M, NM = N}). (2.3)
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Figure 2.2 shows an example for an offset schedule for two CAN nodes N1 and N2

with the messages in Table 2.1. N1 has HPN1 = 10 TWs and N2 has HPN2 = 20

TWs. All occupied TWs are shown in gray.

Table2.1: Message Properties

M M1 M2 M3 M4 M5

TM 2 5 4 2 20
LM 120 140 130 90 160
NM N1 N1 N2 N2 N2

OM 0 0 0 1 10
TWs 0,2,4,6,8 0,5 0,4,8,12,16 1,3,5,7,9,11,13,15,17,19 10

0 9

N1

0 19

N2

M1,M2 M1 M1 M2 M1 M1

M3 M4 M4 M3 M4 M4 M3 M4 M5 M4 M3 M4 M4 M3 M4

10

5

M4

Figure 2.2: Offset scheduling example.

From the practical perspective, it is important to note that offset scheduling is a

method that is exclusively applied to individual ECUs. That is, there is no synchro-

nization among ECUs such that TWs of different ECUs are not synchronized.

2.3 Performance Metrics

We introduce the worst-case response time (WCRT) WM of a message M ∈ M as

the maximum possible time between the message generation on the transmitter node

and the message reception on the receiver node. Then, the essential requirement for

CAN scheduling is given by

WM ≤ DM . (2.4)

The exact WCRT time for CAN scheduling without offsets can be computed as pro-

posed in [4]. Differently, when considering offset scheduling, the exact computation

of WM for any M ∈ M is a combinatorial problem in the number of messages. Ac-

cordingly, the literature offers several methods for computing an upper bound on WM

[8, 19, 3, 18]. In this thesis, the methods in [8, 3] are employed.
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In addition to (2.4), there are further desirable properties of CAN schedules. First, it

is desired to minimize the maximum WCRT of any message

Wmax = max
M∈M

WM . (2.5)

Second, it is beneficial if there is a sufficient distance to a deadline violation. In this

thesis, we capture this performance metric by the average slack

Sav =
∑
M∈M

DM −WM

DM

. (2.6)

Both (2.5) and (2.6) quantify the robustness of a CAN schedule to additional interfer-

ence such as bit errors [5, 6, 14].

As specified in Section 2.1, CAN message setsM comprise subsetsMD of messages

with the same deadline. Since messages in each group should fulfill the same timing

requirements, it is desirable that such messages have similar WCRTs. To this end, we

consider the average delay for messages with a certain deadline D as

W av
D =

∑
M∈MD

WM

|MD|
. (2.7)

Using (2.7), it is possible to define the standard deviation of WCRTs of messages

with the same deadline D as

W std
D =

√ ∑
M∈MD

(WM −W av
D )2

|MD|
. (2.8)

W std
D captures the WCRT variation of messages with the same deadline and should

hence be small.

2.4 Offset Assignment Problem Statement

When considering offset scheduling as described in Section 2.2, it is generally as-

sumed that the message priorities are fixed. Hence, it is desired to determine an offset

assignment for all messages on the CAN bus such that (2.4) holds and the additional

performance metrics are addressed. Accordingly, the problem studied in this thesis is

as follows.
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Problem 1. Assume a set of messagesM is given with TM , LM , DM , NM , PM for

each M ∈M. Determine an offset assignment OM for all M ∈M such that

WM ≤ DM , ∀M ∈M. (2.9)

and respecting the performance metrics that are defined in Section 2.3. �

It has to be noted that the offset assignment in Problem 1 is computed offline and

then implemented on electronic control units (ECUs) for each automotive applica-

tion. Finding a suitable offset assignment is a difficult problem since the number of

possible offset assignments is factorial in the number of messages on the CAN bus.

2.5 Offset Assignment using Load Distribution

The existing offset assignment algorithm in [10] suggests to perform load distribution

(LD) in each node. We next describe this algorithm in a notation that agrees with

the presentation in this thesis and that is different from [10]. We introduce the time

window usage UN : {0, . . . , HPN −1} 7→ N for each node N ∈ N such that UN(tw)

is the sum of message lengths occupying tw. For example, node N1 in Fig. 2.2 has

UN1(0) = LM1 + LM2 = 260, UN1(2) = UN1(4) = UN1(6) = UN1(8) = LM1 = 120,

UN1(5) = LM2 = 140. andUN1(1) = UN1(3) = UN1(7) = UN1(9) = 0. Then, the left

distance dN,` : {0, . . . , HPN−1} 7→ N and right distance dN,r : {0, . . . , HPN−1} 7→
N is introduced for each TW tw such dN,`(tw) (dN,r(tw)) denotes the number of

unoccupied TWs to the left (right) of tw including tw. Furthermore, dN,` = dN,r = 0

if UN(tw) > 0. For node N1 in Fig. 2.2 dN1,`(3) = dN1,r(3) = 1 and dN1,`(4) =

dN1,r(4) = 0.

Then, [10] proposes Algorithm 1 as a solution for Problem 1.

Algorithm 1 processes each node separately since CAN nodes are not synchronized

and evolve independently in time (line 1). An offset is determined for each message

of the selected node (line 3 to 9). The first message processed obtains an arbitrary

offset (line 5). For the other messages, the function ComputeBestOffset in Algorithm

2 determines an offset value. After the offset selection, the time window usage UN is

updated for all TWs that are occupied by the current message (line 9). The specific

9



input : N ,M, message properties

output: Offset assignment OM for all M ∈M
1 for all N ∈ N do

2 Compute hyper-period HPN

3 for all M with NM = N do

4 if M is the first message processed then

5 Assign OM =
⌈
TM

2

⌉
6 else

7 OM = ComputeBestOffset(N ,M ,M,HPN )

8 for h = 0, . . . , HPN/TM do

9 Set UN(OM + h · TM) = 1

Algorithm 1: Existing load distribution (LD) algorithm.

offset selection in [10] is formulated in the following algorithm.

1 Function OM = ComputeBestOffset(N ,M ,M, HPN )

2 for tw = 0, . . . , TM − 1 do

3 minDist = −1

4 Determine dN,`(tw) and dN,r(tw)

5 Set dist = min{dN,`(tw), dN,r(tw)}
6 if dist > minDist then

7 Set minDist = dist

8 Set OM = tw

9 return OM

Algorithm 2: Offset Assignment using Load Distribution.

Algorithm 2 considers that the possible offsets for message M are 0, . . . , TM − 1.

Each value in this range is tried and the value with the largest minimum distance to

an occupied TW is computed (line 6 to 7). Then, the offset with the largest minimum

distance is assigned to the message (line 9).

As an illustration, consider the message set given in Table 2.2.

Assume that the algorithm has already assigned offset of message M1 as 0 and trying
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Table2.2: Message Properties

M M1 M2

TM 5 10
OM 0 ?

to find the best offset for message M2. For all possible offsets, it determines the

left and right distances. Then it assings the minimum of these two distances as the

distance of that specific offset value. An illustration for offset candidate 2 is shown

in Fig. 2.3.

M1

0 1

M2

2 3

M1

4 5 6 7
Node 1

Offset OM2

M3

0 1

M4

2 3 4
Node 2

Offset OM4

M1

0 1 2 3 4

M1

5 6 7
Node 1

left dist = 2

8 9

right dist = 3

Distance for offset 2 is min(2, 3) = 2

Figure 2.3: Distance Computation in LD

Eventually the offset value with the largest distance is assigned as offset to M2 which

is 2 in this example.

2.6 Discussion

Algorithm 1 tries to assign offsets such that the release of messages of each node to

the CAN bus is separated in time as much as possible. In our study, we observed three

potential improvements of this algorithm.

1. The distance computation in Algorithm 1 only evaluates the distance of the first

TW tw ∈ {0, . . . , TM − 1} occupied by a message. However, later instances

tw + i · · ·TM of a message might observe a smaller distance.

2. The distance computation in Algorithm 1 only considers if a TW is occupied or

not but omits the information about the number and size of messages occupying

a TW. In principle, a larger distance value should be found if a TW is occupied

by less/smaller messages.
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3. The offset assignment of different nodes is performed independently. That is,

the interference from other nodes is neglected when assigning offsets to each

node.

The first main contribution of this thesis is the development of algorithms taking into

account the above items in the subsequent section.
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CHAPTER 3

IMPROVED OFFSET ASSIGNMENT ALGORITHMS

This chapter develops new algorithms for the offset assignment on CAN. First, three

algorithms that directly assign an offset to each CAN message are presented in Sec-

tion 3.1.1 to 3.1.3. These algorithms use additional information compared to the

existing LD algorithm without an observable increase in the computational run-time.

Second an algorithm that performs an iterative neighborhood search (NS) for better

offset assignments in order to improve the WCRT of each message is proposed in

Section 3.1.4. Since this algorithm requires WCRT computations for each message,

this algorithm has a longer (but still practical) computational run-time than the other

algorithms. We note that the main results of this chapter are presented in the confer-

ence papers [2, 1].

3.1 Algorithms

3.1.1 Maximum Neighbor Distance (MND)

In this section, we address item 1) in Section 2.6. To this end, we modify the function

ComputeBestOffset in Algorithm 1. The function in Algorithm 3 now maximize

the minimum neighbor distance dN,l(tw) and dN,r(tw) for all instances of a message.

That is, instead of computing the minimum distance only for the first instance of

message M , we determine the minimum distance among all instances of message M

within the hyper-period HPN .

As an example, consider the message set shown in Table 3.1.
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1 Function OM = ComputeBestOffset(N ,M ,M,HPN )

2 maxDist = 0

3 for o = 0, . . . , TM − 1 do

4 Set dist =∞
5 for all i = 0, . . . , HPN/TM do

6 Set tw := o+ i · TM
7 Compute dN,l(tw) and dN,r(tw)

8 if min{dN,l(tw), dN,r(tw)} < dist then

9 Set dist = min{dl, dr}

10 if dist > maxDist then

11 maxDist = dist

12 OM = o

13 return OM

Algorithm 3: Offset Assignment using Maximum Neighbor Distance (MND).

Table3.1: Message Properties

M M1 M2 M3

TM 4 8 4
OM 0 6 ?

Assume that messages M1 and M2 have already been assigned the offsets 4 and 8,

respectively. The offset assignment for message M3 is compared for LD and MND

algorithms and shown in Fig. 3.1.

As can be seen, the best offset for message M3 is 2 which is true for the first instance

of M3. However, the second instance coincides with M2, which results in larger

response time. On the other hand, the proposed MND algorithm searches for all the

instances of M3 for the best offset, which is 1 in this case.

3.1.2 Maximum Bit Distance (MBD)

In this section, we also address item 2) in Section 2.6. To this end, we introduce the

left neighbor TW twl and the right neighbor TW twr for each TW tw. In Fig. 2.2
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M1

0 1 2 3

M1

4 5

M2

6 7

Best offset 
according to MND

2nd instance 
of M3

M1

0 1 2 3

M1

4 5

M2

6 7

Best offset 
according to LD

2nd instance
coincides with M2

Figure 3.1: LD and MND Offset Assignment Comparison

1l = 0 and 1r = 2 for TW tw = 1. Finally, we consider that the number of bits

per TW is LTW = 1 ms/τbit. Then, we replace the function ComputeBestOffset in

Algorithm 1 by the function in Algorithm 4 to determine an offset for each message.

Algorithm 4 follows the same outline as Algorithm 3. The main difference is between

line 4 and 10. Here, the left (right) neighbors are computed in line 8 and the mini-

mum distance is computed taking into account the number of free bits dN,l(tw) ·LTW

(dN,r(tw) · TTW) and the number of occupied bits UN(twl) (UN(twr)) in line 9. That

is, Algorithm 4 always assigns the offset with the largest minimum distance (line 11

to 13).

As an example, consider the case shown in Fig.3.2. As can be seen, there are two

messages occupying the TW TW tw = 0. However the LD algorithm does not take

this into account and computes the distance for offset 2 as 2, whereas the actual

distance is 1 as computed by the MBD algorithm.

3.1.3 Accumulated Bit Distance

We note that all previous algorithms only consider the largest minimum distance

among all message instances in one hyper-period. Differently, our next algorithm

records the accumulated minimum distance for all instances within a hyper-period.

To this end, the function ComputeBestOffset in Algorithm 1 is implemented as fol-

lows.
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1 Function OM = ComputeBestOffset(N ,M ,M,HPN )

2 maxDist = −∞
3 for o = 0, . . . , TM − 1 do

4 oldDist =∞
5 for all i = 0, . . . , HPN/TM do

6 Set tw = o+ i · TM
7 Determine dN,l(tw) and dN,r(tw)

8 Determine twl and twr

9 dist = min{dN,l(tw) ·TTW−UN(twl), dN,r(tw) ·TTW−UN(twr)}
10 dist = min{dist,oldDist}

11 if dist > maxDist then

12 Set maxDist = dist

13 Set OM = o

14 return OM

Algorithm 4: Offset Assignment with Maximum Bit Distance (MBD).

1 Function OM = ComputeBestOffset(N ,M ,M,HPN )

2 minDist =∞
3 for o = 0, . . . , TM − 1 do

4 dist = 0

5 for all i = 0, . . . , HPN/TM do

6 Set tw = o+ i · TM
7 Determine dN,l(tw) and dN,r(tw)

8 Determine twl and twr

9 dist =

dist+min{dN,l(tw)·TTW−UN(twl), dN,r(tw)·TTW−UN(twr)}

10 if dist < minDist then

11 minDist = dist

12 OM = o

13 return OM

Algorithm 5: Offset Assignment with Minimum Accumulated Bit Distance.
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Figure 3.2: Comparison of Distance Computation in LD and MBD

That is, the minimum distances in each TW for an offset candidate o are added up in

line 9. Then, the offset with the minimum accumulated distance is selected in line 9

to 12.

3.1.4 Neighborhood Search (NS)

The proposed algorithms in Section 3.1.1 to 3.1.3 compute an offset assignment for

each individual CAN node without taking into consideration the interference from

other nodes as pointed out in item 3) in Section 2.6. Our last algorithm attempts

to improve an given offset assignment by an iterative search. In each iteration, a

candidate offset assignment is selected, one of the performance metrics in (2.6) to

(2.8) is evaluated and the offset candidate with the best result is selected.

The evaluation of the performance metrics in (2.6) to (2.8) requires the WCRT com-

putation for the candidate offset assignments. As is noted in Section 2.3, there are

different algorithms for finding upper bounds on WM for each M ∈ M. According

to our experiments, the algorithm in [3] generally provides tighter bounds on WM

but requires significantly longer computation times than the algorithm in [8]. Since

the proposed Algorithm 6 requires a considerable number of WCRT computations,

we use the algorithm in [8] when evaluating candidate offset assignments. The final

WCRT result is then evaluated using the algorithm in [3].
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input : N ,M, message properties, initial offset assignment ÔM for all

M ∈M, ∆max

output: Offset assignment OM for all M ∈M
1 Evaluate the selected performance metric as PM opt

2 PM old = PM opt

3 ∆ := 1; it = 1

4 Set Oold
M := ÔM for all M ∈M

5 Compute hyperperiod HPN for each N ∈ N
6 while it ≤ nIt do

7 for all M ∈M do

8 F = {ÔM −∆ mod HPNM
, ÔM + ∆ mod HPNM

}
9 Set ÔM := Oold

M for all M ∈M
10 for all o ∈ F do

11 ÔM := o

12 Evaluate the selected performance metric as PM

13 if PM improves PM opt then

14 PM opt := PM

15 for all M ∈M do

16 Oopt
M := ÔM

17 M opt := M

18 if PM opt 6= PM old then

19 ∆ := 1

20 else if ∆ ≤ ∆max then

21 ∆ := ∆ + 1

22 else

23 Set OM := Oopt
M for all M ∈M

24 return

25 Set Oold
M := Oopt

M for all M ∈M
26 Set PM old := PM opt

27 it := it+ 1

28 Set OM := Oopt
M for all M ∈M

Algorithm 6: Offset Assignment with Neighborhood Search (NS).
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Algorithm 6 starts from a given offset assignment that can be computed by any of the

previously described methods. For the given offset assignment, the selected perfor-

mance metric among (2.5) to (2.8) is evaluated and recorded (line 1 and 2) as PM opt

(currently optimal value) and PM old (value before the next iteration). Then, in each

of at most nIt iterations, different candidate offset values are selected (line 8) for

each message by increasing/decreasing the currently selected offset value by ∆ (∆

is initialized by 1 in line 3). For each candidate offset assignment, the selected per-

formance metric is evaluated and the offset assignment with the best evaluation is

recorded (line 10 to 17). If there was an improvement in the current iteration, ∆ is set

to 1 (line 19). If there was no improvement and ∆ is below a maximum value ∆max,

∆ is incremented (line 21) in order to try different candidate offset assignments in the

next iteration. Otherwise, the algorithm terminates with the currently optimal assign-

ment (line 24) and it is assumed that no better offset assignment could be found. At

the end of each iteration, the currently optimal offset assignment is recorded (line 25

and 26) and the iteration count is incremented (line 27).

We note that it is expected that Algorithm 6 has a considerably longer computation

time than the remaining algorithms due to the repeated evaluation of the selected

performance metric in line 12 which requires a WCRT computation.

3.2 Computational Evaluation

This section evaluates and compares the proposed offset assignment algorithms for

a large set of test cases and regarding the different performance metrics in Section

2.3. First, Section 3.2.1 presents the general setting. Then, Section 3.2.2 comments

on the observed computation times and Section 3.2.3 to 3.2.6 present computational

results for different performance metrics and message sets. The obtained results are

discussed in Section 3.2.7.

3.2.1 Setting of the Computational Experiments

We perform offset assignment experiments for a CAN bus with a data rate of 125 kbit/s.

That is τbit = 8µ s and LTW = 125 bit. We use message sets with periods and dead-
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lines TM , DM ∈ {10, 20, 50, 100, 200, 1000} for a chassis network as in [10]. Since

offset scheduling is applied in order to reduce the WCRTs at high bus loads, we per-

form computations for bus loads of k · 125 kbit/s with k = 0.5 (medium), k = 0.7

(high) and k = 0.9 (very high). In addition, we respect that CAN applications can

have different numbers of nodes. We consider the case of networks with 5, 15, 25

nodes. In all our experiments, we first apply the algorithms LD (Section 2.5), MND

(Section 3.1.1), MBD (Section 3.1.2), ABD (Section 3.1.3). Then, the best solution

among these algorithms is used to initialize the algorithm NS (Section 3.1.4), which

is used with the average slack in (2.6) as performance metric.

In the following, various parameter combinations of network type, bus load and num-

ber of nodes are investigated. For each parameter combination, 30 message sets are

generated randomly and the performance metrics in Section 2.3 are evaluated by tak-

ing the average over the 30 message sets. The number of messages generated for

different bus loads and network types is summarized in Table 3.2.

Table3.2: Number of Messages per Bus Load and Network Type.

chassis body
k 0.5 0.7 0.9 0.5 0.7 0.9

Number of messages 70 99 130 83 117 152

In addition to evaluating the performance metrics, we also define Ny
x as the number

of times, a certain algorithm y ∈ {NO,LD,MND,MBD,ABD,NS} achieves the

best solution regarding the performance metric x ∈ {Wmax, Sav}. Hereby, "NO"

represents the case where offset scheduling is not applied. Then,

P y
x =

Ny
x

30
(3.1)

represents the percentage of best solutions achieved by each algorithm. Note that the

sum of these percentages may exceed 100% since multiple algorithms might obtain

the same best solution. Finally, we introduce P̂ y
x for the percentage of best solutions

among all the algorithms excluding NS in Section 3.1.4. We use P̂ y
x in order to

compare the algorithms with a short computation time.
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3.2.2 Computation Times

We first summarize our observations regarding the computations times of the different

algorithms. All algorithms were implemented using C++ and run on a desktop PC

with Intel(R)Core(TM)2 Duo CPU @ 2.93Ghz and 8GB of RAM. The results for the

different combinations of (number of nodes,bus load) are summarized in Table 3.3.

It can be seen that the computation times for the algorithms LD, MND, MBD, ABD

Table3.3: Computation Times in Seconds

LD MND MBD ABD NS
(5, 0.5) 0.002 0.005 0.015 0.03 17.5
(5, 0.7) 0 0.031 0.002 0.015 0.003 531
(5, 0.9) 0.1 0.003 0.016 0.002 1 820
(15, 0.5) 0.015 0.031 0.016 0.016 156
(15, 0.7) 0.03 0.016 0.031 0.016 900
(15, 0.9) 00.23 0.015 0.005 0.016 1 800
(25, 0.5) 0 0.031 0.015 0.016 0.031 136
(25, 0.7) 0.005 0.031 0.031 0.016 480
(25, 0.9) 0.015 0.031 0.016 0.015 2 100

are negligible in all cases. Increasing computations times depending on the number

of nodes and the bus load are observed for the algorithm NS. Considering that the

offset assignment is computed offline, it holds that these computation times are still

practicable.

3.2.3 Maximum WCRT Comparison

In this section, we compare the different algorithms regarding the maximum WCRT

in (2.5). The average results are shown in Table 3.4 to 3.6.

The general observation from Table 3.4 is that the maximum WCRTs in increase with

an increasing bus load and number of nodes. It is further observed that NS provides

the smallest values in almost all the cases. This is expected since NS starts with

the best solution among the other algorithms. Nevertheless, it has to be noted that

NS uses the WCRT algorithm in [8] in order to achieve practical computation times.

Hence, deviations from the expected improved performance as for example seen for
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Table3.4: Wmax Comparison

NO LD MND MBD ABD NS
(5, 0.5) 87.20 9.48 9.71 9.10 9.20 9.04
(5, 0.7) 175.66 27.07 31.15 18.25 19.08 16.93
(5, 0.9) 356.7 139.3 164.6 65.4 76.4 64.3
(15, 0.5) 87.73 26.36 26.81 25.62 25.58 25.31
(15, 0.7) 175.94 51.62 49.87 50.42 50.60 47.27
(15, 0.9) 384.23 156.74 162.49 166.24 160.57 143.27
(25, 0.5) 88.29 40.90 40.40 40.36 40.32 40.34
(25, 0.7) 175.18 84.73 84.96 88.33 88.05 83.89
(25, 0.9) 376.58 218.12 215.06 218.16 218.21 211.71

the case (25, 0.5) are possible. Regarding the remaining algorithms, it can be seen

that the proposed MDB and ABD algorithms provide better results than the existing

LD algorithm especially for small numbers of nodes.

Table3.5: P y
Wmax Comparison

NO LD MND MBD ABD NS
(5, 0.5) 0.0% 46.7% 43.3% 60.% 46.7% 86.7%
(5, 0.7) 0.0% 3.3% 0.0% 23.3% 16.7% 76.7%
(5, 0.9) 0.0% 0.0% 0.0% 33.3% 13.3% 60.0%
(15, 0.5) 0.0% 33.3% 16.7% 16.7% 30.0% 63.3%
(15, 0.7) 0.0% 3.3 % 16.7% 13.3% 6.7% 70.0%
(15, 0.9) 0.0% 26.7% 13.3% 10.0% 10.0% 53.3%
(25, 0.5) 0.0% 63.3% 56.7% 63.3% 70.0% 70.0%
(25, 0.7) 0.0% 46.7% 33.3% 3.3% 10.0% 60.0%
(25, 0.9) 0.0% 26.7% 43.3% 3.3% 6.7% 60.0%

Table 3.5 suggests that NS always has the highest percentage of solutions. Regarding

the algorithms without search, there is not much difference for small bus loads. This

is expected since there is enough free space for assigning offsets. For bus loads above

k = 0.7, MBD and ABD provide better results if the number of nodes is small.

Conversely, LD and MND show better results in the case of many nodes.

In summary, NS proves to be the best algorithm when measuring Wmax, whereas

different algorithms among LD, MND, MBD, ABD are preferable depending on the

bus load and the number of nodes if it is desired to avoid a time-consuming search.
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Table3.6: P̂ y
Wmax Comparison

NO LD MND MBD ABD
(5, 0.5) 0.0% 63.3% 46.7% 80.0% 63.3%
(5, 0.7) 0.0% 10.0% 3.3% 50.0% 63.3%
(5, 0.9) 0.0% 3.3% 3.3% 66.7% 33.3%
(15, 0.5) 0.0% 43.3% 23.3% 30.0% 50.0%
(15, 0.7) 0.0% 16.7% 53.3% 40.% 26.7%
(15, 0.9) 0.0% 36.7% 40.0% 16.7% 20.0%
(25, 0.5) 0.0% 63.3% 56.7% 63.3% 70.0%
(25, 0.7) 0.0% 63.3% 50.0% 3.3% 10.0%
(25, 0.9) 0.0% 26.7% 50.0% 10.0% 16.7%

3.2.4 Slack Comparison

We next perform a comparison of the average slack values in (2.6) for the different

algorithms. To this end, we show the slack improvement of each algorithm compared

to the case without offset in Table 3.7 to 3.8. It can be seen that the average slack

Table3.7: Sav Comparison

NO LD MND MBD ABD NS
(5, 0.5) 0.0 0.523 0.522 0.526 0.524 0.527
(5, 0.7) 0.0 0.491 0.495 0.492 0.492 0.511
(5, 0.9) 0.0 0.774 0.720 0.914 0.894 0.915
(15, 0.5) 0.0 0.374 0.373 0.375 0.376 0.379
(15, 0.7) 0.0 0.491 0.495 0.492 0.492 0.511
(15, 0.9) 0.0 0.603 0.587 0.566 0.576 0.620
(25, 0.5) 0.0 0.269 0.269 0.271 0.271 0.271
(25, 0.7) 0.0 0.345 0.350 0.344 0.356 0.360
(25, 0.9) 0.0 0.414 0.419 0.398 0.404 0.441

always increases when using offset scheduling. Hereby, the largest improvement is

achieved by the NS algorithm. This is expected since the average slack is used as

performance metric. This result is also confirmed by Table 3.8.

Regarding the algorithms without search, it can be observed from Table 3.9 that MBD

performs well for small numbers of nodes or small bus load, whereas MND obtains

better results for larger bus loads and numbers of nodes.
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Table3.8: P y
Sav

NO LD MND MBD ABD NS
(5, 0.5) 0.0% 33.3% 13.3% 56.7% 16.7% 70.0%
(5, 0.7) 0.0% 3.3% 0.0% 23.3% 16.7% 76.7%
(5, 0.9) 0.0% 3.3% 6.7% 26.7% 16.7% 50.0%
(15, 0.5) 0.0% 33.3% 16.7% 16.7% 30.0% 63.3%
(15, 0.7) 0.0% 0.0% 0.0% 0.0% 6.7% 96.7%
(15, 0.9) 0.0% 30.0% 10.0% 3.3% 0.0% 60.0%
(25, 0.5) 0.0% 46.7% 20.0% 53.3% 56.7% 60.0%
(25, 0.7) 0.0% 16.7% 23.3% 13.3% 23.3% 76.7%
(25, 0.9) 0.0% 13.3% 20.0% 3.3% 6.7% 80.00%

Table3.9: P̂ y
Sav

NO LD MND BD ABD
(5, 0.5) 0.0% 36.7% 16.7% 73.3% 23.3%
(5, 0.7) 0.0% 10.0% 3.3% 50.% 63.3%
(5, 0.9) 0.0% 3.3% 6.7% 70.% 26.7%
(15, 0.5) 0.0% 43.3% 23.3% 30.0% 50.0%
(15, 0.7) 0.0% 6.7% 43.3% 20.0% 33.3%
(15, 0.9) 0.0% 33.3% 33.3% 16.7% 26.7%
(25, 0.5) 0.0% 46.7% 20.0% 53.3% 56.7%
(25, 0.7) 0.0% 26.7% 33.3% 20.0% 30.0%
(25, 0.9) 0.0% 23.3% 50.0% 13.3% 23.3%

3.2.5 Average WCRT Comparison

This section investigates the performance metrics in (2.7) and (2.8) for messages with

a medium deadline ofDM = 50 ms and a large deadline ofDM = 1000 ms. Messages

with small deadlines are omitted from this study since only a small number of such

messages (usually 1) is in the generated message sets, which is not suitable for a

statistical evaluation.

It can be seen from Table 3.10 for DM = 50 ms that offset scheduling leads to an

improvement compared to the case without offset scheduling (NO) in all cases. In

addition, it holds that the NS and MBD algorithms achieve the smallest value of W av
50

in almost all cases.

Regarding the performance metric W std
50 in (2.8) for messages with deadline DM =
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Table3.10: W av
50 Comparison

NO LD MND AND MBD ABD NS
(5, 0.5) 5.84 5.00 4.97 4.77 4.60 4.97 4.56
(5, 0.7) 8.46 6.94 6.77 6.42 6.22 6.70 6.28
(5, 0.9) 10.97 8.37 8.02 7.71 7.55 8.00 7.57
(15, 0.5) 5.79 5.43 5.43 5.34 5.24 5.43 5.27
(15, 0.7) 8.49 7.89 7.77 7.63 7.62 7.75 7.66
(15, 0.9) 10.23 9.49 9.42 9.30 9.34 9.34 9.35
(25, 0.5) 5.83 5.76 5.76 5.73 5.68 5.76 5.69
(25, 0.7) 8.41 8.00 7.94 7.89 7.88 7.93 7.90
(25, 0.9) 11.04 10.46 10.42 10.56 10.42 10.41 10.41

50 ms, it can be concluded from Table 3.11 that the smallest value ofW std
50 is generally

not obtained by the algorithm that minimizes W av
50 . That is, it is difficult to minimize

both performance metrics in (2.7) and (2.8) simultaneously.

Table3.11: W std
50 Comparison

NO LD MND AND MBD ABD NS
(5, 0.5) 2.96 0.76 0.72 0.70 0.73 0.68 0.74
(5, 0.7) 2.15 1.57 1.46 1.42 1.39 1.39 1.38
(5, 0.9) 3.14 1.81 1.62 1.69 1.76 1.58 1.64
(15, 0.5) 1.42 1.33 1.33 1.36 1.31 1.33 1.33
(15, 0.7) 2.18 1.86 1.78 1.80 1.88 1.77 1.86
(15, 0.9) 3.03 2.53 2.55 2.62 2.61 2.54 2.59
(25, 0.5) 1.42 1.35 1.35 1.37 1.34 1.35 1.33
(25, 0.7) 2.17 1.96 1.94 1.96 1.99 1.94 1.97
(25, 0.9) 3.17 2.71 2.68 2.76 2.73 2.67 2.68

Considering messages with deadlineDM = 1000 ms, Table 3.12 indicates that the NS

algorithm clearly improves W av
1000. This effect is most visible for high bus loads. Re-

garding the algorithms without search, different algorithms are suitable for different

bus loads and numbers of nodes.

Looking at W std
1000 in Table 3.13, it turns out that MBD, ABD, NS are advantageous if

the number of nodes is small, whereas LD and NS are preferable for larger bus loads

and number of nodes.
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Table3.12: W av
1000

NO LD MND AND MBD ABD NS
(5, 0.5) 59.50 8.69 8.86 8.85 8.53 8.63 8.46
(5, 0.7) 112.99 17.22 18.46 17.44 14.14 14.79 14.38
(5, 0.9) 204.95 64.15 74.87 86.00 43.32 41.19 37.53
(15, 0.5) 59.85 22.67 22.82 22.62 22.58 22.42 22.24
(15, 0.7) 113.13 43.21 41.92 42.99 42.40 42.35 39.78
(15, 0.9) 216.48 89.62 94.27 108.47 97.80 95.90 87.26
(25, 0.5) 60.20 33.39 33.40 33.33 33.25 33.24 33.25
(25, 0.7) 112.57 62.31 62.03 63.36 62.87 62.61 60.47
(25, 0.9) 210.75 132.43 132.31 138.35 136.48 135.31 128.34

Table3.13: W std
1000

NO LD MND AND MBD ABD NS
(5, 0.5) 18.13 0.58 0.56 0.51 0.47 0.43 0.46
(5, 0.7) 40.57 4.54 5.56 4.28 2.12 2.34 1.81
(5, 0.9) 88.97 30.94 35.59 30.31 11.45 13.79 11.5
(15, 0.5) 18.18 2.41 2.60 2.33 2.24 2.26 2.08
(15, 0.7) 40.59 5.19 5.09 6.47 6.16 6.28 5.16
(15, 0.9) 94.85 27.66 32.91 43.95 35.29 34.76 29.10
(25, 0.5) 18.29 5.89 5.99 6.03 6.04 6.03 6.03
(25, 0.7) 40.49 15.78 16.58 17.88 17.58 17.47 16.15
(25, 0.9) 91.61 46.26 47.47 51.31 49.30 49.46 46.64

3.2.6 Example WCRT Result

Fig. 3.3 shows the WCRTs of all messages on an example chassis network with 15

nodes and a bus load with k = 0.7. In this example, NS and MND mostly achieve

smaller WCRTs than the existing LD algorithm. However, for this particular example,

MBD is not suitable.

3.2.7 Discussion

In summary, our results suggest that the proposed algorithms allow finding offsets

for reducing the WCRTs of messages on CAN in most of the cases. Hereby, three

important observations have to be emphasized:
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Figure 3.3: WCRT Comparison for LD, MND, MBD, NS using 15 Nodes and k =

0.7.

1. In the majority of the cases, the proposed algorithms outperform the existing

LD algorithm.

2. There is no unique algorithm that always achieves the best result. It is clearly

observed from Table 3.5 and 3.8 that any of the studied algorithms has the po-

tential to improve the respective performance metric depending on the specific

test case (message set).

3. The algorithms LD, MND, MBD, ABD have very small computation times in

the order of milliseconds. Only the NS algorithm requires longer computation

times in the order of 30 min for high bus loads.

Considering the stated points, we suggest to apply all of the presented algorithms and

select the best result when determining offset assignments for a specific message set

M.
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CHAPTER 4

EXPERIMENTAL TESTS

In order to verify the theoretical results in real hardware, a test setup is constructed

and a response time measurement method is developed. CAN is an asynchronous bus

where each node has its own clock. In order to measure the response time of CAN

messages, a global clock that is synchronous among all of the nodes is required. This

is achieved using the FlexRay protocol. The hardware used in the experiments is

selected accordingly.

4.1 Development and Test Environment

To have a better understanding about how the experiments are held and how the

projects are developed, the hardware and the tools used during the studies will be

explained briefly in the following sections.

4.1.1 Fujitsu SK-91465X-100PMC Evaluation Board

The SK-91465X-100PMC is the main building block of the experiments. It is a multi-

functional evaluation board developed by Fujitsu for the 32-bit FR60 Flash microcon-

troller series MB91F465XA which is tailored for automotive applications. The board

includes both CAN and FlexRay interfaces which makes it suitable for response time

measurement experiments. Besides the CAN and FlexRay support, the evaluation

board also has LIN and UART channels. As a whole, the board has 2 FlexRay, 2

CAN, 2 LIN/UART and a dedicated UART interfaces. In addition to the communica-

tion interfaces, it also includes 8 user LEDs and 6 user push buttons.
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The two FlexRay channels (namely Channel A and Channel B) are redundant. The

physical layer of these channels is implemented by AMS8221B transceiver. Dif-

ferent from the CAN, data is not directly transmitted by the microcontroller to the

transceiver. Instead, the transceiver is directly connected to the MB88121 series

Standalone Communication Controller and the CPU controls and configures this con-

troller.

The physical layer of CAN channels is implemented by TLE620GV33 high speed

transceivers.

The SK-91465X-100PMC multifunctional evaluation board is shown in Fig. 4.1.

Figure 4.1: SK-91465X-100MPC Evaluation Board

4.1.2 Softune Workbench Software Development Environment

Softune Workbench is developed by Fujitsu as the development environment for the

FR family microcontrollers. It has all the necessary interfaces for creating, editing,

building and debugging the projects. All the projects used in the experiments are

developed in C programming language by the V60L08 version of the Softune Work-

bench. After the build process Softune Workbench creates a *.mhx file as the out-

put which can be directly downloaded to the flash memory of the microcontroller

MB91F465XA. Softune Workbench has the ability to combine and save multiple

30



projects in a single workspace which is useful for working with multiple projects

at the same time. A view of the Softune Workbench can be seen in Fig. 4.2.

Figure 4.2: FR Family SOFTUNE Workbench V60L08

4.1.3 FME FR Flash Programmer

FME FR Flash Programmer is developed by Fujitsu and is used to download the

projects into the flash memory of the microcontroller. FR Flash Programmer is capa-

ble of downloading the code with RS-232 serial interface, eliminating the need for an

emulator. Besides having many additional features, it has an automatic mode which

automatically connects to the microcontroller, erases the necesseray flash sectors and

programs the flash with the machine code located in the *.mhx file with a single but-

ton. Throughout the experiments, the FME FR Flash Programmer V4.0.2.1 is used to

program the boards. Fig. 4.3 shows a view from the FME FR Flash Programmer.

4.1.4 FlexRay Communication Controller Driver

As stated in section 4.1.1, FlexRay message handling and communication tasks are

not performed by the CPU in the SK-91465X-100PMC evaluation board. These tasks

are handled by a specific communication controller located on the board which is

Bosch ERay series Standalone Communication Controller.
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Figure 4.3: FME FR Flash Programmer V4.0.2.1

The task of the microcontroller is to configure and manage this controller. For this

purpose, Fujitsu offers a library named Fujitsu Communication Controller Driver

which implements all the necessary functions and structures for communication be-

tween the MCU and the communication controller. This library is included in all of

the projects where FlexRay communication is needed.

4.1.5 FlexCard Cyclone II SE

The FlexCard Cyclone II SE is a network analyzer hardware developed by Eberspacher

Electronics. It is a CardBus card which is connected to a personal computer through

PCMCIA slot. FlexCard Cyclone II SE supports two FlexRay and two high speed

CAN channels which makes it suitable to monitor and analyze both FlexRay and

CAN network at the same time with a single hardware interface. FlexCard Cyclone

II SE is also able to send messages to both FlexRay and CAN networks connected to

it. The FlexCard Cyclone II SE hardware is shown in Fig. 4.4.
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Figure 4.4: FlexCard Cyclone II SE

4.1.6 FlexAlyzer

FlexAlyzer is the software tool developed by Eberspacher Electronics and works in

accordance with the FlexCard Cyclone II SE. It is used to monitor and analyze the

message traffic in CAN and FlexRay networks which the FlexCard is connected.

The FlexAlyzer has many useful features such as displaying the data in decimal or

hexadecimal format, filtering the content to show in the monitoring window according

to various criteria. It also has an important feature of showing in the monitoring

window the local time stamp for the receive time, ID, payload and other features

of both FlexRay and CAN messages. In addition, FlexAlyzer is able to take log

of the network traffic including all of the message contents and save as a *.txt file

without any time limitation. This feature is also very important for time measurement

experiments since the *.txt log file is parsed offline for all of the timing analysis. Fig.

4.5 shows a view form the FlexAlyzer user interface.

4.2 Experiment Setup

The experiment setup consists of SK-91465X-100PMC evaluation boards which are

used as individual nodes composing the network, FlexCard Cyclone II SE network

analyzer card and a PC with a PCMCIA slot. In order to construct the FlexRay and

CAN networks, two PCBs busses are used. Each PCB bus have 9 D-Sub-9 male
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Figure 4.5: FlexAlyzer User Interface

connectors mounted on it where all 9 pins of these connectors are connected to each

other within the PCB. These PCBs therefore enable up to 9 distinct nodes to connect

and communicate with each other. A view of the PCB busses used in the experiments

is shown in Fig. 4.6.

Figure 4.6: The PCB Bus Used for CAN Bus and FlexRay

The CAN bus and the FlexRay bus is constructed as a similar manner with the only

difference that there are termination resistors on the CAN bus. The SK-91465X-

100MPC boards can communicate through CAN bus up to 100 kbps data rate without

termination. The FlexCard, however, is not able to communicate via CAN bus with-
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out termination even for data rates smaller than 100 kbps. Therefore, to properly

establish the CAN communication for all bit rates, two 120 ohm termination resistors

are welded on the two end connectors of the PCB bus between the live pins, which

are CANH and CANL. A photograph of the setup can be seen in Fig. 4.7.

CAN Node 1 CAN Node 2

CAN Node 3

CAN bus

Connection for 
time measurement

Figure 4.7: Experiment Setup Photograph

In order to connect the PCB busses with the SK-91465X-100MPC evaluation boards,

cables which have 1-to-1 D-Sub-9 female connectors at both end are used.

FlexCard Cyclone II SE is used as a CAN node or a FlexRay node or both at the same

time depending on the experiment. In the experiments, FlexCard is used as a silent

node which does not send any message but receives and monitors the message traffic

on the CAN and the FlexRay networks.

The last component of the experiment setup is a PC. FlexCard is connected to the

PC through the PCMCIA slot and the FlexAlayzer is run on the PC for monitoring

and logging the message traffic. The logged data is parsed offline for evaluation via

various parsing programs we wrote in the PC. Lastly, the PC is also used to program

the boards by using FME FR Flash Programmer described in Section 4.1.3.
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4.3 Response Time Measurement Method

The verification of analytical results with the practical results requires correct time

measurements. As stated in the preceding sections, a global clock is needed that is

synchronous among all of the nodes in the network and this global clock is achieved

using the FlexRay protocol. After all of the nodes are synchronized according to the

FlexRay clock, the exchanged CAN messages can be time stamped properly. Lastly

these time stamps can be used safely for evaluation purposes. The setup used for time

measurement experiments is illustrated in Fig. 4.8.

CANBus

FlexRay Bus

ID CAN_TX_Time

Global FlexRay 

Clock

Generation time as payload

FlexCard 

Cyclone

PCMCIA 

slot

FlexAlayzer 

Diagnostic Tool

FID

Periodic Reference 

FlexRay Message

Node-1 Node-2 Node-3

Figure 4.8: Experiment Setup Illustration

As shown in Fig. 4.8, the timestamp CANTX which represents the generation time of

the message is obtained just before loading the payload to the output message buffer

of the CAN controller. The timestamp is obtained via two different time service

functions of the FlexRay Software driver. These functions return the network time

in terms of the fundamental time units of the FlexRay network, namely the cycle

number and the macrotick count. Since the cycle number is 8-bits and the macrotick

count is 16-bits, each timestamp engraved in the packets is 3 bytes long. Therefore

the minimum data size of the CAN messages used in the experiments is 3 bytes.

In order to calculate the response time of a message, we also have to know the recep-

tion time of the message. However, obtaining the reception time is not as straightfor-
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ward as the generation time. To illustrate the situation, a view from the log file of an

experiment exported by the FlexAlyzer software is given in Fig. 4.9.

FR_rx_time
FR_ID and 

FR_cycle

CAN_TX_cycle 

and

CAN_TX_MT

CAN_rx_time

Figure 4.9: A View of the Log File

As can be seen from the Fig. 4.9, the timestamp that the FlexAlyzer includes in the

beginning of every line in the log file (the leftmost colomn) is the local time of the

FlexCard which indicates the amount of time that has passed since the beginning of

the logging. Therefore, this local time is not useful alone. In order to make this in-

formation useful, a connection between the synchronous clock, which is the FlexRay

clock, and the local FlexAlyzer clock has to be established. This is achieved as fol-

lows.

If we look at the log file we see that the FlexAlyzer logs the FlexRay messages includ-

ing the ID of the message and the cycle number in which the message is transmitted.

Since each message is allocated a slot in a cycle, the ID and the cycle number can

be used to obtain the reception time of any FlexRay message in terms of the FlexRay

network time units.

Secondly, we know that the reception time of each message is displayed by the Flex-
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Alyzer in terms of its local clock. Therefore, the reception time of a CAN message

can be obtained by choosing a reference FlexRay message and adding the local times-

tamp difference to the reception time of this reference FlexRay message. This method

is formulated as

[(RefFR.Cycle− CANTX.Cycle)CycleLength+ (RefFR.ID − 1)SSLength

+ ActionOffset− CANTX.MT ] + [CAN.rxtime−RefFR.rxtime]

+ [RefFR.transmissiontime]

(4.1)

where

CANTX.Cycle and CANTX.MT are the timestamps indicating the generation time of

the CAN message in terms of FlexRay cycle number and macrotick count, respec-

tively.

RefFR.Cycle and RefFR.ID are the cycle number and frame ID of the reference FlexRay

message as logged by the FlexAlyzer.

CycleLength, SSLength and ActionOffset are the macrotick correspondences of the

FlexRay network parameters the Cycle Length, the Static Slot Length and the Action

Offset Length, respectively.

CAN.rxtime and RefFR.rxtime are the local receive times of the CAN message and

the reference FlexRay message tagged by the FlexAlyzer.

RefFR.transmissiontime is the transmission time of the reference FlexRay message.

Since the bus speed and the FlexRay message length is known, this value can be

determined.

The visual illustration of the measurement method as a timeline is provided in Fig.

4.10.

In Fig. 4.10, SS-n shows the static slot number in a FlexRay communication cycle.

The FlexRay is configured such that the static slot length is 40 macroticks and the

cycle length is 3000 macroticks. The duration of a macrotick is 1 µs. Since the cycle
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Figure 4.10: A View of the Log File

number can go up to 64, response times up to 64 x 3 ms = 192 ms can be measured

with a precision of 1 µs.

It can be seen on Fig. 4.10 that the overall response time (from CAN message gen-

eration time to CAN message reception time) is divided into three periods for better

understanding, namely T1, T2, and T3. These three periods have four border times.

CAN message generation time is the time obtained in terms of FlexRay cycle num-

ber (CANTX.Cycle) and the macrotick count (CANTX.MT) just before queuing the

CAN message in the buffer.

FlexRay message generation time is obtained using the frame ID (RefFR.ID) and cy-

cle (RefFR.Cycle) values of the reference message as logged by the FlexAlyzer. The

frame ID of the message gives information about the static slot number in which the

message is generated. Together with the action offset and the cycle number, the exact

generation time of the reference message is easily determined in terms of FlexRay

cycle number and macrotick count.

FlexRay message reception time is the local time logged by the FlexAlyzer software

(RefFR.rxtime) indicating the time when the reference FlexRay message is received

by the FlexCard.

CAN message reception time is the local time logged by the FlexAlyzer software

(CAN.rxtime) indicating the time when the CAN message is received by the FlexCard.

The correspondance of the three periods with (4.1) is as follows.
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T1 =(RefFR.Cycle− CANTX.Cycle)CycleLength

+ (RefFR.ID − 1)SSLength+ ActionOffset− CANTX.MT

T2 =RefFR.transmissiontime

T3 =CAN.rxtime−RefFR.rxtime

4.4 Hardware Measurements

In order to verify the theoretical results for the WCRT analysis by hardware experi-

ments, a realistic message set is constructed. In the experiments, three CAN nodes

are used with a data rate of 125 kbit/s. The message set used for the experiment can

be seen in Table 4.1.

For this message set, offset assignment is done according to two different offset

scheduling algorithms: the existing LD algorithm and the proposed MBD algorithm.

The tests performed for this message set are;

• Offset scheduling using LD

• Offset scheduling using MBD

• Without offsets

The first aim of these tests is to show that offset scheduling decreases the WCRT of the

messages considerably. The second aim is to verify that the proposed MBD algorithm

outperform the existing LD algorithm in consistence with the computational results

obtained in Section 3.2.

Each test is run for 20 minutes and the log file obtained for each test is parsed offline

using a parsing program written in C.

Before the experiments are held, the computational WCRT values are computed ac-

cording to the methods existing in the literature both for offset scheduling and with-

out scheduling. These methods were referenced in Section 2.3. The computational

WCRT values for the three different offset cases is shown in Fig. 4.11.
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Figure 4.11: Comparison of Computational WCRT

As can be seen in Fig. 4.11, the proposed MBD algorithm results in smaller WCRTs

compared to the existing LD algorithm. Moreover, it is obvious that WCRT values

with offset scheduling are much smaller compared to the case with no offsets. The

test results obtained for the same cases are shown in Fig. 4.12.
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Figure 4.12: Comparison of WCRT Measurements

The results in Fig. 4.12 validate that offset scheduling improves the response time

considerably. Moreover, it can also be seen that the WCRT values for offset schedul-

ing by MBD algorithm are smaller than those obtained by LD algorithm, which veri-
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fies the computational results.

The comparisons of computational results with the measurements are provided for

each offset scheduling case in Fig. 4.13, Fig. 4.14, and Fig. 4.15
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Figure 4.13: WCRT Comparison for No Offset
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Figure 4.14: WCRT Comparison for Offset Scheduling by LD

For all three cases it is observed that the measured WCRTs are considerably smaller

than the computational ones. The computations are based on the so-called "criti-

cal instant" worst case scenario where phasings between the nodes are such that the

interference from the other nodes is maximum. However, these computations are
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Figure 4.15: WCRT Comparison for Offset Scheduling by MBD

very restrictive, as they result in very high calculated WCRTs which could occur in

theory, but with little probability in practice. In fact, the probability of missing a

deadline could be as small as the probability of hardware failure [7]. However, there

are many applications which are not time-critical and can tolerate a certain failure

rate. Therefore a probabilistic response time analysis should be used along with the

WCRT analysis, which leads us to the second contribution of the thesis.
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Table4.1: Message Properties

M NM PM TM LM OM(LD) OM(MBD)

M1 N3 1 10 ms 3 B 4 4
M2 N1 2 20 ms 5 B 9 9
M3 N1 3 20 ms 3 B 14 19
M4 N2 4 20 ms 6 B 9 9
M5 N3 5 50 ms 4 B 9 9
M6 N1 6 50 ms 6 B 21 4
M7 N1 7 50 ms 7 B 41 14
M8 N1 8 50 ms 6 B 4 24
M9 N3 9 50 ms 7 B 19 19
M10 N2 10 50 ms 5 B 19 4
M11 N3 11 50 ms 8 B 29 29
M12 N3 12 50 ms 6 B 39 39
M13 N1 13 50 ms 8 B 25 34
M14 N1 14 50 ms 5 B 45 45
M15 N2 15 50 ms 6 B 39 14
M16 N3 16 100 ms 5 B 49 49
M17 N2 17 100 ms 4 B 59 39
M18 N2 18 100 ms 3 B 79 79
M19 N3 19 100 ms 7 B 97 99
M20 N3 20 100 ms 3 B 1 2
M21 N2 21 100 ms 3 B 95 97
M22 N3 22 100 ms 5 B 6 6
M23 N3 23 100 ms 7 B 11 12
M24 N2 24 100 ms 3 B 4 21
M25 N3 25 100 ms 8 B 16 16
M26 N1 26 100 ms 4 B 61 1
M27 N3 27 100 ms 8 B 21 22
M28 N3 28 100 ms 7 B 26 26
M29 N1 29 100 ms 7 B 82 17
M30 N1 30 100 ms 4 B 65 21
M31 N1 31 100 ms 7 B 17 37
M32 N2 32 100 ms 3 B 14 34
M33 N1 33 100 ms 4 B 37 41
M34 N1 34 100 ms 6 B 57 57
M35 N1 35 100 ms 3 B 78 61
M36 N3 36 100 ms 8 B 31 32
M37 N1 37 100 ms 5 B 85 77
M38 N3 38 100 ms 8 B 36 36
M39 N2 39 100 ms 7 B 24 44
M40 N3 40 100 ms 4 B 41 42
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CHAPTER 5

RESPONSE TIME DISTRIBUTION

The experimental findings in the preceding chapter revealed that the computational

WCRT is not likely to happen in practice. For applications where hard deadline con-

straints exist, the network design can be implemented according to the theoretical

WCRT values. However most of the applications do not have strict deadlines and

scheduling the messages based on the WCRT values results in degraded utilization

of the network. In such cases, knowing the probability that a message experiences a

certain response time plays a crucial role. Moreover, the response time distribution is

also useful for applications with hard deadline constraints where a certain failure rate

is acceptable. In such applications the probabilistic response time analysis allows the

designer to make a trade-off between reliability and timeliness [12], [20].

5.1 Definition

In order to obtain the probabilistic response time distribution, the aspects that affect

the response time and cause variations have to be analyzed. For a given message set,

there are two factors which are not constant during the run-time of the network and

thus affect the response time of a CAN message:

• The message length is not constant since stuff-bits are inserted depending on

the message content

• The phases between nodes change because CAN nodes are not synchronized
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5.1.1 Stuff-Bits

Stuff-bits are additional bits added to the message by the CAN protocol. As six

consecutive bits of the same polarity (111111 of 000000) are used to signal errors,

the CAN protocol has a built in mechanism that removes these forbidden bit-patterns

by inserting stuff-bits at specific positions. The worst-case scenario for bit stuffing is

depicted in Fig. 5.1.
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Figure 5.1: Worst-Case Bit Stuffing Scenario

This mechanism results in a variation in the length and thus the duration of a CAN

message. The WCRT is computed by assuming the worst-case bit-stuffing condition.

However, when evaluating the probabilistic response time distribution it is necessary

to use the message duration distributions depending on bit-stuffing instead of the

worst-case stuffed frame duration [13], [12].

The maximum duration of a CAN frame after bit-stuffing is given by [4]

C = (g + 8b+ 13 +
⌊g + 8b− 1

4

⌋
)τbit (5.1)

where g = 34 for standard format (11-bit identifier) and g = 54 for the extended

format (29-bit identifier). b is the number of data bytes in the payload. The part of the

function that uses the floor operator determines the number of worst-case stuff bits

depending on the message payload.

The probability distribution of a certain number of stuff bits can be calculated by

assuming equal probability of bit-value 0 and 1 among the bits that are exposed to

bit-stuffing in a CAN frame [13]. However, this is an exhaustive work and is not in

the scope of this thesis. In the computational analysis, we use the data provided in

[13] which gives the probabilities for different frame sizes (number of bits).
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5.1.2 Node Phases

As stated in the preceding sections, CAN is an asycnhronous bus, where there is

no global clock mechanism. Each node has its own clock and queues its messages

according to this clock. As a consequence, the contention among messages from

different nodes is not deterministic. This results in response time variations in CAN

messages since the relative generation times of messages vary. Fig. 5.2 illustrates

the impact of different phases between two nodes. Here, node N1 and N2 generate

messages M1 and M2, respectively.
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Figure 5.2: Impact of Phasing between Two Nodes

In the first case shown at the top of Fig. 5.2, the messages from the two nodes do not

interfere with each other such that each message has immediate acces to the CAN

bus. In the second case shown at the bottom, message M2 from node N2 is blocked

by message M1 from N1, leading to a larger response time for M2.

The WCRT is computed according to a so-called critical instant where the phases

between all nodes are such that the interference of messages from other nodes on

the target message is maximum. It is important to note that a single critical instant

(worst-case node phases) that produces the WCRT can be computed with a straight-

forward recurrence relation [4]. This computation does not need any information

about potentially shorter response times obtained for different node phases.

The main objective of this chapter is computing the response time distribution for

all messages. To this end, we will first compute the response time distribution for

each phasing scenario depending on bit stuffing. Finally, we will obtain the overall

response time distribution by averaging over all phasing scenarios by assuming that

each scenario occurs with equal probability.
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For a single phasing scenario, the computation of the response time distribution for a

given target message is accomplished by the following steps:

• Transforming the message streams from different nodes into a single stream of

messages

• Obtaining the message set that interferes with the target message and thus con-

tributes to the response time distribution of the target message

• Computing the backlog distribution that is generated by the interfering message

set

• Computing the response time distribution using the backlog distribution and the

transmission time distribution of the target message

Note that the most important point of these steps is the computation of the backlog

computation which is one of the main contributions of the thesis and has not been

considered in the existing literature.

5.2 Analytical Evaluation of the Response Time Distribution

This section formalizes the described concept of the response time distribution for

CAN messages and develops an original method for its computation.

5.2.1 System Model and Notation

We first introduce the required notation and the system model. As in Chapter 3,

each message Mi is characterized by its period Ti, priority Pi, deadline Di, offset Oi

and transmitting node Nk. Differently, the execution time of Mi is now a discrete

random variable denoted as Ci with a known probability mass function (pmf ) fCi :

N → [0, 1]. fCi(c) defines the probability of an execution time c. Defining Ci,min :=

minc{fCi(c) 6= 0} and Ci,max := max{fCi(c) 6= 0}, a non-zero probability is obtained

for each value c ∈ [Ci,min, Ci,max].
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Note that since the message execution time and node phase shift variation granular-

ity is τbit, all probability distributions including execution times, response times and

backlogs are expressed as discrete-time values that are multiples of τbit.

For each periodic activation of message Mi of some node Nk, we consider a message

instance where the j-th instance of message Mi is denoted as Mi,j with release time

or start time expressed as Si,j = Oi + (j − 1) · Ti relative to the clock of Nk.

For each node Nk we define its hyperperiod Hk, as the least common multiple of the

periods of its messages.

We denote Φk,l as the phase shift of nodeNk relative to a remote nodeNl. We assume

that all nodes boot up at arbitrary times. Hence the probability function of Φk,l is

uniformly distributed within the system hyperperiod with a granularity of τbit (bit

time).

We further denote release times of message Mi belonging to the node Nk relative to

the clock of a remote node Nl as

λi,j = Φk,l +Oi + (j − 1) · Ti. (5.2)

The response time for message Mi is a random variable denoted as Ri with pmf

fRi
(r) = P{Ri = r} and hence describes the probability that message Mi has the

response time r.

5.2.2 Backlog Explanation

Definition: We define the backlog for message Mi as the sum of all execution times

not yet serviced and hence causing a delay for the message Mi.

The components of the backlog are higher priority messages that are queued before

or at the same time as Mi and interfere with Mi. Since CAN is a non-preemptive bus,

when a low priority message starts transmission it cannot be interrupted by a higher

priority message. Therefore, a blocking lower priority message can also contribute to

the backlog. The backlog for message Mi is a random variable Bi with pmf fBi(b) =

P{Bi = b}.
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As an example, consider the message set given in Table 5.1.

Table5.1: Message Properties

Mi Nk Pi Ti Oi fCi
M1 N1 1 25 0 [5, 6, 7, 8]→ [0.2, 0.3, 0.3, 0.2]
M2 N1 2 25 11 [4, 5, 6]→ [0.2, 0.4, 0.4]
M3 N2 3 25 0 [4, 5, 6]→ [0.2, 0.5, 0.3]

Assume that the phase shift of node N2 relative to the node N1 is Φ2,1 = 3. In this

case the queuing times of messages are λ1 = 0, λ2 = 11, and λ3 = 3. Since the

periods of the messages are equal to the hyperperiod H = 25, only one instance from

each message is queued within a hyperperiod H . The positioning of the messages for

a single hyperperiod is shown in Fig. 5.3.
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Figure 5.3: Initial View of the System

In Fig. 5.3, the gray boxes represent the variable part of the message with each box

denoting a single stuff-bit. Assume that we want to compute the response time pmf

for the message M2 for this case. First we need to compute the backlog pmf for M2.

It is obvious that messages M1 and M3 starts transmission before M2. In order to find

out whether these messages interfere with M2 and affect the response time of M2, we

first look at the worst case where M1 and M3 have the largest execution times. From

Table 5.1 C1,max = 8 and C3,max = 6. In the worst case, M1 and M3 will finish their

execution at time t = 0 + 8 + 6 = 14, which is after the release time of M2. We

conclude that these two messages create a probabilistic backlog for M2 which needs

to be calculated in order to obtain the response time pmf of M2.

In order to find the backlog resulting from M1 and M3, we use the discrete-time

convolution of two pmfs f and g as follows:

conv(f, g) =
∞∑

i=−∞

f(i)g(x− i). (5.3)
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where conv() denotes the discrete-time convolution operator.

Proposition: When a new message Mj is to be added to an existing backlog and if

the release time of the message is less than or equal to the minimum end time of the

backlog, the resulting backlog pmf fB̂i is the discrete-time convolution of the existing

backlog pmf fBi and the execution time pmf fCj of the message Mj:

fB̂i = conv(fBi , fCj) (5.4)

Therefore, the backlog pmf resulting from M1 and M3 is

fB2 = conv(fC1 , fC3) = [9, 10, 11, 12, 13, 14]→ [0.04, 0.14, 0.26, 0.28, 0.2, 0.08]

The view of the system with the computed backlog is depicted in Fig. 5.4.
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Figure 5.4: View of the System with the Computed Backlog

Since there are no more messages that will be added to the backlog, the response time

pmf of the target message M2 can be calculated. However, as can be seen from Fig.

5.4, the backlog starts from t = 0, whereas the release time of M2 is t = 11. In order

to calculate the backlog at t = 11, we use the shrinking operation [7].

Proposition: Given a backlog pmf starting from t, the backlog pmf at a later time t′

can be calculated by shifting the pmf to the left by t′− t time units and accumulating

all the values for b < 0 at the origin (zero backlog) after the shift. This manipulation is

called the shrinking operation and it represents progression in time. The idea behind

accumulating the negative values in the origin is that all negative backlog values are

seen as zero backlog. Formally, it holds that

shrink(fB(b), t′) =


0, for b < 0∑t′−t

i=0 fB(i), for b = 0

fB(b+ t′ − t), for b > 0

(5.5)

where shrink() denotes the shrinking operator.
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Using the shrinking operator, the backlog for M2 at t = 11 is then calculated by

fB̂2 = shrink(fB2 , 11) = [0, 1, 2, 3]→ [0.44, 0.28, 0.2, 0.08].

Fig. 5.5 depicts the situation after shrinking.
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Figure 5.5: View of the System after Shrinking

As soon as the backlog at the message release instant is computed, the response time

pmf can easily be calculated using the convolution operation as

fRi
= conv(fBi , fCi) (5.6)

Using (5.6), the response time pmf of M2 is calculated as

fR2 = conv(fB2 , fC2) = [4, 5, 6, 7, 8, 9]→ [0.088, 0.232, 0.328, 0.208, 0.112, 0.032].

That is, in this example and with the given node phases, message M2 has a minimum

response time of 4 with a probability of 0.088 and a maximum response time of 9

with a probability of 0.032. Note that the distribution in this case only depends on the

execution time distributions of the messages. Using an analogous computation, the

response time distributions for M2 can be computed for all possible node phases.

5.2.3 Backlog Computation

As stated previously, backlog computation is the most important task for determining

the response time pmf. If the backlog distribution pmf is obtained, the response time

distribution pmf can be computed using (5.6). In this section, the steps required to

compute the backlog pmf for a target message Mi will be described. We assume

that the message stream that iteratively generates the backlog for the message Mi is

already given. This message stream will be denoted as S. It contains information

about the successive release times λi,j of all messages Mi.
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The backlog distribution computation is an iterative process which starts with the

first message (message with the highest priority at the smallest release time) in S

and progresses with addition of the highest priority message of the messages that are

queued just before the backlog ends. This process iterates until there are no more

messages to add, or the target message is the message that gains access to the bus. In

this case the backlog computation terminates.

In the example in the previous section, we show that when adding a new message

to an existing backlog, the resultant backlog pmf is obtained by using convolution.

However, this is only valid if the release time of the new message is less than or

equal to the minimum end time of the existing backlog. The other condition leads to

different cases which need to be evaluated separately.

As an illustration, consider the message queuing case shown in Fig. 5.6 with execu-

tion time pmf s in Table 5.2.
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Figure 5.6: Example Message Queuing

Table5.2: Message Properties

Mi Pi fCi
M1 1 [4, 5, 6, 7, 8, 9]→ [0.1, 0.2, 0.2, 0.2, 0.2, 0.1]
M2 2 [4, 5]→ [0.5, 0.5]
M3 3 [4, 5]→ [0.4, 0.6]
M4 4 [4, 5]→ [0.7, 0.3]

Suppose that we want to compute the backlog for the message M3. Since the stream

starts withM1, the initial value of the backlog is the execution time pmf ofM1. Later,

M2 and M4 will join the backlog. However, as can be seen, messages M2 and M4 are

released at the variable portion of the message M1. Due to the priority-based non-

preemptive nature of CAN, the transmission order of the messages varies depending

on the possible end times of the backlog. For instance, if the message M1 finishes its
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execution earlier than t = 8, M4 will be transmitted after M1. However if M1 finishes

at or later than t = 8, the higher priority message M2 will be transmitted before M4.

In order to handle such different conditions, we divide the backlog into sub-portions

where each part ends before the next critical instant when at least one message is

queued. We treat each portion as a separate backlog and make the computations for

all possible backlog portions. The pmf of the resultant backlogs is defined as:

Definition: We define the partial backlog fB[bs, be] as the part of the backlog fB that

only takes the values between bs and be. Formally the pmf of the partial backlog pmf

is expressed as,

fB[bs, be] =

fB, for bs ≤ b ≤ be

0, otherwise
(5.7)

Consider fB : [5, 6, 7, 8]→ [0.2, 0.3, 0, 3, 0, 2]. Then, fB[6, 7] = [6, 7]→ [0.3, 0.3].

There are two critical instants t = 6 and t = 8 in the variable portion of the backlog

caused by M1. This leads to three possible partial backlogs as shown in Fig. 5.7

with pmf s fB,1 = [4, 5] → [0.1, 0.2], fB,2 = [6, 7] → [0.2, 0.2] and fB,3 = [8, 9] →
[0.2, 0.1].
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Figure 5.7: Partial Backlogs of the Backlog due to M1

The backlog is computed progressively starting from each partial backlog and adding

a new message to the backlog which is the highest priority of the messages released

between the beginning and ending times of the backlog. If we look at the first partial

backlog in Fig. 5.7, we see that there is no such message. Thus, this partial back-

log is observed as zero backlog to the next message M3. Therefore this probability

information should be transferred to the beginning of the next partial backlog which

is t = 6 which is also observed as zero backlog by M3. At this time we need a new

definition.

54



Definition: We define the partially-accumulated backlog accum(fB[bs, be], be + 1)

as the modified backlog where the probability at be + 1 is replaced by the sum of

probability values of pmf fB from b = bs to b = be +1. The resulting pmf is expressed

as,

accum(fB[bs, be], be + 1)(b) =


0 for b < be + 1∑be+1

i=bs
fB(i) for b = be + 1

fB(b) otherwise

(5.8)

Consider fB : [5, 6, 7, 8]→ [0.2, 0.3, 0, 3, 0, 2]. Then, accum(fB[5, 6], 7) = [5, 6, 7, 8]→
[0, 0, 0.8, 0.2].

The partially-accumulated backlog is used for portions of the backlog that result in

an empty bus. This is the case for the first partial backlog in Fig. 5.7. Since no

new message is generated before time 6, a backlog of 6 is observed with probability

fB(4) + fB(5) + fB(6) = accum(fB[4, 5], 6)(6) = 0.1 + 0.2 + 0.2 = 0.5.

We are now ready to state our original algorithm for the computation of the backlog

distribution in Algorithm 7.

The algorithm is a recursive algorithm that calls itself as long as a new message is

added to the backlog stream. Its arguments are the overall sum of backlog distribu-

tions fB which accumulates the resultant backlogs at each condition, the local back-

log distribution before division into partial backlogs fB̂, the start time of the current

backlog t0, the message stream S, a priority queue of waiting messages W (message

generation time is greater than or equal to t0 and less than or equal to the current

backlog end time) and a done list of processed messages D. In each function call, the

highest-priority message in W becomes the current message, is removed from W and

added to D. Then, the convolution of the current backlog fB̂ and the message execu-

tion time is performed to obtain the new backlog (line 3) with its minimum time tmin

and maximum time tmax (line 4). As discussed in Fig. 5.7, different situations need to

be considered regarding the resulting backlog and the backlog needs to be separated

into portions. These portions depend on the respective next message generation times.

That is, the generation time of the next message is determined and the next portion is

defined as the time between tmin and the next generation time or the end of the current

backlog tmax (line 6). Then, each portion of the backlog is considered in the while
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1 Function fB = ComputeBacklog(fB, fB̂, t0,S,W,D)

2 M̂ = W.pop() and D = D ∪ {M̂}
3 fB̂ = conv(fB̂, fCM̂

)

4 tmin = t0 + minb{fB̂(b) 6= 0} and tmax = t0 + maxb{fB̂(b) 6= 0}
5 tnext is next message generation time after tmin (use tnext =∞ if there is no

more message generation after tmin)

6 ts = tmin and te = min{tnext − 1, tmax}, bs = ts − t0 and be = te − t0
7 while te ≤ tmax do

8 Add all messages with generation times ≤ te to W, W = W \ D
9 if W 6= ∅ then

10 M̂ = W.peek()

11 if M̂ is the target message then

12 fB = fB + fB̂[bs, be]

13 else

14 fB = ComputeBacklog(fB, fB̂, t0,S,W,D)

15 else

16 if te 6= tmax then

17 fB̂ = accum(fB̂[bs, be], be + 1)

18 else

19 Add all messages with generation times = tnext to W

20 M̂ = W.peek()

21 if M̂ is the target message then

22 fB = fB + fB̂

23 else

24 t0 = tnext and fB̂ = shrink(fB̂[bs, be], tnext)

25 fB = ComputeBacklog(fB, fB̂, t0,S,W,D)

26 if te == tmax then

27 return fB
28 tnext is next message generation time after te

29 ts = te + 1 and te = min{tnext − 1, tmax}, bs = ts − t0 and be = te − t0

Algorithm 7: Backlog Distribution Computation.
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loop starting from line 7. First, the list of waiting messages is updated (line 8). Then,

different cases are possible. If at least one message is waiting (line 9 to 14), the wait-

ing highest-priority message M̂ is determined (line 10). If this message is the target

message, it means that the target message will be transmitted after the current por-

tion of the backlog, therefore this partial backlog is added to the total backlog (here,

addition is not convolution but one-to-one addition such that fB(i) = fB(i) + fB̂(i))

(line 11,12). Otherwise, the function is called recursively to determine the backlog

for the current portion. If no message is waiting (line 16 to 29), it is checked if the

last portion is reached. If no (line 17), the partial backlog is accumulated to the be-

ginning of the next portion since no message is waiting (line 18). If yes this means

that the backlog discontinues here. In this case, the list of messages released at the

next generation time is obtained (line 20). Then the highest priority M̂ is determined

(line 21). If this message is the target message, this means the backlog terminates,

therefore this partial backlog is added to the total backlog (again, this addition is not

convolution but one-to-one addition) (line 22,23). Otherwise, the backlog computa-

tion continues with the next message. The starting time is updated as tnext and the

partial backlog is shrinked at the new starting time tnext (line 25). Then the function

is called recursively to determine the backlog for this portion (line 26). If the end of

the current backlog is reached, (line 30), the function terminates by returning the sum

of the computed backlogs fB. Otherwise, the next portion of the backlog is prepared

and the while loop continues.

The complexity of the algorithm is O(km) where k is the maximum number of stuff-

bits in the considered message set and m is the number of messages. The complexity

is expressed according to the worst-case number of calls of the recursive function.

Supposing each call is invoked by each partial backlog, in the worst-case there will

be one generated message at each stuff-bit and this will lead to k partial backlogs.

Also assuming that all of the messages are added to the backlog, this leads to an

iteration of depth m leading to km calls for the recursive function. This can be seen

as a high complexity but in reality the number of calls will be much smaller than this

value. In fact, in computations performed for a message set composed of 9 CAN

messages and 10 stuff-bits, the average number of calls for the function revealed to

be 12 which is incomparable to the worst-case assumption 109.
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We next illustrate Algorithm 7 by the previous example given in Fig. 5.6. In the first

call of the function ComputeBacklog, the local backlog is computed by convolv-

ing the starting backlog fB̂(0) = 1 with the execution time pmf of the first message

M1. Recall that backlog due to M1 had three partial backlogs as shown in Fig. 5.8.
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Figure 5.8: Partial Backlogs of the Backlog due to M1

In order to track the flow of the algorithm easily, local backlog found by each ad-

ditional message is denoted by Bi,j (corresponding to fB̂ in the algorithm) where i

denotes the number of calls of the function ComputeBacklog and j denotes the

partial backlog number of Bi.

For the first partial backlogB1,1, the algorithm ends in line-18 since this backlog ends

with an empty bus. In this case the partial backlog is accumulated to the beginning of

the next partial backlog by accum operator.

For the second partial backlog B1,2, the only pending message is M4, therefore the

algorithm ends in line-14 and calls itself recursively. The partial backlog B1,2 is

transferred as the current backlog to the next call. In the next call, the new local
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backlog B2 is computed by convolving the current backlog B1,2 with the execution

time pmf of M4. This operation is depicted in Fig. 5.9.
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Figure 5.9: Obtaining the Local Backlog B2

Since there are no messages released in the variable portion of B2, no partial backlog

is produced. The only pending message isM2, therefore the algorithm ends in line-14

and calls itself recursively. The backlog B2 is transferred as the current backlog to

the next call. In the next call, the new local backlog B3 is computed by convolving

the current backlog B2 with the execution time pmf of M2. This operation is depicted

in Fig. 5.10.
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Figure 5.10: Obtaining the Local Backlog B3

Since there are no messages released in the variable portion of B3, no partial back-

log is produced. The only pending message is the target message M3, therefore the

algorithm ends in line-12 and stores the partial backlog (the entire backlog B3 in this

case) to Btotal (corresponding to fB in the algorithm). Since there are no more partial

backlogs for this local backlog, the function returns to the previous recursive call with

the last updated Btotal. Returning back to B2, since there are no more partial back-

logs also for B2, the function returns to the first call of ComputeBacklog ending

up with the local backlog B1.

The next partial backlog for B1 is B1,3. There are two messages released before

the backlog ends: M4 and M2. These messages are added to the priority queue and
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the function calls itself recursively in line-14. In the new call, the highest priority

message is popped from the priority queue, which is M2. Then the local backlog B4

is computed by convolving the current backlog B1,3 with the execution time pmf of

M2. The resulting backlog is depicted in Fig. 5.11.
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Figure 5.11: Obtaining the Local Backlog B4

At this time, there are two partial backlogs because the target message M3 is released

just at the end time of the local backlog B4. The partial backlogs are depicted in Fig.

5.12.
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Figure 5.12: Partial Backlogs of the Local Backlog B4

For the first partial backlog B4,1, the only pending message is M4, therefore the algo-

rithm ends in line-14 and calls itself recursively. Here, the new local backlog B5 is

computed by convolving the current backlog B4,1 and the execution time pmf of M4.

The resulting backlog is depicted in Fig. 5.13.

In B5, there are no partial backlogs and the only pending message is the target mes-

sage. Therefore, the function ends in line-18 storing the current backlog B5 to Btotal

and returns with the stored Btotal value to B4.

60



B1

M4

M2

0 6 8

M3

14

B1,1

M4

M2

0 6 8

M3

14

B1,2

M4

M2

0 6 8

M3

14

B1,3

M4

M2

0 6 8

M3

14

B2

M2

0 8

M3

14

B3

0

M3

14

B4

M4

0 6

M3

14

B4,1

M4

0 6

M3

14

B4,2

M4

0 6

M3

14

B5

0

M3

14

This is a watermark for trial version, register to get full one!

Benefits for registered user:

1. Can remove all trial watermark.
2. No trial watermark on the output documents.

Remove it Now

Figure 5.13: Obtaining the Local Backlog B4

In the second partial backlog B4,2, the pending messages are M4 and M3. Since the

highest priority message is the target message, the function ends in line-12, storing

the partial backlog B4,2 to Btotal. Then the function returns to the first call B1. Since

there are no more partial backlogs in B1, the function returns for the last time with

the Btotal that stores the sum off all computed backlogs.

In this example, the function ComputeBacklog is called 5 times.

5.2.4 Response Time Distribution Computation for Given Node Phases

As stated before, the computation of the backlog distribution is the main contribution

towards the computation of the response time distribution of a given target message.

We next use the computed backlog distribution in Section 5.2.3 in order to determine

the response time distribution in two steps given a message stream S.

First, we identify the part of the message stream that interferes with the transmission

of the target message. To this end, we first note that such interference can be deter-

mined using the longest execution time of each message since a non-zero interference

probability is already given if all messages before the generation of the target mes-

sage assume there longest execution time. To illustrate this fact, consider the example

message queuing shown in Fig. 5.14.

Suppose that we want to find the message set interfering with message M3. The

backlog resulting from the best-case and the worst-case execution times for the earlier

messages M1, M2 and M4 is shown in Fig. 5.15.

As can be seen, adding the shortest execution times, the total execution finishes at

t = 14, before the release time of the target message M3 causing no interference on

M3. On the other hand, adding the longest execution times, the total execution finishes
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Figure 5.14: Example Message Queuing
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Figure 5.15: Best-Case and Worst-Case Execution Time Scenarios

at t = 21, after the release time of the target message M3 causing interference on M3.

We conclude that potential interference is obvious from the longest execution times.

Accordingly, the messages in S interfering with the target messages are computed

with the following Algorithm 8.

In this algorithm, the message set which accumulates and interferes with the target

message MT is determined. Starting from the first starting time t0 = 0, the maximum

size of the next message is added to the variable tinter which accumulates the observed

interference (line 10). In case, the interference does not extend to the next waiting

message (line 11), a new starting time for the interference is defined (line 12). The

algorithm terminates if the target message is the next message to gain access to the

bus. The time t0 obtained at the end of the algorithm is the time from where the

response time distribution computation starts.

Using Algorithm 8 and 7, it is now possible to compute the response time distribution

of a given target message MT .

Algorithm 9 first determines the generation time t0 of the first message interfering

with the target message MT . Then, the backlog distribution is computed starting

from t0 and the resulting backlog is convolved with the execution time distribution of

message MT .
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1 Function t0 = ComputeStartTime(S,MT ))

2 t0 = 0, tinter = 0, D = ∅
3 M̂ is the highest-priority message at t0

4 tinter = CM̂ , D = D ∪ {M̂}
5 tT is the generation time of the target message

6 while End of S is not reached do

7 M̂ is highest-priority message waiting in message stream after t0 with

M̂ 6∈ D

8 tM̂ is set as generation time of M̂

9 if M̂ is not the target message then

10 if tinter ≥ tM̂ then

11 tinter = tinter + CM̂ and D = D ∪ {M̂}
12 else

13 t0 = tM̂ and tinter = CM̂ and D = D ∪ {M̂}

14 if No more message is waiting in S then

15 return t0

16 else

17 return t0

Algorithm 8: Determining the interfering messages.

1 FunctionRMT
= ComputeRTD(S,MT ))

2 t0 = ComputeStartTime(S,MT )

3 fB = 0

4 fB̂ = [0]→ [1]

5 W = D = ∅
6 Add all messages with generation times = t0 to W

7 fB = ComputeBacklog(fB, fB̂, t0,S,W,D)

8 fB = shrink(fB, tT )

9 RMT
= conv(fB, CMT

)

10 returnRMT

Algorithm 9: Response Time Distribution Computation.
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As an illustration, consider the example in Fig. 5.3 where the backlog was found as

fB2 = [9, 10, 11, 12, 13, 14]→ [0.04, 0.14, 0.26, 0.28, 0.2, 0.08]

which is the return value of ComputeBacklog function. The response time pmf of

M2 is then calculated by Algorithm 9 as

fB̂2 = shrink(fB2 , 11) = [0, 1, 2, 3]→ [0.44, 0.28, 0.2, 0.08].

fR2 = conv(fB2 , fC2) = [4, 5, 6, 7, 8, 9]→ [0.088, 0.232, 0.328, 0.208, 0.112, 0.032].

The computation of the response time distribution is repeated for all instances MT,j

of the target message MT generated within the hyperperiod Hk of node Nk which

generates the target message. Starting from the first instance, the response time dis-

tribution RMT,j
is computed for the j-th instance with generation time evaluated by

(5.2). Then the average response time distribution of MT is obtained as

RMT
=

1

Hk/TMT

·
Hk/TMT∑

j=1

RMT,j
. (5.9)

5.2.5 General Response Time Computation

The computation of the response time distribution in Section 5.2.4 is based on the

assumption of a given message stream S. Given an offset assignment for messages of

each node, the composition of this message stream depends on the node phases. That

is, for each combination of node phases, a different message stream with different

generation times of messages is obtained based on the evaluation of (5.2).

Considering a CAN bus with n nodes and a hyperperiodHk for each node 1 ≤ k ≤ n,

there are
n−1∏
k=1

Hk

combinations of node phases. Here, node nwas considered as the reference node. It is

further the case that each of the described combinations potentially leads to a different

response time distribution since the message stream is different. In the literature, it is

considered that each of the node phases is equally likely such that the overall response
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time distribution of a target message MT is obtained by averaging over the response

time distributions for the different node phases [20]. Let P be the set of all possible

node phases and denote the response time distribution for certain node phases p ∈ P

asRp
MT

. Then, the overall response time distribution for message MT is

RMT
=

1

|P|
·
∑
p∈P

Rp
MT
. (5.10)

The complexity of the overall response time distribution computation can be ex-

pressed as O(Hn · km), where H denotes a bound on the hyperperiods of all nodes.

As an illustration, consider the previous example message queuing case shown in Fig.

5.6 such that messages M1 to M4 have the properties given by Table 5.3.

Table5.3: Message Properties

Mi Nk Pi Ti Oi fCi
M1 N1 1 30 0 [4, 5, 6, 7, 8, 9]→ [0.1, 0.2, 0.2, 0.2, 0.2, 0.1]
M2 N2 2 30 2 [4, 5]→ [0.5, 0.5]
M3 N1 3 30 14 [4, 5]→ [0.4, 0.6]
M4 N2 4 30 0 [4, 5]→ [0.7, 0.3]

Since all messages have a period of 30, the hyperperiod of each node is 30. This leads

to 30 possible phasing scenarios to compute. One of these scenarios is depicted in

Fig. 5.16 for Φ2,1 = 6 which is exactly the queuing case shown in Fig. 5.6.
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Figure 5.16: Message Queuing Scenario for Φ2,1 = 6

The overall response time distribution for the message M3 in terms of cumulative

distribution function (cdf ) is shown in Fig. 5.17. The response time cdf for two

specific phases Φ2,1 = 13 and Φ2,1 = 28 is also given in the same figure.
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Figure 5.17: Response Time cdf s of M3

5.3 Hardware Measurements and Discussion

We performed response time distribution experiments for a CAN bus with 3 nodes

with a data rate of 125 kbit/s using the same test setup as in Chapter 4. In addition,

we implemented the response time distribution computation algorithm in MATLAB

and compared the experimental results with the computational ones.

The response time measurement experiments are run for 10 minutes resulting in trans-

mission of approximately 60000 instances of each message. For each experiment, the

response time is measured as described in Section 4.3. Then the response time cdf is

obtained by using a parsing script for the CAN bus log file.

The main observation of these initial experiments was that the computed response

time distribution was not observed in the measurement. An example of the observed

mismatch for an experiment with 3 nodes and 9 messages is given in Fig. 5.18 with

message properties as in Table 5.4. In this case message M9 was chosen as the target

message.

As can be seen, the computational cdf has three steps where the response time differs

much. However in the measured cdf the middle step is not observed.

At this point, it could be argued that the proposed response time distribution compu-
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Table5.4: Message Properties

M NM PM TM LM OM

M1 N1 1 10 ms 8 B 0
M4 N1 4 10 ms 8 B 0
M7 N1 7 10 ms 8 B 0
M2 N2 2 10 ms 8 B 0
M5 N2 5 10 ms 8 B 0
M8 N2 8 10 ms 8 B 0
M3 N3 3 10 ms 8 B 0
M6 N3 6 10 ms 8 B 0
M9 N3 9 10 ms 8 B 0
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Figure 5.18: Response Time cdf Comparison for M9

tation is incorrect. Nevertheless, a more detailed analysis of the stated assumptions

reveals that one of the assumptions for the response time distribution computation is

not valid in practice: the phases between nodes do not change arbitrarily but depend-

ing on the drift between the clocks of different nodes. That is, locally (for a long

enough period of time in the order of tens of minutes) phases remain similar. As a

result, the response time distribution changes over time according to the changes in

the node phases.

We first illustrate this situation and then propose a simple modification of the response

time distribution computation that allows a close match between computation and

measurements. We choose the message set given in Table 5.5. Then we identify two
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extreme phasing scenarios for the target message. Then the nodes are forced to start

with the chosen phasing scenarios. The target message is chosen as the lowest priority

message which is M9.

Table5.5: Message Properties

M NM PM TM LM OM

M1 N1 1 10 ms 8 B 0
M4 N1 4 10 ms 8 B 1
M7 N1 7 10 ms 8 B 2
M2 N2 2 10 ms 8 B 0
M5 N2 5 10 ms 8 B 1
M8 N2 8 10 ms 8 B 2
M3 N3 3 10 ms 8 B 1
M6 N3 6 10 ms 8 B 2
M9 N3 9 10 ms 8 B 0

The first scenario is a "bad case" for message M9 in which the phasings of the nodes

are arranged such that M9 is blocked by all other messsages in the bus as shown in

Fig. 5.19.
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Figure 5.19: Bad Phasing Scenario for M9

The second scenario is a "good case" for message M9 in which the phasings of the

nodes are arranged such that M9 is not blocked by any message on the bus. This

scenario is depicted in Fig. 5.20.

The response time measurement experiments are run for 10 minutes starting from

the phase arrangements shown in Fig. 5.19 and Fig. 5.20. For each experiment, the

response time forM9 is measured as described in Section 4.3. Then the response time

cdf is obtained by using a parsing script for the CAN bus log file. The measurement

results for both bad and good cases along with the exact computation result is shown
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Figure 5.20: Good Phasing Scenario for M9

in Fig. 5.21.
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Figure 5.21: Response Time cdf Comparison for M9

As can be seen, the computed cdf stays right in the middle of the two cdf s obtained

from the measurements. In the bad phasing scenario, the probability that M9 expe-

riences large response times is higher compared to the computational results. This

is an expected result since the nodes are forced to start with the worst-case phasing

scenario for M9. The phase shift due to clock drift among the nodes results in smaller

response times for M9. However, this drift is so slow and particular that even for a

time period of 10 minutes, a very specific response time cdf that is far away from

the computational cdf is obtained. This is also true for the good phasing scenario in

which again a specific distribution is obtained with higher probabilities for smaller

response times compared to the computational results. In general, it holds for any
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phasing scenario that each starting situation will result in a specific cdf that lies be-

tween the cdf s obtained in the bad and good cases.

5.4 Local Response Time Distribution

5.4.1 Local Response Time Distribution

In the previous section, it was identified from hardware measurements that the node

phases do not change arbitrarily. As a result, the computed response time distribution

does not agree well with the measured response times. This section proposes the new

idea of a local response time distribution as a remedy for the observed issue.

5.4.2 Local Response Time Distribution Computation

(5.10) in Section 5.2.5 evaluates the response time distribution which is averaged

over all possible node phases. According to the observation in the previous section,

we now suggest to only consider node phases that are close to the initial node phase at

system startup. As explained before, this modification captures the fact that the node

clocks drift slowly and gradually. Consider that the initial node phases are given by

Φ0
k,l for a reference node Nk and the remaining nodes l 6= k. Then, we define a range

∆Φ that captures the possible deviation of each node phase from the initial value and

consider only node phases between Φk,l−∆Φ and Φk,l+∆Φ for each node l. Writing

L for the set of local node phase combinations, the local response time distribution is

computed as

RMT
=

1

|L|
·
∑
p∈L

Rp
MT
. (5.11)

5.4.3 Evaluation

In order to evaluate the modified algorithm, we consider the same example as in

Section 5.3. The comparison of a local response time cdf computation with the mea-

surement is given in Fig. 5.22 and Fig. 5.23 for the bad and good cases, respectively.

In computations, node N3 is selected as the reference node and the window of phases
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for nodes N1 and N2 is considered as ∆Φ = 300τbit for both sides relative to N3. In

comparison, the hyperperiod contains 10ms/8µs = 1250τbit since the hyperperiod

duration H = 10ms and τbit = 8µs at 125 kbit/s data rate.
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Figure 5.22: Comparison of Local Response Time cdf Computation and Measure-
ment in Bad Case
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Figure 5.23: Comparison of Local Response Time cdf Computation and Measure-
ment in Good Case

It can be seen that computations with bounded phase shift centered at the initial phase

scenario results in computational results that are very close to the measurements.
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5.4.4 Discussion of the Local Response Time Distribution

In the previous section we have shown that the local response time distribution very

closely captures the actual response time distribution from measurements. This means

that it is possible to computationally evaluate response time distributions on CAN

for a certain time interval if the initial node phases are known. Although this is a

very positive result that was not known in the existing literature, it has two major

disadvantageous practical implications.

First, the obtained result shows that computing the overall response time distribution

can lead to highly optimistic results. Just consider the example in Fig. 5.21. Ac-

cording to the figure, the exact response time distribution computation suggests that

the response time is below 800 τbit with a probability of 90%. It is then possible that

a system designer assumes that this probability is sufficient for safety such that the

example CAN network is deemed safe. Nevertheless, looking at the "bad case", it is

possible for some time (locally) that message response times are larger than 800 τbit

with a probability of more than 30%. That is, a CAN network that is considered safe

might be unsafe locally.

Second, although the computation of the local response time distribution would solve

the described problem, this computation is based on the knowledge of the current

node phases. Since there is no synchronization among CAN nodes, the node phases

are actually unknown such that it is not possible to effectively compute the local

response time distribution during system run-time.

In the next section, we propose to apply the ides of weak synchronization between

CAN nodes in order to be able to apply the idea of the local response time distribution.

5.5 Weak Synchronization

5.5.1 Main Idea and Motivation

As was discussed in the previous section, it is necessary to obtain knowledge about the

initial phase shift and the boundaries in which the phases between the nodes vary. As
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a solution to this problem, we implement weak synchronization between the nodes,

where all nodes on the CAN bus are synchronized with a weak precision. The advan-

tage of the suggested method is that both the identified issues are addressed and only

a single CAN message that is sent infrequently is added to the CAN bus.

5.5.2 Description of the Method

The implemented weak synchronization method is the one proposed by Gergeleit and

Streich (1994) [9] since it has minimal additional load on the bus. The method is

based on a master-slave concept where one of the nodes in the system is designated

as the master and all other nodes as slaves. The synchronization among the nodes is

achieved by a single synchronization (sync) message that is sent periodically by the

master node as shown in Fig. 5.24 where each gray arrow represents the transmission

of a sync message.
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Figure 5.24: Clock Synchronization Method

From Fig. 5.24, it can be seen that local clock timestamp is taken on the master node

when a sync message is transmitted and on the slave nodes when a sync message is

received. Successful transmission of a message in CAN is synchronous to the recep-

tion of the message on the receiving nodes. Using this property, it is assured that the

timestamps are taken at the same instant on the master and the slaves. The timestamp

taken on the master is sent by the next sync message as a reference time to the slaves.

For instance, in round k in Fig. 5.24, the master broadcasts a sync message Msync,k

containing its timestamp taken at Tm,k-1 when the previous sync message Msync,k-1 was

transmitted to the slaves. Then, every slave in the network receives this message at

Ts,k-1 and takes a timestamp right after the reception. Then each slave adjusts its local
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clock using the difference between the timestamps Ts,k-1 and Tm,k-1.

5.5.3 Algorithm

We implement the weak synchronization method described in the previous section on

the Fujitsu SK-91465X-100PMC Evaluation Boards used as both master and slave

nodes. The global clock is expressed as two time units called tick and cycle as shown

in Fig. 5.25.
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Figure 5.25: Global Clock Time Units

The ticks are generated by the microcontroller’s own clock and have a duration of

Ttick = 0.125µs. Each cycle is composed of 8000 ticks with a duration of Tcycle = 1

ms. The update of cycle number is triggered by a timer interrupt routine when the

value set to the timer period register is elapsed, which is 8000 in our case. The cycle

counter is a rolling counter which increments the cycle number at each timer interrupt

call and rolls back to 0 after 999. This roll back creates the rounds for sending sync

messages with a period of Tsync = 1s such that when the cycle counter value is 0, a

sync message transmission is invoked on the master.

The flow chart of the algorithm running in the master node is shown in Fig. 5.26.

As can be seen, the master stays in an idle waiting loop until an interrupt is invoked

either by the timer or the transmission of a sync message. In this case the master

executes the related interrupt routine and returns to the idle loop. The timer period

in the master node is constant during run-time as Tcycle = 8000 ticks resulting in an

interrupt event at every 1 ms. When this period elapses, the CPU triggers a timer
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interrupt and executes the interrupt routine given in Algorithm 10. Here, the master

updates its rolling cycle counter ncycle. As stated, when ncycle = 0 (line 5) a sync mes-

sage is generated containing the timestamp which is a tuple {Ncycle, Ntick}. When the

generated sync message is successfully transmitted, the CAN transmission interrupt

is invoked by the CPU and the routine given by Algorithm 11 is executed. In this

routine, the master’s only task is to take the timestamp {Ncycle, Ntick}. Note that Ntick

is obtained from the timer counter register of the microcontroller which counts and

rolls independently.
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Figure 5.26: Flow Chart for the Master Node

1 Function TimerInterrupt()

2 increment ncycle

3 if ncycle == 1000 then

4 reset ncycle

5 CANSendMessage(MSYNC, {Ncycle, Ntick})

6 return

Algorithm 10: Timer Interrupt Routine for the Master Node.

1 Function CANTxInterrupt()

2 {Ncycle, Ntick} = {ncycle, ntick}
3 return

Algorithm 11: CAN Tx Interrupt Routine for the Master Node.

The flow chart of the algorithm running in a slave node is shown in Fig. 5.27. Sim-
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ilar to the master, the slave stays in an idle waiting loop until an interrupt is invoked

either by the timer or the reception of a sync message. In this case the slave executes

the related interrupt routine and returns to the idle loop. When a sync message is

successfully received, the CAN reception interrupt is invoked by the CPU and the

routine given by Algorithm 12 is executed. Here, the slave node stores its own times-

tamp taken at the previous call to {N old
cycle,s, N

old
tick,s} to be used in the calculation of

the clock drift (line 2). Then it takes the current timestamp {N new
cycle,s, N

new
tick,s} (line 3).

Later, it gets the master timestamp {Ncycle,m, Ntick,m} by reading the payload of the

received sync message (line 4). Finally it computes the clock difference relative to

the master node in terms of the number of ticks as:

∆tick = (N old
cycle,s −Ncycle,m) · 8000 +N old

tick,s −Ntick,m (5.12)

This value is used as the clock correction term in the slave node as follows. Different

from the master, the timer period in the slave node is not constant during run-time.

At start-up, it is initialized as Tcycle = 8000. Depending on the clock drift ∆tick value,

the timer period value is changed in the timer interrupt routine given in Algorithm

13. If ∆tick is greater than 1000 ticks (line 5), this means that the slave clock is

1000 ticks ahead from the master clock. Therefore the timer period is adjusted as

Tcycle = 8001 (line 6) such that the cycle counter is slowed down by 1 tick for the

entire round resulting in slow-down of 1000 ticks at the end of the round to catch

the master clock. Similarly if ∆tick is smaller than −1000 ticks (line 7), this means

that slave clock is 1000 ticks behind the master clock. Therefore the timer period

is adjusted as Tcycle = 7999 (line 8) such that the cycle counter is speeded up by 1

tick for the entire round resulting in speed-up of 1000 ticks at the end of the round to

catch the master clock. Lastly, if ∆tick is between 1000 and −1000, the slave clock is

considered in the synchronous range and no speed-up or slow-down action is applied.

In this case, the timer period value is set as the usual value Tcycle = 8000.

Note that since nodes can boot-up at arbitrary times, in order to minimize the initial

drift, the timer of each slave is started with the first received sync message.

To sum up, the algorithm tries to keep the clock drift of the slave clock in [−1000, 1000]

ticks range relative to the master clock. This results in (1000) · (0.125) = 125µs drift

time for either side. Therefore, the overall drift between any two nodes in the network
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1 Function CANRxInterrupt()

2 {N old
cycle,s, N

old
tick,s} = {N new

cycle,s, N
new
tick,s}

3 {N new
cycle,s, N

new
tick,s} = {ncycle, ntick}

4 {Ncycle,m, Ntick,m} = CANReadMessage()

5 ∆tick = ComputeDeltaTick({N old
cycle,s, N

old
tick,s}, {Ncycle,m, Ntick,m})

6 return

Algorithm 12: CAN Rx Interrupt Routine for a Slave Node.

1 Function TimerInterrupt()

2 increment ncycle

3 if ncycle == 1000 then

4 reset ncycle

5 if ∆tick > 1000 then

6 Tcycle = 8001

7 else if ∆tick < −1000 then

8 Tcycle = 7999

9 else

10 Tcycle = 8000

11 return

Algorithm 13: Timer Interrupt Routine for a Slave Node.
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Figure 5.27: Flow Chart for a Slave Node

is assured to be less than (2) · (125) = 250µs.

5.5.4 Hardware Measurements

We performed weak synchronization experiments for a CAN bus with 3 nodes, one

master node and two slave nodes, with a data rate of 125 kbit/s using the same test

setup as in Chapter 4. In order to measure the quality of the synchronization, the

time drift ∆tick is transmitted by a diagnostic CAN message on each slave node as a

4-byte data. We started the nodes at arbitrary times (first the master node) and run the

setup for 1 hour. Later parsed the resultant log file to obtain the results. The variation

of clock drift between the slave clock and the master clock is given in Fig. 5.28 for

slave-1 and in Fig. 5.29 for slave-2.

As can be seen, the overall time swing is less than 250µs in both of the slaves. Also

it is observed that this drift stays in the expected region even for long run-times as

much as 1 hour. In order to see the benefit of the weak synchronization, we disabled

the clock correction parts in the slave nodes and repeated the same experiment. The

variation of the time difference when weak synchronization is disabled can be seen in

Fig. 5.30 both for slave-1 and slave-2 for a test run of 20 minutes.

As can be seen, even when the slave clocks start synchronous to the master clock

with the reception of the first sync message, the time drift increases dramatically

since clock correction is disabled. The clock drift increases to the values over 10 ms
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Figure 5.28: Variation of the Time Difference between Slave-1 and Master Clock
under Weak Synchronization

in slave-1 and over 10 ms in slave-2 after 20 minutes. Also it is observed that slave-

2 drifts faster compared to slave-1, which shows that prediction of the phase shift

boundaries for a node without weak synchronization is not possible. By using weak

synchronization, it is known that the phase shift boundaries are 125µs away from the

initial phase shift.

5.5.5 Local Response Time Distribution Experiments under Weak Synchro-

nization

In order to evaluate the response time distribution under weak synchronization, we

consider the same example as in Section 5.3. The nodes are synchronized with weak

synchronization where node N1 is used as the master node and the other two nodes

as the slaves. In computations, the master node N1 is selected as the reference node

and the window of phases for N2 and N3 is considered as ∆Φ = 125µs/8µs ≈ 15τbit

for both sides relative to node N1 where 125µs is the clock synchronization precision

and τbit = 8µs at 125 kbit/s data rate.

The comparison of a local response time cdf computation with the measurement un-

der weak synchronization is given in Fig. 5.31 and Fig. 5.32 for the bad and good

scenarios, respectively. In both cases, it can be seen that the resulting computed local
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Figure 5.29: Variation of the Time Difference between Slave-2 and Master Clock
under Weak Synchronization

response time distribution shows a very tight match with measured response time dis-

tributions. This is an expected result since the computations are made for phase shift

boundaries which are the same as the node synchronization boundaries. Using weak

synchronization, it is assured that the nodes do not drift from the initial phase scenario

by more than the clock synchronization precision which is 125µs in this case.

The resulting computed local response time distribution shows a very tight match

with measured response time distributions.

5.5.6 Discussion of Local Response Time Distribution and Weak Synchroniza-

tion

In this section, we saw that weak synchronization provides a global clock that is syn-

chronized with a weak precision which makes is possible to predict the phase shift

boundaries between the nodes. Knowing the phase variation boundaries allows to

compute local response time distributions that match the actual response time distri-

butions.

Another important benefit of weak synchronization is that making response time dis-

tribution computations based on a bounded phase shift rather than computing over the

entire period reduces the computational complexity and hence the computation times
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Figure 5.30: Variation of the Time Difference between Slave and Master Clock when
Weak Synchronization is Disabled

considerably. In this case the complexity reduces from O(Hn · km) to O(∆n · km)

since the computation is done covering 2∆Φ phase shifts rather than the entire hyper-

period. For instance, in the example considered in Section 5.5.5, there are 12502 node

phasing scenarios leading to 12502 computations without synchronization whereas

under weak synchronization this reduces to (2∆Φ)2 = 302. This also makes the

computational complexity independent of the hyperperiod. As a result, the variable

hyperperiod term is replaced by a constant and much smaller value.

In Chapter 3, we saw that offset scheduling is performed exclusively to each node

since nodes are not synchronized. The existence of a global clock that is synchronized

with a weak precision is expected to enable offset scheduling with smaller response

times for the entire network which is left as a future work.
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Figure 5.31: Comparison of Local Response Time cdf Computation and Measure-

ment in Bad Case under Weak Synchronization
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Figure 5.32: Comparison of Local Response Time cdf Computation and Measure-

ment in Good Case under Weak Synchronization

82



CHAPTER 6

CONCLUSION

The subject of this thesis is the offset scheduling on the controller area network

(CAN), which is the most popular in-vehicle network. The first aim of the thesis is the

improvement of performance metrics such as worst-case response times (WCRTs),

message slacks and the differences of WCRTs of messages with the same deadline,

compared to an existing load distribution (LD) algorithm. The second aim of the

thesis is the computation of the probabilistic response time distribution for messages

transmitted on CAN. The response time distribution shows the variation of the mes-

sage response time due to non-deterministic factors such as the message length and

the changing phase difference between nodes due to clock drifts.

Regarding the first aim, the thesis proposes four new algorithms for the offset assign-

ment on CAN. Three of the algorithms merely use information of individual network

nodes and hence have computation times in the order of milliseconds. The fourth al-

gorithm uses a neighborhood search method and leads to computation times of at most

30 min for realistic messages sets. Since offset assignments for CAN are computed

offline, all algorithms are suitable for practical applications. The proposed algorithms

are compared to the existing LD algorithm in comprehensive computational experi-

ments using CAN networks with different numbers of nodes and bus loads. These

experiment highlight that, although the existing LD algorithm already achieves good

results, the proposed algorithms outperform this algorithm in most of the test cases.

Regarding the second aim, the thesis develops an original method for computing the

response time distribution for non-preemptive systems such as CAN. The proposed

method is based on the computation of a backlog distribution for the target message

that is due to the interference of other messages and the execution time of the target
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message. Moreover, the thesis shows that the response time distribution has a local

nature in the sense that it remains approximately constant for a short period of time

(in the order of tens of minutes) but gradually changes due to clock drifts. As a novel

contribution, the thesis defines the computation of a local response time distribution

and shows that it matches well with hardware measurements. In addition, the thesis

develops the new idea of enforcing a desired local response time distribution by weak

synchronization of all CAN nodes. As the main result of this thesis, it is possible to

keep the node phases within a small range and to perform a very exact computation

of local response time distribution that does not change over time.

It has to be noted that the presented results regarding offset assignment are currently

restricted to the consideration of the (deterministic) WCRT and are hence not directly

applicable to probabilistic response time distributions. In turn, the results for the

computation of the response time distribution assume a given offset assignment and

choice of suitable node phases. In future work, a combination of the presented results

is suggested. In particular, the final aim of this work is the computation of offset

assignments and node phases in order to guarantee small message response times

with a high probability.
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