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ABSTRACT 
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Ünlü, Doğuş 

 

M.Sc., Department of Mechanical Engineering 

 

Supervisor: Assoc. Prof. Dr. Ender Ciğeroğlu  

Co-Supervisor: Assist. Prof. Dr. Gökhan O. Özgen 

 

 

December 2017, 119 pages 

 

Model updating methods can be used to obtain more accurate mathematical 

models. Results of linear finite element models which can be assumed as 

mathematical models for structural dynamics studies almost never match with the 

real test results. Accurate mathematical models are used to extract more precise 

results from structural analyses. The model update theory is classified with respect 

to the solution method as direct and iterative methods. As a summary, direct 

methods use structural matrices while iterative methods use the modal or response 

function results in an iterative manner. Selection of the model updating method is 

initiated with the application of the methods to simple spring-mass system. The 

advantages and disadvantages of the methods are clarified by extracting the 

results for direct and iterative methods. Modal based iterative methods are 

selected to be applied effectively to large order finite element models. Algorithm 
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is developed by using Inverse Eigensensitivity method with the enhancement 

which reduces the total time of the updating procedure. Improved method is 

applied to case studies to see the effect of enhancement and it is concluded that it 

can reduce the elapsed time great amount. Additionally, Femtools commercial 

software is used to analyze a test fixture and to update the finite element model to 

build insight and know-how about the commercial finite element updating 

software.  

 

Keywords: Finite Element Model Updating, Large Order Finite Element Models, 

Sensitivity Based Model Updating, Computational Model Updating, Inverse 

Eigensensitivity Method 
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ÖZ 

 

HAVACILIK YAPILARINA AİT SONLU ELEMAN MODELLERİNİN 

GÜNCELLEŞTİRİLMESİ 

 

 

Ünlü, Doğuş 

 

Master, Makina Mühendisliği Bölümü 

 
Tez Yöneticisi: Doç. Dr. Ender Ciğeroğlu  

Ortak Tez Yöneticisi: Yrd. Doç. Dr. Gökhan O. Özgen 

Aralık 2017, 119 sayfa 

 

Model güncelleştirme yöntemleri daha doğru ve hassas matematiksel modellerin 

elde edilmesi için kullanılabilir. Dinamik analizler için matematiksel modeller 

olarak kabul edilebilen lineer sonlu elemen modellerine ait sonuçlar ile gerçek test 

sonuçları neredeyse hiçbir zaman eşleşmez. Hassas matematiksel modeller yapısal 

analizlerden daha doğru sonuçlar elde etmek için kullanılmaktadır. Model 

güncelleme teorisi çözüm yöntemine göre, direkt ve iteratif olarak ayrılır. Özetle, 

direkt yöntemler yapısal sistem matrislerini kullanırken; iteratif yöntemler ise 

modal ve frekans cevap sonuçlarını döngü içerisinde olacak şekilde kullanır. 

Model güncelleştirme yöntem seçimi basit kütle-yay sistemi uygulamasıyla 

başlatılmıştır. Yöntemlerin birbirine göre olan avantaj ve dezavantajları, direkt ve 

iteratif yöntemlerin uygulanmasıyla açığa çıkarılmıştır. Elde edilen sonuçlara 

göre, modal sonuç tabanlı iteratif yöntemlerin yüksek sayıda serbestlik derecesine 

sahip sonlu eleman modellerine verimli şekilde uygulanabileceği sonucuna 

ulaşılmıştır. Güncelleme işlem süresini kısaltacak bir geliştirme ile birlikte modal 
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sonuç tabanlı bir algoritma oluşturulmuştur. Oluşturulan algoritmanın zaman 

açısından sağladığı iyileştirmenin görülmesi için farklı uygulama örnekleri ile 

denenmiş ve toplam güncellenme zamanını büyük oranda azaltabildiği sonucuna 

ulaşılmıştır. Ek olarak, ticari bir yazılım olan Femtools hakkında bilgi kaynağı 

oluşturmak için bir test fikstürüne ait bir sonlu eleman modeli ilgili yazılım 

vasıtasıyla güncelleştirilmiştir.  

 

Anahtar Kelimeler: Sonlu Eleman Model Güncelleştirme, Yüksek Sayıda 

Serbestlik Derecesine Sahip Sonlu Eleman Modelleri, Hassasiyet Tabanlı Model 

Güncelleştirme, Hesaplamalı Model Güncelleştirme, Modal Sonuç Tabanlı Model 

Güncelleştirme 
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CHAPTER 1 

INTRODUCTION 

 

This work covers the details of application of model updating methods to large 

order finite element models to obtain more accurate mathematical models.  Large 

order finite element models are extensively for aerospace structure analyses. 

There are plenty of model updating methods that can be applied to aerospace 

structures. The choice of a specific method among various existing updating 

methods considering their advantages and disadvantages in regards to practicality 

and model correlation performance is one of main tasks accomplished in this 

thesis work.  

The motivation of the work can be summarized to develop and build practical 

experience on obtaining experimentally verified mathematical structural dynamics 

models of aerospace structures. For aerospace structures, usually large mechanical 

structures, design requirements must be satisfied according to operational loading 

conditions which are based on the dynamic characteristics of the structures. 

Operational loading conditions are simulated with dynamic analyses such as 

random vibration, identification of aeroelastic behavior of aerospace structures. 

Accuracy of the dynamic analyses depends on the structural matrices which must 

be well representing the real structural dynamics behavior of the actual physical 

systems. Results such as the eigenvalues obtained by using the mathematically 

derived structural matrices are major design parameters to be checked in regards 

to design requirements of structures. Additionally, carrying out a test is not a 

simple and fast procedure. Small modification with the structure can change the 

dynamic behavior substantially. Using structural dynamics models correlated with 

experiments through the use of model updating procedure for doing design 
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iterations can prevent the repetition prototype fabrication for revised designs and 

testing of these prototypes, which saves time and decrease design expenses.  

The objective of the thesis work is to search, find model updating techniques that 

can be practically applied for the aerospace structures and to build background 

information for model updating theory. Additionally, commercial software 

Femtools is used to update the finite element model of test fixture to gain insight, 

know how about the application of the model update procedure on a complicated 

large mechanical structure. 

The overview of the thesis is given to summarize the flowchart of the topics that 

was covered. Chapter 2 covers the literature review about model update and the 

theory of the techniques used in model updating. Case studies that used to identify 

the advantages of techniques are given in Chapter 3. Additionally, the selection of 

proper method applicable to larger order finite element models is made with the 

application of the Matlab based code to 6 DOF mass spring system to verify the 

advantages and disadvantages of the model update techniques. Chapter 4 covers 

the details flowchart of the code generated to be applied to the large order finite 

elements and modification added to method that decreases the time elapsed for 

whole model updating procedure. Chapter 5 covers the application of the Matlab 

based code to GARTEUR structure and launcher of a guided missile. 

Additionally, Femtools software is used to analyze the test fixture and to update 

the finite element model in Chapter 6. As a final section, Chapter 7 includes the 

discussions and results obtained in Chapter 5 and 6.  
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CHAPTER 2 

 

THE LITERATURE REVIEW AND MODEL UPDATE THEORY 

In this section, literature review and model update theory are explained in detail. 

Literature review includes the old and recent works about model updating to gain 

insight about the topic; whereas model update theory covers the theoretical details 

of the method. 

2.1 LITERATURE REVIEW 

The literature about the techniques used with model updating and model updating 

theory is investigated to have information about the development of the methods 

and to understand the applicability of the methods to the real case structures. This 

section includes the old model updating methods and recent techniques about 

model updating. 

In model updating theory, the first developments was made through modification 

of the mass and stiffness matrices of the finite element models to make the results 

be closer to test results. These techniques are collected in the group called direct 

model updating techniques. 

Fox and Kapoor [1] used eigenvector equation to calculate the derivative of an 

eigenvalue with respect to a design parameter. After that formulation, by using the 

mass orthogonality and eigensystem equation the eigenvector sensitivity equation 

is derived.  

Link and Santiago [2] involved an updating method that also covers to detect 

localized erroneous regions. Proposed method works with measured DOF from 

modal test of structures and creates error indicator functions. Mass and stiffness 

matrices are updated by using correction factors and localized erroneous region 



4 

 

properties. Method is applied to satellite structures and mathematical model of the 

structures are updated with the identification of the erroneous regions. 

Lin and Zhu [3] worked on the based excitation on the structures to update the 

mathematical models. They aimed at getting the accurate dynamic model of the 

structure by finite element methods and updating. They tried to minimize the 

objective function by using FRF data of the real structure. Mass and stiffness 

matrices of the mathematical model assumed to have errors. Since the base 

displacement and the node fixed to base displacement was known, the 

mathematical errors was identified by modifying the structural eigensystem 

equations. 

Kwon and Lin [4] introduced a new method to select frequency point for updating 

procedure. The measured FRF values were assumed to be reference basis for 

updating. The sensitivity matrix was used in the analysis. Frequency response 

matrix sensitivity was calculated with respect to the related parameter. The 

frequency points were compared according to their sensitivity values. The 

frequency points with high sensitivity values were selected for the updating 

procedure. To compare the eigenvectors, MAC (Modal Assurance Criterion) was 

used. 

Schwarz, Richardson and Formenti [5] worked about a method that includes the 

structural modification and the parameter selection for the updating algorithm. In 

that method, the use of orthogonality was proposed by eliminating the updating of 

damping terms. Another aspect of the work was to use the modal domain 

transformation which means the number of DOFs is decreased. The mass and 

stiffness matrices were modified by changing the selected parameters like point 

translational masses, beam cross sectional areas, etc. After formulation of the cost 

function that includes the difference between the eigenvectors and eigenvalues of 

the experimental and mathematical models, the upper and lower limits of the 
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parameters were chosen. At last stage, the most physically reliable parameter set 

was chosen to reflect the experimental results. 

Wu and Simin [6] proposed an updating method that used the substructures and 

subsets. The method was developed to identify the erroneous regions and to select 

the parameter subsets. Subset selection method was demonstrated to find the 

design parameters which have dominant influence on the real dynamic 

characteristics of the structure. SEREP (System Equivalent Reduction Process) 

method was used to expand the experimental mode shapes and the sensitivity 

values of the eigenvalues, eigenvectors were calculated from the theory given by 

Fox and Kapoor [1]. 

Carvalho, Datta, Gupta and Lagadapati [7] proposed a direct method for updating. 

Incomplete data from the modal test was the main reference data for the method. 

In the method, only the stiffness matrix was updated to decrease the difference 

between the experimental and mathematical values. The mathematical eigenvalue 

and eigenvector was partitioned into 2 parts according to the updating 

requirement. QR decomposition and SVD (Singular Value Decomposition) was 

used to solve the numerical problems. 

Ren and Chen [8] proposed response surface method for updating procedure. The 

method consisted of 3 steps: 

 Formulation of the objective function 

 Selection of the design parameters 

 Application of the developed algorithm 

The comparison of the sensitivity based method and response surface method was 

done. The ability to construct the surrogate model of the mathematical model with 

RSM (Response Surface Method) was pointed out as the most important 

advantage over sensitivity based methods. Root Mean Square Error (RMSE) term 

was used to quantify the error between the mathematical and experimental 
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eigenvalues. Comparison of the number of the iterations up to convergence 

criteria was made between RSM and sensitivity based method. 

Göge [9] proposed a method by using inverse eigensensitivity technique to 

modify the mathematical parameters. The method included the least square 

optimization and 1
st
 order linearization. In the each iteration, sensitivity matrix 

and mathematical system matrices were needed to be updated. Half aero plane 

model was selected for the updating algorithm. In the 1st stage, the initial 

correlation was made through sensitivity analysis. The most effective parameter 

sets on the dynamic properties of the structures were selected and the use of 

separate values for the weightings was pointed out. As a consequence, it was 

pointed out that the method has been used effectively with large FE models by 

substructuring the whole mathematical model. The inverse eigensensitivty method 

was iteratively worked with the aero plane model to modify the selected design 

parameter sets. 

Göge and Link [10] worked on a comparative study each includes the sensitivity 

approach. The 1st method was based on the eigenvalue and eigenvector difference 

values. 2nd method was based on the eigenvalue and frequency response function 

difference. The advantages and disadvantages of the methods were compared 

according to different aspects. It was pointed out that validated mathematical 

model, some requirements needed to be satisfied: 

 Representation the test data in frequency range of interest 

 Estimation of the frequency response function and eigendata apart from 

the frequency range of interest 

 Estimation of the test data of adjusted structure 

The methods were applied to GARTEUR SM-AG19 test bed aircraft design and 

the solutions were compared. The ability to update the viscous damping data was 

stated for the 2nd method which includes the FRF (Frequency Response Function) 
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residuals. For the data range that was measured from test data, the both models 

were able to represent the test data with high accuracy. But if the aim was to 

estimate the test data outside the frequency range of interest, the method, in which 

eigenvalue and eigenvector residues were used, could represent more physically 

the test data. 

Schedlinski [11] worked on the method that includes the eigenvalue and 

eigenvector residues in the updating algorithm. It was pointed out that the test 

planning has a crucial role in estimating the dynamic properties of the structure 

and updating. The important key points of the test must consist of: 

 The identification of the modes that can be extracted from the modal test. 

Rotational degrees of freedom cannot be measured by modal test. 

 The choice of the accelerometer locations must be made by great care. 

Because the location must not be nodal point and have the property to 

reflect the target mode shape. 

 The position of the exciter must be chosen to distribute the energy to 

whole structure and to effectively excite the modes in interest. 

 The resolution must be chosen to clarify the FRF of the selected frequency 

range. 

After the modification of the design parameters, the damping ratios were changed 

to decrease the difference in the resonance and anti-resonance regions. 

Automobile body finite element was updated by checking the linearity of the 

structure up to 100 Hz. It was also emphasized that the roving hammer method 

with stable accelerometer location was used to overcome the mass effect. 

Writing the literature reviews about model updating, the selection of which model 

updating technique is applicable to the large order finite element models turns out 

to be indirect methods. Because, recent mathematical models can have so many 

degrees of freedom and it is hard to cope with procedure of inverting the mass and 
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stiffness matrices of the whole system which takes so much time and brings error 

to the procedure. Sipple and Sanayei [13] introduced a finite element model 

updating method which using frequency response function to perform parameter 

estimation and damage detection of benchmark model. Updating procedure is 

used to detect the magnitude and location of damage in the structure. UCF grid 

structure is treated as an application model. Sensitivity and grouping studies are 

carried out to increase the effectiveness of updating time. Firstly, initial finite 

element model is updated by the help of FRF based method. Extracting new set of 

measured FRFs to represent the damaged structure, damage locations, magnitude 

combinations are obtained for the structure. It is concluded that newly proposed 

method can able to predict the location, magnitude of the damage in the structure 

by using updating method based on frequency response functions and it is also 

applicable to actual structures as bridges. 

Gou, Zhang, Lu, Wang [14] proposed a modified response surface method to 

update the finite element models. Procedure is applied to simple beam and brake 

disc model as real life application. Improving the response surface method by 

implementation of successive selection method (SSM), it is concluded that 

modified method faster and more effective than traditional response surface 

method. As another conclusion, it is pointed out that the response surface can be 

constructed more accurately with the method. 
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2.2 MODEL UPDATE THEORY 

The theory behind model update and the techniques used with model update are 

given in this section. The model update theory is classified with respect to the 

solution method as direct and iterative methods. As a brief summary, direct 

methods use structural matrices however iterative methods use the modal or 

response function results in an iterative manner [16].  

The initial mathematical matrices must be obtained before the updating algorithm 

is applied. The mathematical structural matrices  A NxN
M and  A NxN

K , the modal 

matrices of the mathematical model  A NxN
w  and  A NxN

 , the response matrix as 

frequency response function(FRF)  ( )A NxN
H w  are the source matrices for the 

updating algorithm [16].  

The size of the experimental results such as FRF and modal matrices are smaller 

than the mathematical model. To increase the correlation and effectiveness of the 

model updating algorithm, the maximum number of degrees of freedom must be 

measured in modal test. Because the reference data is assumed as the modal test 

result [15]. 

The general problem with real case situations is to have much more degrees of 

freedom in mathematical model than experimental results. That causes to the 

under determined problem which means there are more unknowns than number of 

equations. To solve that problem, there are some mathematical techniques such as 

Singular Value Decomposition (SVD) [16].  

There is an option to find the regions which are sources for the high discrepancy 

between the results and it is possible to decrease the amount of the parameters to 

be updated. In that situation, the mathematical model will be over determined 

which can be solved more easily [16]. The initial effort must be accomplished on 

the mathematical model before the model updating. The modes that are in concern 
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must be correlated and the eigenvalues must be close enough to be updated [16]. 

If there is a substantial difference between mathematical and experimental results, 

the algorithm will have a divergent behavior [16].  

There are several methods to obtain the quantification of the correlation between 

the mathematical and experimental model. 

Comparison techniques cover the quantification of the difference between the 

results of models. Results can include modal or frequency based values such as 

natural frequency, mode shapes, FRF. Modal results can be compared individually 

and the frequency range can be selected. These advantages make modal property 

comparison much useful and applicable with respect to the frequency based 

results like frequency response functions. Extraction of modal characteristics 

needs some steps to be covered. Modal synthesis that includes the curve fitting 

procedure is needed to extract the modal properties from the experimental model 

[15]. 

The natural frequencies of the selected modes are compared between the 

mathematical and experimental models. It is more convenient to plot a 2D graph 

with a reference line with 45° from the x axis [15]. Then the mathematical and 

experimental eigenfrequencies are plotted respectively on the x and y axis. The 

frequencies that are needed to be compared must be selected after mode shape 

correlation [15]. Because, there is a possibility to take into account an irrelevant 

mode which can be a mathematical mode. Mathematical mode is defined as the 

mode that can be found from mathematical formulation but there is no possibility 

to have a mode shape in reality [15]. That case is often experienced in finite 

element model solutions [15]. 

After applying the correlation for the mode pairs, both eigenfrequencies must lie 

close to a straight line which has a slope value of 1 [15]. 
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Due to the visual difficulties to differentiate the mode shapes between 

mathematical and experimental model, the numerical technique was developed to 

overcome this issue. Model Assurance Criterion (MAC) quantifies the comparison 

between two mode shapes [15]. By assuming the mathematical mode shape vector 

is  A and the experimental mode shape vector is X , then the following 

formula is derived [15], 

   

         

2

( , )

T

X A

T T

X X A A

MAC A X
 

   
  (2. 1) 

 

No matter how much the mode shape data is complex, MAC number will be a 

scalar quantity [15]. If two modes are correlated perfectly, the MAC number will 

be 1. The deviation from that value means that the mode correlation deteriorates 

[15]. 

In real case problems, the MAC number close to 1 means the modes are correlated 

well between mathematical and experimental model. Whereas the MAC number 

close 0 means that the mode shapes belong to different modes. In general, the 

MAC number value of 0.9 and more defines the well correlated modes and MAC 

number of 0.1 and less defines the uncorrelated modes [15]. 

Another mode comparison technique is COMAC where for an individual DOF,  , 

it can be written as [15]: 

   

   

2

1

2 2

1 1

( )

.

L

X Ail il
l

L L

X Ail il
l l

COMAC i

 

 



 




   

 

 

(2.2) 

 

In equation (2.2),   represents the correlated mode pair and   is the total number 

of correlated mode pairs, i is the mode in concern. Mathematical mode shape 
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vector is  A and the experimental mode shape vector is  X [15]. The regions 

which have low values of COMAC can indicate the areas which have more effect 

on the discrepancies between the models [15]. The value of 1 for COMAC 

indicates good correlation for that coordinate; whereas the value of 0 indicates bad 

correlation for that coordinate [15]. 

2.2.1. Direct Matrix Methods 

In direct matrix methods, structural matrix elements are changed with respect to 

the mathematical and experimental results [15]. Some advantages related to this 

group of methods can be listed as [15]:   

 Direct matrix methods have non-iterative procedure which provides less 

solution time. 

 Divergence is not a problem with direct matrix methods. 

 Resulting mathematical matrices represents the experimental results 

accurately. 

The capability of this kind of methods is to represent the experimental data 

accurately [15]. For that reason, measurement noise has much more importance 

than other methods [16]. The representative model comprises the noise coming 

from different sources which leads to wrong solutions. The measurement noise 

and other sources of discrepancies must be identified and eliminated from the 

experimental results before updating procedure [16]. 

The mathematical procedure needs the mass, stiffness matrices’ sizes to be equal. 

Modal expansion or model data reduction techniques must be applied to these 

types of methods [15]. 

Model reduction is a procedure to degrade the degree of freedom of the 

mathematical model generally to comparison purposes. It is not easy to compare 

the mathematical model which has far more degrees of freedom than experimental 
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model [15].  The most of the techniques that are applied to mathematical model to 

be updated use reduction of the mathematical models. Recently, due to 

improvements of computer calculations and the reduction of time for the getting 

the solution from the finite element analysis, the reduction techniques become less 

necessary [16]. 

There are two main kinds of model reduction techniques both implemented to 

spatial models. The spatial model refers to the structures’ physical properties 

defined by mass, stiffness and damping characteristics. Two main types of 

reduction techniques are [15]: 

 The reduction of the model results in the structure that can represent the 

whole structure by small degrees of freedom. 

 The reduction causes the mathematical model to lose the information 

about related DOFs that were disregarded. 

This reduction procedure serves like representing a large model as a coarser 

model means the reduced model is an estimation of the larger model [15]. 

Expansion procedure is used to expand the experimental model for comparison 

and some model update applications. Modal test must be carried to extract the 

experimental model results. Before carrying out the modal test, some judgments 

must be made. These are generally [15]: 

 The DOF that is measured must be coincided with the mathematical 

model. 

 The number of measured DOFs must be maximized to closely correlate 

the experimental and mathematical model. 

Due to some problems with the modal tests like: limited test time; unavailability 

to measure some DOFs like rotational ones, the DOFs measured from the tests are 

generally by far more less than the mathematical model [15]. 



14 

 

Other difficulties are also taken into concern. By measuring the less DOFs from 

modal test, the construction of the mode shape model becomes too hard. There are 

several ways to expand the measured modes [15]: 

 Geometric interpolation using mathematical approaches. 

 Mode expansion by referring to the mathematical model structural 

matrices. 

 Mode expansion by referring to the mathematical model’s eigendata 

(eigenvectors, eigenvalues) 

All three methods have the aim to build up a transformation matrix that relates the 

incomplete vector with the complete vector [15]. 

The most trustworthy technique is assumed as which uses the finite element 

model to build up the experimental model. Finite element model is used as high 

order polynomial fit function to estimate the experimental DOFs that are not 

measured [16]. 

Finite element models include much more DOF (Degrees of Freedom) than 

experimental model. Finite element model must be reduced to correlate with the 

experimental model of the structures. The response is measured from limited 

measurement locations for experimental model and the frequency range of interest 

is restrained by the measurement system in modal test. For that reason, a part of 

the mode shape vector can be constructed from the modal test. There are 4 

methods as model reduction techniques [15]: 

 Guyan or Static Reduction. 

 Dynamic Reduction. 

 Improved Reduced System. 

 SEREP (System Equivalent Reduction Expansion Process). 
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Another way of equating the degrees of freedom of the experimental and 

mathematical models is to expand the eigenvector data which ends up with 

prediction of the unmeasured mode shape data [17]. The model reduction and 

modal expansion techniques have some correspondence.  

The low order of the measurement degrees of freedom can cause some problems 

[17]: 

 The visualization of the mode shapes cannot be effectively made. 

 The unmeasured degrees of freedom are assumed to have zero 

displacement which is not the real case. 

4 methods are investigated in this part of work [15]: 

 Geometric interpolation using spline functions 

 Expansion using Theoretical Spatial Model – Kidder’s Method 

 Expansion using Mathematical Model Mode Shapes 

 SEREP Expansion Technique  

The details of the finite element model reduction and expansion methods are 

given in APPENDIX section. 

2.2.2. Iterative (Indirect) Methods 

Iterative methods give more physically reliable and meaningful results with 

respect to direct methods [15]. The degree of correlation is defined with the 

minimization of an objective function [16]. The objective function can be 

constructed by including the weights of the eigenvalue and eigenvector 

differences [16]. Forming the objective function, the method starts to work 

iteratively to make the difference decrease. Large amount of parameters can be 

updated at the same time and there is an opportunity to build up an objective 

function with different weightings to different response values [16]. For example, 
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generally the eigenfrequency values are generally close to each other between 

mathematical and experimental data but the eigenvectors may differ so much due 

to errors in accelerometers or measurement noise [16]. For that reason, initial 

correlation must be done before updating procedure. The compared mode shapes 

must belong to the same mode. Visual check is not sufficient for mode shape 

correlation [15]. An appropriate correlation method like MAC [15], COMAC [15] 

must be applied to mode shapes of mathematical and experimental mode shape 

results. The flexibility of application of iterative methods does not make this kind 

of method be easily and correctly update the mathematical model [15]. The 

engineering insight gains importance prior to the application of the chosen 

algorithm. The difference of the responses defined in the objective function is 

generally nonlinear function of the parameters [16]. Nonlinearity needs an 

iterative procedure to be solved in this application [16]. 

In the iterative procedure, the mathematical modal data must be processed in each 

loop. For example, after updating the required parameters, the updated 

mathematical must be processed again to extract the eigendata which will be used 

in the following iteration. The change of the parameters in the iteration loop 

shows the convergent or divergent behavior of the procedure. If the difference 

between the parameters is getting closer and closer, the mathematical model will 

represent the experimental model in more accurate way [15]. The diverging 

amount of difference of the parameters gives the engineer the idea that there may 

be a convergence problem [15]. 

The reference data which is the experimental data can be modal data or response 

function data. There are some techniques that can be applied to both of the 

experimental results. Choosing the response types to be correlated, the vector of 

the measured quantities is constructed. For example, for modal results the vector 

may consist of the eigenvalues and mode shape vectors. 
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There are some problems with correlating the mathematical and the corresponding 

experimental counterpart. The eigenfrequency and the mode shape must be related 

to the same mode in mathematical and experimental models [15]. For example, 

considering the close modes with simple beam, the order of the torsional and 

bending modes can change due to the wrong estimation of the parameters [15]. 

Mode shapes must be paired correctly prior to the updating procedure. Scaling 

problem must be also taken into consideration. Mathematical eigenvectors are 

generally mass normalized and also maximum displacement normalization can be 

done [15]. The measured mode shape vector is generally mass normalized. Due to 

the difference between the mathematical and experimental mass scatter, there 

must be a scale between the mathematical and experimental eigenvectors [15]. 

Allemang and Brown [18] introduced a modal scale factor (MSF) that must be 

multiplied with the measured mode shape vector; 

 

   

   

T

i mi

T

mi mi

MSF
 

 
  

 

 

(2. 3) 

 

 

where {   represents the mode shape vector and   denotes the measured mode,   

is the mode in concern. 

The iterative methods generally use Taylor series expansion of the modal data 

[16]. Assuming the linearization and neglecting the 2
nd 

order terms in the 

expansion, the vector equation can be written as follows [16]: 

 

 {   {  } {  , 
 

(2. 4) 

 

where      m jz z z    is the difference between the measured output and 

mathematical results which must be evaluated in each iteration,      j      

is the difference between the initial and the following estimate for the parameters, 
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 jS is the sensitivity matrix, and  is the vector that must be updated in each 

iteration. Assuming the updating procedure is based on the modal results, the 

sensitivity matrix defines the first order derivatives of eigenfrequencies and mode 

shapes with respect to the design parameters [16]. Sensitivity matrix must also be 

evaluated in each iteration which is responsible for taking role the most time 

consuming part of the updating procedures [16]. The time elapsed to converge the 

results can be decreased by modifying the sensitivity calculation options. 

In direct methods, full system matrices are changed to satisfy the test results [15]. 

The difference and the advantageous aspect of the indirect methods is the ability 

to modify the individual elements of the system matrices [16]. Assuming the 

number of the elements that are needed to be updated is N, the following 

equations related with mass and stiffness matrices can be written as [15], 

 
1

N

j j

j

M p m


      (2. 5) 

 

 
1

N

j j

j

K q k


      (2. 6) 

 

In equations (2. 6) and (2. 6), 
jp  and 

jq terms represents the updating parameters; 

jm   , jk    matrices are mass and stiffness matrix for the     element, N is the 

total number of elements; [  ]    [  ] are change in the mass and stiffness 

matrix[15].  
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CHAPTER 3 

 

SELECTION OF THE APPROPRIATE METHOD FOR LARGE 

ORDER FINITE ELEMENT MODELS WITH CASE STUDIES 

 

3.1 CASE STUDIES ON SIX DOF SPRING MASS SYSTEM 

The system that is to be analyzed must be well identified and known. For that 

purpose, the system is selected from literature named as Kabe’s system to check 

the correctness of the updated results. Results were obtained via code generated in 

Matlab. The spring mass system is used to understand the effectiveness of direct 

updating techniques and indirect updating techniques. Applying Direct Matrix 

Method and Error Matrix Method, the MAC plots before and after updating 

procedure are given as results. Besides the MAC plots, FRF plots before and after 

the updating procedure are shown as reference results. The mass spring system 

which is used in the updating procedures is given in Figure 1. 

The construction of the code was made via Matlab. Direct Matrix Method and 

Error Matrix methods were selected as candidates for Direct Model Updating 

Methods. Inverse Eigensensitivity Method was used as iterative method to see the 

effectiveness and stability of the method. Response Function Method (RFM) was 

not applied to mass spring system because the application of the method to real 

case structures is limited and difficult which uses frequency response functions as 

a basis objective function. Considering the sensitivity of the frequency response 

functions with respect to the measurement and environment noise, the RFM 

method is eliminated from the iterative methods. Due to the requirement of the 

developed algorithm to be applied to real life aerospace structures, the Inverse 

Eigensensitivity Method (IEM) was selected as iterative method which is 
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advantageous over RFM by considering the sensitivity to measurement noise and 

the ability of the commercial finite element programs like Nastran to calculate 

eigenvalue, eigenvector sensitivity values. 

 

Figure 1.  Reference Spring Mass System 

 

The mathematical model mass and stiffness values are chosen arbitrarily to clearly 

identify the effectiveness of the algorithms developed. The difference between the 

mathematical values and experimental model values is listed in Table 1. 
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Table 1. Parameter Values for Experimental Model and Mathematical Model 

 

3.1.1.  Results for Update by Direct Matrix Method  

In this method, the stiffness and mass matrices are updated in a consecutive 

manner. Before application of the algorithm, the size of the matrices must be 

same. Basically, it is applied to undamped system and modifies the mass matrix of 

the structure. After modification of the mass matrix, the stiffness matrix is 

updated to satisfy the experimental results. The drawback of the method is that it 

needs the mode shape vector for the mathematical and experimental model for all 

degrees of freedom. To satisfy this requirement, appropriate expansion technique 

must be applied to experimental mode shape data. 

As previously explained, the modified mass matrix is given as follows [16], 

             
1 1 T

A X A A A X AM M m I m m M 
 

         (3.1) 
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In equation     (3.1), the  Am term equals to, 

       
T

A X A Xmxm mxN NxN Nxm
m M   

(3.2) 

In equation (3.2), [M] and [K] are mass and stiffness matrices, subscript ‘ ’ 

indicates mathematical, whereas subscript ‘ ’ indicates the experimental data, φ is 

mode shape vector and [I] is the identity matrix. In equation (3.2),   refers to the 

number of modes identified from the modal test and   is total number of degrees 

of freedom. After finding the  M value and putting it into the updated stiffness 

matrix, the following equation is derived: 

           

            

     

2          

          

T T

A X X A X X A

T T

A X X X A A X X A

T

A X X A

K M K M

M w M K M

M K

   

   

 

 

   



 
 

(3.3) 

 

The solution derived for updated mass and stiffness matrices is not a single 

solution. There are several possible matrices to satisfy the given equations. The 

modified mass and stiffness matrices are only numerical solutions not the 

meaningful ones in physical aspect. 

As the first case, it is assumed that all degree of freedoms are measured. This case 

is formed to figure out the importance the number of measured degrees of 

freedom. The MAC plot is constructed to clearly analyze the mode shape of the 

system. In the 2
nd

 case, it is assumed that there is no measurement from 6
th

 degree 

of freedom. In the 3
rd

 case, it is assumed that there is no measurement from 5
th
 and 

6
th
 degree of freedom. The cases were tabulated as below in Table 2. The results 

are arranged due to given name for the cases. 
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Table 2. The Case Definitions for Direct Matrix Updating Method  

Case Numbers Assumptions Done for the Cases 

Case 1 All DOFs are measured 

Case 2 Only 6
th
 DOF is not measured 

Case 3 5
th
 and 6

th
 DOFs are not measured 

 

The method given in the Appendix which is called Kidder’s Method or Inverse 

Guyan Reduction is used to equate the matrix sizes for using in the subsequent 

mathematical formulations. The incomplete elements of the measured 

eigenvectors are estimated by the help of Kidder’s Method. 

MAC plots before and after updating procedure were given to analyze the mode 

shapes. The maximum number in MAC plot is 1 which means there is a % 100 

correlation between the mathematical and experimental model and 0 means no 

correlation between mathematical and experimental model. In addition to the 

MAC plots, the MAC numbers were given to see the accurate number on the 

diagonal of the MAC matrix. The MAC plots with numbers, FRF plots for 

selected degree of freedom for Case1, Case2 and Case 3 were given respectively 

in Figures 2 through 16. The diagonal terms must be above 0.8 [16] for the 

correlated modes which are given in Tables 3 through 8. The MAC numbers that 

were plotted in Figure 2 are listed in Table 3. 
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Figure 2.  MAC Plot before Updating for Case 1 

Table 3. The MAC Numbers before Updating for Case-1 that Belong to 

Figure 2 

CASE 1- 

MAC 

NUMBERS 

Experimental 

 Model 

Mathematical 

 Model  

0.76 0 0 0 0 0.02 

0.33 0.97 0.03 0.02 0.05 0 

0.02 0.05 0.96 0.02 0 0.11 

0.02 0.01 0.12 0.59 0.15 0.07 

0.07 0 0.28 0.2 0.1 0.46 

0.01 0 0.04 0.43 0.66 0.36 
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Figure 3.  MAC Plot after Updating for Case 1 

Table 4. The MAC Numbers before Updating for Case-1 that Belong to  

Figure 3 

CASE 1- 

MAC 

NUMBERS 

Experimental Model 

Mathematical 

 Model  

0.97 0.41 0.04 0 0.01 0.04 

0.46 0.95 0.02 0 0.01 0.01 

0.06 0.02 0.95 0.14 0.01 0.23 

0 0 0.15 0.97 0.16 0.01 

0.02 0.02 0.01 0.15 0.95 0.27 

0.04 0.01 0.2 0.01 0.22 0.97 

 

Plotting MAC plots for Case 1, the FRF results are plotted for 6
th
 degree of 

freedom (Figure 6). First of all, the experimental and mathematical FRF results 

are plotted in Figure 4. Afterwards, updated FRF result was added to the plot in 

Figure 5. 
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Figure 4.  The Semi Log Point FRF Plot of the 6
th
 DOF for Experimental and 

Mathematical Model for Case 1 

 

Figure 5.  The Semi Log Point FRF Plot of the 6
th
 DOF for Experimental, 

Mathematical and Updated Model for Case 1 
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Figure 6.  MAC Plot before Updating for Case 2 

The MAC numbers that were plotted in Figure 6 are listed in Table 5.  

Table 5. The MAC Numbers before Updating for Case-2 that Belong to Figure 6 

CASE 2- 

MAC 

NUMBERS 

Experimental 

 Model 

Mathematical 

 Model  

0.76 0 0 0 0 0.02 

0.33 0.97 0.03 0.02 0.05 0 

0.02 0.05 0.96 0.02 0 0.11 

0.02 0.01 0.12 0.59 0.15 0.07 

0.07 0 0.28 0.2 0.1 0.46 

0.01 0 0.04 0.43 0.66 0.36 
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Figure 7.  MAC Plot after Updating for Case 2 

Table 6. The MAC Numbers after Updating for Case-2 that Belong to Figure 7 

CASE 2- 

MAC 

NUMBERS 

Experimental 

 Model 

Mathematical 

 Model  

1 0.01 0.01 0 0.02 0.02 

0.01 0.99 0.02 0 0.03 0.01 

0.01 0.02 0.97 0.03 0.1 0.1 

0 0 0.03 1 0 0 

0.02 0.02 0.09 0 0.98 0.07 

0.02 0.01 0.12 0 0.09 0.98 

 

Giving MAC plots for Case 2, the FRF results are plotted for 5
th
 degree of 

freedom. First of all, the experimental and mathematical FRF results are plotted in 
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Figure 8. Afterwards, updated FRF result is added to the plot in Figure 9 and 

Figure 10. 

 

Figure 8.  The Semi Log Point FRF Plot of the 5
th
 DOF for Experimental and 

Mathematical Model for Case 2 

 

Figure 9. The Semi Log Point FRF Plot of the 5
th
 DOF for Experimental, 

Mathematical and Updated Model for Case 2 
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Figure 10.  The Semi Log Point FRF Plot of the 6
th
 DOF for Experimental, 

Mathematical and Updated Model for Case 2 

As seen clearly in Figure 10, the updated FRF graph for 6
th
 degree of freedom is 

different from the experimental results. The reason for that difference is not to 

take measurement data from 6
th
 degree of freedom. 
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Figure 11.  MAC Plot before Updating for Case 3 

Table 7. The MAC Numbers before Updating for Case-3 that Belong to Figure 11 

CASE 3- 

MAC 

NUMBERS 

Experimental 

 Model 

Mathematical 

 Model  

0.76 0 0 0 0 0.02 

0.33 0.97 0.03 0.02 0.05 0 

0.02 0.05 0.96 0.02 0 0.11 

0.02 0.01 0.12 0.59 0.15 0.07 

0.07 0 0.28 0.2 0.1 0.46 

0.01 0 0.04 0.43 0.66 0.36 
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Figure 12.  MAC Plot after Updating for Case 3 

 

Table 8. The MAC Numbers after Updating for Case-3 that Belong to Figure 12 

CASE 3- 

MAC 

NUMBERS 

Experimental 

 Model 

Mathematical 

 Model 

0.86 0.78 0.25 0.06 0.65 0.42 

0.58 0.96 0.38 0.05 0.62 0.36 

0.46 0.94 0.58 0.05 0.68 0.31 

0.75 0.85 0.3 0.05 0.71 0.51 

0.71 0.89 0.39 0.05 0.73 0.43 

0.52 0.63 0.25 0.51 0.42 0.24 
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Figure 13.  The Semi Log Point FRF Plot of the 4
th
 DOF for Experimental and 

Mathematical Model for Case 3 

 

Figure 14.  The Semi Log Point FRF Plot of the 4
th
 DOF for Experimental, 

Mathematical and Updated Model for Case 3 
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Figure 15.  The Semi Log Point FRF Plot of the 5
th
 DOF for Experimental, 

Mathematical and Updated Model for Case 3 

 

Figure 16.  The Semi Log Point FRF Plot of the 6
th
 DOF for Experimental, 

Mathematical and Updated Model for Case 3 
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As seen clearly in Figure 15 and Figure 16, the updated FRF graphs for 5
th

 and 6
th

 

degrees of freedom are different from the experimental results. The reason for that 

difference is not to take measurement data from 5
th

 and 6
th
 degrees of freedom. 

Direct Matrix Updating Method has the capability to update the model when all 

degrees of freedom can be measured [15]. However, this option is impossible in 

real life applications. The other disadvantage of the method, the full system 

matrices of the mathematical model must be extracted to be used in the iterative 

formulations [15]. To be able to extract the system matrices of large finite element 

models is a long procedure and taking the inverse of large sized matrices increase 

the error and solution time [16].  

The results of experimental and mathematical models are the same when all 

degrees of freedom are measured. But as seen from Figure 10, Figure 15, Figure 

16, FRF plots for measured degrees of freedom were different from experimental 

results. There is a big deviation between the updated and experimental results 

except for the region of resonance frequencies. Using the expansion process to 

estimate the eigenvector of unmeasured degrees of freedom the error percentage 

of the algorithm increases. MAC numbers are lower than 0.8 in Case 3 for 3
rd

, 4
th
, 

5
th
 and 6

th
 degrees of freedom. As a consequence, Direct Matrix Method is 

applicable only to simple models if great deal of degrees of freedom are measured 

which is nearly impossible in real life finite element models. 

3.1.2. Results for Update by Error Matrix Method 

The Error Matrix Method is used as 2
nd

 Direct Method to update the mass spring 

system. The aim of this method is to modify the elements of the mass and stiffness 

matrices [15]. Referring     to experimental and     to mathematical model, the 

error matrices are defined as following [15]: 
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     X AM M M    (3.4) 

     X AK K K    (3.5) 

,where [M] and [K] are mass and stiffness matrices, X denotes to experimental 

and A denotes to mathematical matrices. The problem of the above equations, 

(3.4) and (3.5) is to find the structural matrices of the experimental model. 

Considering the transformation from modal properties to spatial properties, the 

mass and stiffness matrices for experimental model can be constructed as [15]: 

 

     
1T

M  
 

  

 

(3.6) 

 

 

     
12T

rK w 
 
     

 

(3.7) 

 

 

where   is mode shape vector,    is the natural frequency of r
th
 mode shape,   is 

stiffness matrix and   is mass matrix. 

To able to find the mass and stiffness matrices for experimental model for all 

degrees of freedom, the mode shapes and eigenfrequencies must be extracted for 

all degrees of freedom which is nearly impossible in real applications. The 

method makes a prediction for the updated mass and stiffness matrices by 

distributing the effect of the known modes to the unknown degrees of freedom 

[15]. Experimental stiffness matrix can be written as [15], 

         
11 1

X A AK I K K K
 

    (3.8) 

 

where [ ] is the identity matrix. Using Binomial Theorem and writing the above 

equation by neglecting the second and higher order terms, the following equation 

can be derived as [15]; 

               
2

1 1 1 1 1 1

X A A A A AK K K K K K K K
     
       (3.9) 
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Rewriting the equation (3.9),  K  is defined as [15]: 

 

         
1 1

A A X AK K K K K
 

    

 

(3.10) 

 

 

             
1 1

2 2T T

A A Ar A X Xr X AK K w w K   
 

          

 

(3.11) 

 

 

Writing the equation for stiffness matrix, the same procedure can be applied to 

mass matrix. Using equation (3.6) and the estimation which is given for the 

stiffness matrix,  M can be written as [15]: 

 

           
T T

A A A X X AM M M       

 

(3.12) 

 

  

The assumption is made that all degrees of freedom are measured. As clearly 

explained in this section, the Error Matrix method is based on the linearization 

and neglecting the higher order terms [15]. For that reason, it is impossible to 

estimate the experimental results accurately even if all degrees of freedom were 

measured. Applying the developed algorithm by Matlab, the MAC plots and FRF 

graphs for 6
th

 degree of freedom is given as results. The MAC numbers before 

updating that are plotted in Figure 17 are listed in Table 9. The MAC numbers 

after updating that are plotted in Figure 18 are listed in Table 10. First of all, the 

experimental and mathematical FRF results are plotted in Figure 19. Afterwards, 

updated FRF result is added to the plot in Figure 20. 
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Figure 17.  MAC Plot before Updating  

Table 9. The MAC Numbers before Updating that Belong to Figure 17 

MAC 

NUMBERS 

Experimental 

 Model 

Mathematical 

 Model  

0.76 0 0 0 0 0.02 

0.33 0.97 0.03 0.02 0.05 0 

0.02 0.05 0.96 0.02 0 0.11 

0.02 0.01 0.12 0.59 0.15 0.07 

0.07 0 0.28 0.2 0.1 0.46 

0.01 0 0.04 0.43 0.66 0.36 
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Figure 18.  MAC Plot after Updating  

Table 10. The MAC Numbers before Updating that Belong to Figure 18 

MAC 

NUMBERS 

Experimental 

 Model 

Mathematical 

 Model  

0.99 0.19 0.01 0 0 0.02 

0.28 0.99 0.01 0 0 0.03 

0.01 0.01 1 0.1 0.02 0.12 

0 0.01 0.05 0.95 0.21 0.02 

0.01 0.02 0 0 0.93 0.12 

0.03 0 0.16 0.01 0.22 0.99 
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Figure 19.  The Semi Log Point FRF Plot of the 6
th
 DOF for Experimental and 

Mathematical Model 

 

  

Figure 20.  The Semi Log Point FRF Plot of the 6
th
 DOF for Experimental, 

Mathematical and Updated Model 
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Even if all the degrees of freedom are measured, there is a deviation between 

results. For that reason, other cases for the unmeasured degrees of freedom are 

skipped. As previously mentioned, the deviation between the experimental and 

mathematical results arises from the linearization of the theory of Error Matrix 

Method [15]. 

3.1.3. Results for Update by Inverse Eigensensitivity Method (IEM) 

Spring mass system is also updated with IEM. IEM is sensitivity based iterative 

method. Model updating methods related to sensitivity calculation use basically 

Taylor Series Expansion of modal results [16]. Experimental modal results can be 

formulized by using mathematical eigenvectors and eigenvalues [15]. The 

experimental modal results can be written as a Taylor expansion in terms of 

model updating parameters about mathematical solution as given in Eqs. (3.13) 

and (3.14) [16] as follows; 

where subscript X  indicates experimental result, subscript r  indicates  the 
thr  

mode, sp  is the 
ths  design parameter, sp  is defined as the change in the 

ths

design parameter and L  is the total number of design parameters, r  and  
r

  

show the eigenvalue and mode shape to the 
thr  mode, respectively. Sensitivity 

matrix involves first order derivatives of the modal results with respect to model 

updating parameters. Disregarding the effect of second and higher order terms, 

Eqs. (3.13) and (3.14) can be written in an iterative matrix form as follows [16]:  

2

1

0( ) ,
AL

X A r
r r s s

s s

p p
p


 




     


  (3.13) 

   
  2

1

0( ) ,
L

A r
X A s sr r

s s

p p
p


 




     


  (3.14) 
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   j jz S p       
(3.15) 

where  jz  is the difference between the experimental and mathematical modal 

results at the 
thj  iteration,  p  is the amount of change in the design parameters 

at the 
thj  iteration and jS    is the sensitivity matrix at the 

thj  iteration. 

Accepting the updating procedure is based on the modal results, the sensitivity 

matrix describes the first order partial derivatives of natural frequencies and mode 

shapes with respect to the design parameters as given in equations (3.13) and 

(3.14). It should be noted that sensitivity matrix should be calculated at each 

iteration which is the most time consuming part of the updating procedure. 

Especially for large order systems, overall updating time can be reduced 

considerably if the computational time spent for the calculation of the sensitivity 

matrix is decreased. Eq. (3.15) can be written explicitly as follows [16]: 

 

 

     

     

1 1 1

1 2

1 1 1 1

1

1 21

2

1 2

1 2
j

A A A

L

A A A

L

m Am Am Am

L

Lm j

A A Am m m

L

p p p

p
p p p

p

p
p p p

p p p

  

   



   



  

   
   
 
     

   
                

                   
   
 

   

, 
(3.16) 

where subscript j  describes the terms that should be evaluated by using the 

design parameter values at the 
thj  iteration. In Eq. (3.16), size of vector  p  is 

( 1) 1m n x , size of the sensitivity matrix is ( 1)m n xL  and size of vector  jz  is 

( 1)Lx , where n  is the number of degrees of freedom obtained from the modal test, 

m  designates the number of modes included in the updating algorithm and L  is 
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the number of design parameters to be updated. It is achievable to have an over 

determined problem if the number of design parameters to be updated is less than 

the number of equations [16]. The parameters can be identified with the following 

formulation [16]: 

   1 ,j j jp S z



      

(3.17) 

where 
jS



    is the pseudo-inverse of the sensitivity matrix at the 
thj  iteration. 

Using Eq. (3.17) values of the design parameters at the next iteration step can be 

acquired as follows: 

     1 1j j jp p p    .
 

(3.18) 

The flexibility of this method is the advantageous aspect over other type of 

methods. By applying this method, there are some options to be selected that 

effects the time elapsed to reach convergence criteria. These options were listed 

as: 

 The number of modes that is included in the algorithm can be selected. 

 The number of the measured coordinates that is included in the algorithm 

can be selected. 

 Mode frequency or mode shape vector sensitivity can be selected which 

will be used in updating procedure. Mode shape sensitivity calculation 

needs much more time than mode frequency sensitivity calculation [15]. 

For that reason, the selected sensitivity matrix is constructed with 

engineering insight. 

The details for more and less measurement points than the number of parameters 

conditions are given in APPENDIX section. 
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There are lots of parameter set options that can be updated with Inverse 

Eigensensitivity Method (IEM). In given mass spring example, the mass values 

are assumed to be constant as generally the case. Stiffness terms are identified to 

be updated by IEM. The following stiffness terms are selected in the algorithm to 

be updated:          and   . The number of parameter to be updated is 4. As 

an experimental result: 2
nd

; 3
rd

 and 4
th
 mode shapes are assumed to be measured 

from 1
st
, 2

nd
 and 3

rd
 degrees of freedom. The erroneous values of stiffness terms 

that need correction are given below in Table 11. IEM is used to see the 

effectiveness of the code over the direct methods and to search the capability of 

application to large order finite element models. IEM has the flexibility that gives 

an option to choose the parameter sets which have the dominant effect on the 

dynamic responses. 

Table 11. The Erroneous Values of the Parameters 

Parameter 
Erroneous 

Values(N/m) 

Experimental 

Model 

Values(N/m) 

Error 

Percentage 

(%) 

k1 1100 1500 26.7 

k2 1000 1600 37.5 

k3 1250 1400 10.7 

k4 5000 6500 23.1 

 

A custom code for IEM was developed in Matlab environment. As a result of 

IEM: the eigenvalues before and after updating(Figure 21, Figure 22); MAC plots 

before and after updating(Figure 23, Figure 24); the change of parameters with the 

iteration sequence(Figure 29); FRF plots(Figure 30 and Figure 31 for 6
th
 degree of 

freedom are given. 
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Figure 21.  The Natural Frequencies of the Experimental and Mathematical 

Models before Updating 

 

 

Figure 22.  The Natural Frequencies of the Experimental and Mathematical 

Models after Updating 

The comparison of the natural frequency values of the experimental and 

mathematical models before and after updating was given in Figure 21 and Figure 
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angle with the positive X axis 45[15]. If the point which denotes natural 

frequency is on the line, the natural frequencies have the same value. If not, the 

natural frequency values are different from each other. As seen in Figure 21, the 

natural frequency values are different from each other. It can be observed by 

identify the points that do not lie on the line of 45. But in Figure 22, the points lie 

on the line of 45 which means the natural frequencies overlap. 

 

Figure 23.  MAC Plot of the Experimental and Mathematical Models before 

Updating 

Table 12. The MAC Numbers before Updating that Belong to Figure 23 

MAC 

NUMBERS 

Experimental 

 Model 

Mathematical 

 Model  

0.99 0.37 0.02 0 0.01 0.02 

0.11 0.96 0 0.01 0.01 0.05 

0.02 0.02 0.99 0.05 0.01 0.13 

0 0 0.1 0.9 0 0 

0 0.01 0.08 0.3 0.87 0.03 

0.03 0 0.12 0.01 0.27 0.98 
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Figure 24.  MAC Plot of the Experimental and Mathematical Models after 

Updating 

 

Table 13. The MAC Numbers after Updating that Belong to Figure 24 

MAC 

NUMBERS 

Experimental 

 Model 

Mathematical 

 Model  

0.97 0.14 0.01 0 0 0.02 

0.19 0.99 0.01 0 0.01 0.01 

0.01 0.01 0.99 0.05 0.01 0.09 

0 0 0.05 0.99 0.04 0 

0 0.01 0 0.06 0.99 0.13 

0.02 0.01 0.09 0 0.08 0.97 

 

The change of design parameters with the iterations are plotted in Figure 25, 

Figure 26, Figure 27 and Figure 28. 
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Figure 25. The Convergence of Erroneous Parameter    

 

Figure 26. The Convergence of Erroneous Parameter    
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Figure 27. The Convergence of Erroneous Parameter    

 

Figure 28. The Convergence of Erroneous Parameter    

Giving the convergence of parameters with respect to the number of iterations, the 

convergence of all parameters is given as below in Figure 29. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1250

1300

1350

1400

1450

1500

Number of iterations

k
3

(N
/m

)

 

 

= Updated Value of k3

= k3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
5000

5200

5400

5600

5800

6000

6200

6400

6600

6800

Number of iterations

k
4

(N
/m

)

 

 

= Updated Value of k4

= k4



50 

 

 

Figure 29. The Convergence of Parameters With Respect to Number of Iterations 
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Figure 30.  The Semi Log Point FRF Plot of the 6
th
 DOF for Experimental and 

Mathematical Model 

 

Figure 31.  The Semi Log Point FRF Plot of the 6
th
 DOF for Experimental, 

Mathematical and Updated Model 
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Inverse Eigensensitivity Method worked effectively with the spring mass system 

example. 6 iterations are required for convergence of the modal results. 

Parameters have behavior to converge the experimental values. Some of the 

parameters have not convergent behavior but the required convergence criterion is 

not based on the amount of deviation of the mathematical parameters from 

experimental values. The modal results of the updated model must be close 

enough to represent the experimental model. Besides the representation of the 

modal results, FRF of the updated model is nearly the same as the experimental 

FRF plot given in Figure 31. 
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CHAPTER 4 

DEVELOPED ALGORITHM AND FLOWCHART 

 

Obtaining the results with the direct methods and iterative method, it is concluded 

that the iterative methods have many advantages over direct methods concerning 

the application to large order finite element models. Response function methods 

and modal based methods can be used with large order finite elements. Response 

function methods use frequency response functions as the objective function. 

Modal based methods use eigenfrequency and eigenvector values of the 

experimental model as the reference data to be converged.  

The measurement and environment noise can degrade the quality of the frequency 

response function data. Frequency response function is thoroughly sensitive to the 

excitation location and technique. Modal results (eigenvalues, natural frequencies, 

modal damping coefficients) are not sensitive to measurement noise. In addition 

to disadvantage of response function method, extraction of the FRF from large 

order finite element model is time consuming procedure with respect to the 

normal mode analysis. For these reasons, the response function method is 

eliminated to be used with the large order finite elements. In the reference paper 

introduced by Göge and Link [10], the method that uses the eigenvalue and 

eigenvector sensitivity value has more convergent behavior than the method that 

uses the eigenvalue and frequency response function sensitivity values. To 

visualize the selection of the updating method, a chart is developed which is given 

Figure 32. 
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Figure 32.  The Model Updating Methods  

As a summary, the direct methods are eliminated because of the non-applicability 

to large order finite elements and the difficulty in coping with the taking inverse 

of structural matrices. Afterwards, beyond the iterative methods response function 

methods have some characteristic properties which make these methods sensitive 

to measurement noise. Verifying the effectiveness of the Inverse Eigensensitivity 

Method that is applied to spring mass structure given in Section 3.1.3, inverse 

eigensensitivity method is selected to use with large order finite element models. 

Modal based methods are more effective considering the flexibility to select the 

result sets to be used in procedure. One of the most crucial advantages of the 

method is its capability of selecting the eigenvalues and eigenvectors from the full 

set of results extracted through modal test [16]. Number of modes introduced into 

the analysis, number of measured coordinates and utilizing eigenvalues, 

eigenvectors or both in the analysis effects the computational time significantly; 

hence, they should be taken into account before an updating procedure. It should 

be noted that calculation of eigenvector sensitivities requires more time compared 

the eigenvalue sensitivities [16].  

In application of the Inverse Eigensensitivity Method, sensitivity calculations and 

normal modes analysis are accomplished using the commercial FE software 

Nastran. Two different control criteria are used in the updating algorithm. In the 

first control criteria, the difference between experimental and mathematical model 
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results is inspected in each iteration and if this value reduces below a predefined 

error tolerance, algorithm ends which can be summarized as follows:  
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(4.1) 

where subscript j
 describes the terms that should be evaluated by using the 

design parameter values at the 
thj  iteration, 1e  is the acceptable error limit value 

for the difference between experimental and mathematical modal results,   is the 

eigenvalue and   is the eigenvector. In the second control criteria, the rate of 

decrease of the error defined in the first criteria is checked. If this decrease is less 

than a predefined tolerance value, the sensitivity matrix is not calculated for the 

next iteration. The second criterion can be summarized as follows: 

   
1

2

j j
p p

e
L




 ,
 

(4.2) 

where 2e  is a limiting value for the decrease in error and L  is the number of 

design parameters. The 2
nd

 control criterion causes to save time in updating   

procedure with eliminating the calculation of sensitivity step. The goal is to 

decrease the time needed to update large order finite element models which may 

need much time to calculate the sensitivity of the modal results with respect to the 

parameters. 

The flowchart of the developed in-house computational code which uses Matlab 

and Nastran simultaneously is given in Figure 33. Pre-analysis starts with the 

selection of the design parameters and modal results which are needed to be 

updated. Normal modes analysis is ran with the option to calculate the 

sensitivities of the selected modal results with respect to the parameters. As a 
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following step, Inverse Eigensensitivity Method algorithm is applied to obtain the 

change in parameters by using modal results of finite element model, sensitivity 

values and experimental results. Subsequently, the 1
st
 control criterion is checked 

if the difference between the results of finite element model and experiment is 

small enough. If the value is in the range of a limit, procedure is stopped. If the 

value is not in the range of a limit, procedure is continued with the checking of the 

2
nd

 control criterion and loop is repeated until 1
st
 criterion is met. 

 

Figure 33.  Flowchart of the developed algorithm 
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CHAPTER 5 

 

APPLICATION OF THE DEVELOPED ALGORITHM TO 

GARTEUR MODEL AND MISSILE LAUNCHER 

 

5.1 CASE STUDY ON A SCALED AIRCRAFT MODEL USING THE 

DEVELOPED ALGORITHM WITH INVERSE 

EIGENSENSITIVITY METHOD 

Deciding the appropriate method that can be applied to real structures, the 

developed algorithm was carried on the test structure that was designed by 

GARTEUR (Group for Aeronautical Research and Technology in Europe). The 

geometry of the aircraft model is given in Figure 34. The dimensions given are in 

millimeters. 

 

Figure 34.  Geometry of the aircraft model  
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The test structure was produced based on geometry in Figure 34. The connection 

of the aluminum parts was made with bolts. The test structure was hung with 

elastic cords to the test frame. The test structure was excited by a shaker produced 

by MB Dynamics. The shaker can deliver up to force of 500 N and give 38 mm 

stroke peak to peak. The excitation point was selected to excite the modes of the 

structure after observing the finite element solution for normal modes. The 

excitation point was identified in such way that the external moment was applied 

with respect to the mass center of the structure [15]. The test configuration with 

the direction of the applied force by the shaker was shown in Figure 35. 

 

 

Figure 35.  The Test Configuration for the GARTEUR Aircraft Model 
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Test was carried out based on the number of 40 measurements. Completing the 

modal test, the modal parameter identification procedure was followed. The steps 

of that procedure are: 

 Modal Data Selection, 

 Extraction the mode shapes  

The rigid body modes were observed around 2 Hz. There is an option to select the 

FRF from the full set of FRFs. The measurements from accelerometers can be 

erroneous and needed to be excluded from the modal parameter identification 

process. After the selection step, the sum FRF plot was obtained.  

Subsequent to the modal data selection step, the modal identification procedure 

was carried out. It has 3 parts to be completed. In the first part, the frequency band 

is selected to be processed. In the second part, the stabilization procedure is 

accomplished with the selected model number. Model number includes the 

number of mode shapes that can represent the sum FRF plot of the real structure. 

In the 3
rd

 part, the mode shapes can be visualized. 

Defining the frequency band for the model identification process, the stabilization 

procedure must be made. For that aim, the stabilization diagram was constructed 

in this step before the selection of the stable poles. Stable pole is s type pole in 

frequency in a range %1, damping ratio %5 and mode vector in a range %2 with 

respect to a pole of preceding model order. 3 stable poles can give an opinion 

about a real mode. 

The symbols in the stabilization diagram are based on the agreement of frequency, 

damping ratios and mode vectors between the poles of the sequential model 

orders. Based on the given details about the stabilization diagram, the stable poles 

were selected.  
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Table 14.  The Natural Frequency and Damping Ratios for the Calculated 

Modes in the Selected Frequency Range 

Mode 

number 

Natural Frequency(Hz) Damping 

Ratio (%) 

Mode 1 5.51 0.42 

Mode 2 15.74 0.31 

Mode 3 34.75 0.3 

Mode 4 36.17 0.47 

Mode 5 44.2 0.09 

Mode 6 52 0.16 

Mode 7 55 0.07 

Mode 8 58.87 0.31 

Mode 9 63.8 0.16 

 

Aircraft finite element model was constructed with 8 noded linear elements which 

is called HEX8 in Nastran. The connection points were modeled as if they were 

the same structure. The elements in the connection regions were constructed with 

common nodes. It provided opportunity not to model contact algorithm in the 

finite element modeling. The full model was divided into 5 subparts as given in 

Figure 36. Each subpart has its own property identity number which is used to 

update each property value separately. 
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 Figure 36.  The Properties Identity Numbers of Aircraft Model 

The finite element model consists of 20540 HEX8 elements and 29028 nodes. The 

total degree of freedom of the model is 168848. The finite element model is 

shown in Figure 37. The design parameters were selected as Young’s modulus 

and density. By using both of the design variables, the updating procedure was 

carried out. It is more logical to use Young’s modulus values because by changing 

the density values, the location of the mass center may deviate and there is a need 

of another control loop in the algorithm which causes the solution time to 

increase. 
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Figure 37.  The Finite Element Model of the Aircraft Model 

Owing to the few number of design variables, it was evaluated that there was no 

need to make sensitivity analysis. 5 set of design variables was selected to be a 

volunteer in updating algorithm. The eigenvectors were checked for correlation. 

For finite element solution, the eigenvectors were extracted from 5 grid points 

given in Figure 38. The coordinates were identified after the investigation of the 

mode shapes of the structure. These points had the potential to move more than 

the other locations by regarding the first 6 mode shapes. To be able to visualize 

the initial correlation of the mode shapes, the maximum displacement was 

maximized in mathematical and experimental solutions. After that procedure, the 

MAC plot was constructed to quantify the correlation of models. Developed code 

that checks the initial correlation, reads the mode shapes and plots the 3D MAC 

plot for visualization purposes. For the grid points defined, the mode shapes in X, 

Y, Z axes were taken in concern with respect to the global reference frame. 
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Figure 38.  The Coordinates and Grid Numbers of Nodes that the Eigenvectors 

Are Extracted From 

The MAC plot before updating procedure is shown in and the MAC numbers are 

given in Figure 39. As clearly seen from Table 16, the diagonal numbers of the 

MAC matrix are above 0.75 except for the 4
th

 mode. The updating procedure was 

applied to the Young’s Modulus values for each of the property of solids that was 

previously given in Figure 38. The structural material property of aluminum that 

was used as parts of the aircraft model is given in Table 15. 

Table 15. The Material Properties of Al 7071-T6 

Al 6061-T6 Material Properties 

Young's modulus(MPa) Poisson's Ratio Density(kg/m
3
) 

71700 0.3 2810 
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Figure 39.  The MAC Plot for the Aircraft Model before Updating 

 

Table 16. The MAC Matrix for the Aircraft Model before Updating 

MAC 
NUMBERS 

Experimental 
 Model 

Mathematical 

Model 

0.89 0 0 0 0 0.86 

0 0.98 0.05 0.01 0.01 0 

0.01 0.15 0.76 0.02 0.05 0.03 

0.04 0.01 0.49 0.49 0.09 0.08 

0.02 0 0.04 0.48 0.85 0.08 

0.44 0 0.01 0.15 0.3 0.79 

 

The initial values of the natural frequencies of the experimental and mathematical 

models with the difference in percentage are given in Table 17. 



65 

 

Table 17. The Natural Frequencies for Experimental and Mathematical Models 

before Updating 

 

Natural 

Frequencies from 

Mathematical 

(Finite 

Element)Model  

(Hz) 

Natural 

Frequencies  

Extracted 

From Modal 

Test(Hz) 

%Difference 

1
st
 Mode 6 5.5 9.2 

2
nd

 Mode 16.7 15.7 6 

3
rd 

Mode 39 34.8 12.3 

4
th

 Mode 40.6 36.2 12.2 

5
th 

Mode 41 38 7.9 

6
th

 Mode 46.9 44.2 6.2 

 

The visual representation of the comparison of the natural frequencies is given in 

Figure 40 with the positive 45 line to identify the difference. 

 

Figure 40. The Comparison of the Natural Frequencies before Updating 

Visual representation of the first 6 mode shapes of the aircraft model that was 

extracted from Nastran SOL 103 solution is shown in Figure 41. 

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

Analytical Natural Frequencies(Hz)

E
x

p
e

ri
m

e
n

ta
l 
N

a
tu

ra
l 
F

re
q

u
e

n
c

ie
s

(H
z
)



66 

 

 

 

Figure 41.  Visual representation of the mode shapes extracted from Nastran  

The developed algorithm was applied to mathematical model of the aircraft to see 

the effectiveness and flexibility of the inverse eigensensitivity method. The initial 

parameters that used in the updating procedure were selected to take the first 6 

natural frequencies and 1st mode shape into account. For that reason, the mode 

shapes were not supposed to be well correlated with the test results with respect to 
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the initial configuration of the mathematical model. The change of design 

parameters with respect to the iteration number is shown in  

Table 18. The convergence of parameters was not observed because the 

mathematical and experimental models were well correlated with each other. For 

that reason, the behavior of the convergence was not observed in a similar manner 

that seen in six DOF mass spring system example. The design objective was 

selected to decrease the difference in the first 2 natural frequencies. The change of 

parameters is demonstrated individually with respect to the iteration number in 

Figure 42, Figure 43, Figure 44, Figure 45 and Figure 46. 

 

Table 18. The Change of Design Variables with respect to the Iteration Number 

 

 
Value of Design Parameters  

with Iteration Number 

 

 

Initial 
Mathematical 

 Model Values 

1 2 3 

Design 
 Parameters 

Design Parameter No 1 71000 70290 70992 71702 

Design Parameter No 2 71000 71710 82064 65989 

Design Parameter No 3 71000 70290 69587 70282 

Design Parameter No 4 71000 70290 69587 68891 

Design Parameter No 5 71000 71710 70992 70282 
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Figure 42.  Change of 1
st
 Design Parameter with the iterations 

 

 

Figure 43. Change of 2
nd

 Design Parameter with the iterations 
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Figure 44.  Change of 3
rd

 Design Parameter with the iterations 

 

 

Figure 45.  Change of 4
th

 Design Parameter with the iterations 
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Figure 46.  Change of 5
th

 Design Parameter with the iterations 

 

The natural frequency values of the mathematical and experimental models are 

given below in Table 19 after updating procedure. It was observed that first 6 

natural frequencies were converged to the test counterparts. The mode shapes 

were checked if for the correlation of the experimental and mathematical results. 

Before and after updating procedure, the mode correlation was needed to be 

observed. In both cases, the first 6 mode shapes of the experimental and 

mathematical model were checked to verify the sequence of modes did not 

change. The change of sequence of modes was caused by the closely spaced 

natural frequencies and double modes. The aircraft model is symmetrical model 

and convenient to have double modes. For that reason, the change of sequence of 

modes was controlled before and after the updating procedure. Developed 

algorithm worked with the aim of decreasing the amount of difference for the first 

2 natural frequencies and minimized the objective function. The convergence was 

reached in 3 iterations which totally lasted 416 seconds. The MAC plot is given in 

Figure 47 and the corresponding MAC numbers are listed in Table 20. 
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Table 19. The Natural Frequencies for Experimental and Mathematical Models 

after Updating 

 

Natural 

Frequencies of 

Mathematical 

Model  

(Hz) 

Natural Frequencies  

Extracted From Modal 

Test(Hz) 

%Difference 

1
st 

Mode 5.6 5.5 1.6 

2
nd 

Mode 15.8 15.7 0.4 

3
rd

 Mode 36 34.8 3.6 

4
th

 Mode 38.3 36.2 5.9 

5
th

 Mode 38.4 38 1 

6
th

 Mode 44.3 44.2 0.2 

 

 

 

Figure 47.  The MAC Plot for the first 6 Mode Shapes After Updating Procedure 
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Table 20. The MAC Matrix for the Aircraft Model after Updating  

MAC 

NUMBERS 

Experimental 

 Model 

Mathematical 
Model 

0.89 0 0 0 0 0.86 

0 0.98 0.05 0.01 0.01 0 

0.02 0.08 0.93 0.14 0.08 0.06 

0.04 0.01 0.43 0.49 0.09 0.08 

0.02 0 0.04 0.48 0.85 0.08 

0.44 0 0.01 0.15 0.3 0.79 

 

 

Figure 48.  The Comparison of the Experimental and Mathematical Natural 

Frequency Values After Updating Procedure 

 

As clearly seen from the Table 20, the MAC number of the 3
rd

 mode increased 

after updating while others did not change anymore. Because the objective 

function is constructed to decrease the difference in natural frequency values. The 

visual representation of the comparison of the natural frequencies is given in 

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

Analytical Natural Frequencies(Hz)

E
x

p
e

ri
m

e
n

ta
l 
N

a
tu

ra
l 
F

re
q

u
e

n
c

ie
s

(H
z
)



73 

 

Figure 48.Additionally, the percentage of difference between the experimental and 

mathematical natural frequencies was observed to decrease. Defining the 

objective function to decrease the first 2 natural frequencies, the algorithm worked 

to minimize that amount. The percentage of difference decreased from %9.2 to 

%1.6 for the 1
st
 mode and from %6 to %0.4 for the 2

nd
 mode. To clearly visualize 

the improvement of the natural frequency values, the table is given below in Table 

21. 

Table 21. The Comparison of the Natural Frequencies of Mathematical and 

Experimental Models  

 

Natural  

Frequencies  

of 

Mathematical 
 Model before 

Updating(Hz) 

Natural  

Frequencies 

 of 

Mathematical  
Model after 

Updating(Hz) 

Natural  

Frequencies  

Extracted  

From  
Modal 

Test(Hz) 

%Difference 
before  

Updating 

%Difference 
after 

Updating 

1st Mode 6 5.6 5.5 9.2 1.6 

2nd Mode 16.7 15.8 15.7 6 0.4 

3rd Mode 39 36 34.8 12.3 3.6 

4th Mode 40.6 38.3 36.2 12.2 5.9 

5th Mode 41 38.4 38 7.9 1 

6th Mode 46.9 44.3 44.2 6.2 0.2 

 

5.2 CASE STUDY ON A LAUNCHER OF A GUIDED MISSILE 

USING THE DEVELOPED ALGORITHM WITH INVERSE 

EIGENSENSITIVITY METHOD 

In this part, Inverse Eigensensitivity Method is applied to finite element model of 

a missile launcher which is demonstrated in Figure 52. To obtain the modal 

parameters of the missile launcher, modal tests are carried out. Missile launcher 

finite element model consists of 8 noded linear solid elements, HEX8,10 noded 

quadratic linear solid elements, TET10, 4 noded linear shell elements, QUAD4 

and 3 noded linear shell elements, TRIA3, in Nastran. There are total number of 
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373630 elements, 964396 nodes and 5786376 degrees of freedom in the finite 

element model. 

Sensitivity study is carried out to identify the dominant set of parameters on 

modal results. Parameter sets are grouped and effective parameter sets are selected 

according to the sensitivity calculations. Totally, 10 parameter sets are 

investigated with respect to their effects on first 3 natural frequency values and 

most effective parameter sets are obtained to be used in updating algorithm. 

Normalized sensitivity values are given consecutively in Figure 49, Figure 50 and 

Figure 51. Finite element model is divided into subgroups. The selected 

subgroups are given in Figure 53. Each subpart has its own property identity 

number which can be updated separately. Initially, the developed code is run with 

the default settings (Case I); whereas, in order to observe the effectiveness of the 

method developed, the same model is run by calculating the sensitivities in all 

iterations (Case II). Model updating parameters were selected as Young’s 

Modulus of each subpart. Eigenvectors are extracted from the 26 grid points. 

Coordinates of the grid points are selected such that they are coincident with 

measurement locations in experiment. These points have the potential to move 

more than the other locations taking into account the first 6 mode shapes obtained 

from FE analysis. For proper comparison of the mathematical and experimental 

mode shapes, each mode shape vector is normalized with respect to its element 

with maximum amplitude. In addition to this, MAC matrix is calculated to 

quantify the correlation between the mathematical and experimental modes. 
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Figure 49.  Normalized Sensitivity Values for 1
st
 Natural Frequency 

 

 

Figure 50.  Normalized Sensitivity Values for 2
nd

 Natural Frequency 
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Figure 51.  Normalized Sensitivity Values for 3
rd

 Natural Frequency 

 

 

Figure 52.  Missile Launcher 
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Figure 53.  Parameter Sets Defined In Updating Algorithm 

 

Initial correlation between the experimental and mathematical mode shapes is 

shown in Figure 54 by using the MAC plot, which is summarized in Table 22. It is 

observed that except the first mode, initially experimental modes are correlated 

with the different mode number. First 3 natural frequencies and first 3 mode shape 

are used in updating procedure and updating objective function is constructed to 

decrease the difference in the first 3 natural frequencies and increase the MAC 

number values.  

The updating procedure is applied by considering Young’s Modulus of each 

subpart shown in Figure 53 as the updating variable. Initially, Young’s modulus 

value is assumed as 71000 MPa for all subparts. Density and Poisson's ratio for 

each subpart is taken as 2810 kg/m3 and 0.3, respectively.  

Natural frequencies and MAC values before and after updating are compared with 

the experimental one in Table 23. It is observed that the percent difference 

between the experimental and updated mathematical natural frequencies is 

decreased prominently. The percent difference decreased from 6.1% to 1.6% for 

the first mode; from 5.1% to 1.2% for the second mode and from 3.2% to 1.5% 



78 

 

for the third mode for Case I and from 6.1% to 1.5% for the first mode; from 5.1% 

to 1.2% for the second mode and from 3.2% to 1.4% for the third mode for Case 

II. Time elapsed to reach convergence is reduced %25 in Case I. Change of design 

variables is shown in Figure 55 and Figure 56. 

Table 22. MAC Matrix for the Missile Launcher Model before Updating 

 

  Experimental Model 

 

   1
st
 Mode 2

nd
 Mode 3

rd
 Mode 4

th
 Mode 5

th
 Mode 6

th
 Mode 

 

Mathematical  

Model 

1
st
 Mode 0.969 0.041 0.000 0.000 0.000 0.000 

2
nd

 Mode 0.956 0.001 0.001 0.000 0.000 0.001 

3
rd

 Mode 0.000 0.245 0.034 0.007 0.001 0.001 

4
th

 Mode 0.022 0.705 0.061 0.001 0.001 0.003 

5
th

 Mode 0.002 0.163 0.860 0.062 0.016 0.003 

6
th

 Mode 0.008 0.001 0.003 0.003 0.002 0.018 

7
th

 Mode 0.003 0.000 0.007 0.871 0.112 0.123 

8
th

 Mode 0.003 0.001 0.018 0.389 0.941 0.000 

9
th

 Mode 0.005 0.000 0.001 0.286 0.036 0.828 
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Figure 54.  MAC Plot before Updating 

 

 

Figure 55.  Change of Design Variable for Case I 
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Figure 56.  Change of Design Variable for Case II 

 

Table 23. Comparison of the Natural Frequencies and MAC Values 

Natural frequency 

values 
MAC values 

 

  

  

%Difference 

before 

Updating 

%Difference 

after 

Updating 

  

Time 

elapsed(s) 

 MAC 

Value 

before 

Updating 

MAC Value 
 after Updating 

   

Case I 

1
st
 Mode 6.1 1.6 0.95 0.96 

4120 2
nd

 Mode 5.1 1.2 0.7 0.82 

3
rd

 Mode 3.2 1.5 0.86 0.87 

Case II 

1
st
 Mode 6.1 1.5 0.95 0.95 

5520 2
nd

 Mode 5.1 1.2 0.7 0.84 

3
rd

 Mode 3.2 1.5 0.86 0.87 
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CHAPTER 6 

 

CASE STUDY ON VIBRATION TEST FIXTURE USING 

FEMTOOLS SOFTWARE 

 

Completing the model updating of simple and large order finite element models, it 

is concluded to apply model update technique to a vibration test fixture by using 

commercial software Femtools. It has more capabilities to work with different 

finite element software and it can handle many different kinds of parameter sets 

simultaneously. It is also aimed in this thesis work to gain know-how, insight and 

application of a commercial finite element updating software in addition to 

developing custom procedures to do model updating work. Femtools uses finite 

difference method which computes the sensitivity values based on the differential 

method. It decreases the calculation time for sensitivity matrix and structural 

matrices in each iteration loop. The fixture is a previously designed test system 

fixture used to measure the complex modulus of viscoelastic materials [20]. The 

procedure uses two DOF driving point FRF method which takes 1
st
 natural 

frequency of test fixture into account. That’s why the natural frequency values of 

the test fixture must be high enough not to extract erroneous results for 

viscoelastic material. Modal analysis is carried by using Lanczos method within 

Abaqus software and modal parameters are extracted with commercial code, LMS 

software. In finite element model of the fixture, concrete and base plate are added 

to structure to obtain more precise modal results as shown in Figure 57. Concrete 

block is modeled 250mm wider than the base plate in width; whereas 100mm 

wider than the base plate in length. The thickness of concrete block is not known 

exactly. It is the most important discrepancy reason of modal results between 

mathematical and test model. As an initial assumption, thickness of concrete 

block is taken as 100mm. Sand under the concrete block is modeled as elastic 
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foundation in finite element analysis. Side interaction of concrete is assumed as 

more rigid than the bottom interaction with soil. Because, there is a layer consists 

of concrete and soil around the lateral surface of concrete block. The stiffness 

values are assumed 10
-2

N/mm
3
 for side surfaces of concrete and 10

-1 
N/mm

3
 for 

bottom surface. Young’s modulus of concrete is taken to be 30000 MPa. The 

number of nodes is 487021 and the number of elements 193934 for finite element 

model of fixture. First 3 natural frequency values and mode shapes are given in 

Figure 58. 

 

Figure 57. Finite Element Model of Fixture 
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1
st
 mode shape, 

172 Hz 

2
nd

 mode shape, 

208 Hz 
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Figure 58.  Results of modal analysis of fixture 

 

Modal test is carried with 30 three axis accelerometers as shown in Figure 59. The 

excitation is made through impact hammer onto 10 locations and 16 directions as 

given in Figure 60. Impact hammer and modal test configuration are shown in 

Figure 61 and Figure 62, respectively. The bandwidth of the measurement is 

1024Hz and the time of measurement is 4s for each impact. Measurement 

directions for the accelerometers are given in Figure 63. Driving-point FRF 

functions are shown Figure 64 and modal frequency values are identified. Modal 

frequency values are listed in Table 24. The CAD Model of the test fixture is 

shown in Figure 65.  

3
rd

 mode shape, 

461 Hz 
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Figure 59. Measurement locations of test fixture 

 

 

Figure 60. Excitation locations and directions of test fixture 
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Figure 61. Impact hammer with plastic tip 

 

 

Figure 62. Modal test configuration of test fixture 
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Figure 63. Measurement directions of test fixture 

 

Figure 64. Driving-point FRF functions 
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Figure 65. CAD Model of Fixture 

 

Table 24. Modal Frequency Values Extracted from Modal Test 

Mode 

Number 
Natural 

frequency(Hz) 

1 162.8 

2 317.6 

3 393.2 

4 439.9 

5 474.2 

6 479.6 

7 530.3 

8 601.9 

9 629.4 

10 823.4 

11 862.8 

12 904.2 

 

Due to the low correlation of modal results of finite element and test model of 

fixture, model updating procedure is applied to model. Effective parameters are 
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investigated by sensitivity analysis on modal results and they are included in 

updating process. The design parameters and the result of the sensitivity analysis 

are shown in Figure 66 and Figure 67. According to the sensitivity analysis, 5 

parameter sets are selected. The response set in sensitivity analysis includes first 9 

natural frequency and MAC numbers as shown in Figure 67.  Parameter 1, 2, 3, 5 

and 13 are used in updating procedure. Parameters 1, 2 and 3 are the stiffness 

values of the base in 3 global directions. Parameters 5 and 13 are the stiffness 

values of the side hole extensions which are made of steel. Initial parameter 

values are listed in Table 25. 6 iterations are needed to reach convergence. The 

change of parameters is demonstrated individually with respect to the iteration 

number in Figure 68 and Figure 69. Femtools interface is shown in Figure 70 and 

Figure 71. First 3 natural frequencies and first 3 mode shape are used in updating 

procedure and updating objective function is constructed to decrease the 

difference in the first 3 natural frequencies and increase the MAC number values. 

Finishing the model updating procedure, 1
st
 mode frequency difference is 

decreased from %6 to %2; 2
nd

 mode frequency difference is decreased from %34 

to %2 and 3
rd

 mode frequency difference is decreased from %17 to %2. It is also 

obtained that MAC values are increased up to %84 for 1
st
 mode; %86 for 2

nd
 

mode; %89 for 3
rd

 mode. Natural frequencies and MAC values before and after 

updating are compared with the experimental one in Table 26 and Table 27. 
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Figure 66.  Design Parameters 

 

Figure 67.  Design Sensitivity Graph 
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Table 25: Initial Design Paramater Values 

Parameters Parameter 

Number 

Values 

K_x(N/mm) Parameter 1 5000 

K_y(N/mm) Parameter 2 45000 

K_z(N/mm) Parameter 3 5000 

E(MPa) Parameter 4 205000 

E(Mpa) Parameter 5 205000 

 

 

Figure 68.  Change of design parameters 1, 2 and 3 
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Figure 69. Change of design parameters 4, 5 

 

Table 26: Modal Results before Updating 

 

Before Updating 

 

Frequency(Hz) 
% Values 

 

Test results Analysis results 

Frequency diff. 

(%) 

MAC values 

(%) 

1st mode 162 172 6.2 70 

2nd mode 317 208 34.4 84 

3rd mode 393 461 17.3 76 

 

Table 27: Modal Results after Updating 

 

After Updating 

 

Frequency(Hz) % Values 

 

Test results Analysis results 

Frequency diff. 

(%) 

MAC values 

(%) 

1st mode 162 165 1.9 84 

2nd mode 317 312 1.6 86 

3rd mode 393 400 1.8 89 
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Figure 70. Femtools interface-1 

 

Figure 71. Femtools interface-2 
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CHAPTER 7 

 

RESULTS AND DISCUSSION 

 

Background information is investigated about model updating theory and it is 

concluded that iterative methods are suitable for large order finite element models 

after testing the direct and iterative methods on simple, well known mass-spring 

system. In that analysis, direct methods have divergent behavior with less number 

of measurements DOF than the total number of DOF of the system. Direct 

methods are not appropriate for large order finite element models due to 

requirement of measuring all DOF of the system. 

Eliminating the direct methods for large order finite element models, Inverse 

Eigensensitivity Method is selected as candidate over Response Function Method. 

It can effectively be used with the large order finite element models. Whereas; 

RFM (Response Function Method) have high sensitivity to measurement noise 

and it can cause erroneous calculations of sensitivity matrices. 

An in-house computer code is developed in Matlab in order to perform model 

updating by using Inverse Eigensensitivity Method. The developed computer code 

uses commercial finite element software as a solver from where the modal results 

and sensitivities are obtained. To reduce the computational time, sensitivity matrix 

calculations are only executed when a specific error slope criterion is met. As the 

1
st
 application case, the improved code is applied on the GARTEUR structure and 

considerable improvement is obtained with updating process. The percentage of 

difference decreased from %9.2 to %1.6 for the natural frequency of 1
st
 mode and 

from %6 to %0.4 for the natural frequency of 2
nd

 mode. 
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Completing the application of code to GARTEUR model, large order finite 

element model of a missile launcher is updated via the improved custom Matlab 

code. The updating process is carried out taking into account the first 3 natural 

frequencies and the first 3 eigenvectors in the objective function. The results 

acquired showed that natural frequencies of the first 3 modes are improved 

prominently and MAC number of 2
nd

 mode shape is increased. It is concluded that 

with the developed computer code, it is possible to analyze the sensitivity of the 

modal results with respect to the parameters of finite element model and large 

order finite element models can be updated effectively by using the subparts in the 

finite element model. 

A previously designed special vibration test fixture is used as another structure for 

application of the model updating procedure. Due to the complex parameters of 

the test fixture and capability of handling many different parameter sets at the 

same time, commercial model updating software is used. Due to the unknown 

factors about the test fixture such as base material thickness, foundation stiffness, 

there is substantial amount of difference between the experimental and 

mathematical results of test fixture. Finishing the model updating procedure, 1
st
 

mode frequency difference is decreased from %6 to %2; 2
nd

 mode frequency 

difference is decreased from %34 to %2 and 3
rd

 mode frequency difference is 

decreased from %17 to %2. It is also obtained that MAC values are increased up 

to %84 for 1
st
 mode; %86 for 2

nd
 mode; %89 for 3

rd
 mode. 

In case of a divergent solution with the developed algorithm, there could be two 

reasons for that problem. First one is about the number of the measured 

coordinates from the modal test. Number of measured coordinates must be more 

than the number of design variables to have over determined problem. Another 

reason is about the parameter selection for updating process. Effective parameters 

must be selected to have reasonable results at the end of the updating which 

requires pre-analysis of structure to find the most effective parameter sets on 

modal results. 
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As a future work, code can be modified to work with some other commercial 

finite element software and different effective model update methods, correlation 

techniques can be added to algorithm to have more useful, generalized model 

update tool. 
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APPENDIX 

Finite Element Model Reduction and Expansion Techniques 

I. Guyan or Static Reduction 

In literature, Guyan reduction is also known as static reduction [15]. All structural 

matrices, force matrix and displacement matrix are partitioned into master and 

slave degrees of freedom. Master coordinates are needed to be kept and the slave 

degrees of freedom will be disregarded [15]. By assuming the force is applied 

only to the master coordinates. Then the following equation can be written [15], 

  

  

 

 

  

  

 

 

 

  0

mm ms mm msm m m

s ssm ss sm ss

M M K Kx x F

x xM M K K

             
         

               

 (1) 

 

The subscript ‘m’ is related to the master coordinates and the subscript ‘s’ is 

related to the slave coordinates.   is mass matrix,   is stiffness matrix,   is 

displacement and  ̈ is the acceleration where    is applied force to the master 

coordinate. Based on the assumption that the inertial forces are negligible, the 

equation (1) is written in a more compact form in terms of stiffness matrices [15], 

0sm m ss sK x K x   (2) 

 

The equation above which is referenced by equation number of (2) can be 

reoriented to disregard the slave coordinates such that [15], 

 

 

 

   
    

1

        
m

m s m

s ss sm

Ix
x T x

x K K


   
   

     

 (3) 
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In equation (3),  sT  designates the transformation vector between the master 

coordinates and full system coordinates and  I designates the identity matrix. 

Then equation (3) can be written in different way as follows [15]: 

    s mx T x  (4) 

 

And after taking the transpose of both hand side of the equation (4) [15], 

     
TT T

m sx x T  (5) 

 

By writing the potential and kinetic energy equations in terms of mass, stiffness 

and displacement vectors as follows[15]: 

    
1

2

T
PE x K x  (6) 

    
1

2

T
KE x M x  (7) 

 

In the above equations, the PE designates the potential energy and KE designates 

the kinetic energy, x is displacement and  ̇ is the velocity. After substituting the 

equations (4) and (5)  into equation (6) and (7), the modified formulas can be 

written as follows [15]: 

       
1

2

TT

m s s mPE x T K T x  (8) 

       
1

2

TT

m s s pKE x T M T x  (9) 

 

In the above equations, the term     
T

s sT K T  defines the reduced stiffness matrix 

and     
T

s sT M T  defines the reduced mass matrix. The assumptions and 
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derivations are only valid for the zero frequency response functions. By increasing 

the frequency, the inertial terms and mass effects dominates the dynamic behavior 

[15]. 

II. Dynamic Reduction 

This method was developed to modify the static reduction for a system which 

there is an effect of the dynamic forces on the system [15]. The transformation 

equation given in equation (3) was modified to take the inertial effects into 

account. The inertial forces were added to system matrices at the selected 

frequency. Reordering and modifying the equation (3), the equation ends up as 

follows [17]; 

 

 

 

       
    

2 1 2

                                

( ) ( )

m

m d m

s ss ss sm sm

Ix
x T x

x K w M K w M

   
   

        

 (10) 

 

The subscript ‘m’ is related to the master coordinates and the subscript ‘s’ is 

related to the slave coordinates.   is mass matrix,   is stiffness matrix and   is 

displacement. Then the reduced mass and stiffness matrices can be written by 

substituting the equation above [17]. 

III. Improved Reduced System 

Improved Reduction System was proposed by O’Callahan [19] by including the 

inertial terms to the static condensation formulas. 

The equation of motion for the dynamic system in frequency domain was written 

as [15]; 

  

  

  

  

 

 
2

0

0

ss sm ss sm s

mms mm ms mm

K K M M x
w

xK K M M

         
         
             

 (11) 
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The subscript ‘m’ is related to the master coordinates and the subscript ‘s’ is 

related to the slave coordinates.   is mass matrix,   is stiffness matrix and   is 

displacement. The equation (11) is valid where   equals to the natural frequencies 

of the system. By considering the first part of the equality in equation (11), the 

following formula can be reached [15]; 

           
1

2 2

s ss ss sm sm mx K w M K w M x


           (12) 

 

By substituting  
1

ssK


term as division and multiplication into the equation (12), 

the formula can be rewritten as follows [15]: 

               
1

1 12 2

s ss ss ss sm sm mx I w K M K K w M x


         
 (13) 

 

Using the binomial theorem and writing the dynamic equation balance in 

frequency domain by the static reduction process [15]: 

      
12

m r r mw x M K x


  (14) 

 

Where    is reduced mass matrix and    is reduced stiffness matrix.    

    
T

s sT K T  and        
T

s sT M T .And using the above formula by 

substituting into the equation (13), the equation can be written as follows[15]: 

                  
1 1 1

s ss sm sm ss ss sm r r mx K K M K M K M K x
      
 

 (15) 

 

The equation (15) can be written in a more compact form [15], 

    1

s s s r r mx T SMT M K x   (16) 

 

In equation (16), sT  is static reduction transformation matrix which equals to

   
1

ss smK K


 . 
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The transformation matrix for improved reduced system can be written as follows 

[15]: 

1

i s s r rT T SMT M K   (17) 

 

 

IV. SEREP(System Equivalent Reduction Expansion Process) 

The system equivalent reduction process which was introduced by O’Callahan 

and Li [19], uses the eigenvectors to relate the master and slave coordinates. The 

method takes into account the dynamic behavior of the system by keeping the 

eigenvectors. 

The displacement vector can be written by generalized coordinates as follows [15 

]: 

 

 

  

  

 

 

ss sms s

m mms mm

x u

x u

 

 

       
     
        

 (18) 

 

where   term defines the generalized coordinates; the subscript ‘m’ is related to 

the master coordinates and the subscript ‘s’ is related to the slave coordinates and 

[φ] denotes mode shape matrix. 

The principal displacement equation can be written as follows [15]: 

       p ms s mm mx u u    (19) 

 

 

where    is principal displacement. By rewriting the general equation (18) in 

more general way and extracting the part belongs to the master coordinates [15], 

    m mx u  (20) 

 

 
Then after taking the generalized inverse of both sides of the equation (20), 
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     m mu x


  (21) 

 

 

The  m  matrix has the ( )pn m size in which 
pn defines the number of primary 

degrees of freedom and m defines the number of modes considered. 

If
pn m , the generalized inverse is formulized as [15]: 

 
1

     T T

m m m m   


     (22) 

 

If
pn m , the generalized inverse is formulized as [15]: 

 
1

     T T

m m m m   


     
(23) 

 

 
By reusing the general formula for the generalized coordinates [15], 

 

 

 
 

   
s s

m m

mm

x
x

x






    
   

    

 (24) 

 

The transformation matrix for the SEREP can be written as follows [15]: 

 
 

 s

SEREP m

m

T





 
  
 

 (25) 

 

The SEREP method keeps the eigendata for the master degrees of freedom. It has 

advantageous aspects over the static condensation method [17]. The method is 

needed to be chosen where the model is used in a way of application area. The 

Guyan reduction is advantageous because of its simplicity to be applied [15]. 

Another reason can be explained as the use of the lower order eigendata in general 

applications. For that reason, the effect of the dynamic characteristics is generally 

low in which Guyan reduction process is applied. But in applications that the 

dynamic behavior is more substantial and the higher order modes are important, 



107 

 

the SEREP method or Improved Reduction System can be applied to the model 

[15]. 

I. Expansion using Theoretical Spatial Model – Kidder’s Method 

This method is based on the mathematical mass and stiffness matrix by applying 

the similar procedure given in Guyan reduction method. The generalized 

eigenvalue problem can be partitioned as follows [17]: 

  

  

  

  

 

 

2
0

0

r

ss sm ss sm s

r r

ms mm ms mm m

K K M M
w

K K M M





        
         
             

 (26) 

 

In equation (26),  
r

m belongs to the eigenvector of the measured degrees of 

freedom and  
r

s belongs to the eigenvector of the unmeasured degrees of 

freedom; [ ] belongs to mass matrix and [ ] belongs to stiffness matrix and    is 

the natural frequency of r
th
 mode. By writing the 1

st
 row of the equation (26) [17], 

           2 2r r

ss r ss s sm r sm mK w M K w M            (27) 

 

Then for the r th slave mode shape vector can be written as [17]: 

           
1

2 2r r

s ss r ss sm r sm mK w M K w M 


           (28) 

 

By applying the given formulation, the unmeasured degrees of freedom can be 

filled out by using the mathematical spatial data [17]. Awareness must be carried 

out by applying this technique. Because the matrix can be ill conditioned and the 

inverse procedure can cause erroneous solutions [17]. These problems generally 

can be solved by using the generalized inverse procedure instead of the direct 

inversion procedure [17]. 
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II. SEREP Expansion Technique  

The method is similar as the reduction procedure given in SEREP reduction. The 

procedure is based on the assumption that the full displacement vector can be 

formulated with the modes of the master coordinates [17].  

 

 

 
 

 s s

m m

x
q

x





   
   

    

 
 

(29) 

 

The subscript ‘m’ is related to the master coordinates and the subscript ‘s’ is 

related to the slave coordinates; [φ] denotes mode shape matrix,   is 

displacement,  and   is generalized coordinate vector. By using the row from 

above equation (29) for the master coordinates [17], 

    m mx q  (30) 

Then by using the generalized inverse for the equation (30), the generalized 

coordinate vector can be derived as follows [17]: 

     m mq x


  (31) 

The general equation can be rewritten as follows [17]: 

 
 
 

   s

m m

m

x x





 
  
 

 
 

(32) 

 

Then the transformation matrix for SEREP expansion can be written as [17], 

 
 

 s

SEREP m

m

T





 
  
 

 
 

(33) 
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Measurement Coordinate Numbers in IEM 

I. More Measurement Coordinates than the Number of Design 

Parameters 

Assuming the number of equations is more than the number of parameters, the set 

of equations is over determined. By using the definition of the least square 

solution and pseudo-inverse, the general equation (3.17) can be written as [16]: 

         
1

T T
S S S z 



 
 

 (34) 

The above equation can be reorganized with respect to the iteration number: 

              
1

1

T T

j j j j j m j
S S S z z 




   
 

 (35) 

Subscript ‘ ’ indicates the  th
 iteration, whereas subscript ‘ ’ indicates the 

measured quantities extracted from the experiment, S is sensitivity matrix,   is 

parameter vector and   is result vector.  

By defining the error or difference between the measured results and 

mathematical results [16]: 

    z S     (36) 

The objective function which needs to be minimized can be introduced as [16]: 

 ( ) TF     (37) 

By using the definition of the error term and inserting the related term in equation 

(37), the equation is modified as [16]: 

           ( )
T

F z S z S        (38) 



110 

 

By expanding the equation (38) [16]; 

             ( ) 2
T T TT TF z z S z S S          (39) 

The general problem with the given formulation, the equal weight is given to each 

element of the experimental results. In general, the natural frequency values can 

be extracted with high accuracy whereas the eigenvectors cannot [16]. The 

eigenvectors extracted from modal test contain more error with respect to the 

natural frequency values of the test structure [16]. For that reason, weighting 

matrix must be introduced to the general formula: 

      ( )
T

F W    (40) 

The  W  term defines the weighting matrix which is diagonal [16]. Its elements 

are the reciprocals of the variance of the experimental results. By reorienting the 

given equations including the weighting matrix, equation (34) and (35) can be 

written as [16]: 

           
1

T T
S W S S W z  



 
 

 (41) 

                 
1

1

T T

j j j j j m j
S W S S W z z  




   
 

 (42) 

By assuming the matrix     
T

S W S
 
 

is square and full rank, the set of 

equations can be solved. There may be some problems with the solution of the 

equations. The design parameter set solution given in equation (34) and (41) may 

be ill conditioned [16]. There are 2 reasons for the ill condition equations. First, 

the chosen set of design parameters has really low effect on the measurements. 

The second reason is that the set of parameters can have same kind of effects on 

the results [16]. 
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II. Less Measurement Coordinates than the Number of Design 

Parameters 

In many real case problems, the number of measurement coordinates is less than 

the number design parameters. The resulting equation set is under determined 

which means the number of unknowns is greater than the number of equations 

[16]. Infinite numbers of solutions satisfy the equations. Singular Value 

Decomposition or Moore-Penrose inverse for under determined equations can be 

used to solve these types of equations [16]. 

By using Lagrange Multiplier technique, the general equation can be written as 

[16]: 

        
1

T T
S S S z 



 
 

 (43) 

or by including the iteration subscripts: 

              
1

1

T T

j j j j j m j
S S S z z 




   
 

 (44) 

in which, subscript ‘ ’ indicates the  th
 iteration, whereas subscript ‘ ’ indicates 

the measured quantities extracted from the experiment, S is sensitivity matrix,   

is parameter vector and   is result vector.  

Different sets of design parameters have the effect on the dynamic properties of 

the structure. The amount of change in the design parameters can differ. For 

example, Young’s Moduli and shell thickness have really different values in 

magnitudes. For that reason, the normalization procedure must be carried out not 

to perform any numerical instabilities [16]. 

Another weighting matrix can be taken into account to reflect the real structure. 

Weighting matrix  W  was introduced to add the estimation errors into account 

in the finite element model [16]. For instance, the stiffness of the bolts cannot be 
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accurately estimated with respect to the density of a material. It is constructed as 

diagonal matrix whose elements are the reciprocals of variances of the parameters 

[16]. 

Assuming that all the parameters have the equal error in the finite element model 

is a simple way of calculating the weighting matrices. Introducing the weighting 

matrix into the general equation, the following equation can be written [16]: 

                  
1

1 1

1

T T

j j j j j m j
W S S W S z z  


 


   
 

 (45) 

Adding the effect of the errors in the measurements by using the weighting matrix 

for the measurements, the objective function can be oriented as [16]: 

           ( )
T T

F W W        (46) 

Putting the required terms and expanding the formula gives [16]: 

           

       

( ) 2

                 

T T T

T T

F z W z S W z

S W S W

 

 

    

 

  

  

 (47) 

Minimizing the above penalty function with respect to term   results in the 

parameter change as [16]: 

        
1

T TS W S W S W z   


     (48) 

Inserting the indices of iterative procedure: 

              
1

1

T T

j j jj j m j
S W S W S W z z   




       (49) 

As another approach, the weighting was done to the initial estimates of the 

parameters [16]. This approach can result in quantification of the error between 
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the last converged parameter set and initial values rather than difference in each 

iteration [16]. 

The objective function which is to be minimized is organized as: 

                  0 0
( )

TT
F W W            (50) 

  

      

                 0 0

( )

                 

T

T

j j

F W

W





  

     

 

   
 (51) 

In above equation (50) and (51), term  
0

 belongs to the initial parameter. 

By minimizing the penalty function after some mathematical manipulations, the 

equation can be reached given as below [16]: 

                     
1

0

T T

j
S W S W S W z W      



    
 

 (52) 

Inserting the iterative subscript     into the above equation [16]; 

          

                

1

1

0
            

T

j j j j

T

j m j j

S W S W

S W z z W

 

 

 

 




   
 

  

 (53) 

Finite Element Method and Model Testing 

Model updating procedure needs engineering insight about the mathematical 

model of the structure and experimental model of the structures. Mathematical 

model can be represented with analytical or finite element models. Experimental 

model is obtained via modal testing. 

Finite element method constructs the mass, stiffness and damping matrices of the 

whole structure according to the elements that are used in the model [17]. Each 
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element type (quad, beam, etc.) has own shape function to provide stiffness, mass 

matrices. Since, the use of finite element models increases, there is a need of 

comparison of the results with the test results. The deficient correlation between 

finite element and test results are generally due to numerical and physical 

uncertainties. These uncertainties can be listed as [17]: 

1. Physical uncertainties 

a. Boundary conditions 

b. Material data errors 

c. Geometry errors  

d. The exactness of the application of the loads 

2. Numerical uncertainties 

a. Deficiency for system knowledge 

b. Discretization errors like the element type used in the finite 

element analysis (beam elements, solid elements, bar elements, 

etc.) 

c. Numerical solution uncertainties (Convergence problems, etc.) 

The verification of the finite element model is generally based on the numerical 

eigenvalue and eigenvector comparison with the modal test results. 

After previously given basic parts of the model updating theory, the definition of 

the model updating can be summarized as the correction of the numerical model 

based on the test results to represent the dynamic behavior of the structure under 

defined loading conditions. 

By using the modal test results as a reference increases the importance of the 

modal test application and the quality of the modal test data. Brief information is 

given about the modal test. The measurement hardware has 4 parts: system to 

excite the structure; force transducer to measure the forcing input; accelerometers 

to measure the response of the structure; and analyzer to record and modify the 

test results like Fast Fourier Transformation method [17]. 
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The test apparatus has great significance in modal testing. In free-free case, which 

is there is no connection between the structure and the ground, the structure is 

supported with elastic springs. The requirement for the elasticity of the springs is 

to have much lower frequencies of rigid body modes than flexible mode 

frequencies [15]. The point of extracting mathematical model by using modal test 

or FE analysis is to identify the mechanical behavior of the structure and 

investigate the effects of the structural modifications. 

In modal test procedure, there are 2 ways to excite a structure. One of them is 

shaker which drives the stinger to apply a force to structure with proportional to 

voltage input. Stinger is an elastic rod which is used to transfer excitation to 

structure. Another way is to use impact hammer. Shakers can be electrodynamic 

or electrohydraulic driven. There is a possibility to make feedback control by 

comparing the force input to structure with the electrical input signal.  

 

Shaker can create different types of signals each having different types of 

advantages and disadvantages with respect to each other. The important signal 

types are [17]:  

 Swept Sine 

 Burst random 

 Sine chirp 

 Sine sweep 

 Periodic chirp 

 Random, etc. 

The definitions of the signal types are important while using shakers in modal 

tests. Swept sine signal is gradually changing sine signal moving from one 

frequency to another one. There is useful type of this signal that is popular in 

engineering called analog swept sine excitation. It has advantages like [17]: 
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 It has really low ratio of signal to noise level. 

 It can be used with the nonlinear system identification. 

Besides these advantages, some disadvantages occur. It is the slowest of the all 

methods and leakage is a problem [15]. 

Random signal is a stationary signal with Gaussian probability distribution which 

has frequency composition at all frequencies at frequency range that was 

specified. The test results from the random signal represent a linear approximation 

of the system. It is a fast method but again leakage is a problem [17]. 

The burst random excitation has a signal content which is a random signal that has 

a definite ratio of the data block [17]. After the random signal application part, the 

signal stops to cause the response of the structure to die out. Leakage problem 

with the burst random signal application is degraded with the time of dying out of 

the responses [17]. 

Sine chirp signal is a fast swept sine signal that has the frequency excitation 

within the sample interval of the FFT analyzer. It has own self windowing 

function and all advantages of swept sine signal [17]. 

There is an additional option as to use more than one shaker to excite the 

structure. It causes the energy coming from the excitation to be more evenly 

distributed throughout the structure [17]. The connection between the structure 

and the shaker is another crucial topic in shaker driven excitations. Because the 

mass effect of the force transducer and the rigidity of the connection must be 

taken into concern [15]. Stinger which is used to excite the structure by using the 

driving force produced by the shaker must be axially stiff, but with the bending it 

must be flexible [15]. It leads the structure to be separated from the shaker body. 

Another method that is used in modal testing is to use impact hammer. An impact 

hammer includes force transducer below its tip. According to the structure that 

needs to be excited and the frequency range of interest, the hammer mass or tip 
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stiffness must be changed [17]. This method has its own advantages and 

disadvantages. As an advantage, it is fast and easy method to carry out. But there 

are problems with this method, either. It is hard to excite large scale structures. 

The amount of energy must be enough to excite the structure which can cause 

damages at the excitation points and lead to non-linearity [17]. It is also hard to 

arrange the direction of the excitation. 

Transducers which were made with the piezoelectric materials used to measure 

the force input to excite the structure and response. The strain in the piezoelectric 

material is changed into voltage by the signal conditioners [17]. Accelerometers 

consist of mass connected to the casing material by the help of piezoelectric 

material. This system can be assumed as a spring mass system which has own 

resonant frequency far beyond the frequency range of concern for example 25 

kHz [17]. The way of connection of the accelerometers to the structure varies with 

the application areas and the physical conditions. These methods can be listed 

with using glue, magnets, bolts, beeswax. The transducers must not have an 

additional mass effect on the structure.  

The conditioning of the signals and the analysis of the vibration data is performed 

by digital processes. The signals coming from the transducers are changed into the 

digital signals by analog to digital converters (ADCs) [17]. 
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Although modal testing has lots of advantages to gain insight to dynamic 

properties of the structure, there are some limitations and problems with modal 

testing [15]: 

 The ability to attach the number accelerometers is limited. For that reason, 

the number of degree of freedom of the experimental model is always less 

than the mathematical model. 

 The number of the modes is limited by the selected frequency range and is 

sensitive to the resolution. 

 It is hard to model the hysterical and non-proportional damping of the real 

structure by finite element modeling. While modal testing can give results 

of the real structure, means there is always a difference between 

mathematical and experimental results. 

 Because of the non linearities, the lack of excitation of the real structure 

due to shaker limitations, high of the structure (fixed, free-free, etc.) of the 

mathematical model, the level of noise can cause some modes of the 

structure to be misses out. For that reason, modal testing needs lots of 

control and pre-test work. 

 According to the boundary condition same conditions must be satisfied in 

modal testing. But it is difficult to model the same boundary conditions in 

modal testing. For example, the rigid body modes will not be zero due to 

the suspensions used to handle the structure in free-free case. 

 It is possible to model the rotational degrees of freedom in finite element 

model by using the elements which have degrees of freedom apart from 

translation. But in modal testing, it is not available to measure rotational 

degrees of freedom.  

 In modal testing, noise is always a problem. To overcome that problem, 

the type of excitation must be selected carefully. The use of a filter shall 

be compulsory. 



119 

 

After the basic topics given about model updating and modal testing, it can be 

said that using the advantages of both techniques can be a solution to structural 

dynamic problems of mechanical components in real dynamic conditions. 


