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ABSTRACT

DEMONSTRATION OF ROBOTIC DEBURRING PROCESS
MOTOR SKILLS FROM MOTION PRIMITIVES OF HUMAN

SKILL MODEL

Parvizi, Payam
M.S., Department of Mechanical Engineering
Supervisor : Assoc. Prof. Dr. E. İlhan Konukseven

January 2018, pages

This study presents a new method to learn motor skills of robotic deburring
process from a human expert who is performing manual deburring operation.
By utilizing this method, it is possible to automate the robotic deburring process
of a workpiece with an unknown shape. In this work, the task-related movements
of the human expert are recorded using 6DOF and 1DOF haptic devices. Then,
the intrinsic movement primitives are parametrized by using Dynamic Movement
Primitive (DMP) method. By collecting dataset of parameters and weights of
this method, trajectories of complex behaviors can be generated. Moreover, this
method can adapt itself with respect to different start and goal positions. In
order to move from one position to other position in two-dimensional space,
rhythmic movements of human expert are extracted by using two-dimensional
DMPs.

v
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In addition, different fundamental studies have been done on general concentrated-
position DMP and local DMP. In general concentrated DMP, the experiments
are conducted on 6DOF haptic device, in which the manual deburring processes
on a workpiece are imitated and the results are used as primitives to accom-
plish general automatic deburring on the workpiece. Furthermore, Local DMP
performs like the human automatic controller which its aim is to control force
using movement primitives of the skills of a human expert in one dimension.
The experiments of local DMP are conducted on 1DOF haptic device interacted
with 6DOF grinding robot and piezoelectric actuator.

Moreover, automation of robotic deburring process on unknown workpiece re-
quires studies on tool deflection, collision, optimal velocity and surface shape
search. Different experiments have been performed in order to eliminate collision
and reduce form error on a workpiece. The results of experiments are analyzed
by scanning the surface of workpieces. Finally, our process is compared with an
alternative process and the time duration of each process is analyzed.

Keywords: Deburring Process, Industrial Robotic, Motion Primitives, Learning
from Demonstration, Motion and Path Planning

vi



ÖZ

İNSAN BECERİSİNİN HAREKET İLKELERİYLE ROBOTİK
TAŞLAMA İŞLEMİNDE GÖSTERİMİ

Parvizi, Payam
Yüksek Lisans, Makina Mühendisliği Bölümü
Tez Yöneticisi : Doç. Dr. E. İlhan Konukseven

Ocak 2018, sayfa

Bu çalışma manuel çapak alma işlemini gerçekleştiren operatörün, robotik çapak
alma işleminin motor becerilerini öğrenmesi için yeni bir yöntem sunmaktadır.
Bu yöntemi kullanarak bilinmeyen şekle sahip bir iş parçasının robotik çapak
alma işleminin otomasyonunu gerçekleştirmek mümkündür. Bu çalışmada, ope-
ratörün görevle ilgili hareketleri 6 ve 1 serbestlik dereceli haptik cihazlar kullanı-
larak kaydedilir. Ardından, içsel temel hareketler Dinamik Hareket Primitifleri
(DMP) yöntemi kullanılarak parametrelendirilir. Bu yöntemin parametrelerinin
ve ağırlıklarının veri kümesini toplayarak, karmaşık davranışların yörüngeleri
oluşturulabilir. Dahası, bu yöntem kendisini farklı başlangıç konumlarına göre
uyarlayabilir. İki boyutlu uzayda bir konumdan diğer pozisyona geçmek için
operatörün ritmik hareketleri iki boyutlu DMP kullanılarak çıkarılır.

Buna ek olarak, genel konum odaklı DMP ve yerel posizyonlama odaklı DMP
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üzerinde farklı temel çalışmalar yapılmıştır. Genel konum odaklı DMP’de, de-
neyler, iş parçasındaki manuel çapak alma işlemlerinin taklit edildiği ve iş parça-
sındaki çapak alma işlemini gerçekleştirmek için ilkel olarak kullanılan 6 serbest-
lik dereceli haptik cihaz üzerinde yürütülür. Ayrıca, yerel posizyonlama odaklı
DMP, operatörün becerilerinin bir boyutta hareketinin temel ilkelerini kullana-
rak kuvveti kontrol etmeyi amaçlayan insanın kontrol komutlarını taklit eder.
Yerel posizyonlama odaklı DMP deneyleri 6 serbestlik dereceli çapak alma ro-
botu ve pizoelektrik aktüatör ile etkileşimli 1 serbestlik dereceli haptik cihaz
üzerinde yürütülmüştür.

Ayrıca bilinmeyen iş parçası üzerinde robotik çapak alma işleminin otomasyonu
için takım sapması, çarpışma, optimum hız seçimi ve yüzey şeklinin belirlenmesi
üzerine daha ileri araştırmalara ihtiyaç duyulmaktadır. Bu amaca yöneklik, çar-
pışma kuvvetini ortadan kaldırmak ve iş parçasındaki yüzeydeki form hataları
azaltmak için farklı deneyler gerçekleştirildi. Deney sonucu, iş yüzeyi taranarak
analiz edildi. Son olarak, işlemimiz alternatif süreçle karşılaştırıldı ve sürecin
süresi incelendı.

Anahtar Kelimeler: Robotik çapak alma prosesi, Endüstriyel robotik, Hareket
İlkeleri, Gösterimden Makine öğrenimi, Hareket ve yol planlaması
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CHAPTER 1

INTRODUCTION

1.1 Deburring Process

After machining operation with different manufacturing methods, burrs that are
undesirable small pieces of material, remain attached to the edge and surface
of a material. Burr formation is one of the most critical issues that appear
during manufacturing. Although burrs are small in size, they can increase early
corrosion of the material, injury during assembly, failure in precision instruments
and increase stresses on the edge and surfaces of a machined part [1].

Deburring or burr removal is finishing process that removes burrs, increases the
functionality, performance, safety and quality of the machined part. Precisely
deburred machined parts are usually used for aircraft structures and medical
implants which the surface of these parts should be functionalized by micro-
structuring and better compatibility to get more efficient performance [2]. There
are many types of deburring processes which most common of them are Me-
chanical, Manual, Electrical, Thermal and chemical deburring [1]. Nowadays,
by increasing the demand for high quality and precisely machined parts, robotic
deburring also gained attention in the industry.

Manual deburring is the most extensively used deburring process in the indus-
try. In this process, tools are low-cost and human expert is able to accustom
him/herself to many different parts. Also, he/she has inherent added inspection
effect [1]. Human expert performs the process by using his/her three senses,
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simultaneously. Human expert has special wrist and hand motions when using
the tool which is the optimal motion on the workpiece, Figure 1.1. Also, by
touching the workpiece, the expert understands the surface roughness while de-
burring on the workpiece. Besides, by hearing the sound of the process, he/she
can figure out the burr size and hardness of the material. In addition, an expert
can understand the roughness of the workpiece by using the vision. Besides a
lot of advantages of manual deburring, this process has many disadvantages.
Human expert has the lack of repeatability and mass processes which the per-
formance can change due to physical and psychological fatigue. In addition, the
requirement of micron-size resolution deburring/grinding process cannot be per-
formed by expert dexterity. Human senses are incapable of recognizing surface
roughness in micron-size resolution.

Figure 1.1: Manual deburring process on medical component

Over the past years, by increasing the necessity of repeatability, mass production
and high precision machined materials, robotic deburring become widespread.
Although deburring robots have possible senses of vibration, vision, sound and
Force/Torque (F/T) sensors, in precise robotic deburring processes, these senses
are not preferred because of the high value of noise with respect to burr size.
For this reason, there is a complete lack of understanding of the burr removal.
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Since the generation of a path for a task cannot be programmed for every sit-
uation (or robot-environment interactions), a higher level decision-making ap-
proach based on an already expert system’s internal model of its environment
might be extracted through a proper mathematical method and be replaced
with the traditional methods. Therefore, the best choice is to associate the ad-
vantages of manual and robotic deburring processes. Accordingly, the optimal
alternative is to develop a robot that can mimic human expert skills by using
Force/Torque sensors.

1.2 Robot Imitation

The study of imitation in robotics has been developed to produce machines
which are flexible in different circumstances and able to utilize skills of human
expert. Robot that imitate human expert has to know what to imitate and be
able to map its perceptions onto its actions. Moreover, a capability of the joints
and links of the robot to imitate the extracted skills from the expert who has
unique set of joints and link structure with associated dexterity, must also be
determined.

In order to imitate a human, foremost, robot needs to detect the demonstrator
and percept his/her actions. The general solution to percept human movements
is perceptual-motor primitives (Movement primitives) to provide basic informa-
tion on how a human is moving. Movement primitives are a representation of
action sequences for generalized movements that conclude to goal [3]. By us-
ing parameters in the form of a parameterized motor controller, a movement
primitives can be formalized as a control policy to obtain an intended task.

Secondly, once the actions of human expert have been perceived, robot has to
map the perceptions of movement primitives in a sequence of motor actions
with the same outcome. The problem of mapping the perception and action is
"correspondence problem". The human and robot body are not the same; which
links and joints of human and robot are different and have diversified link and
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Figure 1.2: Movement primitives of human for shaking hand

actuator responses. Correspondence problem can be solved by giving a robot
the ability by "Learning by demonstration" and "Learning to imitate". In Learn-
ing by demonstration, a new task is acquired by the robot. The robot learns
how to perform the physical task of the demonstrator, shown in figure 1.3. For
this, robot has been neutralized and demonstrator tries to perform a task by
driving the robot structure to perform the task directly or teleoperation can be
performed which solves the correspondence problem. However, in "Learning to
Imitate", when the ability to imitate is learned, robot learns how to solve the
"correspondence problem" through experience using learning algorithms [4].

1.3 Thesis Motivation and Objective

Going through the introduction of the manual and robotic deburring process and
robot imitation, one can realize that the main concern is to transfer the skills
of human expert while performing manual deburring to robot in micron-size
resolution. In order to provide robot to imitate human expert, some problems
must be stated.

As the generation of wrist movements cannot be adapted for every task, the
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Figure 1.3: Learning by demonstration

useful representation of a task should be indicated. The mathematical model
represented for a task has to have proper parameters, commands, controls and
state representation. Also, model of task must be in the form of generalization.
Primitives of a specific task create a family of movements that all converge to
the same goal. In addition, In order to transfer the model of specific task, there
has to be a setup to record wrist movements, quickness and exerted forces of
human expert on the workpiece. Furthermore, after modeling a specific task
of human expert, it must be transferred to robot. However, robot actuators,
links, motion and speed constraints are not the same as human expert which is
correspondence problem. Therefore, the movement derivatives have to be scaled
and controlled, and after experiments with robot, trial and error learning must
be performed.

General motivation of this study is to develop a mathematical system by using
Dynamic Movement Primitives. In order to do this, we build a setup which
contains the force/torque sensor under workpiece to measure 3-D forces coming
from expert and haptic device to measure movements of the wrist of human
expert. Also, by using this information, dynamic movement primitive method
is considered. Dynamic Movement Primitive (DMP) is a method of trajectory
modeling motivated by the desire to find a way to represent complex motor
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actions. DMP is generally implemented in grasping, placing movements of the
robot arm and the movement of locomotion robot in dynamic environment.
However, in this study, DMP is going to be implemented in robotic deburring
process at micron-size resolution. Finally, correspondence problem is going to
be solved by taking advantage of grinding model that is implemented for robot
before [5]. In addition, our motivation is to have automatic robot that is able to
perform deburring/grinding process on the unknown workpieces with different
shapes.

It is necessary to state that, the aim of this study is to transfer the hand move-
ments of human expert, recorded with haptic device, to a robot.

1.4 Thesis Outline

The main chapters of this thesis are about the development of robotic deburring
process with motor skills from movement primitives of human skill model.

Subsequent to the introduction of the study in chapter 1, chapter 2 deals with
a literature review of previous similar studies. Literature survey includes the
presentation of similar studies and studies that are not related but inspiring.

Chapter 3 deals with the experimental setup used in this work. In order to
transfer skills of a human expert to the robot, the setup has to be built to record
human movements and forces. Also, the robotic deburring/grinding setup which
contains a parallel manipulator (hexapod), spindle, workpiece and a piezoelectric
actuator is presented.

Chapter 4 is the main conceptual chapter of this thesis. The general method that
has been inspiring for us on doing this thesis work is presented in this chapter.
This method helps us to model movement primitives of skills of a human expert
for a specific task. Also, parametrization of DMP is studied.

In chapter 5, the method of DMP is modified with respect to generation of inter-
action force between tool and workpiece in deburring/grinding process. These
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interaction forces affect the trajectory. Therefore, in this study, nonlinear dif-
ferential equation part of DMP method is modified using deburring force.

In Chapter 6, we dealt with the correspondence problem by utilizing a teleop-
eration scheme. An experimental setup consisting of F/T sensor and a 1DOF
haptic device has been constructed and discussed in this Chapter. We obtained
human expert’s hand movements in one dimension and extracted the movement
primitives. DMP method is modified to accommodate a force trajectory rather
than a movement trajectory.

Another task of this study is to automatize the robotic deburring/grinding pro-
cess. The DMP method is not enough alone to cover automation. The remaining
studies are discussed in chapters 7 and 8 include tool deflection, collision, layer
selection, ramp step search and ANN for feed-rate selection. In chapter 7, the
aforementioned concepts have been introduced and in chapter 8 experiments
and results associated with them have been shared. In addition, in chapter 9,
the experimental procedure for automatic robotic deburring/grinding process is
explained.

Finally, in chapter 10, an alternative obvious process other than our main ap-
proach has been investigated. The time duration for cutting in each process is
compared. In addition, the surface of the workpiece before and after grinding
process is scanned and discussed.
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CHAPTER 2

LITERATURE SURVEY

In industry; tasks, such as deburring/grinding, requires adaptation to constantly
changing part geometries. Evidently, skillful human workers do these tasks for
any possible geometry. The setbacks of manual deburring and implications of a
successful autonomous deburring cell for industry have already been discussed
in chapter 1. In order to achieve high level of autonomy, robotic deburring needs
to be more adaptable than its current state of the art. The bottleneck of adapt-
ability for such tasks is all about the difficulty of generating a solution trajectory
dynamically and correctly. An important observation on this is stated in [6] as
"Many control problems take place in continuous state-action spaces, e.g., as in
manipulator robotics, where the control objective is often defined as finding a de-
sired trajectory that reaches a particular goal state. While reinforcement learning
offers a theoretical framework to learn such control policies from scratch, its ap-
plicability to higher dimensional continuous state-action spaces remains rather
limited to date".

As a trajectory generation method, Dynamic Movement Primitives (DMPs) are
suitable for general applicability in robotics. It concerns with how to formalize
complex nonlinear dynamic equations without the need of manual parameter
tuning and the danger of instability [7]. The mainstream DMP equation is
based on nonlinear attractors where a linear mass-spring-damper system is cou-
pled with a nonlinear term. The mass-spring-damper system acts as an attractor
where the attraction is the target or the goal point. Depending on the start posi-
tion, the trajectory is generated converging to the goal point. Combining all the
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joint DMPs and applying necessary torques can generate an end-effector move-
ment that is required to perform a task. This approach alleviates the danger
of instability while allowing generation of complex nonlinear dynamics. Before
reviewing the main approaches on DMPs that can be applied to deburring, let’s
digress and talk about a mobile robot case and the importance of human demon-
strations. There are mobile robot path generation methods that use Artificial
Intelligence (AI) concepts such as Decision Trees, Bayesian Networks, Searching,
and Neural Networks. The most prominent example is driver-less cars for this
type of tasks, where a car senses the environment and dynamically generates a
path to follow. This is a too broad and unrestricted task. However, traffic rules,
models of general human behavior on traffic, reactions of real human drivers,
and experience can be useful to restrict the search space and make the prob-
lem tractable. Also, real human driver demonstrations can be utilized for the
solution of such a task. In fact, the human approach on driving a car is the
most valuable piece of knowledge for a driver-less car AI since humans already
solved how to drive a car and the traffic environment requires inevitable hu-
man interactions (unless until a completely driver-less future). In this example,
the requirement of human demonstrations stems from both the difficulty of the
problem (immense search space) and the environment.

Broadly speaking, the robotic deburring task is an interaction control topic.
Hogan’s [8] and [9] papers on interaction control is the root of similar studies.
However, in a more specific study [9], Hogan identifies the types of movements
as sub-movements, oscillations and mechanical impedance. Sub-movements are
basic mathematical functions and can be used to generate any discrete move-
ment. The oscillations are special combinations of sub-movements and can be
used to generate rhythmic movements. The mechanical impedance is a relation
between interaction forces and the motion. It is a dynamic operator defined as
a mapping from given displacement, velocity and acceleration to the forces.

In deburring, reaction forces (cutting forces) plays a crucial role in the end
quality. Thus, the trajectory is expected to be adaptable based on the force
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feedback. For force dependence, in [10], learning movement primitives for force
interaction tasks is investigated. The approach relies on kinesthetic teach-in
where correspondence problem is not presented. The problem they worked was
a “pull and flip” task. In their work, control modalities (position control and
force control) are decided based on movement primitives. They also worked on
composition of movement primitives. In [11], the human deburring expert’s hand
movements are modeled via Artificial Neural Networks (ANNs). Force inputs
and orientation of the tool on the workpiece is used for generating a control
strategy.

In the exciting work of Pastor, [12], human grasping and placing movements
imitated by a robot. The author addressed correspondence problem, gener-
alization, and robustness against perturbations. The correspondence problem
occurs if the robot link and joint structure differ from that of the human arm.
The generalization concerns with the ability to suit a demonstration to different
start and goal positions. The robustness is important due to changing envi-
ronment conditions (consider grasping a water bottle at different positions of a
table). These problems are solved using Dynamic Movement Primitives (DMPs)
method. DMPs solve generalization and robustness problems inherently, how-
ever correspondence problem requires further elaborations. For comparison of
the DMP performance versus human performance, [13] contains a very explana-
tory figure (Figure 2.1). In the figure, DMPs generalization capabilities are
emphasized. On the right-hand side, a single DMP is used for generating paths
with same dynamics but different goal positions. On the left-hand side, human
demonstrations are shown. Assuming extraction of the DMP from blue curves,
the DMPs can generate the red curve on the right figure.

In [14], learning aggressive maneuvers for obstacle avoidance for UAVs is consid-
ered. Human remotely pilots the UAV and avoids obstacles. These maneuvers
are recorded and modeled using DMPs. In this study, DMPs are extended using
nonlinear contraction theory. Then, for different start and end positions, com-
plex trajectories generated without considering the flight model of the UAV.
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Figure 2.1: Left: The human generated paths. Right: The DMP generated
paths

Also, simple DMP based obstacle avoidance is considered in [13], Figure 2.2. It
can be extended to multiple obstacle avoidance and avoidance of moving obsta-
cles as well. In robotic deburring, the forces change abruptly during a deburring
task based on local hardness of the burrs. These forces can be considered as
obstacles and avoiding them might be possible using DMPs following the afore-
mentioned studies. More importantly, human experts need to reach the edge
with burrs in order to perform the task. Thus, they need to avoid hitting other
edges or the part. The segments of DMPs used for reaching to the burred region
needs also obstacle avoidance not only for end-effector but also for the entire
body of the robot.

An extension of DMPs using probability theory is given in [15]. It concerns
with batches of movement primitives. In that respect, the authors conjecture
on applicability of probability theory for many desired mathematical operations
on DMPs. These operations are given as co-activation, modulation, optimality,
coupling, learning, temporal scaling, and rhythmic movements. The correspond-
ing probabilistic operations are identified as a product, conditioning, encode
variance, mean-covariance, maximum likelihood, modulate phase and periodic
basis.

The idea of extending trajectory generation problems into Hilbert spaces is com-
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Figure 2.2: Obstacle avoidance example. Red line: A DMP generated path.
Black dot: An obstacle

bined with DMPs concept in [16]. The norm and relationship with DMPs are
explained and choosing a suitable norm is defined as an optimization problem
(Hilbert Norm Minimization).

Since in DMPs every joint moves in tandem and has its own DMPs; thus, di-
mensionality reduction becomes an important subject. In [17], dimensionality
reduction for probabilistic movement primitives is given (ProDMPs). They used
expectation maximization to extract the unknown synergies from a given set of
demonstrations. They showed their ProDMP method is more efficient both for
encoding the learned trajectories and for applying Reinforcement Learning with
Relative Entropy Policy Search (REPS). This work is an extension of [15].

In most of the DMP research, learning is carried out for a single or a few demon-
strations. This results in poor generalization capabilities. In [18], learning DMPs
from multiple demonstrations is considered. Their approach efficiently encodes
multiple demonstrations by shaping a parametric attractor landscape in a set
of differential equations. In other words, it focuses on what can additionally be
learned from each demonstration instead of recording every demonstration and
encoding them inefficiently.
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Combining learned primitives is also an important problem. A task can be solved
by combining different movement primitives smoothly without actually altering
their dynamics. This induces two questions. How a movement primitive can
be segmented? And how they can be combined even though their dynamics are
different? In [19], a planning methodology for sequencing movement primitives
is given. Their approach relies on a search tree where each node represents a
reachable valid configuration, and edges represent a path between parent and
child nodes. Joining a node to one of the subsequent child nodes is done using
concatenation of paths. They used A* search method to traverse the tree and
select locally optimal combinations of movement primitives. In [15], as we al-
ready discussed, the probability theory helps smoothly construct paths based on
multiple movement primitives. An example of combining different DMPs taken
from [15] is given in Figure 2.3.

Figure 2.3: Combination of two demonstration

In [20], we introduced the specified DMPs (sDMPs) approach. The sDMPs
use a contact term in the nonlinear part specific to deburring task (can be
extended to any interaction task) to include the effect of tool part interaction.
This coupling term is multiplied with the resultant force exerted on the tool tip.
As the literature review suggests, the DMPs are more common in locomotion
of robots and humanoid robot arm tasks. In these tasks, the environment is
highly dynamic but the robots do not need to be precise. However, in robotic
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deburring, the environment can be considered static but the movements have
to be precise. Thus, the aim of the study was to introduce the coupling term
and apply the DMPs on deburring task. A haptic interface is utilized to capture
the human participants’ hand movements as demonstrations on an experimental
setup.

In [21], a concept called Interaction Primitives (IP) is investigated. The IP is
used for learning multiple interaction patterns between two agents (i.e. robot
and human) from unlabeled demonstrations. The IPs are DMP based. This
approach can be useful for robot-human collaborative tasks.

There are also Beta Process Auto Regressive Hidden Markov Model (BP-AR-
HMM) methods [22]. It is also a DMP based framework for representing dy-
namical systems. They showed in [22], that the proposed approach helped a
robot to learn a multi-step task from unstructured demonstrations. [23] also
employed BP-HMM for teaching a complex sequential task, pizza dough rolling
to a robot. They separated the motion into reach, roll and reach back segments
(action primitives rather than motion primitives) and calculated their transition
probabilities. Then, they trained the model on human demonstrations to learn
robot controller parameters. However, they used manually tuned parameters.

In deburring process, qualified surfaces in micron-size resolution operations have
to be obtained. A specific motivation of this paper is to introduce a new trajec-
tory model by taking inspiration from DMP methods used in literature survey,
then, after the necessary modifications, introduce new trajectory model.
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CHAPTER 3

EXPERIMENTAL SETUP

In order to determine the deburring skills of operators’, various experimental
setups are required. Since the mathematics explained in chapter 4 requires
recording of movements (e.g., position, velocity, acceleration) as well as force,
setups are facilitated to allow these measurements. Recording movements of
hand motion of operators’ dictates usage of some sort of a haptic device. A haptic
device, in general, records human hand (or other limbs) movements and provides
force feedbacks to reply a virtual environment. The virtual environment can be,
for instance, a virtual surgery on a tissue. The operator moves the end-effector of
the haptic device and this results in the movement of the surgical tool in virtual
environment. This tool, when interacted with the tissue, generates forces. These
forces are then conducted to the operator in real world via haptic device’s motors.
Force feedback is an integral part of all haptic devices. However, in our study,
we only require the haptic device’s measurements of hand movements and its
derivatives, since we eliminate the virtual environment and deal with real world.
A representative pictorial description of haptic devices is provided in Figure 3.1.

Since commercial haptic devices provide a fair amount of accuracy, we utilized
a Phantom 6DOF haptic device. However, since the stiffness of the haptic
device as well as its calibration validity in its entire workspace is debatable
for our micron-size resolution deburring operations, we also came up with a
1DOF haptic device which provides more precise but single degree of freedom
measurements. This 1DOF device allows us to manipulate the piezoelectric
actuator, i.e. in teleoperation mode, as will be explained in Section 3.3. The
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Figure 3.1: Two haptic devices are being used for surgery in virtual environment

subject of "General concentrated position DMPs" is related to 6DOF haptic
device and "Local DMPs" is related to 1DOF haptic device. These concepts are
explained in chapter 5 and chapter 6 respectively.

Apart from measurements, a controlled environment is required for conducting
the experiments. This environment has been provided in our laboratory from
previous studies [24]. This experimental setup consists of a hexapod parallel
manipulator (PI M-824), a piezoelectric actuator (P-602), a high speed spindle
(BMR Z42-M160.19 K1S2), a cBN tool, 6DOF F/T sensor (ATI GAMMA IP60
SI-130-10), a tool changer (3R-600.24-S), and a hand driven precision linear
stage. The purpose of this deburring setup was to obtain a deburring/grinding
model for cBN tool bits.

Since we have used several experimental setups, it is necessary to summarize the
above-mentioned devices and give their names here:

1. 6DOF haptic device and related setup

2. Deburring/Grinding robot enumerate environment

3. 1DOF haptic device and related setup
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In the remainder of this chapter, we will provide detailed descriptions of the
aforementioned experimental setups and their components.

3.1 6DOF Haptic Device and related setup

The human operator moves the deburring tool in 6 directions and angles (i.e., in
6DOF). In order to record these movements, we constructed the experimental
setup shown in Figure 3.2. A deburring tool is instrumented with a spindle that
is attached to the end of a haptic device. In this configuration, the haptic device
is used to measure the displacement, velocity and acceleration of the tool. The
human expert grasps the deburring tool and moves it against a workpiece to
perform the deburring operations [11].

Figure 3.2: 6DOF haptic device, deburring tool, workpiece, and F/T sensor

The workpieces which are used in this study are fixed to a fixture under which
a six-axis F/T sensor ATI FT07638 is placed to measure the force and torque
acting on them, Figure 3.3.

Our workpieces have different surface profiles with a varying height, Figure 3.4.
Also, the deburring tool is a cBN abrasive bit from PFERD Company. These
workpieces provide standardized study material for repeated experiments.

The haptic device end effector is standardized and its dimensions and mount-
ing points can be found in the producer’s datasheet. However, we mounted a
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Figure 3.3: A close up of workpiece, F/T sensor, and the heavy metal block

Figure 3.4: Different workpiece profiles
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different tool (a deburring tool) to the end-effector. This tool has relative po-
sition with respect to the haptic device’s end-effector. In order to obtain the
tool tip position after mounting the cBN tool bits, we scanned the end-effector
and the deburring tool simultaneously and obtained the tool tip position from
the point-cloud data as shown in Figure 3.5 (point cloud data is obtained using
Artec Spider scanner). After that, as it can be seen in Figure 3.6 cylinders and
planes are fitted to obtain the geometrical properties of the system in Solid-
Works. This provides an accurate tool tip position and orientation with respect
to the standard haptic device end-effector. After obtaining offsets (in position
and orientation), we obtained the transformation matrix and incorporated this
matrix in the software we developed for measurements.

Figure 3.5: Scanned figure of deburring tool of 6DOF haptic device

Data of the wrist coming from the haptic device is obtained, then by calculating
the translation and the rotation of the tool tip coordinate frame with respect to
the wrist coordinate frame and obtaining the transformation matrix, the position
and the velocity of the tool tip can be validated. Forces on the F/T sensor and
the position of the haptic device are measured simultaneously. These data are
then used in DMP model for parametrization.
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Figure 3.6: Cylinders are fitted to the point cloud data using SolidWorks to
obtain the orientations and offsets

As can be deduced by the reader, the 6DOF hand movements are unique set of
movements that may or may not be transferred to the deburring/grinding robot
directly. As we will explain shortly, the deburring robot utilizes a Hexapod
parallel manipulator which has limited position, velocity, and acceleration range
and has very different joint and link structure and geometry from human’s (i.e.,
their kinematics and dynamics are completely different). This particular prob-
lem is referred to as the correspondence problem occurring in most imitation
learning tasks. In order to resolve this problem, we studied towards learning by
demonstration via teleoperation (i.e., imitation from demonstration). To this
end, a 1DOF haptic device and related experimental setup are devised. Teleop-
eration completely eliminates the correspondence problem since it only allows
compatible movements by restricting the human operator to perform the move-
ments that robot can do.
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3.2 Deburring/Grinding robot

The deburring/grinding robot was developed for modeling the deburring/grinding
tasks for cBN tool bits. It is a controlled environment with which we can per-
form deburring/grinding tests on defined workpiece surfaces. Hexapod parallel
manipulator is the main component of this setup. It provides 6DOF movement
with high accuracy and repeatability. However, it is too slow to imitate human
hand movements (1 mm/s). Hexapod is fixed on a heavy block of metal and
the moving surface is free and connected to F/T sensor and spindle. On the
other hand, the workpiece is connected to piezoelectric actuator and the piezo-
electric actuator is connected to the heavy metal block. The spindle is moved
by hexapod and the motion is near the workpiece. Similarly, the piezoelectric
actuator can move the workpiece near the spindle. Therefore, cutting action
can be obtained either by movements of hexapod or piezoelectric actuator. Fur-
thermore, the spindle is high speed and speed regulated (thus provides constant
speed regardless of the torques on the tool). The overall picture of the deburring
setup is shown in figure 3.7.

Figure 3.7: Overall setup of the deburring robot
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In our teleoperation experiments explained in section 3.3 in conjunction with
the 1DOF haptic device setup, requires fast and accurate movements of either
the tool or the workpiece. In this case, the piezoelectric actuator provides the
necessary speed and accuracy. Therefore, we chose to move the workpiece via
piezoelectric actuator.

Figure 3.8: P-602 piezoelectric actuator.

The piezoelectric actuator is the main component we focus on from this previ-
ously developed setup, figure 3.8. Therefore, it is mandatory to provide informa-
tion regarding its capabilities. For this matter, the actuator is P-602 Piezo-Move
flexure-guided piezo actuator from PI Company. Mainly, a piezoelectric actua-
tor utilizes a piezoelectric crystal which is an active material that can respond
to electricity and pressure. When provided with electrical current, it elongates
and with the help of the flexural mechanism, it can quickly return to its default
position when the current is removed. Conversely, when provided with pres-
sure, it produces electricity. In this setup, a linear guide restricts the motion of
the piezoelectric actuator from one end, but, the other end is connected to the
workpiece. So, the workpiece slides with the linear guide and controlled solely
by piezoelectric actuator.

The piezoelectric actuator requires PI E-610.S0 LVPZT motion amplifier/ con-
troller circuit board. This board has proportional-integral type control mecha-
nism ready to use. The piezoelectric actuator can move 1 mm only. Despite its
short range, the resolution is approximately 7 nm in closed loop control mode.
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The control input of the piezoelectric actuator is the voltage provided from a
Data Acquisition card (DAQ NI6052e) and results in displacement (0 to 1 mm).

The remaining main components are Hexapod, Force/Torque sensor, and the
spindle. Hexapod is a parallel manipulator capable of moving in 6DOF. The
model we have in our setup is H-824 from PI Company. Since the spindle and
the F/T sensor are connected to the moving end of the Hexapod, it provides the
main motion for the modeling purposes required by the previous studies. Thus,
it moves the cBN tool in a desired position and orientation on a trajectory.
However, in this study, we only used a one-directional constant speed movement
to carry the spindle in perpendicular to the direction of piezoelectric actuator
motion. The interaction between the tool and the workpiece results in cutting
forces and these forces are recorded using the F/T sensor.

3.3 1DOF Haptic Device and related setup

The idea of utilizing DMPs in metal cutting and finishing operations is a new
concept and humbly we provide the first steps towards this novelty. There
are other similar works related to more general tasks such peg-in-hole place-
ment, grasp-and-replacement etc. that utilize also teleoperation with DMPs
[25]. However, such an approach is not tested on high precision processes such
as deburring. Thus, in this study, we developed a teleoperation system utilizing
a 1DOF haptic device for deburring operations to prove conceptual viability of
this approach.

The haptic device consists of a motor attached to a knob via a timing belt. When
the operator rotates the knob, a rotation angle is resolved from the encoder em-
bedded within the motor. Also, a torque sensor is mounted between the knob
and the setup that allows measurement of the torque applied by the operator.
This device is connected to the computer using a DAQ. A MATLAB Simulink c©

model is developed for receiving and transmitting information between the de-
burring/grinding robot and the 1DOF haptic device. The workpiece is attached
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to the piezoelectric actuator within the deburring robot. When the operator
rotates the knob which is shown in figure 3.9, piezoelectric actuator moves back
and forth accordingly, thus moves the workpiece. This is the teleoperation part
of the setup.

Figure 3.9: 1DOF haptic device figure

Since the piezoelectric actuator is very fast and withstands a fair amount of
load, we are free to rotate the knob in a natural way comfortable to human
operator physiology (i.e., it doesn’t restrict the speed or acceleration of human
hand during the operation). However, we also utilize force feedback mechanism.
In the deburring robot, we measure forces and torques. Therefore, the cutting
forces are fed back to the operator via the motor of the haptic device. This way,
the operator is aware of the cutting forces, thus provides better cutting action.
On the Simulink model, a display shows the instantaneous cutting force. The
operator both look at the cutting force shown in the monitor and feel the force
from the haptic device simultaneously.

Knob is at zero angle (relative) when starting an experiment. A 60◦ clockwise
rotation of knob corresponds to 1 mm (limit of elongation of the piezoelectric
actuator) movement of piezoelectric actuator towards the tool. At zero angle, a
counterclockwise rotation does not result in movement of piezoelectric actuator
since the actuator is at its minimum elongation, shown in figure 3.10. During
the operation, for the purpose of post-processing and DMP model extraction,
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Figure 3.10: Relative clockwise or counterclockwise 1DOF haptic motion with
respect to piezoelectric actuator

we recorded the knob movements, piezoelectric actuator movements, time in
nanosecond, and the force data in a dataset.
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CHAPTER 4

METHODOLOGY OF DMP

In order to model complex behaviors of human movements and maybe force in-
teractions coming from the experiments, nonlinear dynamical systems are suit-
able. They have been used to model discrete and rhythmic movements, such as
biological motor control and robotics. Both discrete and rhythmic movements
are point attractive and independent of the initial conditions of the trajectory.

The aim of this chapter is to model point attractive discrete and rhythmic move-
ments by using weak nonlinear dynamical systems and then strengthen it with
the added nonlinear learn-able term. Also, This model has to be independent
of start and goal stations of the trajectory taken from experiments. The model
that is explained in this chapter is published by S.Schaal from [7].

4.1 Development of Model

The simplest possible model which has most convenient dynamical system and
also dependent to movements and its derivatives is mass-spring-damper model.
The mass-spring-damper model with nonlinear learn-able form is,

τ ÿ = α(β(g−y)− ẏ) +f(x) (4.1)

This model can be converted to first order model with nonlinear dynamical
system,
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τ ż = α(β(g−y)− z) +f(x),

τ ẏ = z

(4.2)

Equation 4.2 is the transformation system where y,ẏ and ÿ correspond to desired
trajectory position, velocity and acceleration, α and β are time constants. τ is
a temporal scaling factor and g is the desired end position. Also, f(x) is the
nonlinear learn-able term added to mass-spring-damper model [18].

Values of α and β are proportional to each other. If β/α = 1/4, the system be-
comes critically damped. This means that, when the system is critically damped,
the movements are going to the point attractor g without any oscillations. In
addition, If the nonlinear learn-able term f(x) is removed from equations 4.1
and 4.2, the trajectory of y will be directly toward point attractor g without any
changes on the landscape of the arbitrary movements.

In order to generate more complex trajectories and change the landscape of the
arbitrary movements, the nonlinear learn-able differential equation term can be
added.

f(x) =
∑k
i=1ωiψi(x)∑k
i=1ψi(x)

x(g−y0) (4.3)

where ψi is the basis function of a system which every nonlinear function can
be represented as a linear combination of a basis function of a system. This
can create complex movements out of a simple parametrization. Also, ωi’s are
elements of the nonlinear term which each of them has different influence to
generate arbitrary movement. Weights help the nonlinear term to change the
landscape of the arbitrary movement to the desired intended shape. Also, y0

(y = 0) is the initial state of the trajectory.

In addition, time dependency of a nonlinear function creates a non-autonomous
dynamical system and does not permit coupling with other systems in differ-
ential times. The intended dynamical model should be an autonomous system,
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without explicit time dependence [26]. Thus x, which has a first-order dynamics
is preferred instead of time. Figure 4.1 shows the relation between time and x.

τxẋ=−αxx (4.4)

Here αx is a constant value and x is the phase variable determined by an extra
dynamic system which is also called canonical system. When x = 1 indicates
the start of the time of trajectory and when x = 0 means the trajectory is on
the point attractor g. Also, τx is constant value which designates the duration
of movement and works in place of time.
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Figure 4.1: Phase variable as a function of time (s) of specific experiment

Considering a canonical system, the basis function ψi has to be phase variable
dependent with k exponential kernels. Figure 4.2 shows the example of 40
exponential kernels as a function of time.

ψi(x) = exp(hi(x− ci)2)

where hi and ci are constant values that determine the width and the centers of
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the basis function [26].

Figure 4.2: 40 exponential kernels as a function of time (s) of specific experiment

By taking the data of canonical system and ωis we can obtain the values of
nonlinear learn-able differential equation. Also, by taking parameters of trans-
formation system of specific experiment and nonlinear learn-able equation from
previous procedure, we can generate a trajectory model of Dynamic Movement
Primitives (DMPs), figure 4.3.

Figure 4.3: Generation of trajectory using DMP in 1-dimension

The main concern is, how we are going to find parameters and weights of the
transformation system and nonlinear learn-able function. Section 4.2 is the
answer to this question.
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4.2 Learning Dynamics from demonstration

In order to formulate a function approximation problem, we have to rearrange
equations 4.2 and 4.3. By taking mass-spring-damper model to one side of
equation and nonlinear learn-able differential equation to the other side of the
equation we equate them,

ftarget(x) = τ2ÿ−α(β(g−y)− τ ẏ) (4.5)

By inserting the value of position, velocity and acceleration coming from the
trajectory experiment, the value of ωi can be obtained using equation 4.3,

bi(x) = ftarget
∑k
i=1ψi(x)

x(g−y0) (4.6)

bi does not have any meaning. This is just for showing the process of the
calculation of ωi in detail.

(
ψi(x)

)(
ωi,target

)
=
(
bi(x)

)
(4.7)

By solving the system of linear equations, ωi can be achieved. Putting ωi,target
in equation of nonlinear learn-able differential equation 4.3 of experiment;

ftarget(x) =
∑k
i=1ωi,targetψi(x)∑k

i=1ψi(x)
x(g−y0) (4.8)

By inserting equation 4.8 in equation 4.5, we will have parameters of equation
4.9 that have to be solved with a global optimization algorithm.

∑k
i=1ωi,targetψi(x)∑k

i=1ψi(x)
x(g−y0) = τ2ÿ−α(β(g−y)− τ ẏ) (4.9)
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4.3 Global Optimization algorithm

PSO is an evolutionary optimization method inspired by simulations of bird
flocks’ movements [27]. Since its first appearance in literature, many studies
and modifications were made on PSO. The working principle of PSO is to use
particles and their movements in order to achieve their optimal positions that
correspond to the optimal solution. The pseudo code for the PSO algorithm is
as figure. 4.4 [28]. In this optimization algorithm, no gradient information is
required for which derivatives may not be available.

Initialize a finite number of particles with randomly set
positions and velocities on the parameter hyperspace
Do
For each particle
Calculate the fitness value, (equation 4.14)
If a better fitness value is obtained than pbest
Set pbest as the current fitness value

End
Set the best one among all pbests as gbest
For each particle
Determine particle velocity according to the ve-
locity update equation, (equation 4.10)
Calculate new particle position according to the
position update equation, (equation 4.11)

End
While the maximum iteration or the convergence is
not attained

Figure 4.4: psudo code of PSO algorithm

At the beginning, a finite number of particles are generated randomly, that is, the
particles are spread to the hyperspace randomly with random velocities. In the
beginning of the search, swarms are spread out randomly with various positions
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and velocities as shown in Figure 4.5 [29]. Then, an iterative process starts
by evaluating fitness values of each particle according to the fitness criterion
specified by a cost function. After finding the fitness values, the best ones
(pbest) are selected for each particle at each iteration. At the end of each
iteration, the global best fitness value (gbest) is selected among pbest values
and particles are updated according to the following velocity and position update
equations as shown in Figure 4.6 [30].

Figure 4.5: Example of conceptual diagram of PSO

Figure 4.6: Example of position and velocity of swarms through fitness value
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vi(n+ 1) = χ(vi(n) +ϕ1r1(pbesti−Pi(n)) +ϕ2r2(gbesti−Pi(n))) (4.10)

Pi(n+ 1) = Pi(n) +vi(n+ 1) (4.11)

where, Pi(n) is the position and vi(n) is the velocity of ith particle at the nth

iteration, r1 and r2 are random values between 0 and 1, ϕ1 and ϕ2 are constants
and χ is defined as,

χ= 2∣∣∣∣2−ϕ−√ϕ2−4ϕ
∣∣∣∣ (4.12)

ϕ= ϕ1 +ϕ2,

where ϕ > 4

Then, a new iteration starts unless the maximum iteration or the convergence
is attained.

In this work, PSO is used to determine the parameters of DMP that follows a
known trajectory generated in an optimal way. Here the optimization criterion
is the minimization of error of the trajectory generated via DMP from the known
trajectory.

Optimization of DMP parameters using PSO is held with a particle structure
of,

Pi = [α β τ ]T (4.13)

In order to evaluate the fitness values, mean squared error (MSE) is used as the
cost function and expressed as,
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MSE = 1
N

N∑
i=1

e2(i) (4.14)

where, e(i) is the trajectory error of tool tip of ith sample of N time samples.

4.4 Conclusion

DMP method presents an ordinary differential equation for modeling human ex-
pert skills for different movements on the workpiece from any start position to
desired end position. Adding the learn-able nonlinear equation to transforma-
tion system of mass-spring-damper system can generate complex behaviors and
change the landscape of the arbitrary movements to the desired trajectory. Also,
we have to mention that, not only DMP is able to adapt itself for different start
and end positions, but also, it is able to change its size by changing the value
of scaling factors and constant values of the equation, shown in figure 4.7. By
performing experiments and creating the dataset of time constants α, β, tem-
poral scaling factor τ and weights of nonlinear equation ω of each task, we can
generate desired trajectories and utilize them in deburring/grinding processes.

Figure 4.7: Example of the trajectory with different start and end positions and
sizes
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CHAPTER 5

GENERAL POSITION CONCENTRATED DMP

As it is known from the literature survey analyzed before, DMP is more common
in locomotion of robots and humanoid robot arm tasks, such as jumping robots,
grasping and placing movements. In these tasks, there is a dynamic environment
and the movements of robots do not need to be highly precise. However, in
deburring process used in this work, the environment is static and the trajectory
of the tool tip must perform high precision machining on the workpiece due to
the millimeter-sized burrs. In addition, obstacle avoidance is not required in
deburring process, but, there is a contact between the tool and workpiece that
effects the trajectory. Therefore, in this case, nonlinear differential equation part
of DMP method is modified using deburring forces.

5.1 Methodology of General Position Concentrated DMP

In [12], the motion primitives are found using weighted summation of the kernel
functions, time constants, and time scaling factor were used as the guidance on
how to generate the given trajectory. Here, as an alternative, we propose to
augment DMP equation and try to fit the characteristics of the trajectory to the
time constants and time scale factors under the influence of current deburring
forces. Therefore, DMP algorithm can be modified to:

τz ÿ = αz(βz(g−y)− ẏ) +Frz(x) (5.1)
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F is the resultant force exerted to the workpiece by the tool tip. The magni-
tude of the force can be measured by the F/T sensor available on the fixture
manufactured for the workpiece. Also, rz is the Gaussian coupling term that is
used for contact effect between workpiece and tool tip, which nonlinear part of
DMP is replaced with a gaussian function of force exerted. Moreover, there is
multiplication between force and coupling term of contact rz instead of addition.
That is because of the direct relation between them.

Nonlinear term which changes the landscape of the arbitrary movement can be
presented as

rz(x) =
∑k
i=1wiψi(x)∑k
i=1ψi(x)

x(g−y0) (5.2)

where wis are weights and ψi(x)s are the basis functions of a system which
mentioned in chapter 4. Here, the weights are determined using locally weighted
regression as proposed in [26].

ψi(x) = exp(hi(x− ci)2) (5.3)

And x is the phase variable determined by an extra dynamic system which is
also called canonical system and has the following form, where τx and αx are
the constant values.

τxẋ= αxx (5.4)

These basis functions can create complex movements out of simple parameteri-
zation.
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5.2 Experiments

In this section, the trajectory of the tool tip of haptic device on the smooth
profile of workpiece is examined by asking a participant to have rhythmic hand
motions on workpiece and imitate the hand motions of human expert. The
task which is given to participant is to obtain a horizontal flat surface. In each
experiment parameters are recorded. Then, parameterization of the system is
used in modified DMP for imitation. The parameters of the task are analyzed
for each experiment. For simplicity, we have considered tool tip movement only
in the tangential and Normal direction and F/T sensor in tangential and normal
direction. We are to validate the trajectory coming from the experiment and the
trajectory gained from DMP model and also, comparison of trajectory errors of
DMP and modified DMP models with respect to experimental results. The aim
of these experiments is to show that, modified DMP works slightly better and
less error than DMP. Another aim is to show that expert changes depth of cut
and feed-rate according to force on the tool tip.

5.3 Results

Particle Swarm Optimization method is tested in this part. Figs. 5.1-3 show
DMP, modified DMP and actual path of one of the conducted experiments
using PSO. As it can be observed, modified DMP works extremely satisfactory
in curve fitting operations and has slightly smaller error than classical DMP.
MSEs for feed position are 2.05e-3 and 5.40e-5 for standard DMP and modified
DMP, respectively. MSEs for depth of cut are 1.22e-4 and 1.03e-4 for standard
DMP and modified DMP, respectively. Here, we can say that feed of the tool
is effected by the force more significantly. Alternatively, modified DMP is more
effective and accurate when representing motions with force interactions.

By using parameters of experiments, we will be able to show participant’s char-
acteristics. This can help to understand the variance and repeatability of a
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Figure 5.1: 2D movement of the tool on workpiece with PSO optimization
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Figure 5.2: Movement of tool on Workpiece in x-direction with respect to time
in PSO optimization
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Figure 5.3: Movement of tool on workpiece in y-direction with respect to time
in PSO optimization

participant in rhythmic motions.

5.4 Conclusion

Expert human agent performs almost perfect deburring process based on his/her
set of given limbs and perception. An expert, internally develops an interaction
model (i.e., the model regarding the interaction between tool and burrs or work-
piece) by time (or experience) in his/her mind. This model, due to expert’s
immense neural network, adapts to changing environment accordingly. Instead
of developing an explicit interaction model for deburring, that is a daunting
task; the idea of utilizing a human expert’s already developed internal model in
generating trajectories of a robot for deburring is the main theme of this study.
This is elaborated by a modified DMP which is an important proposition in this
study.
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CHAPTER 6

TELEOPERATION IN GRINDING PROCESS

The aim of this study is to control force using movement primitives of the skills
of a human participant while doing a high precise deburring process. By analyz-
ing the movements of the participant in specific task, the ordinary differential
equation is used to investigate dynamic movement primitives (DMP). In this
study, DMP, that assists the trajectory of human interaction behavior is altered
to extract human movement primitives in 1DOF deburring process. Human
participant tries to control force during the task of deburring process by using
local movements of haptic device’s knob. Using these local movements of human
participant as DMPs, transfer them to deburring robot and making dataset of
group of sub-movements, we will have automatic system which imitates human
participant characteristics. Figure 6.1. shows the wrist motion of the partici-
pant while trying to fix normal force on 10 N .

6.1 Methodology of Local Control with DMP

General methodology of this study is to build a setup which contains the F/T
sensor to measure normal forces coming from human participant actions and 1-D
knob setup to measure movements of the wrist of human participant. By using
this setup, human participant can be able to change movements by considering
the force displayed on setup screen in specific task. Then, by using force and
wrist movements, dynamic movement primitive method can be considered. DMP
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Figure 6.1: Wrist motions of participant while trying to fix normal force on 10N

helps to characterize each human participant with respect to his/her movement
primitives with respect to reaction forces.

6.1.1 Force Control

In machining processes, the exerted force components on workpieces in debur-
ring/grinding have significant influence on surface quality. While performing a
deburring/grinding process, the direction which is tangent to the surface of the
workpiece is the tangential direction and the force exerted in this direction is tan-
gential force Ft. Also, the direction which is normal to the tangential direction
is normal direction, and the force in this direction is normal force Fn. Therefore,
the forces that are exerted to the tool of spindle from surface of workpiece is a
combination of tangential and normal forces. Figure 6.2 shows the example of
deburring operation.

In Figure 6.3, the red circle represents the cutting tool; “md” is short for moving
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direction of the tool. Tangential force is shown by Ft and the normal force is
shown by Fn.

Figure 6.2: Example of the deburring/grinding operation on a flat surface

Figure 6.3: Example of the deburring/grinding operation on a wavy surface

In order to obtain constant depth of cut from variable surface, the key strategy
that should be implemented is imposing appropriate normal force and tangen-
tial velocity. That is, classical explicit hybrid force/velocity control should be
implemented [31]. In order to obtain the actual local normal force from mea-
sured X and Y force components, the algorithm which is explained in [32] was
implemented.

The local tangential force is as follows:
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Ft = MzSpindle

rtool
(6.1)

where, MzSpindle the measured moment around the Z axis of the spindle and
rtool is the radius of the cutting tool. However, with the used setup, measured
moment around Z axis of the F/T sensor, Mz, is not the moment around the
axis of the spindle since the F/T sensor has an eccentricity with respect to the
spindle. Therefore, local tangential force is calculated as follows:

Ft = MzSpindle

rtool
= Mz−Fx∆y−Fy∆x

rtool
(6.2)

where, FX is the measured force in X direction, Fy is the measured force in
Y direction, ∆x is the eccentricity of the force/torque sensor with respect to
spindle axis in Y direction, and ∆x is the eccentricity of the force/torque sensor
with respect to spindle axis in X direction.

After the calculation of Ft, the local normal force Fn is calculated by the uti-
lization of the following equality:

√
Fx

2 +Fy
2 =

√
Fn

2 +Ft
2 (6.3)

therefore,

Fn =
√
Fx

2 +Fy
2−Ft2 (6.4)

Constant velocity control is performed by the controller of the hexapod robot.
However, when the piezoelectric actuator is in action, the resultant feed-rate
increases since it is defined as:

FR =
√
VHex

2 +V 2
Pzo (6.5)
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where, VHex is the velocity of the Hexapod, VPzo is the velocity of the piezoelec-
tric actuator.

However, since the amplitude of the sinusoidal profile of the used workpiece is
very low compared to the length of the workpiece, the effect of the VPzo was
neglected. In order to control the normal force, the movement of the piezoelectric
actuator was utilized [33].

6.1.2 Local DMP

Since the deburring process in local movements is dependent on normal force
Fn of the surface of the workpiece, Dynamic movement primitives of the process
has to be as a function of Fn.

DMP model as a function of Fn is no longer a trajectory model of position, but
the trajectory of the force and its gradients. The point attractor of the system is
the desired force which we want to keep constant in order to have better surface
quality.

Therefore, transformation system of the normal force can be presented as,

τF żF = αF (βF (F setn −Fn)− zF ) +fF (x) +P (6.6)

τF Ḟn = zF (6.7)

Here, P is the set movement of the tool of spindle with respect to the normal
force. These movements can be obtained from piezo movements or the radial
movements of knob during an experiment. F setn is defined as the intended con-
stant force that we need to have same profile.

DMP of local control in this section is changed to force trajectory instead of
motion trajectory. This is because of the importance of desired force and the
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force exerted by the tool tip on the surface of the workpiece. This DMP is not
the mass-spring-damper system anymore, however, it is still useful for imitation
learning.

For formulating a function approximation problem, we rearrange equations 6.6
and 6.7 as

τ2
F F̈n = αF (βF (F setn −Fn)− τF Ḟn) +fF (x) +P (6.8)

and the learn-able nonlinear term can be obtained from below equation,

fF (x) =
∑k
i=1ωiψi(x)∑k
i=1ψi(x)

x(F setn −Fn(0)) (6.9)

By performing above equations and methods, the imitation of local control on
the surface of the workpiece can be obtained.

6.2 Experiment Procedure

In this study, the following main devices are utilized:

1. An experimental precision grinding robot (utilizing a 6DOF Hexapod from
PI company) with 6DOF F/T sensor,

2. A 1DOF haptic device with force feedback,

3. A piezoelectric actuator with 1-mm stroke for moving the workpiece,

4. Workpiece (St37) with known geometry,

5. A high-speed spindle.

6. A 4-mm diameter cBN tool from Pferd company

In Figure 6.4, the connection of the devices is summarized. In order to com-
bine all these devices, a prototypical MATLAB/SimulinkTM model is developed
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(with Windows target machine, targeting 1000 Hz sampling frequency for all
measurements and control action in pseudo-real-time).

Figure 6.4: The connectivity diagram of the overall system

During the experiments, a human operator rotates the knob of the haptic device.
This rotation is translated into motion of piezoelectric actuator. Since piezoelec-
tric actuator is connected to the workpiece, human knob rotation actually moves
the workpiece back and forth. Simultaneously, the hexapod moves the spindle
from left to right in a constant speed. By default, the tool does not touch the
workpiece. The cutting action is only possible if the operator moves the work-
piece towards the tool. Due to the sinusoidal geometry of the workpiece, the
operator has to follow the geometry (otherwise the forces will become too small
or too much for cutting) while tracking the cutting forces from the monitor and
feeling them from the haptic device’s force feedback. The workpiece and tool
positions is given in Figure 6.5.
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The hexapod only moves in Y-axis and carries force/torque sensor, spindle and
the cBN tool. Since hexapod can only move with 1 mm/s speed, it is not suitable
to track the human hand motion. However, piezoelectric actuator is fast enough
so that it can follow even the fastest hand movements.

Figure 6.5: Upper front view of the workpiece and the tool tip

There are two kinds of feedback for the operator to track the forces namely
following forces from a display and actually feeling the forces from the haptic
device’s force feedback. Forces coming from the cutting operation is translated
to the voltages for the motor in the 1DOF haptic device. If the operator moves
the workpiece toward the tool and a force is resulted, this force is converted to
the knob motion for operator to feel. Note that, this force is not the actual force
resulting from the operation, but proportional (increased) to it. Moreover, if
the forces are too high, operator cannot move the knob or move it in the reverse
direction for reducing the force.

After completing an experiment, all forces, knob motion, and piezoelectric ac-
tuator motion are saved and post-processed.
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6.3 Model Verification

It is asked to each participant to hold the knob of the 1DOF haptic device and
try to move it clockwise or counterclockwise in order to stay the normal force in
the safe range. The participant should also look at the screen of the computer
to see the instantaneous normal force. Safe range is the normal force limitation
that causes acceptable depth of cut variance. In this study, it is asked from
participants to fix the normal force on 10 N .

By analyzing the experiments, it is understood that, while performing an exper-
iment, each participant has the safe range in their own subconscious. Almost
all of them try to move their wrist counterclockwise or clockwise to decrease or
increase the normal force when they think they are out of their safe range.
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Figure 6.6: Example of the segmentation for the 1st participant in a random
normal force of experiment

This reaction of participants shows that the trajectory of response starts from
the first minimum value of normal force when participant notices that the value
of normal force in screen is less than desired normal force value, 10 N . Also,
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the response can start from the maximum value of normal force when he/she
notices that the value of normal force in screen is higher than 10 N . We should
mention that the reaction movement ends when the exerted normal force is same
as desired force.

Figure 6.6 shows the segmentation of the reaction forces exerted by each partic-
ipant separately. This segmentation is obtained by determining the range of 9.8
N and 10.5 N . By observing the reactions of participants in experiments, it is
understood that this range is the unconscious limitation for them.
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Figure 6.7: Example of the segmentation for the 2nd participant in a random
normal force of experiment

Figures 6.6 and 6.7 show that each participant notices the changes of normal
force in different ranges of values of them. Therefore, each participant has
different reactions with respect to different normal forces. Figures 6.8 and 6.9
are the examples of all reactions of the participants in different normal forces.

Each participant has specific reactions in this experiment which is the charac-
teristics of him/her. By using the segmentation of the reaction of a participant
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Figure 6.8: All normal force reactions of 1st Participant
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Figure 6.9: All normal force reactions of 2nd Participant
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in 3 experiments and having a variation of normal forces of all experiments, we
can use transformation trajectory system of DMP to compare different reactions
of a participant and choose the best one.
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Figure 6.10: Best reaction of 1st Participant for 11.5 N disturbance force

In addition, we can learn the best reaction of each participant for different normal
forces. The best reaction is the reaction which has faster motion through the
desired normal force.

Also, we can have the collection of Dynamic movement primitives parameters
and weights. This can help us to obtain the human controller just like other
controllers. However, this controller is much more slower and may not have
stable response. Figures 6.12 and 6.13 are the best response of each and all
participants in all the experiments performed by them.

We can obtain the best responses and respective DMP parameters of the par-
ticipants automatically, considering their time span. A database based on best
DMP responses of experts can serve as a building block for a human active con-
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Figure 6.11: Best reaction of 2nd Participant for 11.5 N disturbance force
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Figure 6.12: Best reaction of normal force for each participants with respect to
random disturbance force (each color represent each participant)

57



0 0.2 0.4 0.6 0.8 1 1.2

Time (s)

9

9.5

10

10.5

11

11.5

12

F
or

ce
 (

N
)

Actual Path
DMP Generated Path
Target Bound

Figure 6.13: Best reaction of normal force for all participants with respect to
random disturbance force

troller. This controller can work as an outer loop (a supervisory controller) for
a Proportional Integral Derivative (PID) controller and may make it robust for
sudden high and low force cases. In other words, such a controller would be im-
portant for automated deburring robots since it creates human-like reactions for
sudden changes that a PID controller cannot handle. Our findings can be used
to build such a controller. However, the purposes of this study are the extraction
of the primitives, creating a database and simulation of human responses.

6.4 Conclusion

We successfully extracted force trajectories of human participants in DMP form.
Our approach allows automatic segmentation of force data to obtain individual
DMPs used by participants. These DMPs are collected in a database. Also,
a simulation environment utilizing the DMPs is built. In simulations, a force
specified outside the safe range is moved inside the range using a suitable DMP
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pattern drawn from the DMP database. This corresponds to a reaction of one of
the participants around that specific force. Note that, the chosen pattern is the
best DMP among all of the participants. Mainly, each participant has potential
to react to a random force better than others. Since a participant sometimes
reacts better than others for a specific force; even though, his/her overall perfor-
mance may be poor compared to others. Using a teleoperation scheme for the
experiments, we eliminated the correspondence problem. Participants were able
to follow the sinusoidal initial form of the workpiece during the experiments.
This is only possible by the normal force calculation method we presented. Our
future work is to use our DMP controller as supervisory control scheme steering
a PID controller to perform deburring.
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CHAPTER 7

BASIC CONCEPTS

One of the tasks of this study is to automatize our robotic deburring setup.
Although DMP concept is very important and the fundamental studies related
to it have been done in chapter 5 and 6, we also have to consider other subjects
such as tool deflection, collision, workpiece obscurity, selection of optimal feed-
rate of the hexapod and generated rhythmic DMP movement. Each of the
above subjects should be considered very carefully as the process is in micron-
size resolution. Any mistakes can cause tool fraction, damage on F/T sensor
and deformation on the calibration of the setup.

7.1 Tool deflection

During the grinding/deburring process, the interaction between tool tip and
workpiece generates normal and tangential forces. Since the tool of the spindle
is not rigid, there will be a deflection in two dimensions with respect to two-
dimensional forces.

Deflection of the tool changes in the normal and tangential direction of the work-
piece with respect to the tool which causes the change on the desired surface of
the machined workpiece. In addition, excessive deflection causes plastic defor-
mation of the tool which yields to wrong data-read for upcoming experiments.
For this reason, calculation of the one-dimensional angle of deformation of a tool
on a workpiece that is related to interaction normal force should be considered.
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Therefore, as it is known from the experiments, forces that are higher than the
maximum normal force of specified experiment should be avoided in order to
eliminate excessive deformations of a tool on a workpiece which increases form
error.

7.2 Collision

Collision is another important issue that has to be considered before automatiz-
ing deburring robot. Collision is created when the tool and the workpiece exert
excessive force on each other in a relatively short period of time. The momen-
tum and kinetic energy that is conserved by a tool and the workpiece during the
collision, cause damages on them and creates failures on the calculation of force
during the grinding/deburring process. Experiment related to force with and
without collision has been performed and their differences are analyzed. Figure
7.1 shows the critic example of normal force for specific experiment.

Figure 7.1: Normal force with and without collision on same characteristic ex-
periments

As it can be seen from figure 7.1, experiments with collision generate higher force
than experiments without collision. In order to be able to avoid the collision, the
magnitude of a normal force and tangential force between tool and the workpiece
in specified experiments have to be considered. Since, during the experiments,
the depth of cut Dc, feed-rate FR and spindle speed Ss are known, we can
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calculate the range of the normal and tangential forces that have to be created.
Therefore, the forces that are higher than a specified force range are excessive
forces. By eliminating these forces, we can avoid tool failure and damages on
the profile of the workpiece.

7.3 Optimal feed-rate selection

In robotic deburring, feed-rate of the manipulator, spindle speed and depth of
cut are relative to each other. Also, they create normal and tangential forces
which are specific to them. In this part, it is wanted to find the optimal feed-rate
with respect to load percent Lp, depth of cut and spindle speed. Before, selecting
the optimal feed-rate, grinding model related to this experimental setup should
be considered.

7.3.1 Grinding Model

In case of obtaining the desired depth of cut and high quality on the surface of
the workpiece, there has to be a model to provide correct normal and tangential
forces. In [5], the general form of model of grinding force is investigated. In
this study, a physical model is used based on chip formation energy and sliding
energy.

The grinding force is dependent on depth of cut Dc, feed rate FR, velocity of
tool wheel periphery Ss, tool width b and tool diameter de.

We should also mention that the deflection of the tool is assumed to be rigid in
this study. Normal and tangential force equations obtained as follow;
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Ft =−4.67−37.1(bDcFR
Ss

) + 0.505(bDcFR
Ss

)ln( Ss
1.5

Dc
0.25FR

0.5 )

+ 0.0228(b
√
deDc) + 1631(bFR

√
deDc

Ssde
)

+ 0.465(A1fn
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Fpn
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)

(7.1)

Fn =−4.42−155(bDcFR
Ss

) + 10.5(bDcFR
Ss

)ln( Ss
1.5

Dc
0.25FR

0.5 )

+ 2317(bFR
√
deDc

Ssde
) + 1.49(A1fn

t1fn
)−4.24(A2fn

t2fn
)

+ 1.79(Lp
Fpn
Lpmax

)

(7.2)

r̄∗ =eũ3θ1 [ū1(a2cosθ́2 +a3cos ´θ23−d4sin ´θ23)

+ ū3(−a2sinθ́2 +a3sin ´θ23−d4cos ´θ23)]
(7.3)

In this study, the tool is penetrated to the workpiece in normal direction. As
it can be seen from equations 7.1-3 and figure 7.2, A1fn and A2fn are the areas
under Fn before and after the peak time. Also, t1fn and t2fn are respectively,
the time difference between start and peak time and between peak time and end
time. In addition, Lpmax is the peak value of percent load of the spindle, and
Fpn is the peak Fn value.

The developed model in this study can efficiently be used for prediction of the
grinding forces and obtained the relation between the depth of cut, spindle
speed, feed-rate and normal and tangential force values. Also, from this inspiring
academic paper, we can say that there are three regimes created during the
experiments. Figures 7.3-5 show the examples of each regime with respect to
normal force Fn.

In the experiment of regime 1, shown in figure 7.3, the magnitude of feed-rate
FR is low. Because of the slow velocity of the hexapod, the burr removal process
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Figure 7.2: Normal force profile in time domain

Figure 7.3: Example of regime 1
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Figure 7.4: Example of regime 2

Figure 7.5: Example of regime 3
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will happen at the moment of touch. However, in regime 3, by increasing the
FR, velocity of the hexapod increases and the burr removal process becomes
harder because of the tool deflection and its compensation. Also, in regime 2, as
force increases and Ss is not high enough to help the tool to cut the profile, tool
deflects through the deburring/grinding process and is not able to compensate.
Because of this reason, the experiments have to be with low FR or high Ss in
order to have stable normal force and prevent tool deflection.

7.3.2 Artificial Neural Network model

By utilizing the grinding model, it is understood that the MATLAB’s curve
fitting toolbox can be helpful to determine the feed-rate with respect to load
percent, depth of cut and spindle speed. One of the ways to approach this
problem is neural network between the load percent, depth of cut, feed-rate
and spindle speed. By using the current coming to the spindle of the setup,
we can understand load percent of the spindle and the tool. Load percent is
depended to zero load current Izeroload, maximum current I100load and instant
current IInstant of the spindle.

Lp = IInstant− IZeroLoad
I100load− IZeroLoad

100 (7.4)

By giving normal and tangential forces, we can generate load percent. Therefore,
by giving the depth of cut, load percent and spindle speed as an input and
feed-rate as an output, we can generate a neural network in order to learn the
feed-rate needed for each experiment. By using the block diagram of Figure 7.6,
the feed-rate of the experimental setup can be obtained.

7.4 Generating DMP

As it is explained before about Dynamic Movement Primitives (DMP), we can
generate the movements from specific start position to the point attractor (Goal
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Figure 7.6: Feed-rate selection by using ANN

position). Since the human expert’s movements are in two dimensions, there
have to be two DMPs which work together. By utilizing chapter 4 and equations
4.1, 4.2 and 4.3, the movements of the human expert can be written as equations
7.5-8. Note that, only human expert skills in the backward rhythmic motion is
analyzed in this work. Backward rhythmic motion is the trajectory of tool in
2-dimensional space to become to a new position of workpiece.

For Y-axis direction, DMP can be written as;

τyÿ = αy(βy(gy−y)− ẏ) +fy(x) (7.5)

fy(x) =
∑k
i=1ωyiψi(x)∑k
i=1ψi(x)

x(gy−y0) (7.6)

And, for Z-axis direction;

τz z̈ = αz(βz(gz− z)− ż) +fz(x) (7.7)

fz(x) =
∑k
i=1ωziψi(x)∑k
i=1ψi(x)

x(gz− z0) (7.8)

As it is mentioned before, parameter sets of Y-direction and Z-direction should
work together. The parameter set includes τ , α, β and ω. Therefore, for gener-
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ating specific two-dimensional motion, the parameters of below dataset should
be chosen;



y1 z1

y2 z2
... ...
yn zn

−→


τy1 αy1 βy1 τz1 αz1 βz1

τy2 αy2 βy2 τz2 αz2 βz2
... ... ... ... ... ...
τyn αyn βyn τzn αzn βzn



Also, it should be mentioned that weights are also specific to the specific task.
For this reason;



y1 z1

y2 z2
... ...
yn zn

−→


ωy1 ωz1

ωy2 ωz2
... ...
ωyn ωzn



Note that ω is the dataset of the weights for the specific task. Generation of
DMP for specific start and point attractor can be shown in Figure 7.7 which is
the block diagram of the process.

Figure 7.7: Block diagram of DMP generation
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7.5 Conclusion

In robotic deburring, the obscurity of the profile of the workpiece is one of the
most important issues that should be considered. In order to have automatic
robotic deburring on unknown profile of the workpiece, tool deflection, colli-
sion, selection of feed-rate and generated DMP movement have to be considered
carefully. Therefore, the experimental procedure and results of robotic debur-
ring/grinding process should be based on the above-mentioned concepts.
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CHAPTER 8

BASIC EXPERIMENTS AND RESULTS

8.1 Tool Deflection

As it is mentioned before, in chapter 7, tool deflection can be avoided by staying
in the range of tangential and normal forces for specified task. Since calculating
the tool deflection is in two dimensions and the surface of the workpiece can
only be measured in normal direction, methods of beam deflection for calculating
tool deflection from workpiece are not applicable. Tool angle of deformation and
displacement create form error on the profile of the workpiece with respect toDc,
FR and Ss. The experiments on smooth profile with different Dc, minimum FR

and maximum Ss have been performed. After that, the surface of the workpiece
is scanned with laser scanner, shown in figure 8.1.

Task of "Making profile of workpiece flat" is given to the setup. Experiments of
150µm, 300µm and 450µm with 0.2 mm/s FR and 30000 RPM spindle speed
have been performed. After that the surface of workpieces are scanned in two
different x-directions. Figures 8.2-4 show the displacements on the workpiece in
z-direction.

Analyzing figures 8.2-4, table 8.1 shows the maximum normal force and related
maximum form error on the workpiece.

Since Dc of 150µm, 300µm and 450µm create different form error in normal
direction of workpiece, we can conclude that there will be a need for cleaning
pass of the tool.
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Figure 8.1: Surface scanning setup

Table 8.1: Maximum normal force and related maximum form error on workpiece

Dc = 150 µm Dc = 300 µm Dc = 450 µm
Fnmax (N) 8.48 12.51 20.69
rmax (µm) 57 58 66.5

8.2 Cleaning pass

In order to have smooth profile with lowest form error in Z-direction, there will
be a need for cleaning pass. By utilizing maximum form error of workpiece in
Z-direction from table 8.1 and performing extra deburring/grinding process, we
can say that the cleaning pass can result in significant decrease in form error
on workpiece. Experiments related to this study with 0.2mm/s FR and 30000
RPM of Ss on workpiece is shown in table 8.2.

Before scanning the surface of the profile after cleaning pass, the surface of
workpieces with 150 µm, 300 µm and 450 µm depth of cuts are scanned. 30
sections in Y-direction with two different X-directions are determined for cal-
culation of form error on the workpiece. Also, the workpiece surface is scanned
after cleaning pass motion.
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Figure 8.2: Form error due to interaction force of 150 µm depth of cut
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Figure 8.3: Form error due to interaction force of 300 µm depth of cut

Table 8.2: Maximum form error before and after cleaning pass

Dc = 150 µm Dc = 300 µm Dc = 450 µm
rmax (µm) 57 58 66.5

rmax after C.pass (µm) 16 35 39
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Figure 8.4: Form error due to interaction force of 450 µm depth of cut

By calculating the mean value of form error on the workpiece before and after
cleaning pass, we can say that there are 72%, 39% and 41% decrease of form
error for 150 µm, 300 µm and 450 µm depth of cuts respectively.

8.3 Collision and burr size relation

It is mentioned before in section 7.2 that collision should be eliminated some-
how in experiments. However, as the profile of the workpiece is unknown and
experiments have to be blind, the collision of the tool with workpiece should be
identified.

Burrs are very small pieces of materials that when tool comes to them, they
should not be misunderstood with profile of the workpiece. Also, since it is
wanted to have blind robotic deburring, we do not want our robot to have extra
grinding process for Dc’s of less than 150µm which will be explained in chapter
9. For this reason, the Fresultant which is the interaction resultant force between
tool and workpiece should be considered carefully. It can be seen from table 8.3
that FR, Ss and Dc have important influence on Fresultant

Experiments have been done on 150 µm, 300 µm and 450 µm depth of cuts
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with 0.2 mm/s, 0.4 mm/s and 0.6 mm/s feed-rate and 10000 RPM , 20000
RPM and 30000 RPM spindle speed. Table 8.3 shows the above-mentioned
experiments with their average and maximum resultant forces.

Table 8.3: Maximum and average resultant force of specific task

Exp. No Dc (µm) Ss (rpm) FR (mm/s) Fresultmax (N) Fresultavg (N)
. 1 150 10000 0.2 6.978 6.568
2 150 20000 0.4 8.986 8.825
3 150 30000 0.2 8.477 5.929
4 150 30000 0.6 7.004 6.681
5 300 10000 0.4 39.646 36.729
6 300 20000 0.2 18.724 17.33
7 300 30000 0.2 12.53 9.153
9 450 30000 0.2 20.84 15.471

As it can be seen from table 8.3, when giving specific FR, Ss and Dc to the setup,
if generated force is more than maximum Fresultant, it should be considered as
excessive force and should be avoided. The avoidance process is explained in
the flowchart of figure 9.6.

8.4 ANN training for optimal FR selection

It is mentioned in chapter 7.3.1 that normal force is more reliable and smooth
when it is in regime 1. Because of that, the value of FR must be low to make a
tool be able to cut in a moment of touch. Therefore, our ANN has to work with
FR in a range of 0.2− 0.6 mm/s and Ss has to be in a range of 10000− 30000
RPM .

We performed two ANN training on our data. the first training is for obtaining
the relation between "normal and tangential forces" as an input and "load percent
Lp" as an output. Also, the second training is between "the load percent Lp, Dc
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and Ss" as an input and "FR" as output.

8.4.1 ANN training for Lp and forces

Load percent of the spindle has the same reaction with resultant force. As it
can be seen from Figure 8.5, the neural network curve fitting between them can
be determined easily.
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Figure 8.5: Example of the relation between Lp and Fresultant

In this work, Lp, Ft and Fn are approximated using two layer feed-forward neural
network that is trained by Bayesian regularization back-propagation algorithm
by using MATLAB Neural Network Toolbox [34]. The block diagram of ANN of
Lp is available in figure 8.6. Considering the offered methods in [35], the number
of hidden neurons of neural network is determined.

Figure 8.7 shows the verification of the curve fitting of our ANN by giving 10
hidden neurons. Also, it shows that load percent, normal force and tangential
force have direct relations.
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Figure 8.6: ANN block digram of force inputs and Lp output
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Figure 8.7: ANN prediction of Lp and trained Lp

8.4.2 Overall ANN training

It is known from grinding model equations mentioned in section 7.3.1 that forces
are relative to Ss, FR and Dc. Also, it is known from previous section that load
percent is related to normal and tangential forces. Therefore, we can say that
neural network between Lp, Dc, FR and Ss is applicable.

Since there are three inputs and one output, the number of hidden layers of 3,
6 and 10 are checked, where 10 gives the least error. The block diagram that is
generated in MATLAB neural network toolbox can be seen in figure 8.8.

The results of the block diagram, shown in figure 8.9, shows that the curve
fitting works pretty well.
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Figure 8.8: Block diagram of overall ANN for feed-rate selection
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Figure 8.9: ANN prediction of FR and trained FR

By the help of this block diagram, we can change the FR of parallel manipulator
(hexapod) with respect to given Dc, Ss and Lp. As it is known from previous
section, Lp is relative with normal and tangential forces. Therefore, By giving
the desired Lp, we can avoid excessive loads on tool and spindle.

8.5 Dynamic Movement Primitives generation

As it is mentioned before, the generation of Dynamic movement Primitives needs
the parameters of α, β, θ and ω for specific experiments. In order to have
movements in two dimensions, experiments have been performed by using 6DOF
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haptic device.

8.5.1 Experiments related to DMP generation

In this section, the backward trajectory of the tool tip of 6DOF haptic device
on the surface of the sinusoidal workpiece, shown in figure 8.11, is examined
and the movements of experienced participants and deburring expert hand are
recorded.

Figure 8.10: Participant holding spindle of 6-DOF haptic device

Figure 8.11: sinusoidal profile

It is asked from experienced participants and deburring expert to perform de-
burring on the workpiece. Movements of tool on the workpiece in Y-direction
and Z-direction are recorded. The trajectory of a tool is fit to DMP model and
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the parameters of it are collected as DMP dataset. By utilizing this dataset, we
can generate trajectory from desired start position to desired end position. Tool
movements on the workpiece can be seen from figure 8.10.

The rhythmic backward movements of experienced participants in order to do
the task of deburring pass are almost same in all participants, however, it is
different for human expert. Experts perform this rhythmic backward movement
in a very optimal way, that is, when tool comes to the surface of the workpiece or
comes out, it moves tangentially to the surface of the workpiece which decreases
the normal force. In order to be able to analyze these rhythmic movements, the
segmentation of them is performed.

8.5.2 Elliptical fit from hand movements

It is understood from experiments that the expert and participants hand move-
ments in deburring process are in an elliptical form, however, the characteristics
of them are different. So, the least-square criterion for estimation of the best fit
to an ellipse from tool movements is utilized. Conic representation of an ellipse
is;

ay2 + byz+ cz2 +dy+ ez+f = 0 (8.1)

The tilt factor b is used for rotation matrix to have a better fit. With the help of
elliptic fit, we can reduce the number of points in movements. In each rhythmic
experiments there are more than 100 points available for movement. However
by utilizing the elliptic fit, we can make human movement smoother, shown in
figure 8.12. Hexapod should not have unnecessary movements which can be
eliminated.
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Figure 8.12: Example of elliptic fit of rhythmic movement of experienced par-
ticipants
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Figure 8.13: Example of elliptic fit of rhythmic movement of deburring expert
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8.5.3 Extraction of DMP

Since robotic deburring is in micron-size resolution, the generated trajectory of
DMP should have trajectory with an exact start and end point. Because of
that, the maneuvers of a tool during experiment should be in a specific range.
However, since DMP method is goal oriented and we can just change the start
and goal positions, asking for specific trajectory is not applicable. As it can be
seen in figure 8.14, rhythmic backward movement of a tool on the workpiece
works pretty well, however, there is a possible collision between the tool and
workpiece. In order to be able to prevent any collisions and control the range
of the trajectory, the elliptic movement is segmented. The segmentation of
elliptic fit is divided in approaching trajectory and curved trajectories, shown in
figure 8.15 and 8.16. In experienced participant’s hand movements, by utilizing
approaching trajectory, tool moves until the end Y-position of the workpiece and
then curved trajectory performs the arc movement to the goal position, shown in
figure 8.15. However, in deburring expert movement, there is a curved trajectory
for moving away from the workpiece, and then with approaching trajectory same
task performs, then, by using the second curved trajectory, it moves to the goal
position, shown in figure 8.16.
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Figure 8.14: DMP with elliptical trajectory generation

Approaching and curved trajectories are different movements and generation of
each of them needs specific DMP parameters and weights. Utilizing the segmen-
tation, we can use differet DMPs for each trajectory. So, by the help of this, we
can increase the number of possible solutions (by using 2 trajectory combina-
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tions for experienced participant and 3 for deburring expert). In addition, we
can have movements in the range of Y and Z-directions that we desire.
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Figure 8.15: Generating trajectory of experienced participant
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Figure 8.16: Generating trajectory of deburring expert

Note that, only parameters, weights, and length between the start and end point
of experiments are collected in DMP dataset. When asking for trajectory from
desired start position to desired end position, we cannot generate a trajectory
by using the data of position taken from experiments which decelerates the
process. Each trajectory recorded from the experiments have a vector from
start to end points. The length of vectors are analyzed and the vector which
has the closest length with desired start and end point is the best case for a
generation. In addition, if the generated trajectory is outside the desired range
in two dimensions, the next vector (next dataset taken from experiments) will
be utilized.
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Figure 8.17: Example training to choose DMP in the desired range for experi-
enced participants

Figure 8.17 shows that the generated trajectories are considered with respect to
the range of the movement. Range of movement is very important because of
avoiding collision, unnecessary movements and help to reduce the duration of
deburring/grinding process.

8.6 Conclusion

Since our deburring robot is sensitive and works in micron-size resolution, there
should be some basic experiments and analyses performed in order to not harm
our setup. Normal and tangential forces, Dc, FR, Ss are important factors, thus,
selection of them should be done before. Also, the tool deflection changes the
profile of the workpiece which should be avoided in order to not harm the setup
and reduce the form error. In addition, excessive and extra movements increase
the duration of experiments and probability of collision which should be avoided
by selecting the true trajectories by using DMP generator.
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CHAPTER 9

EXPERIMENTAL PROCEDURE

The aim of this thesis is to reach the flat profile with a constant depth of cut of
the unknown workpiece by using the automatic deburring/grinding process. In
order to obtain this, we first have to specify the desired length of the workpiece in
Z-direction after deburring process. For obtaining the smooth surface, we need
to know the desired start and end point of the workpiece in Y and Z-directions.
In order to do that, the tool touches the workpiece in the start point Pstart and
the desired end point Pend, shown in figure 9.1.

Figure 9.1: The Y-direction movement of the tool on the workpiece

As we know Pstart and Pend, we can create the straight line with respect to
them. This path can be 2-dimensional because of the possible calibration error,
so we can learn the slope of the motion. However, in this work, we assume that
the calibration error is zero.

For deburring/grinding process, we ask the robot to move toward the end point
with specific depth of cut Dc, feed-rate FR and tool rotation velocity Ss. Dur-
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ing the motion, when force increases, we find out that during the motion there
are some obstacles on the way. These obstacles can be burrs or the profile of
the workpiece. Therefore, the value of the force generated during the debur-
ring/grinding process is very important in order to cut unknown profile and not
harm the setup.

9.1 Ramp step search

The motion of the tool is through +Y direction. Figure 9.2 shows that if we
want to learn the profile of the workpiece, we need to have ramp step search.
In this search, when tool comes to workpiece which creates excessive force, it
moves one step backward and one step upward, and then moves again through
Pyend

.

Figure 9.2: Ramp step search in order to find profile shape

The reason why the ramp step search is used is to be able to recognize the profile
of the workpiece and prevent any collisions during motion. In some profiles, there
can be a wall-shaped obstacles come to the tool. In figure 9.3 we can see that
ramp step helps to skip the wall-shaped obstacles.

The 150µm ramp step movement has been chosen for this study because it is
the minimum Dc that is given in the experiments.
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Figure 9.3: wall shaped workpiece

9.2 Generation of DMP

As the tool finds the peak of the unwanted part of the workpiece, by using step
ramp search, it will have backward and downward motions (DMP trajectory)
and then grinding occurs again and again until it reaches desired Pend, shown
in figure 9.4.

Figure 9.4: DMP generation of the tool with respect to the desired depth of cut

However, it is known that the backward motion to the new position should be
considered in this part. tool starts the trajectory from the peak of the unwanted
part and moves downward to go back to the desired Z position. Therefore, in
this part, the movement primitives of the human expert are transferred to the
robot in order to have backward rhythmic motions. These movement primitives
can change with respect to different start and goal positions.

Since the length of the peak of the workpiece in Z-direction changes in different
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profiles, the layer selection of deburring/grinding process which is explained in
section 9.4, should be considered.

9.3 Touching motion

In the experiments, generated trajectory does not exactly finish in the Y desired
position which is taken from ramp step process. It is chosen to finish 100µm
far from the desired position in order to prevent collision. Then tool moves
exactly parallel to the desired Pyend

chosen in section 9.1. When tool touches
the workpiece and force become more than 0 N , we understand that it touches
the workpiece. By performing this motion we can prevent collision.

9.4 Grinding on the layers

The experiments that have been performed in this study are for depth of cuts
of 150µm, 300µm and 450µm. The length of the peak of the workpiece in Z-
direction is different for different profiles. So, the selection of layers from peak
starts from 450µm and if this value is larger than the value of the peak length,
it will choose 300µm and 150µm respectively. Figure 9.5 shows the examples of
the layer selection for peak length of z+ 1.20 (mm).

Figure 9.5: Layer selection

In figure 9.5, we can figure out that, for reaching the peak point of z+1.20 µm,
step ramp search will perform 8 steps. However, by utilizing the layer selection
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method, instead of choosing 8 layers of 150 µm Dc, we will have two grinding
process with 450 µm Dc and one 300 µm Dc . By using layer selection, we will
have less grinding process and less duration of process, respectively.

9.5 FR selection by using ANN

Since we know the position of tool after being generated the trajectory, we can
deduce the Dc of the process. Neural network which trained before, can be
helpful to choose FR of the process with respect to Dc and desired Ss and Lp.

9.6 Overall experimental procedure

The experimental procedure which is chosen helps the setup to have automatic
robotic deburring/grinding process without knowing the profile of the workpiece.
Utilizing this, we can reduce the tool deflection by eliminating the collision and
not passing the excessive force of specific task. The flow chart of the overall
experiment is given in figure 9.6.
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Figure 9.6: overall flowchart of the experiments
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CHAPTER 10

RESULTS AND DISCUSSION

In this chapter, the duration of experiments on automatic robotic deburring/
grinding process will be analyzed and compared with an alternative process. In
addition, the surface of the workpiece will be scanned before and after the auto-
matic grinding/deburring process and form error on wokpieces will be analyzed.
Note that, the results of experiments of tool deflection, collision, Neural network
of FR selection and DMP generation have been explained before in chapter 8.

10.1 Duration of process

Duration of the automatic robotic deburring/grinding process is very important
because during the process, thermal effects increase. When a tool gets warmer
causes the spindle and F/T sensor get warmer. This can damage the calibration
of setup permanently. Also, when the duration of the process gets faster, it
will be more valuable. In mass production, saving time means more production.
There is an alternative deburring/grinding process other than our process which
will be analyzed. By comparing with the alternative approach, we want to prove
the success of our process.

10.1.1 Process with zigzag movement

This process is completely different from our process. In this process, we can
ask our robot to have kind of zigzag movements, shown in figure 10.1. Note
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that, in this process, we still need ramp step search in order to find the peak of
the workpiece in Z-direction.

Figure 10.1: Example of zigzag movement

Process with zigzag movement eliminates the backward movement which de-
creases the duration of the process substantially. However, as we want to have
deburring/grinding process on unknown profile of workpiece, this process has
different performance with respect to different profiles. To illustrate, figure 10.3
shows that this process is very useful and the duration of the process is low in
comparison with our process.

Figure 10.2: Significant zigzag motion on workpiece

However, for profiles which have shapes same as shown in figure 10.4, process of
zigzag is not suitable because of loosing time in paths with no deburring/grinding
passes and it is better to use DMP trajectory as shown in figure 10.5.

Not that, while doing the process same as profile of figures 10.3 and 10.4, we
may come across with the following issues;
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Figure 10.3: Nonsense zigzag motion on workpiece

Figure 10.4: DMP trajectory on the workpiece

• Not considering the collision which creates a tool deflection during debur-
ring/grinding process.

• Unnecessary maneuvers can happen based on the profile of the workpiece.

Therefore, it can be said that, although process with DMP trajectory generation
may sometimes have longer duration process, it can prevent items mentioned
above. Also, DMP trajectory generation is applicable for all unknown workpiece
profiles.

10.2 Form error of workpiece

In this section, the form error on the workpiece is analyzed with laser scanner
after deburring/grinding process. In automatic deburring/grinding process, the
last layer of the motion of tool may be one of 150,300 and 450 µm depth of cuts.
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Figure 10.5: profile scanning in two different paths

10.2.1 Experiment with last layer Dc of 150 µm

In this part, experiment of deburring/grinding process on random shape work-
piece is performed. In this experiment, the last layer was 150 µm. The surface of
the profile is scanned before automatic robotic deburring/grinding process in 30
sections in Y-direction and two different X-directions. After that, the surface is
scanned after the process. Figure 10.6 shows the shape of the workpiece before
and after the process. Data of this experiment is available in figure B.1.

Figure 10.6: Workpiece before and after experiment with last layer of 150 µm

Data of figure B.1 shows that the maximum form error on the workpiece is 16
µm. The mean form error is 11.7 µm with the variance of 5.91 µm2.
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10.2.2 Experiment with last layer Dc of 300 µm

In this part, another experiment of deburring/grinding process on random shape
workpiece is performed. In this experiment, the last layer was 300 µm. Figure
10.8 shows the shape of the workpiece before and after process. Data of this
experiment is available in figure B.2.

Figure 10.7: Workpiece before and after experiment with last layer of 300 µm

By analyzing figure B.2, we can conclude that the maximum form error on the
workpiece after grinding process is 35 µm. Also, the mean form error is 29 µm
with the variance of 9.54 µm2.

10.2.3 Experiment with last layer Dc of 450 µm

Another experiment of deburring/grinding process on random shape workpiece
is performed. In this experiment, the last layer was 450 µm. Figure 10.9 shows
the shape of the workpiece before and after process. Data of this experiment is
available in figure B.3.

Using figure B.3 which is taken by scanning the surface of the workpiece after
grinding process, the maximum form error became 39 µm, also, the mean value
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Figure 10.8: Workpiece before and after experiment with last layer of 450 µm

of 27.9 µm with the variance of 45.26 µm2.
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CHAPTER 11

CONCLUSION AND FUTURE WORK

11.1 Conclusion

In this study, automatic robotic deburring/grinding process is performed on
unknown shape workpieces by utilizing the movement primitives of human skill
model. It is observed that backward rhythmic movements of a human expert
can be fitted to a conic representation of ellipse by using least-square criterian.
This ellipse shape human movements are extracted by using Dynamic Movement
Primitives (DMP), and then by using particle swarm optimization, parameters
and weights are collected. By utilizing dataset of parameters and weights and
giving desired start and end positions, we can generate trajectory of backward
rhythmic movement.

However, for automatic robotic deburring/grinding process, besides DMP, there
are some issues that are considered such as tool deflection, layer selection, ramp
step search, collision and feed-rate selection.

It is shown from experiments that tool deflection increases form error on the
profile of the workpiece, which by using cleaning pass, it can be reduced to
minimum 39%. Also, a collision between the workpiece and tool increases inter-
action forces which increases the tool deflection. So, in experiments, collisions
are eliminated. In addition, By using MATLAB artificial neural network tool-
box, the relation between forces and load percent, and depth of cut, spindle
speed and feed-rate are obtained. Furthermore, the layer selection and ramp
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step search helped experiments to eliminate excessive forces.

Finally, we mentioned an alternative process that can be replaced with our pro-
cess. It is proven that zigzag movement is not suitable for our tasks because of
the possibility of collision and unnecessary maneuvers. In addition, the surface
of the workpieces is scanned before and after automatic deburring/grinding pro-
cess. It can be seen that we can obtain flat surfaces with a surface form error of
maximum 39 µm and mean value of 27.9 µm with the variance of 45.26 µm2.

Note that, we have presented two fundamental studies related to this study.
In deburring/grinding process, there is an interaction force between tool and a
workpiece. Thereby, in general concentrated DMP model, we modified DMP
model in order to have model of movement primitives of human expert and
his/her forces. However, since there is a correspondence problem between the
links and joints of human expert and our robot, we solved this problem by
performing teleoperation between 1DOF haptic device and the robot. DMP
which is dependent to position and its derivatives modified to DMP of force
trajectory since we required to move through desired force. By utilizing this
local DMP, we can generate human-like controller in order to have reaction to
force changes.

11.2 Future work

In this study, DMP is used for backward rhythmic movements to place the tool
in a suitable position to have deburring passes. In the future, beside backward
movement, grinding/deburring process of human expert will be transferred to
our setup. In this process, a nonlinear learn-able differential equation of DMP
method have force feedback which generates the trajectory of motion with re-
spect to interaction normal and tangential forces. Right now, ANN is used in
this study, but above-mentioned DMP can be replaced with it. The fundamental
study related to modification of DMP have been explained in detail in chapters
5 and 6.
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APPENDIX A

MATLAB SIMULINK MODEL

Figure A.1: Matlab Simulink of F/T sensor, Piezoelectric actuator and spindle
speed (Work simultaneously)
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APPENDIX B

DATA OF EXPERIMENTS

Figure B.1: Scanned surface of experiment of figure 10.7
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Figure B.2: Scanned surface of experiment of figure 10.8
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Figure B.3: Scanned surface of experiment of figure 10.9
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