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ABSTRACT 

 

 

INVESTIGATION OF ASYMMETRIC GEAR TOOTH BENDING STRESS 

FORMULATION 

 

 

 

Orak, Mahir Gökhan 

M.S., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Metin Akkök 

March 2018, 183 pages 

 

An asymmetric gear has different pressure angle and base radius for the drive and 

coast side tooth flanks. A standard is not available to determine the bending stresses 

of external and internal asymmetric spur gears, although there are international 

standards to determine the bending stresses of external and internal symmetric spur 

gears. The main objective of this thesis is to determine the bending stresses of the 

external and internal asymmetric spur gears. The tooth thickness of a gear tooth at 

the critical bending stress section is summation of both drive and coast side tooth 

thicknesses. These thicknesses are not same for an asymmetric gear tooth contrary to 

a symmetric gear tooth. Then, the bending stress of an asymmetric gear tooth cannot 

be calculated same with a symmetric gear tooth. Therefore, the bending stresses of 

external and internal asymmetric spur gears shall be formulated.  

 

In this thesis, ISO B methodology is modified to determine both external and internal 

asymmetric spur gear bending stresses. In this method, although the drive side 

tangent angle at the critical section is equal to 30° and 60° for external and internal 

asymmetric spur gears, respectively, the coast side tangent angles at their critical 

sections are calculated by using the kinematics of the generations of the gear coast 



vi 

 

side root fillets. In this thesis, the analytical results of the modified ISO method are 

verified by FEA works. In order to do FEA works and determine the critical bending 

stress sections, detailed geometry studies of both of external and internal asymmetric 

spur gears are carried out. In these studies, an asymmetric rack-cutter and pinion type 

shaper cutter are used to generate the external and internal asymmetric spur gears, 

respectively.  

 

For the external asymmetric spur gears, the calculated bending stress decreases with 

an increase in drive side pressure angle. This enables to enhance the bending strength 

of the gear tooth. The maximum bending stress calculated in analytical method is %5 

lower than FEA results for low number of teeth and that increases to %10 for high 

number of teeth.  

 

For the internal asymmetric spur gears, the calculated bending stress decreases with 

an increase in drive side pressure angle only for low coast side pressure angle smaller 

than 20°. The bending stresses of the modified ISO method are about % 5 different 

than the results of the FEA for drive and coast side pressure angles larger than 20°, 

but the percentage difference increases to % 15 for low drive and coast side pressure 

angles smaller than 20° (for example for 16°).  

 

As a result, the modified ISO methods for external and internal asymmetric spur 

gears give as accurate results as the standard ISO methods for external and internal 

symmetric spur gears. 

 

Keywords: External asymmetric spur gear bending stress, internal asymmetric spur 

gear bending stress, asymmetric rack-cutter, asymmetric pinion type shaper cutter  
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ÖZ 

 

 

ASİMETRİK DİŞLİNİN EĞİLME GERİLMESİ FORMÜLASYONUNUN 

İNCELENMESİ 

 

 

 

Orak, Mahir Gökhan 

M.S., Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Metin Akkök 

Mart 2018, 183 sayfa 

 

Asimetrik dişli, bir dişin sağ ve sol yanağında farklı basınç açısına ve temel dairesine 

sahip olan dişlidir. İç ve dış simetrik düz dişlilerin eğilme gerilimlerini hesaplayan 

uluslararası standartlar olmasına rağmen, iç ve dış asimetrik düz dişlilerin eğilme 

gerilmelerini hesaplayan bir standart bulunmamaktadır. Bu tezin ana gayesi, iç ve dış 

asimetrik düz dişlilerin eğilme gerilmelerini belirlemektir. Bir dişin kritik eğilme 

gerilmesi kesitindeki et kalınlığı hem süren hem de diğer yanağın bu kesitteki et 

kalınlıkları toplamına eşittir ve bu et kalınlıkları simetrik bir dişin aksine asimetrik 

bir dişte eşit değildir. Öyleyse, asimetrik bir dişlinin eğilme gerilmesi simetrik bir 

dişlinin eğilme gerilmesi ile aynı hesaplanamaz. Bu yüzden iç ve dış asimetrik düz 

dişlilerin eğilme gerilmeleri formüle edilmelidir.  

 

Bu tezde, hem iç hem de dış asimetrik düz dişlilerin eğilme gerilmelerini belirlemek 

için ISO B metodu modifiye edilir. Bu metoda göre dişlinin çalışan yanakların kritik 

eğilme kesitindeki tanjant açısı iç ve dış dişliler için sırasıyla  30° ve 60° iken, 

çalışmayan yanakların kritik eğilme kesitindeki tanjant açıları bu yanakların diş dibi 

radyuslarının elde edilme kinematikleri kullanılarak hesaplanır. Bu tezde, modifiye 

edilmiş ISO metodunun analitik sonuçları sonlu eleman analizleri ile doğrulanır. 
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Sonlu eleman analizleri yapabilmek ve kritik eğilme gerilmesi kesitlerini 

belirleyebilmek için, hem iç hem dış dişlilerin detaylı geometri çalışmaları 

gerçekleştirilir. Bu çalışmalarda, sırasıyla iç ve dış asimetrik düz dişlileri elde etmek 

için kremayer ve pinyon şekilli planya kesicileri kullanılır. 

 

Dış asimetrik düz dişliler için hesaplanan eğilme gerilimleri yük altında çalışan 

yanağın basınç açısı arttıkça artmaktadır. Bu dişlinin eğilme gerilimine karşı 

mukavemetini artırır. Düşük diş sayılarında analitik metodda hesaplanan maksimum 

eğilme gerilimleri, sonlu elaman analizlerine göre %5 az gelmektedir. Yüksek diş 

sayılarında ise bu fark %10 civarına çıkmaktadır.  

 

İç asimetrik dişliler için hesaplanan eğilme gerilimleri, yük altında çalışan yanağın 

basınç açısı arttıkça sadece yük altında çalışmayan yanağın 20°’den düşük basınç 

açısına sahip olması durumunda azalmaktadır. Hem yük altında çalışan hem de yüke 

maruz kalmayan yanaklarda 20°’den daha yüksek basınç açıları için, modifiye ISO 

metoduna göre hesap edilen eğilme gerilimleri, sonlu elaman analizlerine göre %5 

farrklılık göstermektedir. Ama her iki yanak için de 20°’den daha düşük basınç 

açıları için, bu fark %15 civarına çıkmaktadır.  

 

Sonuç olarak, iç ve dış asimetrik düz dişliler için modifiye edilen ISO metodları, iç 

ve dış simetrik düz dişliler için var olan standart ISO metodları kadar iyi sonuçlar 

vermektedir. 

 

Keywords: İç asimetirk dişli eğilme gerilmesi, dış asimetrik dişli eğilme gerilmesi, 

asimetirk kremayer kesici, asimetrik pinyon şekilli planya kesici  
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CHAPTER 1 

 

1 INTRODUCTION AND LITERATURE SURVEY 

 

 

 

1.1 Introduction 

 

In gear design, there are possible failure forms that shall be considered. These are 

mainly bending, pitting and scuffing failures. In order to avoid these failures many 

solutions can be applied on gears such as shot peening, heat treatment, using a better 

material and tooth macro and micro geometry modifications. One of the tooth macro 

geometry modifications is the asymmetric gear tooth form. 

 

A symmetric involute spur gear tooth has the same pressure angle and base radius for 

the left and right flanks of the tooth. On the other hand, an asymmetric gear tooth has 

different pressure angle and base radius for the flanks. 

 

In most of the applications where gears are used in, the system mainly works by 

rotating in the same direction during the operation life. In such an application, a gear 

tooth is mainly and highly loaded on one of its sides which is called drive side. On 

the contrary, the other side of the gear tooth is unloaded or lightly loaded and called 

coast side. And the design purpose of an asymmetric gear tooth is to improve the 

performance of the drive side. 

 

In order to be able to design an asymmetric gear tooth, the bending and contact 

stresses shall be calculated. Since the contact stress of a gear tooth is directly related 

to the drive side, an asymmetric gear tooth contact stress can be calculated same with 

a symmetric gear tooth having the same pressure angle with the drive side of the 
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asymmetric gear tooth. However, the bending stress of a gear tooth is dependent on 

not only the drive side but also the coast side. Because the tooth thickness of a gear 

tooth at the critical bending stress section is summation of both drive and coast side 

tooth thicknesses which are not same for an asymmetric gear tooth. Then, the 

bending stress of an asymmetric gear tooth cannot be calculated same with a 

symmetric gear tooth. Therefore the bending stress of an asymmetric gear tooth shall 

be formulated. 

 

The main objective of this thesis is to determine the external and internal asymmetric 

spur gears bending stresses. In this thesis, ISO B methodology has been modified to 

determine both of the asymmetric external and internal gear tooth bending stresses. 

Also, a detailed study to obtain the geometry of both of the asymmetric external and 

internal gears have been done such that a FEA work can be carried out to compare 

the results with modified ISO B methodology. 

 

1.2 Literature Survey 

 

The first bending stress formulation is given by Wilfred Lewis (1893). In his model, 

the tooth, which was substituted by a parabola of uniform strength, was handled as a 

beam clamped at one end, i.e., a cantilever, and the loading force was assumed to be 

an evenly distributed force along the tooth length and applied on the tip of the tooth 

as the worst load case. For bending, the most dangerous section of the tooth is 

pointed by the point of the parabola which is tangent to the tooth root curve. The 

introduction of the notion of the tooth form factor is linked to Lewis [1]. Later Hofer 

refined Lewis’ model. He marked out the dangerous section of the tooth root by 

straight lines angled 30° with the tooth center line [1]. After that, in 1950’s, research 

works were published at both national and international levels on the gear strength 

scaling. The design recommendations of the American Gear Manufacturers 

Association (AGMA) have been published. Ten years later, in 1970, the national 

standard DIN3990 – in West Germany – and the international standard ISO 6336 
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were issued. Nowadays, the main regulations governing the calculation of the tooth 

root stress are summarized in ANSI/AGMA 2101-D04 (2004), DIN 3990-3 (1987), 

ISO 6336- 3:2006  [1]. 

The traditional Lewis bending stress and form factor equations of a symmetric gear 

tooth is defined in the paper [2] where the unknowns are the critical tooth thickness 

and height. In bending stress formulations of international standards, beside the form 

factor, there is also a stress correction factor which is based on the work [3] and this 

factor is also dependent on the critical tooth thickness and height. There are 

analytical ways of calculating these unknowns for symmetric gears in AGMA [4] 

which uses the Lewis model and in ISO-6336 [5] which uses the Hofer model. 

Examination of run-in teeth reveals that when a single tooth carries the full load and 

the load is applied at the highest point of single tooth contact (HPSTC), the 

maximum bending stress occurs [6]. So when doing the bending stresses analysis, 

contrary to application of the load at the tip of the gear tooth in traditional Lewis 

model, the load is applied at the HPSTC in both AGMA and ISO standards. 

 

Although the gear geometry and design of asymmetric tooth gears are not covered by 

modern national and international gear design and rating standards, they are known 

and described in a number of technical articles and books.  

 

In terms of the asymmetric spur gear geometry, a method is developed for the 

geometry and design of external spur gears with asymmetric involute teeth in paper 

[7]. This is a direct gear design method and independent on the traditional cutter 

parameters. Then, a mathematical model of a helical gear with asymmetric involute 

teeth is developed by using rack cutter in paper [8]. In the paper [9], a double 

envelope concept is used to determine the basic profile of an internal spur gear with 

asymmetric involute teeth. Based on this concept, the required cutter to generate the 

internal asymmetric gear can be obtained by the envelope to the family of a rack 

cutter surfaces. This generated cutter is like a pinion type shaper cutter. However by 

using this method, the tip of the shaper cutter cannot be rounded but can be obtained 
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with a trochoidal tip. Then, the internal gear is the envelope for the family of this 

generated shaper cutter surfaces and the generated internal gear has a different root 

fillet than the generated internal gear by a rounded pinion type shaper cutter. 

Through this proposed method, the profile of an internal gear with asymmetric 

involute teeth can be easily obtained. In paper [10], a pinion-type shaper cutter with 

rounded tip is considered as the generating tool for the generation of the external 

asymmetric gear, and a mathematical model of spur gears with asymmetric involute 

teeth is given according to the gearing theory. The equations of the profile of the 

cutter, the principle of coordinate transformation, the theory of differential geometry, 

and the theory of gearing are applied for describing generating and generated 

surfaces. 

 

In terms of the asymmetric spur bending stress, in paper [7], it is found that external 

asymmetric spur gear tooth geometry (with larger pressure angle on drive tooth side) 

allow for an increase in load capacity while reducing weight and dimensions for 

same types of gears. In the paper [11], an adaptation of the standard ISO C 

methodology to determine bending stress calculations for external spur gears with 

asymmetric teeth is used and the results are compared with the results obtained using 

modern finite element methods. In another paper [12], the effect of bending stress of 

an external spur gear at the critical section for different pressure angle on the drive 

side along with the profile shift is studied by finite element analysis. Due to positive 

profile shift, the thickness of tooth at the root increases, resulting in greater load 

carrying capacity of the teeth. Profile shift varied from 0 to 0.5 and found lowest 

bending strength at critical section with profile shift value of 0.5; drive side pressure 

angle is also varied from 20 to 30 degree and found lowest bending strength at 

critical section with 30 degree pressure angle. It has been found that implementation 

of positive profile shift and pressure angle modification reduces bending stress 

considerably. In the paper [13], the Lewis factor of an external spur gear tooth for 

different coefficient of asymmetry is calculated for different number of teeth and it is 

found that Lewis factor increases with coefficient of asymmetry and number of teeth. 
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Then, in the paper [14], the single-tooth bending fatigue strength and scuffing 

resistance of asymmetric and symmetric tooth gear are determined experimentally by 

designing, fabricating and testing specimens. Test results demonstrated higher 

bending fatigue strength for both the asymmetric tooth form and optimized fillet 

form compared to symmetric designs. Scuffing resistance was significantly increased 

for the asymmetric tooth form compared to a conventional symmetric involute tooth 

design. As an analytical study to determine the maximum bending stress, in the paper 

[2], a developed analytical method based on a previous trial graphical method has 

been introduced to find the solution of bending stress equation for symmetric and 

external asymmetric spur gear teeth with and without profile correction and for 

different gear design parameters. In order to achieve this analytical solution, certain 

geometrical properties for gear tooth shape of tooth loading angle, tooth critical 

section thickness, the load height from this section and Lewis form factor which are 

imperative to formulate the final form of the tooth bending stress equation must be 

determined analytically step-by-step. As a result of this work, the trial graphical 

method has been avoided by establishing a simple analytical expression which can be 

easily solved and it gives a higher accuracy and requires a shorter time. In another 

analytical method in paper [15], in order to estimate the tooth thickness and height at 

the gear tooth critical bending stress section for external asymmetric spur gear tooth, 

the standard ISO B methodology has been adapted suitably such that at the critical 

section 30 degrees is used for the drive side tangent angle and for the coast side 

tangent angle, coast side pressure angle minus drive side pressure angle is added to 

30 degrees. Then, the critical tooth thickness and height and the parameters 

depending on them such as root fillet radius of curvature and tooth form factor for 

asymmetric spur gear tooth with several sets of drive side and coast side pressure 

angles are determined through an adapted ISO method and a comparative study with 

FEM is also carried out. An optimum design for an internal gear pair for the desired 

values of input parameters has been attempted through a direct gear design approach 

in paper [16]. By synthesizing several sets of asymmetric pinion cutters for specific 

values of input parameters, the respective internal gear and external pinion generated 
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by them have been analyzed by FEA for a balanced and lowest possible maximum 

fillet stress to decide the optimum one. A conventional gear design process has also 

been suggested with stub tooth concept in this regard. 

 

A simple and effective approach to rating asymmetric tooth gears is outlined in paper 

[17]. The maximum bending stress is calculated by either using 2-D or 3D FEA for 

both asymmetric and comparable symmetric gear teeth and a bending stress 

conversion coefficient is defined by using FEA results of these gears. Then a 

standard stress analysis for the comparable symmetric gear tooth is done and the 

bending safety factor is found. Finally the bending safety factor for the asymmetric 

gear tooth is obtained by using the symmetric gear tooth bending safety factor and 

the bending stress conversion coefficient. The Direct Gear Design approach to 

asymmetric epicyclic gear stages with the singular and compound planet gears is 

outlined in paper [18]. Methods of optimization of the tooth flank asymmetry factor 

and root fillet profile are considered. This allows for a considerable increase in 

power transmission density, increase in load capacity, and reduction in the size and 

weight of asymmetric epicyclic gear drives. And an example implementation of 

asymmetric epicyclic gears has been demonstrated. This example is two stage 

planetary gearbox of the TV7-117S turboprop engine is demonstrated. This engine 

has been used in the Russian airplane IL-114 for several years and is going to be 

used in IL-112, MIG-110, TU-136 airplanes which resulted in extremely low weight 

to output torque ratio [19].  
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CHAPTER 2 

 

 

2 EXTERNAL ASYMMETRIC SPUR GEAR TOOTH GEOMETRY AND 

ANALYTICAL BENDING STRESS INVESTIGATION 

 

 

 

2.1 Generation of External Involute Spur Gear Tooth by a Rack Cutter   

 

The generation of an external involute spur gear by a rack-cutter is shown in Fig. 2.1. 

The gear to be cut rotates with angular velocity 𝜔 about 𝑂, and the rack-cutter moves 

with velocity 𝑣. 

 

 

Fig. 2.1 Basic visualization of external spur gear generation by a rack-cutter 

 

The rack-cutter and the external involute gear tooth are both composed of three parts 

as seen in Fig. 2.2. The inclined surface 𝛴1 generates the involute flank surface 𝛴2. 
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The round surface 𝛴1𝑟 generates the root fillet surface 𝛴2𝑓. And the straight surface 

𝛴1𝑑 generates the dedendum circle surface 𝛴2𝑑. 

 

 

Fig. 2.2 Generating parts of rack-cutter and the corresponding generated parts of 

external spur gear tooth  

 

2.1.1 The Generation of the Gear Involute Flank Surface 

 

The rack-cutter inclined surface 𝛴1 generates the involute flank surface 𝛴2 as 

mentioned above. The basic kinematic relations of the generation and how to obtain 

gear involute flank surface are discussed below. 

 

2.1.1.1 Basic Kinematic Relations 

 

A rack-cutter having a constant linear velocity, 𝑣, have a constant normal angle, 𝛼, 

and normal velocity component, 𝑣 cos(𝛼), on all points along the inclined surface, 

𝛴1. In order for two bodies to remain in contact their normal velocities on contact 

points must be equal as stated in [20]. Thus for conjugate action during the 

generation of involute flank surface, the gear to be cut must have the same constant 

normal angle and velocity with the rack-cutter inclined surface on all contact points. 

As it is illustrated in Fig. 2.3 by regarding constant angular velocity of the gear to be 

cut, 𝜔, constant normal velocity 𝑣 cos(𝛼) is only possible when the common normal 
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lines on all contact points are always tangent to the same circle, called base circle, 

with radius 𝑟𝑏. 

 

 𝜔𝑟𝑏 = 𝑣 cos(𝛼)   (2.1) 

 

By also knowing that these normal lines have the same angle, 𝛼, they result in a 

single line, called line of action, which includes all contact points. 

 

 

Fig. 2.3 Generation of external gear involute flank surface by the inclined surface of 

the rack-cutter 
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According to Lewis theorem any point of the rack-cutter inclined surface 𝛴1, 

generates the corresponding point of the gear involute flank surface 𝛴2 in a position 

that their common normal intersects the gear vertical center line at a point 𝐼 called 

instantaneous center of rotation. At point 𝐼, the velocity of the gear to be cut is 𝜔𝑟𝑝 

that is parallel to the rack-cutter velocity, 𝑣 and has the angle 𝛼 with the line of 

action. And for this point, the normal velocity component of the gear to be cut is 

𝜔𝑟𝑝 cos(𝛼) which must be equal to the constant normal velocity 𝑣 cos(𝛼) of the 

rack-cutter inclined surface for the conjugate action. Then, 

 

 𝜔𝑟𝑝 cos(𝛼) = 𝑣 cos(𝛼)   (2.2) 

 

 𝜔𝑟𝑝 = 𝑣   (2.3) 

 

As seen in Equation (2.3) the velocities of the gear to be cut and the rack-cutter are 

equal to each other at the instantaneous center of rotation, 𝐼. 

 

Also, use Equations (2.1) and (2.2): 

 

 𝜔𝑟𝑝 cos(𝛼) = 𝜔𝑟𝑏   (2.4) 

 

 𝑟𝑏 = 𝑟𝑝 cos(𝛼)   (2.5) 

 

2.1.1.1.1 Sliding Velocity 

 

The conjugate surfaces have equal velocities along the common normal at contact 

point as it is mentioned above. In general the tangential velocity components differ in 

magnitude as it is illustrated in Fig. 2.4. This results in a relative velocity or sliding 

velocity 𝑣𝑠𝑙 between two centroids. 

 



11 

 

 

Fig. 2.4 Instantaneous point of contact during generation of external gear involute 

flank surface 
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 𝑣𝑔𝑛 = 𝑣𝑔 cos(𝛼𝑗)   (2.6) 

 

 𝑣𝑛 = 𝑣 cos(𝛼)   (2.7) 

 

Use the equality of normal velocities at contact point: 

 

 𝑣𝑔𝑛 = 𝑣𝑛   (2.8) 

 

 𝑣𝑔 =
𝑣 cos(𝛼)

cos(𝛼𝑗)
   (2.9) 

 

 𝑣𝑡 = 𝑣 sin(𝛼) (2.10) 

 

 𝑣𝑔𝑡 = 𝑣𝑔 sin(𝛼𝑗) (2.11) 

 

 𝑣𝑠𝑙 = 𝑣𝑡 − 𝑣𝑔𝑡 (2.12) 

 

 𝑣𝑠𝑙 = 𝑣 sin(𝛼) − 𝑣𝑔 sin(𝛼𝑗) (2.13) 

 

 𝑣𝑠𝑙 = 𝑣 sin(𝛼) −
𝑣 cos(𝛼)

cos(𝛼𝑗)
sin(𝛼𝑗) (2.14) 

 

 𝑣𝑠𝑙 = 𝑣(𝑠𝑖𝑛(𝛼) − 𝑐𝑜𝑠(𝛼) 𝑡𝑎𝑛(𝛼𝑗)) (2.15) 

 

Here, 𝑣 and 𝛼 are constant and 𝛼𝑗, the instantaneous pressure angle of the involute 

flank surface, varies by rotation for any contact point. Thus 𝑣𝑠𝑙 is a function of angle 

rotation. And the sliding or relative velocity is only zero at point 𝐼, instantaneous 

center of rotation where 𝛼𝑗 and 𝑣𝑔 is equal to 𝛼 and 𝑣, respectively, so that 𝑣𝑔𝑡 is 

equal to 𝑣𝑡. 
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2.1.1.2 Parametric Representation of the Family of Surfaces 

 

The coordinate systems, 𝑆1(𝑥1, 𝑦1, 𝑧1), 𝑆2(𝑥2, 𝑦2, 𝑧2) and 𝑆𝑓(𝑥𝑓 , 𝑦𝑓 , 𝑧𝑓) that are 

rigidly connected to rack-cutter, external gear to be cut and reference frame, 

respectively, as illustrated in Fig. 2.5.  

 

 

Fig. 2.5 Coordinate Systems of rack-cutter, external gear and reference frame 

 

For any point on the rack-cutter inclined surface, 𝑟1 represents the position vector of 

that point in 𝑆1. As illustrated in Fig. 2.6, 𝑢 and 𝑓 are the rack-cutter inclination 

direction and face width direction, respectively. And in terms of all 𝑢 and 𝑓 

components, 𝑟1(𝑢, 𝑓) represents the rack-cutter inclined surface 𝛴1, in 𝑆1. 
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Fig. 2.6 Position vector of rack-cutter inclined surface 

 

During the generation motion, the rack-cutter inclined surface, 𝛴1, can be represented 

by a corresponding surface in 𝑆2 at any instant. For the whole generation motion 

these corresponding surfaces are called as the family of surfaces, 𝛴𝜙, illustrated in 

Fig. 2.7. 

 

 

Fig. 2.7 The family of surfaces during external spur gear generation by a rack-cutter 

 

In order to obtain parametric representation of the family of surfaces, 𝛴𝜙, firstly, a 

translation matrix, 𝑀𝑓1, between 𝑆1&𝑆𝑓 and secondly, a rotation matrix, 𝑀2𝑓, 

between 𝑆𝑓&𝑆2 should be applied on the rack-cutter inclined surface, 𝑟1(𝑢, 𝑓). Then 

the following matrix equation is obtained: 
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 𝑟2 = 𝑀2𝑓𝑀𝑓1𝑟1 (2.16) 

 

The counter-clockwise rotation matrix in 𝑥-𝑦 plane around 𝑧 axis has the following 

form, 

 

 𝑅(𝜙) = [
𝑐𝑜𝑠 𝜙 −𝑠𝑖𝑛 𝜙 0
𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜙 0

0 0 1

] (2.17) 

 

The direction of a vector rotation is counter-clockwise if 𝜙 is positive and the 

direction of a vector rotation is clockwise if 𝜙 is negative. According to the Fig. 2.5 

during the generation motion, the direction of gear rotation is counter-clockwise so 

the direction of the rotation matrix, 𝑀2𝑓, which is opposite to the direction of the 

gear rotation, is clockwise and 𝜙 is negative. Then the rotation matrix 𝑀2𝑓 can be 

written as: 

 

 𝑀2𝑓 = 𝑅(−𝜙) = [
𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜙 0
−𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜙 0

0 0 1

] (2.18) 

 

The translation matrix, 𝑀𝑓1, is related with 𝑟𝑝 and 𝑠 as seen in Fig. 2.5. The 

translation matrix components can be added to fourth column and written as: 

 

 𝑀𝑓1 = [

1 0 0 −𝑠
0 1 0 𝑟𝑝
0 0 1 0
0 0 0 1

] (2.19) 

 

During the generation motion for a given time interval, 𝑡, the gear rotates amount of 

𝜙 about 𝑂2 with an angular velocity, 𝜔, and the rack-cutter translates amount of 𝑠 

with a velocity, 𝑣. Then 𝑠 can be found as follows: 

For gear: 
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 𝜙 = 𝜔𝑡 (2.20) 

 

For rack-cutter: 

 

 𝑠 = 𝑣𝑡 (2.21) 

 

Use Equation   (2.3) in Equation (2.21): 

 

 𝑠 = 𝜔𝑟𝑝𝑡 (2.22) 

 

Use Equation   (2.3) in Equation (2.21): 

 

 𝑠 = 𝑟𝑝𝜙 (2.23) 

 

Thus 𝑀𝑓1 can be rewritten as: 

 

 𝑀𝑓1 = [

1 0 0 −𝑟𝑝𝜙

0 1 0 𝑟𝑝
0 0 1 0
0 0 0 1

] (2.24) 

 

The rotation matrix 𝑀2𝑓 is modified for matrix multiplication convenience and 

written as: 

 

 𝑀2𝑓 = [

𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜙 0 0
−𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜙 0 0

0 0 1 0
0 0 0 1

] (2.25) 
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According to the position of the rack-cutter in 𝑆1, coordinates of 𝑟1 change and in 

Chapter 2.2.3.1, 𝑟1 matrix is defined accordingly desired rack-cutter position in 𝑆1. 

However as being independent on the rack-cutter position in 𝑆1 the coordinates of 𝑟1 

are function of 𝑢 and 𝑓 as mentioned above. And the elements of both matrices 𝑀𝑓1 

and 𝑀2𝑓 are functions of 𝜙 as seen in Equations (2.24) and (2.25). Thus 𝑟2 is a 

function of 𝑢, 𝑓 and 𝜙 and 𝑟2(𝑢, 𝑓, 𝜙) represents the family of surfaces, 𝛴𝜙.  

 

2.1.1.3 The Determination of the Envelope to the Family of Surfaces  

 

The envelope of a family of surfaces is tangent to each surfaces of the family along 

the characteristic curve. As seen in Fig. 2.3, at any instant during the generation 

motion, the gear to be cut is in contact (tangency) with the rack-cutter inclined 

surface (an instantaneous surface of the family, 𝛴𝜙, in 𝑆𝑓) along the line of action 

(characteristic curve). Thus, the generated external involute flank surface of the gear, 

𝛴2, is determined as the envelope to the family of surfaces, 𝛴𝜙. 

 

The partial derivatives 𝜕𝑟2 𝜕𝑢⁄  and 𝜕𝑟2 𝜕𝑓⁄  represent the tangents to each point on 

the rack-cutter inclined surface in 𝑆2 at each instant. And the cross product of these 

tangents gives the normal vectors to these points and represented as follows: 

 

 𝑁 =
𝜕𝑟2
𝜕𝑢

×
𝜕𝑟2
𝜕𝑓

 (2.26) 

 

As illustrated in Fig. 2.4, the sliding velocity vector 𝑣𝑠 is in the tangential direction at 

any contact point. Thus, at any point where one of the surfaces of the family and the 

involute tooth surface of the gear, 𝛴2, are in tangency, the normal vector of that 

surface of the family and 𝑣𝑠𝑙 must be perpendicular to each other. So, the dot product 

of these two vectors is zero at any tangency point and if the dot product of these 

vectors is not zero, then, there is no tangency. This is the engineering approach 
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method to determine the involute flank surface of the external gear, 𝛴2, as being 

envelope to the family of surfaces, 𝛴𝜙, in gear theory [21]. 

 

 (
𝜕𝑟2
𝜕𝑢

×
𝜕𝑟2
𝜕𝑓

) ∙ 𝑣𝑠𝑙 = 0 (2.27) 

As shown in Fig. 2.4, at any point where one of the surfaces of the family and the 

involute flank surface of the gear, 𝛴2, are in tangency: 

 

 𝑟2𝜔 = 𝑣𝑔 (2.28) 

 

 𝑟2𝜔 = 𝑣𝑔𝑛 �̂� + 𝑣𝑔𝑡 �̂� (2.29) 

 

 
𝜕(𝑟2𝜔)

𝜕𝜙
=

𝜕(𝑣𝑔𝑛 �̂� + 𝑣𝑔𝑡 �̂�)

𝜕𝜙
 (2.30) 

 

 𝜔
𝜕𝑟2
𝜕𝜙

=
𝜕(𝑣𝑔𝑛)

𝜕𝜙
�̂� +

𝜕(𝑣𝑔𝑡)

𝜕𝜙
�̂� (2.31) 

 

During the generation motion, the normal velocity of the contact point is constant as 

mentioned in Chapter 2.1.1.1, so its partial derivative with respect to 𝜙 is zero. Then 

Equation (2.31) reduces to: 

 

 𝜔
𝜕𝑟2
𝜕𝜙

=
𝜕(𝑣𝑔𝑡)

𝜕𝜙
�̂� (2.32) 

 

 
𝜕𝑟2
𝜕𝜙

=
1

𝜔
∙
𝜕(𝑣𝑔𝑡)

𝜕𝜙
�̂� (2.33) 

 

Equation (2.33) shows that the partial derivative 𝜕𝑟2 𝜕𝜙⁄  is in the tangential direction 

at any contact point. This is also the direction of 𝑣𝑠𝑙. So, in Equation (2.27),  𝜕𝑟2 𝜕ϕ⁄  
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can be used instead of 𝑣𝑠𝑙. This is the classical or differential approach method to 

determine the involute tooth surface of the gear, 𝛴2, as being envelope to the family 

of surfaces, 𝛴𝜙, in gear theory [21]. 

 

 (
𝜕𝑟2
𝜕𝑢

×
𝜕𝑟2
𝜕𝑓

) ∙
𝜕𝑟2
𝜕𝜙

= 0 (2.34) 

 

These Equations (2.27) and (2.34) are called as equation of meshing. In this thesis 

the differential approach method with equation (2.34) is used in order to obtain gear 

geometry. 

 

2.1.2 The Generation of the Gear Root Fillet Surface  

 

The generation of the gear root fillet is illustrated in Fig. 2.8 by considering 

coordinate systems illustrated in Fig. 2.5. As defined in introduction of Chapter 2, the 

rack-cutter round surface 𝛴1𝑟 generates the gear root fillet surface 𝛴2𝑓. 

 

2.1.2.1 Basic Kinematic Relations 

 

During the conjugate action the normal velocities must be equal and this equality can 

be written as: 

 

 𝑣 sin(𝜃) = 𝜔𝑟𝑏𝑓 (2.35) 

 

Here, 𝜃 defines the point on the rack-cutter round surface between 𝑚1 and 𝑚2 and 

changes with respect to the contact point at any instant, so does the normal velocity 

as seen in Fig. 2.8. Thus, 𝑟𝑏𝑓 is not constant and is a function of 𝜃. Then Equation 

(2.35) can be rewritten as: 
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Fig. 2.8 Generation of external gear root fillet surface by the rounded surface of the 

rack-cutter 

 

 𝑣 sin(𝜃) = 𝜔𝑟𝑏𝑓(𝜃) (2.36) 

 

 
𝑣

𝜔
𝑠𝑖𝑛 (𝜃) = 𝑟𝑏𝑓(𝜃) (2.37) 

 

Use Equation   (2.3) in Equation (2.37): 

 

 𝑟𝑝𝑠𝑖𝑛 (𝜃) = 𝑟𝑏𝑓(𝜃) (2.38) 

 

As seen in Fig. 2.8, 𝑂𝐼�̂� is equal to 𝜃 and by using 𝑂𝐼𝐵 right triangle: 
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 𝑂𝐼 𝑠𝑖𝑛 (𝜃) = 𝑂𝐵 (2.39) 

 

 𝑂𝐼 𝑠𝑖𝑛 (𝜃) = 𝑟𝑏𝑓(𝜃) (2.40) 

 

Use Equation (2.38) in Equation (2.40): 

 

 𝑂𝐼 sin(𝜃) = 𝑟𝑝sin (𝜃) (2.41) 

 

 𝑂𝐼 = 𝑟𝑝  (2.42) 

 

The equation above shows that 𝑂𝐼 is equal to the reference pitch radius as being 

independent on 𝜃. This can be explained according to Lewis theorem that a point of 

the rack-cutter round surface generates the respective point of the gear root fillet 

surface at a position where their common normal at the point of contact passes 

through the instantaneous center of rotation, 𝐼. 

 

2.1.2.2 The Determination of the Envelope to the Family of Surfaces  

 

For any point on the rack-cutter round surface, 𝑟1𝑟 represents the position vector of 

that point in 𝑆1. The vector 𝑟1𝑟 is dependent on 𝑓, face width direction, and 𝜃. And 

in terms of all 𝑓 and 𝜃 components, 𝑟1𝑟(𝜃, 𝑓) represents the surface 𝛴1𝑟, rack-cutter 

round surface, in 𝑆1. The 𝑟1𝑟 matrix is defined in Chapter 2.2.3.2 because of the same 

reason for 𝑟1 mentioned in Chapter 2.1.1.2. 

 

Since the generation motions are same for both gear involute tooth and root fillet 

surfaces, the rotation and the translation matrices are also same for these two 

generations. Then, 𝑟1𝑟 is represented in 𝑆2 as: 
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 𝑟2𝑓 = 𝑀2𝑓𝑀𝑓1𝑟1𝑟 (2.43) 

 

Here 𝑟2𝑓 is a function of 𝜃, 𝑓 and 𝜙 and 𝑟2𝑓(𝜃, 𝑓, 𝜙) representing the family of 

surfaces 𝛴𝜙𝑓, generated in 𝑆2 by surface 𝛴1𝑟, and illustrated in Fig. 2.7 together with 

𝛴𝜙𝑓. 

 

Because of the conjugate action during the generation, the gear root fillet surface, 

𝛴2𝑓, is determined as the envelope to the family of surfaces, 𝛴𝜙𝑓. And as mentioned 

in Section 2.1.1.3, the equation of meshing is used to find the envelope. Then modify 

Equation (2.34) for the gear root fillet surface and obtain: 

 

 (
𝜕𝑟2𝑓

𝜕𝜃
×

𝜕𝑟2𝑓

𝜕𝑓
) ∙

𝜕𝑟2𝑓

𝜕𝜙
= 0 (2.44) 

 

2.2 Details of Asymmetric Rack Cutter and External Asymmetric Spur Gear 

Tooth 

 

In order to generate an external asymmetric spur gear tooth, an asymmetric rack-

cutter is used. The details of an asymmetric rack-cutter and external asymmetric spur 

gear tooth are discussed in the following sections. 

 

2.2.1 Details of an Asymmetric Rack Cutter 

 

Fig. 2.9 shows a representative transverse cross sectional shape of basic asymmetric 

rack-cutter, which is used to generate the respective asymmetric tooth profiles. The 

rack tooth thickness and space width at the tool reference line are 𝜋𝑚 2⁄ . If the 

direction of the profile shift coefficient, 𝑥, is downward, it is negative and if the 

direction of 𝑥 is upward, it is positive. With reference to Fig. 2.9 the rack tooth 

thickness and space width at the generating pitch line, 𝑡 and 𝑡𝑟𝑒𝑓, are defined by: 
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 𝑡 = 𝜋𝑚 2⁄ + 𝑥𝑑 + 𝑥𝑐 (2.45) 

 

 𝑥𝑑 = −𝑥𝑚 tan𝛼𝑑 (2.46) 

 

 

Fig. 2.9 Asymmetric rack-cutter details 

 

 𝑥𝑐 = −𝑥𝑚 tan𝛼𝑐 (2.47) 

 

 𝑡 = 𝜋𝑚 2⁄ − 𝑥𝑚(tan𝛼𝑑 + tan𝛼𝑐) (2.48) 

 

 𝑡𝑟𝑒𝑓 = 𝜋𝑚 − 𝑡 (2.49) 

 

 𝑡𝑟𝑒𝑓 = 𝜋𝑚 2⁄ + 𝑥𝑚(tan𝛼𝑑 + tan𝛼𝑐) (2.50) 

 

The rack-cutter may be full-rounded with a radius 𝐴𝑚𝑎𝑥. The detailed derivation for 

calculating 𝐴𝑚𝑎𝑥 is given in Appendix A.1 and is expressed by: 

 

 𝐴𝑚𝑎𝑥 =
𝜋𝑚 2⁄ − 𝑚𝑏(𝑡𝑎𝑛 𝛼𝑑 + 𝑡𝑎𝑛 𝛼𝑐)

1
𝑐𝑜𝑠 𝛼𝑑

+
1

𝑐𝑜𝑠 𝛼𝑐
− (𝑡𝑎𝑛 𝛼𝑑 + 𝑡𝑎𝑛 𝛼𝑐)

 (2.51) 
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2.2.2 Details of an External Asymmetric Spur Gear Tooth 

 

Fig. 2.10 shows a representative transverse cross sectional shape of basic external 

asymmetric spur gear tooth. Gear tooth axis is defined as the line passing through the 

gear center and the point where tooth tip is pointed. Here 𝑟𝑡 is the pointed tooth tip 

radius and can be found as defined in Appendix B.1. 

 

Pitch circle is the reference pitch circle with radius: 

 

 𝑟𝑝 =
𝑚𝑍

2
 (2.52) 

 

 

Fig. 2.10 External asymmetric spur gear details 
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Regarding Equation   (2.5) drive and coast sides base circles can be respectively 

defined as: 

 

 𝑟𝑏𝑑 = 𝑟𝑝 cos 𝛼𝑑 (2.53) 

 

 𝑟𝑏𝑐 = 𝑟𝑝 cos 𝛼𝑐 (2.54) 

 

The gear tooth thickness at reference pitch circle is equal to the tooth space width of 

the rack-cutter at generating pitch line which is 𝑡𝑟𝑒𝑓. And the detailed derivation for 

calculating the drive and coast sides tooth thicknesses is given in Appendix B.1 and 

is expressed by: 

 

 𝑡𝑑 =
𝑚𝑁

2
( 𝑡𝑎𝑛 (𝑐𝑜𝑠−1 (

𝑟𝑏𝑑

𝑟𝑡
)) − 𝑐𝑜𝑠−1 (

𝑟𝑏𝑑

𝑟𝑡
) − 𝑖𝑛𝑣𝛼𝑑) (2.55) 

 

 𝑡𝑐 =
𝑚𝑁

2
( 𝑡𝑎𝑛 (𝑐𝑜𝑠−1 (

𝑟𝑏𝑐

𝑟𝑡
)) − 𝑐𝑜𝑠−1 (

𝑟𝑏𝑐

𝑟𝑡
) − 𝑖𝑛𝑣𝛼𝑐) (2.56) 

 

2.2.3 Determination of the Position Vector Matrices for the Surfaces of the 

Asymmetric Rack Cutter  

 

The position of the rack-cutter in 𝑆1 gives us the desired external gear tooth position 

in 𝑆2. In FEA for bending stress an external gear tooth is analyzed as its tooth axis 

being coincide with the vertical axis. Thus the rack-cutter should be positioned in 𝑆1 

so that the obtained gear tooth axis coincides with the vertical axis. 

 

Fig. 2.11 illustrates that the dark colored inclined and rounded surfaces of drive and 

coast sides of the asymmetric rack-cutter generates the asymmetric external gear dark 

colored flank and root fillet surfaces which represent the tooth space. By complete 
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circular patterning as the number of the gear tooth, the asymmetric gear having the 

desired tooth position is obtained. 

 

 

Fig. 2.11 The desired position of the external asymmetric gear tooth 

 

2.2.3.1 Determination of the Position Vector Matrices for the Inclined Surfaces 

of the Asymmetric Rack Cutter Coast and Drive Sides 

 

With reference to Fig. 2.12 and Fig. 2.13, the asymmetric rack-cutter drive and coast 

side inclined surfaces are defined as: 
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Fig. 2.12 The position vector of asymmetric rack-cutter drive side inclined surface 

 

 𝑟1𝑑 = [

𝑡𝑑 − 𝑢𝑑 𝑠𝑖𝑛 𝛼𝑑
𝑢𝑑 𝑐𝑜𝑠 𝛼𝑑

𝑓
1

]    𝑢𝑟𝑑 ≤ 𝑢𝑑 ≤ 𝑢𝑒𝑑   ,   0 ≤ 𝑓 ≤ 𝑓𝑤 (2.57) 

 

 

Fig. 2.13 The position vector of asymmetric rack-cutter coast side inclined surface 

 𝑟1𝑐 = [

𝑡𝑑 + 𝑡 + 𝑢𝑐 sin 𝛼𝑐
𝑢𝑐 cos 𝛼𝑐

𝑓
1

]    𝑢𝑟𝑐 ≤ 𝑢𝑐 ≤ 𝑢𝑒𝑐  ,   0 ≤ 𝑓 ≤ 𝑓𝑤  (2.58) 
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In Equations (2.57) and (2.58) the first and second rows are x and y components. The 

detailed derivations of 𝑢𝑒𝑑, 𝑢𝑟𝑑, 𝑢𝑒𝑐, 𝑢𝑟𝑐 are in Appendices A.2 and A.3 and 

expressed by: 

 

 𝑢𝑒𝑑 = (𝑟𝑎. sin (cos−1 (
𝑟𝑏𝑑

𝑟𝑎
)) − 𝑟𝑝. sin 𝛼𝑑) . tan𝛼𝑑 (2.59) 

 

 𝑢𝑟𝑑 = −
𝑚𝑏 − 𝐴 + 𝐴 sin 𝛼𝑑

cos 𝛼𝑑
 (2.60) 

 

 𝑢𝑒𝑑 = (𝑟𝑎. sin (cos−1 (
𝑟𝑏𝑐

𝑟𝑎
)) − 𝑟𝑝. sin 𝛼𝑐). tan𝛼𝑐 (2.61) 

 

 𝑢𝑟𝑐 = −
𝑚𝑏 − 𝐴 + 𝐴 sin 𝛼𝑐

cos 𝛼𝑐
 (2.62) 

 

The third row is face-width component. For a spur gear the involute gear tooth 

sections are all same through the face-width direction. Finally the fourth row is 

added for appropriate matrix multiplication in Equations (2.57) and (2.58). 

 

2.2.3.2 Determination of the Position Vector Matrices for the Rounded 

Surfaces of the Asymmetric Rack Cutter Coast and Drive Sides 

 

With reference to Fig. 2.14 and Fig. 2.15, the asymmetric rack-cutter drive and coast 

side rounded surfaces are defined as: 
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Fig. 2.14 The position vector of asymmetric rack-cutter drive side rounded surface 

 

 𝑟1𝑟𝑑 = [

𝑡𝑓𝑑 − 𝐴 sin θ𝑑

−𝑚𝑏 + 𝐴 − 𝐴 cos θ𝑑

𝑓
1

]   0 ≤ θ𝑑 ≤ θ𝑒𝑑  ,   0 ≤ 𝑓 ≤ 𝑓𝑤  (2.63) 

 

 

Fig. 2.15 The position vector of asymmetric rack-cutter coast side rounded surface 
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 𝑟1𝑟𝑐 = [

𝑡𝑓𝑐 + 𝐴 sin θ𝑐

−𝑚𝑏 + 𝐴 − 𝐴 cos θ𝑐

𝑓
1

]   0 ≤ θ𝑐 ≤ θ𝑒𝑐  ,   0 ≤ 𝑓 ≤ 𝑓𝑤  (2.64) 

 

With reference to Fig. 2.14 and Fig. 2.15: 

 

 θ𝑒𝑑 =
𝜋

2
− 𝛼𝑑 (2.65) 

 

 θ𝑒𝑐 =
𝜋

2
− 𝛼𝑐 (2.66) 

 

The detailed derivations of 𝑡𝑓𝑑, 𝑡𝑓𝑐 are in Appendix A.4 and expressed by: 

 𝑡𝑓𝑑 = 𝑡𝑑 + (𝑚𝑏 − 𝐴) tan𝛼𝑑 +
𝐴

cos 𝛼𝑑
 (2.67) 

 

 𝑡𝑓𝑐 = 𝑡𝑑 + 𝑡 − (𝑚𝑏 − 𝐴) tan𝛼𝑐 −
𝐴

cos 𝛼𝑐
 (2.68) 

 

2.3 Analytical Method to Determine the Critical Bending Stress Section and 

Related Parameters for an External Asymmetric Spur Gear Tooth 

 

In this section a modified ISO B method which is very similar to the method in [15] 

mentioned in Chapter 1.2, is used in order to determine the critical tooth thickness 

and tooth height for an asymmetric external spur gear. In this method, as illustrated 

in Fig. 2.16, the drive side tangent angle at the critical section 𝛽𝑑 is equal to 30°, 

same with [15] but the coast side tangent angle at the critical section 𝛽𝑐 is not same 

with [15] and calculated by using the generation of the external gear coast side root 

fillet. 
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Fig. 2.16 The basic visualization of external asymmetric spur gear tooth bending 

stress critical section 

 

2.3.1 Determination of the Angle and Radius of the Applied Force  

 

The maximum bending stress on the external gear root occurs when the force is 

applied on the gear tooth at the highest point single tooth contact according to [6] as 

mentioned in Chapter 1.2. In order to verify the critical tooth thickness and tooth 

height, firstly radius of the applied force, 𝑟𝐹, and angle, 𝛼𝐹, as illustrated in Fig. 2.17 

shall be determined.  For this, radius of the highest point single tooth contact point, 

𝑟ℎ, must be known. The detailed derivation of 𝑟ℎ is in Appendix B.3. 

 

 𝛼ℎ = cos−1 (
𝑟𝑏𝑑

𝑟ℎ
) (2.69) 
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 𝑖𝑛𝑣𝛼ℎ = tan𝛼ℎ − 𝛼ℎ (2.70) 

 

 𝛼𝐹 = 𝛼ℎ − (𝑖𝑛𝑣𝛼𝑡𝑑 − 𝑖𝑛𝑣𝛼ℎ) (2.71) 

 

 𝑟𝐹 =
𝑟𝑏𝑑

cos(𝛼𝐹)
 (2.72) 

 

 

Fig. 2.17 The applied force at hpstc and the related parameters  

 

2.3.2 Determination of the Critical Tooth Thickness and Height  

 

The critical tooth thickness and tooth height can be determined by using the 

generation of the gear root fillet with a rack-cutter. Firstly, the drive side critical 

tooth thickness and the critical tooth height are obtained. Then with respect to the 

critical section, the coast side critical tooth thickness is obtained. Finally, the 

summation of the drive and coast side critical tooth thicknesses gives the critical 

tooth thickness. 
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2.3.2.1 Determination of the Drive Side Critical Tooth Thickness and Height 

 

The drive side critical tooth thickness and tooth height are obtained by using the 

generation of the external asymmetric spur gear drive side root fillet surface with the 

asymmetric rack-cutter drive side rounded surface. Fig. 2.18 shows the generation of 

the gear drive side root fillet at point 𝑃 where the critical section occurs. 

 

The rack-cutter translates amount of 𝑠𝑑 and with reference to Equation (2.23), 𝑠𝑑  is 

equal to: 

 

 𝑠𝑑 = 𝑟𝑝𝜙𝑑 (2.73) 

 

 𝑃𝐻 = 𝑠𝑑 − 𝑃𝑥 (2.74) 

 

𝑃𝑥: Absolute value of 𝑥 component of 𝑟1𝑟𝑑, Fig. 2.14, Equation (2.63) 

 

 𝑃𝐻 = 𝑟𝑝𝜙𝑑 − (𝑡𝑓𝑑 − 𝐴 𝑠𝑖𝑛 𝜃𝑑) (2.75) 

 

𝑃𝐻 is also equal to: 

 

 𝑃𝐻 = 𝐼𝐻 𝑡𝑎𝑛 𝜃𝑑  (2.76) 

 

𝐼𝐻: Absolute value of 𝑦 component of 𝑟1𝑟𝑑, Fig. 2.14, Equation (2.63) 

 

 𝑃𝐻 = (𝑚𝑏 − 𝐴 + 𝐴 𝑐𝑜𝑠 𝜃𝑑) 𝑡𝑎𝑛 𝜃𝑑 (2.77) 
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Fig. 2.18 The generation of the external asymmetric spur gear drive side root fillet at 

the location where the critical section occurs  
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By using Equations (2.75)  and (2.77), obtain 𝜙𝑑 in terms of 𝜃𝑑: 

 

 𝜙𝑑 =
(𝑚𝑏 − 𝐴 + 𝐴 𝑐𝑜𝑠 𝜃𝑑) 𝑡𝑎𝑛 𝜃𝑑 + (𝑡𝑓𝑑 − 𝐴 𝑠𝑖𝑛 𝜃𝑑)

𝑟𝑝
 (2.78) 

 

As seen in 𝑂𝐶𝐼̂  triangle: 

 

 𝜃𝑑 + 𝛽𝑑 + 𝜙𝑑 =
𝜋

2
 (2.79) 

 

Note that: 

 

 𝛽𝑑 =
𝜋

6
 (2.80) 

 

And put Equations (2.78) and (2.79) in equation (2.80) and solve for 𝜃𝑑. Then, 

 

 𝑃𝐼 =
𝐼𝐻

𝑐𝑜𝑠 𝜃𝑑
 (2.81) 

 

 𝑃𝐼 =
(𝑚𝑏 − 𝐴 + 𝐴 𝑐𝑜𝑠 𝜃𝑑)

𝑐𝑜𝑠 𝜃𝑑
 (2.82) 

 

 𝐶𝐼 = 𝑂𝐼 𝑐𝑜𝑠 𝜃𝑑 (2.83) 

 

 𝐶𝐼 = 𝑟𝑝 𝑐𝑜𝑠 𝜃𝑑  (2.84) 

 

 𝑂𝐶 = 𝑂𝐼 𝑠𝑖𝑛 𝜃𝑑 (2.85) 

 

 𝑂𝐶 = 𝑟𝑝 𝑠𝑖𝑛 𝜃𝑑 (2.86) 
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 𝐶𝐾 = 𝑂𝐶 𝑡𝑎𝑛 𝛽𝑑 (2.87) 

 

 𝐶𝐾 = 𝑟𝑝 𝑠𝑖𝑛 𝜃𝑑 𝑡𝑎𝑛 𝛽𝑑 (2.88) 

 

 𝐾𝑃 = 𝐶𝐼 − 𝑃𝐼 − 𝐶𝐾 (2.89) 

 

 𝐾𝑃 = 𝑟𝑝 𝑐𝑜𝑠 𝜃𝑑 −
(𝑚𝑏 − 𝐴 + 𝐴 𝑐𝑜𝑠 𝜃𝑑)

𝑐𝑜𝑠 𝜃𝑑
− (𝑟𝑝 𝑠𝑖𝑛 𝜃𝑑 𝑡𝑎𝑛 𝛽𝑑) (2.90) 

 

 𝑡𝑟𝑑 = 𝐾𝑃 𝑐𝑜𝑠 𝛽𝑑 (2.91) 

 

 𝑡𝑟𝑑 = (𝑟𝑝 𝑐𝑜𝑠 𝜃𝑑 −
(𝑚𝑏 − 𝐴 + 𝐴 𝑐𝑜𝑠 𝜃𝑑)

𝑐𝑜𝑠 𝜃𝑑
− (𝑟𝑝 𝑠𝑖𝑛 𝜃𝑑 𝑡𝑎𝑛 𝛽𝑑)) 𝑐𝑜𝑠 𝛽𝑑 (2.92) 

 

 𝑂𝐾 =
𝑂𝐶

𝑐𝑜𝑠 𝛽𝑑
 (2.93) 

 

 
𝑂𝐾 =

𝑟𝑝 𝑠𝑖𝑛 𝜃𝑑

𝑐𝑜𝑠 𝛽𝑑
 

 

(2.94) 

 

 
𝐾𝐿 = 𝐾𝑃 𝑠𝑖𝑛 𝛽𝑑 

 
(2.95) 

 

 
𝐾𝐿 = (𝑟𝑝 𝑐𝑜𝑠 𝜃𝑑 −

(𝑚𝑏 − 𝐴 + 𝐴 𝑐𝑜𝑠 𝜃𝑑)

𝑐𝑜𝑠 𝜃𝑑
− (𝑟𝑝 𝑠𝑖𝑛 𝜃𝑑 𝑡𝑎𝑛 𝛽𝑑)) 𝑠𝑖𝑛 𝛽𝑑 

 

(2.96) 

 

 
ℎ𝑟 = 𝑂𝑀 − (𝑂𝐾 + 𝐾𝐿) 

 
(2.97) 
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Note that 𝑂𝑀 is 𝑟𝐹, Fig. 2.17, then: 

 

 

ℎ𝑟 = 𝑟𝐹 − (
𝑟𝑝 𝑠𝑖𝑛 𝜃𝑑

𝑐𝑜𝑠 𝛽𝑑
. + (𝑟𝑝 𝑐𝑜𝑠 𝜃𝑑 −

(𝑚𝑏 − 𝐴 + 𝐴 𝑐𝑜𝑠 𝜃𝑑)

𝑐𝑜𝑠 𝜃𝑑
⋯

− (𝑟𝑝 𝑠𝑖𝑛 𝜃𝑑 𝑡𝑎𝑛 𝛽𝑑)) 𝑠𝑖𝑛 𝛽𝑑) 

(2.98) 

 

2.3.2.2 Determination of the Coast Side Critical Tooth Thickness and Height 

 

The coast side critical tooth thickness is obtained by using the generation of the 

external asymmetric spur gear coast side root fillet surface with the asymmetric rack-

cutter coast side rounded surface. Fig. 2.19 shows the generation of the gear coast 

side root fillet at point 𝑇 where the critical section occurs. 

 

The rack-cutter translates amount of 𝑠𝑐 and with reference to Equation (2.23), 𝑠𝑐  is 

equal to: 

 

 𝑠𝑐 = 𝑟𝑝𝜙𝑐 (2.99) 

 

 𝐹𝑇 = 𝑠𝑐 − 𝑇𝑥  (2.100) 

 

𝑇𝑥: 𝜋𝑚 − (Absolute value of 𝑥 component of 𝑟1𝑟𝑐 ) , Fig. 2.15, Equation (2.64) 

 

 𝐹𝑇 = 𝑟𝑝𝜙𝑐 − (𝜋𝑚 − (𝑡𝑓𝑐 + 𝐴 𝑠𝑖𝑛 𝜃𝑐))  (2.101) 

 

𝐹𝑇 is also equal to: 

 

 𝐹𝑇 = 𝐼𝐹 𝑡𝑎𝑛 𝜃𝑐  (2.102) 
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𝐼𝐹: Absolute value of 𝑦 component of 𝑟1𝑟𝑐, Fig. 2.15, Equation (2.64) 

 

 𝐹𝑇 = (𝑚𝑏 − 𝐴 + 𝐴 𝑐𝑜𝑠 𝜃𝑐) 𝑡𝑎𝑛 𝜃𝑐  (2.103) 

 

By using Equations  (2.101) and  (2.103), obtain 𝜙𝑐 in terms of 𝜃𝑐: 

 

 𝜙𝑐 =
(𝑚𝑏 − 𝐴 + 𝐴 𝑐𝑜𝑠 𝜃𝑐) 𝑡𝑎𝑛 𝜃𝑐 + (𝜋𝑚 − (𝑡𝑓𝑐 + 𝐴 𝑠𝑖𝑛 𝜃𝑐))

𝑟𝑝
  (2.104) 

 

As seen in 𝑂𝑅𝐼̂  triangle: 

 

 𝜃𝑐 + 𝛽𝑐 + 𝜙𝑐 =
𝜋

2
  (2.105) 

 

Put Equation  (2.103) in Equation  (2.104) and obtain 𝛽𝑐 in terms of 𝜃𝑐. Then, 

 

 𝛽𝑐 =
𝜋

2
− 𝜃𝑐 −

(𝑚𝑏 − 𝐴 + 𝐴 𝑐𝑜𝑠 𝜃𝑐) 𝑡𝑎𝑛 𝜃𝑐 + (𝜋𝑚 − (𝑡𝑓𝑐 + 𝐴 𝑠𝑖𝑛 𝜃𝑐))

𝑟𝑝
  (2.106) 

 

 𝑇𝐼 =
𝐼𝐹

𝑐𝑜𝑠 𝜃𝑐
  (2.107) 

 

 𝑇𝐼 =
(𝑚𝑏 − 𝐴 + 𝐴 𝑐𝑜𝑠 𝜃𝑐)

𝑐𝑜𝑠 𝜃𝑐
  (2.108) 

 

 𝑅𝐼 = 𝑂𝐼 𝑐𝑜𝑠 𝜃𝑐  (2.109) 

 

 𝑅𝐼 = 𝑟𝑝 𝑐𝑜𝑠 𝜃𝑐  (2.110) 

 

 𝑂𝑅 = 𝑂𝐼 𝑠𝑖𝑛 𝜃𝑐  (2.111) 
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Fig. 2.19 The generation of the external asymmetric spur gear coast side root fillet at 

the location where the critical section occurs 
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 𝑂𝑅 = 𝑟𝑝 𝑠𝑖𝑛 𝜃𝑐  (2.112) 

 

 𝑅𝑆 = 𝑂𝑅 tan𝛽𝑐  (2.113) 

 

 𝑅𝑆 = 𝑟𝑝 𝑠𝑖𝑛 𝜃𝑐 𝑡𝑎𝑛 𝛽𝑐  (2.114) 

 

 𝑆𝑇 = 𝑅𝐼 − 𝑇𝐼 − 𝑅𝑆  (2.115) 

 

 𝑆𝑇 = 𝑟𝑝 𝑐𝑜𝑠 𝜃𝑐 −
(𝑚𝑏 − 𝐴 + 𝐴 𝑐𝑜𝑠 𝜃𝑐)

𝑐𝑜𝑠 𝜃𝑐
− (𝑟𝑝 𝑠𝑖𝑛 𝜃𝑐 𝑡𝑎𝑛 𝛽𝑐)  (2.116) 

 

 𝑂𝑆 =
𝑂𝑅

𝑐𝑜𝑠 𝛽𝑐
  (2.117) 

 

 𝑂𝑆 =
𝑟𝑝 𝑠𝑖𝑛 𝜃𝑐

𝑐𝑜𝑠 𝛽𝑐
  (2.118) 

 

 𝑆𝐿 = 𝑆𝑇 sin 𝛽𝑐  (2.119) 

 

 𝑆𝐿 = (𝑟𝑝 𝑐𝑜𝑠 𝜃𝑐 −
(𝑚𝑏 − 𝐴 + 𝐴𝑐𝑜𝑠 𝜃𝑐)

𝑐𝑜𝑠 𝜃𝑐
− (𝑟𝑝 𝑠𝑖𝑛 𝜃𝑐 𝑡𝑎𝑛 𝛽𝑐)) 𝑠𝑖𝑛 𝛽𝑐  (2.120) 

 

 ℎ𝑟 = 𝑂𝑀 − (𝑂𝑆 + 𝑆𝐿)  (2.121) 

 

 

ℎ𝑟 = 𝑟𝐹 − (
𝑟𝑝 𝑠𝑖𝑛 𝜃𝑐

𝑐𝑜𝑠 𝛽𝑐
. + (𝑟𝑝 𝑐𝑜𝑠 𝜃𝑐 −

(𝑚𝑏 − 𝐴 + 𝐴 𝑐𝑜𝑠 𝜃𝑐)

𝑐𝑜𝑠 𝜃𝑐
⋯

− (𝑟𝑝 𝑠𝑖𝑛 𝜃𝑐 𝑡𝑎𝑛 𝛽𝑐)) 𝑠𝑖𝑛 𝛽𝑐) 

 (2.122) 
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Note that 𝛽𝑐 is already obtained in terms of 𝜃𝑐, in Equation  (2.106). If Equation  

(2.106)  is put into the Equation  (2.122), then ℎ𝑟 is only a function of 𝜃𝑐. And 

remember that ℎ𝑟 is already found in Equation (2.98).  Then if the Equation (2.98) is 

equated to Equation  (2.122), 𝜃𝑐 at point 𝑇 is found. After that put 𝜃𝑐 in Equation  

(2.106) and obtain 𝛽𝑐. Now, the coast side critical tooth thickness can be obtained as 

below: 

 

 𝑡𝑟𝑐 = 𝑆𝑇 cos 𝛽𝑐  (2.123) 

 

 𝑡𝑟𝑐 = (𝑟𝑝 𝑐𝑜𝑠 𝜃𝑐 −
(𝑚𝑏 − 𝐴 + 𝐴 𝑐𝑜𝑠 𝜃𝑐)

𝑐𝑜𝑠 𝜃𝑐
− (𝑟𝑝 𝑠𝑖𝑛 𝜃𝑐 𝑡𝑎𝑛 𝛽𝑐)) cos 𝛽𝑐  (2.124) 

 

2.4 Determination of Tooth Form Factor, Stress Correction Factor and 

Maximum Bending Stress for an External Asymmetric Spur Gear Tooth 

through Modified ISO and FEA  

 

The maximum bending stress at the external spur gear tooth root may be expressed 

through the following known relation: 

 

 𝜎 =
𝐹𝑛

𝑓𝑚
𝑌𝐹𝑌𝑆  (2.125) 

where, 𝐹𝑛 is normal load, 𝑌𝐹 is tooth form factor and 𝑌𝑆 is stress correction factor. In 

addition to the bending stress formulations of AGMA and ISO standards, the 

compressive stress produced by the radial load 𝐹𝑟 is also taken in to account in this 

thesis so that the normal force 𝐹𝑛 is used instead of 𝐹𝑡 in Equation (2.125). 

 

𝑌𝐹 and 𝑌𝑆 are determined for an external asymmetric gear tooth with both modified 

ISO and FEA methods in the following Chapters. 
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2.4.1 Modified ISO Method for Bending Stress Parameters 

 

The tooth form factor 𝑌𝐹 is also affected by the radial load 𝐹𝑟. The detailed derivation 

of 𝑌𝐹 can be found in Appendix of [15] and defined as: 

 

 (𝑌𝐹)𝐼𝑆𝑂 =
6𝑚ℎ𝑟 𝑐𝑜𝑠 𝛼𝐹

𝑡𝑟
2 −

𝑚 𝑠𝑖𝑛 𝛼𝐹

𝑡𝑟
  (2.126) 

 

where, 

 

 𝑡𝑟 = 𝑡𝑟𝑐 + 𝑡𝑟𝑑  (2.127) 

 

The stress correction factor 𝑌𝑆 is defined in [5] as: 

 

 
(𝑌𝑆)𝐼𝑆𝑂 = (1.2 + 0.13𝐿)𝑞𝑠

[
1

1.21+
2.3
𝐿

]

 
 (2.128) 

 

where, 

 

 𝐿 =
𝑡𝑟
ℎ𝑟

  (2.129) 

 

 𝑞𝑠 =
𝑡𝑟

2𝜌𝐹
  (2.130) 

 

Here, 𝜌𝐹 is the root fillet radius of curvature of the drive side root fillet trochoid at 

the critical section and can be found with the help of the Fig. 2.20: 
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Fig. 2.20 The root fillet radius of curvature at the drive side critical section of the 

external asymmetric spur gear 
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 𝜌𝐹 = 𝑃𝐼 − (𝐶𝐼 − 𝐶𝐷)  (2.131) 

 

Here, 𝑃𝐼 and 𝐶𝐼 are already defined by Equations (2.82), (2.84) and 𝐶𝐷 is defined as: 

 

 𝐶𝐷 = 𝑂𝐶 tan(𝛽𝑑 + 𝛼𝜌)  (2.132) 

 

Here, 𝛽𝑑 and 𝑂𝐶 are already defined by Equations (2.80), (2.86) and the angle 𝛼𝜌 

can be defined by the help of Fig. 2.21: 

 

 

Fig. 2.21 The angle of the root fillet radius of curvature at the drive side critical 

section of the external asymmetric spur gear 
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 𝑟𝑝𝛼𝜌 = 𝑡𝑑 + ℎ𝑑 + 𝐴𝑑  (2.133) 

 

The parameters ℎ𝑑 and 𝐴𝑑 are found by using Equations (A.1),  (A.2) and  (A.4). 

 𝛼𝜌 =
𝑡𝑑 + ℎ𝑑 + 𝐴𝑑

𝑟𝑝
  (2.134) 

Finally, the stress correction factor, (𝑌𝑆)𝐼𝑆𝑂, can be estimated, too. Then, the 

maximum bending stress of an asymmetric gear tooth root can be calculated by: 

 

 (𝜎)𝐼𝑆𝑂 =
𝐹𝑛

𝑓𝑤𝑚
(𝑌𝐹)𝐼𝑆𝑂(𝑌𝑆)𝐼𝑆𝑂  (2.135) 

 

2.4.2 FEA Method for Bending Stress Parameters 

 

Tensile stresses cause crack initiations and propagations. Thus, in terms of the 

bending failure of a gear tooth, the maximum tensile stress on the root fillet can be 

defined as the maximum bending stress. Additionally the maximum tensile stress is 

determined as the maximum principle stress which is normal to the surface where 

shear stresses are zero. Therefore the maximum principle stress on the root fillet 

gives the maximum bending stress through FEA. 

 

 (𝜎)𝐹𝐸𝐴 =
𝐹𝑛

𝑓𝑤𝑚
(𝑌𝐹)𝐹𝐸𝐴(𝑌𝑆)𝐹𝐸𝐴  (2.136) 

 

The form factor (𝑌𝐹)𝐹𝐸𝐴 is calculated with Equation (2.126) by using FEA based 

values of 𝑡𝑟 and ℎ𝑟. Then (𝑌𝑆)𝐹𝐸𝐴 can be defined as: 

 

 
(𝑌𝑆)𝐹𝐸𝐴 =

(𝜎)𝐹𝐸𝐴

𝐹𝑛

𝑓𝑤𝑚
(𝑌𝐹)𝐹𝐸𝐴

 
 (2.137) 
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The FEA based 𝜌𝐹 at the critical section is obtained by using Equation  (2.131) with 

the FEA based critical section parameters which are defined in Chapter 2.4.2.2.1.  

 

In order to use this method, 2D FEA is carried out in this thesis and the asymmetric 

external spur gear 2D FE model is the need for FEA. In order to create a 2D FE 

model, firstly, a 3D cat model of the asymmetric internal spur gear is created in this 

thesis and 2D gear geometry is obtained by using this cat model. Then 2D FE model 

can be created by using this 2D gear geometry. 

 

2.4.2.1 External Asymmetric Spur Gear 3D Model 

 

The external asymmetric spur gear as shown in Fig. 2.23 is obtained by using a 

Matlab code, written according to the theory explained in this thesis, and illustrated 

in Fig. 2.22. Here, the profile is consist of points and represents the tooth space 

surface. Also the profile is 3D and the points continue through the face width 

direction. Since this is a spur gear, the profile at each section is same. 

 

 

Fig. 2.22 External asymmetric spur gear tooth space profile 

 

In order to obtain 3D model of the external asymmetric spur gear, firstly, the points 

obtained in Matlab are put in an excel file, a macro of CATIA V5 R22. This macro 

has the spline option inside itself. By choosing this spline option the involute flank 

and trochoidal root profiles are generated in CATIA from these points. Later in 
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generative shape design of CATIA the generated flank and root profiles are joined 

and the gear tooth space surface is obtained from the jointed profiles being at 

different sections of the face width by using multi-section surface command. Then, a 

complete circular patterning as number of the gear tooth is done and the whole tooth 

space surfaces are obtained. After that, the whole tooth space surfaces are splitted 

from the 3D model of the gear to be cut which is a cylinder with a radius, 𝑟𝑎 and a 

height, 𝑓𝑤. Finally, 3D model of the external asymmetric spur gear is obtained. 

 

 

Fig. 2.23 External asymmetric spur gear 3D cat model 

 

Later, by creating sketch on one of the faces of the gear and using the project 3D 

elements option in CATIA a 2D geometry of the external asymmetric spur gear can 

be obtained. 

 

Fig. 2.24 External asymmetric spur gear 2D geometry 
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2.4.2.2 FE Model of the External Asymmetric Spur Gear 

 

In this thesis FE modeling and analysis are done in ABAQUS 6.14. A sample 2D FE 

model of the external asymmetric spur gear is shown in Fig. 2.25. The FE model is 

consist of three tooth and have enough rim thickness to provide a rim thickness 

factor of 1 according to [5].  

 

   

Fig. 2.25 External asymmetric spur gear tooth 2D FE model 

 

FE model properties: 

 

1) 2D FE analysis with plane strain condition is done by assuming a uniform load 

distribution along face width of the gear tooth. 

 

2) The material is a linear elastic isotropic and homogeneous one with an elastic 

constant of E = 210 GPa and Poisson's ratio= 0.3. 

 

3) The load is applied at RP-1 (reference point) which is HPSTC point. The reference 

point is coupled to the nodes at that diameter with continuum distributing and the FE 

model is fixed from the inner round and side lines as shown in Fig. 2.26. 
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4) The gear tooth profiles for this analysis have been generated using a full rounded 

rack cutter. 

 

5) The 2-D 8-nodded quadratic elements are used to mesh the gear model. The 

loaded gear tooth flanks and root fillets and the next unloaded tooth flanks and root 

fillets are meshed sensitively by using partition regions, which are offset from the 

original profile around 0.1 times module. There are 350x10 elements in the loaded 

tooth drive side root fillet and 150x10 elements in the loaded tooth drive side flank 

and coast side root fillet and 50x10 elements in the loaded tooth coast side involute 

flank. There are also 50x5 elements in the next unloaded tooth flanks and root fillets. 

For the other regions suitable global size elements are used. 

 

 

Fig. 2.26 External asymmetric spur gear tooth 2D FE model boundary condition and 

force application point 
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2.4.2.2.1 External Asymmetric Spur Gear FE Model Critical Section 

Parameters 

 

In the FEA the maximum principle stress location which is the point P illustrated in 

Fig. 2.27, is found and defines the critical section. The 𝑥 and 𝑦 components of point 

P are read in Abaqus. Here, 𝑃𝑥 and 𝑃𝑦 are defined as: 

 

 𝑃𝑥 = 𝑡𝑟𝑑  (2.138) 

 

 𝑃𝑦 = 𝑂𝐿  (2.139) 

 

 

Fig. 2.27 External asymmetric spur gear tooth 2D FE model critical section 

 

The critical tooth height is found as: 
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 ℎ𝑟 = 𝑂𝑀 − (𝑂𝐿)  (2.140) 

 

Remember that 𝑂𝑀 is 𝑟𝐹, Fig. 2.17, then: 

 

 ℎ𝑟 = 𝑟𝐹 − 𝑃𝑦  (2.141) 

 

 

Fig. 2.28 An example of the FEA bending stress results for the external asymmetric 

spur gear with 20 teeth, 𝛼𝑖𝑑/𝛼𝑖𝑐=30°/20° 

 

Since the critical tooth height is known and the critical section tangent angle is not 

known for the gear tooth drive side in FEA, the same method with the analytical 

method used in the coast side parameters derivation is used to obtain the drive side 

parameters in FEA method. According to this method the drive side critical tooth 

height is calculated by using Equation (2.98) and equated with Equation (2.141) so 
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that unknown parameters can be found. Although there are two unknowns 𝜃𝑑 and  𝛽𝑑 

in Equation (2.98) the drive side tangent angle 𝛽𝑑 can be obtained in terms of 𝜃𝑑 by 

using Equations (2.78) and (2.79). Then 𝜃𝑑 becomes the only unknown and is found 

by equating Equations (2.98) and (2.141). 

 

 𝛽𝑑 =
𝜋

2
− 𝜃𝑑 −

(𝑚𝑏 − 𝐴 + 𝐴 𝑐𝑜𝑠 𝜃𝑑) 𝑡𝑎𝑛 𝜃𝑑 + (𝑡𝑓𝑑 − 𝐴 𝑠𝑖𝑛 𝜃𝑑)

𝑟𝑝
  (2.142) 

 

The drive side critical section tooth thickness, 𝑡𝑟𝑑, can also be found by using 

Equation (2.92) for FE model. The results of Equations (2.92) and (2.138) shall be 

equal such that the correctness of the analytical method is proven. 

 

The coast side critical section parameters for FE model are found by using totally 

same equations and method mentioned in Chapter 2.3.2.2. The only difference is that 

the input parameter, the critical tooth height, is not obtained by analytical method but 

it comes from FEA. The coast side tangent angle and critical tooth thickness are 

found by using Equations  (2.106) and  (2.124), respectively. 
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CHAPTER 3 

 

3 INTERNAL ASYMMETRIC SPUR GEAR TOOTH GEOMETRY AND 

ANALYTICAL BENDING STRESS INVESTIGATION 

 

 

 

3.1 Generation of Internal Involute Spur Gear Tooth by a Pinion Type 

Shaper Cutter 

 

The generation of an internal involute spur gear by a pinion type shaper cutter is 

shown in Fig. 3.1. The internal gear to be cut rotates with angular velocity 𝜔𝑖 about 

𝑂𝑖, and the pinion type shaper-cutter rotates with angular velocity 𝜔𝑠 about 𝑂𝑠. 

 

 

Fig. 3.1 Basic visualization of internal spur gear generation by a shaper cutter 

 

The pinion type shaper cutter and the internal gear tooth are both composed of three 

parts as seen in Fig. 3.2. The shaper involute flank surface 𝛴𝑠 generates the internal 

gear involute flank surface 𝛴𝑖. The shaper round surface 𝛴𝑠𝑟 generates the internal 
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gear root fillet surface 𝛴𝑖𝑓. And the shaper addendum surface 𝛴𝑠𝑑 generates the 

internal gear dedendum surface 𝛴𝑖𝑑. 

 

Fig. 3.2 Generating parts of pinon type shaper cutter and the corresponding 

generated parts of internal spur gear tooth 

  

3.1.1 The Generation of the Gear Involute Flank Surface 

 

 

Fig. 3.3 Coordinate Systems of shaper, internal gear to be cut and gear housing 
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The shaper cutter involute flank surface 𝛴𝑠 generates the internal gear involute flank 

surface 𝛴𝑖 as mentioned above. The coordinate systems illustrated in Fig. 3.3, 𝑆𝑠, 𝑆𝑖 

and 𝑆𝑓 that are rigidly connected to shaper-cutter, internal gear to be cut and frame 

(gear housing), respectively. By using these coordinate systems the basic kinematic 

relations of the generation and how to obtain internal gear involute flank surface are 

discussed below.  

 

 

Fig. 3.4 Generation of internal gear involute flank surface by the involute surface of 

the shaper cutter 

 

3.1.1.1 Basic Kinematic Relations 

 

The kinematics of a shaper cutter is same with an external involute gear since it is 

essentially an external involute gear. Therefore, the involute flank surface of a shaper 

cutter has a line of action passing through the instantaneous center of rotation and a 
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constant normal velocity at all contact points during any conjugate action. Then an 

internal gear to be cut must also have the same line of action and constant normal 

velocity at all contact points during the generation motion with the involute flank 

surface of the shaper cutter. 

 𝑣𝑔𝑖𝑛 = 𝑣𝑠𝑛 (3.1)  

 

 𝑣𝑔𝑖 cos 𝛼𝑗𝑖 = 𝑣𝑠 cos 𝛼𝑗𝑠 (3.2)  

 

 𝑟𝑖𝜔𝑖 cos 𝛼𝑗𝑖 = 𝑟𝑠𝜔𝑠 cos 𝛼𝑗𝑠 (3.3)  

 

 𝜔𝑖𝑟𝑏𝑖 = 𝜔𝑠𝑟𝑏𝑠 (3.4)  

 

Here 𝜔𝑠, 𝑟𝑏𝑠 and  𝜔𝑖 are constant parameters, then 𝑟𝑏𝑖 is also constant. Then the 

generated surface of the internal gear by the involute flank surface of the shaper 

cutter must also be involute.  

 

The velocities of the shaper and internal gear must be equal at point I: 

 

 𝑣𝑔𝑖 = 𝑣𝑠 (3.5)  

 

 𝑟𝑔𝑝𝑖𝜔𝑖 = 𝑟𝑔𝑝𝑠𝜔𝑠 (3.6)  

 

 𝑟𝑔𝑝𝑖 = 𝑟𝑔𝑝𝑠

𝜔𝑠

𝜔𝑖
 (3.7)  

 

 𝑟𝑔𝑝𝑖 = 𝑟𝑔𝑝𝑠 + 𝐸𝑠 (3.8)  

 

Use Equations (3.4) and (3.8) in (3.7): 
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 𝑟𝑔𝑝𝑠 + 𝐸𝑠 = 𝑟𝑔𝑝𝑠

𝑟𝑏𝑖

𝑟𝑏𝑠
 (3.9)  

 

 𝑟𝑔𝑝𝑠 =
𝐸𝑠

𝑟𝑏𝑖

𝑟𝑏𝑠
− 1

 (3.10) 

 

For zero profile shift: 

 

 𝑟𝑔𝑝𝑠 = 𝑟𝑝𝑠 = 𝑚
𝑍𝑠

2
 (3.11) 

 

 𝛼𝑔 = 𝛼𝑠 (3.12) 

 

 𝑟𝑏𝑠 = 𝑟𝑝𝑠 cos 𝛼𝑠 (3.13) 

 

 𝑟𝑏𝑠 = 𝑚
𝑍𝑠

2
cos 𝛼𝑠 (3.14) 

 

 𝑟𝑔𝑝𝑖 = 𝑟𝑝𝑖 = 𝑚
𝑍𝑖

2
 (3.15) 

 

 𝑟𝑏𝑖 = 𝑟𝑝𝑖 cos 𝛼𝑠 (3.16) 

 

 𝑟𝑏𝑖 = 𝑚
𝑍𝑖

2
cos 𝛼𝑠 (3.17) 

 

Then use Equations (3.14) and (3.17) in Equation (3.10): 
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𝑟𝑔𝑝𝑠 =

𝐸𝑠

𝑍𝑖

𝑍𝑠
− 1

 
(3.18) 

 

 𝐸𝑠 = 𝑟𝑝𝑖 − 𝑟𝑝𝑠 + 𝑥𝑠 (3.19) 

 

Here 𝑥𝑠 is the amount of the vertical shift of the shaper cutter. If the shift is upward it 

is positive and if the shift is downward it is negative. By defining an input value for 

𝑥𝑠, 𝑟𝑔𝑝𝑠 can be found with Equation (3.18). 

 

Then the  𝛼𝑔 can be found as: 

 

 𝑟𝑏𝑠 = 𝑟𝑔𝑝𝑠 cos 𝛼𝑔 (3.20) 

 

 𝛼𝑔 = cos−1 (
𝑟𝑏𝑠

𝑟𝑔𝑝𝑠
) (3.21) 

 

3.1.1.2 The Determination of the Envelope to the Family of Surfaces 

 

For any point on the shaper cutter involute flank surface, 𝑟𝑠 represents the position 

vector of that point in 𝑆𝑠. The vector 𝑟𝑠 is dependent on 𝑓, face width direction, and 

𝛼𝑗𝑠. In terms of all 𝑓 and 𝛼𝑗𝑠  components, 𝑟𝑠(𝛼𝑗𝑠, 𝑓) represents the surface 𝛴𝑠, 

shaper-cutter involute flank surface, in 𝑆𝑠.  

 

In order to obtain parametric representation of the family of surfaces, 𝛴𝜙𝑖, firstly, a 

rotation matrix, 𝑀𝑓𝑠1, and translation matrix , 𝑀𝑓𝑠2, between 𝑆𝑠&𝑆𝑓 and secondly, a 

second rotation matrix, 𝑀𝑖𝑓, between 𝑆𝑓&𝑆𝑖 should be applied on the shaper-cutter 

flank surface, 𝑟𝑠(𝛼𝑗𝑠, 𝑓). Then the following matrix equation is obtained: 
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 𝑟𝑖 = 𝑀𝑖𝑓𝑀𝑓𝑠2𝑀𝑓𝑠1𝑟𝑠 (3.22) 

 

According to the Fig. 3.3 during the generation motion, the direction of shaper 

rotation is counter-clockwise so the direction of the rotation matrix, 𝑀𝑓𝑠2, which is 

same with the direction of the shaper rotation, is also counter-clockwise and 𝜙𝑠 is 

positive. Then the rotation matrix, 𝑀𝑓𝑠1 can be written as: 

 

 𝑀𝑓𝑠1 = [
𝑐𝑜𝑠 𝜙𝑠 −𝑠𝑖𝑛 𝜙𝑠 0
𝑠𝑖𝑛 𝜙𝑠 𝑐𝑜𝑠 𝜙𝑠 0

0 0 1

] (3.23) 

 

The translation matrix, 𝑀𝑓𝑠2, between 𝑆𝑠&𝑆𝑓 is simply: 

 

 𝑀𝑓𝑠2 = [

1 0 0 0
0 1 0 𝐸𝑠

0 0 1 0
0 0 0 1

] (3.24) 

 

According to the Fig. 3.3 during the generation motion, the direction of internal gear 

to be cut is counter-clockwise so the direction of the rotation matrix, 𝑀𝑖𝑓, which is 

opposite to the direction of the internal gear rotation, is clockwise and 𝜙𝑖 is negative. 

Then the rotation matrix, 𝑀𝑖𝑓 can be written as: 

 

 𝑀𝑖𝑓 = [
𝑐𝑜𝑠 𝜙𝑖 𝑠𝑖𝑛 𝜙𝑖 0
−𝑠𝑖𝑛 𝜙𝑖 𝑐𝑜𝑠 𝜙𝑖 0

0 0 1

] (3.25) 

 

Here 𝜙𝑖 is dependent on 𝜙𝑠. By using Equations (3.4), (3.14) and (3.17): 

 

 
𝜔𝑠

𝜔𝑖
=

𝑍𝑖

𝑍𝑠
 (3.26) 
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Then, 

 

 
𝜙𝑠

𝜙𝑖
=

𝜔𝑠

𝜔𝑖
=

𝑍𝑖

𝑍𝑠
 (3.27) 

 

 𝜙𝑖 = 𝜙𝑠

𝑍𝑠

𝑍𝑖
 (3.28) 

 

According to the position of the shaper-cutter in 𝑆𝑠, coordinates of 𝑟𝑠  change and in 

Chapter 3.2.3.1, 𝑟𝑠 matrix is defined accordingly desired shaper cutter position in 𝑆𝑠. 

However as being independent on the shaper-cutter position in 𝑆𝑠 the coordinates of 

𝑟𝑠 are function of 𝛼𝑗𝑠 and 𝑓 as mentioned above. And the elements of both matrices 

𝑀𝑓𝑠1 and 𝑀𝑖𝑓 are functions of 𝜙𝑠. Thus 𝑟𝑖 is a function of 𝛼𝑗𝑠, 𝑓 and 𝜙𝑠 and 

𝑟𝑖(𝛼𝑗𝑠, 𝑓, 𝜙𝑠) representing the family of surfaces 𝛴𝜙𝑖, generated in 𝑆𝑖 by surface 𝛴𝑠. 

Because of the conjugate action during the generation, the internal gear flank surface, 

𝛴𝑖, is determined as the envelope to the family of surfaces, 𝛴𝜙𝑖. And as mentioned in 

Chapter 2.1.1.3, the equation of meshing is used to find the envelope. Then modify 

Equation (2.34) for the internal gear flank surface and obtain: 

 

 (
𝜕𝑟𝑖
𝜕𝛼𝑗𝑠

×
𝜕𝑟𝑖
𝜕𝑓

) ∙
𝜕𝑟𝑖
𝜕𝜙𝑠

= 0 (3.29) 

 

3.1.2 The Generation of the Gear Root Fillet Surface 

 

The shaper cutter round surface 𝛴𝑠𝑟 generates the internal gear root fillet surface 𝛴𝑖𝑓 

as mentioned in Chapter 3.1. By using the coordinate systems in Fig. 3.3 the basic 

kinematic relations of the generation and how to obtain internal gear root fillet 

surface are discussed below. 
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Fig. 3.5 Generation of internal gear root fillet surface by the rounded surface of the 

shaper cutter 

 

3.1.2.1 Basic Kinematic Relations 

 

During the conjugate action the normal velocities must be equal and this equality can 

be written as: 

 

 𝜔𝑠 𝑟𝑏𝑠𝑟(𝜃𝑠, 𝜙𝑠) = 𝜔𝑖 𝑟𝑏𝑓𝑖(𝜃𝑠, 𝜙𝑠) (3.30) 

 

Here, 𝜃𝑠 defines the point on the shaper-cutter round between 𝐶𝑠  and 𝐶𝑒 and changes 

with respect to the contact point at any instant as seen in Fig. 3.5. Also 𝑟𝑏𝑠𝑟 and 𝑟𝑏𝑓𝑖 

are functions of 𝜃𝑠 and 𝜙𝑠.  
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𝑟𝑏𝑠𝑟(𝜃𝑠, 𝜙𝑠)

𝑟𝑏𝑓𝑖(𝜃𝑠, 𝜙𝑠)
=

𝜔𝑖

𝜔𝑠
 (3.31) 

 

By using the similarity between triangles in Fig. 3.5 and also putting Equation (3.26) 

in to Equation (3.31). 

 

 
𝐼𝑂𝑠

𝐼𝑂𝑖
=

𝑍𝑠

𝑍𝑖
 (3.32) 

 

 
𝐼𝑂𝑠

𝐼𝑂𝑠 + 𝐸𝑠
=

𝑍𝑠

𝑍𝑖
 (3.33) 

 

 𝐼𝑂𝑠 𝑍𝑖 = 𝐼𝑂𝑠 𝑍𝑠 + 𝐸𝑠 𝑍𝑠  (3.34) 

 

 𝐼𝑂𝑠 𝑍𝑖 − 𝐼𝑂𝑠 𝑍𝑠 = 𝐸𝑠 𝑍𝑠 (3.35) 

 

 𝐼𝑂𝑠( 𝑍𝑖 − 𝑍𝑠) = 𝐸𝑠 𝑍𝑠 (3.36) 

 

 𝐼𝑂𝑠 =  
𝐸𝑠 𝑍𝑠

( 𝑍𝑖 − 𝑍𝑠)
 (3.37) 

 

 
𝐼𝑂𝑠 =  

𝐸𝑠

𝑍𝑖

𝑍𝑠
− 1

 
(3.38) 

 

The Equation (3.38) is same with Equation (3.18) which means 𝐼𝑂𝑠 is equal to the 

generating pitch radius as being independent on 𝜃. This can be explained according 

to Lewis theorem that a point of the shaper-cutter round generates the respective 

point of the internal gear root fillet at a position where their common normal at the 

point of contact passes through the instantaneous center of rotation, 𝐼. 
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3.1.2.2 The Determination of the Envelope to the Family of Surfaces 

 

For any point on the shaper-cutter round, 𝑟𝑠𝑟 represents the position vector of that 

point in 𝑆𝑠. The vector 𝑟𝑠𝑟 is dependent on 𝑓, face width direction, and 𝜃𝑠. And in 

terms of all 𝑓 and 𝜃𝑠 components, 𝑟𝑠𝑟(𝜃𝑠, 𝑓) represents the surface 𝛴𝑠𝑟, shaper-cutter 

round surface, in 𝑆𝑠. The 𝑟𝑠𝑟 matrix is defined in Chapter 3.2.3.2 because of the same 

reason for 𝑟1𝑟 mentioned in Chapter 3.1.1.2. 

 

Since the generation motions are same for both internal gear involute tooth and root 

fillet surfaces, the rotation and the translation matrices are also same for these two 

generations. Then, 𝑟𝑠𝑟 is represented in 𝑆𝑖  as: 

 𝑟𝑖𝑓 = 𝑀𝑖𝑓𝑀𝑓𝑠2𝑀𝑓𝑠1𝑟𝑠𝑟 (3.39) 

 

Here 𝑟𝑖𝑓 is a function of 𝜃𝑠, 𝑓 and 𝜙𝑠 and 𝑟𝑖𝑓(𝜃𝑠, 𝑓, 𝜙𝑠) representing the family of 

surfaces 𝛴𝜙𝑓𝑖, generated in 𝑆𝑖 by surface 𝛴𝑠𝑟. Because of the conjugate action during 

the generation, the internal gear root fillet surface, 𝛴𝑖𝑓, is determined as the envelope 

to the family of surfaces, 𝛴𝜙𝑓𝑖. And as mentioned in Chapter 2.1.1.3, the equation of 

meshing is used to find the envelope. Then modify Equation (2.34) for the internal 

gear root fillet surface and obtain: 

 

 (
𝜕𝑟𝑖𝑓

𝜕𝜃𝑠
×

𝜕𝑟𝑖𝑓

𝜕𝑓
) ∙

𝜕𝑟𝑖𝑓

𝜕𝜙𝑠
= 0 (3.40) 

 

3.2 Details of Asymmetric Shaper Cutter and Internal Asymmetric Spur Gear 

Tooth 

In order to generate an asymmetric internal gear tooth, an asymmetric shaper-cutter 

is used. The details of an asymmetric shaper-cutter and internal gear tooth are 

discussed in the following chapters. 
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3.2.1 Details of an Asymmetric Shaper Cutter 

 

Fig. 3.6 shows a representative transverse cross sectional shape of basic asymmetric 

pinion type shaper cutter, which is used to generate the respective asymmetric 

internal tooth profiles. Some basic properties of an asymmetric shaper cutter are 

defined below: 

 

 𝑟𝑝𝑠 =
𝑚𝑍𝑠

2
 (3.41) 

 

 𝑟𝑏𝑠𝑑 = 𝑟𝑝𝑠 cos 𝛼𝑠𝑑 (3.42) 

 

 𝑟𝑏𝑠𝑐 = 𝑟𝑝𝑠 cos 𝛼𝑠𝑐  (3.43) 

 

 𝛼𝑎𝑠𝑑 = cos−1 (
𝑟𝑏𝑠𝑑

𝑟𝑎𝑠
) (3.44) 

 

 𝛼𝑎𝑠𝑐 = cos−1 (
𝑟𝑏𝑠𝑐

𝑟𝑎𝑠
) (3.45) 

 

The shaper tooth thickness and space width at the tool reference pitch circle are 

𝜋𝑚 2⁄ . 

 

 𝑡𝑟𝑒𝑓𝑠 = 𝜋𝑚/2 (3.46) 

 

The shaper cutter tooth axis is defined as the line passing through the middle of the 

tooth tip thickness. 

 

 𝛿 =
𝑡𝑟𝑒𝑓𝑠

𝑟𝑝𝑠
− (𝑖𝑛𝑣𝛼𝑎𝑠𝑑 − 𝑖𝑛𝑣𝛼𝑠𝑑) − (𝑖𝑛𝑣𝛼𝑎𝑠𝑐 − 𝑖𝑛𝑣𝛼𝑠𝑐) (3.47) 
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As mentioned in Chapter 3.1.1.1 with respect to vertical shift amount, 𝑥𝑠, of the 

shaper cutter the generating pitch circle changes and the generating pitch radius of 

the shaper cutter 𝑟𝑔𝑝𝑠 and the generating pressure angle 𝛼𝑔 are already defined. Then 

𝛼𝑔𝑠𝑐 and 𝛼𝑔 can be found as: 

 

 𝛼𝑔𝑠𝑐 = cos−1 (
𝑟𝑏𝑠𝑐

𝑟𝑔𝑝𝑠
) (3.48) 

 

 𝛼𝑔 = cos−1 (
𝑟𝑏𝑠𝑑

𝑟𝑔𝑝𝑠
) (3.49) 

 

And the drive and coast sides tooth thicknesses are defined as: 

 

 𝑡𝑔𝑠𝑐 = 𝑟𝑔𝑝𝑠(𝑖𝑛𝑣𝛼𝑎𝑠𝑐 − 𝑖𝑛𝑣𝛼𝑔𝑠𝑐 + 𝛿 2⁄ )  (3.50) 

 

 𝑡𝑔𝑠𝑑 = 𝑟𝑔𝑝𝑠(𝑖𝑛𝑣𝛼𝑎𝑠𝑑 − 𝑖𝑛𝑣𝛼𝑔𝑠𝑑 + 𝛿 2⁄ ) (3.51) 

 

 𝑡𝑔𝑠 = 𝑡𝑔𝑠𝑐 + 𝑡𝑔𝑠𝑑 (3.52) 

 

The details of points 𝐶𝑐𝑠, 𝐶𝑐𝑒, 𝐶𝑐, 𝐶𝑑𝑠, 𝐶𝑑𝑒 and 𝐶𝑑 are defined with respect to the 

radius 𝐴𝑠 in Appendix C.1. Also the shaper-cutter may be full-rounded with a radius 

𝐴𝑚𝑎𝑥𝑠. The detailed derivation for calculating 𝐴𝑚𝑎𝑥𝑠 is given in Appendix C.2. 
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Fig. 3.6 Asymmetric shaper cutter details 

 

3.2.2 Details of an Internal Asymmetric Gear Tooth 

 

Fig. 3.7 shows a representative transverse cross sectional shape of basic asymmetric 

internal gear tooth. In an asymmetric internal gear, the base radiuses of the coast and 

drive side flanks may intersect or may not intersect each other. However in general 

they do not intersect each other as represented in Fig. 3.7. For this case the larger 

base radius is accepted as the imaginary tip radius of the internal gear tooth and the 

gear tooth axis is defined as the line passing through the middle of the imaginary tip 

tooth thickness. 
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Fig. 3.7 Internal asymmetric gear tooth details 
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Some basic properties of an asymmetric internal gear tooth are defined below: 

 

 𝑟𝑝𝑖 =
𝑚𝑍𝑖

2
  (3.53) 

 

 𝑟𝑏𝑖𝑑 = 𝑟𝑝𝑖 cos 𝛼𝑠𝑑 (3.54) 

 

 𝑟𝑏𝑖𝑐 = 𝑟𝑝𝑖 cos 𝛼𝑠𝑐 (3.55) 

 

 𝑡𝑔𝑖 =
2𝜋𝑟𝑔𝑝𝑖

𝑍𝑖
− 𝑡𝑔𝑠 (3.56) 

 

The internal gear tooth axis angle 𝛿𝑖 and respective generating pitch circle coast and 

drive side tooth thicknesses are defined according to Fig. 3.7 as below: 

 

 𝛿𝑖 =
𝑡𝑔𝑖

𝑟𝑔𝑝𝑖
− 𝑖𝑛𝑣𝛼𝑔𝑠𝑐 − (𝑖𝑛𝑣𝛼𝑔𝑠𝑑 − 𝑖𝑛𝑣𝛼𝑏𝑑)  (3.57) 

 

 𝛼𝑏𝑑 = cos−1 (
𝑟𝑏𝑖𝑑

𝑟𝑏𝑖𝑐
) (3.58) 

 

 𝑡𝑔𝑖𝑐 = 𝑟𝑔𝑝𝑖(𝑖𝑛𝑣𝛼𝑔𝑠𝑐 + 𝛿𝑖 2⁄ ) (3.59) 

 

 𝑡𝑔𝑖𝑑 = 𝑟𝑔𝑝𝑖(𝑖𝑛𝑣𝛼𝑔𝑠𝑑 − 𝑖𝑛𝑣𝛼𝑏𝑑 + 𝛿𝑖 2⁄ ) (3.60) 

 

In contrast to Fig. 3.7, if the drive side base radius is larger than the coast side base 

radius and they do not intersect each other, then Equations (3.57), (3.59) and (3.60) 

can be modified as: 
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 𝛿𝑖 =
𝑡𝑔𝑖

𝑟𝑔𝑝𝑖
− 𝑖𝑛𝑣𝛼𝑔𝑠𝑑 − (𝑖𝑛𝑣𝛼𝑔𝑠𝑐 − 𝑖𝑛𝑣𝛼𝑏𝑐)  (3.61) 

 

 𝛼𝑏𝑐 = cos−1 (
𝑟𝑏𝑖𝑐

𝑟𝑏𝑖𝑑
) (3.62) 

 

 𝑡𝑔𝑖𝑑 = 𝑟𝑔𝑝𝑖(𝑖𝑛𝑣𝛼𝑔𝑠𝑑 + 𝛿𝑖 2⁄ ) (3.63) 

 

 𝑡𝑔𝑖𝑐 = 𝑟𝑔𝑝𝑖(𝑖𝑛𝑣𝛼𝑔𝑠𝑐 − 𝑖𝑛𝑣𝛼𝑏𝑐 + 𝛿𝑖 2⁄ ) (3.64) 

 

If the base radiuses intersect each other, then the gear tooth axis is defined as the line 

passing through this intersection point. The radius of this intersection point 𝑟𝑡𝑖 can be 

found as defined in Appendix D.1. The generating pitch line coast and drive side 

tooth thicknesses according to this case are also defined in Appendix D.1 and 

expressed by: 

 

 𝑡𝑔𝑖𝑑 = 𝑟𝑔𝑝𝑖(𝑖𝑛𝑣𝛼𝑔𝑠𝑑 − 𝑖𝑛𝑣𝛼𝑡𝑖𝑑) (3.65) 

 

 𝑡𝑔𝑖𝑐 = 𝑟𝑔𝑝𝑖(𝑖𝑛𝑣𝛼𝑔𝑠𝑐 − 𝑖𝑛𝑣𝛼𝑡𝑖𝑐) (3.66) 

 

3.2.3 Determination of the Position Vector Matrices for the Surfaces of the 

Asymmetric Shaper Cutter 

 

The position of the shaper cutter in 𝑆𝑠 gives us the desired internal gear tooth 

position in 𝑆𝑖. In FEA for bending stress an internal gear tooth is analyzed as its tooth 

axis being coincide with the vertical axis. Thus the obtained internal gear tooth axis 

must coincide with the vertical axis. 
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Fig. 3.8 illustrates that the dark colored involute flanks and rounds of drive and coast 

sides of the asymmetric shaper-cutter generates the asymmetric internal gear dark 

colored flanks and roots which represent the tooth space. Also in order to obtain the 

desired tooth position the obtained tooth space must be rotated as the angle 𝜙𝑟𝑜𝑡.  

 

 

Fig. 3.8 The desired position of the internal asymmetric gear tooth 

 

Then by complete circular patterning as the number of the gear tooth the asymmetric 

gear having the desired tooth position is obtained. 

 

 𝜙𝑟𝑜𝑡 =
𝑡𝑔𝑠𝑐 + 𝑡𝑔𝑖𝑐

𝑟𝑔𝑝𝑖
 (3.67) 
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 𝑀𝑟𝑜𝑡 = [
𝑐𝑜𝑠 𝜙𝑟𝑜𝑡 −𝑠𝑖𝑛 𝜙𝑟𝑜𝑡 0
𝑠𝑖𝑛 𝜙𝑟𝑜𝑡 𝑐𝑜𝑠 𝜙𝑟𝑜𝑡 0

0 0 1

] (3.68) 

 

 𝛴𝑖𝑟𝑜𝑡 = 𝑀𝑟𝑜𝑡 𝛴𝑖 (3.69) 

 

 𝛴𝑖𝑓𝑟𝑜𝑡 = 𝑀𝑟𝑜𝑡 𝛴𝑖𝑓 (3.70) 

 

3.2.3.1 Determination of the Position Vector Matrices for the Involute Flank 

Surfaces of the Asymmetric Shaper Cutter Coast and Drive Sides 

 

With reference to Fig. 3.9, the asymmetric shaper-cutter flank drive and coast side 

surfaces are defined as: 

 

 𝑟𝑠𝑐 =

[
 
 
 
 
𝑟𝑠𝑐 𝑠𝑖𝑛(𝛿𝑠𝑐 + 𝑖𝑛𝑣𝛼𝑟𝑐 − 𝑖𝑛𝑣𝛼𝑗𝑠𝑐)

𝑟𝑠𝑐 𝑐𝑜𝑠(𝛿𝑠𝑐 + 𝑖𝑛𝑣𝛼𝑟𝑐 − 𝑖𝑛𝑣𝛼𝑗𝑠𝑐)

𝑓
1 ]

 
 
 
 

   0 ≤ 𝛼𝑗𝑠𝑐 ≤ 𝛼𝑟𝑐 ,   0 ≤ 𝑓 ≤ 𝑓𝑤 (3.71) 

 

 𝑟𝑠𝑑 =

[
 
 
 
 
− 𝑟𝑠𝑑 𝑠𝑖𝑛(𝛿𝑠𝑑 + 𝑖𝑛𝑣𝛼𝑟𝑠 − 𝑖𝑛𝑣𝛼𝑗𝑠𝑑)

𝑟𝑠𝑑 𝑐𝑜𝑠(𝛿𝑠𝑑 + 𝑖𝑛𝑣𝛼𝑟𝑠 − 𝑖𝑛𝑣𝛼𝑗𝑠𝑑)

𝑓
1 ]

 
 
 
 

0 ≤ 𝛼𝑗𝑠𝑑 ≤ 𝛼𝑟𝑑 ,   0 ≤ 𝑓 ≤ 𝑓𝑤 (3.72) 

 

Here 𝛿𝑠𝑑, 𝛿𝑠𝑐, 𝛼𝑟𝑐 and 𝛼𝑟𝑑 are defined in Appendix C.1. Also 𝑟𝑠𝑑 and 𝑟𝑠𝑐 can be 

defined as: 

 

 𝑟𝑠𝑑 =
𝑟𝑏𝑠𝑑

cos(𝛼𝑗𝑠𝑑)
 (3.73) 
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 𝑟𝑠𝑐 =
𝑟𝑏𝑠𝑐

cos(𝛼𝑗𝑠𝑐)
 (3.74) 

 

 

Fig. 3.9 The position vectors of asymmetric shaper cutter drive and coast sides 

involute flank surfaces 

 

Then Equation (3.71) and (3.72) becomes:  

 

 
𝑟𝑠𝑐 =

[
 
 
 
 
 

𝑟𝑏𝑠𝑐

cos(𝛼𝑗𝑠𝑐)
𝑠𝑖𝑛(𝛿𝑠𝑐 + 𝑖𝑛𝑣𝛼𝑟𝑐 − 𝑖𝑛𝑣𝛼𝑗𝑠𝑐)

𝑟𝑏𝑠𝑐

cos(𝛼𝑗𝑠𝑐)
𝑐𝑜𝑠(𝛿𝑠𝑐 + 𝑖𝑛𝑣𝛼𝑟𝑐 − 𝑖𝑛𝑣𝛼𝑗𝑠𝑐)

𝑓
1 ]

 
 
 
 
 

      

 

(3.75) 
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0 ≤ 𝛼𝑗𝑠𝑐 ≤ 𝛼𝑟𝑐 

 

0 ≤ 𝑓 ≤ 𝑓𝑤 

 

 

𝑟𝑠𝑑 =

[
 
 
 
 
 −

𝑟𝑏𝑠𝑑

cos(𝛼𝑗𝑠𝑑)
𝑠𝑖𝑛(𝛿𝑠𝑑 + 𝑖𝑛𝑣𝛼𝑟𝑑 − 𝑖𝑛𝑣𝛼𝑗𝑠𝑑)

𝑟𝑏𝑠𝑑

cos(𝛼𝑗𝑠𝑑)
𝑐𝑜𝑠(𝛿𝑠𝑑 + 𝑖𝑛𝑣𝛼𝑟𝑑 − 𝑖𝑛𝑣𝛼𝑗𝑠𝑑)

𝑓
1 ]

 
 
 
 
 

      

 

0 ≤ 𝛼𝑗𝑠𝑑 ≤ 𝛼𝑟𝑑 

 

0 ≤ 𝑓 ≤ 𝑓𝑤 

(3.76) 

 

3.2.3.2 Determination of the Position Vector Matrices for the Rounded 

Surfaces of the Asymmetric Shaper Cutter Coast and Drive Sides 

 

With reference to Fig. 3.10 the asymmetric shaper-cutter round drive and coast side 

surfaces are defined as: 

 

 𝑟𝑠𝑟𝑐 = [

𝑥𝐶𝑐 + 𝐴𝑠 𝑐𝑜𝑠(𝜃𝑠𝑐)

𝑦𝐶𝑐 + 𝐴𝑠 𝑠𝑖𝑛(𝜃𝑠𝑐)

𝑓
1

]    𝜃𝑠𝑐𝑠 ≤ 𝜃𝑠𝑐 ≤ 𝜃𝑠𝑐𝑒   ,   0 ≤ 𝑓 ≤ 𝑓𝑤 (3.77) 

 

 𝑟𝑠𝑟𝑑 = [

𝑥𝐶𝑑 − 𝐴𝑠 𝑐𝑜𝑠(𝜃𝑠𝑑)

𝑦𝐶𝑑 + 𝐴𝑠 𝑠𝑖𝑛(𝜃𝑠𝑑)

𝑓
1

]    𝜃𝑠𝑑𝑠 ≤ 𝜃𝑠𝑑 ≤ 𝜃𝑠𝑑𝑒   ,   0 ≤ 𝑓 ≤ 𝑓𝑤 (3.78) 

 

Here 𝑥𝐶𝑐, 𝑦𝐶𝑐, 𝜃𝑠𝑐𝑠, 𝜃𝑠𝑐𝑒, 𝑥𝐶𝑑, 𝑦𝐶𝑑, 𝜃𝑠𝑑𝑠 and 𝜃𝑠𝑑𝑒  are defined in Appendix C.1.  
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Fig. 3.10 The position vectors of asymmetric shaper cutter drive and coast sides 

rounded surfaces 
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3.3 Analytical Method to Determine the Critical Bending Stress Section and 

Related Parameters for an Internal Asymmetric Spur Gear Tooth 

 

In Fig. 3.11, the basic visualization of asymmetric internal spur gear tooth bending 

stress critical section is illustrated. 

 

 

Fig. 3.11 The basic visualization of asymmetric internal spur gear tooth bending 

stress critical section  

 

In this chapter the same modified ISO B method which is used for the external 

asymmetric spur gears mentioned in Chapter 2.3, is used for internal asymmetric 

gears in order to determine the critical tooth thickness and tooth height. In this 
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method, the drive side tangent angle at the critical section 𝛽𝑖𝑑 is equal to 60°, the 

coast side tangent angle at the critical section 𝛽𝑖𝑐 is calculated by using the 

generation of the internal gear coast side root fillet. 

 

3.3.1 Determination of the Angle and Radius of the Applied Force  

 

The maximum bending stress on the internal gear root occurs when the force is 

applied at the lowest point single tooth contact point. In order to verify the critical 

tooth thickness and tooth height, firstly radius of the applied force, 𝑟𝐹𝑖, and angle, 

𝛼𝐹𝑖, as illustrated in Fig. 3.12, shall be determined.  

 

 

Fig. 3.12 The applied force at LPSTC and the related parameters  
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For this, radius of the lowest point single tooth contact point, 𝑟𝑙, must be known. The 

detailed derivation of 𝑟𝑙 is in Appendix D.2. 

 

 𝛼𝐹𝑖 = 𝛼𝑙 − 𝛼𝑝𝑙 + 𝛼𝑔𝑡 (3.79) 

 

 𝛼𝑙 = cos−1 (
𝑟𝑏𝑖𝑑

𝑟𝑙
) (3.80) 

 

 𝛼𝑝𝑙 = 𝑖𝑛𝑣(𝛼𝑔) − 𝑖𝑛𝑣(𝛼𝑙) (3.81) 

 

 𝛼𝑔𝑡 =
𝑡𝑔𝑖𝑑

𝑟𝑔𝑝𝑖
 (3.82) 

 

 𝑟𝐹𝑖 =
𝑟𝑏𝑖𝑑

cos (𝛼𝐹𝑖)
 (3.83) 

 

3.3.2 Determination of the Critical Tooth Thickness and Height 

 

The critical tooth thickness and tooth height can be determined by using the 

generation of the internal gear root fillet with a shaper cutter. Firstly, the drive side 

critical tooth thickness and the critical tooth height are obtained. Then with respect to 

the critical section, the coast side critical tooth thickness is obtained. Finally, the 

summation of the drive and coast side critical tooth thicknesses gives the critical 

tooth thickness. 

 

3.3.2.1 Determination of the Drive Side Critical Tooth Thickness and Height 

 

The drive side critical tooth thickness and tooth height are obtained by using the 

generation of the internal gear drive side root fillet surface with the shaper cutter 
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drive side round surface. Fig. 3.13 shows the generation of the gear drive side root 

fillet at point 𝑃 where the critical section occurs.  

 

 𝜁𝑑 =
𝑡𝑔𝑖𝑑 + 𝑡𝑔𝑠𝑑

𝑟𝑔𝑝𝑖
 (3.84) 

 

 𝛽𝑖𝑑 = 𝜁𝑑 + 𝜙𝑖 + 𝜃𝑠𝑑 − 𝜙𝑠 (3.85) 

 

 𝛽𝑖𝑑 =
𝜋

3
 (3.86) 

 

 𝜙𝑖 = 𝜙𝑠

𝑍𝑠

𝑍𝑖
 (3.87) 

 

 𝜃𝑠𝑑 = 𝛽𝑖𝑑 − 𝜁𝑑 − 𝜙𝑖 + 𝜙𝑠 (3.88) 

 

 𝜃𝑠𝑑 =
𝜋

3
−

𝑡𝑔𝑖𝑑 + 𝑡𝑔𝑠𝑑

𝑟𝑔𝑝𝑖
− 𝜙𝑠

𝑍𝑠

𝑍𝑖
+ 𝜙𝑠 (3.89) 

 

 𝑂𝑠𝐶𝑑 = √(𝑥𝐶𝑑)2 + (𝑦𝐶𝑑)2 (3.90) 

 

 𝜃𝐶𝑑 = tan−1 (
|𝑥𝐶𝑑|

𝑦𝐶𝑑
) (3.91) 

 

 𝐶𝑑𝐺 = 𝑂𝑠𝐶𝑑 sin(𝜃𝐶𝑑 + 𝜙𝑠) (3.92) 

 

 𝐼𝐺 = 𝑂𝑠𝐺 − 𝑂𝑠𝐼 (3.93) 

 

 𝐼𝐺 = 𝑂𝑠𝐶𝑑 cos(𝜃𝐶𝑑 + 𝜙𝑠) − 𝑟𝑔𝑝𝑠 (3.94) 
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Fig. 3.13 The generation of the internal asymmetric spur gear drive side root fillet at 

the location where the critical section occurs 
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 tan(𝜃𝑠𝑑 − 𝜙𝑠) =
𝐼𝐺

𝐶𝑑𝐺
 (3.95) 

 

 𝜃𝑠𝑑 − 𝜙𝑠 = tan−1 (
𝐼𝐺

𝐶𝑑𝐺
) (3.96) 

 

 𝜃𝑠𝑑 = tan−1 (
𝐼𝐺

𝐶𝑑𝐺
) + 𝜙𝑠 (3.97) 

 

In Equations (3.97) and (3.89), the only variable is 𝜙𝑠 and by equating them obtain 

𝜙𝑠. Then by using Equation (3.89) obtain 𝜃𝑠𝑑 . Some of the details of the shaper 

cutter are given in Fig. 3.14. 

 

 𝑃𝑥𝑠 = 𝑂𝑠𝐶𝑑 sin(𝜃𝐶𝑑 + 𝜙𝑠) + 𝐴𝑠 cos(𝜃𝑠𝑑 − 𝜙𝑠) (3.98) 

 

 𝑃𝑦𝑠 = 𝑂𝑠𝐶𝑑 cos(𝜃𝐶𝑑 + 𝜙𝑠) + 𝐴𝑠 sin(𝜃𝑠𝑑 − 𝜙𝑠) (3.99) 

 

 𝑃𝑥𝑖 = 𝑃𝑥𝑠    (3.100) 

 

 𝑃𝑦𝑖 = 𝑃𝑦𝑠 + 𝐸𝑠   (3.101) 

 

 tan(𝜉𝑑) =
𝑃𝑥𝑖

𝑃𝑦𝑖
   (3.102) 

 

 𝜉𝑑 = tan−1 (
𝑃𝑥𝑖

𝑃𝑦𝑖
)   (3.103) 

 

 𝑡𝑟𝑖𝑑 = 𝑂𝑖𝑃 sin(𝜁𝑑 − (𝜉𝑑 − 𝜙𝑖))   (3.104) 
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Fig. 3.14 The details of the asymmetric shaper cutter during the generation of the 

internal asymmetric spur gear drive side root fillet at the location where the critical 

section occurs 
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 𝑡𝑟𝑖𝑑 = √(𝑃𝑥𝑖)2 + (𝑃𝑦𝑖)
2
sin (𝜁𝑑 − (𝜉𝑑 − 𝜙𝑠

𝑍𝑠

𝑍𝑖
))   (3.105) 

 

 ℎ𝑟𝑖 = 𝑂𝑖𝑃 cos(𝜁𝑑 − (𝜉𝑑 − 𝜙𝑖)) − 𝑂𝑖𝑀   (3.106) 

 

 ℎ𝑟𝑖 = √(𝑃𝑥𝑖)2 + (𝑃𝑦𝑖)
2
cos (𝜁𝑑 − (𝜉𝑑 − 𝜙𝑠

𝑍𝑠

𝑍𝑖
)) − 𝑟𝐹𝑖   (3.107) 

 

3.3.2.2 Determination of the Coast Side Critical Tooth Thickness and Height 

 

The coast side critical tooth thickness and tooth height are obtained by using the 

generation of the internal gear coast side root fillet surface with the shaper cutter 

coast side rounded surface. Fig. 3.16 shows the generation of the internal gear coast 

side root fillet at point 𝑇 where the critical section occurs. Some of the details of the 

shaper cutter are given in Fig. 3.15. 

 𝑂𝑠𝐶𝑐 = √(𝑥𝐶𝑐)2 + (𝑦𝐶𝑐)2    (3.108) 

 

 𝜃𝐶𝑐 = tan−1 (
|𝑥𝐶𝑐|

𝑦𝐶𝑐
)   (3.109) 

 

 𝐶𝑐𝑍 = 𝑂𝑠𝐶𝑐 sin(𝜃𝐶𝑐 + 𝜙𝑠)   (3.110) 

 

 𝐼𝑍 = 𝑂𝑠𝑍 − 𝑂𝑠𝐼   (3.111) 

 

 𝐼𝑍 = 𝑂𝑠𝐶𝑐 cos(𝜃𝐶𝑐 + 𝜙𝑠) − 𝑟𝑔𝑝𝑠   (3.112) 

 

 tan(𝜃𝑠𝑐 − 𝜙𝑠) =
𝐼𝑍

𝐶𝑐𝑍
   (3.113) 
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Fig. 3.15 The details of the asymmetric shaper cutter during the generation of the 

internal asymmetric spur gear coast side root fillet at the location where the critical 

section occurs 
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 𝜃𝑠𝑐 − 𝜙𝑠 = tan−1 (
𝐼𝑍

𝐶𝑐𝑍
)   (3.114) 

 

 𝜃𝑠𝑐 = tan−1 (
𝐼𝑍

𝐶𝑐𝑍
) + 𝜙𝑠   (3.115) 

 

 𝜃𝑠𝑐 = tan−1 (
√(𝑥𝐶𝑐)2 + (𝑦𝐶𝑐)2 cos(𝜃𝐶𝑐 + 𝜙𝑠) − 𝑟𝑔𝑝𝑠

√(𝑥𝐶𝑐)2 + (𝑦𝐶𝑐)2 sin(𝜃𝐶𝑐 + 𝜙𝑠)
) + 𝜙𝑠   (3.116) 

 

 𝑇𝑥𝑠 = 𝑂𝑠𝐶𝑐 sin(𝜃𝐶𝑐 + 𝜙𝑠) + 𝐴𝑠 cos(𝜃𝑠𝑐 − 𝜙𝑠)    (3.117) 

 

 𝑇𝑦𝑠 = 𝑂𝑠𝐶𝑐 cos(𝜃𝐶𝑐 + 𝜙𝑠) + 𝐴𝑠 sin(𝜃𝑠𝑐 − 𝜙𝑠)   (3.118) 

 

 𝑇𝑥𝑖 = 𝑇𝑥𝑠   (3.119) 

 

 𝑇𝑦𝑖 = 𝑇𝑦𝑠 + 𝐸𝑠   (3.120) 

 

 tan(𝜉𝑐) =
𝑇𝑥𝑖

𝑇𝑦𝑖
   (3.121) 

 

 𝜉𝑐 = tan−1 (
𝑇𝑥𝑖

𝑇𝑦𝑖
)   (3.122) 

 

 ℎ𝑟𝑖 = 𝑂𝑖𝑇 cos(𝜁𝑐 − (𝜉𝑐 − 𝜙𝑖)) − 𝑂𝑖𝑀   (3.123) 

 

 ℎ𝑟𝑖 = √(𝑇𝑥𝑖)
2 + (𝑇𝑦𝑖)

2
cos (𝜁𝑐 − (𝜉𝑐 − 𝜙𝑠

𝑍𝑠

𝑍𝑖
)) − 𝑟𝐹𝑖   (3.124) 
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Fig. 3.16 The generation of the internal asymmetric spur gear coast side root fillet at 

the location where the critical section occurs 
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Put Equation (3.116) in Equations (3.117) and (3.118). Then Equation (3.124) is now 

only dependent on 𝜙𝑠. Note that ℎ𝑟𝑖 is already found in Equation (3.107) and by 

equating Equations (3.107) and (3.124) obtain 𝜙𝑠. 

 

 𝑡𝑟𝑖𝑐 = 𝑂𝑖𝑇 sin(𝜁𝑐 − (𝜉𝑐 − 𝜙𝑖))   (3.125) 

 

 𝑡𝑟𝑖𝑐 = √(𝑇𝑥𝑖)2 + (𝑇𝑦𝑖)
2
sin (𝜁𝑐 − (𝜉𝑐 − 𝜙𝑠

𝑍𝑠

𝑍𝑖
))   (3.126) 

 

 𝜁𝑐 =
𝑡𝑔𝑖𝑐 + 𝑡𝑔𝑠𝑐

𝑟𝑔𝑝𝑖
   (3.127) 

 

 𝛽𝑖𝑐 = 𝜁𝑐 + 𝜙𝑖 + 𝜃𝑠𝑐 − 𝜙𝑠   (3.128) 

 

 𝛽𝑖𝑐 = 𝜁𝑐 + 𝜙𝑠

𝑍𝑠

𝑍𝑖
+ 𝜃𝑠𝑐 − 𝜙𝑠   (3.129) 

 

Put Equation (3.116) in Equation (3.129). Then Equation (3.129) is only dependent 

on 𝜙𝑠. Since 𝜙𝑠 is already found 𝛽𝑖𝑐 is found, too. 

 

3.4 Estimation of Tooth Form Factor, Stress Correction Factor and 

Maximum Bending Stress for an Internal Asymmetric Spur Gear Tooth 

through Modified ISO and FEA Methods 

 

The maximum bending stress formulation at the internal gear tooth root is same with 

the external gear tooth root and may be expressed as: 

 

 𝜎𝑖 =
𝐹𝑛𝑖

𝑓𝑚
𝑌𝐹𝑖𝑌𝑆𝑖   (3.130) 
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where, 𝐹𝑛𝑖 is normal load, 𝑌𝐹𝑖 is tooth form factor and 𝑌𝑆𝑖 is stress correction factor. 

In addition to the bending stress formulations of international standards, the 

compressive stress produced by the radial load 𝐹𝑟𝑖 is also taken in to account in this 

thesis so that the normal force 𝐹𝑛𝑖 is used instead of 𝐹𝑡𝑖 in Equation  (2.125). 𝑌𝐹𝑖 and 

𝑌𝑆𝑖 are determined for an internal asymmetric gear tooth with both ISO B and FEA 

methods in the following Chapters. 

 

3.4.1 Modified ISO Method for Bending Stress Parameters 

 

The tooth form factor 𝑌𝐹𝑖 is also affected by being taken in to account of the radial 

load 𝐹𝑟𝑖. The detailed derivation of 𝑌𝐹𝑖 is same with 𝑌𝐹 of the external gear tooth 

which can be found in Appendix of [15] and defined as: 

 (𝑌𝐹𝑖)𝐼𝑆𝑂 =
6𝑚ℎ𝑟𝑖 𝑐𝑜𝑠 𝛼𝐹𝑖

𝑡𝑟𝑖
2 −

𝑚 𝑠𝑖𝑛 𝛼𝐹𝑖

𝑡𝑟𝑖
   (3.131) 

 

 𝑡𝑟𝑖 = 𝑡𝑟𝑖𝑐 + 𝑡𝑟𝑖𝑑   (3.132) 

The stress correction factor 𝑌𝑆𝑖 is same with 𝑌𝑆 of the external gear tooth and defined 

in [5] as: 

 
(𝑌𝑆𝑖)𝐼𝑆𝑂 = (1.2 + 0.13𝐿𝑖)𝑞𝑠

[
1

1.21+
2.3
𝐿𝑖

]

 
  (3.133) 

 

 𝐿𝑖 =
𝑡𝑟𝑖

ℎ𝑟𝑖
   (3.134) 

 

 𝑞𝑠𝑖 =
𝑡𝑟𝑖

2𝜌𝐹𝑖
   (3.135) 

 

Here, 𝜌𝐹𝑖 is root fillet radius of curvature of the internal gear drive side root fillet 

trochoid at the critical section and can be found with the help of the Fig. 3.17: 
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Fig. 3.17 The root fillet radius of curvature at the drive side critical section of the 

internal asymmetric spur gear  
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 𝜌𝐹𝑖 = 𝐶𝑃 − 𝐶𝐷   (3.136) 

 

 𝜌𝐹𝑖 = 𝑂𝑖𝐶 tan(𝜃𝑑𝑠 − 𝜙𝑠 + 𝜉𝑑) − 𝑂𝑖𝐶 tan(𝜃𝑑𝑠 − 𝜙𝑠 + 𝜙𝑖𝑑 + 𝛼𝜌𝑖)   (3.137) 

 

 𝑂𝑖𝐶 = 𝑂𝑖𝐼 cos(𝜃𝑑𝑠 − 𝜙𝑠)   (3.138) 

 

 𝑂𝑖𝐶 = 𝑟𝑔𝑝𝑖 cos(𝜃𝑑𝑠 − 𝜙𝑠)   (3.139) 

 

Here all parameters of 𝜌𝐹𝑖 are already found for the drive side critical section so that 

𝜌𝐹𝑖 can be found, too. 

 

At the instant when the centerline of the trochoid coincides with the shaper drive side 

round center on the axis 𝑦𝑓, the angle 𝛼𝜌𝑖 between the trochoid center line and 𝑦𝑖, is 

equal to the angle 𝜃𝐶𝑑, divided by the gear ratio.  

 

 
𝛼𝜌𝑖 =

𝜃𝐶𝑑

𝑍𝑖

𝑍𝑠

 
  (3.140) 

 

The angle 𝜃𝐶𝑑 was already defined by Equation (3.91) as: 

 

 𝜃𝐶𝑑 = tan−1 (
|𝑥𝐶𝑑|

𝑦𝐶𝑑
)   (3.141) 
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Fig. 3.18 The angle of the root fillet radius of curvature at the drive side critical 

section of the internal asymmetric spur gear 
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3.4.2 FEA Method for Bending Stress Parameters 

 

The maximum principle stress on the internal gear root fillet gives the maximum 

bending stress through FEA as stated in Chapter 2.4.2 for the external gears. 

 

 (𝜎𝑖)𝐹𝐸𝐴 =
𝐹𝑛𝑖

𝑓𝑤𝑚
(𝑌𝐹𝑖)𝐹𝐸𝐴(𝑌𝑆𝑖)𝐹𝐸𝐴   (3.142) 

 

The form factor (𝑌𝐹𝑖)𝐹𝐸𝐴 is calculated with Equation (3.131) by using FEA based 

values of 𝑡𝑟𝑖 and ℎ𝑟𝑖. Then (𝑌𝑆𝑖)𝐹𝐸𝐴 can be defined as: 

 

 
(𝑌𝑆𝑖)𝐹𝐸𝐴 =

(𝜎𝑖)𝐹𝐸𝐴

𝐹𝑛𝑖

𝑓𝑚
(𝑌𝐹𝑖)𝐹𝐸𝐴

 
  (3.143) 

 

The FEA based 𝜌𝐹𝑖 at the critical section is obtained by using Equation (3.137) with 

the FEA based critical section parameters which are defined in Chapter 3.4.2.2.1.  

 

In order to use this method, 2D FEA is carried out in this thesis and the asymmetric 

internal spur gear 2D FE model is the need for FEA. In order to create a 2D FE 

model, firstly, a 3D cat model of the asymmetric internal spur gear is created in this 

thesis and 2D internal gear geometry is obtained by using this cat model. Then 2D 

FE model can be created by using this 2D gear geometry. 

 

3.4.2.1 Internal Asymmetric Spur Gear 3D Model 

 

The asymmetric internal spur gear as shown in Fig. 3.20 is obtained by using a 

Matlab code, written according to the theory explained in this thesis, and illustrated 

in Fig. 3.19.  
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Fig. 3.19 Internal asymmetric spur gear tooth space profile 

 

Here, the profile consists of points and represents the internal gear tooth space 

surface. Also the profile is 3D and the points continue through the face width 

direction. Since this is a spur gear, the profile at each section is same. 

   

Fig. 3.20 Internal asymmetric spur gear 3D model 
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In order to obtain firstly 3D cat model and then 2D geometry of the internal 

asymmetric spur gear, the same method explained in Chapter 2.4.2.1 for the external 

asymmetric spur gear is used. Fig. 3.21 shows an example of 2D geometry of the 

internal asymmetric spur gear 

 

 

Fig. 3.21 Internal asymmetric spur gear 2D geometry 

 

3.4.2.2 FE Model of the Internal Asymmetric Spur Gear 

 

In this thesis FE modeling and analysis are done in ABAQUS 6.14. A sample 2D FE 

model of the asymmetric internal gear is shown in Fig. 3.22. The FE model is consist 

of three tooth and have enough rim thickness to provide a rim thickness factor of 1 

according to [5]. 

 

FE model properties: 

 

1) 2D FE analysis with plane strain condition is done by assuming a uniform load 

distribution along face width of the gear tooth. 
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2) The material is a linear elastic isotropic and homogeneous one with an elastic 

constant of E = 210 GPa and Poisson's ratio= 0.3. 

 

  

Fig. 3.22 Internal asymmetric spur gear tooth 2D FE model 

 

3) The load is applied at RP-1 (reference point) which is ŞPSTC point. The reference 

point is coupled to the nodes at that diameter with continuum distributing and the FE 

model is fixed from the outer round and side lines as shown in Fig. 3.23. 

 

4) The gear tooth profiles for this analysis have been generated using a full rounded 

shaper cutter. 

 

Fig. 3.23 Internal asymmetric spur gear tooth 3D FE model boundary condition and 

force application point  
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5) The 2-D 8-nodded quadratic elements are used to mesh the gear model. The 

loaded gear tooth flanks and root fillets and the next unloaded tooth flanks and root 

fillets are meshed sensitively by using partition regions, which are offset from the 

original profile around 0.1 times module. There are 350x10 elements in the loaded 

tooth drive side root fillet and 150x10 elements in the loaded tooth drive side flank 

and coast side root fillet and 50x10 elements in the loaded tooth coast side involute 

flank. There are also 50x5 elements in the next unloaded tooth flanks and root fillets. 

For the other regions suitable global size elements are used. 

 

3.4.2.2.1 Internal Asymmetric Spur Gear FE Model Critical Section 

Parameters 

 

In the FEA the maximum principle stress location which is the point P illustrated in 

Fig. 3.24, is found and defines the critical section. The 𝑥 and 𝑦 components of point 

P are read in Abaqus. Here, 𝑃𝑥𝑖 and 𝑃𝑦𝑖 are defined as: 

 

 𝑃𝑥𝑓𝑒𝑎 = 𝑡𝑟𝑖𝑑   (3.144) 

 

 𝑃𝑦𝑓𝑒𝑎 = 𝑂𝐿   (3.145) 

 

The critical tooth height is found as: 

 

 ℎ𝑟𝑖 = 𝑂𝐿 − (𝑂𝑀)   (3.146) 

 

Remember that 𝑂𝑀 is 𝑟𝐹𝑖, Fig. 3.12, then: 

 

 ℎ𝑟𝑖 = 𝑃𝑦𝑓𝑒𝑎 − 𝑟𝐹𝑖   (3.147) 
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Fig. 3.24 Internal asymmetric spur gear tooth 2D FE model critical section 

 

Since the critical tooth height is known and the critical section tangent angle is not 

known for the gear tooth drive side in FEA, the same method with the analytical 

method used in the coast side parameters derivation is used to obtain the drive side 

parameters in FEA method. According to this method put Equation (3.97) in 

Equation (3.107) such that the only parameter becomes 𝜙𝑠 in Equation (3.107). Since 

the drive side critical tooth height is also calculated by using Equation (3.107), 𝜙𝑠 is 

obtained by equating Equations (3.107) and (3.141). Then 𝜃𝑠𝑑  is obtained by using 

Equation (3.97). Finally 𝛽𝑖𝑑 can be found by modifying Equation (3.88): 
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 𝛽𝑖𝑑 = 𝜃𝑠𝑑 + 𝜁𝑑 + 𝜙𝑖 − 𝜙𝑠   (3.148) 

 

 𝛽𝑖𝑑 = 𝜃𝑠𝑑 +
𝑡𝑔𝑖𝑑 + 𝑡𝑔𝑠𝑑

𝑟𝑔𝑝𝑖
+ 𝜙𝑠

𝑍𝑠

𝑍𝑖
− 𝜙𝑠   (3.149) 

 

 

Fig. 3.25 An example of the FEA bending stress results for the internal asymmetric 

spur gear with 60 teeth, 𝛼𝑖𝑑/𝛼𝑖𝑐=30°/16° 

 

The drive side critical section tooth thickness, 𝑡𝑟𝑖𝑑, can also be found by using 

Equation (3.105) for FE model. The results of Equations (3.105) and (3.144) shall be 

equal such that the correctness of the analytical method is proven. The coast side 

critical section parameters for FE model are found by using totally same equations 

and method mentioned in Chapter 3.3.2.2. The only difference is that the input 

parameter, the critical tooth height, is not obtained by analytical method but it comes 

from FEA. The coast side tangent angle and critical tooth thickness are found by 

using Equations (3.126) and (3.129), respectively. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSIONS FOR MODIFIED ISO AND FEA 

METHODS OF EXTERNAL AND INTERNAL ASYMMETRIC SPUR 

GEARS 

 

 

 

4.1 Results and Discussions for Modified ISO and FEA Methods of External 

Asymmetric Spur Gear  

 

The critical section and bending stress parameters (𝛽𝑑, 𝛽𝑐, ℎ𝑟, 𝑡𝑟, 𝜌𝐹, 𝑌𝐹, 𝑌𝑆, 𝜎) are 

determined through FEA and modified ISO methods according to the different cases 

for the external asymmetric spur gears. 

 

4.1.1 The Case of Lightly Loaded Gear with Small Module 

 

In this chapter external asymmetric spur gears with 1 mm module, unit face width, 

standard tooth height (𝑎=1, 𝑏=1.25), zero profile shift and 10 N applied force are 

studied with FEA and modified ISO methods. These studies are done in two cases. In 

first case the influence of drive side pressure angles are examined and in second case 

the influence of coast side pressure angles are examined. Then the results of these 

studies are compared with the previous work [15]. 

 

4.1.1.1 The Effect of Drive Side Pressure Angle 

 

In previous work [15], the influence of drive side pressure angle on the critical 

section and bending stress parameters (𝛽𝑑, 𝛽𝑐, ℎ𝑟, 𝑡𝑟, 𝜌𝐹, 𝑌𝐹, 𝑌𝑆, 𝜎)  is plotted for 



100 

 

different pinion teeth numbers 𝑍𝑝 (from 20 to 100). On these plots the datas are 

given for only two teeth number 20 and 100. These datas are compared with this 

thesis works in Table 1 and Table 2. Here, PW means previous work and TH means 

this thesis work. It is seen that this thesis and previous work [15] data are very close 

to each other for these two teeth number for this case. In order to verify this thesis 

results more accurately, another teeth number from the previous work [15] can be 

selected. This teeth number is chosen as 40 since the data at this teeth number are the 

farthest ones to the line which starts from the data of 20 to 100 teeth numbers in the 

previous work [15] plots. 

 

Table 1. Comparison of the FEA and modified ISO method results with previous 

work [15] for the bending stress parameters, 𝛼𝑐=20°, 𝑍𝑝=𝑍𝑔=20  

 

 

αd/αc βd (°) βc (°) hr (mm) tr (mm) ρF (mm) YF YS σ (MPa)

PW-ISO 30 30 1.0507 1.9564 0.5507 1.3821 1.824 25.209

PW-FEM 33 33 1.0784 1.9918 0.5473 1.37 1.918 26.276

TH-ISO 30 30 1.0507 1.9575 0.5511 1.3805 1.8242 25.183

TH-FEM 34.0285 34.0285 1.0875 2.0035 0.5469 1.3659 1.9196 26.22

PW-ISO 30 35 1.1682 2.0666 0.4906 1.2734 1.924 24.5

PW-FEM 37 39 1.2276 2.1492 0.4826 1.2393 2.0407 25.29

TH-ISO 30 33.909 1.1672 2.0622 0.4912 1.278 1.9207 24.547

TH-FEM 34.5448 38.826 1.2049 2.1137 0.4859 1.2572 2.0077 25.24

PW-ISO 30 40 1.2896 2.1919 0.4181 1.1447 2.0695 23.69

PW-FEM 39.75 51.2 1.3561 2.3074 0.4068 1.086 2.265 24.594

TH-ISO 30 39.9043 1.2891 2.1915 0.4188 1.1447 2.0682 23.674

TH-FEM 39.1719 51.7379 1.3528 2.3005 0.4077 1.09 2.2551 24.58

PARAMETERS

20°/20°

25°/20°

30°/20°

Z 20, m 1
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Table 2. Comparison of the FEA and modified ISO method results with previous 

work [15] for the bending stress parameters, 𝛼𝑐=20°, 𝑍𝑝=𝑍𝑔=100 

 

 

Table 3. Comparison of the bending stress parameters for the FEA and modified ISO 

method results, 𝛼𝑐=20°, 𝑍𝑝=𝑍𝑔=40 

 

 

Table 4. Comparison of the bending stress of standard ISO method with FEA results 

for αd=αc=20° 

  σ (MPa) 

αd/αc 𝑍𝑝/𝑍𝑔 ISO FEA 

20°/20° 

20/20 27.54 26.22 

40/40 22.96 22.3 

100/100 20.72 20.22 

 

 

αd/αc βd (°) βc (°) hr (mm) tr (mm) ρF (mm) YF YS σ (MPa)

PW-ISO 30 30 0.826 2.225 0.493 0.795 2.298 18.28

PW-FEM 40.9 41 0.906 2.354 0.489 0.784 2.581 20.3

TH-ISO 30 30 0.8257 2.2391 0.4934 0.7841 2.3117 18.126

TH-FEM 43.502 43.502 0.9235 2.3848 0.4884 0.7801 2.5919 20.22

PW-ISO 30 35 0.958 2.364 0.424 0.753 2.453 18.47

PW-FEM 45.05 47.81 1.027 2.462 0.418 0.753 2.66 20.03

TH-ISO 30 31.1754 0.9562 2.3598 0.4241 0.7584 2.4522 18.5963

TH-FEM 45.1679 46.7417 1.0508 2.5084 0.4176 0.7432 2.7261 20.26

PW-ISO 30 40 1.085 2.522 0.339 0.688 2.728 18.77

PW-FEM 49.9 55.7 1.181 2.68 0.33 0.668 2.996 20.03

TH-ISO 30 32.9042 1.0818 2.5065 0.3394 0.696 2.7164 18.9061

TH-FEM 46.9293 51.1941 1.1672 2.6503 0.3311 0.6755 2.9948 20.23

20°/20°

PARAMETERS

25°/20°

30°/20°

Z 100, m 1

αd/αc βd (°) βc (°) hr (mm) tr (mm) ρF (mm) YF YS σ (MPa)

TH-ISO 30 30 0.9249 2.126 0.5188 1.0072 2.0732 20.8824

TH-FEM 37.9907 37.9907 0.9909 2.2149 0.5128 0.9984 2.2345 22.31

TH-ISO 30 32.3793 1.0444 2.2395 0.4538 0.9477 2.1966 20.8164

TH-FEM 39.435 42.3297 1.1133 2.3395 0.4458 0.9293 2.3534 21.87

TH-ISO 30 35.9222 1.1658 2.3774 0.3748 0.8587 2.4005 20.6126

TH-FEM 42.4855 50.6337 1.2414 2.5033 0.3632 0.827 2.5865 21.39

Z 40, m 1

PARAMETERS

20°/20°

25°/20°

30°/20°
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Then this thesis works for 40 teeth are also compared with the previous work [15] by 

putting signs in its plots as shown in Fig. 4.1, Fig. 4.2, Fig. 4.3 and Fig. 4.4. In these 

figures some of the parameters have different symbols. Here, 𝜓 is 𝛽, 𝛼𝑜𝑑 is 𝛼𝑑, ℎ𝑓 is 

ℎ𝑟 and 𝑠𝑓 is 𝑡𝑟 according to this thesis work. It is clearly seen that for 40 teeth the 

results of this thesis and previous work [15] is also very close to each other. Thus this 

thesis work is verified by using the previous work [15] results. Then the similar 

discussions for this case with the previous work [15] can be done: 

 

1- From Table 1, Table 2, Table 3 and with the help of Fig. 4.1 it is found that as 

𝛼𝑑 increases the angle of tangent at the drive and coast sides (𝛽𝑑 and 𝛽𝑐) 

increases and by increasing the number of teeth the amount of increase 

becomes larger and larger in the FEA study. However, the value of  𝛽𝑑 is 

always equal to 30° and the respective 𝛽𝑐 increases with an increase in 𝛼𝑑 in 

the modified ISO method. Also contrary to the FEA study and previous work 

[15] modified ISO method by increasing the number of teeth, the coast side 

tangent angle 𝛽𝑐  decreases in this thesis modified ISO method. 

 

2- From Table 1, Table 2, Table 3 and  with the help of  Fig. 4.2, Fig. 4.3 and 

Fig. 4.4 it is found that as 𝛼𝑑 increases the tooth form factor 𝑌𝐹 decreases 

which is mainly because of the corresponding increase in critical tooth 

thickness 𝑡𝑟, despite the increase in critical tooth height ℎ𝑟. However the 

stress correction factor  𝑌𝑠 increases because of the corresponding decrease in 

root fillet radius of curvature 𝜌𝑓. The respective determined values of the 

bending stress σ decreases with an increase in 𝛼𝑑. This is because of the 

corresponding decrease in tooth form factor 𝑌𝐹, which is more dominating 

than the increase in stress correction factor. This enables to enhance the 

bending strength of the gear tooth.  
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3- The present FEA results show higher values of σ than that of the modified 

ISO method, which is mainly because of higher critical tooth height ℎ𝑟 and 

lesser root fillet radius of curvature 𝜌𝑓. The bending stresses in FEA are %5 

percentage higher than modified ISO method for low number of teeth and the 

percentage increases to %10 for high number of teeth. According to Table 4, 

for external symmetric spur gears with 20° pressure angle, the standard ISO 

method gives %3-5 larger bending stress results than FEA results. By 

increasing the number of tooth, the results get closer to each other. 

 

4- By increasing the number of teeth the bending stress σ decreases. The 

bending stress in modified ISO method decreases more than FEA method 

since the stress correction factor  𝑌𝑠 increases less than FEA method for the 

modified ISO method while the number of teeth is increasing. 
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Fig. 4.1 Comparison of the drive and coast sides critical section tangent angles of 

this thesis and previous work [15] on the plots of [15] at  𝑍𝑝=40 for different drive 

side pressure angles, 𝛼𝑐=20° 



105 

 

 

 

Fig. 4.2 Comparison of the critical section tooth height and thickness of this thesis 

and previous work [15] on the plots of [15] at  𝑍𝑝=40 for different drive side pressure 

angles, 𝛼𝑐=20° 
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Fig. 4.3 Comparison of the critical section root fillet radius of curvature and stress 

correction factor of this thesis and previous work [15] on the plots of [15] at  𝑍𝑝=40 

for different drive side pressure angles, 𝛼𝑐=20° 
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Fig. 4.4 Comparison of the critical section tooth form factor and bending stress of 

this thesis and previous work [15] on the plots of [15] at  𝑍𝑝=40 for different drive 

side pressure angles, 𝛼𝑐=20° 
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4.1.1.2 The Effect of Coast Side Pressure Angle 

 

In previous work [15] the influence of coast side pressure angle on the critical 

section and bending stress parameters (𝛽𝑑, 𝛽𝑐, ℎ𝑟, 𝑡𝑟, 𝜌𝐹, 𝑌𝐹, 𝑌𝑆, 𝜎)  is plotted for 

different pinion teeth numbers 𝑍𝑝 (from 20 to 100). On these plots the data are given 

for only two teeth number 20 and 100 similar to the drive side plots. These data are 

compared with this thesis works in Table 5 and Table 6. It is seen that this thesis and 

previous work [15] data are very close to each other for this case. 

 

Table 5. Comparison of the FEA and modified ISO method results with previous 

work [15] for the bending stress parameters, 𝛼𝑑=30°, 𝑍𝑝=𝑍𝑔=20 

 

 

αd/αc βd (°) βc (°) hr (mm) tr (mm) ρF (mm) YF YS σ (MPa)

PW-ISO 30 40 1.2896 2.1919 0.4181 1.1447 2.0695 23.69

PW-FEM 39.75 51.2 1.3561 2.3074 0.4068 1.086 2.265 24.594

TH-ISO 30 39.9043 1.2891 2.1915 0.4188 1.1447 2.0682 23.674

TH-FEM 39.1719 51.7379 1.3528 2.3005 0.4077 1.09 2.2551 24.58

PW-ISO 30 35 1.338 2.2635 0.3494 1.108 2.2434 24.858

PW-FEM 41.15 49 1.4055 2.374 0.3345 1.056 2.324 24.594

TH-ISO 30 35.6678 1.3385 2.2659 0.3502 1.1059 2.243 24.805

TH-FEM 41.2497 48.998 1.4057 2.3745 0.3349 1.0581 2.291 24.24

PW-ISO 30 30 1.3953 2.36 0.2675 1.056 2.5244 26.66

PW-FEM 47.7 47.73 1.4759 2.4874 0.2424 1.0063 2.5244 25.399

TH-ISO 30 30 1.3953 2.36 0.2686 1.056 2.5258 26.673

TH-FEM 46.1429 46.1429 1.4704 2.4757 0.2446 1.0122 2.4827 25.13

PARAMETERS

Z 20, m 1

30°/20°

30°/25°

30°/30°
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Table 6. Comparison of the FEA and modified ISO method results with previous 

work [15] for the bending stress parameters, 𝛼𝑑=30°, 𝑍𝑝=𝑍𝑔=100 

 

 

Table 7. Comparison of the bending stress parameters for the FEA and modified ISO 

method results, 𝛼𝑑=30°,  𝑍𝑝=𝑍𝑔=40 

 

 

Table 8. Comparison of the bending stress of standard ISO method with FEA results 

for 𝛼𝑑=𝛼𝑐=30° 

  σ (MPa) 

αd/αc 𝑍𝑝/𝑍𝑔 ISO FEA 

30°/30° 

20/20 28.44 25.13 

40/40 25.75 23.89 

100/100 26.76 24.25 

 

Then similar to the previous case, this thesis works for 40 teeth are also compared 

with the previous work by putting signs in its plots as shown in Fig. 4.5, Fig. 4.6, 

Fig. 4.7 and Fig. 4.8. It is clearly seen that for 40 teeth the results of this thesis and 

αd/αc βd (°) βc (°) hr (mm) tr (mm) ρF (mm) YF YS σ (MPa)

PW-ISO 30 40 1.085 2.522 0.339 0.688 2.728 18.77

PW-FEM 49.9 55.7 1.181 2.68 0.33 0.668 2.996 20.03

TH-ISO 30 32.9042 1.0818 2.5065 0.3394 0.696 2.7164 18.9061

TH-FEM 46.9293 51.1941 1.1672 2.6503 0.3311 0.6755 2.9948 20.23

PW-ISO 30 35 1.165 2.639 0.256 0.679 3.121 21.24

PW-FEM 52.5 54.78 1.247 2.787 0.244 0.652 3.23 21.14

TH-ISO 30 31.8007 1.164 2.6405 0.2562 0.6775 3.125 21.1721

TH-FEM 48.5968 51.5478 1.2367 2.7632 0.2457 0.6601 3.2206 21.26

PW-ISO 30 30 1.253 2.795 0.155 0.652 3.971 25.9

PW-FEM 58 58.05 1.317 2.926 0.139 0.627 3.894 24.42

TH-ISO 30 30 1.2523 2.8039 0.1553 0.6476 3.9866 25.8192

TH-FEM 52.1206 52.1206 1.308 2.8979 0.1413 0.6351 3.8186 24.25

PARAMETERS

Z 100, m 1

30°/20°

30°/25°

30°/30°

αd/αc βd (°) βc (°) hr (mm) tr (mm) ρF (mm) YF YS σ (MPa)

TH-ISO 30 35.9222 1.1658 2.3774 0.3748 0.8587 2.4005 20.6126

TH-FEM 42.4855 50.6337 1.2414 2.5033 0.3632 0.827 2.5865 21.39

TH-ISO 30 33.4942 1.232 2.4862 0.2982 0.8286 2.685 22.2483

TH-FEM 46.9956 52.753 1.3139 2.6262 0.2811 0.7939 2.7937 22.18

TH-ISO 30 30 1.3055 2.6196 0.2061 0.789 3.2026 25.2669

TH-FEM 53.4706 53.4706 1.3843 2.7553 0.181 0.7577 3.1528 23.89

Z 40, m 1

30°/20°

30°/25°

30°/30°

PARAMETERS
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previous work is also very close to each other. Thus this thesis work is again verified 

by using the previous work [15] results. Then the similar discussions for this case 

with the previous work [15] can be done: 

 

1- From Table 5, Table 6, Table 7 and with the help of Fig. 4.5 it is found that as 

𝛼𝑐 increases the angle of tangent at the drive side 𝛽𝑑 increases in FEA study. 

It is also inferred that the angle of tangent at the coast side 𝛽𝑐  decreases with 

an increase in 𝛼𝑐 in modified ISO method. Also by increasing the number of 

teeth both of 𝛽𝑑 and 𝛽𝑐 increase in both of the FEA and modified ISO studies.  

 

2- From Table 5, Table 6, Table 7 and  with the help of  Fig. 4.6, Fig. 4.7 and 

Fig. 4.8 it is found that as 𝛼𝑐 increases the tooth form factor 𝑌𝑓 decreases 

which is mainly because of the corresponding increase in critical tooth 

thickness 𝑡𝑟, despite the increase in critical tooth height ℎ𝑟. However the 

stress correction factor  𝑌𝑠 increases because of the corresponding decrease in 

root fillet radius of curvature 𝜌𝑓. The respective determined values of the 

bending stress σ increases with an increase in 𝛼𝑐. This is because of the 

corresponding increase in stress correction factor 𝑌𝑠 is more dominating than 

the increase in tooth form factor 𝑌𝐹. Thus an increase in 𝛼𝑐 is not a suitable 

way to enhance the bending strength of the gear tooth. Also by increasing the 

number of teeth the bending stress σ does not decrease for high 𝛼𝑐 since the 

𝑌𝑠 increases very much. 

 

3- The present FEA results also show higher values of σ than that of the 

modified ISO method. The bending stresses in FEA are %5 higher than 

modified ISO method for low number of teeth and the percentage increases to 

%10 for high number of teeth. According to Table 8, the standard ISO 

method gives %8-12 larger bending stress results than FEA results for 

external symmetric gears with 30° pressure angle. 
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Fig. 4.5 Comparison of the drive and coast sides critical section tangent angles of 

this thesis and previous work [15] on the plots of [15] at  𝑍𝑝=40 for different coast 

side pressure angles, 𝛼𝑑=30° 
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Fig. 4.6 Comparison of the critical section tooth height and thickness of this thesis 

and previous work [15] on the plots of [15] at  𝑍𝑝=40 for different coast side pressure 

angles, 𝛼𝑑=30° 
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Fig. 4.7 Comparison of the critical section root fillet radius of curvature and stress 

correction factor of this thesis and previous work [15] on the plots of [15] at  𝑍𝑝=40 

for different coast side pressure angles, 𝛼𝑑=30° 
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Fig. 4.8 Comparison of the critical section tooth form factor and bending stress of 

this thesis and previous work [15] on the plots of [15] at  𝑍𝑝=40 for different coast 

side pressure angles, 𝛼𝑑=30° 
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4.1.2 The Case of Heavily Loaded Gear with Large Module  

 

In this chapter external asymmetric spur gears with 4 mm module, unit face width, 

standard tooth height (𝑎=1, 𝑏=1.25), zero profile shift and 500 N applied force are 

studied with FEA and modified ISO methods. These studies are done in two cases. In 

first case the influence of drive side pressure angles are examined and in second case 

the influence of coast side pressure angles are examined.  

 

4.1.2.1 The Effect of Drive Side Pressure Angle 

 

By the help of Fig. 4.9, Fig. 4.10, Fig. 4.11 and Fig. 4.12, the heavily loaded case 

analysis can be compared with lightly loaded case analysis according to the drive 

side pressure angle change. With respect to the lightly loaded case, the drive and 

coast side tangent angles 𝛽𝑑 and 𝛽𝑐 are almost same. The critical section tooth height 

ℎ𝑟 and thickness 𝑡𝑟 and the root fillet radius of curvature 𝜌𝑓 almost increased to four 

times of their values. Also the tooth form factor and stress correction factor are 

almost same. Finally, the maximum bending stress is almost 12.5 times larger for this 

case. Here the value, 12.5, comes from 50 divided by 4 where the load is 50 times 

larger and the module is 4 times larger for this case. All these results are the expected 

results.  

 

The graphs of this case are very similar to the lightly loaded case so that the same 

discussions with the first analysis can be done. The main result is that the bending 

stress σ decreases with an increase in 𝛼𝑑. Also, the bending stresses in FEA are %5 

higher than modified ISO method for low number of teeth and the percentage 

increases to %10 for high number of teeth.  Also by increasing the number of teeth 

the bending stress σ decreases. 
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Fig. 4.9 Comparison of the drive and coast sides critical section tangent angles for 

different drive side pressure angles, 𝛼𝑐=20° 
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Fig. 4.10 Comparison of the critical section tooth height and thickness for different 

drive side pressure angles, 𝛼𝑐=20°  
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Fig. 4.11 Comparison of the critical section root fillet radius of curvature and stress 

correction factor for different drive side pressure angles, 𝛼𝑐=20°  
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Fig. 4.12 Comparison of the critical section tooth form factor and bending stress for 

different drive side pressure angles, 𝛼𝑐=20°  
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4.1.2.2 The Effect of Coast Side Pressure Angle 

 

By the help of Fig. 4.13, Fig. 4.14, Fig. 4.15 and Fig. 4.16, the heavily loaded case 

analysis can be compared with lightly loaded case analysis according to coast side 

pressure angle increase. With respect to the lightly loaded case, the drive and coast 

side tangent angles 𝛽𝑑 and 𝛽𝑐 are almost same. The critical section tooth height ℎ𝑟 

and thickness 𝑡𝑟 and the root fillet radius of curvature 𝜌𝑓 almost increased to four 

times of their values. Also the tooth form factor and stress correction factor are 

almost same. Finally, the maximum bending stress is almost 12.5 times larger for this 

case. Here, the value, 12.5, comes from 50 divided by 4 where the load is 50 times 

larger and the module is 4 times larger for this case. All these results are the expected 

results.  

 

The graphs of this case are very similar to the lightly loaded case so that the same 

discussions with the first analysis can be done. The main result is that the bending 

stress σ decreases with an increase in 𝛼𝑑. Also, the bending stresses in FEA are %5 

higher than modified ISO method for low number of teeth and the percentage 

increases to %10 for high number of teeth.  Also by increasing the number of teeth 

the bending stress σ decreases. 
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Fig. 4.13 Comparison of the drive and coast sides critical section tangent angles for 

different coast side pressure angles, 𝛼𝑑=30° 
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Fig. 4.14 The Comparison of the critical section tooth height and thickness for 

different coast side pressure angles, 𝛼𝑑=30° 
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Fig. 4.15 Comparison of the critical section root fillet radius of curvature and stress 

correction factor for different coast side pressure angles, 𝛼𝑑=30° 
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Fig. 4.16 Comparison of the critical section tooth form factor and bending stress for 

different coast side pressure angles, 𝛼𝑑=30° 
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4.2 Results and Discussions for Modified ISO and FEA Methods of Internal 

Asymmetric Spur Gear  

 

The critical section and bending stress parameters (𝛽𝑖𝑑, 𝛽𝑖𝑐, ℎ𝑟𝑖, 𝑡𝑟𝑖, 𝜌𝐹𝑖, 𝑌𝐹𝑖, 𝑌𝑆𝑖, 𝜎𝑖) 

are determined through FEA and modified ISO methods according to the different 

cases for the internal asymmetric spur gears. 

 

4.2.1 The Case of Lightly Loaded Gear with Small Module 

 

In this chapter internal asymmetric spur gears with 1 mm module, unit face width, 

zero profile shift and 10 N applied force are studied with FEA and ISO methods. 

These studies are done in two cases. In first case the analysis are done for internal 

gears having standard tooth height for different number of teeth. In this study, the 

effects of the coast and drive side pressure angles are reflected in a single figure for 

each parameter for a specified number of teeth. Moreover, the results of the standard 

and modified ISO methods are compared with FEA results for symmetric internal 

gears. In second case the analysis are done for internal gears having small tooth 

height for a specified number of teeth and only the effect of the drive side pressure 

angle is studied such that the results can be compared with [16]. 

 

4.2.1.1 The Effect of Drive and Coast Sides Pressure Angles for Internal Gears 

Having Standard Tooth Height 

 

The first and second analyses are done with internal gears with 60 and 81 teeth, 

respectively. The addendum coefficient of the pinion type shaper cutter 𝑎𝑠 (the 

dedendum coefficient of the internal gear at the same time) is 1.25 and the addendum 

coefficient of the internal gear 𝑎𝑖 is 1. Then the internal gears in this study are typical 

standard (normal height) internal gears.  
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In terms of the first analysis, in the FEA according to Fig. 4.17 the drive side tangent 

angle 𝛽𝑖𝑑 increases by the inrease of both of the drive and coast side pressure angles 

but the coast side tangent angle 𝛽𝑖𝑐 either slightly increases or decreases until 30° for 

coast side pressure angle. In the modified ISO method, the value of  𝛽𝑖𝑑 is always 

equal to 60° and the respective 𝛽𝑖𝑐 increases with the increase of coast side pressure 

angle but decrease with the increase of drive side pressure angle and is generally 

higher than the FEA results. In the FEA according to Fig. 4.20 the tooth form factor 

𝑌𝐹𝑖 decreases with increase in both drive and coast side pressure angles, which is 

mainly because of the corresponding increase in critical tooth thickness 𝑡𝑟𝑖, despite 

the increase in critical tooth height ℎ𝑟𝑖. However the stress correction factor  𝑌𝑆𝑖 

increases with the increase in both drive and coast side pressure angles because of 

the corresponding decrease in root fillet radius of curvature 𝜌𝐹𝑖. In the FEA the 

respective determined values of the bending stress 𝜎𝑖 increases with the increase in 

coast side pressure angle and usually decreases with the decrease in coast side 

pressure angle. In terms of increase in drive side pressure angle the bending stress 

increases for the high coast side pressure angles and decreases only for very low 

coast side pressure angles 𝛼𝑐𝑖 (smaller than 20°). In case of a 16° coast side pressure 

angle, for instance, the bending stress decreases % 6 by the increase of the drive side 

pressure angle from 16° to 30°. The bending stress results of modified ISO method 

are % 5 lower than the results of the FEA except low drive and coast side pressure 

angles smaller than 20°. For example, for 16° drive and coast side pressure angles, 

modified ISO method gives % 10-15 lower bending stress than FEA method. 

Therefore, in the modified ISO method, the bending stress always increases with an 

increase in drive side pressure angle. For the low drive and coast side pressure 

angles, this is mainly because of the high differences in 𝛽𝑖𝑑 and 𝛽𝑖𝑐 for FEA and ISO 

methods which causes increase in the amount of the differences in 𝑡𝑟𝑖 and 𝑌𝑓𝑖 values 

for these methods. 
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Table 9. The analysis input parameters for  𝑍𝑖=60, 𝑚=1 

Analysis Input Parameters 

Ze 20 

as 1,25 

ai 1 

ae 1 

Fni 10 N 

 

Table 10. Comparison of the bending stress of standard ISO method with FEA 

results for internal symmetric spur gears 

  σ (MPa) 

Zi αd/αc ISO FEA 

60 

16°/16° 23 20 

20°/20° 20 19.76 

25°/25° 22.16 20.5 

30°/30° 28 38.5 

 

According to Table 10, for internal symmetric spur gears, the standard ISO method 

generally gives %7-10 larger bending stress results than FEA results except 20° 

pressure angle. For low and high pressure angles the percentage increase to %15. 
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Fig. 4.17 Comparison of the drive and coast sides critical section tangent angles for 

different drive and coast side pressure angles at light load for 𝑍𝑖 = 60   
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Fig. 4.18 Comparison of the critical section tooth height and thickness for different 

drive and coast side pressure angles at light load for 𝑍𝑖 = 60  
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Fig. 4.19 Comparison of the critical section root fillet radius of curvature and stress 

correction factor for different drive and coast side pressure angles at light load for 

𝑍𝑖 = 60  
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Fig. 4.20 Comparison of the critical section tooth form factor and bending stress for 

different drive and coast side pressure angles at light load for 𝑍𝑖 = 60  
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By the help of Fig. 4.21, Fig. 4.22, Fig. 4.23and Fig. 4.24, the second analysis, 

internal gear with 81 teeth, can be compared with the first analysis, internal gear with 

60 teeth. With respect to the first analysis, the drive and coast side tangent angles 𝛽𝑖𝑑 

and 𝛽𝑖𝑐 are almost same. The critical section tooth height ℎ𝑟𝑖 and thickness 𝑡𝑟𝑖 

generally decreased but the root fillet radius of curvature 𝜌𝐹𝑖 generally increased. 

Also the tooth form factor generally decreased and stress correction factor generally 

increased. Finally, the maximum bending stress decreased very less or remained 

same. 

 

The graphs of the second analysis are very similar to the first analysis so that the 

same results with the first analysis can be obtained. The maximum bending stress 𝜎𝑖 

increases with the increase in coast side pressure angle and almost always decreases 

with the decrease in coast side pressure angle. In terms of increase in drive side 

pressure angle the bending stress increases for the high coast side pressure angles and 

decreases only for very low coast side pressure angles 𝛼𝑐𝑖 (smaller than 20°). In case 

of a 16° coast side pressure angle, for instance, the bending stress decreases % 5 by 

the increase of the drive side pressure angle from 16° to 30°. 

 

Table 11. The analysis input parameters for  𝑍𝑖=81, 𝑚=1 

Analysis Input Parameters 

Ze 27 

as 1,25 

ai 1 

ae 1 

Fni 10 N 
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Fig. 4.21 Comparison of the drive and coast sides critical section tangent angles for 

different drive and coast side pressure angles at light load for 𝑍𝑖 = 81   
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Fig. 4.22 Comparison of the critical section tooth height and thickness for different 

drive and coast side pressure angles at light load for 𝑍𝑖 = 81 
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Fig. 4.23 Comparison of the critical section root fillet radius of curvature and stress 

correction factor for different drive and coast side pressure angles at light load for 

𝑍𝑖 = 81 
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Fig. 4.24 Comparison of the critical section tooth form factor and bending stress for 

different drive and coast side pressure angles at light load for 𝑍𝑖 = 81 
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4.2.1.2 The Effect of Drive Side Pressure Angle for Internal Gears Having 

Different Tooth Heights 

 

The results of the previous chapter shows that by the increase in drive side pressure 

angle the bending stress decreases for only low coast side pressure angles. In [16] it 

is stated that the desired trend that the fillet stresses decreased with the increasing 

drive side pressure angle has been achieved to a large extent by the consideration of 

stud tooth at the cost of contact ratio by keeping its values always above the required 

limit 1.1. The bending stress decreases with respect to decrease in the tooth height 

according to [16] and the minimum tooth height with an addendum coefficient, 0.8 is 

analyzed. In this study the same minimum tooth height with the same addendum 

coefficient is also analyzed with respect to the increase in drive side pressure angle 

and the results are discussed. 

 

The addendum coefficient of the internal 𝑎𝑖 gear does not affect its own bending 

stress but affects the bending stress of the external gear in the mesh since the HPSTC 

of the external gear is affected by the tip diameter of the internal gear. The addendum 

coefficient of the external gear 𝑎𝑒 affects the bending stress of the internal gear since 

the LPSTC of the internal gear is affected by the tip diameter of the external gear. If 

the tip diameter of the external gear increases the LPSTC diameter increases and 

critical section tooth height decreases. Then the maximum bending stress also 

decreases. If the tip diameter of the external gear decreases the LPSTC diameter 

decreases and critical section tooth height increases. Then the maximum bending 

stress also increases. The addendum coefficient of the shaper cutter 𝑎𝑠 (the 

dedendum coefficient of the internal gear) also affects the bending stress of the 

internal gear. If 𝑎𝑠 increases, the critical section tooth height increases so that the 

bending stress increases and if 𝑎𝑠 decreases, then the critical section tooth height 

decreases so that the bending stress decreases. After all these explanations if the 𝑎𝑠 is 

decreased from 1.25 to 0.8 the bending stress must absolutely decrease. However 𝑎𝑒 

must also decrease since the dedendum of the internal gear is decreased. Then the 
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bending must increase again. Here, for instance, 𝑎𝑒 can be maximum 0.6 because 

there must be also an enough clearance between the root of the internal gear tooth 

and tip of the external gear tooth. From Fig. 4.25 and Fig. 4.26 it is clearly seen that 

the bending stress for 𝑎𝑠 (0.8) and 𝑎𝑒 (0.6) case, either remains same or very slightly 

decreases with respect to increase in drive side pressure angle and it is also even 

more than the bending stress of the normal tooth height case, 𝑎𝑠 (1.25) and 𝑎𝑒 (1). 

Also this causes a very important decrease in the contact ratio. Then there is no 

advantage of stud tooth suggestion of [16] for the internal gears. Although 𝑎𝑒 can be 

maximum 0.6 for 𝑎𝑠 0.8, assume that 𝑎𝑒 is 0.8 in order to just make an analysis. 

Then, From Fig. 4.27 and Fig. 4.28 it is clearly seen that the bending stress for 𝑎𝑠 

(0.8) and 𝑎𝑒 (0.8) case, decreases with the increase in drive side pressure angle. 

However, this causes a geometric interference during meshing and this solution is not 

practical. 

 

 

Fig. 4.25 Comparison of the critical section bending stress for different drive side 

pressure angles and tooth heights for 𝑍𝑖 = 60    
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Fig. 4.26 Comparison of the critical section bending stress for different drive side 

pressure angles and tooth heights for 𝑍𝑖 = 81    

 

4.2.2 The Case of Heavily Loaded Gear with Large Module 

 

In this chapter internal asymmetric spur gears with 4 mm module, unit face width, 

standard tooth height (ai=1, 𝑏=1.25), zero profile shift and 500 N applied force are 

studied with FEA and ISO methods. In this study the effects of the coast and drive 

side pressure angles are reflected in a single figure for each parameter for a specified 

number of teeth.  

 

Table 12. The analysis input parameters for  𝑍𝑖=60, 𝑚=4 

Analysis Input Parameters 

Ze 20 

as 1,25 

ai 1 

ae 1 

Fni 500 N 
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Fig. 4.27 Comparison of the drive and coast side critical section tangent angles for 

different drive and coast sides pressure angles at heavy load for 𝑍𝑖 = 60    
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Fig. 4.28 Comparison of the critical section tooth height and thickness for different 

drive and coast sides pressure angles at heavy load for 𝑍𝑖 = 60  
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Fig. 4.29 Comparison of the critical section root fillet radius of curvature and stress 

correction factor for different drive and coast sides pressure angles at heavy load for 

𝑍𝑖 = 60  
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Fig. 4.30 Comparison of the critical section tooth form factor and bending stress for 

different drive and coast sides pressure angles at heavy load for 𝑍𝑖 = 60  
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Table 13. The analysis input parameters for  Zi=81, m=4 

Analysis Input Parameters 

Ze 27 

as 1,25 

ai 1 

ae 1 

Fni 500 N 

 

By the help of Fig. 4.27, Fig. 4.28, Fig. 4.29, Fig. 4.30, Fig. 4.31 ,Fig. 4.32 ,Fig. 4.33 

and Fig. 4.34, the heavily loaded case analysis can be compared with lightly loaded 

case analysis of the internal gears (Zi=60 and  Zi=81) according to the drive and coast 

sides pressure angle changes. With respect to the lightly loaded case, the drive and 

coast side tangent angles 𝛽𝑖𝑑 and 𝛽𝑖𝑐 are almost same. The critical section tooth 

height ℎ𝑟𝑖 and thickness 𝑡𝑟𝑖 and the root fillet radius of curvature 𝜌𝑓𝑖 almost 

increased to four times of their values. Also the tooth form factor and stress 

correction factor are almost same. Finally, the maximum bending stress is almost 

12.5 times larger than its value. Here, similar to the external gear results, 12.5 comes 

from 50 divided by 4 where the load is 50 times larger and the module is 4 times 

larger than their values. All these results are the expected results.  

 

The graphs of the second case are very similar to the first case so that the same 

results with the first case can be obtained. The maximum bending stress 𝜎𝑖 increases 

with the increase in coast side pressure angle and almost always decreases with the 

decrease in coast side pressure angle. In terms of increase in drive side pressure angle 

the bending stress increases for the high coast side pressure angles and decreases 

only for very low coast side pressure angles 𝛼𝑖𝑐 (smaller than 20°). In case of a 16° 

coast side pressure angle, for instance, the bending stress decreases % 5 by the 

increase of the drive side pressure angle from 16° to 30°. 
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Fig. 4.31 Comparison of the drive and coast side critical section tangent angles for 

different drive and coast sides pressure angles at heavy load for 𝑍𝑖 = 81    
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Fig. 4.32 Comparison of the critical section tooth height and thickness for different 

drive and coast sides pressure angles at heavy load for 𝑍𝑖 = 81  
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Fig. 4.33 Comparison of the critical section root fillet radius of curvature and stress 

correction factor for different drive and coast sides pressure angles at heavy load for 

𝑍𝑖 = 81 
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Fig. 4.34 Comparison of the critical section tooth form factor and bending stress for 

different drive and coast sides pressure angles at heavy load for 𝑍𝑖 = 81  
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CHAPTER 5 

 

 

5 CONCLUSION AND FUTURE WORK 

 

 

 

The external asymmetric spur gears are generated by using full rounded asymmetric 

rack-cutters and the internal asymmetric spur gears are generated by using full 

rounded asymmetric pinion type shaper cutters. In this thesis, considering the 

detailed geometries of the external and internal asymmetric gear teeth, the analytical 

methods are developed to find the maximum bending stress of both external and 

internal asymmetric spur gears by modifying ISO methods.  

 

The method for external gear is very similar to previous work [15]. The critical 

section drive side tangent angle is 30° and all other critical section parameters 

including coast side tangent angle are derived by using the generation motion. There 

is no analytical method for internal asymmetric gears in the literature, but the 

analytical method developed for internal asymmetric gears in this thesis is similar to 

the external gears. In this method, the critical section drive side tangent angle is 60° 

and all other critical section parameters including coast side tangent angle are 

derived by using the generation motion. Then these results are compared with 

previous work [15] and FEA for external asymmetric gears and with FEA for internal 

asymmetric gears. The analyses are done for external and internal asymmetric gears 

with small and large modules and light and heavy applied forces, respectively.  

 

For small module and light load case, the external gear analytical and FEA results are 

very similar to previous work [15] results. Therefore, almost the same results with 

previous work [15] are obtained for external asymmetric gears. The calculated values 

of the bending stress σ decreases with an increase in 𝛼𝑑. This is because of the 
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corresponding decrease in tooth form factor 𝑌𝐹 which is more dominating than the 

increase in stress correction factor 𝑌𝑆. This enables to enhance the bending strength 

of the gear tooth. The maximum bending stress calculated in analytical method is %5 

lower than FEA results for low number of teeth and that increases to %10 for high 

number of teeth. This is mainly caused by differences in the critical section tangent 

angles of the modified ISO and FEA methods. The results of standard ISO method 

with FEA results for external symmetric gears are also compared in this thesis. For 

20° pressure angle the standard ISO method gives %3-5 larger bending stress results 

than FEA. For higher pressure angles like 30° this difference increases to %8-12. 

 

For small module and light load case, the internal gear bending stress 𝜎𝑖 in FEA, 

increases with the increase in coast side pressure angle and usually decreases with 

the decrease in coast side pressure angle. For increase in drive side pressure angle the 

bending stress increases but decreases only for very low coast side pressure angles 

𝛼𝑖𝑐 (smaller than 20°). In case of a 16° coast side pressure angle, for instance, the 

bending stress decreases % 6 by the increase of the drive side pressure angle from 

16° to 30°. The bending stresses of ISO method are about % 5 different than the 

results of the FEA for drive and coast side pressure angles larger than 20°, but the 

percentage difference increases to % 15 for low drive and coast side pressure angles 

smaller than 20° (for example for 16°). This is mainly because of the higher 

differences in 𝛽𝑖𝑑 and 𝛽𝑖𝑐 for FEA and ISO methods. In modified ISO method of the 

internal gears, the bending stress always increases with an increase in drive side 

pressure angle, even for very low coast side pressure angles because of the 

mentioned high bending stress difference % 15 with FEA results for low pressure 

angles. In order to decrease the bending stress of an internal asymmetric gear by 

increase in drive side pressure angle, the stub tooth is suggested in [16]. In this 

thesis, this suggestion is also analyzed and it is seen that the bending stress decreases 

for small tooth height if only the addendum coefficient of the external gear in mesh 

equal or greater than the dedendum coefficient of the internal gear. However, this 

causes a geometric interference during meshing and this solution is not practical. The 
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results of standard ISO method with FEA results for internal symmetric gears are 

also compared in this thesis. The standard ISO method generally gives %7-10 larger 

bending stress results than FEA results. For low and high pressure angles, this 

difference increases up to %15. 

 

In both of external and internal asymmetric gears, for large module and high load 

case, the results of the geometry related parameters, the tooth form and stress 

correction factors, are almost independent of module and the same with small 

module case. This is an expected result because by increasing module, all geometric 

parameters of the gears increase with the same ratio. Therefore, the maximum 

bending stress changes with a ratio of the applied load to module.  

 

As a result, the modified ISO method for external asymmetric gears gives as accurate 

results as the standard ISO method for external symmetric gears. As a future work, 

the optimization of drive side critical section tangent angle can be conducted 

especially for high number of teeth. Similarly, the modified ISO method for internal 

asymmetric gears gives as accurate results as standard ISO method for internal 

symmetric gears. As a future work, the optimization of drive side critical section 

tangent angle optimization can be conducted especially for low pressure angles. 

 

Finally, an asymmetric planetary spur gear stage design optimization for sun, planet 

and ring gears can be investigated in terms of bending and contact stresses, top land 

thicknesses, contact ratios and some other important parameters. This optimized 

design can be verified by FEA and also experimental works. 
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APPENDIX A 

 

 

DETERMINATION OF ASYMMETRIC RACK CUTTER PARAMETERS 

 

 

 

A.1. Determination of Maximum Asymmetric Rack Cutter Radius 

 

 

Fig. A.1 Maximum asymmetric rack-cutter radius 

 

For any rack-cutter radius 𝐴, the parameters of the rack-cutter are given as:  

 

 ℎ = 𝑚𝑏 − 𝐴 (A.1) 

 

 ℎ𝑑 = ℎ 𝑡𝑎𝑛 𝛼𝑑  (A.2) 

 

 ℎ𝑐 = ℎ 𝑡𝑎𝑛 𝛼𝑐  (A.3) 

 

 𝐴𝑑 =
𝐴

cos 𝛼𝑑
  (A.4) 
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 𝐴𝑐 =
𝐴

cos 𝛼𝑐
  (A.5) 

 

If the rack is full rounded as shown in Fig. A.1, use 𝐴𝑚𝑎𝑥 in Equations (A.1) to 

(A.5). Then 𝐴𝑚𝑎𝑥 can be found as: 

 

 𝜋𝑚 2⁄ = ℎ𝑑 + ℎ𝑐 + 𝐴𝑑 + 𝐴𝑐  (A.6) 

 

 𝜋𝑚 2⁄ = (𝑚𝑏 − 𝐴𝑚𝑎𝑥) tan𝛼𝑑 + (𝑚𝑏 − 𝐴𝑚𝑎𝑥) tan 𝛼𝑐 +
𝐴𝑚𝑎𝑥

cos 𝛼𝑑
 +

𝐴𝑚𝑎𝑥

cos 𝛼𝑐
  (A.7) 

 

 

𝜋𝑚 2⁄ = 𝑚𝑏 (tan𝛼𝑑 + tan 𝛼𝑐) − 𝐴𝑚𝑎𝑥 (tan𝛼𝑑 + tan𝛼𝑐)…

+ 𝐴𝑚𝑎𝑥 (
1

cos 𝛼𝑑
+

1

cos 𝛼𝑐
) 

 (A.8) 

 

 

𝜋𝑚 2⁄ − 𝑚𝑏 (tan𝛼𝑑 + tan𝛼𝑐)

= 𝐴𝑚𝑎𝑥 (
1

cos 𝛼𝑑
+

1

cos 𝛼𝑐
− (tan𝛼𝑑 + tan𝛼𝑐)) 

 (A.9) 

 

 𝐴𝑚𝑎𝑥 =
𝜋𝑚 2⁄ − 𝑚𝑏(tan𝛼𝑑 + tan𝛼𝑐)

1
cos 𝛼𝑑

+
1

cos𝛼𝑐
− (tan𝛼𝑑 + tan𝛼𝑐)

  (A.10) 

 

A.2. Determination of Lower Limits of Position Vectors of Asymmetric Rack 

Cutter Coast and Drive Sides Inclined Surfaces 

 

 𝐴𝑢𝑑 = 𝐴 sin 𝛼𝑑  (A.11) 

 

 ℎ𝑢𝑑 = 𝑚𝑏 − 𝐴 + 𝐴𝑢𝑑  (A.12) 
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 𝑢𝑟𝑑 = −
ℎ𝑢𝑑

cos 𝛼𝑑
  (A.13) 

 

 

Fig. A.2 Lower limits of position vectors of asymmetric rack-cutter coast and drive 

side inclined surfaces 

 

 𝑢𝑟𝑑 = −
𝑚𝑏 − 𝐴 + 𝐴 sin 𝛼𝑑

cos 𝛼𝑑
  (A.14) 

 

Modify the Equation (A.14) and obtain the coast side parameter, 𝑢𝑟𝑐: 

 

 𝑢𝑟𝑐 = −
𝑚𝑏 − 𝐴 + 𝐴 sin 𝛼𝑐

cos 𝛼𝑐
 (A.15) 

 

A.3. Determination of Upper Limits of Position Vectors of Asymmetric Rack 

Cutter Coast and Drives Sides Inclined Surfaces 

 

During the generation motion of involute flank surface, any contact occurs on the 

intersection of line of action and the rack-cutter inclined surface. If the radius of the 

contact point is equal to tip radius, then tip radius point of the involute flank is 

generated. This is illustrated on the figure below. 
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 𝑟𝑎 cos 𝛼𝑎𝑑 = 𝑟𝑏𝑑 (A.16) 

 

 𝛼𝑎𝑑 = cos−1 (
𝑟𝑏𝑑

𝑟𝑎
)  (A.17) 

 

 𝐶𝐵 = 𝑟𝑎. sin𝛼𝑎𝑑 (A.18) 

 

 

Fig. A.3 Upper limits of position vectors of asymmetric rack-cutter coast and drive 

side inclined surfaces 

 

 𝐼𝐵 = 𝑟𝑝. sin𝛼𝑑  (A.19) 

 

 𝑢𝑒𝑑 = 𝐶𝐼. tan𝛼𝑑  (A.20) 

 

 𝑢𝑒𝑑 = (𝐶𝐵 − 𝐼𝐵). tan 𝛼𝑑 (A.21) 
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 𝑢𝑒𝑑 = (𝑟𝑎. sin 𝛼𝑎𝑑 − 𝑟𝑝. sin 𝛼𝑑). tan𝛼𝑑 (A.22) 

 

 𝑢𝑒𝑑 = (𝑟𝑎. sin (cos−1 (
𝑟𝑏𝑑

𝑟𝑎
)) − 𝑟𝑝. sin 𝛼𝑑) . tan𝛼𝑑  (A.23) 

 

Define 𝛼𝑎𝑐 and modify the Equations (A.22) and (A.23) and obtain the coast side 

parameter, 𝑢𝑐𝑒: 

 𝛼𝑎𝑐 = cos−1 (
𝑟𝑏𝑐

𝑟𝑎
)   (A.24) 

 

 𝑢𝑒𝑐 = (𝑟𝑎. sin 𝛼𝑎𝑐 − 𝑟𝑝. sin 𝛼𝑐). tan𝛼𝑐   (A.25) 

 

 𝑢𝑒𝑐 = (𝑟𝑎. sin (cos−1 (
𝑟𝑏𝑐

𝑟𝑎
)) − 𝑟𝑝. sin 𝛼𝑐). tan𝛼𝑐   (A.26) 

 

A.4. Determination of X Component Limits of Position Vectors of Asymmetric 

Rack Cutter Coast and Drive Sides Rounded Surfaces 

 

 

Fig. A.4 The x component limit of position vector of asymmetric rack-cutter drive 

side rounded surface 
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 𝑡𝑓𝑑 = 𝑡𝑑 + ℎ𝑑 + 𝐴𝑑   (A.27) 

 

Put Equations (A.1), (A.2) and (A.4) in Equation (A.27) and obtain: 

 

 𝑡𝑓𝑑 = 𝑡𝑑 + (𝑚𝑏 − 𝐴) tan𝛼𝑑 +
𝐴

cos 𝛼𝑑
   (A.28) 

 

 

Fig. A.5 The x component limit of position vector of asymmetric rack-cutter coast 

side rounded surface 

 

𝑡𝑓𝑐 = 𝑡𝑑 + 𝑡 − ℎ𝑐 − 𝐴𝑐   (A.29) 

 

Put Equations (A.1), (A.3) and (A.5) in Equation (A.29) and obtain: 

 

𝑡𝑓𝑐 = 𝑡𝑑 + 𝑡 − (𝑚𝑏 − 𝐴) tan𝛼𝑐 −
𝐴

cos 𝛼𝑐
   (A.30) 
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APPENDIX B 

 

 

DETERMINATION OF EXTERNAL ASYMMETRIC INVOLUTE GEAR 

TOOTH AND GEAR PAIR MESH PARAMETERS 

 

 

 

B.1. Determination of External Asymmetric Spur Gear Tooth Pointed Tip 

Radius, Drive and Coast Sides Tooth Thicknesses 

 

 

Fig. B.1 External asymmetric gear tooth pointed tip radius 

 

𝑡𝑟𝑒𝑓 = 𝑟𝑝(𝑖𝑛𝑣𝛼𝑡𝑑 + 𝑖𝑛𝑣𝛼𝑡𝑐 − (𝑖𝑛𝑣𝛼𝑑 + 𝑖𝑛𝑣𝛼𝑐))     (B.1) 

 

𝑖𝑛𝑣𝛼𝑑 = tan𝛼𝑑 − 𝛼𝑑     (B.2) 
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𝑖𝑛𝑣𝛼𝑐 = tan𝛼𝑐 − 𝛼𝑐     (B.3) 

 

𝑟𝑡 cos 𝛼𝑡𝑑 = 𝑟𝑏𝑑     (B.4) 

 

𝛼𝑡𝑑 = cos−1 (
𝑟𝑏𝑑

𝑟𝑡
)     (B.5) 

 

𝑖𝑛𝑣𝛼𝑡𝑑 = tan 𝛼𝑡𝑑 − 𝛼𝑡𝑑     (B.6) 

 

𝑖𝑛𝑣𝛼𝑡𝑑 = tan (cos−1 (
𝑟𝑏𝑑

𝑟𝑡
)) − cos−1 (

𝑟𝑏𝑑

𝑟𝑡
)     (B.7) 

 

𝑟𝑡 cos 𝛼𝑡𝑐 = 𝑟𝑏𝑐     (B.8) 

 

𝛼𝑡𝑐 = cos−1 (
𝑟𝑏𝑐

𝑟𝑡
)     (B.9) 

 

𝑖𝑛𝑣𝛼𝑡𝑐 = tan𝛼𝑡𝑐 − 𝛼𝑡𝑐   (B.10) 

 

𝑖𝑛𝑣𝛼𝑡𝑐 = tan (cos−1 (
𝑟𝑏𝑐

𝑟𝑡
)) − cos−1 (

𝑟𝑏𝑐

𝑟𝑡
)   (B.11) 

 

Use Equations (B.7) and (B.11) in Equation (B.1) and obtain: 

 

 

𝑡𝑟𝑒𝑓 =
𝑚𝑁

2
(tan(cos−1 (

𝑟𝑏𝑑

𝑟𝑡
)) − cos−1 (

𝑟𝑏𝑑

𝑟𝑡
) + tan (cos−1 (

𝑟𝑏𝑐

𝑟𝑡
))…

− cos−1 (
𝑟𝑏𝑐

𝑟𝑡
)   − (𝑖𝑛𝑣𝛼𝑑 + 𝑖𝑛𝑣𝛼𝑐)) 

(B.12) 
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In Equation (B.12) all parameters are known except 𝑟𝑡 and in order to find 𝑟𝑡 

Newton-Raphson method is used to solve the Equation (B.12).  In Matlab, fsolve 

function uses this method and can be used to find 𝑟𝑡. The drive and coast sides tooth 

thicknesses on pitch circle are defined as: 

 

𝑡𝑑 =
𝑚𝑁

2
( 𝑖𝑛𝑣𝛼𝑡𝑑 − 𝑖𝑛𝑣𝛼𝑑) (B.13) 

 

𝑡𝑑 =
𝑚𝑁

2
( 𝑡𝑎𝑛 (𝑐𝑜𝑠−1 (

𝑟𝑏𝑑

𝑟𝑡
)) − 𝑐𝑜𝑠−1 (

𝑟𝑏𝑑

𝑟𝑡
) − 𝑖𝑛𝑣𝛼𝑑) (B.14) 

 

𝑡𝑐 =
𝑚𝑁

2
( 𝑖𝑛𝑣𝛼𝑡𝑐 − 𝑖𝑛𝑣𝛼𝑐) (B.15) 

 

𝑡𝑐 =
𝑚𝑁

2
( 𝑡𝑎𝑛 (𝑐𝑜𝑠−1 (

𝑟𝑏𝑐

𝑟𝑡
)) − 𝑐𝑜𝑠−1 (

𝑟𝑏𝑐

𝑟𝑡
) − 𝑖𝑛𝑣𝛼𝑐) (B.16) 

 

B.2. Determination of an External Asymmetric Spur Gear Pair Mesh 

Properties 

 

Here subscripts “p and g” represent the pinion and gear in mesh. 

𝛼𝑜 = cos−1 (
𝑟𝑏𝑑𝑝 + 𝑟𝑏𝑑𝑔

𝑂1𝑂2
)   𝑤ℎ𝑒𝑟𝑒  𝑂1𝑂2 = 𝐶𝑜 (B.17) 

 

𝑖𝑛𝑣𝛼𝑜 = tan𝛼𝑜 − 𝛼𝑜 (B.18) 

 

𝑟𝑜𝑝 =
𝑟𝑏𝑑𝑝

cos 𝛼𝑜
 (B.19) 

 

𝛼𝑜𝑐𝑝 = cos−1 (
𝑟𝑏𝑐𝑝

𝑟𝑜𝑝
)     (B.20) 
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Fig. B.2 External asymmetric gear mesh 
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𝑖𝑛𝑣𝛼𝑜𝑐𝑝 = tan 𝛼𝑜𝑐𝑝 − 𝛼𝑜𝑐𝑝   (B.21) 

 

𝑟𝑜𝑔 =
𝑟𝑏𝑑𝑔

cos 𝛼𝑜
   (B.22) 

 

𝛼𝑜𝑐𝑔 = cos−1 (
𝑟𝑏𝑐𝑔

𝑟𝑜𝑔
)     (B.23) 

 

𝑖𝑛𝑣𝛼𝑜𝑐𝑔 = tan𝛼𝑜𝑐𝑔 − 𝛼𝑜𝑐𝑔   (B.24) 

 

𝛾𝑝 =
𝑡𝑟𝑒𝑓𝑝

𝑟𝑝𝑝
   (B.25) 

 

𝑡𝑟𝑒𝑓𝑝 = 𝜋𝑚 2⁄ + 𝑥𝑝𝑚(tan𝛼𝑑 + tan𝛼𝑐𝑝)   (B.26) 

 

𝛾𝑝 =
𝜋𝑚 2⁄ + 𝑥𝑝𝑚(tan 𝛼𝑑 + tan𝛼𝑐𝑝)

𝑟𝑝𝑝
   (B.27) 

 

𝛾𝑔 =
𝑡𝑟𝑒𝑓𝑔

𝑟𝑝𝑔
   (B.28) 

 

𝑡𝑟𝑒𝑓𝑔 = 𝜋𝑚 2⁄ + 𝑥𝑔𝑚(tan𝛼𝑑 + tan𝛼𝑐𝑔)   (B.29) 

 

𝛾𝑔 =
𝜋𝑚 2⁄ + 𝑥𝑔𝑚(tan𝛼𝑑 + tan𝛼𝑐𝑔)

𝑟𝑝𝑔
   (B.30) 

 

𝜆𝑑 = 𝑖𝑛𝑣𝛼𝑜 − 𝑖𝑛𝑣𝛼𝑑   (B.31) 

 

𝜆𝑐𝑝 = 𝑖𝑛𝑣𝛼𝑜𝑐𝑝 − 𝑖𝑛𝑣𝛼𝑐𝑝   (B.32) 
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𝜆𝑐𝑔 = 𝑖𝑛𝑣𝛼𝑜𝑐𝑔 − 𝑖𝑛𝑣𝛼𝑐𝑔   (B.33) 

 

𝑡𝑜𝑝 = (𝛾𝑝 − 𝜆𝑑 − 𝜆𝑐𝑝)𝑟𝑜𝑝   (B.34) 

 

𝑡𝑜𝑝 = (
𝜋𝑚 2⁄ + 𝑥𝑝𝑚(tan𝛼𝑑 + tan 𝛼𝑐𝑝)

𝑟𝑝𝑝
− (𝑖𝑛𝑣𝛼𝑜 − 𝑖𝑛𝑣𝛼𝑑)…

− (𝑖𝑛𝑣𝛼𝑜𝑐𝑝 − 𝑖𝑛𝑣𝛼𝑐𝑝)) 𝑟𝑜𝑝 

  (B.35) 

 

𝑡𝑜𝑔 = (
𝜋𝑚 2⁄ + 𝑥𝑔𝑚(tan𝛼𝑑 + tan𝛼𝑐𝑔)

𝑟𝑝𝑔
− (𝑖𝑛𝑣𝛼𝑜 − 𝑖𝑛𝑣𝛼𝑑)…

− (𝑖𝑛𝑣𝛼𝑜𝑐𝑔 − 𝑖𝑛𝑣𝛼𝑐𝑔)) 𝑟𝑜𝑔 

  (B.36) 

 

𝑡𝑜𝑔 = (𝛾𝑔 − 𝜆𝑑 − 𝜆𝑐𝑔)𝑟𝑜𝑔   (B.37) 

 

Here 𝑡𝑜𝑝 and 𝑡𝑜𝑔 are dependent on the unknowns 𝑥𝑝 and 𝑥𝑔, respectively. And note 

that at operating pitch circle, the gear tooth thickness is equal to the pinion tooth 

space width for zero backlash condition. Then, 

𝑡𝑜𝑔 = 𝑡𝑜𝑤𝑝 − 𝑡𝑜𝑝   (B.38) 

 

𝑡𝑜𝑔 + 𝑡𝑜𝑝 =
2𝜋𝑟𝑜𝑝

𝑍𝑝
   (B.39) 

As seen in the Equations (B.35), (B.36) and   (B.39) the profile shift coefficients of 

the pinion and gear 𝑥𝑝,  𝑥𝑔 are dependent on each other. If one of them is given as 
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an input value, then the other one is found by using the Equations (B.35), (B.36) 

and   (B.39).  

 

B.3. Determination of Highest Point Single Tooth Contact Radius 

 

𝐶1𝐵1 = 𝐵2𝐵1 − 𝐵2𝐶1   (B.40) 

 

𝐶4𝐵1 = 𝑝𝑏 + 𝐶1𝐵1   (B.41) 

 

𝑟ℎ𝑝 = √(𝐶4𝐵1)2 + (𝑟𝑏𝑑𝑝)
2
   (B.42) 

 

 

Fig. B.3 The line of action of external asymmetric gear mesh 
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𝐶2𝐵1 = √(𝑟𝑎𝑝)
2
− (𝑟𝑏𝑑𝑝)

2
   (B.43) 

 

𝐵2𝐶2 = 𝐵2𝐵1 − 𝐶2𝐵1   (B.44) 

 

𝐵2𝐶3 = 𝑝𝑏 + 𝐵2𝐶2   (B.45) 

 

𝑟ℎ𝑔 = √(𝐵2𝐶3)2 + (𝑟𝑏𝑑𝑔)
2
   (B.46) 

 

𝐿 = 𝐶2𝐵1 − 𝐶1𝐵1   (B.47) 

 

𝐶𝑟 =
𝐿

𝑝𝑏
   (B.48) 
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APPENDIX C 

 

 

DETERMINATION OF THE PARAMETERS OF THE ASYMMETRIC 

PINION TYPE SHAPER CUTTER ROUNDED SURFACES  

 

C.1. The Case of any Value for Shaper Cutter Tip Radius 

 

 

Fig. C.1 The asymmetric shaper cutter rounded surfaces parameters 1 
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Fig. C.2 The asymmetric shaper cutter rounded surfaces parameters 2 

 

At point 𝐶𝑐𝑠, 𝑥, 𝑦 components of drive side involute and radius can be determined as: 

 

𝑥𝑐𝑐𝑠𝑖 = 𝑟𝑟𝑐 sin(𝛿𝑠𝑐)    (C.1) 

 

𝑦𝑐𝑐𝑠𝑖 = 𝑟𝑟𝑐 cos(𝛿𝑠𝑐)     (C.2) 

 

𝑟𝑟𝑐 =
𝑟𝑏𝑠𝑐

cos(𝛼𝑟𝑐)
     (C.3) 
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𝑟𝑟𝑐 =
𝑟𝑝𝑠 cos(𝛼𝑠𝑐)

cos(𝛼𝑟𝑐)
     (C.4) 

 

𝛿𝑠𝑐 = 𝛿 2⁄ + 𝑖𝑛𝑣𝛼𝑎𝑠𝑐 − 𝑖𝑛𝑣𝛼𝑟𝑐     (C.5) 

 

𝑥𝑐𝑐𝑠𝑖 = 
𝑟𝑝𝑠 cos(𝛼𝑠𝑐)

cos(𝛼𝑟𝑐)
sin(𝛿 2⁄ + 𝑖𝑛𝑣𝛼𝑎𝑠𝑐 − 𝑖𝑛𝑣𝛼𝑟𝑐)     (C.6) 

 

𝑦𝑐𝑐𝑠𝑖 =  
𝑟𝑝𝑠 cos(𝛼𝑠𝑐)

cos(𝛼𝑟𝑐)
cos(𝛿 2⁄ + 𝑖𝑛𝑣𝛼𝑎𝑠𝑐 − 𝑖𝑛𝑣𝛼𝑟𝑐)     (C.7) 

 

𝑥𝑐𝑐𝑠𝑟 = 𝑥𝐶𝑐 + 𝐴𝑠 cos(𝜃𝑠𝑐𝑠)     (C.8) 

 

𝑦𝑐𝑐𝑠𝑟 = 𝑦𝐶𝑐 + 𝐴𝑠 sin(𝜃𝑠𝑐𝑠)     (C.9) 

At point 𝐶𝑐𝑠, 𝑥, 𝑦 components and 
𝜕𝑦

𝜕𝑥
 of coast side involute and round must be equal 

because they are tangent at this point: 

 

𝑥𝑐𝑐𝑠𝑖 = 𝑥𝑐𝑐𝑠𝑟     (C.10) 

 

𝑟𝑝𝑠 cos(𝛼𝑠𝑐)

cos(𝛼𝑟𝑐)
sin(𝛿 2⁄ + 𝑖𝑛𝑣𝛼𝑎𝑠𝑐 − 𝑖𝑛𝑣𝛼𝑟𝑐) = 𝑥𝐶𝑐 + 𝐴𝑠 cos(𝜃𝑠𝑐𝑠)     (C.11) 

 

𝑦𝑐𝑐𝑠𝑖 = 𝑦𝑐𝑐𝑠𝑟     (C.12) 

 

𝑟𝑝𝑠 cos(𝛼𝑠𝑐)

cos(𝛼𝑟𝑐)
cos(𝛿 2⁄ + 𝑖𝑛𝑣𝛼𝑎𝑠𝑐 − 𝑖𝑛𝑣𝛼𝑟𝑐) =  𝑦𝐶𝑐 + 𝐴𝑠 sin(𝜃𝑠𝑐𝑠)     (C.13) 

 

𝜕𝑦𝑐𝑐𝑠𝑖

𝜕𝑥𝑐𝑐𝑠𝑖
= 

𝜕𝑦𝑐𝑐𝑠𝑟

𝜕𝑥𝑐𝑐𝑠𝑟
     (C.14) 
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𝜕𝑦𝑐𝑐𝑠𝑖

𝜕𝛼𝑟𝑐𝑠

𝜕𝑥𝑐𝑐𝑠𝑖

𝜕𝛼𝑟𝑐𝑠

=

𝜕𝑦𝑐𝑐𝑠𝑟

𝜕𝜃𝑐𝑠𝑠

𝜕𝑥𝑐𝑐𝑠𝑟

𝜕𝜃𝑐𝑠𝑠

     (C.15) 

At point 𝐶𝑐𝑒, 𝑥, 𝑦 components of coast side radius and tip circle can be determined 

as: 

 

𝑥𝑐𝑐𝑒𝑟 = 𝑥𝐶𝑐 + 𝐴𝑠 cos(𝜃𝑠𝑐𝑒)     (C.16) 

 

𝑦𝑐𝑐𝑒𝑟 = 𝑦𝐶𝑐 + 𝐴𝑠 sin(𝜃𝑠𝑐𝑒)     (C.17) 

 

𝑥𝑐𝑐𝑒𝑡 = 𝑟𝑎𝑠 sin(𝜃𝑎𝑐)     (C.18) 

 

𝑦𝑐𝑐𝑒𝑡 = 𝑟𝑎𝑠 cos(𝜃𝑎𝑑)     (C.19) 

 

At point 𝐶𝑐𝑒, 𝑥, 𝑦 components and 
𝜕𝑦

𝜕𝑥
 of coast side radius and tip circle must also be 

equal because they are tangent at this point: 

 

𝑥𝑐𝑐𝑒𝑟 = 𝑥𝑐𝑐𝑒𝑡     (C.20) 

 

𝑥𝐶𝑐 + 𝐴𝑠 cos(𝜃𝑠𝑐𝑒) = 𝑟𝑎𝑠 sin(𝜃𝑎𝑐)     (C.21) 

 

𝑦𝑐𝑐𝑒𝑟 = 𝑦𝑐𝑐𝑒𝑡     (C.22) 

 

𝑦𝐶𝑐 + 𝐴𝑠 sin(𝜃𝑠𝑐𝑒) = 𝑟𝑎𝑠 cos(𝜃𝑎𝑐)     (C.23) 

 

𝜕𝑦𝑐𝑐𝑒𝑟

𝜕𝑥𝑐𝑐𝑒𝑟
= 

𝜕𝑦𝑐𝑐𝑒𝑡

𝜕𝑥𝑐𝑐𝑒𝑡
     (C.24) 
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𝜕𝑦𝑐𝑐𝑒𝑟

𝜕𝜃𝑐𝑠𝑒

𝜕𝑥𝑐𝑐𝑒𝑟

𝜕𝜃𝑐𝑠𝑒

=

𝜕𝑦𝑐𝑐𝑒𝑡

𝜕𝜃𝑐𝑎

𝜕𝑥𝑐𝑐𝑒𝑡

𝜕𝜃𝑐𝑎

     (C.25) 

 

Now there are six unknowns 𝛼𝑟𝑐, 𝜃𝑠𝑐𝑠, 𝑥𝐶𝑐, 𝑦𝐶𝑐, 𝜃𝑠𝑐𝑒 and 𝜃𝑎𝑐 and six Equations  

(C.11),  (C.13),  (C.15),  (C.21),  (C.23) and  (C.25). Therefore all six unknowns can 

be determined. 

The drive side unknowns 𝛼𝑟𝑑, 𝜃𝑠𝑑𝑠, 𝑥𝐶𝑑, 𝑦𝐶𝑑, 𝜃𝑠𝑑𝑒  and 𝜃𝑎𝑑  can be determined same 

with the coast side procedure. At point 𝐶𝑑𝑠, the equalities of  𝑥, 𝑦 components and 
𝜕𝑦

𝜕𝑥
 

of drive side involute and radius can be determined by modifying Equations   (C.10) 

to  (C.15) respectively as: 

 

𝑥𝑐𝑑𝑠𝑖 = 𝑥𝑐𝑑𝑠𝑟     (C.26) 

 

−
𝑟𝑝𝑠 cos(𝛼𝑠𝑑)

cos(𝛼𝑟𝑑)
sin(𝛿 2⁄ + 𝑖𝑛𝑣𝛼𝑎𝑠𝑑 − 𝑖𝑛𝑣𝛼𝑟𝑑) = 𝑥𝐶𝑑 − 𝐴𝑠 cos(𝜃𝑠𝑑𝑠)     (C.27) 

 

𝑦𝑐𝑑𝑠𝑖 = 𝑦𝑐𝑑𝑠𝑟     (C.28) 

 

𝑟𝑝𝑠 cos(𝛼𝑠𝑑)

cos(𝛼𝑟𝑑)
cos(𝛿 2⁄ + 𝑖𝑛𝑣𝛼𝑎𝑠𝑑 − 𝑖𝑛𝑣𝛼𝑟𝑑) =  𝑦𝐶𝑑 + 𝐴𝑠 sin(𝜃𝑠𝑑𝑠)     (C.29) 

 

𝜕𝑦𝑐𝑑𝑠𝑖

𝜕𝑥𝑐𝑑𝑠𝑖
= 

𝜕𝑦𝑐𝑑𝑠𝑟

𝜕𝑥𝑐𝑑𝑠𝑟
     (C.30) 

 

𝜕𝑦𝑐𝑑𝑠𝑖

𝜕𝛼𝑟𝑑𝑠

𝜕𝑥𝑐𝑑𝑠𝑖

𝜕𝛼𝑟𝑑𝑠

=

𝜕𝑦𝑐𝑑𝑠𝑟

𝜕𝜃𝑑𝑠𝑠

𝜕𝑥𝑐𝑑𝑠𝑟

𝜕𝜃𝑑𝑠𝑠

     (C.31) 
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At point 𝐶𝑑𝑒, the equalities of  𝑥, 𝑦 components and 
𝜕𝑦

𝜕𝑥
 of the drive side radius and 

tip circle can be determined by modifying Equations  (C.20) to (C.25) respectively 

as: 

 

𝑥𝑐𝑑𝑒𝑟 = 𝑥𝑐𝑑𝑒𝑡     (C.32) 

 

𝑥𝐶𝑑 − 𝐴𝑠 cos(𝜃𝑠𝑑𝑒) = 𝑟𝑎𝑠 sin(𝜃𝑎𝑑)     (C.33) 

 

𝑦𝑐𝑑𝑒𝑟 = 𝑦𝑐𝑑𝑒𝑡     (C.34) 

 

𝑦𝐶𝑑 + 𝐴𝑠 sin(𝜃𝑠𝑑𝑒) = 𝑟𝑎𝑠 cos(𝜃𝑎𝑑)     (C.35) 

 

𝜕𝑦𝑐𝑑𝑒𝑟

𝜕𝑥𝑐𝑑𝑒𝑟
= 

𝜕𝑦𝑐𝑑𝑒𝑡

𝜕𝑥𝑐𝑑𝑒𝑡
     (C.36) 

 

𝜕𝑦𝑐𝑑𝑒𝑟

𝜕𝜃𝑑𝑠𝑒

𝜕𝑥𝑐𝑑𝑒𝑟

𝜕𝜃𝑑𝑠𝑒

=

𝜕𝑦𝑐𝑑𝑒𝑡

𝜕𝜃𝑑𝑎

𝜕𝑥𝑐𝑑𝑒𝑡

𝜕𝜃𝑑𝑎

     (C.37) 

 

Now there are six unknowns αrd, θsds, xCd, yCd, θsde and θad and six Equations 

(C.27), (C.29), (C.31), (C.33), (C.35) and (C.37). Therefore all six unknowns can be 

determined. 

 

C.2. The Case of Maximum Value for Shaper Cutter Tip Radius 

 

At point 𝐶𝑐𝑠, the equalities of  𝑥, 𝑦 components and 
𝜕𝑦

𝜕𝑥
 of coast side involute and 

radius can be determined by modifying Equations  (C.10) to (C.15) respectively as: 

 

𝑥𝑐𝑐𝑠𝑖 = 𝑥𝑐𝑐𝑠𝑟     (C.38) 
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𝑟𝑝𝑠 cos(𝛼𝑠𝑐)

cos(𝛼𝑟𝑐)
sin(𝛿 2⁄ + 𝑖𝑛𝑣𝛼𝑎𝑠𝑐 − 𝑖𝑛𝑣𝛼𝑟𝑐) = 𝑥𝐶 + 𝐴𝑠𝑚𝑎𝑥 cos(𝜃𝑠𝑐𝑠)     (C.39) 

 

𝑦𝑐𝑐𝑠𝑖 = 𝑦𝑐𝑐𝑠𝑟     (C.40) 

 

𝑟𝑝𝑠 cos(𝛼𝑠𝑐)

cos(𝛼𝑟𝑐)
cos(𝛿 2⁄ + 𝑖𝑛𝑣𝛼𝑎𝑠𝑐 − 𝑖𝑛𝑣𝛼𝑟𝑐) =  𝑦𝐶 + 𝐴𝑠𝑚𝑎𝑥 sin(𝜃𝑠𝑐𝑠)     (C.41) 

 

𝜕𝑦𝑐𝑐𝑠𝑖

𝜕𝑥𝑐𝑐𝑠𝑖
= 

𝜕𝑦𝑐𝑐𝑠𝑟

𝜕𝑥𝑐𝑐𝑠𝑟
     (C.42) 

 

𝜕𝑦𝑐𝑐𝑠𝑖

𝜕𝛼𝑟𝑐𝑠

𝜕𝑥𝑐𝑐𝑠𝑖

𝜕𝛼𝑟𝑐𝑠

=

𝜕𝑦𝑐𝑐𝑠𝑟

𝜕𝜃𝑐𝑠𝑠

𝜕𝑥𝑐𝑐𝑠𝑟

𝜕𝜃𝑐𝑠𝑠

     (C.43) 

 

At point 𝐶𝑒, 𝑥, 𝑦 components and 
𝜕𝑦

𝜕𝑥
  of coast side radius, drive side radius and tip 

circle must all be equal since they are tangent. Here the drive and coast side 

parameters are totally same. Then the equalities of 𝑥, 𝑦 components and 
𝜕𝑦

𝜕𝑥
 of 

drive/coast side radius and tip circle can be determined by modifying Equations 

(C.20) to (C.25) respectively as: 

 

𝑥𝑐𝑒𝑟 = 𝑥𝑐𝑒𝑡     (C.44) 

 

𝑥𝐶 + 𝐴𝑚𝑎𝑥𝑠 cos(𝜃𝑠𝑒) = 𝑟𝑎𝑠 sin(𝜃𝑎)     (C.45) 

 

𝑦𝑐𝑒𝑟 = 𝑦𝑐𝑒𝑡     (C.46) 

 

𝑦𝐶 + 𝐴𝑚𝑎𝑥𝑠 sin(𝜃𝑠𝑒) = 𝑟𝑎𝑠 cos(𝜃𝑎)     (C.47) 
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Fig. C.3 The maximum asymmetric shaper cutter radius 
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𝜕𝑦𝑐𝑒𝑟

𝜕𝑥𝑐𝑒𝑟
= 

𝜕𝑦𝑐𝑒𝑡

𝜕𝑥𝑐𝑒𝑡
     (C.48) 

 

𝜕𝑦𝑐𝑒𝑟

𝜕𝜃𝑠𝑒

𝜕𝑥𝑐𝑒𝑟

𝜕𝜃𝑠𝑒

=

𝜕𝑦𝑐𝑒𝑡

𝜕𝜃𝑎

𝜕𝑥𝑐𝑒𝑡

𝜕𝜃𝑎

     (C.49) 

 

Now there are seven unknowns 𝛼𝑟𝑐, 𝜃𝑠𝑐𝑠, 𝐴𝑚𝑎𝑥𝑠, 𝑥𝐶, 𝑦𝐶, 𝜃𝑠𝑒 and 𝜃𝑎 but six 

Equations (C.39), (C.41), (C.43), (C.45), (C.47) and (C.49). Therefore the coast side 

parameters of the shaper cannot be solved alone. The drive side analysis shall also be 

done. 

 

At point 𝐶𝑑𝑠, the equalities of  𝑥, 𝑦 components and 
𝜕𝑦

𝜕𝑥
 of drive side involute and 

radius can be determined by modifying Equations (C.10) to (C.15) respectively as: 

 

𝑥𝑐𝑑𝑠𝑖 = 𝑥𝑐𝑑𝑠𝑟     (C.50) 

 

−
𝑟𝑝𝑠 cos(𝛼𝑠𝑑)

cos(𝛼𝑟𝑑)
sin(𝛿 2⁄ + 𝑖𝑛𝑣𝛼𝑎𝑠𝑑 − 𝑖𝑛𝑣𝛼𝑟𝑑) = 𝑥𝐶 − 𝐴𝑚𝑎𝑥𝑠 cos(𝜃𝑠𝑑𝑠)     (C.51) 

 

𝑦𝑐𝑑𝑠𝑖 = 𝑦𝑐𝑑𝑠𝑟     (C.52) 

 

𝑟𝑝𝑠 cos(𝛼𝑠𝑑)

cos(𝛼𝑟𝑑)
cos(𝛿 2⁄ + 𝑖𝑛𝑣𝛼𝑎𝑠𝑑 − 𝑖𝑛𝑣𝛼𝑟𝑑) =  𝑦𝐶 + 𝐴𝑚𝑎𝑥𝑠 sin(𝜃𝑠𝑑𝑠)     (C.53) 

 

𝜕𝑦𝑐𝑑𝑠𝑖

𝜕𝑥𝑐𝑑𝑠𝑖
= 

𝜕𝑦𝑐𝑑𝑠𝑟

𝜕𝑥𝑐𝑑𝑠𝑟
     (C.54) 
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𝜕𝑦𝑐𝑑𝑠𝑖

𝜕𝛼𝑟𝑑𝑠

𝜕𝑥𝑐𝑑𝑠𝑖

𝜕𝛼𝑟𝑑𝑠

=

𝜕𝑦𝑐𝑑𝑠𝑟

𝜕𝜃𝑑𝑠𝑠

𝜕𝑥𝑐𝑑𝑠𝑟

𝜕𝜃𝑑𝑠𝑠

     (C.55) 

 

The extra equation comes from the drive side since there are three equations but only 

two unknowns 𝛼𝑟𝑑, 𝜃𝑠𝑑𝑠 different from the seven unknowns mentioned above. Now 

there are nine unknowns 𝛼𝑟𝑐, 𝛼𝑟𝑑, 𝜃𝑠𝑐𝑠, 𝜃𝑠𝑑𝑠, 𝐴𝑚𝑎𝑥𝑠, 𝑥𝐶, 𝑦𝐶, 𝜃𝑠𝑒 and 𝜃𝑎 and nine 

Equations (C.39), (C.41), (C.43), (C.45), (C.47), (C.49), (C.51), (C.53), (C.55). 

Therefore all nine unknowns can be determined, Amaxs too. 

 

  



179 

 

APPENDIX D 

 

 

DETERMINATION OF INTERNAL ASYMMETRIC SPUR GEAR TOOTH 

AND GEAR PAIR MESH PARAMETERS 

 

 

 

D.1. Determination of Internal Asymmetric Spur Gear Tooth Pointed 

Tip Radius, Drive and Coast Sides Tooth Thicknesses  

 

𝛼𝑡𝑖𝑑 = cos−1 (
𝑟𝑏𝑖𝑑

𝑟𝑡𝑖
)      (D.1) 

 

𝑡𝑔𝑖𝑑 = 𝑟𝑔𝑝𝑖(𝑖𝑛𝑣𝛼𝑔 − 𝑖𝑛𝑣𝛼𝑡𝑖𝑑)       (D.2) 

 

𝑡𝑔𝑖𝑑 = 𝑟𝑔𝑝𝑖(𝑖𝑛𝑣𝛼𝑔 − 𝑡𝑎𝑛𝛼𝑡𝑖𝑑 + 𝛼𝑡𝑖𝑑)       (D.3) 

 

𝛼𝑡𝑖𝑐 = cos−1 (
𝑟𝑏𝑖𝑐

𝑟𝑡𝑖
)       (D.4) 

 

𝑡𝑔𝑖𝑐 = 𝑟𝑔𝑝𝑖(𝑖𝑛𝑣𝛼𝑔𝑠𝑐 − 𝑖𝑛𝑣𝛼𝑡𝑖𝑐)       (D.5) 

 

𝑡𝑔𝑖𝑐 = 𝑟𝑔𝑝𝑖(𝑖𝑛𝑣𝛼𝑔𝑠𝑐 − 𝑡𝑎𝑛𝛼𝑡𝑖𝑐 + 𝛼𝑡𝑖𝑐)       (D.6) 

 

𝑡𝑔𝑖 = 𝑡𝑔𝑖𝑐 + 𝑡𝑔𝑖𝑑       (D.7) 

 

𝑡𝑔𝑖 = 𝑟𝑔𝑝𝑖(𝑖𝑛𝑣𝛼𝑔𝑠𝑐 − 𝑡𝑎𝑛𝛼𝑡𝑖𝑐 + 𝛼𝑡𝑖𝑐) + 𝑟𝑔𝑝𝑖(𝑖𝑛𝑣𝛼𝑔 − 𝑡𝑎𝑛𝛼𝑡𝑖𝑑 + 𝛼𝑡𝑖𝑑)       (D.8) 
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Fig. D.1 The asymmetric internal gear tooth pointed tip radius  
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Since 𝑡𝑔𝑖 is already known by Equation (3.56), then in Equation (D.8) all parameters 

are known except 𝑟𝑡𝑖. In order to find 𝑟𝑡𝑖 Newton-Raphson method is used to solve 

the Equation (D.8).  In Matlab, fsolve function uses this method and can be used to 

find 𝑟𝑡𝑖. 

 

D.2. Determination of Lowest Point Single Tooth Contact Radius  

 

𝐵2𝐵1 = 𝐼𝐵1 − 𝐼𝐵2       (D.9) 

 

𝐵2𝐵1 = 𝑟𝑜𝑝𝑖sin (𝛼𝑜𝑖) − 𝑟𝑜𝑝𝑒sin (𝛼𝑜𝑖)       (D.10) 

 

Here subscript “e” represents the external gear which is in mesh with the internal 

gear. 

 

𝐸𝑐 = 𝑟𝑝𝑖 − 𝑟𝑝𝑒 + 𝑥𝑒        (D.11) 

 

𝑟𝑝𝑒 = 𝑚
𝑍𝑒

2
       (D.12) 

 

𝑟𝑜𝑝𝑒 =
𝐸𝑐

𝑍𝑖

𝑍𝑒
− 1

 
      (D.13) 

 

𝑟𝑜𝑝𝑖 = 𝑟𝑜𝑝𝑒 + 𝐸𝑐       (D.14) 

 

𝛼𝑜𝑖 = cos−1 (
𝑟𝑏𝑖𝑑

𝑟𝑜𝑝𝑖
)       (D.15) 

 

𝐶1𝐵2 = 𝐶1𝐵1 − 𝐵2𝐵1       (D.16) 
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Fig. D.2 The line of action of internal asymmetric gear mesh 

 

𝐶1𝐵1 = 𝑟𝑎𝑖sin (𝛼𝑎𝑖𝑑)       (D.17) 

 

𝛼𝑎𝑖𝑑 = cos−1 (
𝑟𝑏𝑖𝑑

𝑟𝑎𝑖
)       (D.18) 

 

𝐶2𝐵2 = 𝑟𝑎𝑒sin (𝛼𝑎𝑒𝑑)       (D.19) 

 

𝐶3𝐶1 = 𝐶2𝐵2 − 𝐶1𝐵2 − 𝑝𝑏       (D.20) 

 

𝐶3𝐵1 = 𝐶3𝐶1 + 𝐶1𝐵1       (D.21) 
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𝑟𝑙 = √(𝐶3𝐵1)2 + (𝑟𝑏𝑖𝑑)2       (D.22) 

 

𝐶𝑟𝑖 =
𝐿𝑖

𝑝𝑏
       (D.23) 

 

𝐶𝑟𝑖 ==
𝐶2𝐵2 − 𝐶1𝐵2

𝑝𝑏
       (D.24) 

  

 


