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ABSTRACT

ANALYSIS OF SILO SUPPORTING RING BEAMS AND INTERMEDIATE
RING STIFFENERS

ZEYBEK, Ozer
Ph.D., Department of Civil Engineering
Supervisor: Prof. Dr. Cem Topkaya

March 2018, 97 pages

Silos in the form of a cylindrical metal shell are commonly supported by a few
discrete columns to permit the contained materials to be directly discharged. The
discrete supports produce a circumferential non-uniformity in the axial membrane
stresses in the silo shell. One way of reducing the non-uniformity of these stresses is
to use a very stiff ring beam which partially or fully redistributes the stresses from the
local support into uniform stresses in the shell. Another alternative is to use a
combination of a flexible ring beam and an intermediate ring stiffener. A three part
analytical and numerical study has been undertaken to address the issues related with

silo supporting ring beams and ring stiffeners.

A stiff ring beam is utilized in larger silos to transfer and evenly distribute the
discrete forces from the supports into the cylindrical shell wall. A stiffness criterion
was developed by Rotter to assess the degree of non-uniformity in axial compressive
stresses around the circumference. The stiffness criterion is based on the relative
stiffnesses of the ring beam and the cylindrical shell and was verified for loading
conditions that produce circumferentially uniform axial stresses around the
circumference. The first part of the study has been undertaken to investigate the

applicability of the stiffness criterion to cylindrical shells under global shear and
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bending. Pursuant to this goal extensive finite element analyses were conducted where
different ring beam and cylindrical shell combinations are subjected global shearing
and bending actions. The results revealed that the stiffness criterion can be extended
to shells under this loading condition. The degree of non-uniformity in axial stresses
is quantified and presented as simple formulas that can be readily adopted by design

standards.

The ring beam plays an important role in redistributing the majority of the discrete
forces from the column supports into a more uniform stress state in the cylindrical
wall. The Eurocode EN 1993-4-1 only provides design equations for stress resultants
(internal forces) produced in the isolated ring beam under uniform transverse loading.
The behavior of a ring beam which interacts with the silo shell is much more complex
than that of an isolated ring beam. In traditional design treatments, it is assumed that
the discrete support forces are redistributed entirely by the ring beam to provide
circumferentially uniform axial membrane stresses in the silo shell. But this
assumption is only approximately valid if the ring beam is much stiffer than the silo
shell. Since the cylindrical shell is very stiff in its own plane, the ring beam must be
remarkably stiff to be stiffer than the shell. The second part of the study has been
undertaken to explore the ring beam stress resultants when closed section ring beams
of lower stiffness and practical dimensions are used. A finite element parametric study
is undertaken to explore the stress resultants and displacements in more flexible ring

beams connected to a silo shell.

A combination of a ring beam and an intermediate ring stiffener can be used for
large silos to redistribute the stresses from the local support into uniform stresses in
the shell. Topkaya and Rotter (2014) has identified the ideal location for the
intermediate ring stiffener. The third part of the study explored strength and stiffness
requirements for intermediate ring stiffeners placed at or below the ideal location.
Pursuant to this goal, the cylindrical shell below the intermediate ring stiffener is
analyzed using the membrane theory of shells. The reactions produced by the stiffener
on the shell are identified. Furthermore, the displacements imposed by the shell on the

Vi



intermediate ring stiffener are obtained. These force and displacement boundary
conditions are then applied to the intermediate ring stiffener to derive closed form
expressions for the variation of the stress resultants around the circumference to obtain
a strength design criterion for the stiffener. A stiffness criterion in the form of a simple
algebraic expression is then developed by considering the ratio of the circumferential
stiffness of the cylindrical shell to that of the intermediate ring stiffener. These
analytical studies are then compared with complementary finite element analyses that
are used to identify a suitable value for the stiffness ratio for ring stiffeners placed at

different locations.

Keywords: Cylindrical Shells, Closed form solutions, Supports, Stiffening, Silos,
Tanks, Global bending, Global shear.

vii



Oz

SILO TASIYAN HALKA KiRiSLERIN VE RiJITLESTIRICi HALKA
ELEMANLARIN ANALIZi

ZEYBEK, Ozer

Doktora, insaat Miithendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Cem Topkaya

Mart 2018, 97 sayfa

Silindirik metal kabuk formunda olan silolar icerdikleri malzemelerin
dogrudan bosaltilabilmesine olanak saglamak icin genellikle bir ka¢ ayrik kolon
tarafindan mesnetlenirler. Ayrik kolonlar silo kabugunda olusan eksenel membran
gerilmelerinde silo ¢evresi boyunca bir diizensizlik meydana getirir. Bu gerilmelerin
diizensizligini azaltmanin bir yolu, kolonlardan gelen gerilmeleri kabuga homojen
olarak kismen ya da tamamen dagitacak ¢ok rijit bir halka kirisi kullanmaktir. Baska
bir alternatif, esnek bir halka kirisi ve bir ara rijitlestirici halka kombinasyonu
kullanmaktir. Silo tasiyan halka kirisler ve halka rijitlestiricileri ile ilgili konular ele

almak {izere ii¢ boliimden olusan analitik ve sayisal bir ¢alisma yapilmustir.

Biiyiik silolardaki kolonlardan gelen ayrik kuvvetleri silindirik kabuk yiizeyine
aktarmak ve esit bir sekilde dagitmak i¢in rijit bir halka kirisi kullanilir. Kabuk
cevresindeki eksenel basing gerilmelerinin diizensizlik derecesini belirlemek icin
Rotter tarafindan rijitlik kriteri gelistirilmistir. Rijitlik kriteri, silindirik kabuk ve halka
kirisin goreceli rijitliklerine baghdir ve kabuk ¢evresi boyunca diizgiin yayili eksenel
gerilme olusturacak yiik durumu igin dogrulanmistir. Calismanin ilk kismu, rijitlik
kriterinin global kesme ve egilme altindaki silindirik kabuklara uygulanabilirligini

aragtirmak i¢in yapilmistir. Bu amaca uygun olarak, global kesme ve egilme etkilerine
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maruz farkli halka kiris ve silindirik kabuk kombinasyonlarinin kapsamli sonlu
elemanlar analizi gerceklestirilmistir. ~ Sonuglar, rijitlik kriterinin bu ytkleme
durumlari altindaki kabuklar i¢in de kullanilabilecegini gostermistir.  Eksenel
gerilmelerdeki diizensizlik derecesi belirlenmis ve tasarim standartlar1 tarafindan

kolaylikla uyarlanabilir basit formiiller olarak sunulmustur.

Halka kirisi, kolon mesnetlerinden gelen ayrik kuvvetlerin ¢ogunun silindirik
yuzeye daha homojen bir gerilme durumu olusturacak sekilde dagilmasinda 6nemli bir
rol oynar. Eurocode EN 1993-4-1, uniform enine yiikleme altindaki tekil halka
kirisinde olusan i¢ kuvetler i¢in sadece tasarim denklemleri sunar. Silo kabugu ile
etkilesen bir halka kirisin davranisi, tekil bir halka kirisin davramisindan ¢ok daha
karmasiktir. Geleneksel tasarim durumlarinda, silo kabugu c¢evresi boyunca diizgiin
eksenel membran gerilmeleri saglamak i¢in ayrik mesnet kuvvetlerinin tamamen halka
kiris tarafindan yeniden dagitildig1 varsayilmaktadir. Ancak, bu varsayim halka kirigin
silo kabugundan daha rijit olmasi durumunda gegerlidir. Silindirik kabuk kendi
diizleminde c¢ok rijit oldugundan halka kiris kabuga oranla daha rijit olmalidir.
Calismanin ikinci bolimiinde, diisiik rijitlik ve pratik boyutlara sahip kapali kesitli
halka kiriglerin kullanildigi durumlarda halka kirisinde olusacak i¢ kuvvetleri elde
etmek icin bir arastirma yapilmistir. Silo kabuguna baglanan daha esnek halka
kirislerdeki i¢ kuvvetleri ve yer degistirmeleri elde etmek i¢in sonlu elemanlar yontemi

ile parametrik bir ¢alisma yapilmistir.

Bir halka kiris ve ara halka rijitlestirici kombinasyonu, biiyiik silolarda lokal
mesnetten kaynaklanan gerilmeleri kabukta uniform bir sekilde dagitmak igin
kullanilabilir. Topkaya ve Rotter (2014), ara halka kirisinin ideal konumunu
belirlemistir. Caligmanin tiigiincii boliimii ideal konumda veya bu konumun altinda
bulunan ara halka rijitlestiricilerin dayanim ve rijitlik gereksinimlerini arastirir. Bu
amaca uygun olarak, ara halka rijitlestiricinin altindaki silindirik kabuk membran
teorisi kullanilarak analiz edilmistir.  Rijitlestirici tarafindan kabuk iizerinde
olusturulan reaksiyonlar belirlenmistir. Ayrica, ara halka rijitlestiricisindeki silindirik

kabuk tarafindan uygulanan yer degistirmeler elde edilmistir. Ardindan bu kuvvet ve



yer degistirme sinir kosullari, rijitlestirici dayanim tasarim kriteri elde etmek ve
silindirik kabuk c¢evresi boyunca i¢ kuvvet degisiminin kapali form ifadelerini
tiretmek icin ara halka rijitlestiricilere uygulanmistir. Sonrasinda, basit cebirsel ifade
formundaki rijitlik kriteri, silindirik kabugun c¢evresel dogrultudaki rijitliginin ara
gelistirilmistir. Daha sonra, bu analitik ¢caligmalar farkli konumlara yerlestirilen halka
rijitlestiricilerin rijitlik oranimin uygun bir degerini saptamak i¢in kapsamli sonlu

elemanlar analizi ile karsilastirilmistir.

Anahtar Kelimeler: Silindirik kabuk, Kapali form ¢6ziimler, Mesnetler, Rijitlestirme,

Silolar, Tanklar, Global egilme, Global kesme.
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CHAPTER 1

INTRODUCTION

1.1. General

Silos in the form of cylindrical metal shells can be supported either on the ground
or on a few column supports, depending on the requirements of the discharge system.
If the stored granular solids are discharged by gravity, a hopper is needed at the base
of the cylindrical shell with an access space beneath it to permit discharge into
transportation systems. Columns at equal circumferential intervals are invariably used

to elevate the silo structure and to provide the necessary access space (Figure 1.1).

There are stringent limitations on the number of column supports that can be used
because the presence of many columns does not allow for easy access by transportation
systems. Depending on the size of the structure, several different support arrangements
(Rotter (2001)) may be chosen, as shown in Figure 1.1. For small silos, terminating
columns with rings (Figure 1.1a), engaged columns (Figure 1.1b) or bracket supports
(Figure 1.1e) may be suitable. On the other hand, medium and large silos require either
columns extending to the eaves (longitudinal stiffeners) (Figure 1.1c) or heavy ring

beams (Figure 1.1d) or double rings (Figure 1.1f).

The engaged columns are opted for light silo structures. These columns are
attached over a part of the cylindrical silo wall by welding process. Zhao et al. (2006)
performed numerical analyses to investigate structural behavior of the steel silos with
engaged columns. They demonstrated that the height of the engaged column directly
affected the buckling strength of the column-supported cylindrical silos. Doerich et
al. (2009) investigated the strength behavior of a cylindrical steel shell that was

discretely supported on engaged columns via numerical finite element analyses



considering the effects of geometric imperfection and geometric nonlinearity. The
outcome of the study was compatible with the provisions presented in EN 1993-1-6
(2007). Vanlaere et al. (2009) performed different types of numerical analysis
including the effect of geometric nonlinearity, plasticity and geometric imperfections
in order to investigate stability behavior of steel cylinders with engaged columns.
Their results showed that the imperfections caused a main reduction in the failure load
of the cylinder. Jansseune et al. (2013) investigated the failure behavior of column-
supported cylindrical silos with flexible engaged steel columns using finite element
analyses. They showed that the height of the column attached to the silo and its cross-
section affected the failure behavior and the failure load of the cylindrical column-
supported silos. Jansseune et al. (2016) identified the ideal combination of dimensions
of an engaged column to obtain a failure load considering low material in the column.
They concluded from numerical finite element analyses that the columns must resist a

greater load than the cylindrical silo wall itself.

Smaller (light) silo structures are usually supported on local brackets attached to
the outside of the cylindrical shell. The effect of column supports on the stresses
produced in tank walls was firstly investigated by Gould and Sen (1974). They
assumed that the eccentrically applied column reaction produced a bending moment
into the shell wall that was resisted by a couple in the radial direction. A simple
algebraic expression for the mechanism of load transfer between the column and the
cylindrical shell wall was proposed. The radial forces were distributed linearly over
the height of a bracket and uniformly distributed over the column width in their study.
Holst et al. (2002) and Gillie et al. (2002) investigated the strength of the shell for the
bracket-supported cylindrical silos. They tried to the determine ultimate load capacity
of the cylindrical steel shell. They conducted numerical analysis to explore nonlinear
load-deformation behavior of the bracket-supported cylindrical silo structures. Gillie
and Holst (2003) performed finite element analyses considering the effects of bracket
width, bracket height and geometric imperfections. They showed that the strength of
bracket supported silos was dependent on the bracket width. They also tried to predict
the collapse strength of silos with equidistant support brackets of typical dimensions.



Doerich and Rotter (2008) investigated elastic-plastic strength of an imperfect
cylindrical shell attached to a bracket that was restrained by the column. Their study
was conducted in a manner consistent with the framework of the European Standard
for Shell Structures EN 1993-1-6 (2006), which requires that the two reference

strengths of the shell that are the plastic collapse resistance and the linear bifurcation

resistance.

a) Very light silo; b) Lightsilo; ¢) Medium and
terminating engaged heawy silos;
columns columns rings columns

to eaves

with rings
ring :

d) Medium and e) Light silo; f) Medium and
heavy S'I|OS; bracket bracket heawy silos;
heavy ring supports double
beam Support rin

g
‘ - : Double
ring

Figure 1.1 Alternative support arrangements for discretely supported silos (Rotter
(2001))

Longitudinal stiffeners (stringers) are placed on the outside of the cylindrical wall

with either a partial length or whole length for the medium and large silos. Ellinas et



al. (1981) investigated the buckling behavior of axially loaded stringer stiffened
cylinders. They tried to predict lower bounds of the imperfection sensitive elastic
overall buckling. They showed that buckling of stringer stiffened cylinders was
substantially dependent on geometry of cylindrical shell and the stiffener. Samuelson
(1982) provided simplified design rules for the design of circular cylindrical shells
with longitudinal stiffeners under axial compression. The proposed conservative
method was dependent on assumptions in regard to boundary conditions, initial
imperfections and load eccentricities.  Vanlaere et al. (2005) investigated
strengthening effect of the longitudinal stiffeners. The influence of the dimensions of
the stiffeners on the buckling stress and the failure pattern were identified using finite
element analysis. Vanlaere et al. (2006) utilized two longitudinal flat-bar stiffeners
with partial length above each support to eliminate failure due to local instability of
the cylindrical shell. They performed the experiments on scale models to validate
numerical simulations of the cylinders. They also tried to develop design rules for
stringer stiffened cylindrical shells on local supports. Vanlaere et al. (2009) performed
finite element analyses to show effectiveness of the flat rectangular plate longitudinal
stiffeners that were treated as flexurally and axially rigid. Their study indicated that
geometrical nonlinearity, plasticity and geometric imperfections were major effects on
the failure load of the stringer stiffened cylinders on local supports. Jansseune et al.
(2015) investigated the influence of the dimensions of partial height U-shaped
longitudinal stiffeners on the failure behavior of a thin-walled silo using finite element
analyses. They showed that the height of the longitudinal stiffener had a beneficial
influence, since the stiffener would distribute the stresses better in circumferential
direction when elastic buckling occurred in the unstiffened region above the

terminations of the stiffeners.

The presence of discrete supports results in a high stresses adjacent to the column
terminations, which trigger failure by local instability of the cylinder. This support
condition produces also a circumferential non-uniformity in the axial membrane
stresses in the silo shell. To eliminate this failure case wall thickness of the bottom
course of the cylinder can be increased (Guggenberger et al. (2004)). However,



unnecessary material is used in this solution. One way of reducing the non-uniformity
of these stresses is to use a very stiff ring beam which partially or fully redistributes
the stresses from the local support into uniform stresses in the shell. Another
alternative is to use a combination of a flexible ring beam and an intermediate ring

stiffener.

Previous studies of discretely supported cylinders (Kildegaard (1969), Gould and
Sen (1974), Gould et al. (1976), Gould et al. (1998), Rotter (1987), Rotter (1987),
Rotter (1990), Teng and Rotter (1992), Guggenberger et al. (2000), Guggenberger et
al. (2004), Jansseune et al. (2012), Jansseune et al. (2013), Jansseune et al. (2016),
Doerich et al. (2009)) and those on ring beams above columns (Rotter (1984), Rotter
(1985)) have shown the great complexity of the behavior.

Since the design of the cylindrical shell is governed by considerations of buckling
under axial compression, a much thinner wall can be provided if the axial membrane
stress distribution is circumferentially uniform. Classical design treatments (Wozniak
(1979), Trahair (1983), Gaylord and Gaylord (1984), Safarian and Harris (1985))
adopted this assumption so that the criterion for buckling under axial compression
above the ring is that for uniform compression. As illustrated in Figure 1.2a, the
tradition is for each component to be treated separately under the action of uniform
loading around the circumference (e.g. Pippard and Baker (1957), EN 1993-4-1
(2007)). But the underlying assumption can only be valid if the ring beam properly
fulfills its critical function in redistributing the discrete support loads into a relatively
uniform state of stress. The extent to which this redistribution of the support forces
can be achieved is directly related to the stiffness of the ring beam relative to the
stiffness of the cylindrical shell (Figure 1.2). Since the cylindrical shell is very stiff in
its own plane, the ring beam that is subject to flexure and twisting must be remarkably
stiff to be stiffer than the shell. An approximate criterion to determine the appropriate
ring beam stiffness was first identified by Rotter (1985) and was further developed and
verified by Topkaya and Rotter (2011). The criterion developed by these authors is
very demanding and usually leads to very big ring beams for typical geometries.
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requirement on cylinder imposed by compatibility with beam deformation

One alternative method of achieving uniform axial membrane stresses is to use an
intermediate ring stiffener as shown in Figure 1.3. Greiner (1983, 1984), Ory et al.
(1984) and Ory and Reimerdes (1987) showed that an intermediate ring stiffener can

be very effective in reducing the circumferential non-uniformity of axial stresses in the



shell. Studies conducted by these researchers identified the variation of the axial
membrane stress distributions up the height of the shell. It was shown that an
intermediate ring stiffener can cause a dramatic decrease in the peak axial membrane
stress, producing a more uniform stress state above the intermediate ring. Recently
Topkaya and Rotter (2014) showed that there is an ideal location for an intermediate
ring stiffener, such that the axial membrane stress above this ring is circumferentially
completely uniform. The ideal location (Hi) shown in Figure 1.3 was determined

analytically and is expressed in terms of basic geometric variables.
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Figure 1.3 Typical circular planform silo



The intermediate ring stiffener is expected to have sufficient strength and stiffness
to fulfill its function properly. The key requirement for this intermediate ring stiffener
iIs to prevent or significantly control the circumferential displacements of the
cylindrical shell at that level. If the ring stiffener has inadequate stiffness then the
circumferential uniformity of the axial stresses above it is not achieved. Furthermore,
there is an interaction between the cylindrical shell and the ring stiffener which causes
stress resultants to develop in the ring. These stress resultants could potentially cause

failure of the ring stiffener either by yielding or by instability.

1.2. Objectives and Scope

The presence of discrete supports results in a non-uniformity of meridional
stresses around the circumference. One way of reducing the non-uniformity of these
stresses is to use a very stiff ring beam which partially or fully redistributes the stresses
from the local support into uniform stresses in the shell. Another alternative is to use
a combination of a flexible ring beam and an intermediate ring stiffener. A three part
analytical and numerical study has been conducted to address the issues related with

silo supporting ring beams and ring stiffeners.

The aim of the first study is to extend the stiffness criterion developed by Rotter
(1985) to loading cases that produce global bending of the silo shell. Pursuant to this
goal the stiffness criterion is revisited. The underlying assumption behind its
development is extended to cover global shear and bending effects. The applicability

of the stiffness criterion is checked via extensive finite element analysis.

The second study explores the extent to which a practical silo shell causes these
stress resultants to be reduced when the ring beam has only practical stiffness.
Pursuant to this goal the stress resultants produced in the ring beam were re-derived
using Vlasov’s curved beam differential equations (Vlasov (1961), Heins (1975)). The
advantage of using Vlasov’s equations is that the transverse displacements can also be

obtained from the differential relationships. A finite element parametric study was



undertaken to explore the effect of ring beam flexibility on stress resultants and
displacements for cases where the ring beam interacts with the silo shell. The effects
of the ring beam stiffness ratio on the stress resultants were explored.

The third study explores the strength and stiffness requirements for intermediate
stiffeners placed at ideal location or below this location, where the force transfer and
displacement boundary conditions differ from those for a ring at the ideal location. A
general shell and ring combination is studied using the membrane theory of shells to
identify the membrane shear forces induced in the shell by the ring. These forces are
then considered as loads applied to the intermediate ring stiffener. Vlasov’s curved
beam theory (Vlasov (1961)) is used to derive closed form expressions for the variation
of the stress resultants around the circumference to obtain a suitable strength design
criterion for the stiffener. A stiffness criterion is then developed by considering the
ratio of the circumferential stiffness of the cylindrical shell to that of the intermediate
ring stiffener. The circumferential displacements of the ring and the shell are found
for the loading condition previously obtained to determine the required strength. A
simple algebraic expression is developed for this intermediate ring stiffness criterion.
These analytical studies are then compared with complementary finite element
analyses that are used to identify a suitable value for the intermediate ring stiffness

ratio for practical design.

1.3. Organization of Thesis

This thesis consists of four chapters which follow the introduction. The brief

contents of these chapters can be summarized as follows:

In Chapter 2, the effectiveness of a ring beam in an elevated silo structure in
redistributing the discrete forces from column supports is investigated. A criterion that
can be used in design to determine the adequacy of a ring for the purpose of minimizing
the non-uniformity of vertical stresses in the shell was proposed by Rotter (1985). The

applicability of the stiffness criterion proposed by Rotter (1985) to a silo shell resting



on a discretely supported ring beam and subjected to global shear and bending was
studied herein. A total of 4320 three dimensional finite element analyses were
conducted to evaluate the stiffness ratio.

In Chapter 3, design equations for ring beams used to support cylindrical shells
are developed and re-derived. Closed form design equations obtained from Vlasov’s
curved beam theory were compared with numerical results. A complementary finite
element parametric study was also conducted to investigate variation of the values of
stress resultants and displacements caused by the connection of the ring to the stiff
shell. These variations were plotted as a function of stiffness ratio developed by Rotter
(1985).

In Chapter 4, the effectiveness of an intermediate ring stiffener in reducing the
non-uniformity of axial membrane stresses in the silo shell is investigated. A design
criteria for the strength and stiffness of intermediate ring stiffeners used in cylindrical
silo shells resting on discretely supported ring beams is developed via extensive finite

element analysis.

Finally, Chapter 5 summarizes the conclusion from all studies performed as a part

of this research program and recommendations.
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CHAPTER 2

APPLICATION OF RING BEAM STIFFNESS CRITERION FOR
DISCRETELY SUPPORTED SHELLS UNDER GLOBAL SHEAR AND
BENDING

2.1. Ring Beam Stiffness Criterion for Discretely Supported Shells

Studies on ring beam silo shell interaction mostly focused on the loading case that
produces uniform axial line load on the cylindrical shell. This condition represents
forces produced on the shell wall due to the frictional resistance between the wall and
the stored granular material. On the other hand, lateral loads should also be considered
in the design of silos. These actions can be produced due to wind or earthquakes.
Similar to axial loading the design against lateral loads which produce global shear
and bending on the silo shell is greatly simplified if the simple bending theory can be
utilized. This assumption greatly relies on the ability of the ring beam in redistributing

the support forces.

The aim of this study is to extend the stiffness criterion developed by Rotter (1985)
to loading cases that produce global bending of the silo shell. Pursuant to this goal the
stiffness criterion is revisited. The underlying assumption behind its development is
extended to cover global shear and bending effects. The applicability of the stiffness

criterion is checked via extensive finite element analysis.

2.2. Derivation of Ring Beam Stiffness Criterion — A Revisit

In the algebraic analysis of shells under non-symmetrical loads, it is normal
practice to transform the loading into a harmonic series (Timoshenko and Woinowsky-
Kreiger, (1959), Novozhilov (1959), Kraus (1967), Fligge (1973)). A harmonic

11



treatment is only feasible under geometrically linear conditions where the harmonics
are decoupled. In the case of the local forces from discrete supports, the dominant
harmonic term is the fundamental (Fligge (1973), Rotter (1987)), which corresponds
to the number of supports around the circumference (Figure 2.1). The key features of
the required stiffness for the ring beam are therefore captured if only the fundamental
harmonic is used. The idea here is that considering the fundamental harmonic should
be sufficient to cover load cases that can be transformed into a harmonic series. In the
both axial line loading and global shear and bending cases local forces from discrete
supports are produced which can be considered as non-symmetrical loads. Therefore,
it is logical to use the same stiffness criterion to study the effects of axial line loading
and global bending. As mentioned before the stiffness criterion was first devised by
Rotter (1985). Later the criterion was re-derived and its application to axial line
loading was demonstrated by Topkaya and Rotter (2011). The derivation of the
stiffness criterion is presented again in this study to provide a background on its
development.

Figure 2.1 Fundamental harmonic of column support for 6 supports

The criterion is based on developing a relationship to describe the relative
stiffnesses of the cylindrical shell and the ring beam. For this purpose, the ring beam
and the cylindrical shell were treated separately and a compatibility requirement then
imposed to determine the extent to which the redistribution of the column forces would

be shared between the ring and shell. It was assumed that the fundamental harmonic
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of column support given in Equation 2.1 is sufficient to evaluate the key features of

the behavior of a discretely supported cylindrical shell.

0y =0, COSné 2.1)

where g« = external distributed axial line load; gx = Fourier coefficient for the n™
harmonic of axial line load; n = number of uniformly spaced column supports; and &
= circumferential coordinate. Based on this assumption, closed-form expressions were

derived for the stiffnesses of the cylindrical shell and the ring beam.

2.2.1. Ring Beams Subjected to Fundamental Harmonic of Column Support

The Vlasov’s curved beam differential equations (Vlasov (1961), Heins (1975))
were used to study the response of the ring beam. In general, the behavior of a curved
beam is governed by a series of differential equations. The equilibrium equations were
first derived for the curved beam element shown in Figure 2.2, where three orthogonal
internal forces and three internal moments develop at each cross-section. The six basic

equilibrium equations can be expressed as follows:

%{aa%r +Q9}+qr =0 (2.2)
2 iq, -0 (2.3)
%[6596 _Qr}qg ~0 (2.
%{82:'9' +T6}—Qx +m, =0 (2.5)
%62/"; +m,+Q, =0 (2.6)
%{%_Mr}mg:o 27)
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where Mr= bending moment in the ring about a radial axis; Mx = bending moment
in the ring about a transverse axis; T¢ = torsional moment in the ring; R =radius of the
ring beam centroid; gx, gs, gr = distributed line loads per unit length in the transverse,
circumferential and radial directions respectively; mx, my, mr = distributed applied
torques per unit circumference about the transverse, circumferential and radial
directions respectively; Qg = circumferential force in the ring; Qx, Qr = shear forces in

the ring in transverse and radial directions respectively.

\/ X T9+dT9
S Qe"‘dQe

/ M+dM,
/ Te R\/\’
Qr+er

Q, T Q,+dQ,

M, f & M,+dM,

Forces

V X
K m
U, o do
\\\\\ ,//’/ ar & m, \%
Y o

Loading and displacements

Figure 2.2 Differential curved beam element and sign conventions

The six basic equilibrium equations can be reduced to three differential

relationships. One differential equation concerns bending of the ring in its own plane
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and can be uncoupled from the other two. The two coupled differential equations of

equilibrium can be expressed as:

1|oe°M, T,

= r+_ [ 2.8
RZ{ 06? 80} 9 (28)
10T,

= _M. |=-m 2.9
R|:60 rj| 14 ( )

To determine the transverse displacements, the global force-deformation

relationships for a curved beam can be written as (Heins (1975)):

EA(ou,
=—|—2-u 2.10
Q R(ae j (2.10)
El, (6%
M = X F+u 211
" Rz(aez ] (1)
—El, (108%
M = —r| =2 x_ 2.12
= (Raez ¢j (2.12)
3 3
TGZG_J[%+£a“x}—E2W 0¢ ,Lou, (2.13)
R[o0 Ro9] R®|06° RO

where E = modulus of elasticity; A = cross sectional area of the curved beam; G =
shear modulus; ¢ = angle of twist about the circumferential axis; ux, U, Ur =
displacements in the vertical (transverse), circumferential and radial directions
respectively; Ir, Ix= second moment of area of the ring stiffener about the radial and
vertical axes respectively; J = uniform torsion constant; Cw = warping constant for an
open section. The first term (in the square brackets) in Equation 2.13 represents the

response under St Venant torsion, while the second term represents warping.

The transverse displacements of the ring beam arise from the transverse
distributed force gx which is here applied to the ring by the cylindrical shell. For a

15



concentrically loaded ring beam cross-section with the transverse forces passing

through the shear center, no additional distributed torques are created.

The bending moment and torsional moment variations around the circumference
must be derived before the displacements can be deduced. For the loading case
represented by Equation 2.1 and without other loading terms (i.e. gr=0s =mMr=mp=

mx = 0), Equations 2.8 and 2.9 can be solved simultaneously to obtain:

R2
M, (0) = Z—qx”lcos ne (2.14)
R%q,. .
T (0) =———"—sinnd 2.15
0= (215)

The resulting bending moment and torsional moment variations can be directly
inserted into Equations 2.12 and 2.13 and solved simultaneously to find the vertical

displacements as:

R* 1 1
u.(8)=u,cosng = % q;‘)z { T }cos ne (2.16)
n-— n T r
where
K, =GJ+n? ECZW (2.17)
R

The stiffness of the ring can then be expressed as:

2 2
_j_x:(” _Rl?‘ El, fi (2.18)

X

K

rimg —
r

where
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f :{u El, } (2.19)

It should be noted that the vertical displacements of the ring arise due to bending
and twisting of the ring. Therefore, the stiffness of the ring as calculated by Equations

2.18 and 2.19 is influenced by the bending and torsional rigidity of the ring.
2.2.2. Cylindrical Shell Subjected to Fundamental Harmonic of Column Support

Following the description of Calladine (1983), the dominant structural effects in
a discretely supported shell are circumferential bending and axial stretching. Under
these conditions, the shell can be approximately modeled by ignoring all axial bending
and twisting of the wall, together with circumferential stretching effects. These

assumptions lead to the semi-membrane theory of shells.

The semi-membrane theory of shells for unsymmetrical loading of cylindrical
shells was proposed by Vlasov (1964). This approximate theory is based on three
assumptions; (i) the bending (Mx), and twisting (Mxg) moments at sections normal to
the shell generator are insignificant and can be neglected, (ii) the circumferential strain
(e0) and the shear strain (yxe) on the middle surface are neglected, (iii) Poisson’s ratio
is zero (v=0). A detailed summary of the semi-membrane theory for cylindrical shells
was presented by Ventsel and Krauthammer (2001). Considering the cylindrical shell
element shown in Figure 2.3, the equilibrium equations may be found as:

RaN

X

OX

+8N—X‘9+ p,R=0
0o

Ny, RN, 1M,
26 ox R 06

+p,R=0 (2.20)

1 0°M,

R 06?2

+N,+p,R=0
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where Nx = axial membrane stress resultant; No = circumferential membrane stress
resultant; Nxg¢ = membrane shear stress resultant; My = circumferential bending
moment; px, Ps, Pr = external distributed pressures in the axial, circumferential and

radial directions, respectively.

The membrane forces Nxg and Ny can be eliminated in Equation 2.20 to derive a

single differential equation that relates Nx to My as:

o°N, 1 _apx+£8pg_£62pr

— X+ —=—0M,) = 2.21
ot TREOMOI =T T R0 TR de (221)
where the operator €, is called Vlasov’s operator:
o%(...) 2%(..)
Q(...) = + 2.22
()= 5t (2.22)
f Mex
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Figure 2.3 Internal forces and moments for shell element

Taking into account the assumptions of the semi-membrane theory (g6 = %o = &x

= 0), the kinematic relationships can be expressed as:
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g = U, g =L U _ g yo =% Lo (2.23)
OX R 06 R OX R 06
2 2
K'XZO K-Hz_iz %+a_l'lzr K'ng—l %4—& :O (224)
R’| 00 a0 Rl ox  oxo0

where ux, Ug, Ur = displacements in the axial, circumferential, and radial directions,
respectively; &, o = strain components in the axial and circumferential directions,
respectively; o= shear strain component; x, ko= bending curvatures in the directions
of axial and circumferential coordinate lines, respectively; xxo = twist of a differential

element of the middle surface due to the shell bending.

Based on the assumptions adopted, the constitutive equations can be represented

in the form;

a 3
N =Bt M,-Dx, where D-Ib (2.25)
OX 12

where t = thickness of the cylindrical shell; D = bending rigidity of the cylindrical
shell.

Following Ventsel and Krauthammer (2001), the governing differential equation
of the semi-membrane theory can be derived in terms of a displacement function (®)

which is introduced as:

2
u, :—22 u, =£6i) u :la i (2.26)
X

The constitutive equations in terms of the displacement function, @, take the form:

(2.27)

X ox?

2 3 2 4
N g 00 M, - EU (0 o'
12R°( 06* 06
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The governing partial differential equation of the semi-membrane theory of

cylindrical shells is then obtained by substituting Equation 2.27 into Equation 2.21:

Et

4 ] 6 4 2
00 DfO® ,00 00 o 10 10 (2.28)
xR\ a0" “o0" Ta0" )" ox R0 R oe

The above differential equation must be solved to obtain the axial displacements
of the cylindrical shell under the action of the fundamental harmonic of the column
support. The particular solution vanishes when px = ps = pr = 0. The displacement
function can be assumed to take the form:

® = £(x)cosnd (2.29)

which permits compatibility with the ring beam deformations of Equation 2.16.

The governing ordinary differential equation then takes the form:

d*s(x) D a2 a2 _ 230
{ o +EtR6n(n 1) §(x)}cosn0 0 (2.30)

For a specific harmonic n, the solution has the form:

£(x) = o™ (¥u) {Clsin i C, cos”—x} +e7H) {C3 sin”X + C, cos =X (2.31)
)7 U )7 )7

where Ci, C2, C3, C4 = constants to be determined to satisfy the boundary

conditions.

The parameter  is the long wave bending half wavelength (Calladine (1983)),

expressed as:
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ﬂzﬁJ 4EtR® 27413 J_ 8.27 J_ (2.32)
n\ D(n*-1)° n\/in 1)Vt nW/in 1)Vt .

The constants (C1, C2, Cs, C4) can be determined by applying the boundary
conditions. The circumferential displacements at the bottom and top of the shell are
zero due to the restraints provided by attached shells at these locations. An axial line
loading described by Equation 2.1 is applied at the bottom of the shell while the top of
the shell is free from any axial loading. These boundary conditions can be expressed
as:

Uy(x=0)=0 u,(x=H)=0 N (x=0)=-q, N, (x=H)=0 (2.33)

where H = the height of the cylindrical shell.

The resulting displacements at the level (x = 0) where the harmonic traction is

applied can be found as:

u,(x=0) _Sak f,cosné (2.34)
27Et
where
F2_2Fs' -1 .
=— " " = F=e" s'=sin ¢’ =cos 2.35
* F2-2Fc'+1 7 7 ( )

inwhich n=22H/u.

Finally, the stiffness of the cylindrical shell (Ksnent) can be represented as:
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3/2
Yy :ZﬂEt:n,/inz—li;(lJ 1 (2.36)

Kgnenr = —
U (x=0)  uf
2.2.3. Stiffness Ratio

The expressions developed for the stiffnesses of cylindrical shell and ring beam
can be combined to obtain the ratio of their stiffnesses y, which describes the stiffness
required to maintain displacement compatibility. The stiffness ratio corresponds to the
extent to which the shell is required to carry non-symmetrical stresses due to the

supports:

2
y = et _ 0760(Rt) \f _ 1 “Rt L S (2.37)
K, " -1° 1. 109 1 |(n’-1) 1,

This ratio is intended to give a strong indication of the effectiveness of the ring in

the role assigned to it. If the ring is stiff compared with the shell, it should achieve the
goal of redistributing the discrete forces from the supports and providing relatively
uniform support to the shell. This corresponds to a low value of the stiffness ratio .
By contrast, where the ring beam is not very stiff, and high values of y are found, it is
likely that the ring beam will fail to redistribute the discrete forces, the shell will be
subject to high local meridional membrane stresses above the support, and there is
considerable potential for buckling failures in this location (Teng and Rotter (1992),
Guggenberger et al. (2000), Guggenberger et al. (2004)).

The applicability of the stiffness ratio to the case with axial line loading was
studied by Topkaya and Rotter (2011) through finite element analysis. Different
combinations of ring beams and silo shells were considered. The silo shell was loaded
with a uniform axial load at the top and the peak value of axial membrane stress above

the ring beam was calculated using linear finite element analysis. Its value relative to
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the uniform applied load is termed the “stress amplification ratio C”. A plot of the stress

amplification ratio as a function of the stiffness ratio is given in Figure 2.4.
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Figure 2.4 Relationship between ring beam stiffness ratio and stress

amplification ratio for axial line loading

The following upper bound was developed to quantify the response.

&=1+ O.21[3+Iog (%DZ (2.38)

Axial compression buckles are relatively short in the axial direction (Timoshenko
and Gere (1961), Calladine (1983), Rotter (2004)), so axial non-uniformity has little
effect on the buckling strength. However, circumferentially non-uniform stresses lead
to very different buckling conditions (Greiner and Guggenberger (1998),
Guggenberger et al. (2000), Guggenberger et al. (2004), Rotter et al. (2011)), so it is
vital to determine both the peak values and the rate of decay away from the peak
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(Rotter (1986), EN 1993-4-1 (2007), ECCS (2008)). The presence of discrete supports
produces circumferentially non-uniform stresses for shells under axial compression or
shear and bending. Where a single ring beam is used, Equation 2.38 can be used to
determine the peak value under axial compression due to the non-uniformity of stresses
caused by discrete supports. Sonat et al. (2015) developed a methodology for buckling
assessment of silo shells resting on discretely supported ring beams. The methodology
requires the peak value of stress above the support and this value can be readily found

using Equation 2.38.

2.3. Numerical Study

A parametric study was conducted using linear analysis of three dimensional finite
element structures to evaluate the applicability of the stiffness ratio to silo shells under
global shear and bending. The commercial finite element program, ANSY'S (2010),
was used to perform the numerical analyses. To cover a wide range of behaviors,

cylindrical shells and ring beams with many geometries were studied.

Four-node shell elements (shell63) were employed to model the cylindrical shell.
The ring beam was modeled using two-node beam elements (beam 4). A
representative finite element mesh of the silo shell and ring beam is given in Figure
2.5. At the bottom, the nodes shared by the cylindrical shell and the ring beam were
restrained against displacement in the radial direction only. The radial restraint
simulates the restraint provided by the hopper which is attached to the bottom of the
shell. Because the ring beam is stiff in the circumferential direction, it provides a
natural restraint against circumferential displacements. Nodes lying within the width
of the support on the base of the ring beam were restrained against vertical movement
ux. Four support conditions were considered. The first one represents a knife edge
support where vertical movement of only one node is restrained at each support (Figure
2.5). In the past, a support width-to-radius ratio of 0.2 was considered by Teng and
Rotter (1992). Support width-to-radius ratios of 0.05, 0.10, and 0.20 were considered

to cover a range of support conditions (Figure 2.5). The connected shell which is a
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circular plate at the top was modeled explicitly by 20 mm thick three-node and four
node shell elements as shown in Figure 2.5. A concentrated load of 2000 kN in the
horizontal direction was applied at the center of the circular plate. The concentrated
load was oriented to produce maximum amount of non-uniformity in axial membrane
stresses as shown in Figure 2.5. For all analyses, the modulus of elasticity was taken

as 200 GPa and Poisson’s ratio as 0.30.

Applied
load TOP VIEW

Ring beam re Srell

Four supports Three supports

Direction of applied loading

and location of supports Connectionof

shell and ring
WIDE SUPPORT KNIFE EDGE SUPPORT

Support I
location / I B B 5

Ring beam

modeled as beam T T T T T

elements Column Column

reaction reaction

Figure 2.5 A typical finite element mesh for the cylindrical shell and ring beam,

support conditions and connection of shell and ring

The ability of the ring beam in redistributing the axial membrane stresses was
explored first. In the absence of a ring beam the stresses due to global shear and
bending can be calculated using simple bending theory. In other words the following

formula can be used to determine the maximum axial membrane stress in a ground
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supported silo shell under global bending actions which can be used as a reference

(G ref).

o —Mc_ (2.39)

where M = bending moment at the base of the silo; ¢ = maximum distance from
the centroid of the cylindrical shell cross-section to the point of interest (c = R); | =
second moment of area of the cylindrical shell cross-section.

The accuracy of Equation 2.39 was assessed by analyzing a ground supported silo
with R = 3000 mm, H = 10000 mm, and t = 6 mm using the finite element modeling
details presented earlier. Comparison of the axial membrane stress variations around
the circumference given in Figure 2.6 indicates that using simple bending theory
provides an accurate representation of the stresses obtained using a more detailed
numerical analysis. In other words the reference stress (oref) can be used to represent
the maximum axial membrane stress for a silo shell under global shear and bending in

the absence of a ring beam.

For the parametric study, the finite element models described earlier were adopted,
with different geometries defined as radius R = 3000 and 4000 mm, thickness t = 6, 8,
and 10 mm, shell heights H = 10000, 15000, 20000 mm, and number of supports n =
3 and 4. A total of 36 combinations were adopted for the shell geometries with 30
different square hollow section beam geometries. The hollow section ring beams had
wall heights of 300, 400, 500, 600, 700, 800 mm and wall thicknesses of 30, 40, 50,
60, and 70 mm. Different cross-section dimensions provide variations in the cross-
section properties. A total of 1080 cases were analyzed for each of the support

conditions using the finite element method resulting in a total of 4320 analyses.
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Figure 2.6 Verification of simple bending theory for silo shells under global bending

The finite element analyses were chiefly used to explore the variation of the axial
membrane stress at the base of the cylindrical shell over the support. This gives a
measure of the uniformity of support provided by the ring beam. Where the ring beam
is very effective in distributing the discrete forces from the supports (e.g. v =0.01), the
stress levels in the shell over the support should be equal to the reference stress (orer)
obtained from Equation 2.39. Where the ring is ineffective (e.g. v = 10), the stress
above the support is very much greater than the reference stress (orer). Typical
variations of axial membrane stress are shown in Figure 2.7 for a cylindrical shell of
radius 3000 mm, height 20000 mm, thickness 6 mm, and resting on 4 supports. In this
figure the stress variation for a ground supported silo shell is provided as a reference
where the maximum stress is reached over the support (6=0°) with a value equal to
118 MPa. Two different ring beam geometries were considered. The first one has a
wall height of 800 mm and a wall thickness of 50 mm and represents a sizeable ring
beam geometry (y = 0.05). In this case the maximum axial membrane stress is
calculated as 123 MPa at 6=6° which results in an increase of 4.2%. The second beam

has a wall height of 300 mm and a wall thickness of 50 mm and represents a relatively
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flexible beam (y = 1.29). For this case the maximum axial membrane stress is
calculated as 218 MPa at 6=6° which results in an increase of 84.7%. The
aforementioned cases were analyzed for the support width to radius ratio of 0.2. The
locations where the support width terminates are indicated by dashed solid vertical
lines in Figure 2.7. The analysis results show that the stresses are smoothened over
the support and the maximums are reported at locations where the support width
terminates. For comparison purposes the results for the flexible beam case with a knife
edge support is also reported in Figure 2.7. In this case the smoothening action of the
support is not present and the maximum axial membrane stress is calculated as 321
MPa at 6=0° which results in an increase of 172.0%. These observations strengthen
the assertion that the stiffness of the ring beam plays a very important role in the

redistribution of support forces.
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Figure 2.7 Variation of axial membrane stress along the circumference for cases with
different beam geometries and support conditions
All analyses focused on the peak axial stress (omax) in the shell that occurs above

supports. Based on 4320 separate finite element analyses, these stresses are
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normalized by the reference stress (C=cmax/cref) and are plotted in Figures. 2.8, 2.9,
2.10 and 2.11 against the stiffness ratio y defined by Equation 2.37. The results for a
knife edge support are given in Figure 2.8 while the ones for other support-width-to-
radius ratios are given in Figures 2.9, 2.10, and 2.11. The first conclusion from the
analysis results is that the stiffness ratio  clearly captures the trend of the data. The

data points fall within a narrow band similar to the behavior presented in Figure 2.4.
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Figure 2.8 Relationship between ring beam stiffness ratio and stress amplification

ratio for global bending (knife edge support)

The analysis results revealed that the stiffness ratio can be applied to silo shells
under global shearing and bending actions. There are marked differences between the
cases with different support conditions. The knife edge support condition produced
much higher stress amplification ratios (£) when compared with the amplifications for
a finite width support. This is an expected outcome as the smoothening action of the

support described earlier and presented in Figure 2.7 is not present in the case of a
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knife edge support. The following upper bound expressions were developed to

represent the data.

3
E=1+ 0.096(1.5 + log( OVIE)) for knife edge support (2.40)

£=1.70+1.165In( +0.55) for a support width-to-radius ratio of 0.05 (2.41)
£ =1.33+1.20In(y +0.77) for a support width-to-radius ratio of 0.10  (2.42)

£ =1.45+0.88In(y + 0.6) for a support width-to-radius ratio of 0.20  (2.43)
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The upper bound expressions for the finite width support (Equations 2.40 through
2.43) are compared with the upper bound expression (Equation 2.38) developed for a
silo shell under axial line load in Figure 2.12. It is evident from this figure that the
stress amplification ratio increases () as the support width-to-radius ratio decreases.
The highest values of amplifications are reported for the knife edge support case as
expected. There are marked differences between the behaviors reported for the axial
line loading and loadings that create global bending. It should be mentioned that the
expression (Equation 2.38) for axial line loading was developed based on a support
width-to-radius ratio of 0.2. When this expression is compared with its counterpart
(shell under global bending with support width-to-radius ratio of 0.2, i.e. Equation
2.43) differences are observed for the range y<6. In general, the axial line loading
produces higher stress amplifications when compared with a loading that causes global

bending.

— Axial Loading —=— Bending (Knife Edge)
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Figure 2.12 Comparison of responses for different support width-to-radius ratios
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CHAPTER 3

ANALYSIS OF SILO SUPPORTING RING BEAMS RESTING ON
DISCRETE SUPPORTS

3.1. Algebraic Closed-form Solution of Stress Resultants in the Ring Beam using

Vlasov’s Curved Beam Theory

The Eurocode EN 1993-4-1 (2007) only provides design equations for stress
resultants produced in the isolated ring beam under uniform transverse loading. These
stress resultants were derived by Rotter (1985) using equilibrium equations only. This
study explores the extent to which a practical silo shell causes these stress resultants

to be reduced when the ring beam has only practical stiffness.

The free body diagram of a closed section ring beam cross-section is indicated in
Figure 3.1. By examination of this free body diagram, the forces acting in the two
principal directions, the uniformly distributed vertical load (nv) and the radial inward

load (nr), can be expressed as follows:

n, =n, +n,cosp n, =n,sin B (3.1)

where nxc = the design value of compressive membrane stress resultant at the base
of the cylinder; ns = the design value of tensile membrane stress resultant at the top

of the hopper; S = the hopper half angle.

As shown in Figure 3.1 the forces in the two principal directions act eccentrically
with respect to the ring beam centroid (C). These forces can be decomposed into three
basic loads on the ring beam shown in Figure 3.1 where the vertical and inward loads

act through the centroid of the cross-section. The three basic loads are the transverse
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distributed load (gx), the circumferentially distributed torque (mg), and the
concentrated torque at the supports (ms) which can be expressed by the following

relationships:

— nv(R_er) m. — nv(R_er)e + nr(R_er)e

m, =Qe, =2n,(R-e,)6e, (3.2
X R 6 R r R X s Qs v( r)Os( )

where er = the radial eccentricity of the cylinder from the ring beam centroid; es=
the radial eccentricity of the support from the ring beam centroid; ex = the vertical
eccentricity of the joint centre from the ring beam centroid; & = the circumferential
angle in radians subtended by the half span of the ring beam (é = #/n); n = the number

of equally spaced discrete supports; Q = support force.

uniform loading (q,)

€
—> r Resultant Forces m
I

nV
Discrete local supports

Cylinder/cone
1 transition junction~—___J ]I ) *
- 4 uniform torque (my)

— fo TWT i
Ring beam effective
section centroid, C

Discrete local supports
+

concentrated torque at the support (mg)

- R

Discrete local supports

Figure 3.1 Simplified load-carrying mechanism model for the ring beam
The ring beam is analyzed for these three different load cases in turn.

3.1.1. Derivation of stress resultants — ring under transverse distributed load (gx)

For the case where the only transverse distributed load (gx) is concentrically

applied to the ring (i.e. gr = o = mr=my = mx = 0), the six basic equilibrium equations
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which are given Equation 2.2 through 2.7 for the curved beam element in Figure 2.2
can be reduced to three differential relationships. One differential equation concerns
bending of the ring in its own plane and can be uncoupled from the other two. The

two-coupled differential equations of equilibrium can be expressed as:

: %_M,}o 33)
o°M, aT
R?| 06° +a_g}:_qx G

Simultaneous solution of Equations 3.3 and 3.4 using the appropriate boundary
conditions (Mr(0)=Mr(26b), To(0)=T o(260)=0) reveal the following relationships:

M, (6) =n,R(R —e,)[6, (sin &+ cot 6, cos §) —1] (35)

T,(0) =n,R(R—e,)[6,(cot &, sin & —cos O +1) - 6] (3.6)

3.1.2. Derivation of stress resultants — ring under circumferential distributed

torque (my)

In the same manner, the following two coupled differential equations are obtained
for the case where only a circumferentially distributed torque (mo) is applied to the

ring (i.e.gx=0qr=qo = mr=mx =0):

1[aT

E[_a;_M'}:_m‘] &0
1[o°m, o,

RZ[ 067 a;}:o (38)

Simultaneous solution of Equations 3.7 and 3.8 using the appropriate boundary
conditions (Mr(0)=Mr(260), and To(0)=T o(260) =0) reveals the following relationships:
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M r (0) = (R _er)(nver + nrex) (39)
T,(0)=0 (3.10)

3.1.3. Derivation of stress resultants — ring under concentrated torque at the

supports (ms)

The following coupled differential equations are obtained for the case where the

concentrated torques (ms) are applied at the supports of the ring (i.e. gx = qr = o = mx

=mr=mg = 0):
1[oT
=|=—2-M, |=0 (3.11)
R| 00
2
B T CL S B (3.12)
R?| 00> 06

Simultaneous solution of Equations 3.11 and 3.12 using the appropriate symmetry
boundary conditions that considering the conditions of continuity (Mr(0)=Mr(26b),
Te(00)=0 and T«0)=ms/2) reveals the following relationships:

M, (8) =-n.e, (R —¢,)8,(sin &+ cot b, cos 6) (3.13)
T,(8) =n,e,(R—e,)6,(cos & —cot b, sin 0) (3.14)
Equations 3.5, 3.9 and 3.13 can be superposed to obtain the bending stress
resultant and similarly Equations 3.6, 3.10 and 3.14 can be superposed to obtain the

torsional stress resultant as follows:

M, (0)=n,(R—¢)[(R-e,)6,(sin &+cotd,cosd)—R+e ]+ne, (R-¢) (3.15)

T,(0) =n,(R—e,)[(R—e,)d,(cot 6, sin & —cosb) +R(6, - 6)] (3.16)
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Equations 3.15 and 3.16 are identical to those ones developed by Rotter (2001)
and provided in the Eurocode EN 1993-4-1 (2007). One advantage of using the
Vlasov’s curved beam differential equations is that the transverse displacements of the
beam can be obtained. The global force-deformation relationships for the transverse

displacements were given in Equation 2.10 through 2.13.

The present study focuses on closed sections where the St. Venant’s term
dominates over the warping term. Therefore, the warping term is neglected in the
calculations (i.e. Cw~0). Combining Equations 2.12 and 2.13 reveals the following

differential relationship:

3
o4, %:R{TH id'\"f} (3.17)

s T c1
00 00 GJ EI, d&

The resulting bending moment and torsional moment variations which are given
in Equations 3.15 and 3.16 can be directly inserted into Equation 3.17 and solved using
the appropriate boundary conditions (ux(0) = ux(26o) = 0, ux’ (0) = ux’ (260)) to find the

transverse displacements as:

_ — El.R -260_\- 20 _|-\El R- 2 -2 - -2
ny (R er)R (Ro\@ 60 cos 00 r+G.] eS o 60+ [ 00 cos @ — 6 cos(0 60) (318)

Uy (6) 2

4E1GJ sin(6 +€0[sin 6 —sin(0 - 20_) —sin 20 ]x [EI (SR—e )+GJ(R—e ]]
0 0 r S S

3.2. Computational Verification of the Closed Form Solutions

Linear three dimensional finite element analysis was conducted to verify the
accuracy of these equations for the stress resultants and displacements in the transverse
direction. The commercial finite element program, ANSYS (2010), was used to
perform the numerical analyses. The isolated ring beam analyzed here rests on n = 4
supports and has a cylinder radius of R = 3000 mm. A 500 mm x 500 mm square
hollow section with wall thickness of 50 mm was selected for the ring beam cross
section. A constant uniform transverse loading (nv) of 1.5 kN/mm was applied to the
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ring beam. All eccentricity terms were neglected for simplicity. The ring beam was
modelled using two-node beam elements (beam4) as shown Figure 3.2a. The modulus
of elasticity was taken as 200 GPa and Poisson’s ratio as 0.30. The ring beam was
assumed to rest on knife edge supports which were modelled by restraining only a

single node at each support location.
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a) Isolated ring beam

b) Ring beam and shell interaction

Figure 3.2 Finite-element modelling for the ring beam and cylindrical shell

The calculated variations of Mr, Te and ux in the circumferential direction are
shown in Figures 3.3, 3.4 and 3.5 respectively, together with the predictions of the
closed form solutions (Equations 3.15, 3.16 and 3.18). When an isolated ring beam is
considered, the comparisons show that the above equations provide very accurate
solutions, with the largest differences being 0.078%, 0.002% and 0.024% for
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maximum bending moment in the ring about a radial axis, torsional moment and

transverse displacement respectively.

To investigate the behavior of a ring that interacts with the silo shell, silo structures
with a ring beam were next considered with different shell thicknesses t = 4 and 10
mm and a constant height H = 10000 mm. The same support conditions and ring beam
properties were used. A uniform axial load (nv= 1.5 kN/mm) was applied to the top
of the cylindrical shell around the full circumference. For a cylindrical shell resting on
n equally spaced discrete supports, there are 2n planes of symmetry. The
computational time was reduced by modelling only a segment covering an angle of
dn, as shown in Figure 3.2b. Four-node shell elements (shell63), with a size of
100 mm in both the axial and circumferential directions, were employed to model the
cylindrical shell. Symmetry boundary conditions were applied to the nodes on each
symmetry plane. In practice, silo cylindrical shell walls are normally connected to
other conical shells at the top and the bottom. These conical pieces effectively prevent
out-of-round displacements of the cylinder at the two extremes. In this study, the
restraining effect of the connected shells was modeled by restraining the displacements
at these points. At the top both the radial and circumferential displacements and at the

bottom only the radial displacements were restrained.

The variation of the stress resultants and displacement are shown in Figures. 3.3,
3.4 and 3.5 respectively. When the 4 mm thick shell was considered, the comparisons
show that the above equations provide conservative solutions for the ring, with the
largest differences being 18.2%, 14.7% and 14.8% for maximum bending moment
about a radial axis, torsional moment and transverse displacement respectively. When
the 10 mm thick shell was considered, the comparisons show that the above equations
provide more conservative solutions for the ring, with the largest differences being
48.6%, 38.3% and 38.5% for maximum bending moment about a radial axis, torsional

moment and transverse displacement respectively.
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Figure 3.3 Comparison of closed form solution with numerical solutions for the ring
beam bending moment (Mr)
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Figure 3.4 Comparison of closed form solution with numerical solution for the

ring beam torsional moment (Ty)
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Figure 3.5 Comparison of closed form solution with numerical solutions for the

ring beam transverse displacement (ux)

3.3. Effect of Ring Beam Stiffness on Ring Beam Stress Resultants and

Displacements

The interaction between the ring beam and the silo shell depends strongly on the
stiffness of each component. Similarly, the redistribution of the support forces is
directly related to the stiffness of the ring beam relative to the stiffness of the
cylindrical shell. A ring beam stiffness ratio () was developed by Rotter (1985) and
further developed and verified by Topkaya and Rotter (2011). Derivation of ring beam
stiffness ratio was presented in Chapter 2. The relationship between the ring beam
stress resultants and the ring beam stiffness ratio was explored in this section. Finite
element parametric study was conducted to correlate the ring beam stiffness ratio with

the ring beam stress resultants and displacements.
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3.3.1. Computational assessment of the ring beam stiffness ratio

Finite element analyses were chiefly used to explore the variation of the bending
moment in the radial direction, torsional moment and transverse displacement of the
ring beam as a function of stiffness ratio in this study. The finite element models
described earlier were adopted, with geometries defined as radius R = 3000 and 4500
mm, thickness t = 4, 6, 8 and 10 mm, shell heights of 6000, 8000, 10000, 15000 and
18000 mm, with all cylindrical shells having the same number of supports n = 4, since
this is the commonest arrangement in practice. A total of 40 combinations were
adopted for the shell geometries with 30 different square hollow ring beam geometries
resulting in 1200 analysis cases. For the ring beams wall heights of 400, 450, 500,
550, and 600 mm and wall thicknesses of 20, 30, 40, 50, 60, and 70 mm were
considered. Different cross-section dimensions provide variations in the cross section

properties.

In each analysis, the bending moment in the radial direction (Mrmax) at the support
and at the mid-span, the maximum torsional moment (Toma) and the maximum
displacement in the transverse direction (uxmax) of the ring beam were recorded. A
reference bending moment (Mrref) at the support and mid-span, reference torsional
moment (Te,-y) and reference transverse displacement (ux,ref) were determined from the
above closed form solutions. The normalised differences between the calculated and
reference values (Mr ret — Mr.max)/Mr.ref, (To,ref— T6o,max)/ To,rer @Nd (Ux.ref — Ux,max)/Ux,ref are

plotted in Figures 3.6, 3.7, 3.8 and 3.9 as a function of the stiffness ratio y respectively.
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radial direction (span moment)

43



= FE Calculations — Fitted Bound

o
©

o
[

o
~

0.6

0.5

04

(Te,ref -Te,max)/Te,ref

0.3

0.2

0.1

001 o1 1 10 100
Stiffness Ratio (y)

Figure 3.8 Assessment of the ring stiffness ratio () for the torsional moment

| = FE Calculations — Fitted Bound

(Ux,ref -Ux,max)/Ux ref

0.01 0.1 1 10 100
Stiffness Ratio (y)

Figure 3.9 Assessment of the ring stiffness ratio () for the transverse displacement
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The results indicate that the stiffness ratio () clearly captures the trend of the

data. The data points for bending moment at the support and mid-span, torsional

moment and transverse displacement each fall within a rather narrow band. The results

show that the reduction below the isolated ring beam values caused by the shell

structure can be directly related to the ring beam stiffness ratio. The reduction in mid-

span bending moment is much more pronounced when compared with the support

moment.

The following relationships provide conservative bounds which can be used at the

design stage to find out the reduction in response quantities.

M, . —M, 0.7

( ref TBX ) = 14 for support moment
M, 149 +y

M. . —M 1.09

( r,ref r,mex ) = id for span moment
M, o 1.06 +y

Ty et = 1o mex 0.92 .
( gref 6 ): v for torsional moment
Ty rer 1.124 +y

(ux,ref - ux,rmx ) _ 096‘//
u 1154y

for transverse displacement

X, ref
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CHAPTER 4

REQUIREMENTS FOR INTERMEDIATE RING STIFFENERS ON
DISCRETELY SUPPORTED SHELLS

4.1. Behavior of Cylindrical Shells with Intermediate Ring Stiffeners

One alternative method of achieving uniform axial membrane stresses is to use an
intermediate ring stiffener with a flexible ring beam as shown in Figure 4.1 (i.e. double
ring arrangement of Figure 1.1f). Greiner (1983, 1984), Ory et al. (1984) and Ory and
Reimerdes (1987) showed that an intermediate ring stiffener can be very effective in
reducing the circumferential non-uniformity of axial stresses in the shell. Studies
conducted by these researchers identified the variation of the axial membrane stress
distributions up the height of the shell. It was shown that an intermediate ring stiffener
can achieve a dramatic decrease in the peak axial membrane stress, producing a more
uniform stress state above the intermediate ring. Recently Topkaya and Rotter (2014)
showed that there is an ideal location for an intermediate ring stiffener, such that the
axial membrane stress above this ring is circumferentially completely uniform. The
ideal location is identified by the height Hi above the ring beam, defined as the vertical
distance between the top of the ring beam and the centre of the intermediate ring
stiffener as shown in Figure 4.1. This was determined analytically and is expressed in

terms of basic geometric variables as follows (Topkaya and Rotter (2014)):

H, = m% (4.1)

For the case where v = 0.3, Equation 4.1 simplifies further into:

H, _395R 4R (4.2)
n n
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Equation 4.2 clearly indicates that the ideal ring location depends on only two
geometric parameters: the radius R of the cylindrical shell and the harmonic number,
which is closely related to the number of supports n. The height of the ideal ring is
thus directly proportional to the radius, which identifies an aspect ratio for the lower
section, and inversely proportional to the number of supports. It may be noted that
each additional term of the harmonic series indicates an ideal height that is lower than
this, so all terms are, in a sense, covered by this provision.
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Figure 4.1 Typical circular planform silo

In cases where a shell with large radius rests on a few supports, the ideal location
can be quite high and the option of placing the intermediate ring stiffener below the
ideal height may provide a viable solution. A cylindrical shell with its axis vertical
and supported on a single ring beam at the base (Figure 4.1) was analyzed using the
finite element method by Topkaya and Rotter (2014) to study the effects of introducing
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an intermediate stiffener at different heights. The steel silo structure analyzed had a
cylinder radius of 3000 mm and a height of 10000 mm with a constant thickness of 6
mm. The cylinder had a ring beam at its lower boundary which rested on 4 equally
spaced discrete stiff supports. The ring beam had an I-shaped cross section with a web
height and thickness of 500 mm and 10 mm, respectively. The flange width and
thickness of the ring beam were 200 mm and 15 mm respectively. The ring beam at
the lower boundary of the shell was deliberately selected as of relatively low stiffness
to ensure that a high stress amplification ratio  would be produced. The cylindrical
shell was loaded uniformly from the top with a unit value of axial stress. Three cases
were studied where the first case represents no intermediate ring, the second case
represents an intermediate ring placed at half of the ideal height (Hi/2) and the third
case represents an intermediate ring placed at the ideal height (Hi) (actually at 4R/n,
which is just above the strict ideal value). The axial membrane stresses calculated in

the finite element analyses were normalized by the applied axial stress (=1.0).
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Figure 4.2 Variation of normalized axial membrane stress throughout the shell
The stress variations down the height on the generator above the support (6=0) are

shown in Figure 4.2. For the case of a shell without an intermediate ring, the axial

membrane stress immediately above the ring is just over 3 times the applied stress. On
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this shell generator, the axial membrane stress progressively reduces from just above
the ring to the top of the shell and the entire shell is involved in this redistribution.
When the stiffener is placed at 1500 mm above the shell base (Hi/2), the normalized
axial stress above the stiffener is reduced from 2.32 to 1.21, but when it is placed at
3000 mm (Hi) this stress is reduced from 1.95 to 0.89, which is a slight
overcompensation, since the value 1.0 corresponds to a completely circumferentially

uniform axial stress.

The circumferential variation of the normalized stresses is shown in Figures 4.3
through 4.5, where the pattern at 3 different levels is shown: at the base of the cylinder
(x=0) (the top surface of the ring), at half of the ideal height (x=1500 mm) and at the
ideal height (x=3000 mm). Naturally, the axial stresses vary around the circumference
and the variation declines as the peak membrane stress is progressively redistributed.
The intermediate stiffener at x=1500 mm forces the stresses at and above this level to
be fairly uniform (Figure 4.4), with the normalized stress deviating from uniformity
by only +20% (between 1.2 and 0.8). The intermediate stiffener at x=3000 mm (Figure
4.5) also forces the stresses at this level to be fairly uniform, but actually over-
compensates for the effect, causing a dip to 0.89 above the support and a rise to 1.07

away from it, producing a deviation from uniformity of around £10%.

When a stiffener is placed at the ideal height, it may arrest the circumferential non-
uniformity of the axial stresses, rendering the zone above it uniformly stressed. Thus,
an intermediate ring stiffener could be a viable design option to render the axial
stresses above it quite uniform. The shell wall above such a stiffener can then be
designed for simple uniform axial compression, requiring only a thin wall. The shell
below this point would need to be thicker to resist local buckling, but this is a less
demanding requirement because the shell wall thickness normally increases greatly

towards the base and often has more buckling capacity than is necessary.
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Figure 4.3 Normalized axial membrane stress at various levels: Variation around the
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Figure 4.4 Normalized axial membrane stress at various levels: Variation around the
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Figure 4.5 Normalized axial membrane stress at various levels: Variation around the
circumference from the support to midspan: intermediate ring 3000 mm above the

base ring

A ring at a lower location still has a significant effect on the circumferential
variation of the axial stresses, but it does not render them uniform. As mentioned
before, placing an intermediate ring stiffener below the ideal height can provide an

economical solution for silos with a large radius and resting on a few supports.

The intermediate ring stiffener is expected to have sufficient strength and stiffness
to fulfil its function properly. The key requirement for this intermediate ring stiffener
is to prevent or significantly control the circumferential displacements of the
cylindrical shell at that level. If the ring stiffener has inadequate stiffness, the
circumferential uniformity of the axial stresses above it is not achieved. Furthermore,
there is an interaction between the cylindrical shell and the ring stiffener which causes
stress resultants to develop in the ring. These stress resultants could potentially cause

failure of the ring stiffener either by yielding or by instability.

This study explores strength and stiffness requirements for intermediate ring

stiffeners placed at or below the ideal location. A general shell and ring combination
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is studied using the membrane theory of shells to identify the membrane shear forces
induced in the shell by the ring. These forces are then considered as loads applied to
the intermediate ring stiffener. Vlasov’s curved beam theory (1961) is used to derive
closed form expressions for the variation of the stress resultants around the
circumference to obtain a suitable strength design criterion for the stiffener. A relative
stiffness criterion for the ring is then devised by considering the ratio of the
circumferential stiffness of the cylindrical shell to that of the intermediate ring. Using
the same loads on the ring as for the strength determination, the circumferential
displacements of the ring and the shell are derived. A simple algebraic expression is
then developed to determine this relative stiffness. These analytical studies are then
verified using a wide range of finite element analyses to identify suitable limiting

values for use in practical design.

4.2. Stress and displacement transfer into intermediate ring stiffeners

Topkaya and Rotter (2014) determined the ideal location for an intermediate ring
stiffener using the membrane theory of shells (Rotter (1987), Timoshenko and
Woinowsky-Krieger (1959), Fllgge (1973), Seide (1975), Ventsel and Krauthammer
(2001)). The loading on intermediate ring stiffeners can be obtained by solving for the

reactions on the shell produced by a stiffener infinitely stiff in its own plane.

All deformations, loading and stress resultants can be expressed in terms of a
harmonic series around the circumference (Timoshenko and Woinowsky-Krieger
(1959), Flugge (1973), Novozhilov (1959), Kraus (1967), Calladine (1983)) in order
to solve the governing differential equations. In the case of discrete supports, the rapid
decay in the effect of higher terms (Rotter (1990)) means that the fundamental
harmonic term of the column support force is sufficient to study the requirements of

the ring stiffener, so the support force can be represented by Equation 2.1.

The cylindrical shell is here separated into two parts: an upper shell and a lower
shell with the intermediate ring at their junction, as shown in Figure 4.6, which also
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indicates the chosen boundary conditions. The lower shell, of height Hi, is subjected

to the fundamental harmonic of the column support. The upper shell is assumed to be

unloaded on its upper boundary and restrained against circumferential displacements

by a ring. Topkaya and Rotter (2014) demonstrated that the interface between the

lower shell and upper shell will be free of both axial stress and axial displacements if

an intermediate ring is placed at the ideal location. When the intermediate ring is

placed below the ideal location some level of axial stress non-uniformity is present in

the upper shell segment. In addition, the axial displacements no longer vanish, so the

nonzero axial displacements can also be found at this interface.

Upper
shell

Lower
H. shell

Jx = Qxn, COSNO

Figure 4.6 Boundary conditions used in closed-form solution

U =0
:> Ny = & gy, COSNO
W U, #0
u =0
H.
u =0

Oy = Gxn COSNO

Considering the cylindrical shell element shown in Figure 4.7, the equilibrium

equations are:

ONy , L Ny |

=0
ox R 06 Px
Ny 1Ny
ox R 00
N,+Rp,=0
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where Nx, Ng, Nxo = axial, circumferential and shear membrane stress resultants
respectively; and px, pe, pn = external distributed pressures in the axial, circumferential
and radial directions respectively.

The strain displacement and constitutive relationships can be written as:

ou 1
£, = axx :E_t(NX_VNg) (4.6)
lou, u 1
=—Z0_r__~(N,—vN 4.7
“0=Ro0 R _EVo TN (4.7)
10u, ou 1 2(1+
Vxo = Xyl = Nx@ = d+v) NxH (48)

"ROO ox Gt Et

where ux, Ug, Ur = displacements in the axial, circumferential and radial directions
respectively; ex, eg = strains in the axial and circumferential directions respectively;
yx¢ = shear strain; v = Poisson’s ratio; E = modulus of elasticity; G = shear modulus;

and t = thickness of the shell.

L] ———
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i Q\T/v Po membrane /'Na
TX f «—| | forces
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9 ~x(tw o i Nyo
-
displacements
and applied
forces

Figure 4.7 Loading, displacements and stress resultants in an element of the

cylindrical shell

The circumferential membrane stress resultant is directly obtained from Equation
4.5 as:

NH =-R P, (49)
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In the lower shell, Equations 4.3 and 4.4 may be solved sequentially by integrating

in the x direction to obtain:

1 ON
N,, :—j(pg U jdx+ f,(6) (4.10)

10N
N, =— ——2¢ ldx + f,(6 411
= J[pr i e s 00 (@11

where f1(8), f2(6) = unknown functions of #to be determined from two boundary

conditions.

The general solution for the displacements of the shell may then be found as:

Etu, = [(N, —v N, )dx+ £,(6) (4.12)
Et ;ou
Etu, =2(1+v)| N, dx—— | —dx+ f,(0 4.13
0 =2+ V)N, k== [Z5dx+ £,(0) (4.13)
au,
Etu, = Etﬁ— R(N,-vN,) (4.14)

where f3(8), f4(6) = additional functions to satisfy the boundary conditions on the

edges x = constant.

where there is no surface loading on the shell (px =Py = Py :O), Equations 4.9,

4.10 and 4.11 give:

N, =0 (4.15)
N, = f,(0) (4.16)

1¢d x(d
N, = _EI(d_e fl(e)jdx +1,(0) = _E(@ fl(e)j + 1,(0) (4.17)
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At the base, x =0, the axial membrane stress resultant is chosen as the fundamental

harmonic of the discrete support, N, =—q,, cosné (Equation 2.1), leading to:

f,(6) =—q,, cosné@ (4.18)

When the ring is placed at the ideal location, the axial stress vanishes at this height

(N, =0), but when the ring is placed below the ideal location non-uniform axial

stresses will still be present. As shown in Figure 4.6, a certain proportion of the applied
axial membrane stress resultant is assumed to be present at the interface. The ratio of
the axial membrane stress resultant at the interface to the applied fundamental
harmonic of the column support is here termed x. Topkaya and Rotter (2014) explored
the magnitudes of axial membrane stress resultants that remain at this interface using
many linear finite element analyses. The location of the intermediate ring, shell radius,
number of supports and shell thickness ratios (g = tu/t. where tu and t. are the
thicknesses of the upper and lower shells respectively) were considered as the primary
variables. Figure 4.8 shows the variation of the ratio of axial membrane stress
resultants for the case of g = 0.5. The following convenient lower and upper bound

expressions can be developed to represent the data points:

N H H Y
e=Ne1ig _L]_(ug)(_LJ @.19)
qxn ( H | H |
with
m = 0.5g(2.34 — g) for upper bound (4.20)
m = 0.4g(2.34 — g) for lower bound (4.21)
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Figure 4.8 Variation of axial stress resultant for various intermediate ring heights
with upper to lower shell thickness ratio g =0.5

Considering an axial stress resultant N, =-xq,,cosné at the ring (x = Hv) leads

to the following:

,0) = ~-r)

L

d,,Sin nd (4.22)
n

Inserting Equations 4.12, 4.16 and 4.17 into Equation 4.13 yields the

circumferential displacement as:

_ X (dE X (4 _1(d 4.23
Etu, _6R2[d02 fl(e)J ZR(dB fz(e))+x{2(l+v)fl(9) R(de f3(¢9)ﬂ+ f,0) (4.23)

At x =0and x = H, the boundary condition of zero circumferential displacements,

U, =0, yields the two results:
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2+K)H, N 21+v)1-«x)R®
6 H n?

f,(0)=0 and f,(0)= (( ]qm cosné (4.24)

The axial displacements can be expressed in terms of the functions f1(6), f2(6) and
f3(6) as:

2

d
Etu, = _;_R(E fl(e)j £x5,(0) + £4(0) (4.25)

Inserting Equations 4.18, 4.22 and 4.24 into Equation 4.25 yields:

- X+ + 4.26
2H, 6 H n? (4.29)

G, cosnd| (1-x)x? (2+x)H, 20+v)1-«x)R?
" Et
When the intermediate ring is placed at the ideal height the axial displacements

and axial stress resultants at the interface vanish. The condition of x =0 with u, =0

at x=H_ _=H, leads to the ideal location of the intermediate ring stiffener, previously

expressed in Equation 4.1.

In the solution presented above, rigid boundary conditions were assumed at the
location of the intermediate ring. A finite shear membrane stress resultant Nxg is
produced when the intermediate ring prevents circumferential displacements ug at the
interface. The reactions in the shell at this boundary can be treated as the loading
exerted on the intermediate ring. Combining Equations 4.16 and 4.22 gives the

following expression for the shear membrane stress resultant

R .
N, ,=-1-x)—q,,sinné 4.27
X0 ( K)H r]qxn ( )

L
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Equation 4.27 shows that the intermediate ring is subjected to a sinusoidally
varying circumferential line load in its own plane, whose magnitude is directly related

to the discrete support force gxn.

Similarly axial displacements are produced at the interface when the ring is placed
below the ideal location. These axial displacements depend on the relative stiffness of
the lower shell and the intermediate ring. In general, the shell segment is very stiff in
its own plane. The out-of-plane stiffness of the intermediate ring is quite low
compared with the axial stiffness of the shell, so it is reasonable to assume initially
that the intermediate ring has a negligible effect on the axial displacements that are
induced at the interface. The displacements obtained from the solution of the lower
shell segment can then be directly applied to the intermediate ring stiffener. The

displacements at the interface (x = H.) can be found from Equation 4.26 as:

121+v)1-x)R* —H/n?*(1+2
u,= (L+v)i-x) — (L+2x) d,, cosné (4.28)
6EtH n
Equation 4.28 indicates that the intermediate ring experiences cosinusoidally
varying out-of-plane deformations whose magnitude is directly related to the discrete
support force gxn. The effect of the out-of-plane stiffness of the intermediate ring on

these displacements will be explored below.

4.3. Algebraic Closed-form Solution for the Stress Resultants in the Intermediate
Ring Stiffener — Strength Criterion

4.3.1. Derivation of stress resultants — In plane behavior

The Vlasov curved beam differential equations (Vlasov (1961), Heins (1975))
were used to study the response of the intermediate ring stiffener. In-plane and out-
of-plane behaviors were treated separately. In general, the behavior of a curved beam

is governed by a series of differential equations. The equilibrium equations were first
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derived for the curved beam element shown in Figure 2.2, where three orthogonal
internal forces and three internal moments develop at each cross-section. The six basic
equilibrium equations were expressed in Equation 2.2 through 2.7. The six basic
equilibrium equations can be reduced to three differential relationships. The
differential equation for bending of the ring in its own plane can be uncoupled from
the other two. For the case where the only loading is ge(i.e. gr=Qgx=MmMr=mMg=Mx =

0), the two coupled differential equations of equilibrium can be expressed as:

S LV VI (4.29)
R| 06

1]0°M, oT,

= r+—%1=0 4.30
Rz{aaz ae} (4:30)

The uncoupled differential equation can be expressed as follows:

1 [aﬂle oM,

RZ

Direct solution of Equation 2.5 and simultaneous solution of Equations 4.29 and

4.30 reveal the following relationships for in-plane loading:
M,(@)=0 T,(0)=0 Q. (0)=0 (4.32)

These relationships indicate that the torsional moment in the ring, the bending
moment in the radial direction and the transverse shear force vanish for the simple

loading case of gealone.

The shear membrane stress resultant expressed in Equation 4.27 can be adopted
for the loading on the intermediate ring (i.e. o = Nxg) leading to the following

relationships by solving Equation 4.31:
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Axn
MX(Q): Mx,max cosnd@d Mx,max :(1—K)H—Lm (433)
Inserting Equation 4.33 into Equation 2.6 reveals the radial shear force Qy:
. O R’
Q, (0)=Qy max SINNG Qrmax =(1—x) 22— (4.34)

H. n(n®-1)

Inserting Equation 4.34 into Equation 2.2 reveals the circumferential tension Qy:

Qo _ R
Qp (0) = QH,max cosné Qe,max = _(1_ K) (4.35)

H. (n®-1)

Equations 4.33, 4.34 and 4.35 indicate that the intermediate ring stiffener is
subjected to circumferential and shear forces in the plane of the ring and bending about
the axis transverse to the plane of the ring. The intermediate ring is at ideal location

for the case where HL = H, and x—0.
4.3.2. Derivation of stress resultants — Out-of-plane behavior

The depth of a typical intermediate ring stiffener is small when compared with the
typical radii of silo shell. Therefore, it is meaningful and convenient to neglect any
offset that would be produced by the geometric centroid of the intermediate ring
stiffener and the axis of the silo shell. The complexity of the offset of a practical ring
makes the analysis significantly more complicated so this has been omitted for the sake
of simplicity needed in practical design calculations. The out-of-plane displacements
of the intermediate ring are here treated as equal to the axial displacements of the lower
shell at the interface. There is a complex interaction between the shell and the
intermediate ring stiffener. The amount of rotations ¢ around a circumferential axis

that take place at the location of the intermediate ring stiffener must be known in

62



advance to fully extract the stress resultants. Preliminary finite element analysis
revealed that it would be conservative to neglect these rotations (i.e. ¢ = 0). Because
these rotations are not known in advance or obtained as a part of the solution, the
individual contributions of uniform torsion and warping torsion to the torsional

moment in the ring cannot be determined.

Inserting Equation 4.28 into Equation 2.12 and considering ¢ = 0, the following

relationship can be derived for bending moment in the ring about a radial axis Mr:

1 [12(1+v)(1-x)R* — HEn® (1+ 21) |

cosnd M = 5
6H Rt

r,max

M, (6)=M G (4:36)

r,max

Inserting Equation 4.36 into Equation 2.7 and considering ms = 0O, reveals the

torsional moment in the ring Te:

_ ,|12(1+v)(1-&)R* —=HZn? (1+ 2x)
T9 (e)zTe,maxsmne Te,max: r[ 6H R JC‘xn (4.37)
L

Inserting Equations 4.36 and 4.37 into Equation 2.5 reveals the shear force in the

ring in the transverse direction Qx:

—1,(n® -1)[12(1+v) (1-x)R* —Hn® (1+2x) |
6H, nR%

Qx (0) = Qx,max sinng Qx,max = Oyn (438)

Equations 4.36, 4.37 and 4.38 indicate that the intermediate ring stiffener is
subjected to transverse shear forces, bending about a radial axis and torsional moments
due to the imposed displacements by the axially stiff lower shell segment. Equations

4.36, 4.37 and 4.38 result in M _(8) =0, T,(6) =0, Q,(8) =0 for the case of HL = Hi

and x—0.
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4.4. Assessment of stress resultants

When the intermediate ring is placed at the ideal location the only stress resultants
are Mx, Qr and Q. Equations 4.33, 4.34 and 4.35 indicate that the maximum in-plane
bending moment and circumferential force occur at the same location. The shear stress
resultant is at its maximum at locations where the other stress resultants vanish.
Placing an intermediate ring below the ideal height produces the additional stress
resultants Mr, Tgand Qx. The maximum out-of-plane bending moment occurs at same
locations where the in-plane bending moment and circumferential force are also at
their maxima. Therefore, the strength requirement for the intermediate ring demands
a check of the cross-section under the combined actions of circumferential force, out-
of-plane bending and in-plane bending. To obtain conservative estimates of these
stress resultants, the lower bound expression (Equation 4.21) should be used for the
ratio of axial membrane stress resultants «. Alternatively, x = 0 can be directly used

in design.

It is evident that the magnitudes of the out-of-plane stress resultants are controlled
by the deformation of the lower part of the shell, so a ring with higher stiffness against
out-of-plane deformation will develop higher associated stress resultants. An
examination of Equations 4.36, 4.37 and 4.38 shows that this is indeed the case, so the
stress resultants in the ring are directly proportional to its second moment of area about
a radial axis (Ir). A normal design calculation would lead to the ring size (related to
Ir) as an outcome, but in this case the stress resultants depend on Ir. It is evident that
a ring that is flexible for out-of-plane bending will develop much smaller associated
bending moments. In practice, it is therefore more efficient to use either flat annular
plate stiffeners or I-sections with the web horizontal to give a high in-plane stiffness
and a low out-of-plane stiffness (Figure 4.1). Considering typical ratios of the strong
axis to weak axis elastic section moduli of rolled I sections, it is here recommended
that the ratio of out-of-plane moment to in-plane moment should be limited to 10%

(Mr/Mx<0.1). Neglecting the contribution of « (i.e. x = 0), the section can be selected
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by using the following expression for the second moment of area about the radial axis

(|r):

R3t
I < (4.39)

20(1+v)n?(n? —1{1—(:Tﬂ

Having restricted the out-of-plane bending moment using Equation 4.39, the

intermediate ring can be designed to resist out-of-plane moments of only 10% of the
maximum in-plane bending moment. Equation 4.36 can be used where a more

accurate estimate of the out-of-plane moment is needed.

4.5. Computational verification of the Closed-form equations

Linear three dimensional finite element analyses were conducted to verify the
accuracy of these equations. The commercial finite element program, ANSYS v12.1
(2010), was used to perform the numerical analysis. Since a cylinder resting on n
equally spaced discrete supports has 2n planes of symmetry, the computational time
was reduced by modelling only a segment covering the angle =/n, as shown in Figure
4.9a. Four-node shell elements (shell63) with a size of 100 mm in both the axial and
circumferential directions were employed to model the cylindrical shell. The
intermediate ring stiffener was modelled using two-node beam elements (beam4). The

modulus of elasticity was taken as 200 GPa and Poisson’s ratio as 0.30.

Symmetry boundary conditions were applied to the nodes on each symmetry
plane. In practice, silo cylindrical shell walls are normally connected to other conical
shells at the top and the bottom as shown in Figure 4.1. These conical pieces
effectively prevent out-of-round displacements of the cylinder at the two extremes. In
this study, the restraining effect of the connected shells was modelled by restraining
the displacements at these points. At the top and bottom, both the radial ur and

circumferential up displacements were restrained.
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Figure 4.9 Finite-element mesh for the cylindrical shell and I-section ring beam

The cylinder base was subjected to loading in harmonic 4 (Equation 2.1),
corresponding to the number of equally spaced discrete supports. The top edge was
axially free, though radially and circumferentially restrained, so the axial stresses there

were zero. Because the loading is purely harmonic, axial displacements need not be

restrained at either boundary.

4.5.1. Casel: Intermediate ring at the ideal height

The silo structure analyzed here had a cylinder radius of 3000 mm and a height of
10000 mm with a constant thickness of 6 mm. An intermediate ring stiffener was
placed at the ideal height (Equation 4.1) and it was modeled using stiff beam elements.

The loading at the bottom of the shell was chosen to give a maximum axial membrane
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stress of 1.0 GPa above the support. The calculated variations of Mx, Qr, and Qo
around the circumference are shown in Figures 4.10, 4.11, and 4.12 respectively,
together with the predictions of the closed form solutions (Equations 4.33, 4.34, and
4.35) for the case of HL = Hiand x—0. The comparisons show that the above equations
provide acceptably accurate solutions, with the largest differences being 0.48%,
0.77%, and 3% for maximum bending moment, shear force and circumferential force

respectively.
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Figure 4.10 Comparison of closed form solution with numerical solution for ring

bending moment
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Figure 4.11 Comparison of clo