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ABSTRACT 

 

 

ANALYSIS OF SILO SUPPORTING RING BEAMS AND INTERMEDIATE 

RING STIFFENERS 

 

 

ZEYBEK, Özer 

Ph.D., Department of Civil Engineering 

Supervisor: Prof. Dr. Cem Topkaya 

 

 

March 2018, 97 pages 

 

 

Silos in the form of a cylindrical metal shell are commonly supported by a few 

discrete columns to permit the contained materials to be directly discharged.  The 

discrete supports produce a circumferential non-uniformity in the axial membrane 

stresses in the silo shell.  One way of reducing the non-uniformity of these stresses is 

to use a very stiff ring beam which partially or fully redistributes the stresses from the 

local support into uniform stresses in the shell.  Another alternative is to use a 

combination of a flexible ring beam and an intermediate ring stiffener.  A three part 

analytical and numerical study has been undertaken to address the issues related with 

silo supporting ring beams and ring stiffeners. 

 

A stiff ring beam is utilized in larger silos to transfer and evenly distribute the 

discrete forces from the supports into the cylindrical shell wall.  A stiffness criterion 

was developed by Rotter to assess the degree of non-uniformity in axial compressive 

stresses around the circumference.  The stiffness criterion is based on the relative 

stiffnesses of the ring beam and the cylindrical shell and was verified for loading 

conditions that produce circumferentially uniform axial stresses around the 

circumference.  The first part of the study has been undertaken to investigate the 

applicability of the stiffness criterion to cylindrical shells under global shear and 
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bending.  Pursuant to this goal extensive finite element analyses were conducted where 

different ring beam and cylindrical shell combinations are subjected global shearing 

and bending actions.  The results revealed that the stiffness criterion can be extended 

to shells under this loading condition.  The degree of non-uniformity in axial stresses 

is quantified and presented as simple formulas that can be readily adopted by design 

standards.  

 

The ring beam plays an important role in redistributing the majority of the discrete 

forces from the column supports into a more uniform stress state in the cylindrical 

wall.  The Eurocode EN 1993-4-1 only provides design equations for stress resultants 

(internal forces) produced in the isolated ring beam under uniform transverse loading.  

The behavior of a ring beam which interacts with the silo shell is much more complex 

than that of an isolated ring beam.  In traditional design treatments, it is assumed that 

the discrete support forces are redistributed entirely by the ring beam to provide 

circumferentially uniform axial membrane stresses in the silo shell.  But this 

assumption is only approximately valid if the ring beam is much stiffer than the silo 

shell.  Since the cylindrical shell is very stiff in its own plane, the ring beam must be 

remarkably stiff to be stiffer than the shell.  The second part of the study has been 

undertaken to explore the ring beam stress resultants when closed section ring beams 

of lower stiffness and practical dimensions are used.  A finite element parametric study 

is undertaken to explore the stress resultants and displacements in more flexible ring 

beams connected to a silo shell.   

 

A combination of a ring beam and an intermediate ring stiffener can be used for 

large silos to redistribute the stresses from the local support into uniform stresses in 

the shell.  Topkaya and Rotter (2014) has identified the ideal location for the 

intermediate ring stiffener.  The third part of the study explored strength and stiffness 

requirements for intermediate ring stiffeners placed at or below the ideal location.  

Pursuant to this goal, the cylindrical shell below the intermediate ring stiffener is 

analyzed using the membrane theory of shells.  The reactions produced by the stiffener 

on the shell are identified.  Furthermore, the displacements imposed by the shell on the 
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intermediate ring stiffener are obtained.  These force and displacement boundary 

conditions are then applied to the intermediate ring stiffener to derive closed form 

expressions for the variation of the stress resultants around the circumference to obtain 

a strength design criterion for the stiffener.  A stiffness criterion in the form of a simple 

algebraic expression is then developed by considering the ratio of the circumferential 

stiffness of the cylindrical shell to that of the intermediate ring stiffener.  These 

analytical studies are then compared with complementary finite element analyses that 

are used to identify a suitable value for the stiffness ratio for ring stiffeners placed at 

different locations.   

 

 

Keywords: Cylindrical Shells, Closed form solutions, Supports, Stiffening, Silos, 

Tanks, Global bending, Global shear. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 

ÖZ 

 

 

SİLO TAŞIYAN HALKA KİRİŞLERİN VE RİJİTLEŞTİRİCİ HALKA 

ELEMANLARIN ANALİZİ 

 

 

ZEYBEK, Özer 

Doktora, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Cem Topkaya 

 

 

Mart 2018, 97 sayfa 

 

 

Silindirik metal kabuk formunda olan silolar içerdikleri malzemelerin 

doğrudan boşaltılabilmesine olanak sağlamak için genellikle bir kaç ayrık kolon 

tarafından mesnetlenirler.  Ayrık kolonlar silo kabuğunda oluşan eksenel membran 

gerilmelerinde silo çevresi boyunca bir düzensizlik meydana getirir.  Bu gerilmelerin 

düzensizliğini azaltmanın bir yolu, kolonlardan gelen gerilmeleri kabuğa homojen 

olarak kısmen ya da tamamen dağıtacak çok rijit bir halka kirişi kullanmaktır.  Başka 

bir alternatif, esnek bir halka kirişi ve bir ara rijitleştirici halka kombinasyonu 

kullanmaktır.  Silo taşıyan halka kirişler ve halka rijitleştiricileri ile ilgili konuları ele 

almak üzere üç bölümden oluşan analitik ve sayısal bir çalışma yapılmıştır. 

 

Büyük silolardaki kolonlardan gelen ayrık kuvvetleri silindirik kabuk yüzeyine 

aktarmak ve eşit bir şekilde dağıtmak için rijit bir halka kirişi kullanılır.  Kabuk 

çevresindeki eksenel basınç gerilmelerinin düzensizlik derecesini belirlemek için 

Rotter tarafından rijitlik kriteri geliştirilmiştir.  Rijitlik kriteri, silindirik kabuk ve halka 

kirişin göreceli rijitliklerine bağlıdır ve kabuk çevresi boyunca düzgün yayılı eksenel 

gerilme oluşturacak yük durumu için doğrulanmıştır.  Çalışmanın ilk kısmı, rijitlik 

kriterinin global kesme ve eğilme altındaki silindirik kabuklara uygulanabilirliğini 

araştırmak için yapılmıştır.  Bu amaca uygun olarak, global kesme ve eğilme etkilerine 
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maruz farklı halka kiriş ve silindirik kabuk kombinasyonlarının kapsamlı sonlu 

elemanlar analizi gerçekleştirilmiştir.  Sonuçlar, rijitlik kriterinin bu yükleme 

durumları altındaki kabuklar için de kullanılabileceğini göstermiştir.  Eksenel 

gerilmelerdeki düzensizlik derecesi belirlenmiş ve tasarım standartları tarafından 

kolaylıkla uyarlanabilir basit formüller olarak sunulmuştur. 

 

Halka kirişi, kolon mesnetlerinden gelen ayrık kuvvetlerin çoğunun silindirik 

yüzeye daha homojen bir gerilme durumu oluşturacak şekilde dağılmasında önemli bir 

rol oynar.  Eurocode EN 1993-4-1, uniform enine yükleme altındaki tekil halka 

kirişinde oluşan iç kuvetler için sadece tasarım denklemleri sunar.  Silo kabuğu ile 

etkileşen bir halka kirişin davranışı, tekil bir halka kirişin davranışından çok daha 

karmaşıktır.  Geleneksel tasarım durumlarında, silo kabuğu çevresi boyunca düzgün 

eksenel membran gerilmeleri sağlamak için ayrık mesnet kuvvetlerinin tamamen halka 

kiriş tarafından yeniden dağıtıldığı varsayılmaktadır.  Ancak, bu varsayım halka kirişin 

silo kabuğundan daha rijit olması durumunda geçerlidir.  Silindirik kabuk kendi 

düzleminde çok rijit olduğundan halka kiriş kabuğa oranla daha rijit olmalıdır.  

Çalışmanın ikinci bölümünde, düşük rijitlik ve pratik boyutlara sahip kapalı kesitli 

halka kirişlerin kullanıldığı durumlarda halka kirişinde oluşacak iç kuvvetleri elde 

etmek için bir araştırma yapılmıştır.  Silo kabuğuna bağlanan daha esnek halka 

kirişlerdeki iç kuvvetleri ve yer değiştirmeleri elde etmek için sonlu elemanlar yöntemi 

ile parametrik bir çalışma yapılmıştır.  

 

Bir halka kiriş ve ara halka rijitleştirici kombinasyonu, büyük silolarda lokal 

mesnetten kaynaklanan gerilmeleri kabukta uniform bir şekilde dağıtmak için 

kullanılabilir.  Topkaya ve Rotter (2014), ara halka kirişinin ideal konumunu 

belirlemiştir. Çalışmanın üçüncü bölümü ideal konumda veya bu konumun altında 

bulunan ara halka rijitleştiricilerin dayanım ve rijitlik gereksinimlerini araştırır.  Bu 

amaca uygun olarak, ara halka rijitleştiricinin altındaki silindirik kabuk membran 

teorisi kullanılarak analiz edilmiştir.  Rijitleştirici tarafından kabuk üzerinde 

oluşturulan reaksiyonlar belirlenmiştir.  Ayrıca, ara halka rijitleştiricisindeki silindirik 

kabuk tarafından uygulanan yer değiştirmeler elde edilmiştir.  Ardından bu kuvvet ve 
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yer değiştirme sınır koşulları, rijitleştirici dayanım tasarım kriteri elde etmek ve 

silindirik kabuk çevresi boyunca iç kuvvet değişiminin kapalı form ifadelerini 

türetmek için ara halka rijitleştiricilere uygulanmıştır.  Sonrasında, basit cebirsel ifade 

formundaki rijitlik kriteri, silindirik kabuğun çevresel doğrultudaki rijitliğinin ara 

halka rijitleştiricinin çevresel doğrultudaki rijitliğine oranı göz önüne alınarak 

geliştirilmiştir.  Daha sonra, bu analitik çalışmalar farklı konumlara yerleştirilen halka 

rijitleştiricilerin rijitlik oranının uygun bir değerini saptamak için kapsamlı sonlu 

elemanlar analizi ile karşılaştırılmıştır.  

 

 

 

Anahtar Kelimeler: Silindirik kabuk, Kapalı form çözümler, Mesnetler, Rijitleştirme, 

Silolar, Tanklar, Global eğilme, Global kesme.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1. General 

 

Silos in the form of cylindrical metal shells can be supported either on the ground 

or on a few column supports, depending on the requirements of the discharge system.  

If the stored granular solids are discharged by gravity, a hopper is needed at the base 

of the cylindrical shell with an access space beneath it to permit discharge into 

transportation systems.  Columns at equal circumferential intervals are invariably used 

to elevate the silo structure and to provide the necessary access space (Figure 1.1). 

 

There are stringent limitations on the number of column supports that can be used 

because the presence of many columns does not allow for easy access by transportation 

systems. Depending on the size of the structure, several different support arrangements 

(Rotter (2001)) may be chosen, as shown in Figure 1.1.  For small silos, terminating 

columns with rings (Figure 1.1a), engaged columns (Figure 1.1b) or bracket supports 

(Figure 1.1e) may be suitable.  On the other hand, medium and large silos require either 

columns extending to the eaves (longitudinal stiffeners) (Figure 1.1c) or heavy ring 

beams (Figure 1.1d) or double rings (Figure 1.1f). 

 

The engaged columns are opted for light silo structures.  These columns are 

attached over a part of the cylindrical silo wall by welding process.  Zhao et al. (2006) 

performed numerical analyses to investigate structural behavior of the steel silos with 

engaged columns.  They demonstrated that the height of the engaged column directly 

affected the buckling strength of the column-supported cylindrical silos.  Doerich et 

al. (2009) investigated the strength behavior of a cylindrical steel shell that was 

discretely supported on engaged columns via numerical finite element analyses 
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considering the effects of geometric imperfection and geometric nonlinearity.  The 

outcome of the study was compatible with the provisions presented in EN 1993-1-6 

(2007).  Vanlaere et al. (2009) performed different types of numerical analysis 

including the effect of geometric nonlinearity, plasticity and geometric imperfections 

in order to investigate stability behavior of steel cylinders with engaged columns.  

Their results showed that the imperfections caused a main reduction in the failure load 

of the cylinder.  Jansseune et al. (2013) investigated the failure behavior of column-

supported cylindrical silos with flexible engaged steel columns using finite element 

analyses.  They showed that the height of the column attached to the silo and its cross-

section affected the failure behavior and the failure load of the cylindrical column-

supported silos.  Jansseune et al. (2016) identified the ideal combination of dimensions 

of an engaged column to obtain a failure load considering low material in the column.  

They concluded from numerical finite element analyses that the columns must resist a 

greater load than the cylindrical silo wall itself.  

 

Smaller (light) silo structures are usually supported on local brackets attached to 

the outside of the cylindrical shell.  The effect of column supports on the stresses 

produced in tank walls was firstly investigated by Gould and Sen (1974).  They 

assumed that the eccentrically applied column reaction produced a bending moment 

into the shell wall that was resisted by a couple in the radial direction.  A simple 

algebraic expression for the mechanism of load transfer between the column and the 

cylindrical shell wall was proposed. The radial forces were distributed linearly over 

the height of a bracket and uniformly distributed over the column width in their study. 

Holst et al. (2002) and Gillie et al. (2002) investigated the strength of the shell for the 

bracket-supported cylindrical silos.  They tried to the determine ultimate load capacity 

of the cylindrical steel shell. They conducted numerical analysis to explore nonlinear 

load-deformation behavior of the bracket-supported cylindrical silo structures.  Gillie 

and Holst (2003) performed finite element analyses considering the effects of bracket 

width, bracket height and geometric imperfections.  They showed that the strength of 

bracket supported silos was dependent on the bracket width.  They also tried to predict 

the collapse strength of silos with equidistant support brackets of typical dimensions. 
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Doerich and Rotter (2008) investigated elastic-plastic strength of an imperfect 

cylindrical shell attached to a bracket that was restrained by the column.  Their study 

was conducted in a manner consistent with the framework of the European Standard 

for Shell Structures EN 1993-1-6 (2006), which requires that the two reference 

strengths of the shell that are the plastic collapse resistance and the linear bifurcation 

resistance. 

 

 

 

Figure 1.1 Alternative support arrangements for discretely supported silos (Rotter 

(2001)) 

 

Longitudinal stiffeners (stringers) are placed on the outside of the cylindrical wall 

with either a partial length or whole length for the medium and large silos.  Ellinas et 
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al. (1981) investigated the buckling behavior of axially loaded stringer stiffened 

cylinders.  They tried to predict lower bounds of the imperfection sensitive elastic 

overall buckling.  They showed that buckling of stringer stiffened cylinders was 

substantially dependent on geometry of cylindrical shell and the stiffener.  Samuelson 

(1982) provided simplified design rules for the design of circular cylindrical shells 

with longitudinal stiffeners under axial compression.  The proposed conservative 

method was dependent on assumptions in regard to boundary conditions, initial 

imperfections and load eccentricities.  Vanlaere et al. (2005) investigated 

strengthening effect of the longitudinal stiffeners.  The influence of the dimensions of 

the stiffeners on the buckling stress and the failure pattern were identified using finite 

element analysis.  Vanlaere et al. (2006) utilized two longitudinal flat-bar stiffeners 

with partial length above each support to eliminate failure due to local instability of 

the cylindrical shell.  They performed the experiments on scale models to validate 

numerical simulations of the cylinders.  They also tried to develop design rules for 

stringer stiffened cylindrical shells on local supports.  Vanlaere et al. (2009) performed 

finite element analyses to show effectiveness of the flat rectangular plate longitudinal 

stiffeners that were treated as flexurally and axially rigid.  Their study indicated that 

geometrical nonlinearity, plasticity and geometric imperfections were major effects on 

the failure load of the stringer stiffened cylinders on local supports.  Jansseune et al. 

(2015) investigated the influence of the dimensions of partial height U-shaped 

longitudinal stiffeners on the failure behavior of a thin-walled silo using finite element 

analyses.  They showed that the height of the longitudinal stiffener had a beneficial 

influence, since the stiffener would distribute the stresses better in circumferential 

direction when elastic buckling occurred in the unstiffened region above the 

terminations of the stiffeners. 

 

The presence of discrete supports results in a high stresses adjacent to the column 

terminations, which trigger failure by local instability of the cylinder.  This support 

condition produces also a circumferential non-uniformity in the axial membrane 

stresses in the silo shell.  To eliminate this failure case wall thickness of the bottom 

course of the cylinder can be increased (Guggenberger et al. (2004)). However, 
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unnecessary material is used in this solution.  One way of reducing the non-uniformity 

of these stresses is to use a very stiff ring beam which partially or fully redistributes 

the stresses from the local support into uniform stresses in the shell.  Another 

alternative is to use a combination of a flexible ring beam and an intermediate ring 

stiffener. 

 

Previous studies of discretely supported cylinders (Kildegaard (1969), Gould and 

Sen (1974), Gould et al. (1976), Gould et al. (1998), Rotter (1987), Rotter (1987), 

Rotter (1990), Teng and Rotter (1992), Guggenberger et al. (2000), Guggenberger et 

al. (2004), Jansseune et al. (2012), Jansseune et al. (2013), Jansseune et al. (2016), 

Doerich et al. (2009)) and those on ring beams above columns (Rotter (1984), Rotter 

(1985)) have shown the great complexity of the behavior.   

 

Since the design of the cylindrical shell is governed by considerations of buckling 

under axial compression, a much thinner wall can be provided if the axial membrane 

stress distribution is circumferentially uniform.  Classical design treatments (Wozniak 

(1979), Trahair (1983), Gaylord and Gaylord (1984), Safarian and Harris (1985)) 

adopted this assumption so that the criterion for buckling under axial compression 

above the ring is that for uniform compression.  As illustrated in Figure 1.2a, the 

tradition is for each component to be treated separately under the action of uniform 

loading around the circumference (e.g. Pippard and Baker (1957), EN 1993-4-1 

(2007)).  But the underlying assumption can only be valid if the ring beam properly 

fulfills its critical function in redistributing the discrete support loads into a relatively 

uniform state of stress.  The extent to which this redistribution of the support forces 

can be achieved is directly related to the stiffness of the ring beam relative to the 

stiffness of the cylindrical shell (Figure 1.2).  Since the cylindrical shell is very stiff in 

its own plane, the ring beam that is subject to flexure and twisting must be remarkably 

stiff to be stiffer than the shell.  An approximate criterion to determine the appropriate 

ring beam stiffness was first identified by Rotter (1985) and was further developed and 

verified by Topkaya and Rotter (2011).  The criterion developed by these authors is 

very demanding and usually leads to very big ring beams for typical geometries.  



6 

Cylindrical

shell

Axisymmetric

wall loading

and bottom

pressures

Uniform support to

cylinder from ring girder

Ring girder

(various

cross-section

geometries)

Discrete local supports

Uniform loading of

ring girder by cylinder

 

 

Shell wall

Discrete

support

Discrete

support

In-plane vertical

deflections

Ring girder

deflected shape

 

 

Figure 1.2 Axial deformation compatibility between ring beam and shell (Rotter 

(2001)). a) Traditional design model for column-supported silos. b) Deformation 

requirement on cylinder imposed by compatibility with beam deformation 

 

One alternative method of achieving uniform axial membrane stresses is to use an 

intermediate ring stiffener as shown in Figure 1.3.  Greiner (1983, 1984), Öry et al. 

(1984) and Öry and Reimerdes (1987) showed that an intermediate ring stiffener can 

be very effective in reducing the circumferential non-uniformity of axial stresses in the 

a) 

 

b) 
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shell.  Studies conducted by these researchers identified the variation of the axial 

membrane stress distributions up the height of the shell. It was shown that an 

intermediate ring stiffener can cause a dramatic decrease in the peak axial membrane 

stress, producing a more uniform stress state above the intermediate ring.  Recently 

Topkaya and Rotter (2014) showed that there is an ideal location for an intermediate 

ring stiffener, such that the axial membrane stress above this ring is circumferentially 

completely uniform.  The ideal location (HI) shown in Figure 1.3 was determined 

analytically and is expressed in terms of basic geometric variables.             

 

 

 

Figure 1.3 Typical circular planform silo 
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The intermediate ring stiffener is expected to have sufficient strength and stiffness 

to fulfill its function properly.  The key requirement for this intermediate ring stiffener 

is to prevent or significantly control the circumferential displacements of the 

cylindrical shell at that level.  If the ring stiffener has inadequate stiffness then the 

circumferential uniformity of the axial stresses above it is not achieved.  Furthermore, 

there is an interaction between the cylindrical shell and the ring stiffener which causes 

stress resultants to develop in the ring.  These stress resultants could potentially cause 

failure of the ring stiffener either by yielding or by instability.   

 

1.2. Objectives and Scope 

 

The presence of discrete supports results in a non-uniformity of meridional 

stresses around the circumference.  One way of reducing the non-uniformity of these 

stresses is to use a very stiff ring beam which partially or fully redistributes the stresses 

from the local support into uniform stresses in the shell.  Another alternative is to use 

a combination of a flexible ring beam and an intermediate ring stiffener.  A three part 

analytical and numerical study has been conducted to address the issues related with 

silo supporting ring beams and ring stiffeners. 

 

The aim of the first study is to extend the stiffness criterion developed by Rotter 

(1985) to loading cases that produce global bending of the silo shell.  Pursuant to this 

goal the stiffness criterion is revisited.  The underlying assumption behind its 

development is extended to cover global shear and bending effects.  The applicability 

of the stiffness criterion is checked via extensive finite element analysis.   

 

The second study explores the extent to which a practical silo shell causes these 

stress resultants to be reduced when the ring beam has only practical stiffness.  

Pursuant to this goal the stress resultants produced in the ring beam were re-derived 

using Vlasov’s curved beam differential equations (Vlasov (1961), Heins (1975)).  The 

advantage of using Vlasov’s equations is that the transverse displacements can also be 

obtained from the differential relationships.  A finite element parametric study was 
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undertaken to explore the effect of ring beam flexibility on stress resultants and 

displacements for cases where the ring beam interacts with the silo shell.  The effects 

of the ring beam stiffness ratio on the stress resultants were explored. 

 

The third study explores the strength and stiffness requirements for intermediate 

stiffeners placed at ideal location or below this location, where the force transfer and 

displacement boundary conditions differ from those for a ring at the ideal location.  A 

general shell and ring combination is studied using the membrane theory of shells to 

identify the membrane shear forces induced in the shell by the ring.  These forces are 

then considered as loads applied to the intermediate ring stiffener.  Vlasov’s curved 

beam theory (Vlasov (1961)) is used to derive closed form expressions for the variation 

of the stress resultants around the circumference to obtain a suitable strength design 

criterion for the stiffener.  A stiffness criterion is then developed by considering the 

ratio of the circumferential stiffness of the cylindrical shell to that of the intermediate 

ring stiffener.  The circumferential displacements of the ring and the shell are found 

for the loading condition previously obtained to determine the required strength.  A 

simple algebraic expression is developed for this intermediate ring stiffness criterion.  

These analytical studies are then compared with complementary finite element 

analyses that are used to identify a suitable value for the intermediate ring stiffness 

ratio for practical design. 

 

1.3. Organization of Thesis 

 

This thesis consists of four chapters which follow the introduction.  The brief 

contents of these chapters can be summarized as follows:  

 

In Chapter 2, the effectiveness of a ring beam in an elevated silo structure in 

redistributing the discrete forces from column supports is investigated.  A criterion that 

can be used in design to determine the adequacy of a ring for the purpose of minimizing 

the non-uniformity of vertical stresses in the shell was proposed by Rotter (1985).  The 

applicability of the stiffness criterion proposed by Rotter (1985) to a silo shell resting 
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on a discretely supported ring beam and subjected to global shear and bending was 

studied herein.  A total of 4320 three dimensional finite element analyses were 

conducted to evaluate the stiffness ratio.   

 

In Chapter 3, design equations for ring beams used to support cylindrical shells 

are developed and re-derived.  Closed form design equations obtained from Vlasov’s 

curved beam theory were compared with numerical results.  A complementary finite 

element parametric study was also conducted to investigate variation of the values of 

stress resultants and displacements caused by the connection of the ring to the stiff 

shell.  These variations were plotted as a function of stiffness ratio developed by Rotter 

(1985). 

 

In Chapter 4, the effectiveness of an intermediate ring stiffener in reducing the 

non-uniformity of axial membrane stresses in the silo shell is investigated.  A design 

criteria for the strength and stiffness of intermediate ring stiffeners used in cylindrical 

silo shells resting on discretely supported ring beams is developed via extensive finite 

element analysis.   

 

Finally, Chapter 5 summarizes the conclusion from all studies performed as a part 

of this research program and recommendations.  
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CHAPTER 2 

 

 

APPLICATION OF RING BEAM STIFFNESS CRITERION FOR 

DISCRETELY SUPPORTED SHELLS UNDER GLOBAL SHEAR AND 

BENDING 

 

 

2.1. Ring Beam Stiffness Criterion for Discretely Supported Shells 

 

Studies on ring beam silo shell interaction mostly focused on the loading case that 

produces uniform axial line load on the cylindrical shell.  This condition represents 

forces produced on the shell wall due to the frictional resistance between the wall and 

the stored granular material.  On the other hand, lateral loads should also be considered 

in the design of silos.  These actions can be produced due to wind or earthquakes.  

Similar to axial loading the design against lateral loads which produce global shear 

and bending on the silo shell is greatly simplified if the simple bending theory can be 

utilized.  This assumption greatly relies on the ability of the ring beam in redistributing 

the support forces. 

 

The aim of this study is to extend the stiffness criterion developed by Rotter (1985) 

to loading cases that produce global bending of the silo shell.  Pursuant to this goal the 

stiffness criterion is revisited.  The underlying assumption behind its development is 

extended to cover global shear and bending effects.  The applicability of the stiffness 

criterion is checked via extensive finite element analysis.   

 

2.2. Derivation of Ring Beam Stiffness Criterion – A Revisit 

 

In the algebraic analysis of shells under non-symmetrical loads, it is normal 

practice to transform the loading into a harmonic series (Timoshenko and Woinowsky-

Kreiger, (1959), Novozhilov (1959), Kraus (1967), Flügge (1973)).  A harmonic 
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treatment is only feasible under geometrically linear conditions where the harmonics 

are decoupled.  In the case of the local forces from discrete supports, the dominant 

harmonic term is the fundamental (Flügge (1973), Rotter (1987)), which corresponds 

to the number of supports around the circumference (Figure 2.1).  The key features of 

the required stiffness for the ring beam are therefore captured if only the fundamental 

harmonic is used.  The idea here is that considering the fundamental harmonic should 

be sufficient to cover load cases that can be transformed into a harmonic series.  In the 

both axial line loading and global shear and bending cases local forces from discrete 

supports are produced which can be considered as non-symmetrical loads.  Therefore, 

it is logical to use the same stiffness criterion to study the effects of axial line loading 

and global bending.  As mentioned before the stiffness criterion was first devised by 

Rotter (1985).  Later the criterion was re-derived and its application to axial line 

loading was demonstrated by Topkaya and Rotter (2011).  The derivation of the 

stiffness criterion is presented again in this study to provide a background on its 

development.  

 

 

Figure 2.1 Fundamental harmonic of column support for 6 supports 

 

 

The criterion is based on developing a relationship to describe the relative 

stiffnesses of the cylindrical shell and the ring beam.  For this purpose, the ring beam 

and the cylindrical shell were treated separately and a compatibility requirement then 

imposed to determine the extent to which the redistribution of the column forces would 

be shared between the ring and shell.  It was assumed that the fundamental harmonic 

θ=0
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of column support given in Equation 2.1 is sufficient to evaluate the key features of 

the behavior of a discretely supported cylindrical shell. 

 

nqq xnx cos                                                                                                (2.1) 

 

where qx =  external distributed axial line load; qxn = Fourier coefficient for the nth 

harmonic of axial line load; n = number of uniformly spaced column supports; and  

= circumferential coordinate.  Based on this assumption, closed-form expressions were 

derived for the stiffnesses of the cylindrical shell and the ring beam.   

 

2.2.1. Ring Beams Subjected to Fundamental Harmonic of Column Support 

 

The Vlasov’s curved beam differential equations (Vlasov (1961), Heins (1975)) 

were used to study the response of the ring beam.  In general, the behavior of a curved 

beam is governed by a series of differential equations.  The equilibrium equations were 

first derived for the curved beam element shown in Figure 2.2, where three orthogonal 

internal forces and three internal moments develop at each cross-section.  The six basic 

equilibrium equations can be expressed as follows: 
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where Mr = bending moment in the ring about a radial axis; Mx = bending moment 

in the ring about a transverse axis; T = torsional moment in the ring; R = radius of the 

ring beam centroid; qx, q, qr = distributed line loads per unit length in the transverse, 

circumferential and radial directions respectively; mx, m, mr = distributed applied 

torques per unit circumference about the transverse, circumferential and radial 

directions respectively; Q = circumferential force in the ring; Qx, Qr = shear forces in 

the ring in transverse and radial directions respectively.  

 

 

 

Figure 2.2 Differential curved beam element and sign conventions 
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and can be uncoupled from the other two.  The two coupled differential equations of 

equilibrium can be expressed as: 
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To determine the transverse displacements, the global force-deformation 

relationships for a curved beam can be written as (Heins (1975)): 
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where E = modulus of elasticity; A = cross sectional area of the curved beam; G = 

shear modulus;  = angle of twist about the circumferential axis; ux, uθ, ur = 

displacements in the vertical (transverse), circumferential and radial directions 

respectively; Ir, Ix= second moment of area of the ring stiffener about the radial and 

vertical axes respectively; J = uniform torsion constant; Cw = warping constant for an 

open section. The first term (in the square brackets) in Equation 2.13 represents the 

response under St Venant torsion, while the second term represents warping.   

 

The transverse displacements of the ring beam arise from the transverse 

distributed force qx which is here applied to the ring by the cylindrical shell.  For a 
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concentrically loaded ring beam cross-section with the transverse forces passing 

through the shear center, no additional distributed torques are created.     

 

The bending moment and torsional moment variations around the circumference 

must be derived before the displacements can be deduced.  For the loading case 

represented by Equation 2.1 and without other loading terms (i.e. qr = q  = mr = m = 

mx = 0), Equations 2.8 and 2.9 can be solved simultaneously to obtain: 
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The resulting bending moment and torsional moment variations can be directly 

inserted into Equations 2.12 and 2.13 and solved simultaneously to find the vertical 

displacements as: 
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The stiffness of the ring can then be expressed as: 
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It should be noted that the vertical displacements of the ring arise due to bending 

and twisting of the ring.  Therefore, the stiffness of the ring as calculated by Equations 

2.18 and 2.19 is influenced by the bending and torsional rigidity of the ring. 

 

2.2.2. Cylindrical Shell Subjected to Fundamental Harmonic of Column Support 

 

Following the description of Calladine (1983), the dominant structural effects in 

a discretely supported shell are circumferential bending and axial stretching.  Under 

these conditions, the shell can be approximately modeled by ignoring all axial bending 

and twisting of the wall, together with circumferential stretching effects.  These 

assumptions lead to the semi-membrane theory of shells.  

 

The semi-membrane theory of shells for unsymmetrical loading of cylindrical 

shells was proposed by Vlasov (1964).  This approximate theory is based on three 

assumptions; (i) the bending (Mx), and twisting (Mx) moments at sections normal to 

the shell generator are insignificant and can be neglected, (ii) the circumferential strain 

() and the shear strain (x) on the middle surface are neglected, (iii) Poisson’s ratio 

is zero (0). A detailed summary of the semi-membrane theory for cylindrical shells 

was presented by Ventsel and Krauthammer (2001).  Considering the cylindrical shell 

element shown in Figure 2.3, the equilibrium equations may be found as: 
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where Nx = axial membrane stress resultant; N = circumferential membrane stress 

resultant; Nx = membrane shear stress resultant; M = circumferential bending 

moment; px, p, pr = external distributed pressures in the axial, circumferential and 

radial directions, respectively. 

 

The membrane forces Nx and N can be eliminated in Equation 2.20 to derive a 

single differential equation that relates Nx to M as: 
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where the operator , is called Vlasov’s operator: 
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Figure 2.3 Internal forces and moments for shell element 

 

Taking into account the assumptions of the semi-membrane theory ( = x = x 
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where ux, u, ur = displacements in the axial, circumferential, and radial directions, 

respectively; x,  = strain components in the axial and circumferential directions, 

respectively; x = shear strain component; x,  = bending curvatures in the directions 

of axial and circumferential coordinate lines, respectively; x = twist of a differential 

element of the middle surface due to the shell bending. 

 

Based on the assumptions adopted, the constitutive equations can be represented 

in the form: 
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where t = thickness of the cylindrical shell; D = bending rigidity of the cylindrical 

shell. 

 

Following Ventsel and Krauthammer (2001), the governing differential equation 

of the semi-membrane theory can be derived in terms of a displacement function () 

which is introduced as: 
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The constitutive equations in terms of the displacement function, , take the form: 
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The governing partial differential equation of the semi-membrane theory of 

cylindrical shells is then obtained by substituting Equation 2.27 into Equation 2.21:  
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The above differential equation must be solved to obtain the axial displacements 

of the cylindrical shell under the action of the fundamental harmonic of the column 

support.  The particular solution vanishes when px = p = pr = 0.  The displacement 

function can be assumed to take the form: 

 

 nx cos)(  (2.29) 

 

which permits compatibility with the ring beam deformations of Equation 2.16. 

The governing ordinary differential equation then takes the form: 
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For a specific harmonic n, the solution has the form: 
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where C1, C2, C3, C4 = constants to be determined to satisfy the boundary 

conditions. 

 

The parameter   is the long wave bending half wavelength (Calladine (1983)), 

expressed as: 
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The constants (C1, C2, C3, C4) can be determined by applying the boundary 

conditions.  The circumferential displacements at the bottom and top of the shell are 

zero due to the restraints provided by attached shells at these locations.  An axial line 

loading described by Equation 2.1 is applied at the bottom of the shell while the top of 

the shell is free from any axial loading.  These boundary conditions can be expressed 

as: 
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where H = the height of the cylindrical shell. 

 

The resulting displacements at the level (x = 0) where the harmonic traction is 

applied can be found as: 
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where 
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in which   /2 H . 

 

Finally, the stiffness of the cylindrical shell (Kshell) can be represented as: 
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2.2.3. Stiffness Ratio 

 

The expressions developed for the stiffnesses of cylindrical shell and ring beam 

can be combined to obtain the ratio of their stiffnesses , which describes the stiffness 

required to maintain displacement compatibility.  The stiffness ratio corresponds to the 

extent to which the shell is required to carry non-symmetrical stresses due to the 

supports: 
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This ratio is intended to give a strong indication of the effectiveness of the ring in 

the role assigned to it.  If the ring is stiff compared with the shell, it should achieve the 

goal of redistributing the discrete forces from the supports and providing relatively 

uniform support to the shell.  This corresponds to a low value of the stiffness ratio .  

By contrast, where the ring beam is not very stiff, and high values of  are found, it is 

likely that the ring beam will fail to redistribute the discrete forces, the shell will be 

subject to high local meridional membrane stresses above the support, and there is 

considerable potential for buckling failures in this location (Teng and Rotter (1992), 

Guggenberger et al. (2000), Guggenberger et al. (2004)).     

 

The applicability of the stiffness ratio to the case with axial line loading was 

studied by Topkaya and Rotter (2011) through finite element analysis.  Different 

combinations of ring beams and silo shells were considered.  The silo shell was loaded 

with a uniform axial load at the top and the peak value of axial membrane stress above 

the ring beam was calculated using linear finite element analysis.  Its value relative to 
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the uniform applied load is termed the “stress amplification ratio ”. A plot of the stress 

amplification ratio as a function of the stiffness ratio is given in Figure 2.4.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Relationship between ring beam stiffness ratio and stress 

amplification ratio for axial line loading 

 

The following upper bound was developed to quantify the response. 
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Axial compression buckles are relatively short in the axial direction (Timoshenko 

and Gere (1961), Calladine (1983), Rotter (2004)), so axial non-uniformity has little 

effect on the buckling strength.  However, circumferentially non-uniform stresses lead 

to very different buckling conditions (Greiner and Guggenberger (1998), 

Guggenberger et al. (2000), Guggenberger et al. (2004), Rotter et al. (2011)), so it is 

vital to determine both the peak values and the rate of decay away from the peak 
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(Rotter (1986), EN 1993-4-1 (2007), ECCS (2008)).  The presence of discrete supports 

produces circumferentially non-uniform stresses for shells under axial compression or 

shear and bending.  Where a single ring beam is used, Equation 2.38 can be used to 

determine the peak value under axial compression due to the non-uniformity of stresses 

caused by discrete supports.  Sonat et al. (2015) developed a methodology for buckling 

assessment of silo shells resting on discretely supported ring beams.  The methodology 

requires the peak value of stress above the support and this value can be readily found 

using Equation 2.38. 

 

2.3. Numerical Study 

 

A parametric study was conducted using linear analysis of three dimensional finite 

element structures to evaluate the applicability of the stiffness ratio to silo shells under 

global shear and bending.  The commercial finite element program, ANSYS (2010), 

was used to perform the numerical analyses.  To cover a wide range of behaviors, 

cylindrical shells and ring beams with many geometries were studied.   

 

Four-node shell elements (shell63) were employed to model the cylindrical shell.  

The ring beam was modeled using two-node beam elements (beam 4).  A 

representative finite element mesh of the silo shell and ring beam is given in Figure 

2.5.  At the bottom, the nodes shared by the cylindrical shell and the ring beam were 

restrained against displacement in the radial direction only.  The radial restraint 

simulates the restraint provided by the hopper which is attached to the bottom of the 

shell.  Because the ring beam is stiff in the circumferential direction, it provides a 

natural restraint against circumferential displacements.  Nodes lying within the width 

of the support on the base of the ring beam were restrained against vertical movement 

ux.  Four support conditions were considered.  The first one represents a knife edge 

support where vertical movement of only one node is restrained at each support (Figure 

2.5).  In the past, a support width-to-radius ratio of 0.2 was considered by Teng and 

Rotter (1992).  Support width-to-radius ratios of 0.05, 0.10, and 0.20 were considered 

to cover a range of support conditions (Figure 2.5).  The connected shell which is a 
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circular plate at the top was modeled explicitly by 20 mm thick three-node and four 

node shell elements as shown in Figure 2.5.  A concentrated load of 2000 kN in the 

horizontal direction was applied at the center of the circular plate.  The concentrated 

load was oriented to produce maximum amount of non-uniformity in axial membrane 

stresses as shown in Figure 2.5.  For all analyses, the modulus of elasticity was taken 

as 200 GPa and Poisson’s ratio as 0.30.   

 

 

 

Figure 2.5 A typical finite element mesh for the cylindrical shell and ring beam, 

support conditions and connection of shell and ring 

 

The ability of the ring beam in redistributing the axial membrane stresses was 

explored first.  In the absence of a ring beam the stresses due to global shear and 

bending can be calculated using simple bending theory.  In other words the following 

formula can be used to determine the maximum axial membrane stress in a ground 
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supported silo shell under global bending actions which can be used as a reference 

(ref). 

 

tR

M

I

Mc
ref 2

   (2.39) 

 

where M = bending moment at the base of the silo; c = maximum distance from 

the centroid of the cylindrical shell cross-section to the point of interest (c = R); I = 

second moment of area of the cylindrical shell cross-section. 

 

The accuracy of Equation 2.39 was assessed by analyzing a ground supported silo 

with R = 3000 mm, H = 10000 mm, and t = 6 mm using the finite element modeling 

details presented earlier.  Comparison of the axial membrane stress variations around 

the circumference given in Figure 2.6 indicates that using simple bending theory 

provides an accurate representation of the stresses obtained using a more detailed 

numerical analysis.  In other words the reference stress (ref) can be used to represent 

the maximum axial membrane stress for a silo shell under global shear and bending in 

the absence of a ring beam.   

 

For the parametric study, the finite element models described earlier were adopted, 

with different geometries defined as radius R = 3000 and 4000 mm, thickness t = 6, 8, 

and 10 mm, shell heights H = 10000, 15000, 20000 mm, and number of supports n = 

3 and 4.  A total of 36 combinations were adopted for the shell geometries with 30 

different square hollow section beam geometries.  The hollow section ring beams had 

wall heights of 300, 400, 500, 600, 700, 800 mm and wall thicknesses of 30, 40, 50, 

60, and 70 mm.  Different cross-section dimensions provide variations in the cross-

section properties.  A total of 1080 cases were analyzed for each of the support 

conditions using the finite element method resulting in a total of 4320 analyses.  
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Figure 2.6 Verification of simple bending theory for silo shells under global bending 

 

The finite element analyses were chiefly used to explore the variation of the axial 

membrane stress at the base of the cylindrical shell over the support.  This gives a 

measure of the uniformity of support provided by the ring beam.  Where the ring beam 

is very effective in distributing the discrete forces from the supports (e.g.  =0.01), the 

stress levels in the shell over the support should be equal to the reference stress (ref) 

obtained from Equation 2.39.  Where the ring is ineffective (e.g.  = 10), the stress 

above the support is very much greater than the reference stress (ref).  Typical 

variations of axial membrane stress are shown in Figure 2.7 for a cylindrical shell of 

radius 3000 mm, height 10000 mm, thickness 6 mm, and resting on 4 supports.  In this 

figure the stress variation for a ground supported silo shell is provided as a reference 

where the maximum stress is reached over the support (=0o) with a value equal to 

118 MPa.  Two different ring beam geometries were considered.  The first one has a 

wall height of 800 mm and a wall thickness of 50 mm and represents a sizeable ring 

beam geometry ( = 0.05).  In this case the maximum axial membrane stress is 

calculated as 123 MPa at =6o which results in an increase of 4.2%.  The second beam 

has a wall height of 300 mm and a wall thickness of 50 mm and represents a relatively 
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flexible beam ( = 1.29).  For this case the maximum axial membrane stress is 

calculated as 218 MPa at =6o which results in an increase of 84.7%.  The 

aforementioned cases were analyzed for the support width to radius ratio of 0.2.  The 

locations where the support width terminates are indicated by dashed solid vertical 

lines in Figure 2.7.  The analysis results show that the stresses are smoothened over 

the support and the maximums are reported at locations where the support width 

terminates.  For comparison purposes the results for the flexible beam case with a knife 

edge support is also reported in Figure 2.7.  In this case the smoothening action of the 

support is not present and the maximum axial membrane stress is calculated as 321 

MPa at =0o which results in an increase of 172.0%.  These observations strengthen 

the assertion that the stiffness of the ring beam plays a very important role in the 

redistribution of support forces.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Variation of axial membrane stress along the circumference for cases with 

different beam geometries and support conditions 
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normalized by the reference stress (=max/ref) and are plotted in Figures. 2.8, 2.9, 

2.10 and 2.11 against the stiffness ratio  defined by Equation 2.37.  The results for a 

knife edge support are given in Figure 2.8 while the ones for other support-width-to-

radius ratios are given in Figures 2.9, 2.10, and 2.11.  The first conclusion from the 

analysis results is that the stiffness ratio  clearly captures the trend of the data.  The 

data points fall within a narrow band similar to the behavior presented in Figure 2.4.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 Relationship between ring beam stiffness ratio and stress amplification 

ratio for global bending (knife edge support) 

 

The analysis results revealed that the stiffness ratio can be applied to silo shells 

under global shearing and bending actions.  There are marked differences between the 

cases with different support conditions.  The knife edge support condition produced 

much higher stress amplification ratios () when compared with the amplifications for 

a finite width support.  This is an expected outcome as the smoothening action of the 

support described earlier and presented in Figure 2.7 is not present in the case of a 
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knife edge support.  The following upper bound expressions were developed to 

represent the data.      
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 55.0ln165.170.1    for a support width-to-radius ratio of 0.05  (2.41) 

 77.0ln20.133.1    for a support width-to-radius ratio of 0.10 (2.42) 

 6.0ln88.045.1    for a support width-to-radius ratio of 0.20 (2.43) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 Relationship between ring beam stiffness ratio and stress amplification 

ratio for global bending (support width to radius ratio of 0.05) 
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Figure 2.10 Relationship between ring beam stiffness ratio and stress amplification 

ratio for global bending (support width to radius ratio of 0.10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11 Relationship between ring beam stiffness ratio and stress amplification 

ratio for global bending (support width to radius ratio of 0.20) 
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The upper bound expressions for the finite width support (Equations 2.40 through 

2.43) are compared with the upper bound expression (Equation 2.38) developed for a 

silo shell under axial line load in Figure 2.12. It is evident from this figure that the 

stress amplification ratio increases () as the support width-to-radius ratio decreases. 

The highest values of amplifications are reported for the knife edge support case as 

expected.  There are marked differences between the behaviors reported for the axial 

line loading and loadings that create global bending. It should be mentioned that the 

expression (Equation 2.38) for axial line loading was developed based on a support 

width-to-radius ratio of 0.2. When this expression is compared with its counterpart 

(shell under global bending with support width-to-radius ratio of 0.2, i.e. Equation 

2.43) differences are observed for the range <6. In general, the axial line loading 

produces higher stress amplifications when compared with a loading that causes global 

bending. 

 

 

 

Figure 2.12 Comparison of responses for different support width-to-radius ratios 
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CHAPTER 3 

 

 

ANALYSIS OF SILO SUPPORTING RING BEAMS RESTING ON 

DISCRETE SUPPORTS 

 

 

3.1.  Algebraic Closed-form Solution of Stress Resultants in the Ring Beam using 

Vlasov’s Curved Beam Theory 

 

The Eurocode EN 1993-4-1 (2007) only provides design equations for stress 

resultants produced in the isolated ring beam under uniform transverse loading.  These 

stress resultants were derived by Rotter (1985) using equilibrium equations only.  This 

study explores the extent to which a practical silo shell causes these stress resultants 

to be reduced when the ring beam has only practical stiffness.  

 

The free body diagram of a closed section ring beam cross-section is indicated in 

Figure 3.1.  By examination of this free body diagram, the forces acting in the two 

principal directions, the uniformly distributed vertical load (nv) and the radial inward 

load (nr), can be expressed as follows: 

 

  sin                         cosn hh nnnn rxcv                                         (3.1) 

 

where nxc =  the design value of compressive membrane stress resultant at the base 

of the cylinder; nh = the design value of tensile membrane stress resultant at the top 

of the hopper; β = the hopper half angle. 

 

As shown in Figure 3.1 the forces in the two principal directions act eccentrically 

with respect to the ring beam centroid (C).  These forces can be decomposed into three 

basic loads on the ring beam shown in Figure 3.1 where the vertical and inward loads 

act through the centroid of the cross-section.  The three basic loads are the transverse 
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distributed load (qx), the circumferentially distributed torque (m), and the 

concentrated torque at the supports (ms) which can be expressed by the following 

relationships: 
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where er = the radial eccentricity of the cylinder from the ring beam centroid; es = 

the radial eccentricity of the support from the ring beam centroid; ex = the vertical 

eccentricity of the joint centre from the ring beam centroid; 0 = the circumferential 

angle in radians subtended by the half span of the ring beam (0 = π/n); n = the number 

of equally spaced discrete supports; Q = support force. 

 

 

Figure 3.1 Simplified load-carrying mechanism model for the ring beam 

 

The ring beam is analyzed for these three different load cases in turn. 

 

3.1.1. Derivation of stress resultants – ring under transverse distributed load (qx) 

 

For the case where the only transverse distributed load (qx) is concentrically 

applied to the ring (i.e. qr = q  = mr = m  = mx = 0), the six basic equilibrium equations 
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which are given Equation 2.2 through 2.7 for the curved beam element in Figure 2.2 

can be reduced to three differential relationships.  One differential equation concerns 

bending of the ring in its own plane and can be uncoupled from the other two.  The 

two-coupled differential equations of equilibrium can be expressed as: 

 

0
1














rM

T

R 
                                                                                     (3.3) 

     x
r q

TM

R






















2

2

2

1
                                                                   (3.4) 

 

Simultaneous solution of Equations 3.3 and 3.4 using the appropriate boundary 

conditions (Mr(0)=Mr(2θ0), T(0)=T(2θ0)=0) reveal the following relationships: 
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                                         (3.5)
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3.1.2. Derivation of stress resultants – ring under circumferential distributed 

torque (mθ)  

 

In the same manner, the following two coupled differential equations are obtained 

for the case where only a circumferentially distributed torque (mθ) is applied to the 

ring (i.e. qx = qr = q  = mr = mx = 0):  
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Simultaneous solution of Equations 3.7 and 3.8 using the appropriate boundary 

conditions (Mr(0)=Mr(2θ0), and T(0)=T(2θ0) =0) reveals the following relationships: 
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 xrrvrr eneneRM  )()(                                                                                   (3.9) 

          0)( T                                                                                                         (3.10) 

 

3.1.3. Derivation of stress resultants – ring under concentrated torque at the 

supports (ms) 

 

The following coupled differential equations are obtained for the case where the 

concentrated torques (ms) are applied at the supports of the ring (i.e. qx = qr = qθ = mx 

= mr = mθ = 0):  
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Simultaneous solution of Equations 3.11 and 3.12 using the appropriate symmetry 

boundary conditions that considering the conditions of continuity (Mr(0)=Mr(2θ0), 

T(θ0)=0 and T(0)=ms/2) reveals the following relationships: 

 

  coscotsin)()( 00  rsvr eRenM                                                   (3.13) 

  sincotcos)()( 00  rsv eRenT                                                      (3.14) 

 

Equations 3.5, 3.9 and 3.13 can be superposed to obtain the bending stress 

resultant and similarly Equations 3.6, 3.10 and 3.14 can be superposed to obtain the 

torsional stress resultant as follows:  
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Equations 3.15 and 3.16 are identical to those ones developed by Rotter (2001) 

and provided in the Eurocode EN 1993-4-1 (2007).  One advantage of using the 

Vlasov’s curved beam differential equations is that the transverse displacements of the 

beam can be obtained. The global force-deformation relationships for the transverse 

displacements were given in Equation 2.10 through 2.13. 

  

The present study focuses on closed sections where the St. Venant’s term 

dominates over the warping term. Therefore, the warping term is neglected in the 

calculations (i.e. Cw0). Combining Equations 2.12 and 2.13 reveals the following 

differential relationship: 
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The resulting bending moment and torsional moment variations which are given 

in Equations 3.15 and 3.16 can be directly inserted into Equation 3.17 and solved using 

the appropriate boundary conditions (ux(0) = ux(2θ0) = 0, ux′ (0) = ux′ (2θ0)) to find the 

transverse displacements as: 
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3.2. Computational Verification of the Closed Form Solutions 

 

Linear three dimensional finite element analysis was conducted to verify the 

accuracy of these equations for the stress resultants and displacements in the transverse 

direction.  The commercial finite element program, ANSYS (2010), was used to 

perform the numerical analyses.  The isolated ring beam analyzed here rests on n = 4 

supports and has a cylinder radius of R = 3000 mm. A 500 mm  500 mm square 

hollow section with wall thickness of 50 mm was selected for the ring beam cross 

section.  A constant uniform transverse loading (nv) of 1.5 kN/mm was applied to the 
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ring beam.  All eccentricity terms were neglected for simplicity.  The ring beam was 

modelled using two-node beam elements (beam4) as shown Figure 3.2a.  The modulus 

of elasticity was taken as 200 GPa and Poisson’s ratio as 0.30.  The ring beam was 

assumed to rest on knife edge supports which were modelled by restraining only a 

single node at each support location.  

 

 

 

Figure 3.2 Finite-element modelling for the ring beam and cylindrical shell 

 

The calculated variations of Mr, Tθ and ux in the circumferential direction are 

shown in Figures 3.3, 3.4 and 3.5 respectively, together with the predictions of the 

closed form solutions (Equations 3.15, 3.16 and 3.18).  When an isolated ring beam is 

considered, the comparisons show that the above equations provide very accurate 

solutions, with the largest differences being 0.078%, 0.002% and 0.024% for 
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maximum bending moment in the ring about a radial axis, torsional moment and 

transverse displacement respectively. 

 

To investigate the behavior of a ring that interacts with the silo shell, silo structures 

with a ring beam were next considered with different shell thicknesses t = 4 and 10 

mm and a constant height H = 10000 mm. The same support conditions and ring beam 

properties were used.  A uniform axial load (nv = 1.5 kN/mm) was applied to the top 

of the cylindrical shell around the full circumference. For a cylindrical shell resting on 

n equally spaced discrete supports, there are 2n planes of symmetry. The 

computational time was reduced by modelling only a segment covering an angle of 

/n, as shown in Figure 3.2b.  Four-node shell elements (shell63), with a size of 

100 mm in both the axial and circumferential directions, were employed to model the 

cylindrical shell. Symmetry boundary conditions were applied to the nodes on each 

symmetry plane. In practice, silo cylindrical shell walls are normally connected to 

other conical shells at the top and the bottom. These conical pieces effectively prevent 

out-of-round displacements of the cylinder at the two extremes. In this study, the 

restraining effect of the connected shells was modeled by restraining the displacements 

at these points. At the top both the radial and circumferential displacements and at the 

bottom only the radial displacements were restrained.   

 

The variation of the stress resultants and displacement are shown in Figures. 3.3, 

3.4 and 3.5 respectively.  When the 4 mm thick shell was considered, the comparisons 

show that the above equations provide conservative solutions for the ring, with the 

largest differences being 18.2%, 14.7% and 14.8% for maximum bending moment 

about a radial axis, torsional moment and transverse displacement respectively.  When 

the 10 mm thick shell was considered, the comparisons show that the above equations 

provide more conservative solutions for the ring, with the largest differences being 

48.6%, 38.3% and 38.5% for maximum bending moment about a radial axis, torsional 

moment and transverse displacement respectively. 
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Figure 3.3 Comparison of closed form solution with numerical solutions for the ring 

beam bending moment (Mr) 

 

 

 

Figure 3.4 Comparison of closed form solution with numerical solution for the 

ring beam torsional moment (Tθ) 
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Figure 3.5 Comparison of closed form solution with numerical solutions for the 

ring beam transverse displacement (ux) 

 

3.3. Effect of Ring Beam Stiffness on Ring Beam Stress Resultants and 

Displacements 

 

The interaction between the ring beam and the silo shell depends strongly on the 

stiffness of each component.  Similarly, the redistribution of the support forces is 

directly related to the stiffness of the ring beam relative to the stiffness of the 

cylindrical shell.  A ring beam stiffness ratio (ψ) was developed by Rotter (1985) and 

further developed and verified by Topkaya and Rotter (2011). Derivation of ring beam 

stiffness ratio was presented in Chapter 2. The relationship between the ring beam 

stress resultants and the ring beam stiffness ratio was explored in this section.  Finite 

element parametric study was conducted to correlate the ring beam stiffness ratio with 

the ring beam stress resultants and displacements.    
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3.3.1.  Computational assessment of the ring beam stiffness ratio 

 

Finite element analyses were chiefly used to explore the variation of the bending 

moment in the radial direction, torsional moment and transverse displacement of the 

ring beam as a function of stiffness ratio in this study.  The finite element models 

described earlier were adopted, with geometries defined as radius R = 3000 and 4500 

mm, thickness t = 4, 6, 8 and 10 mm, shell heights of 6000, 8000, 10000, 15000 and 

18000 mm, with all cylindrical shells having the same number of supports n = 4, since 

this is the commonest arrangement in practice.  A total of 40 combinations were 

adopted for the shell geometries with 30 different square hollow ring beam geometries 

resulting in 1200 analysis cases.  For the ring beams wall heights of 400, 450, 500, 

550, and 600 mm and wall thicknesses of 20, 30, 40, 50, 60, and 70 mm were 

considered. Different cross-section dimensions provide variations in the cross section 

properties.   

 

In each analysis, the bending moment in the radial direction (Mr,max) at the support 

and at the mid-span, the maximum torsional moment (Tθ,max) and the maximum 

displacement in the transverse direction (ux,max) of the ring beam were recorded.  A 

reference bending moment (Mr,ref) at the support and mid-span, reference torsional 

moment (Tθ,ref) and reference transverse displacement (ux,ref) were determined from the 

above closed form solutions. The normalised differences between the calculated and 

reference values (Mr,ref  Mr,max)/Mr,ref, (Tθ,ref  Tθ,max)/Tθ,ref and (ux,ref  ux,max)/ux,ref are 

plotted in Figures 3.6, 3.7, 3.8 and 3.9 as a function of the stiffness ratio ψ respectively.  
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Figure 3.6 Assessment of the ring stiffness ratio (ψ) for the bending moment in the 

radial direction (support moment)

 

Figure 3.7 Assessment of the ring stiffness ratio (ψ) for the bending moment in the 

radial direction (span moment) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.01 0.1 1 10 100

Stiffness Ratio ( )

(M
r,

re
f-

M
r,

m
a
x
)/

M
r,

re
f 
- 

S
u

p
p

o
rt

FE Calculations Fitted Bound

0

0.2

0.4

0.6

0.8

1

1.2

0.01 0.1 1 10 100

Stiffness Ratio ( )

(M
r,

re
f-

M
r,

m
a
x
)/

M
r,

re
f 
- 

S
p

a
n

FE Calculations Fitted Bound



44 

 

 

Figure 3.8 Assessment of the ring stiffness ratio (ψ) for the torsional moment 

 

 

Figure 3.9 Assessment of the ring stiffness ratio (ψ) for the transverse displacement 
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   The results indicate that the stiffness ratio (ψ) clearly captures the trend of the 

data. The data points for bending moment at the support and mid-span, torsional 

moment and transverse displacement each fall within a rather narrow band.  The results 

show that the reduction below the isolated ring beam values caused by the shell 

structure can be directly related to the ring beam stiffness ratio.  The reduction in mid-

span bending moment is much more pronounced when compared with the support 

moment. 

The following relationships provide conservative bounds which can be used at the 

design stage to find out the reduction in response quantities. 
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CHAPTER 4 

 

 

REQUIREMENTS FOR INTERMEDIATE RING STIFFENERS ON 

DISCRETELY SUPPORTED SHELLS 

 

 

4.1. Behavior of Cylindrical Shells with Intermediate Ring Stiffeners 

 

One alternative method of achieving uniform axial membrane stresses is to use an 

intermediate ring stiffener with a flexible ring beam as shown in Figure 4.1 (i.e. double 

ring arrangement of Figure 1.1f).  Greiner (1983, 1984), Öry et al. (1984) and Öry and 

Reimerdes (1987) showed that an intermediate ring stiffener can be very effective in 

reducing the circumferential non-uniformity of axial stresses in the shell.  Studies 

conducted by these researchers identified the variation of the axial membrane stress 

distributions up the height of the shell.  It was shown that an intermediate ring stiffener 

can achieve a dramatic decrease in the peak axial membrane stress, producing a more 

uniform stress state above the intermediate ring.  Recently Topkaya and Rotter (2014) 

showed that there is an ideal location for an intermediate ring stiffener, such that the 

axial membrane stress above this ring is circumferentially completely uniform.  The 

ideal location is identified by the height HI above the ring beam, defined as the vertical 

distance between the top of the ring beam and the centre of the intermediate ring 

stiffener as shown in Figure 4.1. This was determined analytically and is expressed in 

terms of basic geometric variables as follows (Topkaya and Rotter (2014)):    
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For the case where 3.0 , Equation 4.1 simplifies further into:  
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Equation 4.2 clearly indicates that the ideal ring location depends on only two 

geometric parameters: the radius R of the cylindrical shell and the harmonic number, 

which is closely related to the number of supports n.  The height of the ideal ring is 

thus directly proportional to the radius, which identifies an aspect ratio for the lower 

section, and inversely proportional to the number of supports.  It may be noted that 

each additional term of the harmonic series indicates an ideal height that is lower than 

this, so all terms are, in a sense, covered by this provision.   

 

 

 

Figure 4.1 Typical circular planform silo 

 

 In cases where a shell with large radius rests on a few supports, the ideal location 

can be quite high and the option of placing the intermediate ring stiffener below the 

ideal height may provide a viable solution.  A cylindrical shell with its axis vertical 

and supported on a single ring beam at the base (Figure 4.1) was analyzed using the 

finite element method by Topkaya and Rotter (2014) to study the effects of introducing 
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an intermediate stiffener at different heights. The steel silo structure analyzed had a 

cylinder radius of 3000 mm and a height of 10000 mm with a constant thickness of 6 

mm.  The cylinder had a ring beam at its lower boundary which rested on 4 equally 

spaced discrete stiff supports. The ring beam had an I-shaped cross section with a web 

height and thickness of 500 mm and 10 mm, respectively.  The flange width and 

thickness of the ring beam were 200 mm and 15 mm respectively.  The ring beam at 

the lower boundary of the shell was deliberately selected as of relatively low stiffness 

to ensure that a high stress amplification ratio ζ would be produced.  The cylindrical 

shell was loaded uniformly from the top with a unit value of axial stress.  Three cases 

were studied where the first case represents no intermediate ring, the second case 

represents an intermediate ring placed at half of the ideal height (HI/2) and the third 

case represents an intermediate ring placed at the ideal height (HI) (actually at 4R/n, 

which is just above the strict ideal value). The axial membrane stresses calculated in 

the finite element analyses were normalized by the applied axial stress (=1.0).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Variation of normalized axial membrane stress throughout the shell 

 

The stress variations down the height on the generator above the support (θ=0) are 
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this shell generator, the axial membrane stress progressively reduces from just above 

the ring to the top of the shell and the entire shell is involved in this redistribution. 

When the stiffener is placed at 1500 mm above the shell base (HI/2), the normalized 

axial stress above the stiffener is reduced from 2.32 to 1.21, but when it is placed at 

3000 mm (HI) this stress is reduced from 1.95 to 0.89, which is a slight 

overcompensation, since the value 1.0 corresponds to a completely circumferentially 

uniform axial stress. 

 

The circumferential variation of the normalized stresses is shown in Figures 4.3 

through 4.5, where the pattern at 3 different levels is shown: at the base of the cylinder 

(x=0) (the top surface of the ring), at half of the ideal height (x=1500 mm) and at the 

ideal height (x=3000 mm).   Naturally, the axial stresses vary around the circumference 

and the variation declines as the peak membrane stress is progressively redistributed. 

The intermediate stiffener at x=1500 mm forces the stresses at and above this level to 

be fairly uniform (Figure 4.4), with the normalized stress deviating from uniformity 

by only ±20% (between 1.2 and 0.8).  The intermediate stiffener at x=3000 mm (Figure 

4.5) also forces the stresses at this level to be fairly uniform, but actually over-

compensates for the effect, causing a dip to 0.89 above the support and a rise to 1.07 

away from it, producing a deviation from uniformity of around ±10%. 

 

When a stiffener is placed at the ideal height, it may arrest the circumferential non-

uniformity of the axial stresses, rendering the zone above it uniformly stressed.  Thus, 

an intermediate ring stiffener could be a viable design option to render the axial 

stresses above it quite uniform.  The shell wall above such a stiffener can then be 

designed for simple uniform axial compression, requiring only a thin wall.  The shell 

below this point would need to be thicker to resist local buckling, but this is a less 

demanding requirement because the shell wall thickness normally increases greatly 

towards the base and often has more buckling capacity than is necessary. 
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Figure 4.3 Normalized axial membrane stress at various levels: Variation around the 

circumference from the support to midspan: no intermediate ring 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Normalized axial membrane stress at various levels: Variation around the 

circumference from the support to midspan: intermediate ring 1500 mm above the 

base ring 
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Figure 4.5 Normalized axial membrane stress at various levels: Variation around the 

circumference from the support to midspan: intermediate ring 3000 mm above the 

base ring 

 

A ring at a lower location still has a significant effect on the circumferential 

variation of the axial stresses, but it does not render them uniform.  As mentioned 

before, placing an intermediate ring stiffener below the ideal height can provide an 

economical solution for silos with a large radius and resting on a few supports.      
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circumferential uniformity of the axial stresses above it is not achieved.  Furthermore, 

there is an interaction between the cylindrical shell and the ring stiffener which causes 

stress resultants to develop in the ring.  These stress resultants could potentially cause 

failure of the ring stiffener either by yielding or by instability.   

 

This study explores strength and stiffness requirements for intermediate ring 
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is studied using the membrane theory of shells to identify the membrane shear forces 

induced in the shell by the ring.  These forces are then considered as loads applied to 

the intermediate ring stiffener.  Vlasov’s curved beam theory (1961) is used to derive 

closed form expressions for the variation of the stress resultants around the 

circumference to obtain a suitable strength design criterion for the stiffener.  A relative 

stiffness criterion for the ring is then devised by considering the ratio of the 

circumferential stiffness of the cylindrical shell to that of the intermediate ring.  Using 

the same loads on the ring as for the strength determination, the circumferential 

displacements of the ring and the shell are derived.  A simple algebraic expression is 

then developed to determine this relative stiffness.  These analytical studies are then 

verified using a wide range of finite element analyses to identify suitable limiting 

values for use in practical design.     

 

4.2. Stress and displacement transfer into intermediate ring stiffeners 

 

Topkaya and Rotter (2014) determined the ideal location for an intermediate ring 

stiffener using the membrane theory of shells (Rotter (1987), Timoshenko and 

Woinowsky-Krieger (1959), Flügge (1973), Seide (1975), Ventsel and Krauthammer 

(2001)).  The loading on intermediate ring stiffeners can be obtained by solving for the 

reactions on the shell produced by a stiffener infinitely stiff in its own plane.    

 

All deformations, loading and stress resultants can be expressed in terms of a 

harmonic series around the circumference (Timoshenko and Woinowsky-Krieger 

(1959), Flügge (1973), Novozhilov (1959), Kraus (1967), Calladine (1983)) in order 

to solve the governing differential equations.  In the case of discrete supports, the rapid 

decay in the effect of higher terms (Rotter (1990)) means that the fundamental 

harmonic term of the column support force is sufficient to study the requirements of 

the ring stiffener, so the support force can be represented by Equation 2.1. 

 

The cylindrical shell is here separated into two parts: an upper shell and a lower 

shell with the intermediate ring at their junction, as shown in Figure 4.6, which also 
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indicates the chosen boundary conditions. The lower shell, of height HL, is subjected 

to the fundamental harmonic of the column support.  The upper shell is assumed to be 

unloaded on its upper boundary and restrained against circumferential displacements 

by a ring.  Topkaya and Rotter (2014) demonstrated that the interface between the 

lower shell and upper shell will be free of both axial stress and axial displacements if 

an intermediate ring is placed at the ideal location.  When the intermediate ring is 

placed below the ideal location some level of axial stress non-uniformity is present in 

the upper shell segment. In addition, the axial displacements no longer vanish, so the 

nonzero axial displacements can also be found at this interface.  

 

 

 

Figure 4.6 Boundary conditions used in closed-form solution 

 

Considering the cylindrical shell element shown in Figure 4.7, the equilibrium 

equations are: 
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where Nx, N, Nx = axial, circumferential and shear membrane stress resultants 

respectively; and px, p, pn = external distributed pressures in the axial, circumferential 

and radial directions respectively. 

The strain displacement and constitutive relationships can be written as: 
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where ux, uθ, ur = displacements in the axial, circumferential and radial directions 

respectively; εx, ε  = strains in the axial and circumferential directions respectively; 

γx = shear strain; ν = Poisson’s ratio; E = modulus of elasticity; G = shear modulus; 

and t = thickness of the shell. 

 

 

 

 

 

 

 

 

Figure 4.7 Loading, displacements and stress resultants in an element of the 

cylindrical shell 

 

The circumferential membrane stress resultant is directly obtained from Equation 

4.5 as: 

 

npRN                                                             (4.9) 



x
ux

u

ur
Nx

N

Nx

membrane

forces

displacements

and applied

forces

px

p
pn



x
ux

u

ur
Nx

N

Nx

membrane

forces

displacements

and applied

forces

px

p
pn



56 

In the lower shell, Equations 4.3 and 4.4 may be solved sequentially by integrating 

in the x direction to obtain: 
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where f1(θ), f2(θ) = unknown functions of  to be determined from two boundary 

conditions. 

 

The general solution for the displacements of the shell may then be found as: 
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where f3(θ), f4(θ) = additional functions to satisfy the boundary conditions on the 

edges x = constant. 

 

where there is no surface loading on the shell  0x np p p   , Equations 4.9, 

4.10 and 4.11 give: 
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At the base, x = 0, the axial membrane stress resultant is chosen as the fundamental 

harmonic of the discrete support, nqN xnx cos  (Equation 2.1), leading to: 

 

 nqf xn cos)(2   (4.18) 

 

When the ring is placed at the ideal location, the axial stress vanishes at this height 

( 0xN ), but when the ring is placed below the ideal location non-uniform axial 

stresses will still be present.  As shown in Figure 4.6, a certain proportion of the applied 

axial membrane stress resultant is assumed to be present at the interface.  The ratio of 

the axial membrane stress resultant at the interface to the applied fundamental 

harmonic of the column support is here termed .  Topkaya and Rotter (2014) explored 

the magnitudes of axial membrane stress resultants that remain at this interface using 

many linear finite element analyses.  The location of the intermediate ring, shell radius, 

number of supports and shell thickness ratios (g = tU/tL where tU and tL are the 

thicknesses of the upper and lower shells respectively) were considered as the primary 

variables.  Figure 4.8 shows the variation of the ratio of axial membrane stress 

resultants for the case of g = 0.5.  The following convenient lower and upper bound 

expressions can be developed to represent the data points:  
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with 

 

   ggm  34.25.0  for upper bound                                                          (4.20) 

   ggm  34.24.0  for lower bound                                                          (4.21) 
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Figure 4.8 Variation of axial stress resultant for various intermediate ring heights 

with upper to lower shell thickness ratio g =0.5 

 

 Considering an axial stress resultant cosx xnN q n    at the ring (x = HL) leads 

to the following:  
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Inserting Equations 4.12, 4.16 and 4.17 into Equation 4.13 yields the 

circumferential displacement as: 
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At x = 0 and x = HL, the boundary condition of zero circumferential displacements, 

0u , yields the two results: 
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The axial displacements can be expressed in terms of the functions f1(θ), f2(θ) and 

f3(θ) as: 
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Inserting Equations 4.18, 4.22 and 4.24 into Equation 4.25 yields: 
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When the intermediate ring is placed at the ideal height the axial displacements 

and axial stress resultants at the interface vanish.  The condition of  = 0 with 0xu  

at IL HHx  leads to the ideal location of the intermediate ring stiffener, previously 

expressed in Equation 4.1.  

 

 In the solution presented above, rigid boundary conditions were assumed at the 

location of the intermediate ring.  A finite shear membrane stress resultant Nx  is 

produced when the intermediate ring prevents circumferential displacements u at the 

interface.  The reactions in the shell at this boundary can be treated as the loading 

exerted on the intermediate ring.  Combining Equations 4.16 and 4.22 gives the 

following expression for the shear membrane stress resultant  
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Equation 4.27 shows that the intermediate ring is subjected to a sinusoidally 

varying circumferential line load in its own plane, whose magnitude is directly related 

to the discrete support force qxn. 

 

Similarly axial displacements are produced at the interface when the ring is placed 

below the ideal location.  These axial displacements depend on the relative stiffness of 

the lower shell and the intermediate ring.  In general, the shell segment is very stiff in 

its own plane.  The out-of-plane stiffness of the intermediate ring is quite low 

compared with the axial stiffness of the shell, so it is reasonable to assume initially 

that the intermediate ring has a negligible effect on the axial displacements that are 

induced at the interface.  The displacements obtained from the solution of the lower 

shell segment can then be directly applied to the intermediate ring stiffener.  The 

displacements at the interface (x = HL) can be found from Equation 4.26 as: 
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Equation 4.28 indicates that the intermediate ring experiences cosinusoidally 

varying out-of-plane deformations whose magnitude is directly related to the discrete 

support force qxn.  The effect of the out-of-plane stiffness of the intermediate ring on 

these displacements will be explored below. 

  

4.3.  Algebraic Closed-form Solution for the Stress Resultants in the Intermediate 

Ring Stiffener – Strength Criterion 

 

4.3.1. Derivation of stress resultants – In plane behavior 

 

The Vlasov curved beam differential equations (Vlasov (1961), Heins (1975)) 

were used to study the response of the intermediate ring stiffener.  In-plane and out-

of-plane behaviors were treated separately.  In general, the behavior of a curved beam 

is governed by a series of differential equations.  The equilibrium equations were first 
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derived for the curved beam element shown in Figure 2.2, where three orthogonal 

internal forces and three internal moments develop at each cross-section.  The six basic 

equilibrium equations were expressed in Equation 2.2 through 2.7. The six basic 

equilibrium equations can be reduced to three differential relationships.  The 

differential equation for bending of the ring in its own plane can be uncoupled from 

the other two.  For the case where the only loading is q (i.e. qr = qx = mr = m = mx = 

0), the two coupled differential equations of equilibrium can be expressed as: 
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The uncoupled differential equation can be expressed as follows: 
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Direct solution of Equation 2.5 and simultaneous solution of Equations 4.29 and 

4.30 reveal the following relationships for in-plane loading: 

 

0)(                   0)(                   0)(    xr QTM                                          (4.32) 

 

These relationships indicate that the torsional moment in the ring, the bending 

moment in the radial direction and the transverse shear force vanish for the simple 

loading case of q alone. 

 

The shear membrane stress resultant expressed in Equation 4.27 can be adopted 

for the loading on the intermediate ring (i.e. q = Nx) leading to the following 

relationships by solving Equation 4.31: 
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Inserting Equation 4.33 into Equation 2.6 reveals the radial shear force Qr: 
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Inserting Equation 4.34 into Equation 2.2 reveals the circumferential tension Q : 
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Equations 4.33, 4.34 and 4.35 indicate that the intermediate ring stiffener is 

subjected to circumferential and shear forces in the plane of the ring and bending about 

the axis transverse to the plane of the ring. The intermediate ring is at ideal location 

for the case where HL = HI and 0.   

 

4.3.2. Derivation of stress resultants – Out-of-plane behavior 

 

The depth of a typical intermediate ring stiffener is small when compared with the 

typical radii of silo shell.  Therefore, it is meaningful and convenient to neglect any 

offset that would be produced by the geometric centroid of the intermediate ring 

stiffener and the axis of the silo shell.  The complexity of the offset of a practical ring 

makes the analysis significantly more complicated so this has been omitted for the sake 

of simplicity needed in practical design calculations.  The out-of-plane displacements 

of the intermediate ring are here treated as equal to the axial displacements of the lower 

shell at the interface.  There is a complex interaction between the shell and the 

intermediate ring stiffener.  The amount of rotations  around a circumferential axis 

that take place at the location of the intermediate ring stiffener must be known in 
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advance to fully extract the stress resultants.  Preliminary finite element analysis 

revealed that it would be conservative to neglect these rotations (i.e.  = 0).  Because 

these rotations are not known in advance or obtained as a part of the solution, the 

individual contributions of uniform torsion and warping torsion to the torsional 

moment in the ring cannot be determined.    

 

 Inserting Equation 4.28 into Equation 2.12 and considering  = 0, the following 

relationship can be derived for bending moment in the ring about a radial axis Mr: 
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      Inserting Equation 4.36 into Equation 2.7 and considering mθ = 0, reveals the 

torsional moment in the ring T: 
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Inserting Equations 4.36 and 4.37 into Equation 2.5 reveals the shear force in the 

ring in the transverse direction Qx: 
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Equations 4.36, 4.37 and 4.38 indicate that the intermediate ring stiffener is 

subjected to transverse shear forces, bending about a radial axis and torsional moments 

due to the imposed displacements by the axially stiff lower shell segment.  Equations 

4.36, 4.37 and 4.38 result in 0)(  ,0)(  ,0)(    xr QTM  for the case of HL = HI 

and 0. 
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4.4. Assessment of stress resultants 

 

When the intermediate ring is placed at the ideal location the only stress resultants 

are Mx, Qr and Q.  Equations 4.33, 4.34 and 4.35 indicate that the maximum in-plane 

bending moment and circumferential force occur at the same location.  The shear stress 

resultant is at its maximum at locations where the other stress resultants vanish.  

Placing an intermediate ring below the ideal height produces the additional stress 

resultants Mr, T and Qx.  The maximum out-of-plane bending moment occurs at same 

locations where the in-plane bending moment and circumferential force are also at 

their maxima.  Therefore, the strength requirement for the intermediate ring demands 

a check of the cross-section under the combined actions of circumferential force, out-

of-plane bending and in-plane bending.  To obtain conservative estimates of these 

stress resultants, the lower bound expression (Equation 4.21) should be used for the 

ratio of axial membrane stress resultants .  Alternatively,  = 0 can be directly used 

in design.  

 

It is evident that the magnitudes of the out-of-plane stress resultants are controlled 

by the deformation of the lower part of the shell, so a ring with higher stiffness against 

out-of-plane deformation will develop higher associated stress resultants.  An 

examination of Equations 4.36, 4.37 and 4.38 shows that this is indeed the case, so the 

stress resultants in the ring are directly proportional to its second moment of area about 

a radial axis (Ir).  A normal design calculation would lead to the ring size (related to 

Ir) as an outcome, but in this case the stress resultants depend on Ir.  It is evident that 

a ring that is flexible for out-of-plane bending will develop much smaller associated 

bending moments.  In practice, it is therefore more efficient to use either flat annular 

plate stiffeners or I-sections with the web horizontal to give a high in-plane stiffness 

and a low out-of-plane stiffness (Figure 4.1).  Considering typical ratios of the strong 

axis to weak axis elastic section moduli of rolled I sections, it is here recommended 

that the ratio of out-of-plane moment to in-plane moment should be limited to 10% 

(Mr/Mx<0.1).  Neglecting the contribution of  (i.e.  = 0), the section can be selected 
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by using the following expression for the second moment of area about the radial axis 

(Ir): 
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Having restricted the out-of-plane bending moment using Equation 4.39, the 

intermediate ring can be designed to resist out-of-plane moments of only 10% of the 

maximum in-plane bending moment.  Equation 4.36 can be used where a more 

accurate estimate of the out-of-plane moment is needed. 

 

4.5. Computational verification of the Closed-form equations 

 

Linear three dimensional finite element analyses were conducted to verify the 

accuracy of these equations.  The commercial finite element program, ANSYS v12.1 

(2010), was used to perform the numerical analysis.  Since a cylinder resting on n 

equally spaced discrete supports has 2n planes of symmetry, the computational time 

was reduced by modelling only a segment covering the angle /n, as shown in Figure 

4.9a.  Four-node shell elements (shell63) with a size of 100 mm in both the axial and 

circumferential directions were employed to model the cylindrical shell.  The 

intermediate ring stiffener was modelled using two-node beam elements (beam4). The 

modulus of elasticity was taken as 200 GPa and Poisson’s ratio as 0.30. 

 

Symmetry boundary conditions were applied to the nodes on each symmetry 

plane.  In practice, silo cylindrical shell walls are normally connected to other conical 

shells at the top and the bottom as shown in Figure 4.1.  These conical pieces 

effectively prevent out-of-round displacements of the cylinder at the two extremes.  In 

this study, the restraining effect of the connected shells was modelled by restraining 

the displacements at these points.  At the top and bottom, both the radial ur and 

circumferential u displacements were restrained. 
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Figure 4.9 Finite-element mesh for the cylindrical shell and I-section ring beam 

 

The cylinder base was subjected to loading in harmonic 4 (Equation 2.1), 

corresponding to the number of equally spaced discrete supports.  The top edge was 

axially free, though radially and circumferentially restrained, so the axial stresses there 

were zero.  Because the loading is purely harmonic, axial displacements need not be 

restrained at either boundary. 

 

4.5.1. Case1: Intermediate ring at the ideal height 

 

The silo structure analyzed here had a cylinder radius of 3000 mm and a height of 

10000 mm with a constant thickness of 6 mm. An intermediate ring stiffener was 

placed at the ideal height (Equation 4.1) and it was modeled using stiff beam elements.  

The loading at the bottom of the shell was chosen to give a maximum axial membrane 
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stress of 1.0 GPa above the support.  The calculated variations of Mx, Qr, and Q  

around the circumference are shown in Figures 4.10, 4.11, and 4.12  respectively, 

together with the predictions of the closed form solutions (Equations 4.33, 4.34, and 

4.35) for the case of HL = HI and 0.  The comparisons show that the above equations 

provide acceptably accurate solutions, with the largest differences being 0.48%, 

0.77%, and 3% for maximum bending moment, shear force and circumferential force 

respectively.   

 

 

Figure 4.10 Comparison of closed form solution with numerical solution for ring 

bending moment 
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Figure 4.11 Comparison of closed form solution with numerical solution for ring 

shear force 

 

 

 

Figure 4.12 Comparison of closed form solution with numerical solution for ring 

circumferential tension 
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4.5.2. Case2: Intermediate ring below the ideal height 

 

The silo structure analyzed here had a cylinder radius of 3000 mm and a height of 

10000 mm.  The lower and upper shell thicknesses were 6 mm and 3 mm respectively.  

The intermediate ring was placed at half of the ideal height (HI/2). The loading at the 

bottom of the shell was chosen to give a maximum axial membrane stress of 100 MPa 

above the support.  Two cases were considered to evaluate the assumption behind the 

derivation of internal forces and moments that reflect out-of-plane behavior.  The 

simple assumption was made that the intermediate ring is very flexible compared to 

the in-plane stiffness of the shell.  As a consequence, the displacements of the shell 

could be imposed as displacements of the intermediate ring.  In cases where the out-

of-plane stiffness of the intermediate ring is high, the contribution of its stiffness to the 

deformation of the shell is very significant.  Intermediate rings with two different 

values of out-of-plane bending stiffness, but the same in-plane stiffness were studied.  

The first case involved a flexible ring, where the out-of-plane second moment of area 

is defined by the upper limit given in Equation 4.39.  The second case involved a stiff 

ring, where the out-of-plane stiffness was made 10 times the upper limit of Equation 

4.39.  Annular plate stiffeners were considered in the verification study and the 

uniform torsional constant (KT) was considered to be equal to four times the out-of-

plane second moment of area. 

 

The calculated variations of Mx, Qr, Q, Mr, T and Qx around the circumference, 

together with the predictions of the closed form solutions (Equations 4.33, 4.34, 4.35, 

4.36, 4.37 and 4.38) for the flexible and stiff intermediate rings are shown in Figures 

4.13 and 4.14 respectively.  The lower bound expression (Equation 4.21) was used in 

closed form solutions.  The comparisons show that the above equations provide 

acceptably accurate solutions for the flexible intermediate ring case, with the largest 

differences being 4.8%, 5.1%, 4.8%, 18.2%, 20.2% and 18.4%, for maximum Mx, Qr, 

Q, Mr, T and Qx respectively.  The predictions are less accurate for the stiff 

intermediate ring where large differences were found for the stress resultants caused 

by out-of-plane deformation of the ring.  The largest differences here were 11.3%, 
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11.7%, 10.9%, 37.3%, 37.6% and 37.7%, for maximum Mx, Qr, Q, Mr, T and Qx 

respectively. It should be noted that all the predictions given by the above equations 

were greater than the values found in the finite element analysis, so these equations 

give safe over-estimates and are conservative. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 Comparison of closed form solution with numerical solution for a 

flexible intermediate ring 
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Figure 4.14 Comparison of closed form solution with numerical solution for a stiff 

intermediate ring 

 

The reasons for the large differences found for the stiff intermediate ring were 

explored by examining the variation of axial displacements on the generator above the 

support ( = 0).  This is shown in Figure 4.15 where the intermediate ring location is 

shown by a dashed line.  The axial displacement at the ring was reduced from 0.29 mm 

to 0.25 mm by the stiff ring.  Since the above formulation ignores the restraining effect 

of the ring on axial displacements at the ring level, the predictions are conservative for 

stiffer rings.   
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Figure 4.15 Variation of axial displacements throughout the shell 

 

The proposal given in Equation 4.39 was substantiated by examining the 

calculated bending moments both in-plane and out-of-plane.  For the two cases, the 

maximum in-plane values were 39.7 kNm and 37.3 kNm for the flexible and stiff rings 

respectively, whilst the maximum out-of-plane values were 3.2 kNm and 27.4 kNm 

respectively.  It is clear from these maxima that the limit given in Equation 4.39 

provides a convenient upper bound on the out-of-plane bending moment.  The ratio of 

out-of-plane to in-plane bending moment was only 8% for the flexible ring, but rose 

to 73% for the stiff ring.  This high moment in the stiff ring makes it very clear that a 

good design for an intermediate ring should be very flexible for out-of-plane 

deformations, as suggested above.   
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4.6.Computational assessment of the dominant harmonic 

 

4.6.1. Case1: Intermediate ring at the ideal height 

 

A practical silo shell usually rests on a discretely supported ring beam as shown 

in Figure 4.1.  The interaction between the ring beam and the silo shell is complex and 

the stresses produced at the bottom of the silo wall are directly related to the relative 

stiffnesses of the shell and ring beam (Topkaya and Rotter (2011)).  A similar finite 

element model to that described above was made of a silo consisting of a ring beam 

and shell combination with the geometry: R = 4500 mm, t = 6 mm, n = 4, shell height 

H = 10000 mm, beam depth d = 1000 mm, beam flange width w = 600 mm, beam 

flange thickness T = 30 mm, and beam web thickness tw = 20 mm.  This ring was 

deliberately chosen to be far too flexible to meet the required stiffness criterion 

obtained by Topkaya and Rotter (2011).  The ring was modeled using four-node shell 

elements as shown in Figure 4.9b.  In this model, the shell was loaded by a 

circumferentially uniform axial line load of magnitude Pu at its top.  The ring beam 

was supported on discrete pads, with a circumferential width-to-radius ratio of 0.2, 

following the assumption of Teng and Rotter (1992).  Figure 4.16 shows the 

circumferential variation of the axial membrane stress resultant at the bottom of the 

shell wall.  The peak value, here termed the stress amplification ratio , is seen to be 

2.39, but the ratio of the local axial membrane stress resultant Nx to the applied stress 

resultant Pu varies around the circumference between 2.39 and 0.055.  If the ring beam 

were stiff enough, this ratio should not vary significantly, but should be close to unity.  

The observed non-uniformity of the axial membrane stress resultant occurs because 

the ring beam is rather flexible, as intended by the choice made above.   

 

Three curves are shown in Figure 4.16.  The result of the finite element analysis 

is shown with diamond symbols:  its mean value is naturally 1.0, corresponding to the 

applied load Pu, and there is a distinct local rise close to the support at the 

circumferential coordinate of zero.  If this pattern of stress resultants is to be safely 
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modeled using only the sum of a uniform value and a dominant harmonic cosine term, 

then the result could be calibrated either to the stress over the support (peak value 2.39) 

or to the lowest value at midspan between supports (min value 0.055).  The two 

possible simple models are shown in Figure 4.16 as the “support match” and “midspan 

match” treatments.  However, for a safe design, it is desirable that the unsymmetrical 

component of this membrane stress resultant should be evaluated to be as large as 

possible, so the calibration of the sum of these two components is best done using the 

support match value.  

 

 

Figure 4.16 Variation of axial membrane stress resultant at the bottom of the shell 

 

The result of this discussion is that a simple approximation to the stress pattern in 

Figure 4.16 is found from the stress amplification ratio   as  

 

  uxn Pq 1   (4.40) 
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This first approach was evaluated using a finite element parametric study.  The 

finite element model given in Figure 4.9b was adopted for all cases.  Shells with 

dimensions R = 3000 and 4500 mm, t = 3 and 4.5 mm, n = 3, 4 and 6, all with height 

= 10 000 mm were assessed.  This led to a total of 12 possible shell geometries; for 

each, 10 different ring beam dimensions were assessed, resulting in 120 analysis cases.  

Beam depths of 1000, 1500, 2000, 2500 and 3000 mm, with flange widths of 600 and 

1000 mm were calculated.  The flange and web thicknesses were retained constant at 

30 and 20 mm respectively.  From each analysis the stress amplification ratio , the 

maximum stress resultants in the intermediate ring stiffener (maximum bending 

moment Mx,max and maximum circumferential force Q,max) were collected.  For 

each case, two corresponding values for qxn were backfigured from the predictions of 

Equations 4.33 and 4.35 for the case where HL = HI and 0 independently, resulting 

in two coefficients: one for bending moment and the other for circumferential force in 

the intermediate ring.  The results presented in Figure 4.17 for the extracted coefficient 

qxn indicate that the proposed model provides quite satisfactory estimates of this 

coefficient when the bending moment is used.  The data points mostly fall on a straight 

line, but where the results depart significantly from this simple concept, the proposed 

model over-predicts the value of qxn resulting in safer designs.   The straight line of 

Equation 4.40 is shown as the heavy line in Figure 4.17, which indicates that the simple 

conservative deduction used in Figure 4.16 provides a close approximation where the 

stress amplification ratio  lies below about 2, but is increasingly conservative when 

this ratio is larger, corresponding to very flexible ring beams that produce to higher 

local peak stresses in the shell above the support.  

 



76 

 

Figure 4.17 Verification of the proposed model for the Fourier coefficient (qxn) 

 

This proposed model provides less accurate predictions when the coefficient qxn 

is derived using the circumferential force as a measure, backfigured from Equation 

4.35 for the case where HL = HI and 0.  The coefficients implied by the finite 

element analysis are generally higher than those indicated in the proposed model 

because part of this arises because the membrane theory treatment has ignored the 

restraint of Poisson expansion under uniform axial compression that induces a small 

additional circumferential force in the intermediate ring.  To make some allowance for 

this effect, a conservative bound shown as dashed lines in Figure 4.17 can be adopted 

when assessing the circumferential force that may develop in the intermediate ring as 

follows: 

 

  uxn Pq 5.0     for circumferential force                                                           (4.41) 
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4.6.2. Case2: Intermediate ring below the ideal height 

 

The applicability of Equations 4.40 and 4.41 to cases where the intermediate ring 

lies below the ideal height was explored through a parametric study. A similar finite 

element model to that described above was made of a silo consisting of a ring beam 

and shell combination.  The base ring beam was modelled using four-node shell 

elements as shown in Figure 4.9b.  The top of the shell was loaded by a 

circumferentially uniform axial line load of magnitude Pu.  Shells of height 10 000 

mm with dimensions R = 3000 and 4500 mm, tL = 6 mm and tU =3 mm, n = 3 and 4, 

HL/HI = 0.5, 0.6, 0.7, 0.8 and 0.9 were calculated, leading to a total of 20 possible shell 

geometries.  For each shell geometry, 10 different ring beam dimensions were used, 

resulting in 200 analysis cases.  Beam depths of 1000, 1500, 2000, 2500 and 3000 mm 

were adopted, with flange widths of either 600 or 1000 mm.  The flange and web 

thicknesses were retained constant at 30 and 20 mm respectively.  Intermediate rings 

with high in-plane stiffness were considered.  The out-of-plane stiffness of the rings 

were determined using Equation 4.39. From each analysis the stress amplification ratio 

, the maximum stress resultants in the intermediate ring stiffener (maximum bending 

moment Mx,max and maximum circumferential force Q,max) were collected.  For 

each case, two corresponding values for qxn were backfigured from the predictions of 

Equations 4.33 and 4.35 independently, resulting in two coefficients: one for bending 

moment and the other for the circumferential tensile force in the intermediate ring.   

 

The results are presented in Figures 4.18 and 4.19 for the extracted coefficient qxn  

and indicate that the proposed models can be safely used for shells with an intermediate 

ring placed below the ideal height.  The other stress resultants were also examined.  

The results indicate that Equation 4.40 can be safely used for Qr, Mr, T and Qx.  The 

maximum out-of-plane bending moment always remained below 10% of the calculated 

maximum in-plane bending moment.  
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Figure 4.18 Verification of the proposed model for the Fourier coefficient (qxn) 

(circumferential force) 

 

 

 

Figure 4.19 Verification of the proposed model for the Fourier coefficient (qxn) (In-

plane bending moment) 
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This method of finding the stress resultants in an intermediate ring requires the 

stress amplification ratio  to be obtained first.  This factor can be conveniently found 

using a simple hand calculation.  The stress amplification ratio  is related to the 

relative stiffness of the shell to the ring beam at the base of the shell (Figure 1.2).  This 

relative stiffness is expressed as the ring beam stiffness ratio , as originally devised 

by Rotter (1985) but improved and verified by Topkaya and Rotter (2011).  The 

relationship between the stress amplification ratio (ζ) and the ring beam stiffness ratio 

() has been demonstrated by Topkaya and Rotter (2011) through extensive finite 

element analyses.  The evaluations of the stress amplification ratios (ζ) arising from 

different ring beam stiffness ratios () presented by Topkaya and Rotter (2011) shown 

in Figure 2.4, where over 1000 analyses are plotted.  For design purposes, it is desirable 

that an upper bound on the stress amplification ratio is used, since this leads to 

conservative designs.  A convenient upper bound has been developed using the data 

of Figure 2.4.  This upper bound was defined by Equation 2.38 and it can be used to 

give a simple safe estimate of the stress amplification ratio of a given shell/ring beam 

geometry. This equation is applicable for ring beam stiffness ratios () greater than 

0.0038.  For lower values (<0.0038) ζ =1 should be adopted.  

 

4.7. Stiffness Criterion for the Intermediate Ring Stiffener 

 

The intermediate ring stiffener must have adequate stiffness to fulfil its function 

properly. A stiffness criterion was obtained comparing the relative stiffnesses of the 

intermediate ring and the shell for rings.   

The intermediate ring stiffness ratio () was expressed as: 

 

,,

, ,

stiffenerx shellshell

stiffener stiffener shell

uN uK

K q u u

 

  

      (4.42) 

 

where Kstiffener, Kshell = circumferential stiffnesses of the ring stiffener and shell 

respectively; u,stiffener, u,shell = circumferential displacements of the ring stiffener and 
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shell respectively.  The loading condition of Equation 4.27 was adopted by neglecting 

the contribution of  to compute the stiffnesses.  

 

 

 

Figure 4.20 Boundary conditions used for closed form solution of shell stiffness 

 

 For the loading and boundary conditions given in Figure 4.20 the following can 

be derived using Equations 4.9 and 4.10: 

 nq
nH

R
fNN xn

L

x sin)(         0 1


                                                          (4.43) 

 

Imposing the boundary conditions Nx = 0 and u = 0 at x = 0 reveals: 

 

0)(            0)( 42   ff                                                                                   (4.44) 

 

At x = HL, the boundary condition of nearly zero axial displacement (ux  0) yields: 

 

 nq
H

f xn

L cos
2

)(3


                                                                                        (4.45) 

 

Using Equation 4.23 the circumferential displacement of the shell at the interface 

can be found as: 

 

H=HL

uθ = 0

ux ≈ 0

Nx = 0

sinx xn

L

R
N q n

H n
 


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  



 nq

EtRn

RnH
u xn

L

shell sin
3

16
222

)(


                                                           (4.46) 

 

The circumferential displacements of the intermediate ring stiffener under the 

same loading condition (i.e. q = Nx) can be obtained by solving Vlasov’s curved 

beam differential equations.  Considering  = 0 and inserting Equation 4.33 into 

Equation 2.11 yields the radial displacement of the ring: 

 

 
 nq

nnEIH

R
u xn

xL

r cos
1

)(
222

5




                                                                   (4.47) 

 

Inserting Equations 4.35 and 4.47 into Equation 2.10 and solving the differential 

equation leads to the circumferential displacements of the intermediate ring stiffener 

as:  
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Finally the intermediate ring stiffness ratio  can be expressed as: 
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Equation 4.49 indicates that the geometrical parameters that influence the 

intermediate ring stiffness ratio are the radius of the shell and ring stiffener R, the 

thickness of the shell t, the area and second moment of area normal to the plane of the 

intermediate ring stiffener A and Ix, and the number of supports n.     

 

A finite element parametric study was conducted to obtain a practical limit for the 

intermediate ring stiffness ratio .  Pursuant to this goal, combinations of shells and 
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intermediate ring stiffeners were analyzed under the fundamental harmonic of the 

column support.  The finite element models all had a height H = 10000 mm, with 

geometries defined as radius R = 3000 and 4500 mm, thickness tL = 6 mm, tu = 3 and 

6 mm, number of supports n = 3 and 4, HL/HI = 0.5, 0.7 and 0.9.  A total of 24 

combinations were adopted for the shell geometries with 20 different intermediate ring 

stiffener dimensions, resulting in 480 analysis cases.  A reference axial membrane 

stress resultant (Nx,ref) was calculated by using idealized rigid boundary conditions at 

the intermediate ring location.  In each analysis, the axial membrane stress resultant in 

the shell above the intermediate ring stiffener (Nx) was recorded.  The difference 

between the axial membrane stress resultants (Nx-Nx,ref) was calculated and normalized 

relative to the maximum applied stress at the bottom.  Normalized values of the stress 

resultants found in the finite element analyses are plotted in Figure 4.21 as a function 

of the stiffness ratio .  The results indicate that when the stiffness ratio is lower than 

about 0.2, the peak axial membrane stress resultant above the intermediate stiffener 

drops to below 6% of the applied value.   Therefore, it is recommended here that the 

limit of  < 0.2 for intermediate rings.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21 Assessment of an appropriate value for the intermediate ring stiffness 

ratio  
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CHAPTER 5 

 

 

SUMMARY AND CONCLUSIONS 

 

 

5.1. Summary 

 

This thesis reports findings of a three part analytical and numerical study on 

silo supporting ring beams and intermediate ring stiffeners. 

 

The first study has been undertaken to investigate the applicability of the 

stiffness criterion to cylindrical shells under global shear and bending. Pursuant to this 

goal extensive finite element analyses were conducted where different ring beam and 

cylindrical shell combinations are subjected global shearing and bending actions. 

 

 The second study explores the ring beam stress resultants when closed section 

ring beams of lower stiffness and practical dimensions are used.  A complementary 

finite element parametric study was conducted to investigate variation of the values of 

stress resultants and displacements caused by the connection of the ring to the stiff 

shell. The effects of the ring beam stiffness ratio on the stress resultants and transverse 

displacement were also investigated. 

 

The third study investigates a combination of a ring beam and an intermediate 

ring stiffener for large silos. Design requirements for intermediate ring stiffeners 

placed at or below the ideal location are explored. Pursuant to this goal, the cylindrical 

shell below the intermediate ring stiffener was analyzed using the membrane theory of 

shells and the reactions produced by the stiffener on the shell were identified. 

Furthermore, the displacements imposed by the shell on the intermediate ring stiffener 

were obtained. These force and displacement boundary conditions were then applied 

to the intermediate ring stiffener to derive closed form expressions for the variation of 

the stress resultants around the circumference to obtain a strength design criterion for 
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the stiffener.  A relative stiffness criterion for the ring is then devised by considering 

the ratio of the circumferential stiffness of the cylindrical shell to that of the 

intermediate ring.  These analytical studies were then compared with complementary 

finite element analyses to verify closed-form design equations for ring stiffeners. 

 

5.2. Conclusions 

 

5.2.1.  Conclusions about Application of Ring Beam Stiffness Criterion for 

Discretely Supported Shells under Global Shear and Bending 

 

The applicability of the stiffness criterion proposed by Rotter (1985) to a silo shell 

resting on a discretely supported ring beam and subjected to global shear and bending 

was studied herein.  A total of 4320 three dimensional finite element analyses were 

conducted to evaluate the stiffness ratio.  The geometry of the silo shell, ring beam and 

the support conditions were considered as the prime variables.   

 

 The results indicate that the stiffness criterion proposed by Rotter (1985) can be 

conveniently extended to cases where the silo shell resting on a discretely supported 

ring beam is subjected to global shear and bending.  Upper bound expressions were 

developed to represent the data produced by finite element analysis and these 

expressions can be readily adopted by the design standards. The support conditions 

were found to significantly influence the response. The knife edge support condition 

results in much higher stress amplifications over the support making the ring beam less 

effective.  On the other hand, a finite width supports having support width-to-radius 

ratios that range between 0.05 and 0.2 were found to reduce the level of stress 

amplification considerably when compared with the knife edge support case. 
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5.2.2.  Conclusions about Analysis of Silo Supporting Ring Beams Resting on 

Discrete Supports 

 

Closed form design equations obtained from Vlasov’s curved beam theory were 

compared with numerical results.  The comparisons show that these equations provide 

acceptably accurate solutions when the isolated ring beam is considered.  On the other 

hand, when the ring beam and shell interaction is considered, the values obtained from 

finite element calculations diverge from those of the closed form solutions.  As the 

thickness of the shell gets thicker, the difference between the closed form solution and 

the numerical calculations increases.  The design of a ring beam as an isolated curved 

beam is conservative, since it neglects the contribution of the attached shell and 

hopper.  

 

 A complementary finite element parametric study was also conducted to 

investigate variation of the values of stress resultants and displacements caused by the 

connection of the ring to the stiff shell.  These variations were plotted as a function of 

stiffness ratio (ψ).  The results indicate that the reduction from the isolated ring beam 

values can be directly and accurately related to the ring beam to shell stiffness ratio.  

When the ring beam is quite flexible, the reduction in the stress resultants and 

displacement from the values for an isolated ring beam becomes very large. Future 

research should concentrate on determining displacements and stresses in the ring 

when open section ring beams are used. 

  

5.2.3.  Conclusions about Requirements for Intermediate Ring Stiffeners on 

Discretely Supported Shells 

 

The results demonstrate that the intermediate ring is only subject to in-plane forces 

and bending moments when intermediate ring stiffener is placed at ideal location. 

However, the closed form expressions reveal that the intermediate ring stiffener is 

subjected to out-of-plane internal forces and bending moments in addition to the in-

plane stress resultants when the ring is placed below the ideal height. The developed 
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expressions were compared with numerical solutions and a good agreement has been 

demonstrated.  

 

The closed form solutions indicate that the out-of-plane internal forces and 

bending moments depend on the out-of-plane bending stiffness of the ring. For 

economical designs, it is proposed that the out-of-plane bending moment should be 

kept below 10% of the in-plane bending moment. A simple criterion to permit a quick 

fulfilment of this requirement was developed and verified.    

 

A stiffness criterion has been developed, based on the relative stiffnesses of the 

ring stiffener and the cylindrical shell under the harmonic force transfer between the 

shell and the stiffener.  The resulting intermediate ring stiffness ratio () depends on 

the geometrical properties of both the shell and the stiffener.  A complementary finite 

element parametric study was conducted to determine practical limits for the 

intermediate ring stiffness ratio.  The results indicate that ratios below about  < 0.2 

provide a satisfactorily uniform axial membrane stress distribution above the 

intermediate ring stiffener, so this limit is recommended for practical design. Future 

research should concentrate on exploring the effect of a stepped-wall varying thickness 

in the shell above the ring. 
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