A THESIS SUBMITTED TO
 THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY

BY

YOUSEF A. M. DABBOORASAD

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY
IN
MATHEMATICS

Approval of the thesis:

$u \tau$-CONVERGENCE IN LOCALLY SOLID VECTOR LATTICES

submitted by YOUSEF A. M. DABBOORASAD in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics Department, Middle East Technical University by,

Prof. Dr. Halil Kalıpçıar
Dean, Graduate School of Natural and Applied Sciences
Prof. Dr. Yıldıray Ozan
Head of Department, Mathematics
Prof. Dr. Eduard Emel'yanov
Supervisor, Department of Mathematics, METU

Examining Committee Members:

Prof. Dr. Murat Yurdakul
Department of Mathematics, METU
Prof. Dr. Eduard Emel'yanov
Department of Mathematics, METU
Prof. Dr. Bahri Turan
Department of Mathematics, Gazi University
Prof. Dr. Birol Altın
Department of Mathematics, Gazi University
Assoc. Prof. Dr. Kostyantyn Zheltukhin
Department of Mathematics, METU

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last Name: YOUSEF A. M. DABBOORASAD

Signature

ABSTRACT
 $u \tau$-CONVERGENCE IN LOCALLY SOLID VECTOR LATTICES

Dabboorasad, Yousef A. M.
Ph.D., Department of Mathematics
Supervisor : Prof. Dr. Eduard Emel'yanov

March 14, 2018, 60 pages

We say that a net $\left(x_{\alpha}\right)$ in a locally solid vector lattice (X, τ) is $u \tau$-convergent to a vector $x \in X$ if $\left|x_{\alpha}-x\right| \wedge w \xrightarrow{\tau} 0$ for all $w \in X_{+}$. The aim of the thesis is to study general properties of $u \tau$-convergence, which generalizes unbounded norm convergence. Besides, general investigation of $u \tau$-convergence, we carry out detailed investigation of its very important case, so-called "unbounded m-convergence" (um-convergence, for short) in multi-normed vector lattices. Unlike "unbounded order convergence", we showed that the $u \tau$-convergence is topological and the corresponding topology serves as a generalization of the unbounded norm topology.

Keywords: Vector Lattice, Locally solid Vector Lattice, $u \tau$-Convergence, $u o$-Convergence, un-Convergence, um-Convergence, Lebesgue property, Levi property.

ÖZ

YEREL KATI VECTÖR ÖRGÜSÜNDE $u \tau$-YAKINSAKLIK

Dabboorasad, Yousef A. M.
Doktora, Matematik Bölümü
Tez Yöneticisi : Prof. Dr. Eduard Emel'yanov

Mart 14, 2018 , 60 sayfa
x_{α} yerel katı vectör örgüsü (X, τ) da bir net olsun ; Eğer her $w \in X_{+}$için $\mid x_{\alpha}-$ $x \mid \wedge w \xrightarrow{\tau} 0$ oluyorsa, bu durumda x_{α} neti $x \in X$ vektörüne sınırsız τ-yakınsaktır diyeceğiz. Bu tezin amacı sınırsız norm yakınsamanın bir genellemesi olan sınırsız τ yakınsaklı̆ğn (kısaca, $u \tau$-yakınsaklığın) genel özelliklerini calışacağız. Ayrıca, multi normlu vectör örgülermde $u \tau$-yakınsamanın önemli çeşiti olan sınırsız m-yakınsaklık" veya (kısaca $u m$-yakınsaklık) çalışılmıştır. Sınırsız sıra yakınsaklığının aksine, $u \tau$ yakınsaklığı ve $u m$-yakınsaklığı topolojik olduğu ve bunlara karşılık gelen topolojilerin sınırsız norm topolojinin genellemelerine karşılık geldiği gösterilmiştir.

Anahtar Kelimeler: Yöney örgüsü, yerel som yöney örgüsü, $u \tau$-Yakınsama, uo-Yakınsama, un-Yakınsama, um-Yakınsama,Lebesgue özelliği, Levi özelliği.

To my father, mother, wife, sons, to all my family and all people who are reading this work

ACKNOWLEDGMENTS

First of all, thanks to Allah who guided me to this step in my life. I would like to thank my supervisor Professor Eduard Emel'yanov, for his constant support, guidance and friendship. I would like to deeply thank my best friend Dr. Mohammad Marabeh for his support, time and guidance. He also motivated and influenced me highly in scientific context. It was a great honor to work with them. Our cooperation influenced me academically and scientifically.

There are a lot of people that were with me in these years. They defined me, they made me who I am, they are the true owners of this work. It is not possible to write down why each of them is important to me and to this work, because it will take more space than the work itself. I am very grateful to all those people, they changed me deeply: my vision towards life, happiness and friendship. I am very lucky to have them all. So I'll just give names of some of them; my father Atef Dabboorasad and my mother Asmaa Asaad, the real persons behind all my successes in life, my wife Maha Alattar, the one who never hesitate to support me in all kinds of support, my sons Mohammed, Abdelrahman and Anas who where the source of my motivation to work and success, to my teachers from the elemntary school to the PhD level, especially My mother, the great mathematics teacher, Mr. Hisham Hasouna (may his soul rest in peace), Dr Ahmed Al Mabhouh, Prof. Asa’ad Asa'ad, Prof. Hisham Mahdi and Prof. Eduard Emel'yanov. Finally again the distinct person Mohammad Marabeh, whose friendship is the best thing I got in Turkey, and his help was a real reason for me to reach this step in my scientific life. Thank you all for supporting and believing in me all the way throughout my academic life.

Lastly, this work is supported by YTB Scholarship Programme for PhD and by a special Scholarship from the President Recep Tayyip Erdogan, sincerest thanks to them all.

TABLE OF CONTENTS

ABSTRACT v
ÖZ vi
ACKNOWLEDGMENTS. viii
TABLE OF CONTENTS ix
CHAPTERS
1 INTRODUCTION 1
2 PRELIMINARIES 5
3 UNBOUNDED τ-CONVERGENCE IN LOCALLY SOLID VEC- TOR LATTICES 11
$3.1 u \tau$-Topology 13
$3.2 u \tau$-Convergence in sublattices 18
3.3 Unbounded relatively uniform convergence 19
3.4 Topological orthogonal systems and metrizabililty 22
$3.5 u \tau$-Completeness 30
4 UNBOUNDED m-TOPOLOGY IN MULTI-NORMED VECTOR LAT- TICES 33
4.1 Multi-normed vector lattices. 33
$4.2 \quad u m$-Topology 36
4.3 Metrizabililty of um-topology 37
$4.4 u m$-Completeness 40
$4.5 \quad u m$-Compact sets 47
REFERENCES 53
CURRICULUM VITAE 59

CHAPTER 1

INTRODUCTION

The subject of "unbounded convergence" has attracted many researchers [57, 53, 31, [30, 21, 18, 61, 36, 8, 41, 35, 28, 52]. It is well-investigated in Banach lattices [30, 31, 33, 36, 58, 61]. In this thesis, we study unbounded convergence in locally solid vector lattices. Results in this thesis extend previous works [18, 30, 36, 61].

Many types of "unbounded convergences" were defined in vector lattices, normed lattices, locally solid vector lattices and in lattice-normed vector lattices; see, e.g. [7, 8, 10, 16, 17, 18, 23, 31, 38, 54, 57, 61]. Using those unbounded convergences, several related topologies were introduced; see, e.g. [15, 16, 34, 35, 36, 37, 51 , [52, 61]. Some new classes of operators were defined and investigated using unbounded convergences; see, e.g. [6, 9, 12, 13, 24, 25, 29, 44, 47, 62]. Furthermore, unbounded convergences has been used in the study of Brezis-Lieb lemma, risk measures, Kolomos properties and universal completion for vector lattices ; see, e.g. [11, 19, 21, 28, 29, 30, 32, 41, 43].

A net $\left(x_{\alpha}\right)_{\alpha \in A}$ in a vector lattice X is said to be order convergent (or o-convergent) to a vector $x \in X$ if there is another net $\left(y_{\beta}\right)$, possibly over a different index set, such that $y_{\beta} \downarrow 0$ and, for every β, there exists α_{β} satisfying $\left|x_{\alpha}-x\right| \leqslant y_{\beta}$ whenever $\alpha \geqslant \alpha_{\beta}$. In this case we write, $x_{\alpha} \xrightarrow{o} x$. A net $\left(x_{\alpha}\right)$ in a vector lattice X is unbounded order convergent to a vector $x \in X$ if $\left|x_{\alpha}-x\right| \wedge u \xrightarrow{o} 0$ for all $u \in X_{+}$, in this case we say that the net $\left(x_{\alpha}\right) u o$-converges to x and we write $x_{\alpha} \xrightarrow{u o} x$. H. Nakano (1948) was the first who defined uo-convergence in [45], but he called it "individual convergence". He extended the individual ergodic theorem, which is known also as Birkhoff's ergodic theorem, to KB-spaces. Later, R. DeMarr (1964) proposed the name "unbounded order convergence" in [17]. He defined the uo-convergence in ordered vector spaces and mainly showed that any locally convex space E can be embedded in a particular ordered vector space X so that topological convergence in E is equivalent to $u 0$-convergence in X. In 1977, A. Wickstead investigated the relation between weak and uo-convergences in Banach lattices in [57]. Two characterizations of uo-convergence in order (Dedekind) complete vector lattices having weak units were established in [38] by S. Kaplan (1997/98). In [20], they studied stability of order convergence in vector lattices and some types of order ideals in vector lattices. Order convergence of nets was studied in][2, 55].

Recently, in [31], N. Gao and F. Xanthos studied uo-convergent and uo-Cauchy nets
in Banach lattices and used them to characterize Banach lattices with the positive Schur property and KB-spaces. Moreover, they applied uo-Cauchy sequences to extend Doob's submartingale convergence theorem to a measure-free setting. Next, N. Gao (2014) studied unbounded order convergence in dual spaces of Banach lattices; see [27]. Quite recently, N. Gao, V. Troitsky, and F. Xanthos (2017) examined more properties of uo-convergence in [30]. They proved the stability of the uo-convergence under passing to and from regular sublattices. Using that fact, several results in [31, 27] were generalized. In addition, they studied the convergence of Cesàro means in Banach lattices using the uo-convergence. As a result, they obtained an intrinsic version of Komlós' Theorem in Banach lattices and developed a new and unified approach to study Banach-Saks properties and Banach-Saks operators in Banach lattices based on uo-convergence.

Moreover, E. Emelyanov and M. Marabeh (2016) derived two measure-free versions of Brezis-Lieb lemma in vector lattices using uo-convergence in [21]. In 2017, H . Li and Z . Chen showed in [41] that every norm bounded positive increasing net in an order continuous Banach lattice is uo-Cauchy and that every uo-Cauchy net in an order continuous Banach lattice has a $u o$-limit in the universal completion.

Regarding applications, unbounded order convergence has been applied in finance. For instance, N. Gao and F. Xanthos have exploited uo-convergence to derive a w^{*} representation theorem of proper convex increasing functionals on particular dual Banach lattices in [32]. Extending this work, representation theorems of convex functionals and risk measures was established using unbounded order continuous dual of a Banach lattice in [28].

Let X be a normed lattice, then a net $\left(x_{\alpha}\right)$ in X is unbounded norm convergent to a vector $x \in X$ (or x_{α} un-convergent to x) if $\left|x_{\alpha}-x\right| \wedge u \xrightarrow{\|\cdot\|} 0$ for all $u \in X_{+}$. In this case, we write $x_{\alpha} \xrightarrow{u n} x$. In 2004, V. Troitsky defined the unbounded norm convergence in [53]. He called it the " d-convergence", and studied the relation between the d-convergence and measure of non-compactness.

Later, in 2016, Y. Deng, M. O'Brien, and V. Troitsky introduced the name "unbounded norm convergence" in [18]. They studied basic properties of un-convergence and investigated its relation with $u o$ - and weak convergences. Finally, they showed that un-convergence is topological.

The "unbounded norm topology" (or un-topology) in Banach lattices was deeply investigated in [36], by M. Kandić, M. Marabeh, and V. Troitsky (2017). They showed that the $u n$-topology and the norm topology agree iff the Banach lattice has a strong unit. The un-topology is metrizable iff the Banach lattice has a quasi-interior point. The un-topology in an order continuous Banach lattice is locally convex iff it is atomic. An order continuous Banach lattice X is a KB-space iff its closed unit ball B_{X} is un-complete. For a Banach lattice X, B_{X} is un-compact iff X is an atomic KB-space. Also, they studied un-compact operators and the relationship between un-convergence and weak*-convergence.

The concept of unbounded norm convergence has been generalized in [35] by M.

Kandić, H. Li, and V. Troitsky (2017) as follows: let X be a normed lattice and Y a vector lattice such that X is an order dense ideal in Y, then a net (y_{α}) un-converges to $y \in Y$ with respect to X if $\left|y_{\alpha}-y\right| \wedge x \xrightarrow{\|\cdot\|} 0$ for every $x \in X_{+}$. They extended several known results about $u n$-convergence and un-topology to this new setting.

At the same time, O. Zabeti (2017) introduced and studied the unbounded absolute weak convergence (or uaw-convergence). A net (x_{α}) in a Banach lattice X uawconverges to $x \in X$ if $\left|x_{\alpha}-x\right| \wedge u \xrightarrow{w} 0$ for all $u \in X_{+}$; [61]. Zabeti investigated the relations of uaw-convergence with other convergnces. Moreover, he obtained a characterization of order continuous and reflexive Banach lattices in terms of uawconvergence.

After that, Mitchell A. Taylor in [52, 51] investigated unbounded convergence and minimal topologies in locally solid vector lattices. In particular, he prove that a Banach lattice is boundedly uo-complete iff it is monotonically complete. In addition, he studied completeness-type properties of minimal topologies; which are exactly the Hausdorff locally solid topologies in which uo-convergence implies topological convergence. Together with Marko Kandić, they proved in [34] that a minimal topology is metrizable iff X has the countable sup property and a countable order basis. Moreover, they proved relations between minimal topologies and $u o$-convergence that generalize classical relations between convergence almost everywhere and convergence in measure.

The structure of this thesis is as follows. In Chapter 2 we provide basic notions and results form vector lattice theory that are needed throughout this thesis.

Chapter 3 consists of five sections. We study general properties of unbounded τ convergence (shortly, $u \tau$-convergence). For a net $\left(x_{\alpha}\right)$ in a locally solid vector lattice (X, τ); we say that $\left(x_{\alpha}\right)$ is unbounded τ-convergent to a vector $x \in X$ if $\mid x_{\alpha}-$ $x \mid \wedge w \xrightarrow{\tau} 0$ for all $w \in X_{+}$. The $u \tau$-convergence generalizes unbounded norm convergence and unbounded absolute weak convergence in normed lattices that have been investigated recently [18, 36, 61]. Besides, we introduce $u \tau$-topology and study briefly metrizabililty and completeness of this topology.

Finally, in Chapter 4 we carry out a detailed investigation of its very important case, the so-called "unbounded m-convergence" (um-convergence, for short) in multinormed vector lattices [15]. If $\mathcal{M}=\left\{m_{\lambda}\right\}_{\lambda \in \Lambda}$ is a separating family of lattice seminorms on a vector lattice X, then the pair (X, \mathcal{M}) is called a multi-normed vector lattice (or MNVL). We write $x_{\alpha} \xrightarrow{\mathrm{m}} x$ if $m_{\lambda}\left(x_{\alpha}-x\right) \rightarrow 0$ for all $\lambda \in \Lambda$. A net $\left(x_{\alpha}\right)$ in an MNVL $X=(X, \mathcal{M})$ is said to be unbounded m-convergent (or um-convergent) to x if $\left|x_{\alpha}-x\right| \wedge u \xrightarrow{m} 0$ for all $u \in X_{+}$. The um-convergence generalizes $u n$ convergence [18, 36] and uaw-convergence [61], and specializes up-convergence [8] and $u \tau$-convergence [16]. The $u m$-convergence is always topological, whose corresponding topology is called unbounded m-topology (or um-topology). We show that, for an m-complete metrizable MNVL (X, \mathcal{M}), the $u m$-topology is metrizable if and only if X has a countable topological orthogonal system. In terms of umcompleteness, we present a characterization of MNVLs possessing both Lebesgue's and Levi's properties. Then, we characterize MNVLs possessing simultaneously the
σ-Lebesgue and σ-Levi properties in terms of sequential um-completeness. Finally, we prove that every m-bounded and $u m$-closed set is $u m$-compact if and only if the space is atomic and has Lebesgue's and Levi's properties.

The results of Chapters 3, and 4 appear in the preprint [16] and the article [15].

CHAPTER 2

PRELIMINARIES

For the convenience of the reader, we present in this chapter the general background needed in this thesis.

Let " \leq " be an order relation on a real vector space X. Then X is called an ordered vector space, if it satisfies the following conditions: (i) $x \leq y$ implies $x+z \leq y+z$ for all $z \in X$; and (ii) $x \leq y$ implies $\lambda x \leq \lambda y$ for all $\lambda \in \mathbb{R}_{+}$.

For an ordered vector space X we let $X_{+}:=\{x \in X: x \geq 0\}$. The subset X_{+}is called the positive cone of X. For each x and y in an ordered vector space X we let $x \vee y:=\sup \{x, y\}$ and $x \wedge y:=\inf \{x, y\}$. If $x \in X_{+}$and $x \neq 0$, then we write $x>0$.

An ordered vector space X is said to be a vector lattice (or a Riesz space) if for each pair of vectors $x, y \in X$ the $x \vee y$ and $x \wedge y$ both exist in X. Let X be a vector lattice and $x \in X$ then $x^{+}:=x \vee 0, x^{-}:=(-x) \vee 0$ and $|x|:=(-x) \vee x$ are the positive part, negative part and absolute value of x, respectively. Two elements x and y of a vector lattice X are disjoint written as $x \perp y$ if $|x| \wedge|y|=0$. For a nonempty set A of X then its disjoint complement A^{d} is defined by $A^{d}:=\{x \in X: x \perp a$ for all $a \in A\}$. A subset S of a vector lattice X is bounded from above (respectively, bounded from below) if there is $x \in X$ with $s \leq x$ (respectively, $x \leq s$) for all $s \in S$. If $a, b \in X$, then the subset $[a, b]:=\{x \in X: a \leq x \leq b\}$ is called an order interval in X. A subset S of X is said to be order bounded if it is bounded from above and below or equivalently there is $u \in X_{+}$so that $S \subseteq[-u, u]$. If a net $\left(x_{\alpha}\right)$ in X is increasing and $x=\sup _{\alpha} x_{\alpha}$, then we write $x_{\alpha} \uparrow x$. The notation $x_{\alpha} \downarrow x$ means the net $\left(x_{\alpha}\right)$ in X is decreasing and $x=\inf _{\alpha} x_{\alpha}$. A vector lattice X is said to be Archimedean if $\frac{1}{n} x \downarrow 0$ holds for each $x \in X_{+}$. Throughout this thesis, all vector lattices are assumed to be Archimedean.

A vector lattice X is called order complete or Dedekind complete if every order bounded from above subset has a supremum, equivalently if $0 \leq x_{\alpha} \uparrow \leq u$ then there is $x \in X$ such that $x_{\alpha} \uparrow x$.

A vector subspace Y of a vector lattice X is said to be a sublattice of X if for each y_{1} and y_{2} in Y we have $y_{1} \vee y_{2} \in Y$. A sublattice Y of X is order dense in X if for each $x>0$ there is $0<y \in Y$ with $0<y \leq x$ and Y is said to be majorizing in X if for each $x \in X_{+}$there exists $y \in Y$ such that $x \leq y$.

A linear operator $T: X \rightarrow Y$ between vector lattices is called lattice homomorphism if $|T x|=T|x|$ for all $x \in X$. A one-to-one lattice homomorphism is referred as a lattice isomorphism. Two vector lattices X and Y are said to be lattice isomorphic when there is a lattice isomorphism from X onto Y.

If X is a vector lattice, then there is a (unique up to lattice isomorphism) order complete vector lattice X^{δ} that contains X as a majorizing order dense sublattice. We refer to X^{δ} as the order (or Dedekind) completion of X.

A subset A of X is said to be solid if for $x \in X$ and $a \in A$ such that $|x| \leq|a|$ it follows that $x \in A$. A solid vector subspace of a vector lattice is referred as ideal. Let A be a nonempty subset of X then I_{A} the ideal generated by A is the smallest ideal in X that contains A. This ideal is given by

$$
I_{A}:=\left\{x \in X: \exists a_{1}, \ldots, a_{n} \in A \text { and } \lambda \in \mathbb{R}_{+} \text {with }|x| \leq \lambda \sum_{j=1}^{n}\left|a_{j}\right|\right\} .
$$

For $x_{0} \in X$ then $I_{x_{0}}$ the ideal generated by x_{0} is referred as a principal ideal. This ideal has the form $I_{x_{0}}:=\left\{x \in X: \exists \lambda \in \mathbb{R}_{+}\right.$with $\left.|x| \leq \lambda\left|x_{0}\right|\right\}$.

For a net $\left(x_{\alpha}\right)$ in a vector lattice X, we write $x_{\alpha} \xrightarrow{o} x$, if x_{α} converges to x in order. This means that there is a net $\left(y_{\beta}\right)$, possibly over a different index set, such that $y_{\beta} \downarrow 0$ and, for every β, there exists α_{β} satisfying $\left|x_{\alpha}-x\right| \leqslant y_{\beta}$ whenever $\alpha \geqslant \alpha_{\beta}$. It follows that an order convergent net has an order bounded tail, whereas an order convergent sequence is order bounded. For a net $\left(x_{\alpha}\right)$ in a vector lattice X and $x \in X$ we have $\left|x_{\alpha}-x\right| \xrightarrow{o} 0$ if and only if $x_{\alpha} \xrightarrow{o} x$. For an order bounded net $\left(x_{\alpha}\right)$ in an order complete vector lattice we have, $x_{\alpha} \xrightarrow{o} x$ if and only if $\inf _{\alpha} \sup _{\beta \geq \alpha}\left|x_{\beta}-x\right|=0$. A net $\left(x_{\alpha}\right)$ is unbounded order convergence to a vector $x \in X$ if $\left|x_{\alpha}-x\right| \wedge u \xrightarrow{o} 0$ for every $u \in X_{+}$. We write $x_{\alpha} \xrightarrow{u o} x$ and say that $x_{\alpha} u o$-converges to x. The unbounded order convergent was introduced in [45] under the name individual convergence, where the name unbounded order convergence was first proposed by DeMarr (1964) [17]. Clearly, order convergence implies uo-convergence and they coincide for order bounded nets. The uo-convergence is an abstraction of a.e.-convergence in L_{p}-spaces for $1 \leq p<\infty$, [30, 31]. For a measure space (Ω, Σ, μ) and for a sequence f_{n} in $L_{p}(\mu)(0 \leq p \leq \infty), f_{n} \xrightarrow{u o} 0$ if and only if $f_{n} \rightarrow 0$ almost everywhere (cf. [30, Remark 3.4]). It is well known that almost everywhere convergence is not topological in general [46]. Therefore, the uo-convergence might not be topological. Quite recently, it has been shown that order convergence is never topological in infinite dimensional vector lattices [14].

Suppose that X is a vector lattice. By [30, Corollary 3.6], every disjoint sequence in X is uo-null. Recall that a sublattice Y of X is regular if the inclusion map preserves suprema and infima of arbitrary subsets. It was shown in [30, Theorem 3.2] that uoconvergence is stable under passing to and from regular sublattices. That is, if $\left(y_{\alpha}\right)$ is a net in a regular sublattice Y of X, then $y_{\alpha} \xrightarrow{u o} 0$ in Y if and only if $y_{\alpha} \xrightarrow{u o} 0$ in X (in fact, this property characterizes regular sublattices).

A net $\left(x_{\alpha}\right)_{\alpha \in A}$ in X is said to be order Cauchy (or o-Cauchy) if the double net $\left(x_{\alpha}-\right.$ $\left.x_{\alpha^{\prime}}\right)_{\left(\alpha, \alpha^{\prime}\right) \in A \times A}$ is order convergent to 0 . A linear operator $T: X \rightarrow Y$ between
vector lattices is said to be order continuous if $x_{\alpha} \xrightarrow{o} 0$ in X implies $T x_{\alpha} \xrightarrow{o} 0$ in Y. Order convergence is the same in a vector lattice and in its order completion, see [30, Corollary 2.9].

A subset A of X is called order closed if for any net $\left(a_{\alpha}\right)$ in A such that $a_{\alpha} \xrightarrow{o} x$ it follows that $x \in A$. An order closed ideal is a band. For $x_{0} \in X$ the principal band generated by x_{0} is the smallest band that includes x_{0}. We denote this band by $B_{x_{0}}$ and it is described as $B_{x_{0}}:=\left\{x \in X:|x| \wedge n\left|x_{0}\right| \uparrow|x|\right\}$. A band B in a vector lattice X is said to be a projection band if $X=B \oplus B^{d}$. If B is a projection band, then each $x \in X$ can be written uniquely as $x=x_{1}+x_{2}$ where $x_{1} \in B$ and $x_{2} \in B^{d}$. The projection $P_{B}: X \rightarrow X$ defined by $P_{B}(x):=x_{1}$ is called the band projection corresponding to the band projection B. If P is a band projection then it is a lattice homomorphism and $0 \leq P \leq I$; i.e., $0 \leq P x \leq x$ for all $x \in X_{+}$. So band projections are order continuous.

A vector lattice X equipped with a norm $\|\cdot\|$ is said to be a normed lattice if $|x| \leq|y|$ in X implies $\|x\| \leq\|y\|$. If a normed lattice is norm complete, then it is called a Banach lattice. A normed lattice $(X,\|\cdot\|)$ is called order continuous if $x_{\alpha} \downarrow 0$ in X implies $\left\|x_{\alpha}\right\| \downarrow 0$ or equivalently $x_{\alpha} \xrightarrow{o} 0$ in X implies $\left\|x_{\alpha}\right\| \rightarrow 0$. A normed lattice $(X,\|\cdot\|)$ is called a $K B$-space if for $0 \leq x_{\alpha} \uparrow$ and $\sup _{\alpha}\left\|x_{\alpha}\right\|<\infty$ we get the net $\left(x_{\alpha}\right)$ is norm convergent. Clearly, if the norm is order continuous, then uo-convergence implies un-convergence.

Let X be a vector lattice. An element $0 \neq e \in X_{+}$is called a strong unit if $I_{e}=X$, where I_{e} denotes the ideal generated by e (equivalently, for every $x \geqslant 0$, there exists $n \in \mathbb{N}$ such that $x \leqslant n e$), and $0 \neq e \in X_{+}$is called a weak unit if $B_{e}=X$, (equivalently, $x \wedge n e \uparrow x$ for every $x \in X_{+}$). Here B_{e} denotes the band generated by e.

Recall that a vector lattice V is a locally solid vector lattice if it is Hausdorff topological vector space possessing a zero base of solid neighborhoods. If (X, τ) is a locally solid vector lattice, then $0 \neq e \in X_{+}$is called a quasi-interior point, if the principal ideal I_{e} is τ-dense in X, that is $\bar{I}_{e}^{\tau}=X$. [49, Def. II.6.1]. If X is a normed lattice. Then it can be shown that $0<e \in X$ is a quasi-interior point if and only if for every $x \in X_{+}$we have $\|x-x \wedge n e\| \rightarrow 0$ as $n \rightarrow \infty$. It is known that in a normed lattice

$$
\text { strong unit } \Rightarrow \text { quasi-interior point } \Rightarrow \text { weak unit. }
$$

An element $a>0$ in a vector lattice X is called an atom whenever for every $x \in[0, a]$ there is some real $\lambda \geq 0$ such that $x=\lambda a$. It is known that B_{a} the band generated by a is a projection band and $B_{a}=I_{a}=\operatorname{span}\{a\}$, where I_{a} is the ideal generated by a. A vector lattice X is called atomic if the band generated by its atoms is X. For any $x>0$ there is an atom a such that $a \leq x$. For any atom a, let P_{a} be the band projection corresponding to B_{a}. Then $P_{a}(x)=f_{a}(x) a$ where f_{a} is the biorthogonal functional corresponding to a. Since band projections are lattice homomorphisms and are order continuous, so is f_{a} for any atom a.

Finally we characterize order convergence in atomic order complete vector lattices, and for the convenience of the reader we provide the following technical lemma.

Lemma 1. Let X and Y be vector lattices. If $T: X \rightarrow Y$ is an order continuous lattice homomorphism and A a subset of X such that $\sup A$ exists in X, then $T(\sup A)=\sup T(A)$.

Proof. Note that $\left\{a_{1} \vee \cdots \vee a_{n}: n \in \mathbb{N}, a_{1}, \ldots, a_{n} \in A\right\} \uparrow \sup A$. So $T\left(\left\{a_{1} \vee \cdots \vee\right.\right.$ $\left.\left.a_{n}: n \in \mathbb{N}, a_{1}, \ldots, a_{n} \in A\right\}\right) \uparrow T(\sup A)$. Furthermore, $T\left(\left\{a_{1} \vee \cdots \vee a_{n}: n \in\right.\right.$ $\left.\left.\mathbb{N}, a_{1}, \ldots, a_{n} \in A\right\}\right)=\left\{T\left(a_{1} \vee \cdots \vee a_{n}\right): n \in \mathbb{N}, a_{1}, \ldots, a_{n} \in A\right\}=\left\{T a_{1} \vee \cdots \vee\right.$ $\left.T a_{n}: n \in \mathbb{N}, a_{1}, \ldots, a_{n} \in A\right\} \uparrow \sup T(A)$. Hence $T(\sup A)=\sup T(A)$.

Lemma 2. If X is an atomic order complete vector lattice and $\left(x_{\alpha}\right)$ is an order bounded net such that $f_{a}\left(x_{\alpha}\right) \rightarrow 0$ for any atom a, then $x_{\alpha} \xrightarrow{o} 0$.

Proof. Suppose the contrary, then $\inf _{\alpha} \sup _{\beta \geq \alpha}\left|x_{\beta}\right|>0$, so there is an atom a such that $a \leq \inf _{\alpha} \sup _{\beta \geq \alpha}\left|x_{\beta}\right|$. Hence $a \leq \sup _{\beta \geq \alpha}\left|x_{\beta}\right|$ for any α.

Let f_{a} be the biorthogonal functional corresponding to a, then it follows from Lemma 1 that $1=f_{a}(a) \leq f_{a}\left(\sup _{\beta \geq \alpha}\left|x_{\beta}\right|\right)=\sup _{\beta \geq \alpha}\left|f_{a}\left(x_{\beta}\right)\right|$ for each α. Thus
$\lim \sup _{\alpha}\left|f_{a}\left(x_{\alpha}\right)\right| \geq 1$ which is a contradiction.
Lemma 3. [30] Corollary 2.9] For any net $\left(x_{\alpha}\right)$ in a vector lattice $X, x_{\alpha} \xrightarrow{o} 0$ in X if and only if $x_{\alpha} \xrightarrow{o} 0$ in X^{δ}.

Combining Lemmas 2 and 3 we obtain the following result.
Proposition 1. If X is an atomic vector lattice and $\left(x_{\alpha}\right)$ is an order bounded net such that $f_{a}\left(x_{\alpha}\right) \rightarrow 0$ for any atom a, then $x_{\alpha} \xrightarrow{0} 0$.

For a net $\left(x_{\alpha}\right)$ in a normed lattice $(X,\|\cdot\|)$, we write $x_{\alpha} \xrightarrow{\|\cdot\|} x$ if x_{α} converges to x in norm. We say that x_{α} unbounded norm converges to $x \in X$ (or x_{α} un-converges to x) if $\left|x_{\alpha}-x\right| \wedge u \xrightarrow{\|\cdot\|} 0$ for every $u \in X_{+}$. We write $x_{\alpha} \xrightarrow{u n} x$. The un-convergence was introduced in [53] under the name d-convergence and studied in [18] and [36]. Clearly, norm convergence implies un-convergence. The converse need not be true.

Example 1. Consider the sequence (e_{n}) of standard unit vectors in c_{0}. Let $u=$ $\left(u_{1}, u_{2}, \ldots\right)$ be an element in $\left(c_{0}\right)_{+}$. Let $0<\varepsilon<1$ then there is $n_{\varepsilon} \in \mathbb{N}$ such that $u_{n}<\varepsilon$ for all $n \geq n_{\varepsilon}$. Thus for $n \geq n_{\varepsilon},\left\|n e_{n} \wedge u\right\|_{\infty}=u_{n}<\varepsilon$. Hence $n e_{n} \xrightarrow{u n} 0$. The sequence $\left(n e_{n}\right)$ is not norm bounded, and so it can not be norm convergent.

For order bounded nets, un-convergence and norm convergence coincide. If the norm of a normed lattice is order continuous then $u o$-convergence implies un-convergence.

Proposition 2. [18 Lemma 2.11] Let X be a normed lattice with a quasi-interior point e. Then for any net $\left(x_{\alpha}\right)$ in $X, x_{\alpha} \xrightarrow{u n} 0$ if and only if $\left\|\left|x_{\alpha}\right| \wedge e\right\| \rightarrow 0$.

Let Y be a sublattice of a Banach lattice X. Clearly, if $\left(y_{\alpha}\right)$ is a net in Y and $y_{\alpha} \xrightarrow{u n} 0$ in X, then $y_{\alpha} \xrightarrow{u n} 0$ in Y. The converse need not be true.

Example 2. Let $\left(e_{n}\right)$ be the sequence of standard unit vectors in c_{0}. Then $e_{n} \xrightarrow{u n} 0$ in c_{0}, but this does not hold in ℓ_{∞}. Indeed, let $u=(1,1,1, \ldots)$ then $e_{n} \wedge u=e_{n}$ and $\left\|e_{n}\right\|_{\infty}=1 \nrightarrow 0$.

Theorem 1. [36] Theorem 4.3] Let Y be a sublattice of a normed lattice X and $\left(y_{\alpha}\right)$ a net in Y such that $y_{\alpha} \xrightarrow{u n} 0$ in Y. The following statements hold.

1. If Y is majorizing in X, then $y_{\alpha} \xrightarrow{u n} 0$ in X.
2. If Y is norm dense in X, then $y_{\alpha} \xrightarrow{u n} 0$ in X.
3. Y is a projection band in X, then $y_{\alpha} \xrightarrow{u n} 0$ in X.

Since every Archimedean vector lattice X is majorizing in its order completion X^{δ}, we have the following result.

Corollary 1. [36] Corollary 4.4] If X is a normed lattice and $x_{\alpha} \xrightarrow{u n} x$ in X, then $x_{\alpha} \xrightarrow{u n} x$ in the order completion X^{δ} of X.

Corollary 2. [36] Corollary 4.5] If X is a $K B$-space and $x_{\alpha} \xrightarrow{\text { un }} 0$ in X, then $x_{\alpha} \xrightarrow{u n} 0$ in $X^{* *}$.

Example 2 shows that the assumption that X is a KB-space cannot be removed.
Corollary 3. [36. Corollary 4.6] Let Y be a sublattice of an order continuous Banach lattice X. If $y_{\alpha} \xrightarrow{u n} 0$ in Y then $y_{\alpha} \xrightarrow{u n} 0$ in X.

While uo-convergence need not be given by a topology, it was observed in [18] that $u n$-convergence is topological. For every $\varepsilon>0$ and non-zero $u \in X_{+}$, put

$$
V_{\varepsilon, u}=\{x \in X:\||x| \wedge u\|<\varepsilon\} .
$$

The collection of all sets of this form is a base of zero neighborhoods for a topology, and the convergence in this topology agrees with un-convergence. This topology is referred as un-topology and it was investigated in [36].

Recall that for a net $\left(x_{\alpha}\right), x_{\alpha} \xrightarrow{w} 0$ if and only if $f\left(x_{\alpha}\right) \rightarrow 0$ for all $f \in X^{*}$, where " w " refers to weak convergence, and X^{*} is the topological dual of X (the space of all real valued continuous functionals on X).

A net $\left(x_{\alpha}\right)$ is unbounded absolute weak convergent to $x \in X$ (or x_{α} uaw-converges to x) if $\left|x_{\alpha}-x\right| \wedge u \xrightarrow{w} 0$ for all $u \in X_{+}$. We write $x_{\alpha} \xrightarrow{\text { uaw }} x$. Absolute weak convergence implies uaw-convergence. The notions of uaw-convergence and uawtopology were introduced in [61].

Let X be a Banach lattice. If $x_{\alpha} \xrightarrow{|\sigma|\left(X, X^{*}\right)} 0$, then $x_{\alpha} \xrightarrow{\text { uaw }} 0$, where $|\sigma|\left(X, X^{*}\right)$ denotes the absolute weak topology on X. It was pointed out in [61, Example 3] that
the converse need not be true. For order bounded nets uaw-convergence and absolute weak convergence are equivalent.

As in the case of un-convergence the following result illustrates that uaw-convergence can only be evaluated at a quasi-interior point.

Proposition 3. [6] Lemma 6] Let X be a Banach lattice with a quasi-interior point e. Then for any net $\left(x_{\alpha}\right)$ in $X, x_{\alpha} \xrightarrow{\text { uaw }} 0$ if and only if $\left|x_{\alpha}\right| \wedge e \xrightarrow{w} 0$.

Similar to the situation in Corollary 3 uaw-convergence on atomic order continuous Banach lattices can transfer from a sublattice to the whole space.

Proposition 4. [61] Proposition 16] Suppose X is an order continuous Banach lattice and Y is a sublattice of X. If $y_{\alpha} \xrightarrow{\text { uaw }} 0$ in Y then $y_{\alpha} \xrightarrow{\text { uaw }} 0$ in X.

Next result shows that uo-, un- and uaw-convergences all agree on atomic order continuous Banach lattices.

Proposition 5. [61] Corollary 14] Suppose X is an order continuous Banach lattice. Then uo-convergence un-convergence and uaw-convergence are agree if and only if X is atomic.
Thus if X is an atomic order continuous Banach lattice, $\left(x_{\alpha}\right)$ is a net in X and f_{a} is the biorthogonal functional corresponding to an atom $a \in X$. Then $x_{\alpha} \xrightarrow{\text { uo }} 0$ if and only if $x_{\alpha} \xrightarrow{\text { un }} 0$ if and only if $x_{\alpha} \xrightarrow{\text { uaw }} 0$ if and only if $f_{a}\left(x_{\alpha}\right) \rightarrow 0$ for any atom $a \in X$.

CHAPTER 3

UNBOUNDED τ-CONVERGENCE IN LOCALLY SOLID VECTOR LATTICES

Recall that a topological vector space is a vector space assigned with a topology in which the vector operations are continuous. If X is a vector lattice, and τ is a linear topology on X that has a base at zero consisting of solid sets, then the pair (X, τ) is called a locally solid vector lattice. It should be noted that all topologies considered throughout this thesis are assumed to be Hausdorff. It follows from [3, Theorem 2.28] that a linear topology τ on a vector lattice X is locally solid if and only if it is generated by a family $\left\{\rho_{j}\right\}_{j \in J}$ of Riesz pseudonorms, where a Riesz pseudonorm ρ is a real-valued function defined on a vector lattice X satisfying the following properties:

1. $\rho(x) \geq 0$ for all $x \in X$.
2. $\rho(x+y) \leq \rho(x)+\rho(y)$ for all $x, y \in X$.
3. $\rho(\lambda x) \rightarrow 0$ as $\lambda \rightarrow 0$ for each $x \in X$.
4. If $|x| \leq|y|$ then $\rho(x) \leq \rho(y)$.

Moreover, if a family of Riesz pseudonorms generates a locally solid topology τ on a vector lattice X, then $x_{\alpha} \xrightarrow{\tau} x$ in X if and only if $\rho_{j}\left(x_{\alpha}-x\right) \rightarrow 0$ in \mathbb{R} for each $j \in J$. Since X is Hausdorff, the family $\left\{\rho_{j}\right\}_{j \in J}$ of Riesz pseudonorms is separating; i.e., if $\rho_{j}(x)=0$ for all $j \in J$, then $x=0$.

A subset A in a topological vector space (X, τ) is called topologically bounded (or simply τ-bounded) if, for every τ-neighborhood V of zero, there exists some $\lambda>0$ such that $A \subseteq \lambda V$. If ρ is a Riesz pseudonorm on a vector lattice X and $x \in X$, then $\frac{1}{n} \rho(x) \leq \rho\left(\frac{1}{n} x\right)$ for all $n \in \mathbb{N}$. Indeed, if $n \in \mathbb{N}$ then $\rho(x)=\rho\left(n \frac{1}{n} x\right) \leq n \rho\left(\frac{1}{n} x\right)$. The following standard fact is included for the sake of completeness.
Proposition 6. Let (X, τ) be a locally solid vector lattice with a family of Riesz pseudonorms $\left\{\rho_{j}\right\}_{j \in J}$ that generates the topology τ. If a subset A of X is τ-bounded then $\rho_{j}(A)$ is bounded in \mathbb{R} for any $j \in J$.

Proof. Let $A \subseteq X$ be τ-bounded and $j \in J$. Put $V:=\left\{x \in X: \rho_{j}(x)<1\right\}$. Clearly, V is a neighborhood of zero in X. Since A is τ-bounded, there is $\lambda>0$ satisfying
$A \subseteq \lambda V$. Thus $\rho_{j}\left(\frac{1}{\lambda} a\right) \leq 1$ for all $a \in A$. There exists $n \in \mathbb{N}$ with $n>\lambda$. Now, $\frac{1}{n} \rho_{j}(a) \leq \rho_{j}\left(\frac{1}{n} a\right) \leq \rho_{j}\left(\frac{1}{\lambda} a\right) \leq 1$ for all $a \in A$. Hence, $\sup _{a \in A} \rho_{j}(a) \leq n<\infty$.

Next, we discuss the converse of the above proposition.
Let $\left\{\rho_{j}\right\}_{j \in J}$ be a family of Riesz pseudonorms for a locally solid vector lattice (X, τ). For $j \in J$, let $\tilde{\rho}_{j}:=\frac{\rho_{j}}{1+\rho_{j}}$. Then $\tilde{\rho}_{j}$ is a Riesz pseudonorm on X. Moreover, the family $\left(\tilde{\rho}_{j}\right)_{j \in J}$ generates the topology τ on X. Clearly, $\tilde{\rho}_{j}(A) \leq 1$ for any subset A of X, but still we might have a subset that is not τ-bounded.

Recall that a locally solid vector lattice (X, τ) is said to have the Lebesgue property if $x_{\alpha} \downarrow 0$ in X implies $x_{\alpha} \xrightarrow{\tau} 0$; or equivalently $x_{\alpha} \xrightarrow{o} 0$ implies $x_{\alpha} \xrightarrow{\tau} 0$; and (X, τ) is said to have the σ-Lebesgue property if $x_{n} \downarrow 0$ in X implies $x_{n} \xrightarrow{\tau} 0$; and (X, τ) is said to have the pre-Lebesgue property if $0 \leq x_{n} \uparrow \leq x$ implies only that $\left(x_{n}\right)$ is τ-Cauchy. Finally, (X, τ) is said to have the Levi property if $\left(x_{\alpha}\right)$ is τ-bounded net, with $0 \leq x_{\alpha} \uparrow$, implies that $\left(x_{\alpha}\right)$ has the supremum in X; and (X, τ) is said to have the σ-Levi property if $0 \leq x_{n} \uparrow$ and $\left(x_{n}\right)$ is τ-bounded, then $\left(x_{n}\right)$ has supremum in X, see [3, Defintion 3.16].

Let X be a vector lattice, and take $0 \neq u \in X_{+}$. Then a net $\left(x_{\alpha}\right)$ in X is said to be u-uniform convergent to a vector $x \in X$ if, for each $\varepsilon>0$, there exists some α_{ε} such that $\left|x_{\alpha}-x\right| \leq \varepsilon u$ holds for all $\alpha \geqslant \alpha_{\varepsilon}$; and $\left(x_{\alpha}\right)$ is said to be u-uniform Cauchy if, for each $\varepsilon>0$, there exists some α_{ε} such that, for all $\alpha, \alpha^{\prime} \geqslant \alpha_{\varepsilon}$, we have $\left|x_{\alpha}-x_{\alpha^{\prime}}\right| \leq \varepsilon u$. A vector lattice X is said to be u-uniform complete if every u uniform Cauchy sequence in X is u-uniform convergent; and X is said to be uniform complete if X is u-uniform complete for each $0 \neq u \in X_{+}$.

It should be noted that, in a u-uniform complete vector lattice, each u-uniform Cauchy net is u-uniform convergent. Indeed, suppose that $\left(x_{\alpha}\right)$ is a u-uniform Cauchy net in a vector lattice X. Then, for each $n \in \mathbb{N}$, there is α_{n} such that $\left|x_{\alpha}-x_{\alpha^{\prime}}\right| \leq \frac{1}{n} u$ for all $\alpha, \alpha^{\prime} \geq \alpha_{n}$. We select a strictly increasing sequence α_{n}. Then, it is clear that the sequence $\left(x_{\alpha_{n}}\right)$ is u-uniform Cauchy and so there is $x \in X$ such that $\left(x_{\alpha_{n}}\right) u$-uniform converges to x. Let $n_{0} \in \mathbb{N}$. Then, for all $\alpha \geqslant \alpha_{n_{0}}$, we get $\left|x_{\alpha}-x_{\alpha_{n_{0}}}\right| \leq \frac{1}{n_{0}} u$, and for all $n \geqslant n_{0},\left|x_{\alpha_{n}}-x_{\alpha_{n_{0}}}\right| \leq \frac{1}{n_{0}} u$. As $n \rightarrow \infty,\left|x-x_{\alpha_{n_{0}}}\right| \leq \frac{1}{n_{0}} u$. For $\alpha \geqslant \alpha_{n_{0}}$, $\left|x-x_{\alpha}\right| \leq \frac{2}{n_{0}} u$.
Lemma 4. [42] Theorem 42.2] The vector lattice X is uniform complete if and only if, for every $u \in X_{+}$, any monotone u-uniform Cauchy sequence has an u-uniform limit.

Recall that a Banach lattice X is called an AM-space if $\|x \vee y\|=\max \{\|x\|,\|y\|\}$ for all $x, y \in X$ with $x \wedge y=0$.

We prove that any sequentially complete locally solid vector lattice is uniform complete. First we provide the following fact.
Lemma 5. Let (X, τ) be a sequentially complete locally solid vector lattice and $\left(\rho_{j}\right)_{j \in J}$ be a family of Riesz pseudonorms that generates τ. Given $j \in J$ and $u \in X$. Then, for all $\varepsilon>0$, there is $\delta>0$ such that $\rho_{j}(\delta u)<\varepsilon$.

Proof. Given $j \in J$ and $u \in X$. If there exists $\varepsilon_{0}>0$ such that $\rho_{j}(\delta u) \geq \varepsilon_{0}$ for all $\delta>0$, then we have, in particular, $\rho_{j}\left(\frac{1}{n} u\right) \geq \varepsilon_{0}$ for all $n \in \mathbb{N}$. It follows from [3, Defintion 2.27(3)] that $\lim _{n \rightarrow \infty} \rho_{j}\left(\frac{1}{n} u\right)=0$ and so $\varepsilon_{0} \leq 0$, a contradiction.

Proposition 7. Let (X, τ) be a sequentially complete locally solid vector lattice. Then X is uniform complete.

Proof. Let $\left(\rho_{j}\right)_{j \in J}$ be a family of Riesz pseudonorms that generates τ. Let $0 \neq u \in$ X_{+}and $\left(x_{n}\right)$ be an increasing sequence which is u-uniform Cauchy. We show that X is uniform complete. Given $j \in J$ and $\varepsilon>0$, then, by Lemma 5, there is $\delta>0$ such that $\rho_{j}(\delta u)<\varepsilon$. Since $\left(x_{n}\right)$ is u-uniform Cauchy, there is $n_{\delta} \in \mathbb{N}$ satisfying $\left|x_{n}-x_{m}\right| \leq \delta u$ for all $n, m \geq n_{\delta}$. Then $\rho_{j}\left(\left|x_{n}-x_{m}\right|\right) \leq \rho_{j}(\delta u)<\varepsilon$ for all $n, m \geq n_{\delta}$. Thus, $\left(x_{n}\right)$ is τ-Cauchy and, since (X, τ) is sequentially complete, $\left(x_{n}\right)$ is τ-convergent, so there is $x \in X$ such that $x_{n} \xrightarrow{\tau} x$. Since $\left(x_{n}\right)$ is increasing, $x_{n} \uparrow x$. It remains to show that $\left(x_{n}\right) u$-converges to x. Take $\varepsilon>0$. Since $\left(x_{n}\right)$ is u-uniform Cauchy, there is $n_{\varepsilon} \in \mathbb{N}$ satisfying

$$
\begin{equation*}
\left|x_{n}-x_{m}\right| \leq \varepsilon u, \text { for all } n, m \geqslant n_{\varepsilon} . \tag{3.0.1}
\end{equation*}
$$

Letting $m \rightarrow \infty$ in 3.0.1, we get $\left|x_{n}-x\right| \leq \varepsilon u$ for all $n \geqslant n_{\varepsilon}$.

Let (X, τ) be a sequentially complete locally solid vector lattice. By Proposition 7 , it is uniform complete. So, for each $0 \neq u \in X_{+}$, let I_{u} be the ideal generated by u and $\|\cdot\|_{u}$ be the norm on I_{u} given by

$$
\|x\|_{u}=\inf \{r>0:|x| \leq r u\} .
$$

Then, by [5], Theorem 2.58], the pair $\left(I_{u},\|\cdot\|_{u}\right)$ is a Banach lattice. Now Theorem 3.4 in [1] implies that $\left(I_{u},\|\cdot\|_{u}\right)$ is an $A M$-space with a strong unit u, and then, by [1, Theorem 3.6], it is lattice isometric to $C(K)$ for some compact Hausdorff space K in such a way, that the strong unit u is identified with the constant function $\mathbb{1}$ on K.

$3.1 u \tau$-Topology

In this section we introduce the $u \tau$-topology in an analogous manner to the $u n$ topology [36] and uaw-topology [61]. First we define the $u \tau$-convergence.

Definition 1. Suppose (X, τ) is a locally solid vector lattice. Let $\left(x_{\alpha}\right)$ be a net in X. We say that $\left(x_{\alpha}\right)$ is unbounded τ-convergent to $x \in X$ if, for any $w \in X_{+}$, we have $\left|x_{\alpha}-x\right| \wedge w \xrightarrow{\tau} 0$. In this case, we write $x_{\alpha} \xrightarrow{u \tau} x$ and say that $x_{\alpha} u \tau$-converges to x.

Obviously, if $x_{\alpha} \xrightarrow{\tau} x$ then $x_{\alpha} \xrightarrow{u \tau} x$. The converse holds if the net $\left(x_{\alpha}\right)$ is order bounded. Note also that $u \tau$-convergence respects linear and lattice operations. It is clear that $u \tau$-convergence is a generalization of $u n$-convergence [18, 36] and, of uaw-convergence [61].

Theorem 2. The ut-convergence is topological.

Proof. Let \mathcal{N}_{0} be the collection of all sets of the form

$$
V_{\varepsilon, w, j}=\left\{x \in X: \rho_{j}(|x| \wedge w)<\varepsilon\right\},
$$

where, $j \in J, 0 \neq w \in X_{+}$, and $\varepsilon>0$. We claim that \mathcal{N}_{0} is a base of neighborhoods of zero for some topology.

For that note that every set in \mathcal{N}_{0} contains zero since $\rho_{j}(|0 \wedge w|)=\rho_{j}(0)=0<\varepsilon$ for all $0 \neq w \in X_{+}, j \in J$, and $\varepsilon>0$.

1. Now let $V_{\varepsilon_{1}, w_{1}, j_{1}}$, and $V_{\varepsilon_{2}, w_{2}, j_{2}} \in \mathcal{N}_{0}$, put $\varepsilon=\varepsilon_{1} \wedge \varepsilon_{2}, w=w_{1} \vee w_{2}, \rho_{j} \geq \rho_{j_{1}}$, and $\rho_{j} \geq \rho_{j_{2}}$. For $x \in V_{\varepsilon, w, j}, \rho_{j}(|x| \wedge w)<\varepsilon$, but $|x| \wedge w_{1} \leq|x| \wedge w$ implies that $\rho_{j_{1}}\left(|x| \wedge w_{1}\right) \leq \rho_{j}\left(|x| \wedge w_{1}\right) \leq \rho_{j}(|x| \wedge w)<\varepsilon \leq \varepsilon_{1}$, similarly $\rho_{j_{2}}\left(|x| \wedge w_{2}\right)<$ ε_{2}, that is $x \in V_{\varepsilon_{1}, w_{1}, j_{1}} \cap V_{\varepsilon_{2}, w_{2}, j_{2}}$, and hence $V_{\varepsilon, w, j} \subseteq V_{\varepsilon_{1}, w_{1}, j_{1}} \cap V_{\varepsilon_{2}, w_{2}, j_{2}}$ which means that the intersection of ant two sets in \mathcal{N}_{0} contains another set from \mathcal{N}_{0}.
2. Let $x_{1}+x_{2} \in V_{\varepsilon, w, j}+V_{\varepsilon, w, j}$, then $\rho_{j}\left(\left|x_{1}\right| \wedge w\right)<\varepsilon$, and $\rho_{j}\left(\left|x_{2}\right| \wedge w\right)<\varepsilon$, so $\rho_{j}\left(\left|x_{1}+x_{2}\right| \wedge w\right) \leq \rho_{j}\left(\left|x_{1}\right| \wedge w+\left|x_{2}\right| \wedge w\right) \leq \rho_{j}\left(\left|x_{1}\right| \wedge w\right)+\rho_{j}\left(\left|x_{2}\right| \wedge w\right)<2 \varepsilon$, that is $x_{1}+x_{2} \in V_{2 \varepsilon, w, j} \in \mathcal{N}_{0}$, and hence for any $W \in \mathcal{N}_{0}$ there exists $V \in \mathcal{N}_{0}$ such that $V+V \subseteq W$.
3. Let $\alpha \in \mathbb{R}$ such that $|\alpha| \leq 1$, and $W=V_{\varepsilon, w, j} \in \mathcal{N}_{0}$, then for any $x \in \alpha W=$ $\alpha V_{\varepsilon, w, j}, x=\alpha t$ for some $t \in V_{\varepsilon, w, j}$, with $|\alpha||t| \leq|t|$ because $|\alpha| \leq 1$, and $\rho_{j}(|t| \wedge w)<\varepsilon$ which implies that $\rho_{j}(|x| \wedge w)=\rho_{j}(|\alpha||t| \wedge w) \leq \rho_{j}(|t| \wedge w)<\varepsilon$, hence $x \in W$, and so $\alpha W \subseteq W$.
4. Let $x \in X$, and $W=V_{\varepsilon, w, j} \in \mathcal{N}_{0}$, if $\rho_{j}(|x|)=0$, then take $\alpha=1$ to get that $x \in \alpha W$. If $\rho_{j}(|x|) \neq 0$, take $\alpha=\frac{2 \rho_{j}(|x|)}{\varepsilon}$ to get that $\rho_{j}\left(\frac{1}{\alpha}|x| \wedge w\right) \leq$ $\rho_{j}\left(\frac{1}{\alpha}|x|\right)=\frac{1}{\alpha} \rho_{j}(|x|)=\frac{\varepsilon}{2 \rho_{j}(|x|)} \rho_{j}(|x|)=\frac{\varepsilon}{2}<\varepsilon$, so $\frac{1}{\alpha} x \in W$, that is $x \in \alpha W$, and hence W is absorbing.

Now let $W=V_{\varepsilon, w, j} \in \mathcal{N}_{0}$, and let $y \in W$. Put $\delta=\varepsilon-\rho_{j}(|y| \wedge w)>0$ since $y \in W$, for $x \in V_{\delta, w, j}$, we have $\rho_{j}(|y+x| \wedge w) \leq \rho_{j}(|y| \wedge w+|x| \wedge w) \leq \rho_{j}(|y| \wedge w)+$ $\rho_{j}(|x| \wedge w)<\rho_{j}(|y| \wedge w)+\delta=\varepsilon$, hence $y+x \in V_{\varepsilon, w, j}$, and thus $y+V_{\delta, w, j} \subseteq V_{\varepsilon, w, j}$. Therefore, by [39, Theorem 5.1] \mathcal{N}_{0} is a base of neighborhoods of zero for some linear topology, call it τ.

Moreover, we show that this topology is Hausdorff. Indeed, suppose that $0 \neq x \in$ $\bigcap\left\{V_{\varepsilon, w, j}: V_{\varepsilon, w, j} \in \mathcal{N}_{0}\right\}$, then $\rho_{j}(|x| \wedge w)<\varepsilon$ for all $j \in J, 0 \neq w \in X_{+}$, and $\varepsilon>0$. In particular for $w=|x|$, we have $\rho_{j}(|x| \wedge|x|)<\varepsilon$, for all $j \in J$, and $\varepsilon>0$; i.e., for all $j \in J, \rho_{j}(|x|)<\varepsilon$ for all $\varepsilon>0$, hence $\rho_{j}(|x|)=0$, for all $j \in J$, but $\left(\rho_{j}\right)_{j \in J}$ is a separating family of seminorms, then $|x|=0$, that is $x=0$ which is a contradiction.

Finally we show that $x_{\alpha} \xrightarrow{u \tau} 0$ if and only if $x_{\alpha} \rightarrow 0$ in the topology defined above. First suppose that a net $\left(x_{\alpha}\right)$ in $X u \tau$-converges to 0 . Let $V_{\varepsilon_{0}, w_{0}, j_{0}} \in \mathcal{N}_{0}$. Since $x_{\alpha} \xrightarrow{u \tau} 0$, for any $0 \neq w \in X_{+}, \rho_{j}\left(\left|x_{\alpha}\right| \wedge w\right) \rightarrow 0$ in \mathbb{R} for all $j \in J$. In particular,
$\rho_{j_{0}}\left(\left|x_{\alpha}\right| \wedge w_{0}\right) \rightarrow 0$, and so for $\varepsilon_{0}>0$, there exists α_{0} such that $\rho_{j_{0}}\left(\left|x_{\alpha}\right| \wedge w_{0}\right)<\varepsilon_{0}$ for all $\alpha \geqslant \alpha_{0}$. Thus $x_{\alpha} \in V_{\varepsilon_{0}, w_{0}, j_{0}}$ for all $\alpha \geqslant \alpha_{0}$. On the other hand, suppose that $x_{\alpha} \rightarrow 0$ in the topology defined above. Let $w \in X_{+}$, take $j \in J$ and $\varepsilon>0$, then $V_{\varepsilon, w, j} \in \mathcal{N}_{0}$, and thus, there exist α_{0} such that $x_{\alpha} \in V_{\varepsilon, w, j}$ for all $\alpha \geqslant \alpha_{0}$. That is $\rho_{j}\left(\left|x_{\alpha}\right| \wedge w\right)<\varepsilon$ for all $\alpha \geqslant \alpha_{0}$. Thus $\rho_{j}\left(\left|x_{\alpha}\right| \wedge w\right) \rightarrow 0$. Therefore $x_{\alpha} \xrightarrow{u \tau} 0$.

The linear Hausdorff topology in the proof of Theorem 2 will be referred as $u \tau$ topology.

Clearly, if $x_{\alpha} \xrightarrow{\tau} 0$, then $x_{\alpha} \xrightarrow{u \tau} 0$, and so the τ-topology, in general, is finer than $u \tau$ topology. On the contrary to Theorem 2.3 in [36], example 5 in chapter 4 provides a locally solid vector lattice which has a strong unit, yet the τ-topology and $u \tau$-topology do not agree.

It is known that the topology of any linear topological space can be derived from a unique translation-invariant uniformity, i.e., any linear topological space is uniformisable (cf. [50, Theorem 1.4]). It follows from [22, Theorem 8.1.20] that any linear topological space is completely regular. In particular, the unbounded τ-convergence is completely regular.

Remark 1. Let (X, τ) be a locally solid vector lattice, where τ is generated by a family $\left(\rho_{j}\right)_{j \in J}$ of Riesz pseudonorms. For all $j \in J, 0 \neq w \in X_{+}$, and $\varepsilon>0, V_{\varepsilon, w, j}$ is solid.

Proof. Let $y \in V_{\varepsilon, w, j}$, and let $|x| \leq|y|$, then $|x| \wedge w \leq|y| \wedge w$, and so $\rho_{j}(|x| \wedge w) \leq$ $\rho_{j}(|y| \wedge w)<\varepsilon$. Hence $x \in V_{\varepsilon, w, j}$.

The next result should be compared with [36, Lemma 2.1].
Proposition 8. Let (X, τ) be a sequentially complete locally solid vector lattice, where τ is generated by a family $\left(\rho_{j}\right)_{j \in J}$ of Riesz pseudonorms. Let $\varepsilon>0, j \in J$, and $0 \neq w \in X_{+}$. Then either $V_{\varepsilon, w, j}$ is contained in $[-w, w]$, or it contains a non-trivial ideal.

Proof. Suppose that $V_{\varepsilon, w, j}$ is not contained in $[-w, w]$. Then there exists $x \in V_{\varepsilon, w, j}$ such that $x \notin[-w, w]$. Replacing x with $|x|$, we may assume $x>0$. Since $x \notin$ $[-w, w], y=(x-w)^{+}>0$. Now, letting $z=x \vee w$, we have that the ideal I_{z} generated by z, is lattice and norm isomorphic to $C(K)$ for some compact and Hausdorff space K, where z corresponds to the constant function $\mathbb{1}$. Also x, y, and w in I_{z} correspond to $x(t), y(t)$, and $w(t)$ in $C(K)$ respectively.

Our aim is to show that for all $\alpha \geq 0$ and $t \in K$, we have

$$
(\alpha y)(t) \wedge w(t) \leq x(t) \wedge w(t) .
$$

For this, note that $y(t)=(x-w)^{+}(t)=(x-w)(t) \vee 0$.
Let $t \in K$ be arbitrary.

- Case (1): If $(x-w)(t)>0$, then $x(t) \wedge w(t)=w(t) \geq(\alpha y)(t) \wedge w(t)$ for all $\alpha \geq 0$, as desired.
- Case (2): If $(x-w)(t)<0$, then $(\alpha y)(t) \wedge w(t) \leq(\alpha y)(t)=\alpha(x-w)(t) \vee 0=$ $0 \leq x(t) \wedge w(t)$, as desired.

Hence, for all $\alpha \geq 0$ and $t \in K$, we have $(\alpha w)(t) \wedge w(t) \leq x(t) \wedge w(t)$ and so $(\alpha y) \wedge w \leq x \wedge w$ for all $\alpha \geq 0$. Note, that $\alpha y, w, x \in X_{+}$. Thus $\rho_{j}(|\alpha y| \wedge w) \leq$ $\rho_{j}(|x| \wedge w)<\varepsilon$, so $\alpha y \in V_{\varepsilon, w, j}$ and, since $V_{\varepsilon, w, j}$ is solid, $I_{z} \subseteq V_{\varepsilon, w, j}$.

Note that the sequential completeness in Proposition 8 can be removed, as we see later in Theorem 5 ,

Theorem 3. [3] Theorem 2.8 and 2.40] Let (X, τ) be a Hausdorff locally solid vector lattice. Then there is a unique (up to isomorphism) Hausdorff topological vector space $(\widehat{X}, \widehat{\tau})$ having the following properties:

1. The topological vector space $(\widehat{X}, \widehat{\tau})$ is $\widehat{\tau}$-complete.
2. The $\widehat{\tau}$-closure of X_{+}is a cone of \widehat{X} and $(\widehat{X}, \widehat{\tau})$ equipped with this cone is a Hausdorff locally solid vector lattice containing X as a vector sublattice.
3. The topology $\widehat{\tau}$ induces τ in X.
4. The vector sublattice X is $\widehat{\tau}$-dense in \widehat{X}.
5. The $\widehat{\tau}$-closure of a solid subset of X is a solid subset of \widehat{X}. In particuler, if \mathcal{N} is a base of zero for (X, τ) consisting of solid sets, then $\left\{\bar{V}^{\hat{\tau}}: V \in \mathcal{N}\right\}$ is also a base of zero for $(\widehat{X}, \widehat{\tau})$ consisting of solid sets.

The Hausdorff locally solid vector lattice $(\widehat{X}, \widehat{\tau})$ in Theorem 3 is the topological completion of (X, τ).

In the following theorem we gather some properties of $(\widehat{X}, \widehat{\tau})$. Recall that
Theorem 4. Let $(\widehat{X}, \widehat{\tau})$ be the topological completion of a Lebesgue Hausdorff locally solid vector lattice (X, τ). Then the following statements hold:

1. $(\widehat{X}, \widehat{\tau})$ satisfies Lebesgue property.
2. \widehat{X} is Dedekind complete.
3. X is order dense in \widehat{X}, and so X is regular in \widehat{X}.
4. If X^{δ} is the Dedekind completion of X, then $X \subseteq X^{\delta} \subseteq \widehat{X}$ and both X and X^{δ} are regular vector sublattices of \widehat{X}.

Proof. (1) It follows from [3, Theorem 3.23] that (X, τ) satisfies pre-Lebesgue property. Now, [3, Theorem 3.26] implies that $(\widehat{X}, \widehat{\tau})$ satisfies Lebesgue property.
(2) Since $(\widehat{X}, \widehat{\tau})$ satisfies Lebesgue property, it follows from [3, Theorem 3.24] that \widehat{X} is Dedekind complete.
(3) Since $(\widehat{X}, \widehat{\tau})$ satisfies Lebesgue property, it satisfies Faton property; see e.g., [3], Lemma 4.2]. Thus, X is order dense in \widehat{X} by [3, Theorem 4.31].
(4) Since $X \subseteq \widehat{X}, X^{\delta} \subseteq(\widehat{X})^{\delta}=\widehat{X}$ as \widehat{X} is Dedekind complete. So, $X \subseteq X^{\delta} \subseteq \widehat{X}$. Since X is regular in \widehat{X}, it follows from [30, Theorem 2.10] that X^{δ} is regular in \widehat{X}. Also, since X is regular in X^{δ} and X^{δ} is regular in \widehat{X}, we get X is regular in \widehat{X}.
Again suppose that (X, τ) is Lebesgue Hausdorff locally solid vector lattice. Then by [3. Theorem 4.12] there is a unique Lebesgue Hausdorff locally solid topology τ^{δ} on X^{δ} that induces τ on X.
Also, since X^{δ} is a vector sublattice of \widehat{X}, we can equip X^{δ} with the relative topology induces by $\widehat{\tau}$. Since $(\widehat{X}, \widehat{\tau})$ is a Lebesgue Hausdorff locally solid space, so is $\left(X^{\delta}, \widehat{\tau}\right)$. Now [3, Theorem 4.12] implies that $\widehat{\tau}=\tau^{\delta}$ on X^{δ}.
Theorem 5. Let (X, τ) be a locally solid vector lattice, where τ is generated by a family $\left(\rho_{j}\right)_{j \in J}$ of Riesz pseudonorms. Let $\varepsilon>0, j \in J$, and $0 \neq w \in X_{+}$. Then either $V_{\varepsilon, w, j}$ is contained in $[-w, w]$ or $V_{\varepsilon, w, j}$ contains a non-trivial ideal.

Proof. Take $\varepsilon>0, j \in J$, and $0 \neq w \in X_{+}$. Let $(\widehat{X}, \widehat{\tau})$ be the topological completion of (X, τ). In view of Theorem 3, $(\widehat{X}, \widehat{\tau})$ is also a locally solid vector lattice. It follows from the proof of Proposition 22F in [26] that if $\widehat{\rho}_{j}$ is the continuous extension of ρ_{j} to \widehat{X}, then $\widehat{\rho}_{j}$ is also a Riesz pseudonorm and $\widehat{\tau}$ is generated by $\left(\widehat{\rho}_{j}\right)_{j \in J}$. In particular, $(\widehat{X}, \widehat{\tau})$ is a sequentially complete locally vector lattice. Let $\widehat{V}_{\varepsilon, w, j}=\left\{\widehat{x} \in \widehat{X}: \widehat{\rho}_{j}(|\widehat{x}| \wedge w)<\varepsilon\right\}$. Then $V_{\varepsilon, w, j}=X \cap \widehat{V}_{\varepsilon, w, j}$. By Proposition 8 , either $\widehat{V}_{\varepsilon, w, j}$ is a subset of $[-w, w]_{\widehat{X}}$ in \widehat{X} or $\widehat{V}_{\varepsilon, w, j}$ contains a non-trivial ideal of \widehat{X}. If $\widehat{V}_{\varepsilon, w, j} \subseteq[-w, w]_{\widehat{X}}$, then

$$
V_{\varepsilon, w, j}=X \cap \widehat{V}_{\varepsilon, w, j} \subseteq X \cap[-w, w]_{\widehat{X}}=[-w, w] \subseteq X
$$

If $\widehat{V}_{\varepsilon, w, j}$ contains a non-trivial ideal, then $\widehat{V}_{\varepsilon, w, j} \nsubseteq[-w, w]_{\widehat{X}}$. By solidity, we can take $0<\widehat{x} \in \widehat{V}_{\varepsilon, w, j}$ such that $\widehat{x} \notin[-w, w]_{\widehat{X}}$, that is, $(\widehat{x}-w)^{+}>0$. Now take a net $\left(x_{\alpha}\right) \subset X$ such that $x_{\alpha} \xrightarrow{\tau} \widehat{x}$. Then $x_{\alpha}^{+} \xrightarrow{\tau} \widehat{x}^{+}=\widehat{x}$, and $\left(x_{\alpha}^{+}-w\right)^{+} \xrightarrow{\tau}(\widehat{x}-w)^{+}$. Since $\widehat{V}_{\varepsilon, w, j}$ is an open set containing \widehat{x}, we may take $x:=x_{\alpha}^{+} \in \widehat{V}_{\varepsilon, w, j} \cap X$ such that $y:=(x-w)^{+}>0$. By the same argument in Proposition 8 to $(\widehat{X}, \widehat{\tau})$, we get $(\alpha y) \wedge w \leq x \wedge w$ for all $\alpha \in \mathbb{R}_{+}$. Since $x \in \widehat{V}_{\varepsilon, w, j}, \alpha y \in \widehat{V}_{\varepsilon, w, j}$ for all $\alpha \in \mathbb{R}_{+}$. But $\alpha y \in X_{+}$for all $\alpha \in \mathbb{R}_{+}$and, since $V_{\varepsilon, w, j}=X \cap \widehat{V}_{\varepsilon, w, j}$, we get $\alpha y \in V_{\varepsilon, w, j}$ for all $\alpha \in \mathbb{R}_{+}$. Since $V_{\varepsilon, w, j}$ is solid, we conclude that the principal ideal I_{y} taken in X is a subset of $V_{\varepsilon, w, j}$.

Lemma 6. Let (X, τ) be a locally solid vector lattice, where τ is generated by a family $\left(\rho_{j}\right)_{j \in J}$ of Riesz pseudonorms. If $V_{\varepsilon, w, j}$ is contained in $[-w, w]$, then w is a strong unit.

Proof. Suppose $V_{\varepsilon, w, j} \subseteq[-w, w]$. Since $V_{\varepsilon, w, j}$ is absorbing, for any $x \in X_{+}$, there exist $\alpha>0$ such that $\alpha x \in V_{\varepsilon, w, j}$, and so $\alpha x \in[-w, w]$, or $x \leq \frac{1}{\alpha} w$. Thus w is a strong unit, as desired.

$3.2 u \tau$-Convergence in sublattices

Let Y be a sublattice of a locally solid vector lattice (X, τ). If $\left(y_{\alpha}\right)$ is a net in Y then $y_{\alpha} \xrightarrow{u \tau} 0$ in Y means: $\left|y_{\alpha}\right| \wedge y \xrightarrow{\tau} 0$ for all $y \in Y_{+}$. Clearly, $y_{\alpha} \xrightarrow{u \tau} 0$ in X implies $y_{\alpha} \xrightarrow{u \tau} 0$ in Y. The converse does not hold in general. For example, the sequence $\left(e_{n}\right)$ of standard unit vectors is $u n$-null in c_{0}, but not in ℓ_{∞}. In this section, we study when the $u \tau$-convergence passes from a sublattice to the whole space.

The following theorem extends [36, Theorem 4.3] to locally solid vector lattices.
Theorem 6. Let (X, τ) be a locally solid vector lattice and Y be a sublattice of X. If $\left(y_{\alpha}\right)$ is a net in Y and $y_{\alpha} \xrightarrow{u \tau} 0$ in Y, then $y_{\alpha} \xrightarrow{u \tau} 0$ in X in each of the following cases:

1. Y is majorizing in X;
2. Y is τ-dense in X;
3. Y is a projection band in X.

Proof. 1. It is obvious to see that.
2. Let $u \in X_{+}$. Fix $\varepsilon>0$ and take $j \in J$. Since Y is τ-dense in X, there is $v \in Y_{+}$such that $\rho_{j}(u-v)<\varepsilon$. But $y_{\alpha} \xrightarrow{u \tau} 0$ in Y and so, in particular, $\rho_{j}\left(\left|y_{\alpha}\right| \wedge v\right) \rightarrow 0$. So there is α_{0} such that $\rho_{j}\left(\left|y_{\alpha}\right| \wedge v\right)<\varepsilon$ for all $\alpha \geqslant \alpha_{0}$. It follows from $u \leq v+|u-v|$, that $\left|y_{\alpha}\right| \wedge u \leq\left|y_{\alpha}\right| \wedge v+|u-v|$, and so $\rho_{j}\left(\left|y_{\alpha}\right| \wedge u\right) \leq \rho_{j}\left(\left|y_{\alpha}\right| \wedge v\right)+\rho_{j}(u-v)<2 \varepsilon$. Thus, $\rho_{j}\left(\left|y_{\alpha}\right| \wedge u\right) \rightarrow 0$ in \mathbb{R}. Since $j \in J$ was chosen arbitrary, we conclude that $y_{\alpha} \xrightarrow{u \tau} 0$ in X.
3. Let $u \in X_{+}$. Then $u=v+w$, where $v \in Y_{+}$and $w \in Y_{+}^{d}$. Now $\left|y_{\alpha}\right| \wedge u=$ $\left|y_{\alpha}\right| \wedge v+\left|y_{\alpha}\right| \wedge w=\left|y_{\alpha}\right| \wedge v \xrightarrow{\tau} 0$ in X, since $y_{\alpha} \in Y$

Corollary 4. If (X, τ) is a locally solid vector lattice and $x_{\alpha} \xrightarrow{u \tau} 0$ in X, then $x_{\alpha} \xrightarrow{u \tau}$ 0 in the Dedekind completion X^{δ} of X.
Corollary 5. If (X, τ) is a locally solid vector lattice and $x_{\alpha} \xrightarrow{u \tau} 0$ in X, then $x_{\alpha} \xrightarrow{u \tau}$ 0 in the topological completion \widehat{X} of X.

The next result generalizes Corollary 4.6 in [36] and Proposition 16 in [61].
Theorem 7. Let (X, τ) be a Dedekind complete locally solid vector lattice that has the Lebesgue property, and Y be a sublattice of X. If $y_{\alpha} \xrightarrow{u \tau} 0$ in Y, then $y_{\alpha} \xrightarrow{u \tau} 0$ in X.

Proof. Suppose $y_{\alpha} \xrightarrow{u \tau} 0$ in Y. By Theorem 6,1), $y_{\alpha} \xrightarrow{u \tau} 0$ in the ideal $I(Y)$ generated by Y in X. By Theorem 662 $2, y_{\alpha} \xrightarrow{u \tau} 0$ in the closure $\overline{\{I(Y)\}}^{\tau}$ of $I(Y)$. It follows from [3, Theorem 3.7] that $\{I(Y)\}^{\top}$ is a band in X. Since X is Dedekind complete, $\overline{\{I(Y)\}^{\tau}}$ is a projection band in X. Then $y_{\alpha} \xrightarrow{u \tau} 0$ in X, in view of Theorem (6) 3).

Suppose that (X, τ) is a locally solid vector lattice possessing the Lebesgue property. Then, in view of Theorem 4 part (1), its topological completion $(\widehat{X}, \widehat{\tau})$ possesses the Lebesgue property as well. Hence, by [3, Theorem 3.24], \widehat{X} is Dedekind complete. It follows from [3, Theorem 2.41] that X is regular in \widehat{X}, so that $X^{\delta} \subseteq \widehat{X}$ by [30, Theorem 2.10]. Now, Theorem 7 assures that, given a net $\left(z_{\alpha}\right)$ in X^{δ}, if $z_{\alpha} \xrightarrow{u \tau} 0$ in X^{δ} then $z_{\alpha} \xrightarrow{u \tau} 0$ in \widehat{X}.

Proposition 9. Every band in a locally solid vector lattice is uT-closed.
Proof. Let B be a band in X. Suppose $\left(x_{\alpha}\right)$ is a net in B such that $x_{\alpha} \xrightarrow{u \tau} x$. Let $z \in B^{d}$, then $\left|x_{\alpha}\right| \wedge|z| \xrightarrow{\tau}|x| \wedge|z|$. But $\left|x_{\alpha}\right| \wedge|z|=0$ for all α and so $|x| \wedge|z|=0$. So $x \in B^{d d}=B$.

3.3 Unbounded relatively uniform convergence

In this section we discuss unbounded relatively uniform convergence. Recall that a net $\left(x_{\alpha}\right)$ in a vector lattice X is said to be relatively uniform convergent to $x \in X$ if, there is $u \in X_{+}$such that for any $n \in \mathbb{N}$, there exists α_{n} satisfying $\left|x_{\alpha}-x\right| \leq \frac{1}{n} u$ for $\alpha \geqslant \alpha_{n}$. In this case we write $x_{\alpha} \xrightarrow{r u} x$ and the vector $u \in X_{+}$is called regulator, see [56. Defintion III.11.1]. Moreover, in a locally solid vector lattice $(X, \tau), x_{\alpha} \xrightarrow{r u} 0$ implies that $x_{\alpha} \xrightarrow{\tau} 0$. Indeed, let V be a solid neighborhood at zero. Since $x_{\alpha} \xrightarrow{r u} 0$, there is $u \in X_{+}$such that, for a given $\varepsilon>0$, there is α_{ε} satisfying $\left|x_{\alpha}\right| \leq \varepsilon u$ for all $\alpha \geq \alpha_{\varepsilon}$. Since V is absorbing, there is $c \geq 1$ such that $\frac{1}{c} u \in V$. There is some α_{0} such that $\left|x_{\alpha}\right| \leq \frac{1}{c} u$ for all $\alpha \geq \alpha_{0}$. Since V is solid and $\left|x_{\alpha}\right| \leq \frac{1}{c} u$ for all $\alpha \geq \alpha_{0}$, $x_{\alpha} \in V$ for all $\alpha \geq \alpha_{0}$. That is $x_{\alpha} \xrightarrow{\tau} 0$.

The following result might be considered as an $r u$-version of Theorem 1 in [14].
Theorem 8. Let X be a vector lattice. Then the following conditions are equivalent.
(1) There exists a linear topology τ on X such that, for any net $\left(x_{\alpha}\right)$ in $X: x_{\alpha} \xrightarrow{r u} 0$ if and only if $x_{\alpha} \xrightarrow{\tau} 0$.
(2) There exists a norm $\|\cdot\|$ on X such that, for any net $\left(x_{\alpha}\right)$ in $X: x_{\alpha} \xrightarrow{r u} 0$ if and only if $\left\|x_{\alpha}\right\| \rightarrow 0$.
(3) X has a strong order unit.

Proof. (1) \Rightarrow (3) It follows from [14, Lemma 1].
$(3) \Rightarrow(2)$ Let $e \in X$ be a strong order unit. Then $x_{\alpha} \xrightarrow{r u} 0$ if and only if $\left\|x_{\alpha}\right\|_{e} \rightarrow 0$, where $\|x\|_{e}:=\inf \{r:|x| \leqslant r e\}$.
$(2) \Rightarrow(1)$ It is trivial.

Let X be a vector lattice. A net $\left(x_{\alpha}\right)$ in X is said to be unbounded relatively uniform convergent to $x \in X$ if $\left|x_{\alpha}-x\right| \wedge w \xrightarrow{r u} 0$ for all $w \in X_{+}$. In this case, we write $x_{\alpha} \xrightarrow{u r u} x$. Clearly, if $x_{\alpha} \xrightarrow{u r u} 0$ in a locally solid vector lattice (X, τ), then $x_{\alpha} \xrightarrow{u \tau} 0$.

In general, uru-convergence is also not topological. Indeed, consider the vector lattice $L_{1}[0,1]$. It satisfies the diagonal property for order convergence by [42, Theorem 71.8]. Now, by combining Theorems 16.3, 16.9, and 68.8 in [42] we get that for any sequence f_{n} in $L_{1}[0,1] f_{n} \xrightarrow{o} 0$ if and only if $f_{n} \xrightarrow{r u} 0$. In particular, $f_{n} \xrightarrow{u o} 0$ if and only if $f_{n} \xrightarrow{\text { uru }} 0$. But the $u o$-convergence in $L_{1}[0,1]$ is equivalent to a.e.-convergence which is not topological, see [46].

However, in some vector lattices the uru-convergence could be topological. For example, if X is a vector lattice with a strong unit e, It follows from Theorem 8, that $r u$-convergence is equivalent to the norm convergence $\|\cdot\|_{e}$, where $\|x\|_{e}:=\inf \{\lambda>$ $0:|x| \leq \lambda e\}, x \in X$. Thus uru-convergence in X is topological.

Consider the vector lattice c_{00} of eventually zero sequences. It is well known that in $c_{00}: x_{\alpha} \xrightarrow{r u} 0$ if and only if $x_{\alpha} \xrightarrow{o} 0$. For the sake of completeness we include a proof of this fact. Clearly, $x_{\alpha} \xrightarrow{r u} 0 \Rightarrow x_{\alpha} \xrightarrow{o} 0$. For the converse, suppose $x_{\alpha} \xrightarrow{o} 0$ in c_{00}. Then there is a net $y_{\beta} \downarrow 0$ in c_{00} such that, for any β, there is α_{β} satisfying $\left|x_{\alpha}\right| \leq y_{\beta}$ for all $\alpha \geq \alpha_{\beta}$. Let (e_{n}) denote the sequence of standard unit vectors in c_{00}. Fix β_{0}. Then $y_{\beta_{0}}=c_{1}^{\beta_{0}} e_{k_{1}}+\cdots+c_{n}^{\beta_{0}} e_{k_{n}}, c_{i}^{\beta_{0}} \in \mathbb{R}, i=1, \ldots, n$. Since y_{β} is decreasing, $y_{\beta} \leq y_{\beta_{0}}$ for all $\beta \geq \beta_{0}$. So, $y_{\beta}=c_{1}^{\beta} e_{k_{1}}+\cdots+c_{n}^{\beta} e_{k_{n}}$ for all $\beta \geq \beta_{0}, c_{i}^{\beta} \in \mathbb{R}, i=1, \ldots, n$. Since $y_{\beta} \downarrow 0, \lim _{\beta} c_{i}^{\beta}=0$ for all $i=1, \ldots, n$. Let $u=e_{k_{1}}+\cdots+e_{k_{n}}$. Take $\varepsilon>0$. Then, there is $\beta_{\varepsilon} \geq \beta_{0}$ such that $c_{i}^{\beta}<\varepsilon$ for all $\beta \geq \beta_{\varepsilon}$ for $i=1, \ldots, n$. Consider $y_{\beta_{\varepsilon}}$ then there is α_{ε} such that $\left|x_{\alpha}\right| \leq y_{\beta_{\varepsilon}}$ for all $\alpha \geq \beta_{\varepsilon}$. But $y_{\beta_{\varepsilon}}=c_{1}^{\beta_{\varepsilon}} e_{k_{1}}+\cdots+c_{n}^{\beta_{\varepsilon}} e_{k_{n}} \leq \varepsilon u$. So, $\left|x_{\alpha}\right| \leq \varepsilon u$ for all $\alpha \geq \alpha_{\varepsilon}$. That is $x_{\alpha} \xrightarrow{r u} 0$. Thus, the uru-convergence in c_{00} coincides with the $u o$-convergence which is pointwise convergence and, therefore, is topological.

Proposition 10. Let X be a Lebesgue and complete metrizable locally solid vector lattice. Then $x_{\alpha} \xrightarrow{r u} 0$ if and only if $x_{\alpha} \xrightarrow{o} 0$.

Proof. The necessity is obvious. Let d be the metric that induces the Lebesgue locally solid topology on X. For the sufficiency assume that $x_{\alpha} \xrightarrow{o} 0$. Then there exists $y_{\beta} \downarrow 0$ such that for any β there is α_{β} with $\left|x_{\alpha}\right| \leqslant y_{\beta}$ as $\alpha \geqslant \alpha_{\beta}$. Since $d\left(y_{\beta}, 0\right) \rightarrow 0$, there exists an increasing sequence $\left(\beta_{k}\right)_{k}$ of indeces with $d\left(k y_{\beta_{k}}, 0\right) \leqslant \frac{1}{2^{k}}$. Let $s_{n}=$
$\sum_{k=1}^{n} k y_{\beta_{k}}$. We show the sequence $\left(s_{n}\right)$ is Cauchy. For $n>m$,

$$
\begin{aligned}
d\left(s_{n}, s_{m}\right)=d\left(s_{n}-s_{m}, 0\right)=d\left(\sum_{k=m+1}^{n} k y_{\beta_{k}}, 0\right) & \leq \sum_{k=m+1}^{n} d\left(k y_{\beta_{k}}, 0\right) \\
& \leq \sum_{k=m+1}^{n} \frac{1}{2^{k}} \rightarrow 0, \text { as } n, m \rightarrow \infty
\end{aligned}
$$

Since X is complete, the sequence $\left(s_{n}\right)$ converges to some $u \in X_{+}$. That is, $u:=$ $\sum_{k=1}^{\infty} k y_{\beta_{k}}$. Then

$$
k\left|x_{\alpha}\right| \leqslant k y_{\beta_{k}} \leqslant u \quad\left(\forall \alpha \geqslant \alpha_{\beta_{k}}\right)
$$

which means that $x_{\alpha} \xrightarrow{r u} 0$.

Let $X=\mathbb{R}^{\Omega}$ be the vector lattice of all real-valued functions on a set Ω.
Proposition 11. In the vector lattice $X=\mathbb{R}^{\Omega}$, the following conditions are equivalent:
(1) for any net $\left(f_{\alpha}\right)$ in $X: f_{\alpha} \xrightarrow{o} 0$ if and only if $f_{\alpha} \xrightarrow{r u} 0$;
(2) Ω is countable.

Proof. (1) \Rightarrow (2) Suppose $f_{\alpha} \xrightarrow{o} 0 \Leftrightarrow f_{\alpha} \xrightarrow{r u} 0$ for any net $\left(f_{\alpha}\right)$ in $X=\mathbb{R}^{\Omega}$. Our aim is to show that Ω is countable. Assume, in contrary, that Ω is uncountable. Let $\mathcal{F}(\Omega)$ be the collection of all finite subsets of Ω. For each $\alpha \in \mathcal{F}(\Omega)$, put $f_{\alpha}=\mathcal{X}_{\alpha}$, the characteristic function on α. Clearly, $f_{\alpha} \uparrow \mathbb{1}$, where $\mathbb{1}$ denotes the constant function one on Ω. Then $\mathbb{1}-f_{\alpha} \downarrow 0$ or $\mathbb{1}-f_{\alpha} \xrightarrow{o} 0$ in \mathbb{R}^{Ω}. So, there is $0 \leq g \in \mathbb{R}^{\Omega}$ such that, for any $\varepsilon>0$, there exists α_{ε} satisfying $\mathbb{1}-f_{\alpha} \leq \varepsilon g$ for all $\alpha \geqslant \alpha_{\varepsilon}$. Let $n \in \mathbb{N}$. Then there is a finite set $\alpha_{n} \subseteq \Omega$ such that $\mathbb{1}-f_{\alpha_{n}} \leq \frac{1}{n} g$. Consequently, $g(x) \geqslant n$ for all $x \in \Omega \backslash \alpha_{n}$. Let $S=\cup_{n=1}^{\infty} \alpha_{n}$. Then S is countable and $\Omega \backslash S \neq \emptyset$. Moreover, for each $x \in \Omega \backslash S$, we have $g(x) \geqslant n$ for all $n \in \mathbb{N}$, which is impossible.
$(2) \Rightarrow(1)$ Suppose that Ω is countable. So, we may assume that $X=s$, the space of all sequences. Since, from $x_{\alpha} \xrightarrow{r u} 0$ always follows that $x_{\alpha} \xrightarrow{0} 0$, it is enough to show that if $x_{\alpha} \xrightarrow{o} 0$ then $x_{\alpha} \xrightarrow{r u} 0$. To see this, let $\left(x_{\alpha}^{n}\right)_{n}=x_{\alpha} \xrightarrow{o} 0$. Then, the net $\left(x_{\alpha}\right)$ is eventually bounded, say $\left|x_{\alpha}\right| \leqslant u=\left(u_{n}\right)_{n} \in s$. Take $w:=\left(n u_{n}\right)_{n} \in s$. We show that $x_{\alpha} \xrightarrow{r u} 0$ with the regulator w. Let $k \in \mathbb{N}$. Since $x_{\alpha} \xrightarrow{o} 0$, for each $n \in \mathbb{N}, x_{\alpha}^{n} \rightarrow 0$ in \mathbb{R}. Hence, there is α_{k} such that $k\left|x_{\alpha}^{1}\right|<w_{1}, k\left|x_{\alpha}^{2}\right|<w_{2}, \cdots, k\left|x_{\alpha}^{k-1}\right|<w_{k-1}$ for all $\alpha \geqslant \alpha_{k}$. Note that for $n \geqslant k, k\left|x_{\alpha}^{n}\right|<w_{n}$. Therefore, $k\left|x_{\alpha}\right|<w$ for all $\alpha \geqslant \alpha_{k}$.

It follows from Proposition 11 that, for countable Ω, the uru-convergence in \mathbb{R}^{Ω} coincides with the uo-convergence (which is pointwise) and therefore is topological. We do not know, whether or not the countability of Ω is necessary for the property that uru-convergence is topological in \mathbb{R}^{Ω}.

3.4 Topological orthogonal systems and metrizabililty

A collection $\left\{e_{\gamma}\right\}_{\gamma \in \Gamma}$ of positive vectors in a vector lattice X is called an orthogonal system if $e_{\gamma} \wedge e_{\gamma^{\prime}}=0$ for all $\gamma \neq \gamma^{\prime}$. If, moreover, $x \wedge e_{\gamma}=0$ for all $\gamma \in \Gamma$ implies $x=0$, then $\left\{e_{\gamma}\right\}_{\gamma \in \Gamma}$ is called a maximal orthogonal system. It follows from Zorn's Lemma that every vector lattice containing at least one non-zero element has a maximal orthogonal system. Motivated by Definition III.5.1 in [49], we introduce the following notion.

Definition 2. Let (X, τ) be a locally solid vector lattice. An orthogonal system $Q=$ $\left\{e_{\gamma}\right\}_{\gamma \in \Gamma}$ of non-zero elements in X_{+}is said to be a topological orthogonal system if the ideal I_{Q} generated by Q is τ-dense in X.

Lemma 7. If $Q=\left\{e_{\gamma}\right\}_{\gamma \in \Gamma}$ is a topological orthogonal system in a locally solid vector lattice (X, τ), then Q is a maximal orthogonal system in X.

Proof. Assume $x \wedge e_{\gamma}=0$ for all $\gamma \in \Gamma$. By the assumption, there is a net $\left(x_{\alpha}\right)$ in the ideal I_{Q} such that $x_{\alpha} \xrightarrow{\tau} x$. Without lost of generality, we may assume $0 \leq x_{\alpha} \leq x$ for all α. Since $x_{\alpha} \in I_{Q}$, there are $0<\mu_{\alpha} \in \mathbb{R}$ and $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}$, such that $0 \leq x_{\alpha} \leq \mu_{\alpha}\left(e_{\gamma_{1}}+e_{\gamma_{2}}+\cdots+e_{\gamma_{n}}\right)$. So $0 \leq x_{\alpha}=x_{\alpha} \wedge x \leq\left[\mu_{\alpha}\left(e_{\gamma_{1}}+e_{\gamma_{2}}+\cdots+e_{\gamma_{n}}\right)\right] \wedge x$ $=\left[\mu_{\alpha} e_{\gamma_{1}}\right] \wedge x+\cdots+\left[\mu_{\alpha} e_{\gamma_{n}}\right] \wedge x=0$. Hence $x_{\alpha}=0$ for all α, and so $x=0$.

We recall the following construction from [49, page 169]. Let X be a vector lattice and $Q=\left\{e_{\gamma}\right\}_{\gamma \in \Gamma}$ be a maximal orthogonal system of X. Let $\mathscr{F}(\Gamma)$ denote the collection of all finite subsets of Γ ordered by inclusion. For each $(n, H) \in \mathbb{N} \times \mathscr{F}(\Gamma)$ and $x \in X_{+}$, define

$$
x_{n, H}:=\sum_{\gamma \in H} x \wedge n e_{\gamma} .
$$

Clearly $\left\{x_{n, H}:(n, H) \in \mathbb{N} \times \mathscr{F}(\Gamma)\right\}$ is directed upward, and by Theorem 6.5 in [60] it follows that

$$
\begin{equation*}
x_{n, H} \leq x \quad \text { for all } \quad(n, H) \in \mathbb{N} \times \mathscr{F}(\Gamma) . \tag{3.4.1}
\end{equation*}
$$

Moreover, Proposition II.1.9 in [49] implies $x_{n, H} \uparrow x$.
Theorem 9. Let $Q=\left\{e_{\gamma}\right\}_{\gamma \in \Gamma}$ be an orthogonal system of a locally solid vector lattice (X, τ). Then Q is a topological orthogonal system if and only if we have $x_{n, H} \xrightarrow{\tau} x$ over $(n, H) \in \mathbb{N} \times \mathscr{F}(\Gamma)$ for each $x \in X_{+}$.

Proof. For the backward implication take $x \in X_{+}$. Since

$$
x_{n, H}=\sum_{\gamma \in H} x \wedge n e_{\gamma} \leq n \sum_{\gamma \in H} e_{\gamma},
$$

it follows that $x_{n, H} \in I_{Q}$ for each $(n, H) \in \mathbb{N} \times \mathscr{F}(\Gamma)$. Also, we have, by assumption, $x_{n, H} \xrightarrow{\tau} x$. Thus, $x \in \bar{I}_{Q}^{\tau}$, i.e., Q is a topological orthogonal system of X.

For the forward implication, note that Q is a maximal orthogonal system, by Lemma 7. Let $x \in X_{+}$, and $j \in J$. Take $\varepsilon>0$, let $V_{\varepsilon, x, i}:=\left\{z \in X: \rho_{j}(z-x)<\varepsilon\right\}$. Then
$V_{\varepsilon, x, j}$ is a neighborhood of x in the τ-topology. Since I_{Q} is dense in X with respect to the τ-topology, there is $x_{\varepsilon} \in I_{Q}$ such that $\rho_{j}\left(x_{\varepsilon}-x\right)<\varepsilon$.

Note that

$$
\begin{aligned}
\left|x_{\varepsilon}^{+} \wedge x-x\right| & =\left|x_{\varepsilon}^{+} \wedge x-x \wedge x\right| \\
& \leq\left|x_{\varepsilon}^{+}-x\right| \text { by Theorem 1.9(2) in [4] } \\
& =\left|x_{\varepsilon}^{+}-x^{+}\right| \\
& \leq\left|x_{\varepsilon}-x\right| \text { again by Theorem 1.9(2) in [4]. }
\end{aligned}
$$

Since $x_{\varepsilon} \in I_{Q}$ which is an ideal, $x_{\varepsilon}^{+} \wedge x \in I_{Q}$. Thus without lost of generality, we can assume that there is $x_{\varepsilon} \in I_{Q}$ with $0 \leq x_{\varepsilon} \leq x$ such that $\rho_{j}\left(x_{\varepsilon}-x\right)<\varepsilon$. Now, $x_{\varepsilon} \in I_{Q}$ implies that there are $H_{\varepsilon} \in \mathscr{F}(\Gamma)$ and $n_{\varepsilon} \in \mathbb{N}$ such that

$$
\begin{equation*}
x_{\varepsilon} \leq n_{\varepsilon} \sum_{\gamma \in H_{\varepsilon}} e_{\gamma} . \tag{3.4.2}
\end{equation*}
$$

Let

$$
\begin{equation*}
w:=x \wedge \sum_{\gamma \in H_{\varepsilon}} n_{\varepsilon} e_{\gamma} . \tag{3.4.3}
\end{equation*}
$$

It follows from $0 \leq w \leq \sum_{\gamma \in H_{\varepsilon}} n_{\varepsilon} e_{\gamma}$ and the Riesz decomposition property, that, for each $\gamma \in H_{\varepsilon}$, there exists y_{γ} with

$$
\begin{equation*}
0 \leq y_{\gamma} \leq n_{\varepsilon} e_{\gamma} \tag{3.4.4}
\end{equation*}
$$

such that

$$
\begin{equation*}
w=\sum_{\gamma \in H_{\varepsilon}} y_{\gamma} . \tag{3.4.5}
\end{equation*}
$$

From (3.4.3) and (3.4.5), we have

$$
\begin{equation*}
y_{\gamma} \leq x \quad\left(\forall \gamma \in H_{\varepsilon}\right) . \tag{3.4.6}
\end{equation*}
$$

Also, (3.4.4) and (3.4.6) imply that $y_{\gamma} \leq n_{\varepsilon} e_{\gamma} \wedge x$. Now

$$
\begin{equation*}
w=\sum_{\gamma \in H_{\varepsilon}} y_{\gamma} \leq \sum_{\gamma \in H_{\varepsilon}} x \wedge n_{\varepsilon} e_{\gamma}=x_{n_{\varepsilon}, H_{\varepsilon}} . \tag{3.4.7}
\end{equation*}
$$

But, from (3.4.2) and (3.4.3), we get

$$
\begin{equation*}
0 \leq x_{\varepsilon} \leq w \tag{3.4.8}
\end{equation*}
$$

Thus, it follows from (3.4.7), (3.4.8), and (3.4.1), that $0 \leq x_{\varepsilon} \leq x_{n_{\varepsilon}, H_{\varepsilon}} \leq x$. Hence, $0 \leq x-x_{n_{\varepsilon}, H_{\varepsilon}} \leq x-x_{\varepsilon}$ and so $\rho_{j}\left(x-x_{n, H}\right) \leq \rho_{j}\left(x-x_{n_{\varepsilon}, H_{\varepsilon}}\right) \leq \rho_{j}\left(x-x_{\varepsilon}\right)$ for each $(n, H) \geq\left(n_{\varepsilon}, H_{\varepsilon}\right)$. Therefore $x_{n, H} \xrightarrow{\tau} x$.

Corollary 6. Let (X, τ) be a locally solid vector lattice. The following statements are equivalent:

1. $e \in X_{+}$is a quasi-interior point;
2. for each $x \in X_{+}, x-x \wedge n e \xrightarrow{\tau} 0$ as $n \rightarrow \infty$.

Moreover, if (X, τ) possesses the σ-Lebesgue property, then every weak unit in X is a quasi-interior point.

Proof. The first part is obvious, for the second part, let $x \in X^{+}$, and let e be a weak unit. Then $x \wedge n e \uparrow x$. So, by the σ-Lebesgue property, we get $x-x \wedge n e \xrightarrow{\tau} 0$ as $n \rightarrow \infty$.

Proposition 12. Let $e \in X_{+}$. Then e is a quasi-interior point in (X, τ) if and only if e is a quasi-interior point in the topological completion $(\widehat{X}, \widehat{\tau})$.

Proof. For the forward implication let $\widehat{x} \in \widehat{X}_{+}$. Our aim is to show that $\widehat{x}-\widehat{x} \wedge n e \xrightarrow{\tau}$ 0 in \widehat{X} as $n \rightarrow \infty$. By Theorem 4. part (2), $\widehat{X}_{+}=\bar{X}_{+}^{\hat{\tau}}$. So, there is a net $\left(x_{\alpha}\right)$ in X_{+} such that $x_{\alpha} \xrightarrow{\hat{\rightarrow}} \widehat{x}$ in \widehat{X}. Let $j \in J$ and $\varepsilon>0$. Since $\widehat{\rho}_{j}\left(x_{\alpha}-\widehat{x}\right) \rightarrow 0$, there is α_{ε} satisfying

$$
\begin{equation*}
\widehat{\rho}_{j}\left(x_{\alpha_{\varepsilon}}-\widehat{x}\right)<\varepsilon . \tag{3.4.9}
\end{equation*}
$$

Since e is a quasi-interior point in X and $x_{\alpha_{\varepsilon}} \in X_{+}$, we have $x_{\alpha_{\varepsilon}}-x_{\alpha_{\varepsilon}} \wedge n e \xrightarrow{\tau} 0$ in X as $n \rightarrow \infty$. Thus, there is $n_{\varepsilon} \in \mathbb{N}$ such that

$$
\begin{equation*}
\widehat{\rho}_{j}\left(x_{\alpha_{\varepsilon}}-n e \wedge x_{\alpha_{\varepsilon}}\right)=\rho_{j}\left(x_{\alpha_{\varepsilon}}-n e \wedge x_{\alpha_{\varepsilon}}\right)<\varepsilon \quad\left(\forall n \geqslant n_{\varepsilon}\right) . \tag{3.4.10}
\end{equation*}
$$

Now, $0 \leq \widehat{x}-\widehat{x} \wedge n e=\widehat{x}-x_{\alpha_{\varepsilon}}+x_{\alpha_{\varepsilon}}-n e \wedge x_{\alpha_{\varepsilon}}+n e \wedge x_{\alpha_{\varepsilon}}-\widehat{x} \wedge n e$. So $\widehat{\rho}_{j}(\widehat{x}-\widehat{x} \wedge n e) \leq \widehat{\rho}_{j}\left(\widehat{x}-x_{\alpha_{\varepsilon}}\right)+\widehat{\rho}_{j}\left(x_{\alpha_{\varepsilon}}-n e \wedge x_{\alpha_{\varepsilon}}\right)+\widehat{\rho}_{j}\left(n e \wedge x_{\alpha_{\varepsilon}}-\widehat{x} \wedge n e\right)$. For $n \geqslant n_{\varepsilon}$, we have, by (3.4.9), (3.4.10), and [4. Theorem 1.9(2)], that

$$
\widehat{\rho}_{j}(\widehat{x}-\widehat{x} \wedge n e) \leq \varepsilon+\varepsilon+\widehat{\rho}_{j}\left(n e \wedge x_{\alpha_{\varepsilon}}-\widehat{x} \wedge n e\right) \leq \varepsilon+\varepsilon+\widehat{\rho}_{j}\left(x_{\alpha_{\varepsilon}}-\widehat{x}\right) \leq 3 \varepsilon
$$

Therefore, e is a quasi-interior point in \widehat{X}.
The backward implication follows trivially from Corollary 6

Another way to see the forward implication of Proposition 12, suppose that e is a quasi-interior point of X, then the closure of I_{e} in the τ-topology is X. By Theorem 3 (iii), $\widehat{\tau}$ induces τ in X, so the closure of I_{e} with respect to $\widehat{\tau}$ in X is X itself. But $\bar{I}_{e} \widehat{\tau}$ in X is subset of $\bar{I}_{e} \widehat{\tau}$ in \widehat{X}, so $X \subseteq \bar{I}_{e}^{\widehat{\tau}}$ which implies by Theorem 3 (iv) that $\widehat{X}=\bar{X}^{\widehat{\tau}} \subseteq \bar{I}_{e}$. Hence $\widehat{X}=\bar{I}_{e}{ }^{\widehat{\tau}}$. Therefore e is a quasi-interior point of \widehat{X}.

Theorem 10. Let (X, τ) be a locally solid vector lattice, and $Q=\left\{e_{\gamma}\right\}_{\gamma \in \Gamma}$ be a topological orthogonal system of (X, τ). Then $x_{\alpha} \xrightarrow{u \tau} 0$ if and only if $\left|x_{\alpha}\right| \wedge e_{\gamma} \xrightarrow{\tau} 0$ for every $\gamma \in \Gamma$.

Proof. The forward implication is trivial. For the backward implication, assume $\left|x_{\alpha}\right| \wedge e_{\gamma} \xrightarrow{\tau} 0$ for every $\gamma \in \Gamma$. Let $u \in X_{+}, j \in J$. Fix $\varepsilon>0$. We have

$$
\begin{aligned}
\left|x_{\alpha}\right| \wedge u & =\left|x_{\alpha}\right| \wedge\left(u-u_{n, H}+u_{n, H}\right) \\
& \leq\left|x_{\alpha}\right| \wedge\left(u-u_{n, H}\right)+\left|x_{\alpha}\right| \wedge u_{n, H} \\
& \leq\left(u-u_{n, H}\right)+\left|x_{\alpha}\right| \wedge \sum_{\gamma \in H} u \wedge n e_{\gamma} \\
& \leq\left(u-u_{n, H}\right)+\left|x_{\alpha}\right| \wedge \sum_{\gamma \in H} n e_{\gamma} \\
& \leq\left(u-u_{n, H}\right)+n\left(\left|x_{\alpha}\right| \wedge \sum_{\gamma \in H} e_{\gamma}\right) \\
& =\left(u-u_{n, H}\right)+n \sum_{\gamma \in H}\left|x_{\alpha}\right| \wedge e_{\gamma},
\end{aligned}
$$

where the last equality is provided by Theorem 6.5 in [60].
Now, Theorem 9 assures that $u_{n, H} \xrightarrow{\tau} u$, and so, there exists $\left(n_{\varepsilon}, H_{\varepsilon}\right) \in \mathbb{N} \times \mathscr{F}(\Gamma)$ such that

$$
\begin{equation*}
\rho_{j}\left(u-u_{n_{\varepsilon}, H_{\varepsilon}}\right)<\varepsilon . \tag{3.4.11}
\end{equation*}
$$

Thus, $\left|x_{\alpha}\right| \wedge u \leq u-u_{n_{\varepsilon}, H_{\varepsilon}}+\sum_{\gamma \in H_{\varepsilon}} n_{\varepsilon}\left(e_{\gamma} \wedge\left|x_{\alpha}\right|\right)$. But, by the assumption, $e_{\gamma} \wedge\left|x_{\alpha}\right| \xrightarrow{\tau} 0$ for all $\gamma \in \Gamma$, and so $n_{\varepsilon}\left(e_{\gamma} \wedge\left|x_{\alpha}\right|\right) \xrightarrow{\tau} 0$. Hence, there is $\alpha_{\varepsilon, H_{\varepsilon}}$ such that

$$
\begin{equation*}
\rho_{j}\left(n_{\varepsilon}\left(e_{\gamma} \wedge\left|x_{\alpha}\right|\right)\right)<\frac{\varepsilon}{\left|H_{\varepsilon}\right|} \quad\left(\forall \alpha \geq \alpha_{\varepsilon, H_{\varepsilon}}, \forall \gamma \in H_{\varepsilon}\right) \tag{3.4.12}
\end{equation*}
$$

Here $\left|H_{\varepsilon}\right|$ denotes the cardinality of H_{ε}. For $\alpha \geq \alpha_{\varepsilon, H_{\varepsilon}}$, we have

$$
\begin{aligned}
\rho_{j}\left(\left|x_{\alpha}\right| \wedge u\right) & \leq \rho_{j}\left(u-u_{n_{\varepsilon}, H_{\varepsilon}}\right)+\rho_{j}\left(n_{\varepsilon} \sum_{\gamma \in H_{\varepsilon}}\left|x_{\alpha}\right| \wedge e_{\gamma}\right) \\
& \leq \varepsilon+\sum_{\gamma \in H_{\varepsilon}} \rho_{j}\left(n_{\varepsilon}\left(e_{\gamma} \wedge\left|x_{\alpha}\right|\right)\right)<\varepsilon+\sum_{\gamma \in H_{\varepsilon}} \frac{\varepsilon}{\left|H_{\varepsilon}\right|}=2 \varepsilon
\end{aligned}
$$

where the second inequality follows from (3.4.11) and the third one from (3.4.12). Therefore, $\rho_{j}\left(\left|x_{\alpha}\right| \wedge u\right) \rightarrow 0$, and so $x_{\alpha} \xrightarrow{u \tau} 0$.

Corollary 7. Let (X, τ) be a locally solid vector lattice, and $e \in X_{+}$be a quasiinterior point. Then $x_{\alpha} \xrightarrow{u \tau} 0$ if and only if $\left|x_{\alpha}\right| \wedge e \xrightarrow{\tau} 0$.

Proof. The forward implication is trivial. For the backward implication assume $\left|x_{\alpha}\right| \wedge$ $e \xrightarrow{\tau} 0$. Let $u \in X_{+}$, and fix $\varepsilon>0$. Note that for all $k \in \mathbb{N}$,

$$
\begin{aligned}
& \left|x_{\alpha}\right| \wedge u \leq\left|x_{\alpha}\right| \wedge(u-u \wedge k e+u \wedge k e) \leq\left|x_{\alpha}\right| \wedge(u-u \wedge k e)+\left|x_{\alpha}\right| \wedge(u \wedge k e) \\
& \leq(u-u \wedge k e)+k\left|x_{\alpha}\right| \wedge(k u \wedge k e)=(u-u \wedge k e)+k\left[\left|x_{\alpha}\right| \wedge(u \wedge e)\right] . \\
& \text { Hence }\left|x_{\alpha}\right| \wedge u \leq(u-u \wedge k e)+k\left(\left|x_{\alpha}\right| \wedge e\right) . \text { Thus for all } j \in J,
\end{aligned}
$$

$$
\rho_{j}\left(\left|x_{\alpha}\right| \wedge u\right) \leq \rho_{j}(u-u \wedge k e)+k \rho_{j}\left(\left|x_{\alpha}\right| \wedge e\right)
$$

for all α and for all $k \in \mathbb{N}$. Since e is a quasi-interior point, and $u \in X_{+}$, for the fixed ε, and for all $j \in J$, there exist $k_{\varepsilon, j} \in \mathbb{N}$ such that $\rho_{j}\left(u-u \wedge k_{\varepsilon, j} e\right)<\frac{\varepsilon}{2}$.

Furthermore. it follows from $x_{\alpha} \wedge e \xrightarrow{\tau} 0$, that for the fixed ε, and for all $j \in J$, there exists $\alpha_{j, \varepsilon}$, such that $\rho_{j}\left(\left|x_{\alpha}\right| \wedge e\right)<\frac{\varepsilon}{2 k_{\varepsilon, j}}$, that is $k_{\varepsilon, j} \rho_{j}\left(\left|x_{\alpha}\right| \wedge e\right)<\frac{\varepsilon}{2}$. Thus for the fixed ε, and for all $j \in J$, there exists $\alpha_{j, \varepsilon}$, and $k_{\varepsilon, j} \in \mathbb{N}$, such that $\alpha \geq \alpha_{j, \varepsilon}$ implies that $\rho_{j}\left(\left|x_{\alpha}\right| \wedge u\right) \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$. Therefore $x_{\alpha} \xrightarrow{u \tau} 0$ as desired.

Theorem 11. Let (X, τ) be a sequentially complete locally solid vector lattice, where τ is generated by a family $\left(\rho_{j}\right)_{j \in J}$ of Riesz pseudonorms. Let $e \in X_{+}$. The following are equivalent:

1. e is a quasi-interior point;
2. for every net $\left(x_{\alpha}\right)$ in X_{+}, if $x_{\alpha} \wedge e \xrightarrow{\tau} 0$ then $x_{\alpha} \xrightarrow{u \tau} 0$;
3. for every sequence (x_{n}) in X_{+}, if $x_{n} \wedge e \xrightarrow{\tau} 0$ then $x_{n} \xrightarrow{u \tau} 0$.

Proof. (1) \Rightarrow (2) It follows from Corollary 7
$(2) \Rightarrow(3)$ is trivial.
(3) \Rightarrow (1).

Suppose (3). Fix $x \in X_{+}$. We need to show that $x-(x \wedge n e) \xrightarrow{\tau} 0$ or, equivalently by [4, Theorem 1.7(1)] $(x-n e)^{+} \xrightarrow{\tau} 0$ as a sequence of n. Put $w=x \vee e$. The ideal I_{w} is lattice and norm isomorphic (as a vector lattice) to $C(K)$ for some compact Hausdorff space K, with w corresponding to $\mathbb{1}$. Since $x, e \in I_{w}$, we may consider x and e as elements of $C(K)$. Note that $x \vee e=\mathbb{1}$ implies that x and e never vanish simultaneously.

For each $n \in \mathbb{N}$, we define

$$
F_{n}=\{t \in K: x(t) \geqslant n e(t)\} \text { and } O_{n}=\{t \in K: x(t)>n e(t)\} .
$$

Observe that $O_{n} \subseteq F_{n}$, and O_{n} is open in K, because for any $t \in O_{n},(x-n e)(t)>0$, that is O_{n} is the inverse image of $(0, \infty)$.

And F_{n} is closed, because for any $t \in F_{n},(x-n e)(t) \geqslant 0$, that is F_{n} is the inverse image of $[0, \infty)$.

Claim 1: $F_{n+1} \subseteq O_{n}$. Indeed, let $t \in F_{n+1}$. Then $x(t) \geqslant(n+1) e(t)$. If $e(t)>0$ then $x(t)>n e(t)$, so that $t \in O_{n}$. If $e(t)=0$ then $x(t) \geqslant 0$, but x and e never vanish simultaneously, so $x(t)>0$, and hence $t \in O_{n}$.

By Urysohn's Lemma, we find $f_{n} \in C(K)$ such that $0 \leqslant f_{n} \leqslant x, f_{n}$ agrees with x on F_{n+1} and vanishes outside of O_{n}. We can also view f_{n} as an element of X.

Claim 2: $n\left(f_{n} \wedge e\right) \leqslant x$. Let $t \in K$. If $t \in O_{n}$ then $n\left(f_{n} \wedge e\right)(t) \leqslant n e(t)<x(t)$. If $t \notin O_{n}$ then $f_{n}(t)=0$, so that the inequality is satisfied trivially.

Claim 3: $(x-(n+1) e)^{+} \leqslant f_{n}$. Again, let $t \in K$. If $t \in F_{n+1}$ then $(x-(n+1) e)^{+} \leqslant$ $x(t)=f_{n}(t)$. If $t \notin F_{n+1}$ then $x(t)<(n+1) e(t)$, so that $(x-(n+1) e)^{+}(t)=0$ and the inequality is satisfied trivially.

Now, Claim 2 yields $f_{n} \wedge e \leqslant \frac{1}{n} x$, but $f_{n} \wedge e \geqslant 0$, so $0 \leqslant f_{n} \wedge e \leqslant \frac{1}{n} x$, and so for all $j \in J$, we have $0 \leq \rho_{j}\left(f_{n} \wedge e\right) \leq \frac{1}{n} \rho_{j}(x)$, and as $n \rightarrow \infty$, we get that $\rho_{j}\left(f_{n} \wedge e\right) \rightarrow 0$, that is $f_{n} \wedge e \xrightarrow{\tau} 0$. By assumption, this yields $f_{n} \xrightarrow{u \tau} 0$. Since $0 \leqslant f_{n} \leqslant x$ for every n, the sequence $\left(f_{n}\right)$ is order bounded, so take $w=x$, to get that $f_{n} \wedge x \xrightarrow{\tau} 0$, therefore $f_{n} \xrightarrow{\tau} 0$. Now Claim 3 yields $(x-(n+1) e)^{+} \xrightarrow{\tau} 0$, which concludes the proof.

Recall that a topological vector space is metrizable if and only if it has a countable neighborhood base at zero, [3, Theorem 2.1]. In particular, a locally solid vector lattice (X, τ) is metrizable if and only if its topology τ is generated by a countable family $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ of Riesz pseudonorms because there is a one to one corresponding between Riesz pseudonorms and neighborhood base at zero, as follows:
Let $\varepsilon_{n}=\frac{1}{n}, n \in \mathbb{N}$;

$$
V_{n, k}=\left\{x \in X: \rho_{k}(x)<\frac{1}{n}\right\}
$$

Lemma 8. Suppose that $\rho: X \times X \longrightarrow[0, \infty]$ is a semimetric, then $d: X \times X \longrightarrow$ $[0, \infty]$ defined by $d(x, y):=\frac{\rho(x, y)}{1+\rho(x, y)}$ is also a semimetric. In particuler, if ρ is a metric, then d is a metric as well.

Proof. Clearly $d(x, y) \geq 0$ for all $x, y \in X$ and $d(x, y)=d(y, x)$. We prove the triangle inequality. That is for all x, y, z we have $d(x, y) \leq d(x, z)+d(z, y)$. Let $f(t)=\frac{t}{1+t}$ for $t \in[0, \infty)$, then $f^{\prime}(t)=\frac{1}{(1+t)^{2}}>0$. Thus, f is an increasing function over $[0, \infty)$. That is, if $t \leq s$ then $\frac{t}{1+t} \leq \frac{s}{1+s}$. We know that ρ satisfies triangle inequality. So, $\rho(x, y) \leq \rho(x, z)+\rho(z, y)$. Then we get

$$
\begin{aligned}
\frac{\rho(x, y)}{1+\rho(x, y)} & \leq \frac{\rho(x, z)+\rho(z, y)}{1+\rho(x, z)+\rho(z, y)} \\
& =\frac{\rho(x, z)}{1+\rho(x, z)+\rho(z, y)}+\frac{\rho(z, y)}{1+\rho(x, z)+\rho(z, y)} \\
& \leq \frac{\rho(x, z)}{1+\rho(x, z)}+\frac{\rho(z, y)}{1+\rho(z, y)}
\end{aligned}
$$

Thus $d(x, y) \leq(x, z)+d(z, y)$.
Lemma 9. Let $\left(x_{\alpha}\right)$ be a net in \mathbb{R}. Then, $x_{\alpha} \rightarrow x$ in \mathbb{R} if and only if $\frac{\left|x_{\alpha}-x\right|}{1+\left|x_{\alpha}-x\right|} \rightarrow 0$ in R.

Proof. (\Rightarrow) Trivial.
(\Leftarrow) Suppose $\frac{\left|x_{\alpha}-x\right|}{1+\left|x_{\alpha}-x\right|} \rightarrow 0$ in \mathbb{R}. Our aim is to show that $x_{\alpha} \rightarrow x$ in \mathbb{R}. Given $\varepsilon>0$. Take $\delta=\frac{\varepsilon}{1+\varepsilon}$. Note $0<\delta<1$. Since $\frac{\left|x_{\alpha}-x\right|}{1+\left|x_{\alpha}-x\right|} \rightarrow 0$ in \mathbb{R}, there is α_{0} such that $\frac{\left|x_{\alpha}-x\right|}{1+\left|x_{\alpha}-x\right|}<\delta$ for all $\alpha \geqslant \alpha_{0}$. or $\frac{\left|x_{\alpha}-x\right|}{1+\left|x_{\alpha}-x\right|}<\frac{\varepsilon}{1+\varepsilon}$ for all $\alpha \geqslant \alpha_{0}$, so
$(1+\varepsilon)\left|x_{\alpha}-x\right|<\varepsilon+\varepsilon\left|x_{\alpha}-x\right|$, that is $\left|x_{\alpha}-x\right|<\varepsilon$ for all $\alpha \geqslant \alpha_{0}$. Thus, $x_{\alpha} \rightarrow x$ in \mathbb{R}.

The following result gives a sufficient condition for the metrizabililty of $u \tau$-topology.
Proposition 13. Let (X, τ) be a complete metrizable locally solid vector lattice. If X has a countable topological orthogonal system, then the ut-topology is metrizable.

Proof. First note that, since (X, τ) is metrizable, τ is generated by a countable family $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ of Riesz pseudonorms.

Now suppose $\left(e_{n}\right)_{n \in \mathbb{N}}$ to be a topological orthogonal system. For each $n \in \mathbb{N}$, put $d_{n}(x, y):=\sum_{k=1}^{\infty} \frac{1}{2^{k}} \frac{\rho_{k}\left(|x-y| \backslash e_{n}\right)}{1+\rho_{k}\left(|x-y| \wedge e_{n}\right)}$. Note that each d_{n} is a semimetric by Lemma 8 , and $d_{n}(x, y) \leq 1$ for all $x, y \in X$. If $d_{n}(x, y)=0$, then $\rho_{k}\left(|x-y| \wedge e_{n}\right)=0$ for all $k \in \mathbb{N}$, so $\left(|x-y| \wedge e_{n}\right)=0$. For $x, y \in X$, let $d(x, y):=\sum_{n=1}^{\infty} \frac{1}{2^{n}} d_{n}(x, y)$. Clearly, $d(x, y)$ is nonnegative. Also d satisfies the triangle inequality, Indeed

$$
\begin{aligned}
d(x, y)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} d_{n}(x, y) & \leq \sum_{n=1}^{\infty} \frac{1}{2^{n}}\left(d_{n}(x, z)+d_{n}(z, y)\right) \\
& =\sum_{n=1}^{\infty} \frac{1}{2^{n}} d_{n}(x, z)+\sum_{n=1}^{\infty} \frac{1}{2^{n}} d_{n}(z, y) \\
& =d(x, z)+d(z, y) .
\end{aligned}
$$

It is easy to see that $d(x, y)=d(y, x)$ for all $x, y \in X$. Now $d(x, y)=0$ if and only if $d_{n}(x, y)=0$ for all $n \in \mathbb{N}$ if and only if $\rho_{k}\left(|x-y| \wedge e_{n}\right)=0$ for all $k \in \mathbb{N}$ if and only if $\left(|x-y| \wedge e_{n}\right)=0$ for all $n \in \mathbb{N}$ if and only if $|x-y|=0$ if and only if $x=y$. Thus (X, d) is a metric space.

It remains to show that d generates the $u \tau$-topology. Suppose that $\left(x_{\alpha}\right)_{\alpha \in A}$ is a net in X such that $x_{\alpha} \xrightarrow{u \tau} 0$. Then by Theorem 10 we have $\left|x_{\alpha}\right| \wedge e_{n} \xrightarrow{\tau} 0$ over α for each $n \in \mathbb{N}$. Thus, for each $k \in \mathbb{N}, \rho_{k}\left(\left|x_{\alpha}\right| \wedge e_{n}\right) \rightarrow 0$ over α and this holds also for each $n \in \mathbb{N}$. Given $n \in \mathbb{N}$. Then,

$$
\begin{equation*}
\rho_{k}\left(\left|x_{\alpha}\right| \wedge e_{n}\right) \rightarrow 0 \text { over } \alpha \text { for each } k \in \mathbb{N} \tag{3.4.13}
\end{equation*}
$$

Our aim is to show that $x_{\alpha} \xrightarrow{\mathrm{d}_{\mathrm{n}}} 0$ where $d_{n}(x, y)=\sum_{k=1}^{\infty} \frac{1}{2^{k}} \frac{\rho_{k}\left(|x-y| \wedge e_{n}\right)}{1+\rho_{k}\left(|x-y| \wedge e_{n}\right)}$. Given $\varepsilon>0$. Then there is $k_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\sum_{k=k_{0}}^{\infty} \frac{1}{2^{k}}<\frac{\varepsilon}{2} \tag{3.4.14}
\end{equation*}
$$

For $k=1, \cdots, k_{0}-1$, there is α_{0} such that

$$
\begin{equation*}
\rho_{1}\left(\left|x_{\alpha}\right| \wedge e_{n}\right)+\cdots+\rho_{k_{0}-1}\left(\left|x_{\alpha}\right| \wedge e_{n}\right)<\frac{\varepsilon}{2} \text { for all } \alpha \geqslant \alpha_{0} \tag{3.4.15}
\end{equation*}
$$

For $\alpha \geqslant \alpha_{0}$,

$$
\begin{aligned}
d_{n}\left(x_{\alpha}, 0\right) & =\sum_{k=1}^{\infty} \frac{1}{2^{k}} \frac{\rho_{k}\left(\left|x_{\alpha}\right| \wedge e_{n}\right)}{1+\rho_{k}\left(\left|x_{\alpha}\right| \wedge e_{n}\right)} \\
& =\sum_{k=1}^{k_{0}-1} \frac{1}{2^{k}} \frac{\rho_{k}\left(\left|x_{\alpha}\right| \wedge e_{n}\right)}{1+\rho_{k}\left(\left|x_{\alpha}\right| \wedge e_{n}\right)}+\sum_{k=k_{0}}^{\infty} \frac{1}{2^{k}} \frac{\rho_{k}\left(\left|x_{\alpha}\right| \wedge e_{n}\right)}{1+\rho_{k}\left(\left|x_{\alpha}\right| \wedge e_{n}\right)}
\end{aligned}
$$

In the first sum note that $\frac{1}{2^{k}} \frac{1}{1+\rho_{k}\left(\left|x_{\alpha}\right| \wedge e_{n}\right)} \leq 1$ and in the second sum $\frac{\rho_{k}\left(\left|x_{\alpha}\right| \wedge e_{n}\right)}{1+\rho_{k}\left(\left|x_{\alpha}\right| \wedge e_{n}\right)} \leq 1$. So for $\alpha \geqslant \alpha_{0}$,

$$
\begin{aligned}
& \qquad d_{n}\left(x_{\alpha}, 0\right) \leq \sum_{k=1}^{k_{0}-1} \rho_{k}\left(\left|x_{\alpha}\right| \wedge e_{n}\right)+\sum_{k=k_{0}}^{\infty} \frac{1}{2^{k}} \\
& \text { By 3.4.14 and 3.4.15, }<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

Hence, we have proved that for $n \in \mathbb{N}, d_{n}\left(x_{\alpha}, 0\right) \rightarrow 0$ over α. Note that $d(x, y)=$ $\sum_{n=1}^{\infty} \frac{1}{2^{n}} d_{n}(x, y)$. Given $\varepsilon>0$, there is $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} \frac{1}{2^{n}}<\frac{\varepsilon}{2} \tag{3.4.16}
\end{equation*}
$$

Also, there is α_{ε} such that

$$
\begin{equation*}
d_{1}\left(x_{\alpha}, 0\right)+\cdots+d_{n_{0}-1}\left(x_{\alpha}, 0\right)<\frac{\varepsilon}{2} \text { for all } \alpha \geqslant \alpha_{\varepsilon} . \tag{3.4.17}
\end{equation*}
$$

Therefore, for all $\alpha \geqslant \alpha_{\varepsilon}$,

$$
\begin{aligned}
d\left(x_{\alpha}, 0\right) & =\sum_{n=1}^{\infty} \frac{1}{2^{n}} d_{n}\left(x_{\alpha}, 0\right) \\
& =\sum_{n=1}^{n_{0}-1} \frac{1}{2^{n}} d_{n}\left(x_{\alpha}, 0\right)+\sum_{n=n_{0}}^{\infty} \frac{1}{2^{n}} d_{n}\left(x_{\alpha}, 0\right) \\
& \leq \sum_{n=1}^{n_{0}-1} d_{n}\left(x_{\alpha}, 0\right)+\sum_{n=n_{0}}^{\infty} \frac{1}{2^{n}}
\end{aligned}
$$

By 3.4.16 and 3.4.17, $<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$.
So far we have shown that if $x_{\alpha} \xrightarrow{u \tau} 0$ then $x_{\alpha} \xrightarrow{d} 0$. Conversely, suppose that $x_{\alpha} \xrightarrow{d} 0$, i.e. $d\left(x_{\alpha}, 0\right) \rightarrow 0$ over α. But $d\left(x_{\alpha}, 0\right)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} d_{n}\left(x_{\alpha}, 0\right)$. Note that $\frac{1}{2^{n}} d_{n}\left(x_{\alpha}, 0\right) \leq d\left(x_{\alpha}, 0\right) \rightarrow 0$ over α, so $d_{n}\left(x_{\alpha}, 0\right) \rightarrow 0$ over α for all $n \in \mathbb{N}$. Note that $d_{n}\left(x_{\alpha}, 0\right)=\sum_{k=1}^{\infty} \frac{1}{2^{k}} \frac{\rho_{k}\left(\left|x_{\alpha}\right| \Lambda e_{n}\right)}{1+\rho_{k}\left(\left|x_{\alpha}\right| \wedge e_{n}\right)}$, and $\frac{1}{2^{k}} \frac{\rho_{k}\left(\left|x_{\alpha}\right| \wedge e_{n}\right)}{1+\rho_{k}\left(\left|x_{\alpha}\right| \lambda e_{n}\right)} \leq d_{n}\left(x_{\alpha}, 0\right) \rightarrow 0$ over α, then by Lemma $9 \rho_{k}\left(\left|x_{\alpha}\right| \wedge e_{n}\right) \rightarrow 0$ over α for all $k \in \mathbb{N}$, and so for all $n \in \mathbb{N}$. It follows that $\left|x_{\alpha}\right| \wedge e_{n} \xrightarrow{\tau} 0$ for all $n \in \mathbb{N}$. Again by Theorem 10 we have $x_{\alpha} \xrightarrow{u \tau} 0$.

Recall that a topological space X is called submetrizable if its topology is finer that some metric topology on X.

Proposition 14. Let (X, τ) be a metrizable locally solid vector lattice. If X has a weak unit, then the $u \tau$-topology is submetrizable.

Proof. Note that, since (X, τ) is metrizable, τ is generated by a countable family $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ of Riesz pseudonorms.

Suppose that $e \in X_{+}$is a weak unit. Put $d(x, y):=\sum_{k=1}^{\infty} \frac{1}{2^{k}} \frac{\rho_{k}(|x-y| \wedge e)}{1+\rho_{k}(|x-y| \wedge e)}$. Note that $d(x, y)=0$ if and only if $\rho_{k}(|x-y| \wedge e)=0$ for all $k \in \mathbb{N}$ if and only if $|x-y| \wedge e=$ 0 and, since e is a weak unit, $x=y$. By the same argument used in the proof of Proposition 13, it can be shown that d satisfies the triangle inequality. Assume $x_{\alpha} \xrightarrow{u \tau} x$. Then, $\rho_{k}(|x-y| \wedge e) \rightarrow 0$ for all $k \in \mathbb{N}$. Now, we show shown that $x_{\alpha} \xrightarrow{d} x$. Fix $\varepsilon>0$. There is $k_{0} \in \mathbb{N}$ such that $\sum_{k=k_{0}}^{\infty} \frac{1}{2^{k}}<\frac{\varepsilon}{2}$. Since $\rho_{k}(|x-y| \wedge e) \rightarrow 0$ for all $k \in \mathbb{N}$, there is α_{0} such that $\sum_{k=1}^{k_{0}-1} \frac{1}{2^{k}} \frac{\rho_{k}(|x-y| \wedge e)}{1+\rho_{k}(|x-y| \wedge e)}<\frac{\varepsilon}{2}$ for all $\alpha \geq \alpha_{0}$. Thus, for all $\alpha \geq \alpha_{0}$,

$$
\begin{aligned}
& d\left(x_{\alpha}, x\right)=\sum_{k=1}^{\infty} \frac{1}{2^{k}} \frac{\rho_{k}\left(\left|x_{\alpha}-x\right| \wedge e\right)}{1+\rho_{k}\left(\left|x_{\alpha}-x\right| \wedge e\right)} \\
& \leq \sum_{k=1}^{k_{0}-1} \frac{1}{2^{k}} \frac{\rho_{k}\left(\left|x_{\alpha}-x\right| \wedge e\right)}{1+\rho_{k}\left(\left|x_{\alpha}-x\right| \wedge e\right)}+\sum_{k=k_{0}}^{\infty} \frac{1}{2^{k}} \\
& \quad<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

Thus, $x_{\alpha} \xrightarrow{d} x$.
Therefore, the $u \tau$-topology is finer than the metric topology generated by d, and hence $u \tau$-topology is submetrizable.

The converse of Proposition 13 holds for a particular case as shown in Proposition 21. Where the converse of Proposition 14 in general, does not hold, see [34, Example 2.1].

$3.5 u \tau$-Completeness

A subset A of a locally solid vector lattice (X, τ) is said to be (sequentially) $u \tau$ complete if, it is (sequentially) complete in the $u \tau$-topology. In this section, we relate sequential $u \tau$-completeness of subsets of X with the Lebesgue and Levi properties. First, we remind the following theorem.

Theorem 12. [59 Theorem l] If (X, τ) is a locally solid vector lattice, then the following statements are equivalent:

1. (X, τ) has the Lebesgue and Levi properties;
2. X is τ-complete, and c_{0} is not lattice embeddable in (X, τ).

Recall that two locally solid vector lattices $\left(X_{1}, \tau_{1}\right)$ and $\left(X_{2}, \tau_{2}\right)$ are said to be isomorphic, if there exists a lattice isomorphism from X_{1} onto X_{2} that is also a homeomorphism; in other words, if there exists a mapping from X_{1} onto X_{2} that preserves the algebraic, the lattice, and the topological structures. [3, Page 52].

A locally solid vector lattice $\left(X_{1}, \tau_{1}\right)$ is said to be lattice embeddable into another locally solid vector lattice $\left(X_{2}, \tau_{2}\right)$ if there exists a sublattice Y_{2} of X_{2} such that $\left(X_{1}, \tau_{1}\right)$ and $\left(Y_{2}, \tau_{2}\right)$ are isomorphic.

Note that (X, τ) can have the Lebesgue and Levi properties and simultaneously contains c_{0} as a sublattice, but not as a lattice embeddable copy. The following example illustrates this.

Example 3. Let s denote the vector lattice of all sequences in \mathbb{R} with coordinatewise ordering. Clearly, c_{0} is a sublattice of s. For $j \in \mathbb{N}$, define the Riesz pseudonorm ρ_{j} on s as follows:

$$
\rho_{j}\left(\left(x_{n}\right)_{n \in \mathbb{N}}\right):=\left|x_{j}\right| .
$$

Let $\mathcal{R}:=\left\{\rho_{j}: j \in \mathbb{N}\right\}$. Then \mathcal{R} generates a locally solid topology τ on s. We show that (s, τ) has the Lebesgue and Levi properties. Let $0 \leq x^{\alpha} \uparrow$ be a τ-bounded net in s. For each $\alpha, x^{\alpha}=\left(x_{n}^{\alpha}\right)_{n \in \mathbb{N}}$. The condition $0 \leq x^{\alpha} \uparrow$ implies that, for each $j \in \mathbb{N}$, $\left(x_{j}^{\alpha}\right)_{\alpha}$ is an increasing net in \mathbb{R}_{+}. Note that the ρ_{j} 's here are Riesz seminorms, so the τ-boundedness of the net $\left(x^{\alpha}\right)$ assures that, for each j, the net $\left(x_{j}^{\alpha}\right)_{\alpha}$ is bounded in \mathbb{R}. Thus, by the monotone convergence theorem in \mathbb{R}, we have for each $j, 0 \leq x_{j}^{\alpha} \uparrow x_{j}$ for some $x_{j} \in \mathbb{R}$. Define $x:=\left(x_{j}\right)_{j \in \mathbb{N}} \in s$, then $x^{\alpha} \uparrow x$. Now, suppose $x^{\alpha} \downarrow 0$ in s. Then, for each $j \in \mathbb{N}$, the sequence $\left(x_{j}^{\alpha}\right)_{\alpha}$ decreases to zero in \mathbb{R}. That is $\rho_{j}\left(x^{\alpha}\right)=x_{j}^{\alpha} \rightarrow 0$ in \mathbb{R} for each $j \in \mathbb{N}$. Hence, $x^{\alpha} \xrightarrow{\tau} 0$. Therefore, (s, τ) possesses the Lebesgue and Levi properties. Although c_{0} is a sublattice of s, but $\left(c_{0},\|\cdot\|_{\infty}\right)$ is not lattice embeddable in (s, τ). To see this, let $\Phi:\left(c_{0},\|\cdot\|_{\infty}\right) \rightarrow(s, \tau)$ be a lattice embedding. Let $\left(e_{n}\right)$ be the standard basis in c_{0}. Then $\left(\Phi e_{n}\right)$ is a disjoint sequence in (s, τ), which is easily seen to converge to 0 in (s, τ). It follows that $e_{n} \rightarrow 0$ in $\left(c_{0},\|\cdot\|_{\infty}\right)$, which is absurd.

Proposition 15. Let (X, τ) be a complete locally solid vector lattice that has the Lebesgue property. If every τ-bounded $u \tau$-Cauchy sequence is $u \tau$-convergent in X, then (X, τ) also has the Levi property.

Proof. Suppose X does not possess the Levi property. Then, by Theorem 12, c_{0} is lattice embeddable in (X, τ). So there is a map $\Phi:\left(c_{0},\|\cdot\|_{\infty}\right) \rightarrow(X, \tau)$ which is a lattice embedding. Let $s_{n}=\sum_{k=1}^{n} e_{k}$, where e_{k} 's denote the standard unit vectors in c_{0}. It follows from [36, Lemma 6.1] that $\left(s_{n}\right)$ is un-Cauchy in $\left(c_{0},\|\cdot\|_{\infty}\right)$. Thus (Φs_{n}) is $u \tau$-Cauchy in $\left(\Phi c_{0}, \tau\right)$. Now [3, Theorem 3.24] assures that X is Dedekind complete and hence $\left(\Phi s_{n}\right)$ is $u \tau$-Cauchy in (X, τ) by Theorem 7. Suppose $\Phi s_{n} \xrightarrow{u \tau} x$ in X. Since $0 \leq \Phi s_{n} \uparrow$ and (X, τ) has the Lebesgue property, it follows by a similar argument to [36, Lemma 1.2(i)] that $x=\sup _{n} \Phi s_{n}$, so that $\Phi s_{n} \rightarrow x$ in (X, τ) due to
the Lebesgue property again. This implies $\left(\Phi s_{n}\right)$ is Cauchy in (X, τ), so that $\left(s_{n}\right)$ is Cauchy in $\left(c_{0},\|\cdot\|_{\infty}\right)$, which is absurd.

Theorem 13. [59] Theorem 1'] If (X, τ) is a Dedekind complete locally solid vector lattice, then the following statements are equivalent:

1. (X, τ) has the σ-Lebesgue and σ-Levi properties;
2. X is τ-sequentially complete, and c_{0} is not lattice embeddable in (X, τ).

Using the proof of Proposition 15 and Theorem 13, one can easily prove the following result.

Proposition 16. Let X be a Dedekind complete vector lattice equipped with a sequentially complete locally solid topology τ. If (X, τ) has the Lebesgue property and every τ-bounded $u \tau$-Cauchy sequence is $u \tau$-convergent in X, then (X, τ) also has the σ-Levi property.

As it was observed in [36, page 271 before Example 6.5], the Lebesgue property can not be removed from Propositions 15 and 16.

Clearly, every finite dimensional locally solid vector lattice (X, τ) is $u \tau$-complete. On the contrary of [36, Proposition 6.2], we provide an example of a τ-complete locally solid vector lattice (X, τ) possessing the Lebesgue property such that it is $u \tau$-complete and $\operatorname{dim} X=\infty$.

Example 4. Let $X=s$ and $\mathcal{R}=\left(\rho_{j}\right)_{j \in \mathbb{N}}$ such that $\rho_{j}\left(\left(x_{n}\right)\right):=\left|x_{j}\right|$, where $\left(x_{n}\right) \in s$.
First, we show that (X, \mathcal{R}) is τ-complete. Let $\left(x^{\alpha}\right)$ be a τ-Cauchy net in (X, \mathcal{R}), then $x^{\alpha}=\left(x_{n}^{\alpha}\right)_{n \in \mathbb{N}}$ and $x^{\alpha}-x^{\beta} \xrightarrow{\tau} 0$ over α, β. For $j \in \mathbb{N}$, we have $\rho_{j}\left(x^{\alpha}-x^{\beta}\right) \rightarrow 0$ in \mathbb{R} over α, β. That is, for $j \in \mathbb{N},\left|x_{j}^{\alpha}-x_{j}^{\beta}\right| \rightarrow 0$ in \mathbb{R} over α, β. Thus, for each $j \in \mathbb{N}$, the net $\left(x_{j}^{\alpha}\right)_{\alpha}$ is Cauchy in \mathbb{R} and so, there is $x_{j} \in \mathbb{R}$ such that $x_{j}^{\alpha} \rightarrow x_{j}$ over α. Take $x:=\left(x_{j}\right)_{j \in \mathbb{N}} \in$. Since, for each $j \in \mathbb{N}, x_{j}^{\alpha} \rightarrow x_{j}$ over α in \mathbb{R}, it follows that $\rho_{j}\left(x^{\alpha}-x\right) \rightarrow 0$ in \mathbb{R}. Hence, $x^{\alpha} \xrightarrow{\tau} x$. Therefore, (X, \mathcal{R}) is τ-complete.
Second, we show that (X, \mathcal{R}) has the Lebesgue property. Assume $x^{\alpha} \downarrow 0$, our aim is to show that $x^{\alpha} \xrightarrow{\tau} 0$. We know that $x^{\alpha}=\left(x_{n}^{\alpha}\right)_{n \in \mathbb{N}}$. For each $j \in \mathbb{N}, x^{\alpha} \downarrow 0$ implies that $x_{j}^{\alpha} \downarrow 0$ in \mathbb{R}. That is $\rho_{j}\left(x^{\alpha}\right) \downarrow 0$ in \mathbb{R}. Thus, $x^{\alpha} \xrightarrow{\tau} 0$.

Finally, we show that (X, \mathcal{R}) is ut-complete. Suppose $\left(x^{\alpha}\right)$ is $u \tau$-Cauchy net. Then, for each $u \in X_{+}$, we have $\left|x^{\alpha}-x^{\beta}\right| \wedge u \xrightarrow{\tau} 0$. Now, $u=u_{n}$ and, $x^{\alpha}=x_{n}^{\alpha}$. Let $j \in \mathbb{N}$, then $\rho_{j}\left(\left|x^{\alpha}-x^{\beta}\right| \wedge u\right) \rightarrow 0$ in \mathbb{R} over α, β if and only if $\left|x_{j}^{\alpha}-x_{j}^{\beta}\right| \wedge u_{j} \rightarrow 0$ in \mathbb{R} if and only if $\left|x_{j}^{\alpha}-x_{j}^{\beta}\right| \rightarrow 0$ in \mathbb{R} over α, β.
Thus, $\left(x_{j}^{\alpha}\right)_{\alpha}$ is Cauchy in \mathbb{R} and so there is $x_{j} \in \mathbb{R}$ such that $x_{j}^{\alpha} \rightarrow x_{j}$ in \mathbb{R} over α. Let $x=\left(x_{j}\right)_{j \in \mathbb{N}} \in s$, then, clearly, $x^{\alpha} \xrightarrow{u \tau} x$.

CHAPTER 4

UNBOUNDED m-TOPOLOGY IN MULTI-NORMED VECTOR LATTICES

Unbounded convergences have attracted many researchers (see for instance [31, 27, [30, 21, 18, 61, 36, 8, 41, 37, 35, 29, 28, 52, 16]. Unbounded convergences are wellinvestigated in vector and normed lattices (cf. [18, 30, 36, 53, 57]). In this chapter, we also extend several previous results from [18, 30, 36, 53, 57, 61] to multi-normed setting. This work is a continuation of Chapter 3, in which unbounded topological convergence was studied in locally solid vector lattices.

Let (X, τ) be a locally solid vector lattice, if τ has base at zero consisting of convexsolid sets, then (X, τ) is called a locally convex-solid vector lattice. It is known that a linear topology τ on X is locally convex-solid if and only if there exists a family $\mathcal{M}=\left\{m_{\lambda}\right\}_{\lambda \in \Lambda}$ of lattice seminorms that generates τ (cf. [3, Theorem 2.25]). Moreover, for such $\mathcal{M}, x_{\alpha} \xrightarrow{\tau} x$ if and only if $m_{\lambda}\left(x_{\alpha}-x\right) \underset{\alpha}{\rightarrow} 0$ in \mathbb{R} for each $m_{\lambda} \in \mathcal{M}$. Since τ is Hausdorff, the family \mathcal{M} is separating.

Recall that subset A in a topological vector space (X, τ) is called τ-bounded if, for every τ-neighborhood V of zero, there exists $\lambda>0$ such that $A \subseteq \lambda V$. In the case when the topology τ is generated by a family $\left\{m_{\lambda}\right\}_{\lambda \in \Lambda}$ of seminorms, a subset A of X is τ-bounded if and only if $\sup _{a \in A} m_{\lambda}(a)<\infty$ for all $\lambda \in \Lambda$.

4.1 Multi-normed vector lattices

Let (X, τ) be a locally convex-solid vector lattice with an upward directed family $\mathcal{M}=\left\{m_{\lambda}\right\}_{\lambda \in \Lambda}$ of lattice seminorms generating τ. Throughout this chapter, the pair (X, \mathcal{M}) will be referred as a multi-normed vector lattice (MNVL). Also, τ convergence, τ-Cauchy, τ-complete, etc. will be denoted by m-convergence, m Cauchy, m-complete, etc.

Let X be a vector space, E be a vector lattice, and $p: X \rightarrow E_{+}$be a vector norm (i.e. $p(x)=0 \Leftrightarrow x=0, p(\lambda x)=|\lambda| p(x)$ for all $\lambda \in \mathbb{R}, x \in X$, and $p(x+y) \leq p(x)+p(y)$ for all $x, y \in X)$, then (X, p, E) is called a lattice-normed space, abbreviated as $L N S$, see [40]. If X is a vector lattice, and the vector norm p is monotone (i.e. $|x| \leq$ $|y| \Rightarrow p(x) \leq p(y))$, then the triple (X, p, E) is called a lattice-normed vector lattice,
abbreviated as $L N V L$ (cf. [8, 9]).
Given an LNS (X, p, E). Recall that a net $\left(x_{\alpha}\right)$ in X is said to be p-convergent to x (see [8]) if $p\left(x_{\alpha}-x\right) \xrightarrow{o} 0$ in E. In this case, we write $x_{\alpha} \xrightarrow{p} x$. A subset A of X is called p-bounded if there exists $e \in E$ such that $p(a) \leq e$ for all $a \in A$.

Proposition 17. Every MNVL induces an LNVL. Moreover, for arbitrary nets, pconvergence in the induced LNVL implies m-convergence, and they coincide in the case of p-bounded nets.

Proof. Let (X, \mathcal{M}) be an MNVL, then there is a separating family $\left\{m_{\lambda}\right\}_{\lambda \in \Lambda}$ of lattice seminorms on X. Let $E=\mathbb{R}^{\Lambda}$ be the vector lattice of all real-valued functions on Λ, and define $p: x \mapsto p_{x}$ from X into E_{+}such that $p_{x}[\lambda]:=m_{\lambda}(x)$.

We show that p is a vector norm on X.

- If $x=0$, then $p_{0}[\lambda]=m_{\lambda}(0)=0$, so $p_{0}[\lambda]=0$ for all $\lambda \in \Lambda$. So $p_{0}=0$. Assume, $p_{x}=0$, then $p_{x}[\lambda]=0$ for all $\lambda \in \Lambda$, or $m_{\lambda}(x)=0$ for all $\lambda \in \Lambda$. Since $\left(m_{\lambda}\right)_{\lambda \in \Lambda}$ is a separating family of lattice seminorms on X, we have $x=0$. Therefore, $p_{x}=0$ if and only if $x=0$.
- For $r \in \mathbb{R}$, we show $p_{r x}=|r| p_{x}$. Indeed, $p_{r x}[\lambda]=m_{\lambda}(r x)=|r| m_{\lambda}(x)=$ $|r| p_{x}$. Next we show triangle inequality. For all $x \in X$. Let $\lambda \in \Lambda$, then $p_{(x+y)}[\lambda]=m_{\lambda}(x+y) \leq m_{\lambda}(x)+m_{\lambda}(y)=p_{x}[\lambda]+p_{y}[\lambda]=\left(p_{x}+p_{y}\right)[\lambda]$. Thus, $p_{(x+y)} \leq p_{x}+p_{y}$.

Now we show that p is monotone. Assume that $|x| \leq|y|$, then for $\lambda \in \Lambda, p_{x}[\lambda]=$ $m_{\lambda}(x) \leq m_{\lambda}(y)=p_{y}[\lambda]$, hence p is monotone. Therefore (X, p, E) is an LNVL.

Let $\left(x_{\alpha}\right)$ be a net in X. If $x_{\alpha} \xrightarrow{p} 0$, then $p_{x_{\alpha}} \xrightarrow{o} 0$ in \mathbb{R}^{Λ}, and so $p_{x_{\alpha}}[\lambda] \rightarrow 0$ or $m_{\lambda}\left(x_{\alpha}\right) \rightarrow 0$ for all $\lambda \in \Lambda$. Hence $x_{\alpha} \xrightarrow{m} 0$.

Finally, assume a net $\left(x_{\alpha}\right)$ to be p-bounded. If $x_{\alpha} \xrightarrow{m} 0$, then $m_{\lambda}\left(x_{\alpha}\right) \rightarrow 0$ or $p_{x_{\alpha}}[\lambda] \rightarrow 0$ for each $\lambda \in \Lambda$. Since $\left(x_{\alpha}\right)$ is p-bounded, $p_{x_{\alpha}} \xrightarrow{o} 0$ in \mathbb{R}^{Λ}. That is $x_{\alpha} \xrightarrow{p} 0$.

The following proposition characterizes quasi-interior points, and should be compared with [4, Theorem 4.85].

Proposition 18. Let (X, \mathcal{M}) be an $M N V L$, then the following statements are equivalent:

1. $e \in X_{+}$is a quasi-interior point;
2. for all $x \in X_{+}, x-x \wedge n e \xrightarrow{m} 0$ as $n \rightarrow \infty$;
3. e is strictly positive on X^{*}, i.e., $0<f \in X^{*}$ implies $f(e)>0$, where X^{*} denotes the topological dual of X.

Proof. (1) \Rightarrow (2) Suppose that e is a quasi-interior point of X, then ${\overline{I_{e}}}^{m}=X$. Let $x \in X_{+}$. Then $x \in \overline{I_{e}}{ }^{m}$, so there exists a net $\left(x_{\alpha}\right)$ in I_{e} that m-converges to x. But $x_{\alpha} \xrightarrow{m} x$ implies $\left|x_{\alpha}\right| \xrightarrow{m}|x|=x$. Moreover, $x_{\alpha} \wedge x \xrightarrow{m} x \wedge x=x$, and $x_{\alpha} \wedge x \leq x_{\alpha}$ implies that $x_{\alpha} \wedge x \in I$, because I_{e} is an ideal. So we can assume also that $x_{\alpha} \leq x$. Hence, for any $x \in X_{+}$, there is a net $0 \leq x_{\alpha} \in I_{e}$ and $x_{\alpha} \leq x$. Then $0 \leq x_{\alpha} \wedge n e \leq x \wedge n e \leq x$ for all $n \in \mathbb{N}$. Now, take $\lambda \in \Lambda$, and let $\varepsilon>0$, then there is α_{ε} such that $m_{\lambda}\left(x-x_{\alpha_{\varepsilon}}\right)<\varepsilon$. But $0 \leq x_{\alpha_{\varepsilon}} \in I_{e}$, so $0 \leq x_{\alpha_{\varepsilon}} \leq k_{\varepsilon} e$ for some $k_{\varepsilon} \in \mathbb{N}$. Since $0 \leq x_{\alpha_{\varepsilon}}=x_{\alpha_{\varepsilon}} \wedge k_{\varepsilon} e \leq x \wedge k_{\varepsilon} e \leq x$, we get $m_{\lambda}(x-x \wedge n e) \leq m_{\lambda}\left(x-x \wedge k_{\varepsilon} e\right) \leq$ $m_{\lambda}\left(x-x_{\alpha} \wedge k_{\varepsilon} e\right)=m_{\lambda}\left(x-x_{\alpha_{\varepsilon}}\right)<\varepsilon$ for all $n \geq k_{\varepsilon}$. Hence $m_{\lambda}(x-x \wedge n e) \rightarrow 0$ as $n \rightarrow \infty$. Since $\lambda \in \Lambda$ was chosen arbitrary, we get $x-x \wedge n e \xrightarrow{m} 0$.
$(2) \Rightarrow(3)$ Let $0<f \in X^{*}$ and assume in contrary that $f(e)=0$. Now let $x \in X_{+}$, then $0 \leq x \wedge n e \leq n e$ for all $n \in \mathbb{N}$. Since $0<f \in X^{*}, f(x \wedge n e) \leq f(n e)=$ $n f(e)=0$. So, $f(x \wedge n e)=0$ for all $n \in \mathbb{N}$. Since $x \wedge n e \xrightarrow{m} x$ and $f \in X^{*}$, by continuity of f, we have $f(x \wedge n e) \rightarrow f(x)$ as $n \rightarrow \infty$, i.e., $f(x)=0$ for all $x \in X_{+}$. and so $f \equiv 0$ which is a contradiction.
(3) \Rightarrow (1) If I_{e} is not dense in X with respect to m-topology, then by Hahn-Banach Theorem [48, Theorem 3.5] there is a non-zero $f \in X^{*}$ such that $f(x)=0$ for every $x \in I_{e}$. Since $f=f^{+}-f^{-}$and $f \neq 0$, either $f^{+} \neq 0$ or $f^{-} \neq 0$. Assume without lose of generality that $f^{+}>0$. Now Riesz-Kantorovich formula implies that

$$
\begin{aligned}
f^{+}(e) & =\sup \{f(x): x \in X \text { and } 0 \leq x \leq e\} \\
& =\sup \left\{f(x): x \in I_{e} \text { and } 0 \leq x \leq e\right\}=0
\end{aligned}
$$

which is a contradiction. Thus, $\bar{I}_{e}{ }^{m}=X$, that is e is a quasi-interior point of X^{+}.

It should be noted that in the proof of $(1) \Rightarrow(2)$ of Proposition 18 we can select an increasing bounded from above net $\left(x_{\alpha}\right)$ in I_{e}^{+}such that $x_{\alpha} \xrightarrow{m} x$. Indeed, if $x \in \overline{I_{e}}$, then we know that there is a net $\left(x_{\alpha}\right)_{\alpha \in A}$ in I_{e}^{+}such that $0 \leq x_{\alpha} \leq x$ for all $\alpha \in A$. Let $\mathscr{F}(A)$ denote the collection of all finite subsets of A. Clearly, $\mathscr{F}(A)$ is directed upward. For each $\Delta \in \mathscr{F}(A)$ let $y_{\Delta}:=\sup _{\alpha \in \Delta} x_{\alpha}$. Then $y_{\Delta} \uparrow$ and $y_{\Delta} \leq x$ for all $\Delta \in \mathscr{F}(A)$. We claim that $y_{\Delta} \xrightarrow{m} x$. Let $\lambda \in \Lambda$. Given $\varepsilon>0$, since $x_{\alpha} \xrightarrow{m} x$, there is α_{ε} satisfying $m_{\lambda}\left(x-x_{\alpha}\right)<\varepsilon$ for all $\alpha \geqslant \alpha_{\varepsilon}$. Let $\Delta_{\varepsilon}=\left\{\alpha_{\varepsilon}\right\}$. For $\Delta \supseteq \Delta \varepsilon$, we have $y_{\Delta} \geqslant x_{\alpha_{\varepsilon}}$ or $-y_{\Delta} \leq-x_{\alpha_{\varepsilon}}$ and so $0 \leq x-y_{\Delta} \leq x-x_{\alpha_{\varepsilon}}$. Hence, $m_{\lambda}\left(x-y_{\Delta}\right) \leq m_{\lambda}\left(x-x_{\alpha_{\varepsilon}}\right)<\varepsilon$ for all $\Delta \supseteq \Delta_{\varepsilon}$. Therefore, $0 \leq y_{\Delta} \uparrow$ in I_{e} and $y_{\Delta} \xrightarrow{m} x$.

More generally we have,
Proposition 19. Let (X, p, E) be an $L N V L$ and I be an ideal in X. For $x \in X_{+}$, if there is a net $\left(x_{\alpha}\right)$ in I satisfying $x_{\alpha} \xrightarrow{p} x$, then there is a net $0 \leq y_{\beta}$ in I with $y_{\beta} \uparrow$ and $y_{\beta} \xrightarrow{p} x$.

Proof. Suppose that $x \in X_{+}$and there exists a net $\left(x_{\alpha}\right) \in I$ with $x_{\alpha} \xrightarrow{p} x$, then by the same argument used in the proof of (1) \Rightarrow (2) of Proposition 18, we may consider
$x_{\alpha} \in I^{+}$with $x_{\alpha} \leq x$ or $x_{\alpha} \in[0, x]$ for all α. Let $B=[0, x] \cap I$, then B is directed upward, and the net $\left(y_{b}\right)=(b)$ for all $b \in B$ is increasing in I with $0 \leq y_{b}$. In particular $y_{x_{\alpha}}=x_{\alpha}$ for all α. For $b \geqslant x_{\alpha}$, we have $0 \leq x-y_{b}=x-b \leq x-x_{\alpha}=$ $x-y_{x_{\alpha}}$, and so $p\left(y_{b}-x\right) \leq p\left(x_{\alpha}-x\right)$ as $b \geq x_{\alpha}$. Now by assumption $x-x_{\alpha} \xrightarrow{p} 0$ as $\alpha \rightarrow \infty$, i.e., $p\left(x_{\alpha}-x\right) \xrightarrow{o} 0$ in E, then there is a net $e_{\gamma} \downarrow 0$ in E, such that for all γ, there exist α_{γ} satisfying $p\left(x_{\alpha}-x\right) \leq e_{\gamma}$ for all $\alpha \geqslant \alpha_{\gamma}$. In particular $p\left(x_{\alpha_{\gamma}}-x\right) \leq e_{\gamma}$. We want to show that $p\left(y_{b}-x\right) \xrightarrow{o} 0$. For that consider the net $\left(e_{\gamma}\right)$ as above, then $e_{\gamma} \downarrow 0$ in E, and for all γ, take $b_{\gamma}=x_{\alpha_{\gamma}}$. Then for all $b \geqslant b_{\gamma}=x_{\alpha_{\gamma}}$, we have $p(b-x) \leq p\left(b_{\gamma}-x\right)=p\left(x_{\alpha_{\gamma}}-x\right) \leq e_{\gamma}$. Therefore $p\left(y_{b}-x\right) \xrightarrow{o} 0$.

Corollary 8. Let (X, \mathcal{M}) be an $M N V L$, and let I be an ideal in (X, \mathcal{M}) with $\bar{I}^{m}=$ X. Then for every $x \in X_{+}$, there exist a net $\left(y_{\beta}\right) \in I$ such that $0 \leq y_{\beta} \uparrow \leq x$ and $y_{\beta} \xrightarrow{m} x$.

Proof. Suppose that I is an ideal in (X, \mathcal{M}) with $\bar{I}^{m}=X$, then for every $x \in X_{+}$, there is a net $\left(x_{\alpha}\right) \in I$ such that $x_{\alpha} \xrightarrow{m} x$, and by the same argument used in the proof of (1) \Rightarrow (2) of Proposition 18, we may assume that $x_{\alpha} \in I_{+}$with $x_{\alpha} \leq x$. Now by Proposition 17, (X, \mathcal{M}) induces an $\operatorname{LNVL}(X, p, E)$ with $E=\mathbb{R}^{\Lambda}$, and $p: X \rightarrow E_{+}$, such that $x \mapsto p_{x}$, where $p_{x}: \Lambda \rightarrow \mathbb{R}$ and $p_{x}[\lambda]:=m_{\lambda}(x)$. Then for all $\lambda \in \Lambda$, $p_{x_{\alpha}}[\lambda]=m_{\lambda}\left(x_{\alpha}\right) \leq m_{\lambda}(x)=p_{x}[\lambda]$, so $p\left(x_{\alpha}\right) \leq p(x)$. Hence $x_{\alpha} \in I_{+}$is p-bounded. But $x_{\alpha} \xrightarrow{m} x$, then by Proposition $17 x_{\alpha} \xrightarrow{p} x$, hence by Proposition 19 , there exist a net $\left(y_{b}\right) \in I$ such that $y_{b} \uparrow$ and $y_{b} \xrightarrow{p} x$. Again by Proposition $17 y_{b} \xrightarrow{m} x$ as desired.

It follows from Theorem 6.63 (ii) and (iv) [3] that an MNVL satisfies the KB-property if and only if it has the Lebesgue and Levi properties.

4.2 um-Topology

In this section we introduce the um-topology in a analogous manner to the untopology [36] and uaw-topology [61]. First we define the um-convergence.

Definition 3. Let (X, \mathcal{M}) be an MNVL, then a net $\left(x_{\alpha}\right)$ is said to be unbounded mconvergent to x, if $\left|x_{\alpha}-x\right| \wedge u \xrightarrow{m} 0$ for all $u \in X_{+}$. In this case, we say $\left(x_{\alpha}\right)$ um-converges to x and write $x_{\alpha} \xrightarrow{u m} x$.

Clearly, that $u m$-convergence is a generalization of $u n$-convergence. The following result generalizes [36, Corollary 4.5].

Proposition 20. If (X, \mathcal{M}) is an MNVL possessing the Lebesgue and Levi properties, and $x_{\alpha} \xrightarrow{u m} 0$ in X, then $x_{\alpha} \xrightarrow{u m} 0$ in $X^{* *}$.

Proof. It follows from Theorem 6.63 of [3] that (X, \mathcal{M}) is m-complete and X is a band in $X^{* *}$. Now, [3, Theorem 2.22] shows that $X^{* *}$ is Dedekind complete, and so
X is a projection band in $X^{* *}$. The conclusion follows now from Theorem 6, part (3)

In a similar way as in Theorem 2, one can show that \mathcal{N}_{0}, the collection of all sets of the form

$$
V_{\varepsilon, u, \lambda}=\left\{x \in X: m_{\lambda}(|x| \wedge u)<\varepsilon\right\},
$$

where $\varepsilon>0,0 \neq u \in X_{+}$, and $\lambda \in \Lambda$, forms a neighborhood base at zero for some Hausdorff locally solid topology τ such that, for any net $\left(x_{\alpha}\right)$ in $X: x_{\alpha} \xrightarrow{u m} 0$ if and only if $x_{\alpha} \xrightarrow{\tau} 0$. Thus, the $u m$-convergence is topological, and we will refer to its topology as the um-topology.

Clearly, if $x_{\alpha} \xrightarrow{m} 0$, then $x_{\alpha} \xrightarrow{u m} 0$, and so the m-topology, in general, is finer than um-topology. On the contrary to Theorem 2.3 in [36], the following example provides an MNVL which has a strong unit, yet the m-topology and um-topology do not agree.

Example 5. Let $X=C[0,1]$. Let $\mathcal{A}:=\{[a, b] \subseteq[0,1]: a<b\}$. For $[a, b] \in \mathcal{A}$ and $f \in X$, let $m_{[a, b]}(f):=\frac{1}{b-a} \int_{a}^{b}|f(t)| d t$. Then $\mathcal{M}=\left\{m_{[a, b]}:[a, b] \in \mathcal{A}\right\}$ is a separating family of lattice seminorms on X. Thus, (X, \mathcal{M}) is an MNVL. For each $2 \leq n \in \mathbb{N}$, let

$$
f_{n}= \begin{cases}n & \text { if } x \in\left[0, \frac{1}{n}\right] \\ n^{2}(1-n) x+n^{2} & \text { if } x \in\left[\frac{1}{n}, \frac{1}{n-1}\right], \\ 0 & \text { if } x \in\left[\frac{1}{n-1}, 1\right]\end{cases}
$$

So we have

$$
f_{n} \wedge \mathbb{1}= \begin{cases}1 & \text { if } x \in\left[0, \frac{n+1}{n^{2}}\right] \\ n^{2}(1-n) x+n^{2} & \text { if } x \in\left[\frac{n+1}{n^{2}}, \frac{1}{n-1}\right] \\ 0 & \text { if } x \in\left[\frac{1}{n-1}, 1\right]\end{cases}
$$

Now, let $0<b \leq 1$, then there is $n_{0} \in \mathbb{N}$ such that $\frac{1}{n_{0}-1}<b$. So, for $n \geq n_{0}$, we have $\frac{1}{n-1}<b$, and so we get $m_{[0, b]}\left(f_{n}\right)=\frac{1}{b}\left(1+\frac{1}{n-1}\right) \rightarrow \frac{1}{b} \neq 0$ as $n \rightarrow \infty$. Thus, $f_{n} \xrightarrow{m \rightarrow} 0$. On the other hand, if $[a, b] \in \mathcal{A}$ then there is $n_{0} \in \mathbb{N}$ such that $\frac{1}{n_{0}-1}<b$ so, for $n \geq\left(n_{0}-1\right)$, we have $m_{[a, b]}\left(f_{n} \wedge \mathbb{1}\right)=\frac{1}{b-a}\left(\frac{n+1}{n^{2}}+\frac{1}{2 n^{2}(n-1)}\right) \rightarrow 0$ as $n \rightarrow \infty$. Since $\mathbb{1}$ is a strong unit in X, by Corollary 6 , $f_{n} \xrightarrow{u m} 0$.

4.3 Metrizabililty of um-topology

The main result in this section is Proposition 21, which shows that the um-topology is metrizable if and only if the space has a countable topological orthogonal system.

It is well known (cf. [3, Theorem 2.1]) that a topological vector space is metrizable if and only if it has a countable neighborhood base at zero. Furthermore, an MNVL (X, \mathcal{M}) is metrizable if and only if the m-topology is generated by a countable family of lattice seminorms, see [56, Theorem VII.8.2].

Notice that, in an MNVL (X, \mathcal{M}) with countable $\mathcal{M}=\left\{m_{k}\right\}_{k \in \mathbb{N}}$, an equivalent translation-invariant metric $\rho_{\mathcal{M}}$ can be constructed by the formula

$$
\begin{equation*}
\rho_{\mathcal{M}}(x, y)=\sum_{k=1}^{\infty} \frac{m_{k}(x-y)}{2^{k}\left(m_{k}(x-y)+1\right)} \quad(x, y \in X) \tag{4.3.1}
\end{equation*}
$$

Since the function $t \rightarrow \frac{t}{t+1}$ is increasing on $[0, \infty),|x| \leqslant|y|$ in X implies that $\rho_{\mathcal{M}}(x, 0) \leqslant \rho_{\mathcal{M}}(y, 0)$.

A series $\sum_{i=1}^{\infty} x_{i}$ in a multi-normed space (X, \mathcal{M}) is called absolutely m-convergent if $\sum_{i=1}^{\infty} m_{\lambda}\left(x_{i}\right)<\infty$ for all $\lambda \in \Lambda$; and the series is m-convergent, if the sequence $s_{n}:=\sum_{i=1}^{n} x_{i}$ of partial sums is m-convergent.
Lemma 10. A metrizable multi-normed space (X, \mathcal{M}) is m-complete if and only if every absolutely m-convergent series in X is m-convergent.

Proof. (\Rightarrow) Let (X, \mathcal{M}) be sequentially m-complete, with $\mathcal{M}=\left(m_{k}\right)_{k \in \mathbb{N}}$. If the series $\sum_{i=1}^{\infty} x_{i}$ is an absolutely convergent in (X, \mathcal{M}), then for each $k \in \mathbb{N}, \sum_{i=1}^{\infty} m_{k}\left(x_{i}\right)<$ ∞. Given $\varepsilon>0$, there exists N_{ε} such that $\sum_{n=N_{\varepsilon}}^{\infty} m_{k}\left(x_{i}\right)<\varepsilon$. Let $S_{n}=\sum_{i=1}^{n} x_{i}$ the sequence of partial sums of the series $\sum_{i=1}^{\infty} x_{i}$, then for $n \geq m \geq N_{\varepsilon}$ we have

$$
\begin{aligned}
m_{k}\left(S_{n}-S_{m}\right) & =m_{k}\left(\sum_{i=m}^{n} x_{i}\right) \\
& \leq \sum_{i=m}^{n} m_{k}\left(x_{i}\right) \\
& \leq \sum_{i=N_{\varepsilon}}^{\infty} m_{k}\left(x_{i}\right)<\varepsilon
\end{aligned}
$$

But $k \in \mathbb{N}$ is arbitrary, so the sequence $\left(S_{n}\right)_{n \in \mathbb{N}}$ is m-Cauchy and by sequentially m-completeness of $(X, \mathcal{M}),\left(S_{n}\right)_{n \in \mathbb{N}} m$-converges to an element say $x \in X$.
(\Leftarrow) Let $\left(x_{n}\right)$ be an m-Cauchy sequence in X. For $k=1, m_{1}\left(x_{n}-x_{m}\right) \longrightarrow 0$ as $n, m \longrightarrow \infty$.
For each $i \in \mathbb{N}$, there exist $n_{i} \in \mathbb{N}$ such that $m_{1}\left(x_{n}-x_{m}\right)<2^{-i}$ for all $n, m>n_{i}$, and we may choose that $n_{i}^{\prime} s$ so that $n_{i+1}>n_{i}$. Then $\left(x_{n_{i}}\right)_{i=1}^{\infty}$ is a subsequence of $\left(x_{n}\right)$. Letting $y_{1}=x_{n_{1}}$, and $y_{i}=x_{n_{i}}-x_{n_{i-1}}$ for $i \geq 2$ we obtain a series $\sum_{i=1}^{\infty} y_{i}$ whose $i^{\text {th }}$ partial sum is $x_{n_{i}}$. But $m_{1}\left(x_{n_{i}}-x_{n_{i-1}}\right)<2^{-(i-1)}$, so we have $m_{1}\left(y_{i}\right) \leq 2^{-i+1}$ for $i \geq 2$. Thus

$$
\begin{equation*}
\sum_{i=1}^{\infty} m_{1}\left(y_{i}\right) \leq m_{1}\left(y_{1}\right)+\sum_{i=2}^{\infty} 2^{-i+1}=m_{1}\left(y_{1}\right)+1 \tag{4.3.2}
\end{equation*}
$$

Hence, the sequence $\left(y_{i}\right)$ which is a subsequence of $\left(x_{i}\right)$ satisfies the condition in (4.3.2). We repeat the same argument above for $k=2$ to produce a subsequence $\left(z_{i}\right)$
of $\left(y_{i}\right)$ which satisfies that

$$
\sum_{i=1}^{\infty} m_{2}\left(z_{i}\right) \leq m_{2}\left(z_{1}\right)+1<\infty
$$

So by this diagonal argument we obtain a common subsequence $\left(x_{n_{j}}\right)$ of $\left(x_{n}\right)$ such that for each $k \in \mathbb{N}, \sum_{j=1}^{\infty} m_{k}\left(y_{j}\right)<\infty$ where $y_{1}=x_{n_{1}}$ and for $j \geq 2, y_{j}=x_{n_{j}}-x_{n_{j-1}}$. Thus, $\sum_{j=1}^{\infty} y_{j}$ is absolutely convergent series. By hypothesis it follows that the series $\sum_{j=1}^{\infty} y_{j}$ is convergent. That is the sequence $\left(S_{\ell}\right)_{\ell \in \mathbb{N}}$ of partial sums of $\sum_{j=1}^{\infty} y_{j}$ is m convergent in X. That is $S_{\ell}=\sum_{j=1}^{\ell} y_{j}=x_{n_{j}}$, i.e. $\left(x_{n_{j}}\right)$ is m-convergent. Therefore, we have an m-Cauchy sequence $\left(x_{n}\right)$ and an m-convergent subsequence $\left(x_{n_{j}}\right)$ which implies that $\left(x_{n}\right)$ is m-convergent.

The following result extends [36, Theorem 3.2].
Proposition 21. Let (X, \mathcal{M}) be a metrizable m-complete $M N V L$. Then the following conditions are equivalent:
(i) X has a countable topological orthogonal system;
(ii) the um-topology is metrizable;
(iii) X has a quasi interior point.

Proof. Since (X, \mathcal{M}) is metrizable, we may suppose that $\mathcal{M}=\left\{m_{k}\right\}_{k \in \mathbb{N}}$ is countable and directed.
$(i) \Rightarrow(i i)$ It follows directly from Proposition 13. Notice also that a metric $d_{u m}$ of the $u m$-topology can be constructed by the following formula:

$$
\begin{equation*}
d(x, y)=\sum_{k, n=1}^{\infty} \frac{1}{2^{k+n}} \cdot \frac{m_{k}\left(|x-y| \wedge e_{n}\right)}{1+m_{k}\left(|x-y| \wedge e_{n}\right)}, \tag{4.3.3}
\end{equation*}
$$

where $\left\{e_{n}\right\}_{n \in \mathbb{N}}$ is a countable topological orthogonal system for X.
(ii) \Rightarrow (iii) Assume that the $u m$-topology is generated by a metric $d_{u m}$ on X. For each $n \in \mathbb{N}$, let $B_{u m}\left(0, \frac{1}{n}\right)=\left\{x \in X: d_{u m}(x, 0)<\frac{1}{n}\right\}$. Since the um-topology is metrizable, for each $n \in \mathbb{N}$, there are $k_{n} \in \mathbb{N}, 0<u_{n} \in X_{+}$, and $\varepsilon_{n}>0$ such that $V_{\varepsilon_{n}, u_{n}, k_{n}} \subseteq B_{u m}\left(0, \frac{1}{n}\right)$, where

$$
V_{\varepsilon, u_{n}, k}=\left\{x \in X: m_{k}\left(|x| \wedge u_{n}\right)<\varepsilon\right\} .
$$

Notice that $\left\{V_{\varepsilon, u_{n}, k}\right\}_{\varepsilon>0, n, k \in \mathbb{N}}$ is a base at zero of the $u m$-topology on X.
Let $B_{m}(0,1)=\left\{x \in X: d_{m}(x, 0)<1\right\}$, where d_{m} is the metric generating the m topology. There is a zero neighborhood V in the m-topology such that $V \subseteq B_{m}(0,1)$.

Since V is absorbing, for every $n \in \mathbb{N}$, there is $c_{n} \geq 1$ such that $\frac{1}{c_{n}} u_{n} \in V$. Thus $\frac{1}{c_{n}} u_{n} \in V \subseteq B_{m}(0,1)$ for each $n \in \mathbb{N}$. Hence, the sequence $\frac{1}{c_{n}} u_{n}$ is d_{m}-bounded and so it is bounded with respect to the multi-norm $\mathcal{M}=\left\{m_{k}\right\}_{k \in \mathbb{N}}$. Let

$$
\begin{equation*}
e:=\sum_{n=1}^{\infty} \frac{u_{n}}{2^{n} c_{n}} . \tag{4.3.4}
\end{equation*}
$$

We verify the absolute convergence of the above series. Fix $k \in \mathbb{N}$. Since the sequence $\frac{u_{n}}{c_{n}}$ is bounded with respect to \mathcal{M}, there exists $r_{k} \in \mathbb{R}_{+}$such that $m_{k}\left(\frac{u_{n}}{c_{n}}\right) \leq$ $r_{k}<\infty$ for all $n \in \mathbb{N}$. Hence,

$$
\sum_{n=1}^{\infty} m_{k}\left(\frac{u_{n}}{2^{n} c_{n}}\right)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} m_{k}\left(\frac{u_{n}}{c_{n}}\right) \leq r_{k} \sum_{n=1}^{\infty} \frac{1}{2^{n}}<\infty .
$$

Thus, the series $\sum_{n=1}^{\infty} \frac{u_{n}}{2^{n} c_{n}}$ is absolutely m-convergent. Since X is m-complete, Lemma 10 assures that the series $\sum_{n=1}^{\infty} \frac{u_{n}}{2^{n} c_{n}}$ is m-convergent to some $e \in X$.
Now, we show that e is a quasi-interior point in X. Let $\left(x_{\alpha}\right)$ be a net in X_{+}such that $x_{\alpha} \wedge e \xrightarrow{m} 0$. Our aim is to show that $x_{\alpha} \xrightarrow{u m} 0$. Since

$$
x_{\alpha} \wedge u_{n} \leq 2^{n} c_{n} x_{\alpha} \wedge 2^{n} c_{n} e=2^{n} c_{n}\left(x_{\alpha} \wedge e\right) \xrightarrow{m} 0 \quad(\alpha \rightarrow \infty),
$$

we have $x_{\alpha} \wedge u_{n} \xrightarrow{m} 0$ for all $n \in \mathbb{N}$. In particular, $m_{k_{n}}\left(x_{\alpha} \wedge u_{n}\right) \rightarrow 0$. Thus, there exists α_{n} such that $m_{k_{n}}\left(x_{\alpha} \wedge u_{n}\right)<\varepsilon_{n}$ for all $\alpha \geq \alpha_{n}$. That is $x_{\alpha} \in V_{\varepsilon_{n}, u_{n}, k_{n}}$ for all $\alpha \geq \alpha_{n}$, which implies $x_{\alpha} \in B_{u m}\left(0, \frac{1}{n}\right)$. Therefore, $x_{\alpha} \xrightarrow{\mathrm{d}_{\mathrm{um}}} 0$ and so $x_{\alpha} \xrightarrow{u m} 0$. Hence, Corollary 6 implies that e is a quasi interior point
$(i i i) \Rightarrow(i)$ It is trivial.
Similar to [36, Proposition 3.3], we have the following result.
Proposition 22. Let (X, \mathcal{M}) be an m-complete metrizable MNVL. The um-topology is stronger than a metric topology if and only if X has a weak unit.

Proof. The sufficiency follows from 14
For the necessity, suppose that the um-topology is stronger than the topology generated by a metric d. Let e be as in 4.3.4) above. Assume $x \wedge e=0$. Since $e \geq \frac{u_{n}}{2^{n} c_{n}}$ for all $n \in \mathbb{N}$, we get $x \wedge \frac{u_{n}}{2^{n} c_{n}}=0$, and hence $x \wedge u_{n}=0$ for all n. Then $x \in V_{\varepsilon_{n}, u_{n}, k_{n}}$ for all n, and $x \in B\left(0, \frac{1}{n}\right)=\left\{x \in X: d(x, 0)<\frac{1}{n}\right\}$ for each $n \in \mathbb{N}$. So $x=0$, which means that e is a weak unit.

4.4 um-Completeness

A subset A of an MNVL (X, \mathcal{M}) is said to be (sequentially) um-complete if, it is (sequentially) complete in the um-topology. In this section, we characterize umcomplete subsets of X in terms of the Lebesgue and Levi properties.

We begin with the following technical lemma.
Lemma 11. Let (X, \mathcal{M}) be an MNVL, and $A \subseteq X$ be m-bounded, then $\bar{A}^{u m}$ is m-bounded.

Proof. Given $\lambda \in \Lambda$, then $M_{\lambda}=\sup _{a \in A} m_{\lambda}(a)<\infty$. Let $x \in \bar{A}^{u m}$, then there is a net $\left(a_{\alpha}\right)$ in A such that $a_{\alpha} \xrightarrow{u m} x$. So $m_{\lambda}\left(\left|a_{\alpha}-x\right| \wedge u\right) \rightarrow 0$ for any $u \in X_{+}$. In particular,

$$
\begin{aligned}
& m_{\lambda}(|x|)=m_{\lambda}(|x| \wedge|x|)=m_{\lambda}\left(\left|x-a_{\alpha}+a_{\alpha}\right| \wedge|x|\right) \leq \\
& \quad m_{\lambda}\left(\left|x-a_{\alpha}\right| \wedge|x|\right)+\sup _{a \in A} m_{\lambda}(a)=m_{\lambda}\left(\left|x-a_{\alpha}\right| \wedge|x|\right)+M_{\lambda} .
\end{aligned}
$$

Letting $\alpha \rightarrow \infty$, we get $m_{\lambda}(x)=m_{\lambda}(|x|) \leq M_{\lambda}<\infty$ for all $x \in \bar{A}^{u m}$.

The following theorem and its proof should be compared with [31, Theorem 4.7].
Theorem 14. Let (X, \mathcal{M}) be an $M N V L$ and let A be an m-bounded and um-closed subset in X. If X has the Lebesgue and Levi properties, then A is um-complete.

Proof. Suppose that $\left(x_{\alpha}\right)$ is um-Cauchy in A, then, without lost of generality, we may assume that $\left(x_{\alpha}\right)$ consists of positive elements.
Case (1): If X has a weak unit e, then e is a quasi-interior point, by the Lebesgue property of X and Proposition 18. Note that, for each $k \in \mathbb{N}$,

$$
\left|x_{\alpha} \wedge k e-x_{\beta} \wedge k e\right| \leq\left|x_{\alpha}-x_{\beta}\right| \wedge k e,
$$

hence the net $\left(x_{\alpha} \wedge k e\right)_{\alpha}$ is m-Cauchy in X. Now, [3, Theorem 6.63] assures that X is m-complete, and so the net $\left(x_{\alpha} \wedge k e\right)_{\alpha}$ is m-convergent to some $y_{k} \in X$. Given $\lambda \in \Lambda$. Then

$$
\begin{aligned}
m_{\lambda}\left(y_{k}\right) & =m_{\lambda}\left(y_{k}-x_{\alpha} \wedge k e+x_{\alpha} \wedge k e\right) \\
& \leq m_{\lambda}\left(y_{k}-x_{\alpha} \wedge k e\right)+m_{\lambda}\left(x_{\alpha}\right) \\
& \leq m_{\lambda}\left(y_{k}-x_{\alpha} \wedge k e\right)+\sup _{\alpha} m_{\lambda}\left(x_{\alpha}\right) .
\end{aligned}
$$

But $x_{\alpha} \wedge k e \xrightarrow{m} y_{k}$, so for all $\varepsilon>0$, there exist α^{\prime} such that $\alpha \geq \alpha^{\prime}$ implies that $m_{\lambda}\left(y_{k}-x_{\alpha} \wedge k e\right)<\varepsilon$. Hence for all $\varepsilon>0, m_{\lambda}\left(y_{k}\right) \leq \varepsilon+\sup m_{\lambda}\left(x_{\alpha}\right)$ that is $m_{\lambda}\left(y_{k}\right) \leq \sup m_{\lambda}\left(x_{\alpha}\right)<\infty$ by m-boundedness of A. Hence $\left(y_{k}\right)^{a}$ is m-bounded in X. Note also that if $k_{1} \leq k_{2}$, then $x_{\alpha} \wedge k_{1} e \leq x_{\alpha} \wedge k_{2} e$, and hence $y_{k_{1}} \leq y_{k_{2}}$ by montoncity of $m_{\lambda}^{\prime} s$.
Thus $\left(y_{k}\right)$ is m-bounded and increasing in X, but X has the Lebesgue and Levi properties, so by [3, Theorem 6.63], $\left(y_{k}\right)$ is m-convergent to some $y \in X$.

It remains to show that y is the $u m$-limit of $\left(x_{\alpha}\right)$. Given $\lambda \in \Lambda$. Note that, by Birkhoff's inequality,

$$
\left|x_{\alpha} \wedge k e-x_{\beta} \wedge k e\right| \wedge e \leq\left|x_{\alpha}-x_{\beta}\right| \wedge e .
$$

Thus

$$
m_{\lambda}\left(\left|x_{\alpha} \wedge k e-x_{\beta} \wedge k e\right| \wedge e\right) \leq m_{\lambda}\left(\left|x_{\alpha}-x_{\beta}\right| \wedge e\right) .
$$

Taking limit over β, we get

$$
m_{\lambda}\left(\left|x_{\alpha} \wedge k e-y_{k}\right| \wedge e\right) \leq \lim _{\beta} m_{\lambda}\left(\left|x_{\alpha}-x_{\beta}\right| \wedge e\right)
$$

Now taking limit over k, we have

$$
m_{\lambda}\left(\left|x_{\alpha}-y\right| \wedge e\right) \leq \lim _{\beta} m_{\lambda}\left(\left|x_{\alpha}-x_{\beta}\right| \wedge e\right) .
$$

Finally, as $\left(x_{\alpha}\right)$ is um-Cauchy, taking limit over α, yields

$$
\lim _{\alpha} m_{\lambda}\left(\left|x_{\alpha}-y\right| \wedge e\right) \leq \lim _{\alpha, \beta} m_{\lambda}\left(\left|x_{\alpha}-x_{\beta}\right| \wedge e\right)=0 .
$$

Thus, $x_{\alpha} \xrightarrow{u m} y$ and, since A is $u m$-closed, $y \in A$.

Case (2): If X has no weak unit. Let $\left\{e_{\gamma}\right\}_{\gamma \in \Gamma}$ be a maximal orthogonal system in X. Let Δ be the collection of all finite subsets of Γ. For each $\delta \in \Delta, \delta=$ $\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right\}$, consider the band B_{δ} generated by $\left\{e_{\gamma_{1}}, e_{\gamma_{1}}, \ldots, e_{\gamma_{n}}\right\}$. It follows from [3. Theorem 3.24] that B_{δ} is a projection band. Then B_{δ} is an m-complete MNVL in its own right. Moreover, by Lemma 15, the m-topology restricted to B_{δ} possesses the Lebesgue and Levi properties. Note that B_{δ} has a weak unit, namely $e_{\gamma_{1}}+e_{\gamma_{2}}+\cdots+e_{\gamma_{n}}$. Let P_{δ} be the band projection corresponding to B_{δ}.
Claim 1: We want to show that for any $x \in X_{+}$, we have that $P_{\delta} x \uparrow x$. Now since $0 \leq P_{\delta} \leq I, P_{\delta} x \leq x$ for all $\delta \in A$. If $0 \leq z \leq x$ and $P_{\delta} x \leq z$ for all $\delta \in \Delta$, then $-P_{\delta} x \geq-z$ or $-z \leq-P_{\delta} x$ which implies that $0 \leq x-z \leq x-P_{\delta} x$. Note $x-P_{\delta} x \in B_{\delta}^{d}$ for all $\delta \in A$, since B_{δ}^{d} is an ideal, we get that $x-z \in B_{\delta}^{d}$. In particular, $x-z \in B_{e_{\gamma}}^{d}$ for all $\gamma \in \Gamma$, so $(x-z) \wedge e_{\gamma}=0$ for all $\gamma \in \Gamma$, then by maximality we get that, $x-z=0$, and so $x=z$.
For $\delta \in \Delta$, since $\left(x_{\alpha}\right)$ is um-Cauchy in X and P_{δ} is a band projection, and so lattice homomorphism, then $\left|P_{x_{\alpha}}-P_{x_{\beta}}\right| \wedge b=p\left|x_{\alpha}-x_{\beta}\right| \wedge b \leq\left|x_{\alpha}-x_{\beta}\right| \wedge b \xrightarrow{m} 0$, thus $\left|P_{x_{\alpha}}-P_{x_{\beta}}\right| \wedge b \xrightarrow{m} 0$, then $P_{\delta} x_{\alpha}$ is um-Cauchy in B_{δ}. Lemma 11 assures that ${\overline{P_{\delta}}(A)}^{u m}$ is m-bounded in B_{δ}. Thus, by Case (1), there is $z_{\delta} \in B_{\delta}$ such that

$$
P_{\delta} x_{\alpha} \xrightarrow{u m} z_{\delta} \geq 0 \text { in } B_{\delta} \quad(\alpha \rightarrow \infty) .
$$

Since B_{δ} is a projection band, we have

$$
\begin{equation*}
P_{\delta} x_{\alpha} \xrightarrow{u m} z_{\delta} \geq 0 \text { in } X \quad(\text { over } \alpha) . \tag{4.4.1}
\end{equation*}
$$

Note that, $0 \leq z_{\delta} \uparrow$, moreover, $\left(z_{\delta}\right)$ is m-bounded. Indeed, given $\lambda \in \Lambda$, then

$$
\begin{aligned}
m_{\lambda}\left(z_{\delta}\right) & =m_{\lambda}\left(\left|z_{\delta}\right| \wedge\left|z_{\delta}\right|\right) \\
& =m_{\lambda}\left(\left|z_{\delta}-P_{\delta} x_{\alpha}+P_{\delta} x_{\alpha}\right| \wedge z_{\delta}\right) \\
& \leq m_{\lambda}\left(\left|z_{\delta}-P_{\delta} x_{\alpha}\right| \wedge z_{\delta}\right)+m_{\lambda}\left(P_{\delta} x_{\alpha} \wedge z_{\delta}\right) \\
& \leq m_{\lambda}\left(\left|z_{\delta}-P_{\delta} x_{\alpha}\right| \wedge z_{\delta}\right)+m_{\lambda}\left(P_{\delta} x_{\alpha}\right) \\
& \leq m_{\lambda}\left(\left|z_{\delta}-P_{\delta} x_{\alpha}\right| \wedge z_{\delta}\right)+m_{\lambda}\left(x_{\alpha}\right) \\
& \leq m_{\lambda}\left(\left|z_{\delta}-P_{\delta} x_{\alpha}\right| \wedge z_{\delta}\right)+k_{\lambda} .
\end{aligned}
$$

Taking the limit over α, we get $m_{\lambda}\left(z_{\delta}\right) \leq k_{\lambda}<\infty$ where $m_{\lambda}\left(x_{\alpha}\right) \leq k_{\lambda}<\infty$ for all α. Thus, z_{δ} is m-bounded in X.

Since X has the Lebesgue and Levi properties, it follows from [3. Theorem 6.63], that there is $z \in X_{+}$such that

$$
\begin{equation*}
z_{\delta} \xrightarrow{m} z, \text { and so } z_{\delta} \uparrow z . \tag{4.4.2}
\end{equation*}
$$

It follows also from (4.4.2) that $z_{\delta} \xrightarrow{u m} z$.
Our aim is to show that $x_{\alpha} \xrightarrow{u m} z$. Let $u \in X_{+}$, we verify $\left|x_{\alpha}-z\right| \wedge u \xrightarrow{m} 0$. Let B_{u} be the band generated by u and P_{u} be the corresponding band projection. As above, ($P_{u} x_{\alpha}$) is um-Cauchy in B_{u} and so there is $0 \leq x_{u} \in B_{u}$ such that

$$
P_{u} x_{\alpha} \xrightarrow{u m} x_{u} \text { over } \alpha, \text { in } B_{u}
$$

So,

$$
\begin{equation*}
P_{u} x_{\alpha} \xrightarrow{u m} x_{u} \text { in } X . \tag{4.4.3}
\end{equation*}
$$

Note that $\left|x_{\alpha}-x_{u}\right| \wedge u \in B$ for all α. Hence,

$$
\begin{aligned}
\left|x_{\alpha}-x_{u}\right| \wedge u & =P_{u}\left(\left|x_{\alpha}-x_{u}\right| \wedge u\right) \\
& =\left|P_{u} x_{\alpha}-x_{u}\right| \wedge u \xrightarrow{m} 0 \text { in } X \text { by (4.4.3). }
\end{aligned}
$$

So,

$$
\begin{equation*}
\left|x_{\alpha}-x_{u}\right| \wedge u \xrightarrow{m} 0 \text { over } \alpha \text { in } X . \tag{4.4.4}
\end{equation*}
$$

Given $\delta \in \Delta$;

$$
\begin{aligned}
\left|P_{\delta} x_{\alpha}-P_{\delta} x_{u}\right| \wedge u & =P_{\delta}\left(\left|x_{\alpha}-x_{u}\right|\right) \wedge u \\
& \leq\left|x_{\alpha}-x_{u}\right| \wedge u \xrightarrow{m} 0 \text { over } \alpha \text { in } X \text { by (4.4.4). }
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\left|P_{\delta} x_{\alpha}-P_{\delta} x_{u}\right| \wedge u \xrightarrow{m} 0 \text { over } \alpha \text { in } X . \tag{4.4.5}
\end{equation*}
$$

But $P_{\delta} x_{\alpha} \xrightarrow{u m} z_{\delta}$ in X by (4.4.1).
In particular,

$$
\begin{equation*}
\left|P_{\delta} x_{\alpha}-z_{\delta}\right| \wedge u \xrightarrow{m} 0 \text { over } \alpha \text { in } X . \tag{4.4.6}
\end{equation*}
$$

Since

$$
\left|z_{\delta}-P_{\delta} x_{u}\right| \wedge u \leq\left|z_{\delta}-P_{\delta} x_{\alpha}\right| \wedge u+\left|P_{\delta} x_{\alpha}-P_{\delta} x_{u}\right| \wedge u
$$

Taking limit over α we get from (4.4.5) and (4.4.6) that

$$
\begin{equation*}
\left|z_{\delta}-P_{\delta} x_{u}\right| \wedge u=0 \tag{4.4.7}
\end{equation*}
$$

Taking limit over δ in (4.4.7), it follows from (4.4.2) and Claim 1 that

$$
\left|z-x_{u}\right| \wedge u=0
$$

Note that $\left|z-x_{u}\right| \wedge u \in B_{u}$ and so

$$
0=\left|z-x_{u}\right| \wedge u=P_{u}\left(\left|z-x_{u}\right| \wedge u\right)=\left|P_{u} z-x_{u}\right| \wedge u
$$

Since u is a weak unit in B_{u},

$$
\begin{equation*}
P_{u} z=x_{u} . \tag{4.4.8}
\end{equation*}
$$

Now,

$$
\begin{aligned}
\left|x_{\alpha}-z\right| \wedge u & =P_{u}\left(\left|x_{\alpha}-z\right| \wedge u\right) \\
& =\left|P_{u} x_{\alpha}-P_{u} z\right| \wedge u \\
\text { by (4.4.8) } & =\left|P_{u} x_{\alpha}-x_{u}\right| \wedge u \xrightarrow{m} 0 \text { over } \alpha \text { by (4.4.3). }
\end{aligned}
$$

We get that

$$
\left|x_{\alpha}-z\right| \wedge u \xrightarrow{m} 0
$$

Since, $u \in X_{+}$was arbitrary, we get $x_{\alpha} \xrightarrow{u m} z$. Since $\left(x_{\alpha}\right)$ in A and A is $u m$-closed, we get that $z \in A$ and so A is $u m$-complete.

Lemma 12. Any monotone m-convergent net in an $M N V L(X, \mathcal{M})$ o-converges to its m-limit.

Proof. It is enough to show that if $(X, \mathcal{M}) \ni x_{\alpha} \uparrow$ and $x_{\alpha} \xrightarrow{m} u$, then $x_{\alpha} \uparrow x$. Fix arbitrary α. Then $x_{\beta}-x_{\alpha} \in X_{+}$for all $\beta \geq \alpha$. So, taking the limit over β we get $x_{\beta}-x_{\alpha} \xrightarrow{m} x-x_{\alpha}$, hence $x-x_{\alpha} \geq 0$ and so $x \geq x_{\alpha}$. But α is arbitrary. Thus $x \geq x_{\alpha}$ for all α, that is x is an upper bound for $\left(x_{\alpha}\right)$. We show x is the least upper bound. Suppose that $y \geq x_{\alpha}$ for all α, then $y-x_{\alpha} \geq 0$ for all α, and since $y-x_{\alpha} \xrightarrow{m} y-x$ over $\alpha, y-x \geq 0$ or $y \geq x$. Therefore $x_{\alpha} \uparrow x$.

Lemma 13. If $\left(x_{\alpha}\right)$ is an increasing net in an $\operatorname{MNVL}(X, \mathcal{M})$, and $x_{\alpha} \xrightarrow{u m} x$, then $x_{\alpha} \uparrow x$ and $x_{\alpha} \xrightarrow{m} x$.

Proof. Since lattice operations are $u m$-continuous, the same argument in Lemma 12 applies here as well and we get that $x_{\alpha} \uparrow x$. Thus $\left(x_{\alpha}\right)$ is order bounded and so um-convergence agrees with m-convergence.

Lemma 14. Let (X, \mathcal{M}) be an $M N V L$ that has the pre-Lebesgue property. Let $\left(x_{n}\right)$ be a positive disjoint sequence such that $\left(x_{n}\right)$ is not m-null. Put $s_{n}:=\sum_{i=1}^{n} x_{i}$. then $\left(s_{n}\right)$ is um-Cauchy but not um-convergent.

Proof. The sequence $\left(s_{n}\right)$ is monotone increasing, and since $\left(x_{n}\right)$ is not m-null, we get that $\left(s_{n}\right)$ does not m-converge, otherwise s_{n} and s_{n-1} also m-converge to some x, consequently $x_{n}=s_{n}-s_{n-1} \xrightarrow{m} 0$ which contradicts the hypothesis. Hence by Lemma $13 s_{n}$ is not um-convergent. To show that $\left(s_{n}\right)$ is um-Cauchy, fix any $\varepsilon>0$, and a non-zero $u \in X_{+}$. Since $\left(x_{i}\right)$ is a positive disjoint sequence, we have $s_{n} \wedge u=\sum_{i=1}^{n}\left(x_{i} \wedge u\right)$ by Theorem 6.5 in [60]. The sequence $\left(s_{n} \wedge u\right)$ is increasing and order bounded by u, hence is m-Cauchy by Theorem 3.22 in [3]. Fix $\lambda \in \Lambda$, we can find $n_{\varepsilon_{\lambda}}$ such that $m_{\lambda}\left(s_{m} \wedge u-s_{n} \wedge u\right)<\varepsilon$ for all $m \geq n \geq n_{\varepsilon_{\lambda}}$. Observe that

$$
\begin{aligned}
s_{m} \wedge u-s_{n} \wedge u & =\left(\sum_{i=1}^{m} x_{i}\right) \wedge u-\left(\sum_{i=1}^{n} x_{i}\right) \wedge u \\
& =\sum_{i=1}^{m}\left(x_{i} \wedge u\right)-\sum_{i=1}^{n}\left(x_{i} \wedge u\right) \\
& =\sum_{i=n+1}^{m}\left(x_{i} \wedge u\right)=\left(\sum_{i=n+1}^{m} x_{i}\right) \wedge u \\
& =\left(s_{m}-s_{n}\right) \wedge u=\left|s_{m}-s_{n}\right| \wedge u .
\end{aligned}
$$

It follows that $m_{\lambda}\left(\left|s_{m}-s_{n}\right| \wedge u\right)<\varepsilon$ for all $m \geq n \geq n_{\varepsilon_{\lambda}}$. But λ was fixed arbitrary. Hence $\left(s_{n}\right)$ is $u m$-Cauchy.

Let (X, \mathcal{M}) be a finite dimensional m-complete $M N V L$, then by Theorem 5.4 in [4], it is um-complete.
On the contrary of [[36], Proposition 6.2] we provide an example of an m-complete $M N V L(X, \mathcal{M})$ satisfying the Lebesgue property such that it is um-complete and $\operatorname{dim} X=\infty$.

Example 6. Let $X=s$ and $\mathcal{M}=\left(m_{j}\right)_{j \in \mathbb{N}}$ such that $m_{j}\left(\left(x_{n}\right)\right):=\left|x_{j}\right|$ where $\left(x_{n}\right) \in \ell_{\infty}$.
First we show (X, \mathcal{M}) is m-complete. Let $\left(x^{\alpha}\right)$ be an m-Cauchy net in (X, \mathcal{M}), $x^{\alpha}=\left(x_{n}^{\alpha}\right)_{n \in \mathbb{N}}$, so, $x^{\alpha}-x^{\beta} \xrightarrow{m} 0$ over α, β. For $j \in \mathbb{N}$ we have $m_{j}\left(x^{\alpha}-x^{\beta}\right) \rightarrow 0$ in \mathbb{R} over α, β. That is, for $j \in \mathbb{N},\left|x_{j}^{\alpha}-x_{j}^{\beta}\right| \rightarrow 0$ in \mathbb{R} over α, β. That is, for each $j \in \mathbb{N}$, the net $\left(x_{j}^{\alpha}\right)$ is Cauchy in \mathbb{R} and so there is $x_{j} \in \mathbb{R}$ such that $x_{j}^{\alpha} \rightarrow x_{j}$ over α. Put $x:=\left(x_{j}\right)_{j \in \mathbb{N}}$, then $x \in$ s. Since for each $j \in \mathbb{N} x_{j}^{\alpha} \rightarrow x_{j}$ over α in \mathbb{R}, this means that $m_{j}\left(x^{\alpha}-x\right) \rightarrow 0$ in \mathbb{R}. Hence, $x^{\alpha} \xrightarrow{m} x$. Therefore, (X, \mathcal{M}) is m-complete.

Second, (X, \mathcal{M}) has the Lebesgue property. Assume $x^{\alpha} \downarrow 0$, our aim is to show that $x^{\alpha} \xrightarrow{m} 0$. We know $x^{\alpha}=\left(x_{n}^{\alpha}\right)_{n \in \mathbb{N}}$. For each $j \in \mathbb{N} ; x^{\alpha} \downarrow 0$, implies that $x_{j}^{\alpha} \downarrow 0$ in \mathbb{R}. That is $m_{j}\left(x^{\alpha}\right) \downarrow 0$ in \mathbb{R}. Thus, $x^{\alpha} \xrightarrow{m} 0$.

Finally, we show that (X, \mathcal{M}) is um-complete. Suppose $\left(x^{\alpha}\right)$ is um-Cauchy net. Then for each $u \in X_{+}$we have $\left|x^{\alpha}-x^{\beta}\right| \wedge u \xrightarrow{m} 0$. Now, $u=\left(u_{n}\right)_{n \in \mathbb{N}}, x^{\alpha}=\left(x_{n}^{\alpha}\right)_{n \in \mathbb{N}}$. Let $j \in \mathbb{N}$ then $m_{j}\left(\left|x^{\alpha}-x^{\beta}\right| \wedge u\right) \rightarrow 0$ in \mathbb{R} over α, β. if and only if $\left|x_{j}^{\alpha}-x_{j}^{\beta}\right| \wedge u_{j} \rightarrow 0$ in \mathbb{R} if and only if $\Leftrightarrow\left|x_{j}^{\alpha}-x_{j}^{\beta}\right| \rightarrow 0$ in \mathbb{R} over α, β.

Thus, $\left(x_{j}^{\alpha}\right)$ is Cauchy in \mathbb{R} and so there is $x_{j} \in \mathbb{R}$ such that $x_{j}^{\alpha} \rightarrow x_{j}$ in \mathbb{R} over α. Let $x=\left(x_{j}\right)_{j \in \mathbb{N}} \in s$, then clearly, $x^{\alpha} \xrightarrow{u m} x$.
Lemma 15. Let (X, \mathcal{M}) be an m-complete $M N V L$ which satisfies Lebesgue and Levi properties. Let B be a band in X. Then B is an m-complete MNVL in its own right which in addition satisfies Lebesgue and Levi properties.

Proof. Let $\left(x_{\alpha}\right)$ be an m-Cauchy net in B, then $\left(x_{\alpha}\right)$ is an m-Cauchy in X. Since X is m-complete, there is $x \in X$ such that $x_{\alpha} \xrightarrow{m} x$, but by [3, Theorem 2.21] B is m-closed and so $x \in B$. Thus, B is m-complete.
Assume $x_{\alpha} \downarrow 0$ in B. Since B is regular, see [30, Lemma 2.5], we have $x_{\alpha} \downarrow 0$ in X. But X satisfies Lebesgue property so $x_{\alpha} \xrightarrow{m} 0$, since $\left(x_{\alpha}\right)$ in $B, x_{\alpha} \xrightarrow{m} 0$ in B. Hence, B satisfies Lebesgue property.
Suppose $0 \leq x_{\alpha} \uparrow$ in B, then $0 \leq x_{\alpha} \uparrow$ in X. Since X has Levi property, there is $x \in X$ such that $0 \leq x_{\alpha} \uparrow x$ in X, i.e. $x_{\alpha} \xrightarrow{o} x$, but $\left(x_{\alpha}\right)$ in B and B is order closed. Hence, $x \in B$ and so $x \geq x_{\alpha}$ for all α. If $0 \leq z \leq x$ and $x_{\alpha} \uparrow z$ in B, then by regularity of B in X we have $x_{\alpha} \uparrow z$ in X, which implies $z=x$.

Next theorem generalizes Theorem 6.4 in [36].
Theorem 15. Let (X, \mathcal{M}) be an m-complete $M N V L$ with the pre-Lebesgue property. Then X has the Lebesgue and Levi properties if and only if every m-bounded umclosed subset of X is um-complete.

Proof. The necessity follows directly from Theorem 14 .
For the sufficiency, first notice that, in an m-complete MNVL, the pre-Lebesgue and Lebesgue properties coincide [3, Theorem 3.24].

If X does not have the Levi property then, by [3, Theorem 6.63], there is a disjoint sequence $\left(x_{n}\right)$ in X_{+}, which is not m-null, such that its sequence of partial sums $s_{n}=\sum_{j=1}^{n} x_{j}$ is m-bounded. Let $A=\overline{\left\{s_{n}: n \in \mathbb{N}\right\}}{ }^{u m}$. By Lemma 11 , we have that A is m-bounded. By Lemma 14, the sequence $\left(s_{n}\right)$ is $u m$-Cauchy in X and so in A, in contrary with that the sequence $s_{n+1}-s_{n}=x_{n+1}$ is not m-null.
Theorem 16. Let (X, \mathcal{M}) be an m-complete metrizable $M N V L$, and let A be an m bounded sequentially um-closed subset of X. If X has the σ-Lebesgue and σ-Levi properties then A is sequentially um-complete. Moreover, the converse holds if, in addition, X is Dedekind complete.

Proof. Suppose $\mathcal{M}=\left\{m_{k}\right\}_{k \in \mathbb{N}}$. Let $0 \leq x_{n}$ be a $u m$-Cauchy sequence in A. Let $e:=\sum_{n=1}^{\infty} \frac{x_{n}}{2^{n}}$. For $k \in \mathbb{N}$,

$$
\sum_{n=1}^{\infty} m_{k}\left(\frac{x_{n}}{2^{n}}\right)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} m_{k}\left(x_{n}\right) \leq c_{k} \sum_{n=1}^{\infty} \frac{1}{2^{n}}<\infty
$$

where $m_{k}(a) \leq c_{k}<\infty$ for all $a \in A$. Since $\sum_{n=1}^{\infty} \frac{x_{n}}{2^{n}}$ is absolutely m-convergent, by Lemma 10, $\sum_{n=1}^{\infty} \frac{x_{n}}{2^{n}}$ is m-convergent in X. Note that, $x_{n} \leq 2^{n} e$, so $x_{n} \in B_{e}$ for
all $n \in \mathbb{N}$. Since X has the Levi property, X is σ-order complete (see [3, Definition 3.16]). Thus B_{e} is a projection band. Also e is a weak unit in B_{e}. Then, by the same argument as in Theorem 14, we get that there is $x \in B_{e}$ such that $x_{n} \xrightarrow{u m} x$ in B_{e} and so $x_{n} \xrightarrow{u m} x$ in X. Since A is sequentially $u m$-closed, we get $x \in A$. Thus A is sequentially um-complete.

The converse follows from Proposition 16 .

$4.5 u m$-Compact sets

A subset A of an MNVL (X, \mathcal{M}) is said to be (sequentially) um-compact, if it is (sequentially) compact in the um-topology. In this section, we characterize um-compact subsets of X in terms of the Lebesgue and Levi properties. We begin with the following result which shows that um-compactness can be "localized" under certain conditions.

Theorem 17. Let (X, \mathcal{M}) be an MNVL possessing the Lebesgue property. Let $\left\{e_{\gamma}\right\}_{\gamma \in \Gamma}$ be a maximal orthogonal system. For each $\gamma \in \Gamma$, let B_{γ} be the band generated by e_{γ}, and P_{γ} be the corresponding band projection onto B_{γ}. Then $x_{\alpha} \xrightarrow{u m} 0$ in X if and only if $P_{\gamma} x_{\alpha} \xrightarrow{u m} 0$ in B_{γ} for all $\gamma \in \Gamma$.

Proof. For the forward implication, we assume that $x_{\alpha} \xrightarrow{u m} 0$ in X. Let $b \in\left(B_{\gamma}\right)_{+}$. Then

$$
\left|P_{\gamma} x_{\alpha}\right| \wedge b=P_{\gamma}\left|x_{\alpha}\right| \wedge b \leq\left|x_{\alpha}\right| \wedge b \xrightarrow{m} 0
$$

that implies $P_{\gamma} x_{\alpha} \xrightarrow{u m} 0$ in B_{γ}.
For the backward implication, without lost of generality, we may assume that $x_{\alpha} \geq 0$ for all α. Let $u \in X_{+}$. Our aim is to show that $x_{\alpha} \wedge u \xrightarrow{m} 0$. It is known that $x_{\alpha} \wedge u=\sum_{\gamma \in \Gamma} P_{\gamma}\left(x_{\alpha} \wedge u\right)$. Let F be a finite subset of Γ. Then

$$
\begin{equation*}
x_{\alpha} \wedge u=\sum_{\gamma \in F} P_{\gamma}\left(x_{\alpha} \wedge u\right)+\sum_{\gamma \in \Gamma \backslash F} P_{\gamma}\left(x_{\alpha} \wedge u\right) . \tag{4.5.1}
\end{equation*}
$$

Note

$$
\begin{equation*}
\sum_{\gamma \in F} P_{\gamma}\left(x_{\alpha} \wedge u\right)=\sum_{\gamma \in F} P_{\gamma} x_{\alpha} \wedge P_{\gamma} u \xrightarrow{m} 0 . \tag{4.5.2}
\end{equation*}
$$

We have to control the second term in (4.5.1).

$$
\begin{equation*}
\sum_{\gamma \in \Gamma \backslash F} P_{\gamma}\left(x_{\alpha} \wedge u\right) \leq \frac{1}{n} \sum_{\gamma \in F} P_{\gamma} u+\sum_{\gamma \in \Gamma \backslash F} P_{\gamma} u, \tag{4.5.3}
\end{equation*}
$$

where $n \in \mathbb{N}$. Let $\mathscr{F}(\Gamma)$ be the collection of all finite subsets of Γ. Let $\Delta=\mathscr{F}(\Gamma) \times \mathbb{N}$. For each $\delta=(F, n)$, put

$$
y_{\delta}=\frac{1}{n} \sum_{\gamma \in F} P_{\gamma} u+\sum_{\gamma \in \Gamma \backslash F} P_{\gamma} u .
$$

We show that $\left(y_{\delta}\right)$ is decreasing. Let $\delta_{1} \leq \delta_{2}$ then $\delta_{1}=\left(F_{1}, n_{1}\right), \delta_{2}=\left(F_{2}, n_{2}\right)$. Then $\delta_{1} \leq \delta_{2}$ if and only if $F_{1} \subseteq F_{2}$ and $n_{1} \leq n_{2}$. But $n_{1} \leq n_{2}$ if and only if $\frac{1}{n_{1}} \geq \frac{1}{n_{2}}$. So,

$$
\begin{equation*}
\frac{1}{n_{1}} \sum_{\gamma \in F_{1}} P_{\gamma} u \geq \frac{1}{n_{2}} \sum_{\gamma \in F_{1}} P_{\gamma} u \tag{4.5.4}
\end{equation*}
$$

Note also

$$
\begin{equation*}
\frac{1}{n_{2}} \sum_{\gamma \in F_{2}} P_{\gamma} u=\frac{1}{n_{2}} \sum_{\gamma \in F_{1}} P_{\gamma} u+\frac{1}{n_{2}} \sum_{\gamma \in F_{2} \backslash F_{1}} P_{\gamma} u . \tag{4.5.5}
\end{equation*}
$$

Since $F_{1} \subseteq F_{2}, \Gamma \backslash F_{1} \supseteq \Gamma \backslash F_{2}$ and hence, $\sum_{\gamma \in \Gamma \backslash F_{1}} P_{\gamma} u \geq \sum_{\gamma \in \Gamma \backslash F_{2}} P_{\gamma} u$. Note, that

$$
\begin{equation*}
\sum_{\gamma \in \Gamma \backslash F_{1}} P_{\gamma} u=\sum_{\gamma \in F_{2} \backslash F_{1}} P_{\gamma} u+\sum_{\gamma \in \Gamma \backslash F_{2}} P_{\gamma} u . \tag{4.5.6}
\end{equation*}
$$

Now,

$$
\begin{equation*}
\sum_{\gamma \in F_{2} \backslash F_{1}} P_{\gamma} u \geq \frac{1}{n_{2}} \sum_{\gamma \in F_{2} \backslash F_{1}} P_{\gamma} u . \tag{4.5.7}
\end{equation*}
$$

Combining (4.5.6) and 4.5.7), we get

$$
\begin{equation*}
\sum_{\gamma \in \Gamma \backslash F_{1}} P_{\gamma} u \geq \sum_{\gamma \in \Gamma \backslash F_{2}} P_{\gamma} u+\frac{1}{n_{2}} \sum_{\gamma \in F_{2} \backslash F_{1}} P_{\gamma} u . \tag{4.5.8}
\end{equation*}
$$

Adding (4.5.4) and (4.5.8), we get

$$
\frac{1}{n_{1}} \sum_{\gamma \in F_{1}} P_{\gamma} u+\sum_{\gamma \in \Gamma \backslash F_{1}} P_{\gamma} u \geq \frac{1}{n_{2}} \sum_{\gamma \in F_{1}} P_{\gamma} u+\frac{1}{n_{2}} \sum_{\gamma \in F_{2} \backslash F_{1}} P_{\gamma} u+\sum_{\gamma \in \Gamma \backslash F_{2}} P_{\gamma} u .
$$

It follows from (4.5.5), that

$$
\frac{1}{n_{1}} \sum_{\gamma \in F_{1}} P_{\gamma} u+\sum_{\gamma \in \Gamma \backslash F_{1}} P_{\gamma} u \geq \frac{1}{n_{2}} \sum_{\gamma \in F_{2}} P_{\gamma} u+\sum_{\gamma \in \Gamma \backslash F_{2}} P_{\gamma} u,
$$

that is $y_{\delta_{1}} \geq y_{\delta_{2}}$. Next, we show $y_{\delta} \downarrow 0$. Assume $0 \leq x \leq y_{\delta}$ for all $\delta \in \Delta$. Let $\gamma_{0} \in \Gamma$ be arbitrary and fix it. Let $F=\left\{\gamma_{0}\right\}, n \in \mathbb{N}$, then

$$
0 \leq x \leq \frac{1}{n} P_{\gamma_{0}} u+\sum_{\gamma \in \Gamma \backslash\left\{\gamma_{0}\right\}} P_{\gamma} u .
$$

We apply $P_{\gamma_{0}}$ for the expression above, so $0 \leq P_{\gamma_{0}} x \leq \frac{1}{n} P_{\gamma_{0}} u$ for all $n \in \mathbb{N}$, and so $P_{\gamma_{0}} x=0$. Since $\gamma_{0} \in \Gamma$ was chosen arbitrary, we get $P_{\gamma_{0}} x=0$ for all $\gamma \in \Gamma$. Hence, $x=0$ and so $y_{\delta} \downarrow 0$. Since (X, \mathcal{M}) has the Lebesgue property, we get $y_{\delta} \xrightarrow{m} 0$. Therefore, by (4.5.3),

$$
\begin{equation*}
\sum_{\gamma \in \Gamma \backslash F} P_{\gamma}\left(x_{\alpha} \wedge u\right) \leq y_{\delta} \xrightarrow{m} 0 . \tag{4.5.9}
\end{equation*}
$$

Hence (4.5.1), 4.5.2, and 4.5.9) imply $x_{\alpha} \wedge u \xrightarrow{m} 0$.

The next theorem and its proof should be compared with [36, Theorem 7.1].

Theorem 18. Let (X, \mathcal{M}) be an MNVL possessing the Lebesgue and Levi properties. Let $\left\{e_{\gamma}\right\}_{\gamma \in \Gamma}$ be a maximal orthogonal system. Let A be a um-closed m-bounded subset of X. Then A is um-compact if and only if $P_{\gamma}(A)$ is um-compact in B_{γ} for each $\gamma \in \Gamma$, where B_{γ} is the band generated by e_{γ} and P_{γ} is the band projection corresponding to B_{γ}.

Proof. Suppose A is $u m$-compact. Since band projections are $u m$-continuous, i.e. continuous with respect to $u m$-topology and a continuous image of a compact set is compact, we conclude that $P_{\gamma}(A)$ is um-compact in B_{γ} for all γ.

For the converse, suppose that $P_{\gamma}(A)$ is um-compact in B_{γ} for every $\gamma \in \Gamma$. Let $H=\prod_{\gamma \in \Gamma} B_{\gamma}$, the formal product of all the bands $B_{\gamma}, \gamma \in \Gamma$. That is, H consists of families $\left(x_{\gamma}\right)_{\gamma \in \Gamma}$ indexed by Γ, where $x_{\gamma} \in B_{\gamma}$. We equip H with the topology of coordinatewise um-convergence; this is the product of $u m$-topologies on the bands that make up H. This makes H a topological vector space. Defined $\Phi: X \rightarrow H$ via $\Phi(x)=\left(P_{\gamma} x\right)_{\gamma \in \Gamma}$. Clearly, Φ is linear. But $\left\{e_{\gamma}: \gamma \in \Gamma\right\}$ is maximal orthogonal system, and so Φ is one-to-one. Then by Theorem 17, Φ is a homeomorphism from X equipped with um-topology onto its range in H.
Let K be a subset of H defined by $K=\prod_{\gamma \in \Gamma} P_{\gamma}(A)$. By Tychonoff's Theorem, K is compact in H. It is easy to see that $\Phi(A) \subseteq K$. We claim that $\Phi(A)$ is closed in H. Indeed, suppose that $\Phi\left(x_{\alpha}\right) \rightarrow h$ in H for some net $\left(x_{\alpha}\right)$ in A. In particular, the net ($\Phi\left(x_{\alpha}\right)$) is Cauchy in H. Since Φ is a homeomorphism, the net $\left(x_{\alpha}\right)$ is um-Cauchy in A. Since $\left(x_{\alpha}\right)$ is m-bounded and X satisfies Lebesgue and Levi property, $\left(x_{\alpha}\right)$ umconverges to some $x \in X$ by Proposition 15. Since A is um-closed, we have $x \in A$. It follows that $h=\Phi(x)$, so $h \in \Phi(A)$. Being m-closed subset of a compact set, $\Phi(A)$ is its self compact. Since Φ is homeomorphism, we conclude A is $u m$-compact.

If $\left(x_{\alpha}\right)_{\alpha \in A}$ is a net in a non-empty set X, then a net $\left(x_{\alpha_{\beta}}\right)_{\beta \in B}$ is said to be subnet of $\left(x_{\alpha}\right)_{\alpha \in A}$ if there is a function $\varphi: B \rightarrow A$ satisfying:

1. For each $\beta \in B, x_{\alpha_{\beta}}=x_{\varphi(\beta)}$.
2. For each $\alpha_{0} \in A$ there exists some $\beta_{0} \in B$ such that if $\beta \geq \beta_{0}$ then $\varphi(\beta) \geq \alpha_{0}$.

See for example [4, Definition 2.15].
Lemma 16. Let X be a vector lattice and $\left(x_{\alpha}\right)_{\alpha \in A}$ be an increasing net in X. If there is a subnet $\left(x_{\alpha_{\beta}}\right)_{\beta \in B}$ such that $x_{\alpha_{\beta}} \uparrow x$, then $x_{\alpha} \uparrow x$.

Proof. We know there is a function $\varphi: B \rightarrow A$ such that if $\alpha_{0} \in A$ then there is $\beta_{0} \in B$ satisfying $\varphi(\beta) \geq \alpha_{0}$ when $\beta \geq \beta_{0}$. Since $x_{\alpha} \uparrow, x_{\varphi(\beta)} \geq x_{\alpha_{0}}$ or $x_{\alpha_{\beta}} \geq x_{\alpha_{0}}$. Since $x_{\alpha_{\beta}} \uparrow x, x \geq x_{\alpha_{0}}$. But $\alpha_{0} \in A$ was arbitrary, thus $x \geq x_{\alpha}$ for all $\alpha \in A$ and so x is an upper bound for $\left(x_{\alpha}\right)_{\alpha \in A}$. If $z \geq x_{\alpha}$ for all $\alpha \in A$, then in particular $z \geq x_{\alpha_{\beta}}$ for all $\beta \in B$ and since $x_{\alpha_{\beta}} \uparrow x, z \geq x$. Therefore, $x_{\alpha} \uparrow x$.

The following theorem should be compared with [36, Theorem 7.5].
Theorem 19. Let (X, \mathcal{M}) be an $M N V L$. The following are equivalent:

1. Any m-bounded and um-closed subset A of X is um-compact.
2. X is an atomic vector lattice and (X, \mathcal{M}) has the Lebesgue and Levi properties.

Proof. (1) \Rightarrow (2). Let $[a, b]$ be an order interval in X. For $x \in[a, b]$, we have $a \leq x \leq b$ and so $0 \leq x-a \leq b-a$. Consider the order interval $[0, b-a] \subseteq X_{+}$. Clearly, $[0, b-a]$ is m-bounded and $u m$-closed in X. By (1), the order interval $[0, b-a]$ is um-compact. Let $\left(x_{\alpha}\right)$ be a net in $[0, b-a]$. Since $[0, b-a]$ is u-compact, there is a subset $x_{\alpha_{\beta}}$ such that $x_{\alpha_{\beta}} \xrightarrow{u m} x$ in $[0, b-a]$. That is $\left|x_{\alpha_{\beta}}-x\right| \wedge u \xrightarrow{m} 0$ for all $u \in[0, b-a]$. Hence, $\left|x_{\alpha_{\beta}}-x\right|=\left|x_{\alpha_{\beta}}-x\right| \wedge(b-a) \xrightarrow{m} 0$. So, $x_{\alpha_{\beta}} \xrightarrow{m} x$ in $[0, b-a]$. Thus, $[0, b-a]$ is m-compact. Consider the following shift operator $T_{a}: X \rightarrow X$ given by $T_{a}(x):=x+a$. Clearly, T_{a} is continuous, and so $T_{a}([0, b-a])=[a, b]$ is m-compact.
Since any order interval in X is m-compact, it follows from [3, Corollary 6.57] that X is atomic and has the Lebesgue property. It remains to show that X has the Levi property. Suppose $0 \leq x_{\alpha} \uparrow$ and is m-bounded. Let $A={\overline{\left\{x_{\alpha}\right\}}}^{u m}$. Then A is umclosed and, by Lemma 11, A is an m-bounded subset of X. Thus, A is um-compact and so, there are a subnet $\left(x_{\alpha_{\beta}}\right)$ and $x \in A$ such that $x_{\alpha_{\beta}} \xrightarrow{u m} x$. Hence, by Lemma 13. $x_{\alpha_{\beta}} \uparrow x$, and so $x_{\alpha} \uparrow x$. Thus, X has the Levi property.
(2) \Rightarrow (11). Let A be an m-bounded and $u m$-closed subset of X. We show that A is um-compact. Since X is atomic, there is a maximal orthogonal system $\left\{e_{\gamma}\right\}_{\gamma \in \Gamma}$ of atoms. For each $\gamma \in \Gamma$, let P_{γ} be the band projection corresponding to e_{γ}. Clearly, $P_{\gamma}(A)$ is m-bounded. Now, by the same argument as in the proof of Theorem 7.1 in [36], we get that $P_{\gamma}(A)$ is $u m$-closed in $\prod_{\gamma \in \Gamma} B_{\gamma}$, and so it is $u m$-closed in B_{γ}. But um-closedness implies m-closedness. So $P_{\gamma}(A)$ is m-bounded and m-closed in B_{γ} for all $\gamma \in \Gamma$. Since each e_{γ} is an atom in $X, B_{\gamma}=\operatorname{span}\left\{e_{\gamma}\right\}$ is a one-dimensional subspace. It follows from the Heine-Borel theorem that $P_{\gamma}(A)$ is m-compact in B_{γ}, and so it is um-compact in B_{γ} for all $\gamma \in \Gamma$. Therefore, Theorem 18 implies that A is um-compact in X.

Lemma 17. Let X be a topological space and $Y \subseteq X$. If $A \subseteq Y$ and A is compact in Y, then A is compact in X.

Proof. The inclusion map $i: Y \hookrightarrow X$ is continuous (let O open set in X, then $i^{-1}(O)=O \cap Y$ which is open in Y.)
Since A is compact in $Y, i(A)=A$ is compact in X.
Lemma 18. Let X be a topological space. Let $S \subseteq Y \subseteq X$. If S is compact in X, then S is compact in Y.

Proof. Let $\left(\mathcal{O}_{\alpha}\right)$ be an open cover for S in Y. Then for each α, there is G_{α} open in X such that $\mathcal{O}_{\alpha}=G_{\alpha} \cap Y$. Hence, $S \subseteq \bigcup_{\alpha} \mathcal{O}_{\alpha}=\bigcup_{\alpha}\left(G_{\alpha} \cap Y\right) \subseteq \bigcup_{\alpha} G_{\alpha}$. Since S is
compact in X, there is $\alpha_{1}, \ldots, \alpha_{n}$ such that $S \subseteq G_{\alpha_{1}} \cup \cdots \cup G_{\alpha_{n}}$, which implies

$$
S=S \cap Y \subseteq\left(G_{\alpha_{1}} \cup \cdots \cup G_{\alpha_{n}}\right) \cap Y=\bigcup_{i=1}^{n}\left(G_{\alpha_{i}} \cap Y\right)=\bigcup_{i=1}^{n} \mathcal{O}_{\alpha_{i}} .
$$

Thus, S is compact in Y.
Lemma 19. Let (X, \mathcal{M}) be a sequentially m-complete $M N V L$ that satisfies the Lebesgue property. Then X is σ-order (Dedekind) complete.

Proof. Assume $0 \leq x_{n} \uparrow \leq u$. Since (X, \mathcal{M}) satisfies the Lebesgue property, by [3, Theorem 3.23], (X, \mathcal{M}) satisfies the pre-Lebesgue property. By Theorem 3.22 in [3] it follows that $\left(x_{n}\right)$ is m-Cauchy. Since $\left(x_{n}\right)$ is sequentially m-complete, $x_{n} \xrightarrow{m} x$ for some $x \in X$. Since $x_{n} \uparrow$, by Lemma $12 x_{n} \uparrow x$. Thus, X is σ-order complete.

In view of paragraph after [Definition 1.47,p.22] in [3] it follows that every σ-order complete vector lattice satisfies (PPP).

Proposition 23. Let A be a subset of an m-complete metrizable $\operatorname{MNVL}(X, \mathcal{M})$.

1. If X has a countable topological orthogonal system, then A is sequentially um-compact if and only if A is um-compact.
2. Suppose that A is m-bounded, and X has the Lebesgue property. If A is umcompact, then A is sequentially um-compact.

Proof. (1). It follows immediately from Proposition 21 .
(2). Let $\left(x_{n}\right)$ be a sequence in A. Find $e \in X_{+}$such that $\left(x_{n}\right)$ is contained in B_{e} (e.g., take $e=\sum_{n=1}^{\infty} \frac{\left|x_{n}\right|}{2^{n}}$). Since A is um-compact, A is um-closed, but B_{e} is um-closed, so $A \cap B_{e}$ is um-closed, again A is um-compact, so $A \cap B_{e}$ is um-compact in A and hence by Lemma $17 A \cap B_{e}$ is um-compact in X, and by Lemma $18 A \cap B_{e}$ is um-compact in B_{e}. Now, since X is m-complete and has the Lebesgue property, by Lemma $15 B_{e}$ is also m-complete and has the Lebesgue property, so by Corollary 6 , e is a quasi-interior point of B_{e}. Thus, by Proposition 21, the um-topology on B_{e} is metrizable, consequently, $A \cap B_{e}$ is sequentially um-compact in B_{e}. It follows that there is a subsequence ($x_{n_{k}}$) that um-converges in B_{e} to some $x \in A \cap B_{e}$. It follows from Lemma 19 that B_{e} is a projection band, then Theorem 6, part 3 implies $x_{n_{k}} \xrightarrow{u m} x$ in X. Therefore, A is sequentially um-compact.

REFERENCES

[1] Y. A. Abramovich and C. D. Aliprantis. An invitation to operator theory, volume 50 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2002.
[2] Y. A. Abramovich and G. Sirotkin. On order convergence of nets. Positivity, 9(3):287-292, 2005.
[3] C. D. Aliprantis and O. Burkinshaw. Locally solid Riesz spaces with applications to economics, volume 105 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, second edition, 2003.
[4] C. D. Aliprantis and O. Burkinshaw. Positive operators. Springer, Dordrecht, 2006. RJournal of the 1985 original.
[5] C. D. Aliprantis and R. Tourky. Cones and duality, volume 84 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2007.
[6] A. Aydın. Continuous operators with convergence in lattice-normed locally solid Riesz spaces. arXiv:1711.10263, 2017.
[7] A. Aydın. Unbounded p_{τ}-convergence in lattice-normed locally solid Riesz spaces. arXiv:1711.00734, 2017.
[8] A. Aydın, E.Yu. Emelyanov, N. Erkurşun Özcan, and M. A. A. Marabeh. Unbounded p-convergence in lattice-normed vector lattices. arXiv:1609.05301v2, 2016.
[9] A. Aydın, E.Yu. Emelyanov, N. Erkurşun Özcan, and M. A. A. Marabeh. Compact-like operators in lattice-normed spaces. Indagationes Mathematicae, 2017.
[10] A. Aydın, S.G. Gorokhova, and H. Gul. Nonstandard hulls of lattice-normed ordered vector spaces. Turkish Journal of Mathematics, 42(1):1-11, 2018.
[11] Y. Azouzi. Completeness for vector lattices. arXiv:1710.03128, 2017.
[12] A. Bahramnezhad and K. H. Azar. Strongly order continuous operators on Riesz spaces. arXiv:1712.04275, 2017.
[13] A. Bahramnezhad and K. H. Azar. Unbounded order continuous operators on Riesz spaces. Positivity, 2017.
[14] Y. A. Dabboorasad, E. Y. Emelyanov, and M. A. A. Marabeh. Order convergence in infinite-dimensional vector lattices is not topological. arXiv:1705.09883, 2017.
[15] Y. A. Dabboorasad, E. Y. Emelyanov, and M. A. A. Marabeh. um-topology in multi-normed vector lattices. Positivity, 2017.
[16] Y. A. Dabboorasad, E. Y. Emelyanov, and M. A. A. Marabeh. $u \tau$-convergence in locally solid vector lattices. Positivity, 2018.
[17] R. DeMarr. Partially ordered linear spaces and locally convex linear topological spaces. Illinois J. Math., 8:601-606, 1964.
[18] Y. Deng, M. O'Brien, and V. G. Troitsky. Unbounded norm convergence in Banach lattices. Positivity, 21(3):963-974, 2017.
[19] E. Y. Emelyanov, N. Erkurşun Özcan, and S.G. Gorokhova. Komlos properties in Banach lattices. arXiv:1710.02580, 2017.
[20] E. Yu. Emelyanov and S.G. Gorokhova. On the notion of stability of order convergence in vector lattices. Siberian Mathematical Journal, 35(5):912-916, 1994.
[21] E. Yu. Emelyanov and M. A. A. Marabeh. Two measure-free versions of the Brezis-Lieb lemma. Vladikavkaz. Mat. Zh., 18(1):21-25, 2016.
[22] R. Engelking. General topology. PWN—Polish Scientific Publishers, Warsaw, 1977. Translated from the Polish by the author, Monografie Matematyczne, Tom 60. [Mathematical Monographs, Vol. 60].
[23] Z. Ercan and M. Vural. Towards a theory of unbounded locally solid Riesz spaces. arXiv:1708.05288, 2017.
[24] N. Erkurşun Özcan, N. A. Gezer, and O. Zabeti. Spaces of $u \tau$-dunford-pettis and $u \tau$-compact operators on locally solid vector lattices. arXiv:1710.11434, 2017.
[25] N. Erkurşun Özcan, N. A. Gezer, and O. Zabeti. Unbounded absolute weak dunford-pettis and unbounded absolute weak compact operators. arXiv:1708.03970, 2017.
[26] D. H. Fremlin. Topological Riesz spaces and measure theory. Cambridge University Press, London-New York, 1974.
[27] N. Gao. Unbounded order convergence in dual spaces. J. Math. Anal. Appl., 419(1):347-354, 2014.
[28] N. Gao, D. H. Leung, and F. Xanthos. Closedness of convex sets in orlicz spaces with applications to dual representation of risk measures. arXiv:1610.08806, 2016.
[29] N. Gao, D. H. Leung, and F. Xanthos. Duality for unbounded order convergence and applications. Positivity, 2017.
[30] N. Gao, V. G. Troitsky, and F. Xanthos. Uo-convergence and its applications to cesáro means in Banach lattices. Israel J. Math., 220(2):649-689, 2017.
[31] N. Gao and F. Xanthos. Unbounded order convergence and application to martingales without probability. J. Math. Anal. Appl., 415(2):931-947, 2014.
[32] N. Gao and F. Xanthos. On the C-property and w^{*}-representations of risk measures. Mathematical Finance, 2017.
[33] S. G. Gorokhova. Intrinsic characterization of the space $c_{0}(A)$ in the class of Banach lattices. Mat. Zametki, 60(3):445-448, 1996.
[34] M. Kandić and M. A. Taylor. Metrizability of minimal and unbounded topologies. arXiv:1709.05407, 2017.
[35] M. Kandić, H. Li, and V. G. Troitsky. Unbounded norm topology beyond normed lattices. Positivity, 2017.
[36] M. Kandić, M. A. A. Marabeh, and V. G. Troitsky. Unbounded norm topology in Banach lattices. J. Math. Anal. Appl., 451(1):259-279, 2017.
[37] M. Kandić and A. Vavpetič. Topological aspects of order in $C(x)$. arXiv:1612.05410, 2016.
[38] S. Kaplan. On unbounded order convergence. Real Anal. Exchange, 23(1):175184, 1997/98.
[39] J. L. Kelley and I. Namioka. Linear topological spaces. With the collaboration of W. F. Donoghue, Jr., Kenneth R. Lucas, B. J. Pettis, Ebbe Thue Poulsen, G. Baley Price, Wendy Robertson, W. R. Scott, Kennan T. Smith. The University Series in Higher Mathematics. D. Van Nostrand Co., Inc., Princeton, N.J., 1963.
[40] A. G. Kusraev. Dominated operators, 2000.
[41] H. Li and Z. Chen. Some loose ends on unbounded order convergence. Positivity, 2017.
[42] W. A. J. Luxemburg and A. C. Zaanen. Riesz spaces. Vol. I. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., New York, 1971. North-Holland Mathematical Library.
[43] M. Marabeh. Brezis-lieb lemma in convergence vector lattices. Submitted, 2017.
[44] O. V. Maslyuchenko, V. V. Mykhaylyuk, and M. M. Popov. A lattice approach to narrow operators. Positivity, 13(3):459-495, 2009.
[45] H. Nakano. Ergodic theorems in semi-ordered linear spaces. Ann. of Math. (2), 49:538-556, 1948.
[46] E. T. Ordman. Classroom Notes: Convergence Almost Everywhere is Not Topological. Amer. Math. Monthly, 73(2):182-183, 1966.
[47] M. Pliev. Narrow operators on lattice-normed spaces. Cent. Eur. J. Math., 9(6):1276-1287, 2011.
[48] W. Rudin. Functional analysis. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, second edition, 1991.
[49] H. H. Schaefer. Banach lattices and positive operators. Springer-Verlag, New York-Heidelberg, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 215.
[50] H. H. Schaefer and M. P. Wolff. Topological vector spaces, volume 3 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1999.
[51] M. A. Taylor. Completeness of unbounded convergences. Proc. Amer. Math. Soc., 2017.
[52] M. A. Taylor. Unbounded topologies and uo-convergence in locally solid vector lattices. arXiv:1706.01575, 2017.
[53] V. G. Troitsky. Measures on non-compactness of operators on Banach lattices. Positivity, 8(2):165-178, 2004.
[54] Jan Harm van der Walt. The universal completion of $\mathrm{c}(\mathrm{x})$ and unbounded order convergence. Journal of Mathematical Analysis and Applications, 2017.
[55] B. Z. Vulih and O. S. Korsakova. Spaces in which convergence in norm coincides with order convergence. Mat. Zametki, 13:259-268, 1973.
[56] B. Z. Vulikh. Introduction to the theory of partially ordered spaces. Translated from the Russian by Leo F. Boron, with the editorial collaboration of Zaanen, A. C. and Kiyoshi Iséki. Wolters-Noordhoff Scientific Publications, Ltd., Groningen, 1967.
[57] A. W. Wickstead. Weak and unbounded order convergence in Banach lattices. J. Austral. Math. Soc. Ser. A, 24(3):312-319, 1977.
[58] A. Wirth. Order and norm convergence in Banach lattices. Glasgow Math. J., 15:13, 1974.
[59] W. Wnuk. Locally solid Riesz spaces not containing c_{0}. Bull. Polish Acad. Sci. Math., 36(1-2):51-56, 1988.
[60] A. C. Zaanen. Introduction to operator theory in Riesz spaces. Springer-Verlag, Berlin, 1997.
[61] O. Zabeti. Unbounded absolute weak convergence in Banach lattices. Positivity, 2017.
[62] O. Zabeti and A. Bahramnezhad. $u \tau$-continuous operators on locally solid vector lattices. arXiv:1712.01737, 2017.

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Dabboorasad, Yousef
Nationality: Palestinian
Date and Place of Birth: 28.08.1983, Saudi Arabia
Marital Status: Married
Phone: +905318359619

EDUCATION

Degree	Institution	Year of Graduation
M.S.	Islamic University of Gaza, Mathematics	2010
B.S.	Islamic University of Gaza, Mathematics	2005
High School	Gifted Secondary School	2001

PROFESSIONAL EXPERIENCE

Year	Place	Enrollment
01/10/2010-25/10/2011	Islamic University of Gaza	Instructor of Mathematics
$01 / 09 / 2005-01 / 10 / 2010$	Islamic University of Gaza	Teaching assistant of Mathematics

PUBLICATIONS

1. Y. Dabboorasad, E. Y. Emelyanov, and M. A. A. Marabeh. um-Topology in multi-normed vector lattices, Positivity, (2017), https://doi.org/10.1007/s11117-017-0533-6.
2. Y. Dabboorasad, E. Y. Emelyanov, and M. A. A. Marabeh. $u \tau$-convergence in locally solid vector lattices, preprint, arXiv:1706.02006v3. [math.FA].
3. Y. Dabboorasad, E. Y. Emelyanov, and M. A. A. Marabeh. Order convergence in infinite-dimensional vector lattices is not topological, preprint, arXiv:1705.09883v1 [math.FA].

International Conference Publications

Your publications goes here. Do not try to use Bibtex, since Bibtex builds a single bibliography database for the document.

