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ABSTRACT

uτ -CONVERGENCE IN LOCALLY SOLID VECTOR LATTICES

Dabboorasad, Yousef A. M.
Ph.D., Department of Mathematics
Supervisor : Prof. Dr. Eduard Emel’yanov

March 14, 2018, 60 pages

We say that a net (xα) in a locally solid vector lattice (X, τ) is uτ -convergent to a vec-
tor x ∈ X if |xα−x|∧w

τ−→ 0 for allw ∈ X+. The aim of the thesis is to study general
properties of uτ -convergence, which generalizes unbounded norm convergence. Be-
sides, general investigation of uτ -convergence, we carry out detailed investigation
of its very important case, so-called “unbounded m-convergence” (um-convergence,
for short) in multi-normed vector lattices. Unlike “unbounded order convergence”,
we showed that the uτ -convergence is topological and the corresponding topology
serves as a generalization of the unbounded norm topology.

Keywords: Vector Lattice, Locally solid Vector Lattice, uτ -Convergence, uo-Convergence,
un-Convergence, um-Convergence, Lebesgue property, Levi property.
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ÖZ

YEREL KATI VECTÖR ÖRGÜSÜNDE uτ -YAKINSAKLIK

Dabboorasad, Yousef A. M.
Doktora, Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Eduard Emel’yanov

Mart 14, 2018 , 60 sayfa

xα yerel katı vectör örgüsü (X, τ) da bir net olsun ; Eğer her w ∈ X+ için |xα −
x| ∧ w τ−→ 0 oluyorsa, bu durumda xα neti x ∈ X vektörüne sınırsız τ -yakınsaktır
diyeceğiz. Bu tezin amacı sınırsız norm yakınsamanın bir genellemesi olan sınırsız τ -
yakınsaklığın (kısaca, uτ -yakınsaklığın) genel özelliklerini calışacağız. Ayrıca, multi
normlu vectör örgülermde uτ -yakınsamanın önemli çeşiti olan sınırsızm-yakınsaklık”
veya (kısaca um-yakınsaklık) çalışılmıştır. Sınırsız sıra yakınsaklığının aksine, uτ -
yakınsaklığı ve um-yakınsaklığı topolojik olduğu ve bunlara karşılık gelen topoloji-
lerin sınırsız norm topolojinin genellemelerine karşılık geldiği gösterilmiştir.

Anahtar Kelimeler: Yöney örgüsü, yerel som yöney örgüsü, uτ -Yakınsama, uo-Yakınsama,
un-Yakınsama, um-Yakınsama,Lebesgue özelliği, Levi özelliği.
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CHAPTER 1

INTRODUCTION

The subject of “unbounded convergence” has attracted many researchers [57, 53, 31,
30, 21, 18, 61, 36, 8, 41, 35, 28, 52]. It is well-investigated in Banach lattices [30,
31, 33, 36, 58, 61]. In this thesis, we study unbounded convergence in locally solid
vector lattices. Results in this thesis extend previous works [18, 30, 36, 61].

Many types of "unbounded convergences" were defined in vector lattices, normed
lattices, locally solid vector lattices and in lattice-normed vector lattices; see, e.g.
[7, 8, 10, 16, 17, 18, 23, 31, 38, 54, 57, 61]. Using those unbounded convergences,
several related topologies were introduced; see, e.g. [15, 16, 34, 35, 36, 37, 51,
52, 61]. Some new classes of operators were defined and investigated using un-
bounded convergences; see, e.g. [6, 9, 12, 13, 24, 25, 29, 44, 47, 62]. Further-
more, unbounded convergences has been used in the study of Brezis-Lieb lemma,
risk measures, Kolomos properties and universal completion for vector lattices ; see,
e.g. [11, 19, 21, 28, 29, 30, 32, 41, 43].

A net (xα)α∈A in a vector lattice X is said to be order convergent (or o-convergent)
to a vector x ∈ X if there is another net (yβ), possibly over a different index set,
such that yβ ↓ 0 and, for every β, there exists αβ satisfying |xα − x| 6 yβ whenever
α > αβ . In this case we write, xα

o−→ x. A net (xα) in a vector lattice X is unbounded
order convergent to a vector x ∈ X if |xα − x| ∧ u o−→ 0 for all u ∈ X+, in this
case we say that the net (xα) uo-converges to x and we write xα

uo−→ x. H. Nakano
(1948) was the first who defined uo-convergence in [45], but he called it “individual
convergence”. He extended the individual ergodic theorem, which is known also
as Birkhoff’s ergodic theorem, to KB-spaces. Later, R. DeMarr (1964) proposed
the name "unbounded order convergence" in [17]. He defined the uo-convergence
in ordered vector spaces and mainly showed that any locally convex space E can be
embedded in a particular ordered vector spaceX so that topological convergence inE
is equivalent to uo-convergence in X . In 1977, A. Wickstead investigated the relation
between weak and uo-convergences in Banach lattices in [57]. Two characterizations
of uo-convergence in order (Dedekind) complete vector lattices having weak units
were established in [38] by S. Kaplan (1997/98). In [20], they studied stability of
order convergence in vector lattices and some types of order ideals in vector lattices.
Order convergence of nets was studied in][2, 55].

Recently, in [31], N. Gao and F. Xanthos studied uo-convergent and uo-Cauchy nets
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in Banach lattices and used them to characterize Banach lattices with the positive
Schur property and KB-spaces. Moreover, they applied uo-Cauchy sequences to ex-
tend Doob’s submartingale convergence theorem to a measure-free setting. Next,
N. Gao (2014) studied unbounded order convergence in dual spaces of Banach lat-
tices; see [27]. Quite recently, N. Gao, V. Troitsky, and F. Xanthos (2017) exam-
ined more properties of uo-convergence in [30]. They proved the stability of the
uo-convergence under passing to and from regular sublattices. Using that fact, sev-
eral results in [31, 27] were generalized. In addition, they studied the convergence of
Cesàro means in Banach lattices using the uo-convergence. As a result, they obtained
an intrinsic version of Komlós’ Theorem in Banach lattices and developed a new
and unified approach to study Banach-Saks properties and Banach-Saks operators in
Banach lattices based on uo-convergence.

Moreover, E. Emelyanov and M. Marabeh (2016) derived two measure-free versions
of Brezis-Lieb lemma in vector lattices using uo-convergence in [21]. In 2017, H.
Li and Z. Chen showed in [41] that every norm bounded positive increasing net in
an order continuous Banach lattice is uo-Cauchy and that every uo-Cauchy net in an
order continuous Banach lattice has a uo-limit in the universal completion.

Regarding applications, unbounded order convergence has been applied in finance.
For instance, N. Gao and F. Xanthos have exploited uo-convergence to derive a w∗-
representation theorem of proper convex increasing functionals on particular dual
Banach lattices in [32]. Extending this work, representation theorems of convex func-
tionals and risk measures was established using unbounded order continuous dual of
a Banach lattice in [28].

Let X be a normed lattice, then a net (xα) in X is unbounded norm convergent to a

vector x ∈ X (or xα un-convergent to x) if |xα − x| ∧ u
‖·‖−→ 0 for all u ∈ X+. In

this case, we write xα
un−→ x. In 2004, V. Troitsky defined the unbounded norm con-

vergence in [53]. He called it the “d-convergence”, and studied the relation between
the d-convergence and measure of non-compactness.

Later, in 2016, Y. Deng, M. O’Brien, and V. Troitsky introduced the name “un-
bounded norm convergence” in [18]. They studied basic properties of un-convergence
and investigated its relation with uo- and weak convergences. Finally, they showed
that un-convergence is topological.

The “unbounded norm topology” (or un-topology) in Banach lattices was deeply in-
vestigated in [36], by M. Kandić, M. Marabeh, and V. Troitsky (2017). They showed
that the un-topology and the norm topology agree iff the Banach lattice has a strong
unit. The un-topology is metrizable iff the Banach lattice has a quasi-interior point.
The un-topology in an order continuous Banach lattice is locally convex iff it is
atomic. An order continuous Banach lattice X is a KB-space iff its closed unit ball
BX is un-complete. For a Banach lattice X , BX is un-compact iff X is an atomic
KB-space. Also, they studied un-compact operators and the relationship between
un-convergence and weak*-convergence.

The concept of unbounded norm convergence has been generalized in [35] by M.

2



Kandić, H. Li, and V. Troitsky (2017) as follows: let X be a normed lattice and Y a
vector lattice such that X is an order dense ideal in Y , then a net (yα) un-converges

to y ∈ Y with respect to X if |yα − y| ∧ x
‖·‖−→ 0 for every x ∈ X+. They extended

several known results about un-convergence and un-topology to this new setting.

At the same time, O. Zabeti (2017) introduced and studied the unbounded absolute
weak convergence (or uaw-convergence). A net (xα) in a Banach lattice X uaw-
converges to x ∈ X if |xα − x| ∧ u

w−→ 0 for all u ∈ X+; [61]. Zabeti investigated
the relations of uaw-convergence with other convergnces. Moreover, he obtained a
characterization of order continuous and reflexive Banach lattices in terms of uaw-
convergence.

After that, Mitchell A. Taylor in [52, 51] investigated unbounded convergence and
minimal topologies in locally solid vector lattices. In particular, he prove that a Ba-
nach lattice is boundedly uo-complete iff it is monotonically complete. In addition,
he studied completeness-type properties of minimal topologies; which are exactly the
Hausdorff locally solid topologies in which uo-convergence implies topological con-
vergence. Together with Marko Kandić, they proved in [34] that a minimal topology
is metrizable iff X has the countable sup property and a countable order basis. More-
over, they proved relations between minimal topologies and uo-convergence that gen-
eralize classical relations between convergence almost everywhere and convergence
in measure.

The structure of this thesis is as follows. In Chapter 2 we provide basic notions and
results form vector lattice theory that are needed throughout this thesis.

Chapter 3 consists of five sections. We study general properties of unbounded τ -
convergence (shortly, uτ -convergence). For a net (xα) in a locally solid vector lattice
(X, τ); we say that (xα) is unbounded τ -convergent to a vector x ∈ X if |xα −
x| ∧ w τ−→ 0 for all w ∈ X+. The uτ -convergence generalizes unbounded norm
convergence and unbounded absolute weak convergence in normed lattices that have
been investigated recently [18, 36, 61]. Besides, we introduce uτ -topology and study
briefly metrizabililty and completeness of this topology.

Finally, in Chapter 4 we carry out a detailed investigation of its very important case,
the so-called “unbounded m-convergence” (um-convergence, for short) in multi-
normed vector lattices [15]. IfM = {mλ}λ∈Λ is a separating family of lattice semi-
norms on a vector lattice X , then the pair (X,M) is called a multi-normed vector
lattice (or MNVL). We write xα

m−→ x if mλ(xα−x)→ 0 for all λ ∈ Λ. A net (xα) in
an MNVL X = (X,M) is said to be unbounded m-convergent (or um-convergent)
to x if |xα − x| ∧ u m−→ 0 for all u ∈ X+. The um-convergence generalizes un-
convergence [18, 36] and uaw-convergence [61], and specializes up-convergence [8]
and uτ -convergence [16]. The um-convergence is always topological, whose cor-
responding topology is called unbounded m-topology (or um-topology). We show
that, for an m-complete metrizable MNVL (X,M), the um-topology is metrizable
if and only if X has a countable topological orthogonal system. In terms of um-
completeness, we present a characterization of MNVLs possessing both Lebesgue’s
and Levi’s properties. Then, we characterize MNVLs possessing simultaneously the

3



σ-Lebesgue and σ-Levi properties in terms of sequential um-completeness. Finally,
we prove that every m-bounded and um-closed set is um-compact if and only if the
space is atomic and has Lebesgue’s and Levi’s properties.

The results of Chapters 3, and 4 appear in the preprint [16] and the article [15].
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CHAPTER 2

PRELIMINARIES

For the convenience of the reader, we present in this chapter the general background
needed in this thesis.

Let "≤" be an order relation on a real vector space X . Then X is called an ordered
vector space, if it satisfies the following conditions: (i) x ≤ y implies x+ z ≤ y + z
for all z ∈ X; and (ii) x ≤ y implies λx ≤ λy for all λ ∈ R+.

For an ordered vector space X we let X+ := {x ∈ X : x ≥ 0}. The subset X+ is
called the positive cone of X . For each x and y in an ordered vector space X we let
x ∨ y := sup{x, y} and x ∧ y := inf{x, y}. If x ∈ X+ and x 6= 0, then we write
x > 0.

An ordered vector space X is said to be a vector lattice (or a Riesz space) if for each
pair of vectors x, y ∈ X the x∨ y and x∧ y both exist in X . Let X be a vector lattice
and x ∈ X then x+ := x∨0, x− := (−x)∨0 and |x| := (−x)∨x are the positive part,
negative part and absolute value of x, respectively. Two elements x and y of a vector
lattice X are disjoint written as x ⊥ y if |x| ∧ |y| = 0. For a nonempty set A of X
then its disjoint complement Ad is defined by Ad := {x ∈ X : x ⊥ a for all a ∈ A}.
A subset S of a vector lattice X is bounded from above (respectively, bounded from
below) if there is x ∈ X with s ≤ x (respectively, x ≤ s) for all s ∈ S. If a, b ∈ X ,
then the subset [a, b] := {x ∈ X : a ≤ x ≤ b} is called an order interval in X . A
subset S of X is said to be order bounded if it is bounded from above and below or
equivalently there is u ∈ X+ so that S ⊆ [−u, u]. If a net (xα) in X is increasing and
x = supα xα, then we write xα ↑ x. The notation xα ↓ x means the net (xα) in X is
decreasing and x = infα xα. A vector lattice X is said to be Archimedean if 1

n
x ↓ 0

holds for each x ∈ X+. Throughout this thesis, all vector lattices are assumed to be
Archimedean.

A vector lattice X is called order complete or Dedekind complete if every order
bounded from above subset has a supremum, equivalently if 0 ≤ xα ↑≤ u then
there is x ∈ X such that xα ↑ x.

A vector subspace Y of a vector lattice X is said to be a sublattice of X if for each
y1 and y2 in Y we have y1 ∨ y2 ∈ Y . A sublattice Y of X is order dense in X if for
each x > 0 there is 0 < y ∈ Y with 0 < y ≤ x and Y is said to be majorizing in X if
for each x ∈ X+ there exists y ∈ Y such that x ≤ y.
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A linear operator T : X → Y between vector lattices is called lattice homomorphism
if |Tx| = T |x| for all x ∈ X . A one-to-one lattice homomorphism is referred as a
lattice isomorphism. Two vector lattices X and Y are said to be lattice isomorphic
when there is a lattice isomorphism from X onto Y .

If X is a vector lattice, then there is a (unique up to lattice isomorphism) order com-
plete vector lattice Xδ that contains X as a majorizing order dense sublattice. We
refer to Xδ as the order (or Dedekind) completion of X .

A subset A of X is said to be solid if for x ∈ X and a ∈ A such that |x|≤ |a| it
follows that x ∈ A. A solid vector subspace of a vector lattice is referred as ideal.
Let A be a nonempty subset of X then IA the ideal generated by A is the smallest
ideal in X that contains A. This ideal is given by

IA := {x ∈ X : ∃a1, . . . , an ∈ A and λ ∈ R+with |x| ≤ λ
n∑
j=1

|aj|}.

For x0 ∈ X then Ix0 the ideal generated by x0 is referred as a principal ideal. This
ideal has the form Ix0 := {x ∈ X : ∃λ ∈ R+with |x| ≤ λ|x0|}.

For a net (xα) in a vector lattice X , we write xα
o−→ x, if xα converges to x in order.

This means that there is a net (yβ), possibly over a different index set, such that yβ ↓ 0
and, for every β, there exists αβ satisfying |xα−x| 6 yβ whenever α > αβ . It follows
that an order convergent net has an order bounded tail, whereas an order convergent
sequence is order bounded. For a net (xα) in a vector lattice X and x ∈ X we have
|xα − x| o−→ 0 if and only if xα

o−→ x. For an order bounded net (xα) in an order
complete vector lattice we have, xα

o−→ x if and only if infα supβ≥α|xβ − x| = 0. A
net (xα) is unbounded order convergence to a vector x ∈ X if |xα − x| ∧ u o−→ 0

for every u ∈ X+. We write xα
uo−→ x and say that xα uo-converges to x. The un-

bounded order convergent was introduced in [45] under the name individual conver-
gence, where the name unbounded order convergence was first proposed by DeMarr
(1964) [17]. Clearly, order convergence implies uo-convergence and they coincide
for order bounded nets. The uo-convergence is an abstraction of a.e.-convergence in
Lp-spaces for 1 ≤ p < ∞, [30, 31]. For a measure space (Ω,Σ, µ) and for a se-
quence fn in Lp(µ) (0 ≤ p ≤ ∞), fn

uo−→ 0 if and only if fn → 0 almost everywhere
(cf. [30, Remark 3.4]). It is well known that almost everywhere convergence is not
topological in general [46]. Therefore, the uo-convergence might not be topologi-
cal. Quite recently, it has been shown that order convergence is never topological in
infinite dimensional vector lattices [14].

Suppose that X is a vector lattice. By [30, Corollary 3.6], every disjoint sequence in
X is uo-null. Recall that a sublattice Y of X is regular if the inclusion map preserves
suprema and infima of arbitrary subsets. It was shown in [30, Theorem 3.2] that uo-
convergence is stable under passing to and from regular sublattices. That is, if (yα) is
a net in a regular sublattice Y of X , then yα

uo−→ 0 in Y if and only if yα
uo−→ 0 in X

(in fact, this property characterizes regular sublattices).

A net (xα)α∈A in X is said to be order Cauchy (or o-Cauchy) if the double net (xα −
xα′)(α,α′)∈A×A is order convergent to 0. A linear operator T : X → Y between
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vector lattices is said to be order continuous if xα
o−→ 0 in X implies Txα

o−→ 0 in Y .
Order convergence is the same in a vector lattice and in its order completion, see [30,
Corollary 2.9].

A subset A of X is called order closed if for any net (aα) in A such that aα
o−→ x

it follows that x ∈ A. An order closed ideal is a band. For x0 ∈ X the principal
band generated by x0 is the smallest band that includes x0. We denote this band by
Bx0 and it is described as Bx0 := {x ∈ X : |x| ∧ n|x0| ↑ |x|}. A band B in a
vector lattice X is said to be a projection band if X = B ⊕ Bd. If B is a projection
band, then each x ∈ X can be written uniquely as x = x1 + x2 where x1 ∈ B and
x2 ∈ Bd. The projection PB : X → X defined by PB(x) := x1 is called the band
projection corresponding to the band projection B. If P is a band projection then it is
a lattice homomorphism and 0 ≤ P ≤ I; i.e., 0 ≤ Px ≤ x for all x ∈ X+. So band
projections are order continuous.

A vector lattice X equipped with a norm ‖·‖ is said to be a normed lattice if |x| ≤ |y|
in X implies ‖x‖ ≤ ‖y‖. If a normed lattice is norm complete, then it is called a
Banach lattice. A normed lattice (X, ‖·‖) is called order continuous if xα ↓ 0 in X
implies ‖xα‖ ↓ 0 or equivalently xα

o−→ 0 in X implies ‖xα‖ → 0. A normed lattice
(X, ‖·‖) is called a KB-space if for 0 ≤ xα ↑ and supα‖xα‖ <∞ we get the net (xα)
is norm convergent. Clearly, if the norm is order continuous, then uo-convergence
implies un-convergence.

Let X be a vector lattice. An element 0 6= e ∈ X+ is called a strong unit if Ie = X ,
where Ie denotes the ideal generated by e (equivalently, for every x > 0, there exists
n ∈ N such that x 6 ne), and 0 6= e ∈ X+ is called a weak unit if Be = X ,
(equivalently, x ∧ ne ↑ x for every x ∈ X+). Here Be denotes the band generated by
e.

Recall that a vector lattice V is a locally solid vector lattice if it is Hausdorff topolog-
ical vector space possessing a zero base of solid neighborhoods. If (X, τ) is a locally
solid vector lattice, then 0 6= e ∈ X+ is called a quasi-interior point, if the principal
ideal Ie is τ -dense in X , that is Ie

τ
= X . [49, Def. II.6.1]. If X is a normed lattice.

Then it can be shown that 0 < e ∈ X is a quasi-interior point if and only if for every
x ∈ X+ we have ‖x− x ∧ ne‖ → 0 as n→∞. It is known that in a normed lattice

strong unit⇒ quasi-interior point⇒ weak unit.

An element a > 0 in a vector latticeX is called an atom whenever for every x ∈ [0, a]
there is some real λ ≥ 0 such that x = λa. It is known that Ba the band generated
by a is a projection band and Ba = Ia = span{a}, where Ia is the ideal generated
by a. A vector lattice X is called atomic if the band generated by its atoms is X . For
any x > 0 there is an atom a such that a ≤ x. For any atom a, let Pa be the band
projection corresponding to Ba. Then Pa(x) = fa(x)a where fa is the biorthogonal
functional corresponding to a. Since band projections are lattice homomorphisms and
are order continuous, so is fa for any atom a.

Finally we characterize order convergence in atomic order complete vector lattices,
and for the convenience of the reader we provide the following technical lemma.
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Lemma 1. Let X and Y be vector lattices. If T : X → Y is an order continu-
ous lattice homomorphism and A a subset of X such that supA exists in X , then
T (supA) = supT (A).

Proof. Note that {a1 ∨ · · · ∨ an : n ∈ N, a1, . . . , an ∈ A} ↑ supA. So T
(
{a1 ∨ · · · ∨

an : n ∈ N, a1, . . . , an ∈ A}
)
↑ T (supA). Furthermore, T

(
{a1 ∨ · · · ∨ an : n ∈

N, a1, . . . , an ∈ A}
)

= {T (a1 ∨ · · · ∨ an) : n ∈ N, a1, . . . , an ∈ A} = {Ta1 ∨ · · · ∨
Tan : n ∈ N, a1, . . . , an ∈ A} ↑ supT (A). Hence T (supA) = supT (A).

Lemma 2. If X is an atomic order complete vector lattice and (xα) is an order
bounded net such that fa(xα)→ 0 for any atom a, then xα

o−→ 0.

Proof. Suppose the contrary, then infα supβ≥α|xβ| > 0, so there is an atom a such
that a ≤ infα supβ≥α|xβ|. Hence a ≤ supβ≥α|xβ| for any α.

Let fa be the biorthogonal functional corresponding to a, then it follows from Lemma
1 that 1 = fa(a) ≤ fa

(
supβ≥α|xβ|

)
= supβ≥α|fa(xβ)| for each α. Thus

lim supα|fa(xα)| ≥ 1 which is a contradiction.

Lemma 3. [30, Corollary 2.9] For any net (xα) in a vector lattice X , xα
o−→ 0 in X

if and only if xα
o−→ 0 in Xδ.

Combining Lemmas 2 and 3 we obtain the following result.

Proposition 1. IfX is an atomic vector lattice and (xα) is an order bounded net such
that fa(xα)→ 0 for any atom a, then xα

o−→ 0.

For a net (xα) in a normed lattice (X, ‖·‖), we write xα
‖·‖−→ x if xα converges to x in

norm. We say that xα unbounded norm converges to x ∈ X (or xα un-converges to

x) if |xα − x| ∧ u
‖·‖−→ 0 for every u ∈ X+. We write xα

un−→ x. The un-convergence
was introduced in [53] under the name d-convergence and studied in [18] and [36].
Clearly, norm convergence implies un-convergence. The converse need not be true.

Example 1. Consider the sequence (en) of standard unit vectors in c0. Let u =
(u1, u2, . . .) be an element in (c0)+. Let 0 < ε < 1 then there is nε ∈ N such that
un < ε for all n ≥ nε. Thus for n ≥ nε, ‖nen ∧ u‖∞ = un < ε. Hence nen

un−→ 0.
The sequence (nen) is not norm bounded, and so it can not be norm convergent.

For order bounded nets, un-convergence and norm convergence coincide. If the norm
of a normed lattice is order continuous then uo-convergence implies un-convergence.

Proposition 2. [18, Lemma 2.11] Let X be a normed lattice with a quasi-interior
point e. Then for any net (xα) in X , xα

un−→ 0 if and only if
∥∥|xα| ∧ e∥∥→ 0.

Let Y be a sublattice of a Banach lattice X . Clearly, if (yα) is a net in Y and yα
un−→ 0

in X , then yα
un−→ 0 in Y . The converse need not be true.
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Example 2. Let (en) be the sequence of standard unit vectors in c0. Then en
un−→ 0 in

c0, but this does not hold in `∞. Indeed, let u = (1, 1, 1, . . .) then en ∧ u = en and
‖en‖∞ = 1 6→ 0.

Theorem 1. [36, Theorem 4.3] Let Y be a sublattice of a normed lattice X and (yα)

a net in Y such that yα
un−→ 0 in Y . The following statements hold.

1. If Y is majorizing in X , then yα
un−→ 0 in X .

2. If Y is norm dense in X , then yα
un−→ 0 in X .

3. Y is a projection band in X , then yα
un−→ 0 in X .

Since every Archimedean vector lattice X is majorizing in its order completion Xδ,
we have the following result.

Corollary 1. [36, Corollary 4.4] If X is a normed lattice and xα
un−→ x in X , then

xα
un−→ x in the order completion Xδ of X .

Corollary 2. [36, Corollary 4.5] IfX is a KB-space and xα
un−→ 0 inX , then xα

un−→ 0
in X∗∗.

Example 2 shows that the assumption that X is a KB-space cannot be removed.

Corollary 3. [36, Corollary 4.6] Let Y be a sublattice of an order continuous Banach
lattice X . If yα

un−→ 0 in Y then yα
un−→ 0 in X .

While uo-convergence need not be given by a topology, it was observed in [18] that
un-convergence is topological. For every ε > 0 and non-zero u ∈ X+, put

Vε,u =
{
x ∈ X :

∥∥|x| ∧ u∥∥ < ε
}
.

The collection of all sets of this form is a base of zero neighborhoods for a topology,
and the convergence in this topology agrees with un-convergence. This topology is
referred as un-topology and it was investigated in [36].

Recall that for a net (xα), xα
w−→ 0 if and only if f(xα) → 0 for all f ∈ X∗, where

“w" refers to weak convergence, and X∗ is the topological dual of X (the space of all
real valued continuous functionals on X).

A net (xα) is unbounded absolute weak convergent to x ∈ X (or xα uaw-converges
to x) if |xα − x| ∧ u w−→ 0 for all u ∈ X+. We write xα

uaw−−→ x. Absolute weak
convergence implies uaw-convergence. The notions of uaw-convergence and uaw-
topology were introduced in [61].

Let X be a Banach lattice. If xα
|σ|(X,X∗)−−−−−→ 0, then xα

uaw−−→ 0, where |σ|(X,X∗)
denotes the absolute weak topology on X . It was pointed out in [61, Example 3] that
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the converse need not be true. For order bounded nets uaw-convergence and absolute
weak convergence are equivalent.

As in the case of un-convergence the following result illustrates that uaw-convergence
can only be evaluated at a quasi-interior point.

Proposition 3. [61, Lemma 6] Let X be a Banach lattice with a quasi-interior point
e. Then for any net (xα) in X , xα

uaw−−→ 0 if and only if |xα| ∧ e
w−→ 0.

Similar to the situation in Corollary 3 uaw-convergence on atomic order continuous
Banach lattices can transfer from a sublattice to the whole space.

Proposition 4. [61, Proposition 16] SupposeX is an order continuous Banach lattice
and Y is a sublattice of X . If yα

uaw−−→ 0 in Y then yα
uaw−−→ 0 in X .

Next result shows that uo-, un- and uaw-convergences all agree on atomic order
continuous Banach lattices.

Proposition 5. [61, Corollary 14] Suppose X is an order continuous Banach lattice.
Then uo-convergence un-convergence and uaw-convergence are agree if and only if
X is atomic.
Thus if X is an atomic order continuous Banach lattice, (xα) is a net in X and fa
is the biorthogonal functional corresponding to an atom a ∈ X . Then xα

uo−→ 0 if
and only if xα

un−→ 0 if and only if xα
uaw−−→ 0 if and only if fa(xα) → 0 for any atom

a ∈ X .
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CHAPTER 3

UNBOUNDED τ -CONVERGENCE IN LOCALLY SOLID
VECTOR LATTICES

Recall that a topological vector space is a vector space assigned with a topology
in which the vector operations are continuous. If X is a vector lattice, and τ is a
linear topology on X that has a base at zero consisting of solid sets, then the pair
(X, τ) is called a locally solid vector lattice. It should be noted that all topologies
considered throughout this thesis are assumed to be Hausdorff. It follows from [3,
Theorem 2.28] that a linear topology τ on a vector lattice X is locally solid if and
only if it is generated by a family {ρj}j∈J of Riesz pseudonorms, where a Riesz
pseudonorm ρ is a real-valued function defined on a vector lattice X satisfying the
following properties:

1. ρ(x) ≥ 0 for all x ∈ X.

2. ρ(x+ y) ≤ ρ(x) + ρ(y) for all x, y ∈ X.

3. ρ(λx)→ 0 as λ→ 0 for each x ∈ X.

4. If |x| ≤ |y| then ρ(x) ≤ ρ(y).

Moreover, if a family of Riesz pseudonorms generates a locally solid topology τ on
a vector lattice X , then xα

τ−→ x in X if and only if ρj(xα − x) → 0 in R for each
j ∈ J . Since X is Hausdorff, the family {ρj}j∈J of Riesz pseudonorms is separating;
i.e., if ρj(x) = 0 for all j ∈ J , then x = 0.

A subset A in a topological vector space (X, τ) is called topologically bounded (or
simply τ -bounded) if, for every τ -neighborhood V of zero, there exists some λ > 0
such that A ⊆ λV . If ρ is a Riesz pseudonorm on a vector lattice X and x ∈ X , then
1
n
ρ(x) ≤ ρ( 1

n
x) for all n ∈ N. Indeed, if n ∈ N then ρ(x) = ρ(n 1

n
x) ≤ nρ( 1

n
x). The

following standard fact is included for the sake of completeness.

Proposition 6. Let (X, τ) be a locally solid vector lattice with a family of Riesz
pseudonorms {ρj}j∈J that generates the topology τ . If a subset A of X is τ -bounded
then ρj(A) is bounded in R for any j ∈ J .

Proof. LetA ⊆ X be τ -bounded and j ∈ J . Put V := {x ∈ X : ρj(x) < 1}. Clearly,
V is a neighborhood of zero in X . Since A is τ -bounded, there is λ > 0 satisfying
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A ⊆ λV . Thus ρj( 1
λ
a) ≤ 1 for all a ∈ A. There exists n ∈ N with n > λ. Now,

1
n
ρj(a) ≤ ρj(

1
n
a) ≤ ρj(

1
λ
a) ≤ 1 for all a ∈ A. Hence, supa∈A ρj(a) ≤ n <∞.

Next, we discuss the converse of the above proposition.

Let {ρj}j∈J be a family of Riesz pseudonorms for a locally solid vector lattice (X, τ).
For j ∈ J , let ρ̃j :=

ρj
1+ρj

. Then ρ̃j is a Riesz pseudonorm onX . Moreover, the family
(ρ̃j)j∈J generates the topology τ on X . Clearly, ρ̃j(A) ≤ 1 for any subset A of X ,
but still we might have a subset that is not τ -bounded.

Recall that a locally solid vector lattice (X, τ) is said to have the Lebesgue property
if xα ↓ 0 in X implies xα

τ−→ 0; or equivalently xα
o−→ 0 implies xα

τ−→ 0; and (X, τ)

is said to have the σ-Lebesgue property if xn ↓ 0 in X implies xn
τ−→ 0; and (X, τ)

is said to have the pre-Lebesgue property if 0 ≤ xn ↑ ≤ x implies only that (xn) is
τ -Cauchy. Finally, (X, τ) is said to have the Levi property if (xα) is τ -bounded net,
with 0 ≤ xα ↑, implies that (xα) has the supremum in X; and (X, τ) is said to have
the σ-Levi property if 0 ≤ xn ↑ and (xn) is τ -bounded, then (xn) has supremum in
X , see [3, Defintion 3.16].

Let X be a vector lattice, and take 0 6= u ∈ X+. Then a net (xα) in X is said to
be u-uniform convergent to a vector x ∈ X if, for each ε > 0, there exists some
αε such that |xα − x| ≤ εu holds for all α > αε; and (xα) is said to be u-uniform
Cauchy if, for each ε > 0, there exists some αε such that, for all α, α′ > αε, we
have |xα − xα′| ≤ εu. A vector lattice X is said to be u-uniform complete if every u-
uniform Cauchy sequence in X is u-uniform convergent; and X is said to be uniform
complete if X is u-uniform complete for each 0 6= u ∈ X+.

It should be noted that, in a u-uniform complete vector lattice, each u-uniform Cauchy
net is u-uniform convergent. Indeed, suppose that (xα) is a u-uniform Cauchy net in
a vector lattice X . Then, for each n ∈ N, there is αn such that |xα − xα′| ≤ 1

n
u for

all α, α′ ≥ αn. We select a strictly increasing sequence αn. Then, it is clear that the
sequence (xαn) is u-uniform Cauchy and so there is x ∈ X such that (xαn) u-uniform
converges to x. Let n0 ∈ N. Then, for all α > αn0 , we get |xα − xαn0 | ≤

1
n0
u, and

for all n > n0, |xαn − xαn0 | ≤
1
n0
u. As n → ∞, |x − xαn0 | ≤

1
n0
u. For α > αn0 ,

|x− xα| ≤ 2
n0
u.

Lemma 4. [42, Theorem 42.2] The vector lattice X is uniform complete if and only
if, for every u ∈ X+, any monotone u-uniform Cauchy sequence has an u-uniform
limit.

Recall that a Banach lattice X is called an AM -space if ‖x ∨ y‖ = max{‖x‖, ‖y‖}
for all x, y ∈ X with x ∧ y = 0.

We prove that any sequentially complete locally solid vector lattice is uniform com-
plete. First we provide the following fact.

Lemma 5. Let (X, τ) be a sequentially complete locally solid vector lattice and
(ρj)j∈J be a family of Riesz pseudonorms that generates τ . Given j ∈ J and u ∈ X .
Then, for all ε > 0, there is δ > 0 such that ρj(δu) < ε.
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Proof. Given j ∈ J and u ∈ X . If there exists ε0 > 0 such that ρj(δu) ≥ ε0 for all
δ > 0, then we have, in particular, ρj( 1

n
u) ≥ ε0 for all n ∈ N. It follows from [3,

Defintion 2.27(3)] that limn→∞ ρj(
1
n
u) = 0 and so ε0 ≤ 0, a contradiction.

Proposition 7. Let (X, τ) be a sequentially complete locally solid vector lattice. Then
X is uniform complete.

Proof. Let (ρj)j∈J be a family of Riesz pseudonorms that generates τ . Let 0 6= u ∈
X+ and (xn) be an increasing sequence which is u-uniform Cauchy. We show that
X is uniform complete. Given j ∈ J and ε > 0, then, by Lemma 5, there is δ > 0
such that ρj(δu) < ε. Since (xn) is u-uniform Cauchy, there is nδ ∈ N satisfying
|xn − xm| ≤ δu for all n,m ≥ nδ. Then ρj(|xn − xm|) ≤ ρj(δu) < ε for all
n,m ≥ nδ. Thus, (xn) is τ -Cauchy and, since (X, τ) is sequentially complete, (xn)

is τ -convergent, so there is x ∈ X such that xn
τ−→ x. Since (xn) is increasing, xn ↑ x.

It remains to show that (xn) u-converges to x. Take ε > 0. Since (xn) is u-uniform
Cauchy, there is nε ∈ N satisfying

|xn − xm| ≤ εu, for all n,m > nε. (3.0.1)

Letting m→∞ in (3.0.1), we get |xn − x| ≤ εu for all n > nε.

Let (X, τ) be a sequentially complete locally solid vector lattice. By Proposition 7, it
is uniform complete. So, for each 0 6= u ∈ X+, let Iu be the ideal generated by u and
‖·‖u be the norm on Iu given by

‖x‖u = inf{r > 0 : |x| ≤ ru}.

Then, by [5, Theorem 2.58], the pair (Iu, ‖·‖u) is a Banach lattice. Now Theorem 3.4
in [1] implies that (Iu, ‖·‖u) is an AM -space with a strong unit u, and then, by [1,
Theorem 3.6], it is lattice isometric to C(K) for some compact Hausdorff space K in
such a way, that the strong unit u is identified with the constant function 1 on K.

3.1 uτ -Topology

In this section we introduce the uτ -topology in an analogous manner to the un-
topology [36] and uaw-topology [61]. First we define the uτ -convergence.

Definition 1. Suppose (X, τ) is a locally solid vector lattice. Let (xα) be a net in X .
We say that (xα) is unbounded τ -convergent to x ∈ X if, for any w ∈ X+, we have
|xα− x| ∧w

τ−→ 0. In this case, we write xα
uτ−→ x and say that xα uτ -converges to x.

Obviously, if xα
τ−→ x then xα

uτ−→ x. The converse holds if the net (xα) is order
bounded. Note also that uτ -convergence respects linear and lattice operations. It
is clear that uτ -convergence is a generalization of un-convergence [18, 36] and, of
uaw-convergence [61].

13



Theorem 2. The uτ -convergence is topological.

Proof. Let N0 be the collection of all sets of the form

Vε,w,j = {x ∈ X : ρj(|x| ∧ w) < ε},

where, j ∈ J, 0 6= w ∈ X+, and ε > 0. We claim that N0 is a base of neighborhoods
of zero for some topology.

For that note that every set in N0 contains zero since ρj(|0 ∧ w|) = ρj(0) = 0 < ε
for all 0 6= w ∈ X+, j ∈ J , and ε > 0.

1. Now let Vε1,w1,j1 , and Vε2,w2,j2 ∈ N0, put ε = ε1 ∧ ε2, w = w1 ∨ w2, ρj ≥ ρj1 ,
and ρj ≥ ρj2 . For x ∈ Vε,w,j , ρj(|x|∧w) < ε, but |x|∧w1 ≤ |x|∧w implies that
ρj1(|x| ∧w1) ≤ ρj(|x| ∧w1) ≤ ρj(|x| ∧w) < ε ≤ ε1, similarly ρj2(|x| ∧w2) <
ε2, that is x ∈ Vε1,w1,j1 ∩ Vε2,w2,j2 , and hence Vε,w,j ⊆ Vε1,w1,j1 ∩ Vε2,w2,j2 which
means that the intersection of ant two sets in N0 contains another set from N0.

2. Let x1 + x2 ∈ Vε,w,j + Vε,w,j , then ρj(|x1| ∧ w) < ε, and ρj(|x2| ∧ w) < ε, so
ρj(|x1 + x2|∧w) ≤ ρj(|x1|∧w+ |x2|∧w) ≤ ρj(|x1|∧w)+ρj(|x2|∧w) < 2ε,
that is x1 + x2 ∈ V2ε,w,j ∈ N0, and hence for any W ∈ N0 there exists V ∈ N0

such that V + V ⊆ W .

3. Let α ∈ R such that |α| ≤ 1, and W = Vε,w,j ∈ N0, then for any x ∈ αW =
αVε,w,j , x = αt for some t ∈ Vε,w,j , with |α| |t| ≤ |t| because |α| ≤ 1, and
ρj(|t|∧w) < εwhich implies that ρj(|x|∧w) = ρj(|α| |t|∧w) ≤ ρj(|t|∧w) < ε,
hence x ∈ W , and so αW ⊆ W .

4. Let x ∈ X , and W = Vε,w,j ∈ N0, if ρj(|x|) = 0, then take α = 1 to get
that x ∈ αW . If ρj(|x|) 6= 0, take α =

2ρj(|x|)
ε

to get that ρj( 1
α
|x| ∧ w) ≤

ρj(
1
α
|x|) = 1

α
ρj(|x|) = ε

2ρj(|x|)ρj(|x|) = ε
2
< ε, so 1

α
x ∈ W , that is x ∈ αW ,

and hence W is absorbing.

Now let W = Vε,w,j ∈ N0, and let y ∈ W . Put δ = ε− ρj(|y| ∧w) > 0 since y ∈ W ,
for x ∈ Vδ,w,j , we have ρj(|y + x| ∧ w) ≤ ρj(|y| ∧ w + |x| ∧ w) ≤ ρj(|y| ∧ w) +
ρj(|x| ∧w) < ρj(|y| ∧w) + δ = ε, hence y+ x ∈ Vε,w,j , and thus y+ Vδ,w,j ⊆ Vε,w,j .
Therefore, by [39, Theorem 5.1] N0 is a base of neighborhoods of zero for some
linear topology, call it τ .

Moreover, we show that this topology is Hausdorff. Indeed, suppose that 0 6= x ∈⋂
{Vε,w,j : Vε,w,j ∈ N0}, then ρj(|x| ∧ w) < ε for all j ∈ J, 0 6= w ∈ X+, and ε > 0.

In particular for w = |x|, we have ρj(|x| ∧ |x|) < ε, for all j ∈ J , and ε > 0; i.e., for
all j ∈ J , ρj(|x|) < ε for all ε > 0, hence ρj(|x|) = 0, for all j ∈ J , but (ρj)j∈J is a
separating family of seminorms, then |x| = 0, that is x = 0 which is a contradiction.

Finally we show that xα
uτ−→ 0 if and only if xα → 0 in the topology defined above.

First suppose that a net (xα) in X uτ -converges to 0. Let Vε0,w0,j0 ∈ N0. Since
xα

uτ−→ 0, for any 0 6= w ∈ X+, ρj(|xα| ∧ w) → 0 in R for all j ∈ J . In particular,
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ρj0(|xα| ∧ w0) → 0, and so for ε0 > 0, there exists α0 such that ρj0(|xα| ∧ w0) < ε0

for all α > α0. Thus xα ∈ Vε0,w0,j0 for all α > α0. On the other hand, suppose that
xα → 0 in the topology defined above. Let w ∈ X+, take j ∈ J and ε > 0, then
Vε,w,j ∈ N0, and thus, there exist α0 such that xα ∈ Vε,w,j for all α > α0. That is
ρj(|xα| ∧ w) < ε for all α > α0. Thus ρj(|xα| ∧ w)→ 0. Therefore xα

uτ−→ 0.

The linear Hausdorff topology in the proof of Theorem 2 will be referred as uτ -
topology.

Clearly, if xα
τ−→ 0, then xα

uτ−→ 0, and so the τ -topology, in general, is finer than uτ -
topology. On the contrary to Theorem 2.3 in [36], example 5 in chapter 4 provides a
locally solid vector lattice which has a strong unit, yet the τ -topology and uτ -topology
do not agree.

It is known that the topology of any linear topological space can be derived from a
unique translation-invariant uniformity, i.e., any linear topological space is uniformis-
able (cf. [50, Theorem 1.4]). It follows from [22, Theorem 8.1.20] that any linear
topological space is completely regular. In particular, the unbounded τ -convergence
is completely regular.

Remark 1. Let (X, τ) be a locally solid vector lattice, where τ is generated by a
family (ρj)j∈J of Riesz pseudonorms. For all j ∈ J, 0 6= w ∈ X+, and ε > 0, Vε,w,j
is solid.

Proof. Let y ∈ Vε,w,j , and let |x| ≤ |y|, then |x| ∧w ≤ |y| ∧w, and so ρj(|x| ∧w) ≤
ρj(|y| ∧ w) < ε. Hence x ∈ Vε,w,j .

The next result should be compared with [36, Lemma 2.1].

Proposition 8. Let (X, τ) be a sequentially complete locally solid vector lattice,
where τ is generated by a family (ρj)j∈J of Riesz pseudonorms. Let ε > 0, j ∈ J , and
0 6= w ∈ X+. Then either Vε,w,j is contained in [−w,w], or it contains a non-trivial
ideal.

Proof. Suppose that Vε,w,j is not contained in [−w,w]. Then there exists x ∈ Vε,w,j
such that x 6∈ [−w,w]. Replacing x with |x|, we may assume x > 0. Since x 6∈
[−w,w], y = (x − w)+ > 0. Now, letting z = x ∨ w, we have that the ideal
Iz generated by z, is lattice and norm isomorphic to C(K) for some compact and
Hausdorff space K, where z corresponds to the constant function 1. Also x, y, and w
in Iz correspond to x(t), y(t), and w(t) in C(K) respectively.

Our aim is to show that for all α ≥ 0 and t ∈ K, we have

(αy)(t) ∧ w(t) ≤ x(t) ∧ w(t).

For this, note that y(t) = (x− w)+(t) = (x− w)(t) ∨ 0.

Let t ∈ K be arbitrary.
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• Case (1): If (x− w)(t) > 0, then x(t) ∧ w(t) = w(t) ≥ (αy)(t) ∧ w(t) for all
α ≥ 0, as desired.

• Case (2): If (x−w)(t) < 0, then (αy)(t)∧w(t) ≤ (αy)(t) = α(x−w)(t)∨0 =
0 ≤ x(t) ∧ w(t), as desired.

Hence, for all α ≥ 0 and t ∈ K, we have (αw)(t) ∧ w(t) ≤ x(t) ∧ w(t) and so
(αy) ∧ w ≤ x ∧ w for all α ≥ 0 . Note, that αy, w, x ∈ X+. Thus ρj(|αy| ∧ w) ≤
ρj(|x| ∧ w) < ε, so αy ∈ Vε,w,j and, since Vε,w,j is solid, Iz ⊆ Vε,w,j .

Note that the sequential completeness in Proposition 8 can be removed, as we see
later in Theorem 5.

Theorem 3. [3, Theorem 2.8 and 2.40] Let (X, τ) be a Hausdorff locally solid vector
lattice. Then there is a unique (up to isomorphism) Hausdorff topological vector
space (X̂, τ̂) having the following properties:

1. The topological vector space (X̂, τ̂) is τ̂ -complete.

2. The τ̂ -closure of X+ is a cone of X̂ and (X̂, τ̂) equipped with this cone is a
Hausdorff locally solid vector lattice containing X as a vector sublattice.

3. The topology τ̂ induces τ in X .

4. The vector sublattice X is τ̂ -dense in X̂ .

5. The τ̂ -closure of a solid subset of X is a solid subset of X̂ . In particuler, if N
is a base of zero for (X, τ) consisting of solid sets, then {V τ̂

: V ∈ N} is also
a base of zero for (X̂, τ̂) consisting of solid sets.

The Hausdorff locally solid vector lattice (X̂, τ̂) in Theorem 3 is the topological
completion of (X, τ).

In the following theorem we gather some properties of (X̂, τ̂). Recall that

Theorem 4. Let (X̂, τ̂) be the topological completion of a Lebesgue Hausdorff lo-
cally solid vector lattice (X, τ). Then the following statements hold:

1. (X̂, τ̂) satisfies Lebesgue property.

2. X̂ is Dedekind complete.

3. X is order dense in X̂, and so X is regular in X̂.

4. If Xδ is the Dedekind completion of X, then X ⊆ Xδ ⊆ X̂ and both X and
Xδ are regular vector sublattices of X̂.
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Proof. (1) It follows from [3, Theorem 3.23] that (X, τ) satisfies pre-Lebesgue prop-
erty. Now, [3, Theorem 3.26] implies that (X̂, τ̂) satisfies Lebesgue property.

(2) Since (X̂, τ̂) satisfies Lebesgue property, it follows from [3, Theorem 3.24] that
X̂ is Dedekind complete.

(3) Since (X̂, τ̂) satisfies Lebesgue property, it satisfies Faton property; see e.g., [3,
Lemma 4.2] . Thus, X is order dense in X̂ by [3, Theorem 4.31].

(4) Since X ⊆ X̂ , Xδ ⊆ (X̂)δ = X̂ as X̂ is Dedekind complete. So, X ⊆ Xδ ⊆ X̂.

Since X is regular in X̂ , it follows from [30, Theorem 2.10] that Xδ is regular in X̂.
Also, since X is regular in Xδ and Xδ is regular in X̂ , we get X is regular in X̂.
Again suppose that (X, τ) is Lebesgue Hausdorff locally solid vector lattice. Then by
[3, Theorem 4.12] there is a unique Lebesgue Hausdorff locally solid topology τ δ on
Xδ that induces τ on X .
Also, sinceXδ is a vector sublattice of X̂ , we can equipXδ with the relative topology
induces by τ̂ . Since (X̂, τ̂) is a Lebesgue Hausdorff locally solid space, so is (Xδ, τ̂).
Now [3, Theorem 4.12] implies that τ̂ = τ δ on Xδ.

Theorem 5. Let (X, τ) be a locally solid vector lattice, where τ is generated by a
family (ρj)j∈J of Riesz pseudonorms. Let ε > 0, j ∈ J , and 0 6= w ∈ X+. Then
either Vε,w,j is contained in [−w,w] or Vε,w,j contains a non-trivial ideal.

Proof. Take ε > 0, j ∈ J , and 0 6= w ∈ X+. Let (X̂, τ̂) be the topological
completion of (X, τ). In view of Theorem 3, (X̂, τ̂) is also a locally solid vector
lattice. It follows from the proof of Proposition 22F in [26] that if ρ̂j is the contin-
uous extension of ρj to X̂ , then ρ̂j is also a Riesz pseudonorm and τ̂ is generated
by (ρ̂j)j∈J . In particular, (X̂, τ̂) is a sequentially complete locally vector lattice. Let
V̂ε,w,j = {x̂ ∈ X̂ : ρ̂j(|x̂| ∧ w) < ε}. Then Vε,w,j = X ∩ V̂ε,w,j . By Proposition 8,
either V̂ε,w,j is a subset of [−w,w]X̂ in X̂ or V̂ε,w,j contains a non-trivial ideal of X̂ .
If V̂ε,w,j ⊆ [−w,w]X̂ , then

Vε,w,j = X ∩ V̂ε,w,j ⊆ X ∩ [−w,w]X̂ = [−w,w] ⊆ X.

If V̂ε,w,j contains a non-trivial ideal, then V̂ε,w,j * [−w,w]X̂ . By solidity, we can take
0 < x̂ ∈ V̂ε,w,j such that x̂ /∈ [−w,w]X̂ , that is, (x̂ − w)+ > 0. Now take a net
(xα) ⊂ X such that xα

τ−→ x̂. Then x+
α

τ−→ x̂+ = x̂, and (x+
α − w)+ τ−→ (x̂ − w)+.

Since V̂ε,w,j is an open set containing x̂, we may take x := x+
α ∈ V̂ε,w,j ∩ X such

that y := (x − w)+ > 0. By the same argument in Proposition 8 to (X̂, τ̂), we get
(αy) ∧ w ≤ x ∧ w for all α ∈ R+. Since x ∈ V̂ε,w,j , αy ∈ V̂ε,w,j for all α ∈ R+. But
αy ∈ X+ for all α ∈ R+ and, since Vε,w,j = X ∩ V̂ε,w,j , we get αy ∈ Vε,w,j for all
α ∈ R+. Since Vε,w,j is solid, we conclude that the principal ideal Iy taken in X is a
subset of Vε,w,j .

Lemma 6. Let (X, τ) be a locally solid vector lattice, where τ is generated by a
family (ρj)j∈J of Riesz pseudonorms. If Vε,w,j is contained in [−w,w], then w is a
strong unit.
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Proof. Suppose Vε,w,j ⊆ [−w,w]. Since Vε,w,j is absorbing, for any x ∈ X+, there
exist α > 0 such that αx ∈ Vε,w,j , and so αx ∈ [−w,w], or x ≤ 1

α
w. Thus w is a

strong unit, as desired.

3.2 uτ -Convergence in sublattices

Let Y be a sublattice of a locally solid vector lattice (X, τ). If (yα) is a net in Y then
yα

uτ−→ 0 in Y means: |yα| ∧ y
τ−→ 0 for all y ∈ Y+. Clearly, yα

uτ−→ 0 in X implies
yα

uτ−→ 0 in Y . The converse does not hold in general. For example, the sequence
(en) of standard unit vectors is un-null in c0, but not in `∞. In this section, we study
when the uτ -convergence passes from a sublattice to the whole space.

The following theorem extends [36, Theorem 4.3] to locally solid vector lattices.

Theorem 6. Let (X, τ) be a locally solid vector lattice and Y be a sublattice of X .
If (yα) is a net in Y and yα

uτ−→ 0 in Y , then yα
uτ−→ 0 in X in each of the following

cases:

1. Y is majorizing in X;

2. Y is τ -dense in X;

3. Y is a projection band in X .

Proof. 1. It is obvious to see that.

2. Let u ∈ X+. Fix ε > 0 and take j ∈ J . Since Y is τ -dense in X , there is
v ∈ Y+ such that ρj(u − v) < ε. But yα

uτ−→ 0 in Y and so, in particular,
ρj(|yα| ∧ v) → 0. So there is α0 such that ρj(|yα| ∧ v) < ε for all α > α0.
It follows from u ≤ v + |u − v|, that |yα| ∧ u ≤ |yα| ∧ v + |u − v|, and so
ρj(|yα| ∧ u) ≤ ρj(|yα| ∧ v) + ρj(u − v) < 2ε. Thus, ρj(|yα| ∧ u) → 0 in R.
Since j ∈ J was chosen arbitrary, we conclude that yα

uτ−→ 0 in X .

3. Let u ∈ X+. Then u = v + w, where v ∈ Y+ and w ∈ Y d
+. Now |yα| ∧ u =

|yα| ∧ v + |yα| ∧ w = |yα| ∧ v
τ−→ 0 in X , since yα ∈ Y

Corollary 4. If (X, τ) is a locally solid vector lattice and xα
uτ−→ 0 in X , then xα

uτ−→
0 in the Dedekind completion Xδ of X .

Corollary 5. If (X, τ) is a locally solid vector lattice and xα
uτ−→ 0 in X , then xα

uτ−→
0 in the topological completion X̂ of X .

The next result generalizes Corollary 4.6 in [36] and Proposition 16 in [61].

Theorem 7. Let (X, τ) be a Dedekind complete locally solid vector lattice that has
the Lebesgue property, and Y be a sublattice of X . If yα

uτ−→ 0 in Y , then yα
uτ−→ 0 in

X .
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Proof. Suppose yα
uτ−→ 0 in Y . By Theorem 6(1), yα

uτ−→ 0 in the ideal I(Y ) gen-
erated by Y in X . By Theorem 6(2), yα

uτ−→ 0 in the closure {I(Y )}
τ

of I(Y ). It
follows from [3, Theorem 3.7] that {I(Y )}

τ
is a band in X . Since X is Dedekind

complete, {I(Y )}
τ

is a projection band in X . Then yα
uτ−→ 0 in X , in view of Theo-

rem 6(3).

Suppose that (X, τ) is a locally solid vector lattice possessing the Lebesgue property.
Then, in view of Theorem 4 part (1), its topological completion (X̂, τ̂) possesses the
Lebesgue property as well. Hence, by [3, Theorem 3.24], X̂ is Dedekind complete.
It follows from [3, Theorem 2.41] that X is regular in X̂ , so that Xδ ⊆ X̂ by [30,
Theorem 2.10]. Now, Theorem 7 assures that, given a net (zα) in Xδ, if zα

uτ−→ 0 in
Xδ then zα

uτ−→ 0 in X̂ .

Proposition 9. Every band in a locally solid vector lattice is uτ -closed.

Proof. Let B be a band in X . Suppose (xα) is a net in B such that xα
uτ−→ x. Let

z ∈ Bd, then |xα| ∧ |z|
τ−→ |x| ∧ |z|. But |xα| ∧ |z| = 0 for all α and so |x| ∧ |z| = 0.

So x ∈ Bdd = B.

3.3 Unbounded relatively uniform convergence

In this section we discuss unbounded relatively uniform convergence. Recall that a
net (xα) in a vector lattice X is said to be relatively uniform convergent to x ∈ X if,
there is u ∈ X+ such that for any n ∈ N, there exists αn satisfying |xα− x| ≤ 1

n
u for

α > αn. In this case we write xα
ru−→ x and the vector u ∈ X+ is called regulator, see

[56, Defintion III.11.1]. Moreover, in a locally solid vector lattice (X, τ), xα
ru−→ 0

implies that xα
τ−→ 0. Indeed, let V be a solid neighborhood at zero. Since xα

ru−→ 0,
there is u ∈ X+ such that, for a given ε > 0, there is αε satisfying |xα| ≤ εu for all
α ≥ αε. Since V is absorbing, there is c ≥ 1 such that 1

c
u ∈ V . There is some α0

such that |xα| ≤ 1
c
u for all α ≥ α0. Since V is solid and |xα| ≤ 1

c
u for all α ≥ α0,

xα ∈ V for all α ≥ α0. That is xα
τ−→ 0.

The following result might be considered as an ru-version of Theorem 1 in [14].

Theorem 8. Let X be a vector lattice. Then the following conditions are equivalent.

(1) There exists a linear topology τ on X such that, for any net (xα) in X: xα
ru−→ 0

if and only if xα
τ−→ 0.

(2) There exists a norm ‖·‖ on X such that, for any net (xα) in X: xα
ru−→ 0 if and

only if ‖xα‖ → 0.

(3) X has a strong order unit.

Proof. (1)⇒ (3) It follows from [14, Lemma 1].
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(3)⇒ (2) Let e ∈ X be a strong order unit. Then xα
ru−→ 0 if and only if ‖xα‖e → 0,

where ‖x‖e := inf{r : |x| 6 re}.

(2)⇒ (1) It is trivial.

Let X be a vector lattice. A net (xα) in X is said to be unbounded relatively uniform
convergent to x ∈ X if |xα − x| ∧ w

ru−→ 0 for all w ∈ X+. In this case, we write
xα

uru−−→ x. Clearly, if xα
uru−−→ 0 in a locally solid vector lattice (X, τ), then xα

uτ−→ 0.

In general, uru-convergence is also not topological. Indeed, consider the vector lat-
tice L1[0, 1]. It satisfies the diagonal property for order convergence by [42, Theorem
71.8]. Now, by combining Theorems 16.3, 16.9, and 68.8 in [42] we get that for any
sequence fn in L1[0, 1] fn

o−→ 0 if and only if fn
ru−→ 0. In particular, fn

uo−→ 0 if and
only if fn

uru−−→ 0. But the uo-convergence in L1[0, 1] is equivalent to a.e.-convergence
which is not topological, see [46].

However, in some vector lattices the uru-convergence could be topological. For ex-
ample, if X is a vector lattice with a strong unit e, It follows from Theorem 8, that
ru-convergence is equivalent to the norm convergence ‖·‖e, where ‖x‖e := inf{λ >
0 : |x| ≤ λe}, x ∈ X . Thus uru-convergence in X is topological.

Consider the vector lattice c00 of eventually zero sequences. It is well known that
in c00: xα

ru−→ 0 if and only if xα
o−→ 0. For the sake of completeness we include a

proof of this fact. Clearly, xα
ru−→ 0 ⇒ xα

o−→ 0. For the converse, suppose xα
o−→ 0

in c00. Then there is a net yβ ↓ 0 in c00 such that, for any β, there is αβ satisfying
|xα| ≤ yβ for all α ≥ αβ . Let (en) denote the sequence of standard unit vectors
in c00. Fix β0. Then yβ0 = cβ01 ek1 + · · · + cβ0n ekn , c

β0
i ∈ R, i = 1, . . . , n. Since

yβ is decreasing, yβ ≤ yβ0 for all β ≥ β0. So, yβ = cβ1ek1 + · · · + cβnekn for all
β ≥ β0, c

β
i ∈ R, i = 1, . . . , n. Since yβ ↓ 0, limβ c

β
i = 0 for all i = 1, . . . , n. Let

u = ek1 + · · · + ekn . Take ε > 0. Then, there is βε ≥ β0 such that cβi < ε for all
β ≥ βε for i = 1, . . . , n. Consider yβε then there is αε such that |xα| ≤ yβε for all
α ≥ βε. But yβε = cβε1 ek1 + · · ·+ cβεn ekn ≤ εu. So, |xα| ≤ εu for all α ≥ αε. That is
xα

ru−→ 0. Thus, the uru-convergence in c00 coincides with the uo-convergence which
is pointwise convergence and, therefore, is topological.

Proposition 10. Let X be a Lebesgue and complete metrizable locally solid vector
lattice. Then xα

ru−→ 0 if and only if xα
o−→ 0.

Proof. The necessity is obvious. Let d be the metric that induces the Lebesgue locally
solid topology on X . For the sufficiency assume that xα

o−→ 0. Then there exists
yβ ↓ 0 such that for any β there is αβ with |xα| 6 yβ as α > αβ . Since d(yβ, 0)→ 0,
there exists an increasing sequence (βk)k of indeces with d(kyβk , 0) 6 1

2k
. Let sn =
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∑n
k=1 kyβk . We show the sequence (sn) is Cauchy. For n > m,

d(sn, sm) = d(sn − sm, 0) = d
( n∑
k=m+1

kyβk , 0
)
≤

n∑
k=m+1

d
(
kyβk , 0

)
≤

n∑
k=m+1

1

2k
→ 0, as n,m→∞.

Since X is complete, the sequence (sn) converges to some u ∈ X+. That is, u :=
∞∑
k=1

kyβk . Then

k|xα| 6 kyβk 6 u (∀α > αβk)

which means that xα
ru−→ 0.

Let X = R
Ω be the vector lattice of all real-valued functions on a set Ω.

Proposition 11. In the vector latticeX = R
Ω, the following conditions are equivalent:

(1) for any net (fα) in X: fα
o−→ 0 if and only if fα

ru−→ 0;

(2) Ω is countable.

Proof. (1)⇒ (2) Suppose fα
o−→ 0⇔ fα

ru−→ 0 for any net (fα) in X = R
Ω. Our aim

is to show that Ω is countable. Assume, in contrary, that Ω is uncountable. Let F(Ω)
be the collection of all finite subsets of Ω. For each α ∈ F(Ω), put fα = Xα, the
characteristic function on α. Clearly, fα ↑ 1, where 1 denotes the constant function
one on Ω. Then 1− fα ↓ 0 or 1− fα

o−→ 0 in RΩ. So, there is 0 ≤ g ∈ RΩ such that,
for any ε > 0, there exists αε satisfying 1− fα ≤ εg for all α > αε. Let n ∈ N. Then
there is a finite set αn ⊆ Ω such that 1 − fαn ≤ 1

n
g. Consequently, g(x) > n for all

x ∈ Ω \ αn. Let S = ∪∞n=1αn. Then S is countable and Ω \ S 6= ∅. Moreover, for
each x ∈ Ω \ S, we have g(x) > n for all n ∈ N, which is impossible.

(2)⇒ (1) Suppose that Ω is countable. So, we may assume that X = s, the space of
all sequences. Since, from xα

ru−→ 0 always follows that xα
o−→ 0, it is enough to show

that if xα
o−→ 0 then xα

ru−→ 0. To see this, let (xnα)n = xα
o−→ 0. Then, the net (xα) is

eventually bounded, say |xα| 6 u = (un)n ∈ s. Takew := (nun)n ∈ s. We show that
xα

ru−→ 0 with the regulator w. Let k ∈ N. Since xα
o−→ 0, for each n ∈ N, xnα → 0 in

R. Hence, there is αk such that k|x1
α| < w1, k|x2

α| < w2, · · · , k|xk−1
α | < wk−1 for all

α > αk. Note that for n > k, k|xnα| < wn. Therefore, k|xα| < w for all α > αk.

It follows from Proposition 11 that, for countable Ω, the uru-convergence in RΩ coin-
cides with the uo-convergence (which is pointwise) and therefore is topological. We
do not know, whether or not the countability of Ω is necessary for the property that
uru-convergence is topological in RΩ.
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3.4 Topological orthogonal systems and metrizabililty

A collection {eγ}γ∈Γ of positive vectors in a vector lattice X is called an orthogonal
system if eγ ∧ eγ′ = 0 for all γ 6= γ′. If, moreover, x ∧ eγ = 0 for all γ ∈ Γ
implies x = 0, then {eγ}γ∈Γ is called a maximal orthogonal system. It follows from
Zorn’s Lemma that every vector lattice containing at least one non-zero element has
a maximal orthogonal system. Motivated by Definition III.5.1 in [49], we introduce
the following notion.

Definition 2. Let (X, τ) be a locally solid vector lattice. An orthogonal system Q =
{eγ}γ∈Γ of non-zero elements in X+ is said to be a topological orthogonal system if
the ideal IQ generated by Q is τ -dense in X .

Lemma 7. If Q = {eγ}γ∈Γ is a topological orthogonal system in a locally solid
vector lattice (X, τ), then Q is a maximal orthogonal system in X .

Proof. Assume x∧ eγ = 0 for all γ ∈ Γ. By the assumption, there is a net (xα) in the
ideal IQ such that xα

τ−→ x. Without lost of generality, we may assume 0 ≤ xα ≤ x
for all α. Since xα ∈ IQ, there are 0 < µα ∈ R and γ1, γ2, . . . , γn, such that
0 ≤ xα ≤ µα(eγ1+eγ2+· · ·+eγn). So 0 ≤ xα = xα∧x ≤ [µα(eγ1+eγ2+· · ·+eγn)]∧x
= [µαeγ1 ] ∧ x+ · · ·+ [µαeγn ] ∧ x = 0. Hence xα = 0 for all α, and so x = 0.

We recall the following construction from [49, page 169]. Let X be a vector lattice
and Q = {eγ}γ∈Γ be a maximal orthogonal system of X . Let F(Γ) denote the
collection of all finite subsets of Γ ordered by inclusion. For each (n,H) ∈ N×F(Γ)
and x ∈ X+, define

xn,H :=
∑
γ∈H

x ∧ neγ.

Clearly {xn,H : (n,H) ∈ N×F(Γ)} is directed upward, and by Theorem 6.5 in [60]
it follows that

xn,H ≤ x for all (n,H) ∈ N×F(Γ). (3.4.1)

Moreover, Proposition II.1.9 in [49] implies xn,H ↑ x.

Theorem 9. LetQ = {eγ}γ∈Γ be an orthogonal system of a locally solid vector lattice
(X, τ). Then Q is a topological orthogonal system if and only if we have xn,H

τ−→ x
over (n,H) ∈ N×F(Γ) for each x ∈ X+.

Proof. For the backward implication take x ∈ X+. Since

xn,H =
∑
γ∈H

x ∧ neγ ≤ n
∑
γ∈H

eγ,

it follows that xn,H ∈ IQ for each (n,H) ∈ N×F(Γ). Also, we have, by assumption,
xn,H

τ−→ x. Thus, x ∈ IτQ, i.e., Q is a topological orthogonal system of X .

For the forward implication, note that Q is a maximal orthogonal system, by Lemma
7. Let x ∈ X+, and j ∈ J . Take ε > 0, let Vε,x,i := {z ∈ X : ρj(z − x) < ε}. Then
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Vε,x,j is a neighborhood of x in the τ -topology. Since IQ is dense in X with respect
to the τ -topology, there is xε ∈ IQ such that ρj(xε − x) < ε.

Note that

|x+
ε ∧ x− x| = |x+

ε ∧ x− x ∧ x|
≤ |x+

ε − x| by Theorem 1.9(2) in [4]
= |x+

ε − x+|
≤ |xε − x| again by Theorem 1.9(2) in [4].

Since xε ∈ IQ which is an ideal, x+
ε ∧ x ∈ IQ. Thus without lost of generality, we

can assume that there is xε ∈ IQ with 0 ≤ xε ≤ x such that ρj(xε − x) < ε. Now,
xε ∈ IQ implies that there are Hε ∈ F(Γ) and nε ∈ N such that

xε ≤ nε
∑
γ∈Hε

eγ. (3.4.2)

Let
w := x ∧

∑
γ∈Hε

nεeγ. (3.4.3)

It follows from 0 ≤ w ≤
∑
γ∈Hε

nεeγ and the Riesz decomposition property, that, for

each γ ∈ Hε, there exists yγ with

0 ≤ yγ ≤ nεeγ (3.4.4)

such that
w =

∑
γ∈Hε

yγ. (3.4.5)

From (3.4.3) and (3.4.5), we have

yγ ≤ x (∀γ ∈ Hε). (3.4.6)

Also, (3.4.4) and (3.4.6) imply that yγ ≤ nεeγ ∧ x. Now

w =
∑
γ∈Hε

yγ ≤
∑
γ∈Hε

x ∧ nεeγ = xnε,Hε . (3.4.7)

But, from (3.4.2) and (3.4.3), we get

0 ≤ xε ≤ w. (3.4.8)

Thus, it follows from (3.4.7), (3.4.8), and (3.4.1), that 0 ≤ xε ≤ xnε,Hε ≤ x. Hence,
0 ≤ x − xnε,Hε ≤ x − xε and so ρj(x − xn,H) ≤ ρj(x − xnε,Hε) ≤ ρj(x − xε) for
each (n,H) ≥ (nε, Hε). Therefore xn,H

τ−→ x.

Corollary 6. Let (X, τ) be a locally solid vector lattice. The following statements
are equivalent:
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1. e ∈ X+ is a quasi-interior point;

2. for each x ∈ X+, x− x ∧ ne
τ−→ 0 as n→∞.

Moreover, if (X, τ) possesses the σ-Lebesgue property, then every weak unit in X is
a quasi-interior point.

Proof. The first part is obvious, for the second part, let x ∈ X+, and let e be a weak
unit. Then x ∧ ne ↑ x. So, by the σ-Lebesgue property, we get x − x ∧ ne τ−→ 0 as
n→∞.

Proposition 12. Let e ∈ X+. Then e is a quasi-interior point in (X, τ) if and only if
e is a quasi-interior point in the topological completion (X̂, τ̂).

Proof. For the forward implication let x̂ ∈ X̂+. Our aim is to show that x̂− x̂∧ne τ−→
0 in X̂ as n→∞. By Theorem 4, part (2), X̂+ = X

τ̂

+. So, there is a net (xα) in X+

such that xα
τ̂−→ x̂ in X̂ . Let j ∈ J and ε > 0. Since ρ̂j(xα − x̂) → 0, there is αε

satisfying
ρ̂j(xαε − x̂) < ε. (3.4.9)

Since e is a quasi-interior point in X and xαε ∈ X+, we have xαε − xαε ∧ ne
τ−→ 0 in

X as n→∞. Thus, there is nε ∈ N such that

ρ̂j(xαε − ne ∧ xαε) = ρj(xαε − ne ∧ xαε) < ε (∀n > nε). (3.4.10)

Now, 0 ≤ x̂ − x̂ ∧ ne = x̂ − xαε + xαε − ne ∧ xαε + ne ∧ xαε − x̂ ∧ ne. So
ρ̂j(x̂ − x̂ ∧ ne) ≤ ρ̂j(x̂ − xαε) + ρ̂j(xαε − ne ∧ xαε) + ρ̂j(ne ∧ xαε − x̂ ∧ ne). For
n > nε, we have, by (3.4.9), (3.4.10), and [4, Theorem 1.9(2)], that

ρ̂j(x̂− x̂ ∧ ne) ≤ ε+ ε+ ρ̂j(ne ∧ xαε − x̂ ∧ ne) ≤ ε+ ε+ ρ̂j(xαε − x̂) ≤ 3ε.

Therefore, e is a quasi-interior point in X̂ .

The backward implication follows trivially from Corollary 6.

Another way to see the forward implication of Proposition 12, suppose that e is a
quasi-interior point of X , then the closure of Ie in the τ -topology is X . By Theorem
3(iii), τ̂ induces τ in X , so the closure of Ie with respect to τ̂ in X is X itself. But
Ie
τ̂

in X is subset of Ie
τ̂

in X̂ , so X ⊆ Ie
τ̂

which implies by Theorem 3 (iv) that
X̂ = X

τ̂ ⊆ Ie
τ̂
. Hence X̂ = Ie

τ̂
. Therefore e is a quasi-interior point of X̂ .

Theorem 10. Let (X, τ) be a locally solid vector lattice, and Q = {eγ}γ∈Γ be a
topological orthogonal system of (X, τ). Then xα

uτ−→ 0 if and only if |xα| ∧ eγ
τ−→ 0

for every γ ∈ Γ.
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Proof. The forward implication is trivial. For the backward implication, assume
|xα| ∧ eγ

τ−→ 0 for every γ ∈ Γ. Let u ∈ X+, j ∈ J . Fix ε > 0. We have

|xα| ∧ u = |xα| ∧ (u− un,H + un,H)

≤ |xα| ∧ (u− un,H) + |xα| ∧ un,H
≤ (u− un,H) + |xα| ∧

∑
γ∈H

u ∧ neγ

≤ (u− un,H) + |xα| ∧
∑
γ∈H

neγ

≤ (u− un,H) + n
(
|xα| ∧

∑
γ∈H

eγ
)

= (u− un,H) + n
∑
γ∈H

|xα| ∧ eγ,

where the last equality is provided by Theorem 6.5 in [60].

Now, Theorem 9 assures that un,H
τ−→ u, and so, there exists (nε, Hε) ∈ N ×F(Γ)

such that
ρj(u− unε,Hε) < ε. (3.4.11)

Thus, |xα|∧u ≤ u−unε,Hε+
∑
γ∈Hε

nε(eγ∧|xα|). But, by the assumption, eγ∧|xα|
τ−→ 0

for all γ ∈ Γ, and so nε(eγ ∧ |xα|)
τ−→ 0. Hence, there is αε,Hε such that

ρj
(
nε(eγ ∧ |xα|)

)
<

ε

|Hε|
(∀α ≥ αε,Hε , ∀γ ∈ Hε). (3.4.12)

Here |Hε| denotes the cardinality of Hε. For α ≥ αε,Hε , we have

ρj(|xα| ∧ u) ≤ ρj(u− unε,Hε) + ρj
(
nε
∑
γ∈Hε

|xα| ∧ eγ
)

≤ ε+
∑
γ∈Hε

ρj
(
nε(eγ ∧ |xα|)

)
< ε+

∑
γ∈Hε

ε

|Hε|
= 2ε,

where the second inequality follows from (3.4.11) and the third one from (3.4.12).
Therefore, ρj(|xα| ∧ u)→ 0, and so xα

uτ−→ 0.

Corollary 7. Let (X, τ) be a locally solid vector lattice, and e ∈ X+ be a quasi-
interior point. Then xα

uτ−→ 0 if and only if |xα| ∧ e
τ−→ 0.

Proof. The forward implication is trivial. For the backward implication assume |xα|∧
e

τ−→ 0. Let u ∈ X+, and fix ε > 0. Note that for all k ∈ N,

|xα|∧u ≤ |xα|∧(u − u ∧ ke + u ∧ ke) ≤ |xα|∧(u − u ∧ ke ) + |xα|∧(u ∧ ke)

≤ (u − u ∧ ke ) + k|xα| ∧ (ku ∧ ke) = (u − u ∧ ke ) + k [|xα| ∧ (u ∧ e)] .
Hence |xα| ∧ u ≤ (u − u ∧ ke ) + k (|xα| ∧ e). Thus for all j ∈ J ,

ρj(|xα| ∧ u) ≤ ρj (u − u ∧ ke ) + kρj (|xα| ∧ e)
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for all α and for all k ∈ N. Since e is a quasi-interior point, and u ∈ X+, for the fixed
ε, and for all j ∈ J , there exist kε,j ∈ N such that ρj (u − u ∧ kε,je ) < ε

2
.

Furthermore. it follows from xα ∧ e
τ−→ 0, that for the fixed ε, and for all j ∈ J , there

exists αj,ε, such that ρj (|xα| ∧ e) < ε
2kε,j

, that is kε,jρj (|xα| ∧ e) < ε
2
. Thus for the

fixed ε, and for all j ∈ J , there exists αj,ε, and kε,j ∈ N, such that α ≥ αj,ε implies
that ρj (|xα| ∧ u) ≤ ε

2
+ ε

2
= ε. Therefore xα

uτ−→ 0 as desired.

Theorem 11. Let (X, τ) be a sequentially complete locally solid vector lattice, where
τ is generated by a family (ρj)j∈J of Riesz pseudonorms. Let e ∈ X+. The following
are equivalent:

1. e is a quasi-interior point;

2. for every net (xα) in X+, if xα ∧ e
τ−→ 0 then xα

uτ−→ 0;

3. for every sequence (xn) in X+, if xn ∧ e
τ−→ 0 then xn

uτ−→ 0.

Proof. (1)⇒(2) It follows from Corollary 7.

(2)⇒(3) is trivial.

(3)⇒(1).

Suppose (3). Fix x ∈ X+. We need to show that x − (x ∧ ne) τ−→ 0 or, equivalently
by [4, Theorem 1.7(1)] (x− ne)+ τ−→ 0 as a sequence of n. Put w = x ∨ e. The ideal
Iw is lattice and norm isomorphic (as a vector lattice) to C(K) for some compact
Hausdorff space K, with w corresponding to 1. Since x, e ∈ Iw, we may consider x
and e as elements of C(K). Note that x ∨ e = 1 implies that x and e never vanish
simultaneously.

For each n ∈ N, we define

Fn =
{
t ∈ K : x(t) > ne(t)

}
and On =

{
t ∈ K : x(t) > ne(t)

}
.

Observe thatOn ⊆ Fn, andOn is open inK, because for any t ∈ On, (x−ne)(t) > 0,
that is On is the inverse image of (0,∞).

And Fn is closed, because for any t ∈ Fn, (x − ne)(t) > 0, that is Fn is the inverse
image of [0,∞).

Claim 1: Fn+1 ⊆ On. Indeed, let t ∈ Fn+1. Then x(t) > (n + 1)e(t). If e(t) > 0
then x(t) > ne(t), so that t ∈ On. If e(t) = 0 then x(t) > 0, but x and e never vanish
simultaneously, so x(t) > 0, and hence t ∈ On.

By Urysohn’s Lemma, we find fn ∈ C(K) such that 0 6 fn 6 x, fn agrees with x
on Fn+1 and vanishes outside of On. We can also view fn as an element of X .

Claim 2: n(fn ∧ e) 6 x. Let t ∈ K. If t ∈ On then n(fn ∧ e)(t) 6 ne(t) < x(t). If
t /∈ On then fn(t) = 0, so that the inequality is satisfied trivially.
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Claim 3:
(
x−(n+1)e

)+
6 fn. Again, let t ∈ K. If t ∈ Fn+1 then

(
x−(n+1)e

)+
6

x(t) = fn(t). If t /∈ Fn+1 then x(t) < (n + 1)e(t), so that
(
x − (n + 1)e

)+
(t) = 0

and the inequality is satisfied trivially.

Now, Claim 2 yields fn ∧ e 6 1
n
x, but fn ∧ e > 0, so 0 6 fn ∧ e 6 1

n
x, and so for all

j ∈ J , we have 0 ≤ ρj(fn∧ e) ≤ 1
n
ρj(x), and as n→∞, we get that ρj(fn∧ e)→ 0,

that is fn ∧ e
τ−→ 0. By assumption, this yields fn

uτ−→ 0. Since 0 6 fn 6 x for
every n, the sequence (fn) is order bounded, so take w = x, to get that fn ∧ x

τ−→ 0,
therefore fn

τ−→ 0. Now Claim 3 yields
(
x − (n + 1)e

)+ τ−→ 0, which concludes the
proof.

Recall that a topological vector space is metrizable if and only if it has a countable
neighborhood base at zero, [3, Theorem 2.1]. In particular, a locally solid vector
lattice (X, τ) is metrizable if and only if its topology τ is generated by a countable
family (ρk)k∈N of Riesz pseudonorms because there is a one to one corresponding
between Riesz pseudonorms and neighborhood base at zero, as follows:
Let εn = 1

n
, n ∈ N;

Vn,k = {x ∈ X : ρk(x) <
1

n
}

Lemma 8. Suppose that ρ : X ×X −→ [0,∞] is a semimetric, then d : X ×X −→
[0,∞] defined by d(x, y) := ρ(x,y)

1+ρ(x,y)
is also a semimetric. In particuler, if ρ is a

metric, then d is a metric as well.

Proof. Clearly d(x, y) ≥ 0 for all x, y ∈ X and d(x, y) = d(y, x). We prove the
triangle inequality. That is for all x, y, z we have d(x, y) ≤ d(x, z) + d(z, y). Let
f(t) = t

1+t
for t ∈ [0,∞), then f ′(t) = 1

(1+t)2
> 0. Thus, f is an increasing function

over [0,∞). That is, if t ≤ s then t
1+t
≤ s

1+s
. We know that ρ satisfies triangle

inequality. So, ρ(x, y) ≤ ρ(x, z) + ρ(z, y). Then we get

ρ(x, y)

1 + ρ(x, y)
≤ ρ(x, z) + ρ(z, y)

1 + ρ(x, z) + ρ(z, y)

=
ρ(x, z)

1 + ρ(x, z) + ρ(z, y)
+

ρ(z, y)

1 + ρ(x, z) + ρ(z, y)

≤ ρ(x, z)

1 + ρ(x, z)
+

ρ(z, y)

1 + ρ(z, y)
.

Thus d(x, y) ≤ (x, z) + d(z, y).

Lemma 9. Let (xα) be a net in R. Then, xα → x in R if and only if |xα−x|
1+|xα−x| → 0 in

R.

Proof. (⇒) Trivial.
(⇐) Suppose |xα−x|

1+|xα−x| → 0 in R. Our aim is to show that xα → x in R. Given

ε > 0. Take δ = ε
1+ε

. Note 0 < δ < 1. Since |xα−x|
1+|xα−x| → 0 in R, there is

α0 such that |xα−x|
1+|xα−x| < δ for all α > α0. or |xα−x|

1+|xα−x| <
ε

1+ε
for all α > α0, so
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(1 + ε) |xα − x| < ε+ ε|xα − x|, that is |xα − x| < ε for all α > α0. Thus, xα → x
in R.

The following result gives a sufficient condition for the metrizabililty of uτ -topology.

Proposition 13. Let (X, τ) be a complete metrizable locally solid vector lattice. If X
has a countable topological orthogonal system, then the uτ -topology is metrizable.

Proof. First note that, since (X, τ) is metrizable, τ is generated by a countable family
(ρk)k∈N of Riesz pseudonorms.

Now suppose (en)n∈N to be a topological orthogonal system. For each n ∈ N, put

dn(x, y) :=
∞∑
k=1

1
2k

ρk(|x−y|∧en)
1+ρk(|x−y|∧en)

. Note that each dn is a semimetric by Lemma 8, and

dn(x, y) ≤ 1 for all x, y ∈ X . If dn(x, y) = 0, then ρk(|x−y|∧en) = 0 for all k ∈ N,

so (|x− y| ∧ en) = 0. For x, y ∈ X , let d(x, y) :=
∞∑
n=1

1
2n
dn(x, y). Clearly, d(x, y) is

nonnegative. Also d satisfies the triangle inequality, Indeed

d (x, y) =
∞∑
n=1

1

2n
dn (x, y) ≤

∞∑
n=1

1

2n
(dn (x, z) + dn (z, y))

=
∞∑
n=1

1

2n
dn (x, z) +

∞∑
n=1

1

2n
dn (z, y)

= d (x, z) + d (z, y) .

It is easy to see that d(x, y) = d(y, x) for all x, y ∈ X . Now d(x, y) = 0 if and only
if dn(x, y) = 0 for all n ∈ N if and only if ρk(|x − y| ∧ en) = 0 for all k ∈ N if and
only if (|x− y| ∧ en) = 0 for all n ∈ N if and only if |x− y| = 0 if and only if x = y.
Thus (X, d) is a metric space.

It remains to show that d generates the uτ -topology. Suppose that (xα)α∈A is a net in
X such that xα

uτ−→ 0. Then by Theorem 10 we have |xα| ∧ en
τ−→ 0 over α for each

n ∈ N. Thus, for each k ∈ N, ρk (|xα| ∧ en)→ 0 over α and this holds also for each
n ∈ N. Given n ∈ N. Then,

ρk (|xα| ∧ en)→ 0 over α for each k ∈ N (3.4.13)

Our aim is to show that xα
dn−→ 0 where dn (x, y) =

∞∑
k=1

1
2k

ρk(|x−y|∧en)
1+ρk(|x−y|∧en)

. Given ε > 0.

Then there is k0 ∈ N such that
∞∑

k=k0

1

2k
<
ε

2
(3.4.14)

For k = 1, · · · , k0 − 1, there is α0 such that

ρ1 (|xα| ∧ en) + · · ·+ ρk0−1 (|xα| ∧ en) <
ε

2
for all α > α0 (3.4.15)
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For α > α0,

dn (xα, 0) =
∞∑
k=1

1

2k
ρk (|xα| ∧ en)

1 + ρk (|xα| ∧ en)

=

k0−1∑
k=1

1

2k
ρk (|xα| ∧ en)

1 + ρk (|xα| ∧ en)
+

∞∑
k=k0

1

2k
ρk (|xα| ∧ en)

1 + ρk (|xα| ∧ en)

In the first sum note that 1
2k

1
1+ρk(|xα|∧en)

≤ 1 and in the second sum ρk(|xα|∧en)
1+ρk(|xα|∧en)

≤ 1.
So for α > α0,

dn (xα, 0) ≤
k0−1∑
k=1

ρk (|xα| ∧ en) +
∞∑

k=k0

1

2k

By 3.4.14 and 3.4.15, <
ε

2
+
ε

2
= ε.

Hence, we have proved that for n ∈ N, dn (xα, 0) → 0 over α. Note that d (x, y) =
∞∑
n=1

1
2n
dn (x, y). Given ε > 0, there is n0 ∈ N such that

∞∑
n=n0

1

2n
<
ε

2
. (3.4.16)

Also, there is αε such that

d1 (xα, 0) + · · ·+ dn0−1 (xα, 0) <
ε

2
for all α > αε. (3.4.17)

Therefore, for all α > αε,

d (xα, 0) =
∞∑
n=1

1

2n
dn (xα, 0)

=

n0−1∑
n=1

1

2n
dn (xα, 0) +

∞∑
n=n0

1

2n
dn (xα, 0)

≤
n0−1∑
n=1

dn (xα, 0) +
∞∑

n=n0

1

2n

By 3.4.16 and 3.4.17, <
ε

2
+
ε

2
= ε.

So far we have shown that if xα
uτ−→ 0 then xα

d−→ 0. Conversely, suppose that

xα
d−→ 0 , i.e. d (xα, 0) → 0 over α. But d (xα, 0) =

∞∑
n=1

1
2n
dn (xα, 0). Note that

1
2n
dn (xα, 0) ≤ d (xα, 0) → 0 over α, so dn (xα, 0) → 0 over α for all n ∈ N. Note

that dn (xα, 0) =
∞∑
k=1

1
2k

ρk(|xα|∧en)
1+ρk(|xα|∧en)

, and 1
2k

ρk(|xα|∧en)
1+ρk(|xα|∧en)

≤ dn (xα, 0) → 0 over α,

then by Lemma 9 ρk (|xα| ∧ en) → 0 over α for all k ∈ N, and so for all n ∈ N. It
follows that |xα|∧en

τ−→ 0 for all n ∈ N. Again by Theorem 10 we have xα
uτ−→ 0.
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Recall that a topological space X is called submetrizable if its topology is finer that
some metric topology on X .

Proposition 14. Let (X, τ) be a metrizable locally solid vector lattice. If X has a
weak unit, then the uτ -topology is submetrizable.

Proof. Note that, since (X, τ) is metrizable, τ is generated by a countable family
(ρk)k∈N of Riesz pseudonorms.

Suppose that e ∈ X+ is a weak unit. Put d(x, y) :=
∞∑
k=1

1
2k

ρk(|x−y|∧e)
1+ρk(|x−y|∧e) . Note that

d(x, y) = 0 if and only if ρk(|x− y| ∧ e) = 0 for all k ∈ N if and only if |x− y| ∧ e =
0 and, since e is a weak unit, x = y. By the same argument used in the proof
of Proposition 13, it can be shown that d satisfies the triangle inequality. Assume
xα

uτ−→ x. Then, ρk(|x − y| ∧ e) → 0 for all k ∈ N. Now, we show shown that

xα
d−→ x. Fix ε > 0. There is k0 ∈ N such that

∞∑
k=k0

1
2k
< ε

2
. Since ρk(|x− y| ∧ e)→ 0

for all k ∈ N, there is α0 such that
k0−1∑
k=1

1
2k

ρk(|x−y|∧e)
1+ρk(|x−y|∧e) <

ε
2

for all α ≥ α0. Thus, for

all α ≥ α0,

d(xα, x) =
∞∑
k=1

1

2k
ρk(|xα − x| ∧ e)

1 + ρk(|xα − x| ∧ e)

≤
k0−1∑
k=1

1

2k
ρk(|xα − x| ∧ e)

1 + ρk(|xα − x| ∧ e)
+

∞∑
k=k0

1

2k

<
ε

2
+
ε

2
= ε.

Thus, xα
d−→ x.

Therefore, the uτ -topology is finer than the metric topology generated by d, and hence
uτ -topology is submetrizable.

The converse of Proposition 13 holds for a particular case as shown in Proposition
21. Where the converse of Proposition 14 in general, does not hold, see [34, Example
2.1].

3.5 uτ -Completeness

A subset A of a locally solid vector lattice (X, τ) is said to be (sequentially) uτ -
complete if, it is (sequentially) complete in the uτ -topology. In this section, we relate
sequential uτ -completeness of subsets of X with the Lebesgue and Levi properties.
First, we remind the following theorem.

Theorem 12. [59, Theorem 1] If (X, τ) is a locally solid vector lattice, then the
following statements are equivalent:
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1. (X, τ) has the Lebesgue and Levi properties;

2. X is τ -complete, and c0 is not lattice embeddable in (X, τ).

Recall that two locally solid vector lattices (X1, τ1) and (X2, τ2) are said to be iso-
morphic, if there exists a lattice isomorphism from X1 onto X2 that is also a homeo-
morphism; in other words, if there exists a mapping from X1 onto X2 that preserves
the algebraic, the lattice, and the topological structures. [3, Page 52].

A locally solid vector lattice (X1, τ1) is said to be lattice embeddable into another
locally solid vector lattice (X2, τ2) if there exists a sublattice Y2 of X2 such that
(X1, τ1) and (Y2, τ2) are isomorphic.

Note that (X, τ) can have the Lebesgue and Levi properties and simultaneously con-
tains c0 as a sublattice, but not as a lattice embeddable copy. The following example
illustrates this.

Example 3. Let s denote the vector lattice of all sequences in R with coordinatewise
ordering. Clearly, c0 is a sublattice of s. For j ∈ N, define the Riesz pseudonorm ρj
on s as follows:

ρj((xn)n∈N) := |xj|.
Let R := {ρj : j ∈ N}. Then R generates a locally solid topology τ on s. We show
that (s, τ) has the Lebesgue and Levi properties. Let 0 ≤ xα ↑ be a τ -bounded net in
s. For each α, xα = (xαn)n∈N. The condition 0 ≤ xα ↑ implies that, for each j ∈ N,
(xαj )α is an increasing net in R+. Note that the ρj’s here are Riesz seminorms, so the
τ -boundedness of the net (xα) assures that, for each j, the net (xαj )α is bounded in R.
Thus, by the monotone convergence theorem in R, we have for each j, 0 ≤ xαj ↑ xj
for some xj ∈ R. Define x := (xj)j∈N ∈ s, then xα ↑ x. Now, suppose xα ↓ 0
in s. Then, for each j ∈ N, the sequence (xαj )α decreases to zero in R. That is
ρj(x

α) = xαj → 0 in R for each j ∈ N. Hence, xα τ−→ 0. Therefore, (s, τ) possesses
the Lebesgue and Levi properties. Although c0 is a sublattice of s, but (c0, ‖·‖∞) is
not lattice embeddable in (s, τ). To see this, let Φ : (c0, ‖·‖∞) → (s, τ) be a lattice
embedding. Let (en) be the standard basis in c0. Then (Φen) is a disjoint sequence
in (s, τ), which is easily seen to converge to 0 in (s, τ). It follows that en → 0 in
(c0, ‖·‖∞), which is absurd.

Proposition 15. Let (X, τ) be a complete locally solid vector lattice that has the
Lebesgue property. If every τ -bounded uτ -Cauchy sequence is uτ -convergent in X ,
then (X, τ) also has the Levi property.

Proof. Suppose X does not possess the Levi property. Then, by Theorem 12, c0 is
lattice embeddable in (X, τ). So there is a map Φ : (c0, ‖·‖∞) → (X, τ) which is
a lattice embedding. Let sn =

∑n
k=1 ek, where ek’s denote the standard unit vectors

in c0. It follows from [36, Lemma 6.1] that (sn) is un-Cauchy in (c0, ‖·‖∞). Thus
(Φsn) is uτ -Cauchy in (Φc0, τ). Now [3, Theorem 3.24] assures that X is Dedekind
complete and hence (Φsn) is uτ -Cauchy in (X, τ) by Theorem 7. Suppose Φsn

uτ−→ x
in X . Since 0 ≤ Φsn ↑ and (X, τ) has the Lebesgue property, it follows by a similar
argument to [36, Lemma 1.2(i)] that x = supn Φsn, so that Φsn → x in (X, τ) due to

31



the Lebesgue property again. This implies (Φsn) is Cauchy in (X, τ), so that (sn) is
Cauchy in (c0, ‖·‖∞), which is absurd.

Theorem 13. [59, Theorem 1′] If (X, τ) is a Dedekind complete locally solid vector
lattice, then the following statements are equivalent:

1. (X, τ) has the σ-Lebesgue and σ-Levi properties;

2. X is τ -sequentially complete, and c0 is not lattice embeddable in (X, τ).

Using the proof of Proposition 15 and Theorem 13, one can easily prove the following
result.

Proposition 16. Let X be a Dedekind complete vector lattice equipped with a se-
quentially complete locally solid topology τ . If (X, τ) has the Lebesgue property and
every τ -bounded uτ -Cauchy sequence is uτ -convergent in X , then (X, τ) also has
the σ-Levi property.

As it was observed in [36, page 271 before Example 6.5], the Lebesgue property can
not be removed from Propositions 15 and 16.

Clearly, every finite dimensional locally solid vector lattice (X, τ) is uτ -complete.
On the contrary of [36, Proposition 6.2], we provide an example of a τ -complete
locally solid vector lattice (X, τ) possessing the Lebesgue property such that it is
uτ -complete and dimX =∞.

Example 4. Let X = s andR = (ρj)j∈N such that ρj((xn)) := |xj|, where (xn) ∈ s.

First, we show that (X,R) is τ -complete. Let (xα) be a τ -Cauchy net in (X,R), then
xα = (xαn)n∈N and xα − xβ τ−→ 0 over α, β. For j ∈ N, we have ρj(xα − xβ) → 0

in R over α, β. That is, for j ∈ N, |xαj − xβj | → 0 in R over α, β. Thus, for each
j ∈ N, the net (xαj )α is Cauchy in R and so, there is xj ∈ R such that xαj → xj over
α. Take x := (xj)j∈N ∈ s. Since, for each j ∈ N, xαj → xj over α in R, it follows that
ρj(x

α − x)→ 0 in R. Hence, xα τ−→ x. Therefore, (X,R) is τ -complete.

Second, we show that (X,R) has the Lebesgue property. Assume xα ↓ 0, our aim is
to show that xα τ−→ 0. We know that xα = (xαn)n∈N. For each j ∈ N, xα ↓ 0 implies
that xαj ↓ 0 in R. That is ρj(xα) ↓ 0 in R. Thus, xα τ−→ 0.

Finally, we show that (X,R) is uτ -complete. Suppose (xα) is uτ -Cauchy net. Then,
for each u ∈ X+, we have |xα−xβ| ∧u τ−→ 0. Now, u = un and, xα = xαn. Let j ∈ N,
then ρj(|xα − xβ| ∧ u) → 0 in R over α, β if and only if |xαj − x

β
j | ∧ uj → 0 in R if

and only if |xαj − x
β
j | → 0 in R over α, β.

Thus, (xαj )α is Cauchy in R and so there is xj ∈ R such that xαj → xj in R over α. Let
x = (xj)j∈N ∈ s, then, clearly, xα uτ−→ x.
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CHAPTER 4

UNBOUNDED m-TOPOLOGY IN MULTI-NORMED VECTOR
LATTICES

Unbounded convergences have attracted many researchers (see for instance [31, 27,
30, 21, 18, 61, 36, 8, 41, 37, 35, 29, 28, 52, 16]. Unbounded convergences are well-
investigated in vector and normed lattices (cf. [18, 30, 36, 53, 57]). In this chapter,
we also extend several previous results from [18, 30, 36, 53, 57, 61] to multi-normed
setting. This work is a continuation of Chapter 3, in which unbounded topological
convergence was studied in locally solid vector lattices.

Let (X, τ) be a locally solid vector lattice, if τ has base at zero consisting of convex-
solid sets, then (X, τ) is called a locally convex-solid vector lattice. It is known
that a linear topology τ on X is locally convex-solid if and only if there exists a
familyM = {mλ}λ∈Λ of lattice seminorms that generates τ (cf. [3, Theorem 2.25]).
Moreover, for suchM, xα

τ−→ x if and only ifmλ(xα−x) −→
α

0 in R for eachmλ ∈M.
Since τ is Hausdorff, the familyM is separating.

Recall that subset A in a topological vector space (X, τ) is called τ -bounded if, for
every τ -neighborhood V of zero, there exists λ > 0 such that A ⊆ λV . In the case
when the topology τ is generated by a family {mλ}λ∈Λ of seminorms, a subset A of
X is τ -bounded if and only if supa∈Amλ(a) <∞ for all λ ∈ Λ.

4.1 Multi-normed vector lattices

Let (X, τ) be a locally convex-solid vector lattice with an upward directed family
M = {mλ}λ∈Λ of lattice seminorms generating τ . Throughout this chapter, the
pair (X,M) will be referred as a multi-normed vector lattice (MNVL). Also, τ -
convergence, τ -Cauchy, τ -complete, etc. will be denoted by m-convergence, m-
Cauchy, m-complete, etc.

Let X be a vector space, E be a vector lattice, and p : X → E+ be a vector norm (i.e.
p(x) = 0⇔ x = 0, p(λx) = |λ|p(x) for all λ ∈ R, x ∈ X , and p(x+y) ≤ p(x)+p(y)
for all x, y ∈ X), then (X, p,E) is called a lattice-normed space, abbreviated as LNS,
see [40]. If X is a vector lattice, and the vector norm p is monotone (i.e. |x| ≤
|y| ⇒ p(x) ≤ p(y)), then the triple (X, p,E) is called a lattice-normed vector lattice,
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abbreviated as LNVL (cf. [8, 9]).

Given an LNS (X, p,E). Recall that a net (xα) in X is said to be p-convergent to x
(see [8]) if p(xα − x)

o−→ 0 in E. In this case, we write xα
p−→ x. A subset A of X is

called p-bounded if there exists e ∈ E such that p(a) ≤ e for all a ∈ A.

Proposition 17. Every MNVL induces an LNVL. Moreover, for arbitrary nets, p-
convergence in the induced LNVL implies m-convergence, and they coincide in the
case of p-bounded nets.

Proof. Let (X,M) be an MNVL, then there is a separating family {mλ}λ∈Λ of lattice
seminorms on X . Let E = R

Λ be the vector lattice of all real-valued functions on Λ,
and define p : x 7→ px from X into E+ such that px[λ] := mλ(x).

We show that p is a vector norm on X .

• If x = 0, then p0[λ] = mλ(0) = 0, so p0[λ] = 0 for all λ ∈ Λ. So p0 = 0.
Assume, px = 0, then px[λ] = 0 for all λ ∈ Λ, or mλ(x) = 0 for all λ ∈ Λ.
Since (mλ)λ∈Λ is a separating family of lattice seminorms onX , we have x = 0.
Therefore, px = 0 if and only if x = 0.

• For r ∈ R, we show prx = |r|px. Indeed, prx[λ] = mλ(rx) = |r|mλ(x) =
|r|px. Next we show triangle inequality. For all x ∈ X . Let λ ∈ Λ, then
p(x+y)[λ] = mλ(x + y) ≤ mλ(x) + mλ(y) = px[λ] + py[λ] = (px + py) [λ].
Thus, p(x+y) ≤ px + py.

Now we show that p is monotone. Assume that |x| ≤ |y|, then for λ ∈ Λ , px[λ] =
mλ(x) ≤ mλ(y) = py[λ], hence p is monotone. Therefore (X, p,E) is an LNVL.

Let (xα) be a net in X . If xα
p−→ 0, then pxα

o−→ 0 in R
Λ, and so pxα[λ] → 0 or

mλ(xα)→ 0 for all λ ∈ Λ. Hence xα
m−→ 0.

Finally, assume a net (xα) to be p-bounded. If xα
m−→ 0, then mλ(xα) → 0 or

pxα[λ] → 0 for each λ ∈ Λ. Since (xα) is p-bounded, pxα
o−→ 0 in R

Λ. That is
xα

p−→ 0.

The following proposition characterizes quasi-interior points, and should be com-
pared with [4, Theorem 4.85].

Proposition 18. Let (X,M) be an MNVL, then the following statements are equivalent:

1. e ∈ X+ is a quasi-interior point;

2. for all x ∈ X+, x− x ∧ ne m−→ 0 as n→∞;

3. e is strictly positive on X∗, i.e., 0 < f ∈ X∗ implies f(e) > 0, where X∗

denotes the topological dual of X .
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Proof. (1)⇒(2) Suppose that e is a quasi-interior point of X , then Ie
m

= X . Let
x ∈ X+. Then x ∈ Ie

m
, so there exists a net (xα) in Ie that m-converges to x.

But xα
m−→ x implies |xα|

m−→ |x| = x. Moreover, xα ∧ x
m−→ x ∧ x = x, and

xα ∧ x ≤ xα implies that xα ∧ x ∈ I , because Ie is an ideal. So we can assume also
that xα ≤ x. Hence, for any x ∈ X+, there is a net 0 ≤ xα ∈ Ie and xα ≤ x. Then
0 ≤ xα∧ne ≤ x∧ne ≤ x for all n ∈ N. Now, take λ ∈ Λ, and let ε > 0, then there is
αε such that mλ(x−xαε) < ε. But 0 ≤ xαε ∈ Ie, so 0 ≤ xαε ≤ kεe for some kε ∈ N.
Since 0 ≤ xαε = xαε∧kεe ≤ x∧kεe ≤ x, we getmλ(x−x∧ne) ≤ mλ(x−x∧kεe) ≤
mλ(x − xα ∧ kεe) = mλ(x − xαε) < ε for all n ≥ kε. Hence mλ(x − x ∧ ne) → 0

as n→∞. Since λ ∈ Λ was chosen arbitrary, we get x− x ∧ ne m−→ 0.

(2)⇒(3) Let 0 < f ∈ X∗ and assume in contrary that f (e) = 0. Now let x ∈ X+,
then 0 ≤ x ∧ ne ≤ ne for all n ∈ N. Since 0 < f ∈ X∗, f (x ∧ ne) ≤ f (ne) =

nf (e) = 0. So, f (x ∧ ne) = 0 for all n ∈ N. Since x ∧ ne m−→ x and f ∈ X∗,
by continuity of f , we have f (x ∧ ne) → f (x) as n → ∞, i.e., f (x) = 0 for all
x ∈ X+. and so f ≡ 0 which is a contradiction.

(3)⇒(1) If Ie is not dense in X with respect to m-topology, then by Hahn-Banach
Theorem [48, Theorem 3.5] there is a non-zero f ∈ X∗ such that f (x) = 0 for every
x ∈ Ie. Since f = f+ − f− and f 6= 0, either f+ 6= 0 or f− 6= 0. Assume without
lose of generality that f+ > 0. Now Riesz-Kantorovich formula implies that

f+ (e) = sup{f (x) : x ∈ X and 0 ≤ x ≤ e}
= sup{f (x) : x ∈ Ie and 0 ≤ x ≤ e} = 0

which is a contradiction. Thus, Ie
m

= X , that is e is a quasi-interior point of X+.

It should be noted that in the proof of (1) ⇒ (2) of Proposition 18 we can select
an increasing bounded from above net (xα) in I+

e such that xα
m−→ x. Indeed, if

x ∈ Ie
m

, then we know that there is a net (xα)α∈A in I+
e such that 0 ≤ xα ≤ x

for all α ∈ A. Let F(A) denote the collection of all finite subsets of A. Clearly,
F(A) is directed upward. For each ∆ ∈ F(A) let y∆ : = sup

α∈∆
xα. Then y∆ ↑ and

y∆ ≤ x for all ∆ ∈ F(A). We claim that y∆
m−→ x. Let λ ∈ Λ. Given ε > 0, since

xα
m−→ x, there is αε satisfying mλ(x− xα) < ε for all α > αε. Let ∆ε = {αε}. For

∆ ⊇ ∆ε, we have y∆ > xαε or −y∆ ≤ −xαε and so 0 ≤ x− y∆ ≤ x− xαε . Hence,
mλ(x − y∆) ≤ mλ(x − xαε) < ε for all ∆ ⊇ ∆ε. Therefore, 0 ≤ y∆ ↑ in Ie and
y∆

m−→ x.

More generally we have,

Proposition 19. Let (X, p,E) be an LNVL and I be an ideal in X . For x ∈ X+, if
there is a net (xα) in I satisfying xα

p−→ x, then there is a net 0 ≤ yβ in I with yβ ↑
and yβ

p−→ x.

Proof. Suppose that x ∈ X+ and there exists a net (xα) ∈ I with xα
p−→ x, then by

the same argument used in the proof of (1)⇒ (2) of Proposition 18, we may consider
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xα ∈ I+ with xα ≤ x or xα ∈ [0, x] for all α. Let B = [0, x] ∩ I , then B is directed
upward, and the net (yb) = (b) for all b ∈ B is increasing in I with 0 ≤ yb. In
particular yxα = xα for all α. For b > xα, we have 0 ≤ x− yb = x− b ≤ x− xα =

x− yxα , and so p(yb−x) ≤ p(xα−x) as b ≥ xα. Now by assumption x−xα
p−→ 0 as

α→∞, i.e., p(xα − x)
o−→ 0 in E, then there is a net eγ ↓ 0 in E, such that for all γ,

there exist αγ satisfying p(xα−x) ≤ eγ for all α > αγ . In particular p(xαγ−x) ≤ eγ .
We want to show that p(yb − x)

o−→ 0. For that consider the net (eγ) as above, then
eγ ↓ 0 in E, and for all γ, take bγ = xαγ . Then for all b > bγ = xαγ , we have
p(b− x) ≤ p(bγ − x) = p(xαγ − x) ≤ eγ . Therefore p(yb − x)

o−→ 0.

Corollary 8. Let (X,M) be an MNV L, and let I be an ideal in (X,M) with I
m

=
X . Then for every x ∈ X+, there exist a net (yβ) ∈ I such that 0 ≤ yβ ↑≤ x and
yβ

m−→ x.

Proof. Suppose that I is an ideal in (X,M) with I
m

= X , then for every x ∈ X+,
there is a net (xα) ∈ I such that xα

m−→ x, and by the same argument used in the proof
of (1)⇒ (2) of Proposition 18, we may assume that xα ∈ I+ with xα ≤ x. Now by
Proposition 17, (X,M) induces an LNVL (X, p,E) with E = R

Λ, and p : X → E+,
such that x 7→ px, where px : Λ → R and px[λ] := mλ(x). Then for all λ ∈ Λ,
pxα [λ] = mλ(xα) ≤ mλ(x) = px[λ], so p(xα) ≤ p(x). Hence xα ∈ I+ is p-bounded.
But xα

m−→ x, then by Proposition 17 xα
p−→ x, hence by Proposition 19, there exist

a net (yb) ∈ I such that yb ↑ and yb
p−→ x. Again by Proposition 17 yb

m−→ x as
desired.

It follows from Theorem 6.63 (ii) and (iv) [3] that an MNVL satisfies the KB-property
if and only if it has the Lebesgue and Levi properties.

4.2 um-Topology

In this section we introduce the um-topology in a analogous manner to the un-
topology [36] and uaw-topology [61]. First we define the um-convergence.

Definition 3. Let (X,M) be an MNVL, then a net (xα) is said to be unbounded m-
convergent to x, if |xα − x| ∧ u m−→ 0 for all u ∈ X+. In this case, we say (xα)

um-converges to x and write xα
um−−→ x.

Clearly, that um-convergence is a generalization of un-convergence. The following
result generalizes [36, Corollary 4.5].

Proposition 20. If (X,M) is an MNVL possessing the Lebesgue and Levi properties,
and xα

um−−→ 0 in X , then xα
um−−→ 0 in X∗∗.

Proof. It follows from Theorem 6.63 of [3] that (X,M) is m-complete and X is a
band in X∗∗. Now, [3, Theorem 2.22] shows that X∗∗ is Dedekind complete, and so
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X is a projection band in X∗∗. The conclusion follows now from Theorem 6, part
3.

In a similar way as in Theorem 2, one can show that N0, the collection of all sets of
the form

Vε,u,λ = {x ∈ X : mλ(|x| ∧ u) < ε},

where ε > 0, 0 6= u ∈ X+, and λ ∈ Λ, forms a neighborhood base at zero for some
Hausdorff locally solid topology τ such that, for any net (xα) in X: xα

um−−→ 0 if and
only if xα

τ−→ 0. Thus, the um-convergence is topological, and we will refer to its
topology as the um-topology.

Clearly, if xα
m−→ 0, then xα

um−−→ 0, and so the m-topology, in general, is finer
than um-topology. On the contrary to Theorem 2.3 in [36], the following example
provides an MNVL which has a strong unit, yet the m-topology and um-topology do
not agree.

Example 5. Let X = C[0, 1]. Let A := {[a, b] ⊆ [0, 1] : a < b}. For [a, b] ∈ A
and f ∈ X , let m[a,b](f) := 1

b−a

∫ b
a
|f(t)|dt. Then M = {m[a,b] : [a, b] ∈ A} is a

separating family of lattice seminorms on X . Thus, (X,M) is an MNVL. For each
2 ≤ n ∈ N, let

fn =


n if x ∈ [0, 1

n
],

n2(1− n)x+ n2 if x ∈ [ 1
n
, 1
n−1

],

0 if x ∈ [ 1
n−1

, 1].

So we have

fn ∧ 1 =


1 if x ∈ [0, n+1

n2 ],

n2(1− n)x+ n2 if x ∈ [n+1
n2 ,

1
n−1

],

0 if x ∈ [ 1
n−1

, 1].

Now, let 0 < b ≤ 1, then there is n0 ∈ N such that 1
n0−1

< b. So, for n ≥ n0, we
have 1

n−1
< b, and so we get m[0,b](fn) = 1

b
(1 + 1

n−1
) → 1

b
6= 0 as n → ∞. Thus,

fn 6
m−→ 0. On the other hand, if [a, b] ∈ A then there is n0 ∈ N such that 1

n0−1
< b so,

for n ≥ (n0 − 1), we have m[a,b](fn ∧ 1) = 1
b−a(n+1

n2 + 1
2n2(n−1)

) → 0 as n → ∞.

Since 1 is a strong unit in X , by Corollary 6, fn
um−−→ 0.

4.3 Metrizabililty of um-topology

The main result in this section is Proposition 21, which shows that the um-topology
is metrizable if and only if the space has a countable topological orthogonal system.

It is well known (cf. [3, Theorem 2.1]) that a topological vector space is metrizable
if and only if it has a countable neighborhood base at zero. Furthermore, an MNVL
(X,M) is metrizable if and only if them-topology is generated by a countable family
of lattice seminorms, see [56, Theorem VII.8.2].

37



Notice that, in an MNVL (X,M) with countable M = {mk}k∈N, an equivalent
translation-invariant metric ρM can be constructed by the formula

ρM(x, y) =
∞∑
k=1

mk(x− y)

2k(mk(x− y) + 1)
(x, y ∈ X). (4.3.1)

Since the function t → t
t+1

is increasing on [0,∞), |x| 6 |y| in X implies that
ρM(x, 0) 6 ρM(y, 0).

A series
∑∞

i=1 xi in a multi-normed space (X,M) is called absolutely m-convergent
if
∑∞

i=1mλ(xi) < ∞ for all λ ∈ Λ; and the series is m-convergent, if the sequence
sn :=

∑n
i=1 xi of partial sums is m-convergent.

Lemma 10. A metrizable multi-normed space (X,M) is m-complete if and only if
every absolutely m-convergent series in X is m-convergent.

Proof. (⇒) Let (X,M) be sequentially m-complete, withM = (mk)k∈N. If the se-

ries
∞∑
i=1

xi is an absolutely convergent in (X,M), then for each k ∈ N,
∞∑
i=1

mk (xi) <

∞. Given ε > 0, there exists Nε such that
∞∑

n=Nε

mk (xi) < ε. Let Sn =
n∑
i=1

xi the

sequence of partial sums of the series
∞∑
i=1

xi, then for n ≥ m ≥ Nε we have

mk (Sn − Sm) = mk

(
n∑

i=m

xi

)

≤
n∑

i=m

mk (xi)

≤
∞∑

i=Nε

mk (xi) < ε.

But k ∈ N is arbitrary, so the sequence (Sn)n∈N is m-Cauchy and by sequentially
m-completeness of (X,M), (Sn)n∈N m-converges to an element say x ∈ X.
(⇐) Let (xn) be an m-Cauchy sequence in X . For k = 1, m1 (xn − xm) −→ 0 as
n,m −→∞.
For each i ∈ N, there exist ni ∈ N such that m1 (xn − xm) < 2−i for all n,m > ni,
and we may choose that n′is so that ni+1 > ni. Then (xni)

∞
i=1 is a subsequence of

(xn) . Letting y1 = xn1 , and yi = xni−xni−1
for i ≥ 2 we obtain a series

∞∑
i=1

yi whose

ith partial sum is xni . But m1

(
xni − xni−1

)
< 2−(i−1), so we have m1 (yi) ≤ 2−i+1

for i ≥ 2. Thus
∞∑
i=1

m1 (yi) ≤ m1(y1) +
∞∑
i=2

2−i+1 = m1(y1) + 1. (4.3.2)

Hence, the sequence (yi) which is a subsequence of (xi) satisfies the condition in
(4.3.2). We repeat the same argument above for k = 2 to produce a subsequence (zi)
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of (yi) which satisfies that
∞∑
i=1

m2 (zi) ≤ m2 (z1) + 1 <∞.

So by this diagonal argument we obtain a common subsequence
(
xnj
)

of (xn) such

that for each k ∈ N,
∞∑
j=1

mk (yj) <∞where y1 = xn1 and for j ≥ 2, yj = xnj−xnj−1
.

Thus,
∞∑
j=1

yj is absolutely convergent series. By hypothesis it follows that the series

∞∑
j=1

yj is convergent. That is the sequence (S`)`∈N of partial sums of
∞∑
j=1

yj is m-

convergent in X . That is S` =
∑̀
j=1

yj = xnj , i.e.
(
xnj
)

is m-convergent. Therefore,

we have an m-Cauchy sequence (xn) and an m-convergent subsequence
(
xnj
)

which
implies that (xn) is m-convergent.

The following result extends [36, Theorem 3.2].

Proposition 21. Let (X,M) be a metrizable m-complete MNVL. Then the following
conditions are equivalent:

(i) X has a countable topological orthogonal system;

(ii) the um-topology is metrizable;

(iii) X has a quasi interior point.

Proof. Since (X,M) is metrizable, we may suppose thatM = {mk}k∈N is countable
and directed.

(i) ⇒ (ii) It follows directly from Proposition 13 . Notice also that a metric dum of
the um-topology can be constructed by the following formula:

d(x, y) =
∞∑

k,n=1

1

2k+n
· mk(|x− y| ∧ en)

1 +mk(|x− y| ∧ en)
, (4.3.3)

where {en}n∈N is a countable topological orthogonal system for X .

(ii) ⇒ (iii) Assume that the um-topology is generated by a metric dum on X . For
each n ∈ N, let Bum(0, 1

n
) = {x ∈ X : dum(x, 0) < 1

n
}. Since the um-topology is

metrizable, for each n ∈ N, there are kn ∈ N, 0 < un ∈ X+, and εn > 0 such that
Vεn,un,kn ⊆ Bum(0, 1

n
), where

Vε,un,k = {x ∈ X : mk(|x| ∧ un) < ε}.

Notice that {Vε,un,k}ε>0,n,k∈N is a base at zero of the um-topology on X .

Let Bm(0, 1) = {x ∈ X : dm(x, 0) < 1}, where dm is the metric generating the m-
topology. There is a zero neighborhood V in them-topology such that V ⊆ Bm(0, 1).

39



Since V is absorbing, for every n ∈ N, there is cn ≥ 1 such that 1
cn
un ∈ V . Thus

1
cn
un ∈ V ⊆ Bm(0, 1) for each n ∈ N. Hence, the sequence 1

cn
un is dm-bounded and

so it is bounded with respect to the multi-normM = {mk}k∈N. Let

e :=
∞∑
n=1

un
2ncn

. (4.3.4)

We verify the absolute convergence of the above series. Fix k ∈ N. Since the se-
quence un

cn
is bounded with respect toM, there exists rk ∈ R+ such that mk(

un
cn

) ≤
rk <∞ for all n ∈ N. Hence,

∞∑
n=1

mk

(
un

2ncn

)
=
∞∑
n=1

1

2n
mk

(
un
cn

)
≤ rk

∞∑
n=1

1

2n
<∞.

Thus, the series
∑∞

n=1

un
2ncn

is absolutely m-convergent. Since X is m-complete,

Lemma 10 assures that the series
∑∞

n=1

un
2ncn

is m-convergent to some e ∈ X .

Now, we show that e is a quasi-interior point in X . Let (xα) be a net in X+ such that
xα ∧ e

m−→ 0. Our aim is to show that xα
um−−→ 0. Since

xα ∧ un ≤ 2ncnxα ∧ 2ncne = 2ncn(xα ∧ e)
m−→ 0 (α→∞),

we have xα ∧ un
m−→ 0 for all n ∈ N. In particular, mkn(xα ∧ un) → 0. Thus, there

exists αn such that mkn(xα ∧ un) < εn for all α ≥ αn. That is xα ∈ Vεn,un,kn for
all α ≥ αn, which implies xα ∈ Bum(0, 1

n
). Therefore, xα

dum−−→ 0 and so xα
um−−→ 0.

Hence, Corollary 6 implies that e is a quasi interior point

(iii)⇒ (i) It is trivial.

Similar to [36, Proposition 3.3], we have the following result.

Proposition 22. Let (X,M) be an m-complete metrizable MNVL. The um-topology
is stronger than a metric topology if and only if X has a weak unit.

Proof. The sufficiency follows from 14.

For the necessity, suppose that the um-topology is stronger than the topology gener-
ated by a metric d. Let e be as in (4.3.4) above. Assume x ∧ e = 0. Since e ≥ un

2ncn
for all n ∈ N, we get x∧ un

2ncn
= 0, and hence x∧un = 0 for all n. Then x ∈ Vεn,un,kn

for all n, and x ∈ B(0, 1
n
) = {x ∈ X : d(x, 0) < 1

n
} for each n ∈ N. So x = 0,

which means that e is a weak unit.

4.4 um-Completeness

A subset A of an MNVL (X,M) is said to be (sequentially) um-complete if, it is
(sequentially) complete in the um-topology. In this section, we characterize um-
complete subsets of X in terms of the Lebesgue and Levi properties.
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We begin with the following technical lemma.

Lemma 11. Let (X,M) be an MNVL, and A ⊆ X be m-bounded, then A
um

is
m-bounded.

Proof. Given λ ∈ Λ, then Mλ = supa∈Amλ(a) < ∞. Let x ∈ A
um

, then there is
a net (aα) in A such that aα

um−−→ x. So mλ(|aα − x| ∧ u) → 0 for any u ∈ X+. In
particular,

mλ(|x|) = mλ(|x| ∧ |x|) = mλ(|x− aα + aα| ∧ |x|) ≤
mλ(|x− aα| ∧ |x|) + sup

a∈A
mλ(a) = mλ(|x− aα| ∧ |x|) +Mλ.

Letting α→∞, we get mλ(x) = mλ(|x|) ≤Mλ <∞ for all x ∈ Aum.

The following theorem and its proof should be compared with [31, Theorem 4.7].

Theorem 14. Let (X,M) be an MNVL and let A be an m-bounded and um-closed
subset in X . If X has the Lebesgue and Levi properties, then A is um-complete.

Proof. Suppose that (xα) is um-Cauchy in A, then, without lost of generality, we
may assume that (xα) consists of positive elements.
Case (1): If X has a weak unit e, then e is a quasi-interior point, by the Lebesgue
property of X and Proposition 18. Note that, for each k ∈ N,

|xα ∧ ke− xβ ∧ ke| ≤ |xα − xβ| ∧ ke,

hence the net (xα ∧ ke)α is m-Cauchy in X . Now, [3, Theorem 6.63] assures that X
is m-complete, and so the net (xα ∧ ke)α is m-convergent to some yk ∈ X . Given
λ ∈ Λ. Then

mλ(yk) = mλ(yk − xα ∧ ke+ xα ∧ ke)
≤ mλ(yk − xα ∧ ke) +mλ(xα)

≤ mλ(yk − xα ∧ ke) + sup
α
mλ(xα).

But xα ∧ ke
m−→ yk, so for all ε > 0, there exist α′ such that α ≥ α′ implies that

mλ (yk − xα ∧ ke) < ε. Hence for all ε > 0, mλ (yk) ≤ ε + sup
a
mλ(xα) that is

mλ (yk) ≤ sup
a
mλ(xα) < ∞ by m-boundedness of A. Hence (yk) is m-bounded in

X . Note also that if k1 ≤ k2, then xα ∧ k1e ≤ xα ∧ k2e, and hence yk1 ≤ yk2 by
montoncity of m′λs.
Thus (yk) is m-bounded and increasing in X , but X has the Lebesgue and Levi prop-
erties, so by [3, Theorem 6.63], (yk) is m-convergent to some y ∈ X .

It remains to show that y is the um-limit of (xα). Given λ ∈ Λ. Note that, by
Birkhoff’s inequality,

|xα ∧ ke− xβ ∧ ke| ∧ e ≤ |xα − xβ| ∧ e.
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Thus

mλ(|xα ∧ ke− xβ ∧ ke| ∧ e) ≤ mλ(|xα − xβ| ∧ e).

Taking limit over β, we get

mλ(|xα ∧ ke− yk| ∧ e) ≤ lim
β
mλ(|xα − xβ| ∧ e).

Now taking limit over k, we have

mλ(|xα − y| ∧ e) ≤ lim
β
mλ(|xα − xβ| ∧ e).

Finally, as (xα) is um-Cauchy, taking limit over α, yields

lim
α
mλ(|xα − y| ∧ e) ≤ lim

α,β
mλ(|xα − xβ| ∧ e) = 0.

Thus, xα
um−−→ y and, since A is um-closed, y ∈ A.

Case (2): If X has no weak unit. Let {eγ}γ∈Γ be a maximal orthogonal system
in X . Let ∆ be the collection of all finite subsets of Γ. For each δ ∈ ∆, δ =
{γ1, γ2, . . . , γn}, consider the band Bδ generated by {eγ1 , eγ1 , . . . , eγn}. It follows
from [3, Theorem 3.24] that Bδ is a projection band. Then Bδ is an m-complete
MNVL in its own right. Moreover, by Lemma 15, the m-topology restricted to Bδ

possesses the Lebesgue and Levi properties. Note that Bδ has a weak unit, namely
eγ1 + eγ2 + · · ·+ eγn . Let Pδ be the band projection corresponding to Bδ.
Claim 1: We want to show that for any x ∈ X+, we have that Pδx ↑ x. Now since
0 ≤ Pδ ≤ I , Pδx ≤ x for all δ ∈ A. If 0 ≤ z ≤ x and Pδx ≤ z for all δ ∈ ∆,
then −Pδx ≥ −z or −z ≤ −Pδx which implies that 0 ≤ x − z ≤ x − Pδx. Note
x−Pδx ∈ Bd

δ for all δ ∈ A, sinceBd
δ is an ideal, we get that x−z ∈ Bd

δ . In particular,
x− z ∈ Bd

eγ for all γ ∈ Γ, so (x− z) ∧ eγ = 0 for all γ ∈ Γ, then by maximality we
get that, x− z = 0, and so x = z.
For δ ∈ ∆, since (xα) is um-Cauchy in X and Pδ is a band projection, and so lattice
homomorphism, then |Pxα − Pxβ | ∧ b = p|xα − xβ| ∧ b ≤ |xα − xβ| ∧ b

m−→ 0,

thus |Pxα − Pxβ | ∧ b
m−→ 0, then Pδxα is um-Cauchy in Bδ. Lemma 11 assures that

Pδ(A)
um

is m-bounded in Bδ. Thus, by Case (1), there is zδ ∈ Bδ such that

Pδxα
um−−→ zδ ≥ 0 in Bδ (α→∞).

Since Bδ is a projection band, we have

Pδxα
um−−→ zδ ≥ 0 in X (over α). (4.4.1)
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Note that, 0 ≤ zδ ↑, moreover, (zδ) is m-bounded. Indeed, given λ ∈ Λ, then

mλ(zδ) = mλ (|zδ| ∧ |zδ|)
= mλ (|zδ − Pδxα + Pδxα| ∧ zδ)
≤ mλ (|zδ − Pδxα| ∧ zδ) +mλ (Pδxα ∧ zδ)
≤ mλ (|zδ − Pδxα| ∧ zδ) +mλ (Pδxα)

≤ mλ (|zδ − Pδxα| ∧ zδ) +mλ (xα)

≤ mλ (|zδ − Pδxα| ∧ zδ) + kλ.

Taking the limit over α, we get mλ (zδ) ≤ kλ <∞ where mλ (xα) ≤ kλ <∞ for all
α. Thus, zδ is m-bounded in X .

Since X has the Lebesgue and Levi properties, it follows from [3, Theorem 6.63],
that there is z ∈ X+ such that

zδ
m−→ z, and so zδ ↑ z. (4.4.2)

It follows also from (4.4.2) that zδ
um−−→ z.

Our aim is to show that xα
um−−→ z. Let u ∈ X+, we verify |xα − z| ∧ u

m−→ 0. Let Bu

be the band generated by u and Pu be the corresponding band projection. As above,
(Puxα) is um-Cauchy in Bu and so there is 0 ≤ xu ∈ Bu such that

Puxα
um−−→ xu over α, in Bu

So,
Puxα

um−−→ xu in X. (4.4.3)

Note that |xα − xu| ∧ u ∈ B for all α. Hence,

|xα − xu| ∧ u = Pu (|xα − xu| ∧ u)

= |Puxα − xu| ∧ u
m−→ 0 in X by (4.4.3).

So,
|xα − xu| ∧ u

m−→ 0 over α in X. (4.4.4)

Given δ ∈ ∆;

|Pδxα − Pδxu| ∧ u = Pδ (|xα − xu|) ∧ u
≤ |xα − xu| ∧ u

m−→ 0 over α in X by (4.4.4).

Thus,
|Pδxα − Pδxu| ∧ u

m−→ 0 over α in X. (4.4.5)

But Pδxα
um−−→ zδ in X by (4.4.1).

In particular,
|Pδxα − zδ| ∧ u

m−→ 0 over α in X. (4.4.6)
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Since
|zδ − Pδxu| ∧ u ≤ |zδ − Pδxα| ∧ u+ |Pδxα − Pδxu| ∧ u,

Taking limit over α we get from (4.4.5) and (4.4.6) that

|zδ − Pδxu| ∧ u = 0. (4.4.7)

Taking limit over δ in (4.4.7), it follows from (4.4.2) and Claim 1 that

|z − xu| ∧ u = 0.

Note that |z − xu| ∧ u ∈ Bu and so

0 = |z − xu| ∧ u = Pu (|z − xu| ∧ u) = |Puz − xu| ∧ u.

Since u is a weak unit in Bu,
Puz = xu. (4.4.8)

Now,

|xα − z| ∧ u = Pu (|xα − z| ∧ u)

= |Puxα − Puz| ∧ u
by (4.4.8) = |Puxα − xu| ∧ u

m−→ 0 over α by (4.4.3).

We get that
|xα − z| ∧ u

m−→ 0

Since, u ∈ X+ was arbitrary, we get xα
um−−→ z. Since (xα) in A and A is um-closed,

we get that z ∈ A and so A is um-complete.

Lemma 12. Any monotone m-convergent net in an MNV L (X,M) o-converges to
its m-limit.

Proof. It is enough to show that if (X,M) 3 xα ↑ and xα
m−→ u, then xα ↑ x. Fix

arbitrary α. Then xβ − xα ∈ X+ for all β ≥ α. So, taking the limit over β we get
xβ−xα

m−→ x−xα, hence x−xα ≥ 0 and so x ≥ xα. But α is arbitrary. Thus x ≥ xα
for all α, that is x is an upper bound for (xα). We show x is the least upper bound.
Suppose that y ≥ xα for all α, then y − xα ≥ 0 for all α, and since y − xα

m−→ y − x
over α, y − x ≥ 0 or y ≥ x. Therefore xα ↑ x.

Lemma 13. If (xα) is an increasing net in an MNV L (X,M), and xα
um−−→ x, then

xα ↑ x and xα
m−→ x.

Proof. Since lattice operations are um-continuous, the same argument in Lemma 12
applies here as well and we get that xα ↑ x. Thus (xα) is order bounded and so
um-convergence agrees with m-convergence.

Lemma 14. Let (X,M) be an MNV L that has the pre-Lebesgue property. Let (xn)

be a positive disjoint sequence such that (xn) is not m-null. Put sn :=
n∑
i=1

xi. then

(sn) is um-Cauchy but not um-convergent.

44



Proof. The sequence (sn) is monotone increasing, and since (xn) is not m-null, we
get that (sn) does not m-converge, otherwise sn and sn−1 also m-converge to some
x, consequently xn = sn − sn−1

m−→ 0 which contradicts the hypothesis. Hence
by Lemma 13 sn is not um-convergent. To show that (sn) is um-Cauchy, fix any
ε > 0, and a non-zero u ∈ X+. Since (xi) is a positive disjoint sequence, we have

sn ∧ u =
n∑
i=1

(xi ∧ u) by Theorem 6.5 in [60]. The sequence (sn ∧ u) is increasing

and order bounded by u, hence is m-Cauchy by Theorem 3.22 in [3]. Fix λ ∈ Λ, we
can find nελ such that mλ (sm ∧ u− sn ∧ u) < ε for all m ≥ n ≥ nελ . Observe that

sm ∧ u− sn ∧ u =

(
m∑
i=1

xi

)
∧ u−

(
n∑
i=1

xi

)
∧ u

=
m∑
i=1

(xi ∧ u)−
n∑
i=1

(xi ∧ u)

=
m∑

i=n+1

(xi ∧ u) =

(
m∑

i=n+1

xi

)
∧ u

= (sm − sn) ∧ u = |sm − sn| ∧ u.

It follows thatmλ (|sm − sn| ∧ u) < ε for allm ≥ n ≥ nελ . But λwas fixed arbitrary.
Hence (sn) is um-Cauchy.

Let (X,M) be a finite dimensional m-complete MNV L, then by Theorem 5.4 in
[4], it is um-complete.
On the contrary of [[36], Proposition 6.2] we provide an example of an m-complete
MNV L (X,M) satisfying the Lebesgue property such that it is um-complete and
dimX =∞.

Example 6. Let X = s and M = (mj)j∈N such that mj ((xn)) := |xj| where
(xn) ∈ `∞.
First we show (X,M) is m-complete. Let (xα) be an m-Cauchy net in (X,M),
xα = (xαn)n∈N , so, xα − xβ m−→ 0 over α, β. For j ∈ N we have mj

(
xα − xβ

)
→ 0

in R over α, β. That is, for j ∈ N, |xαj − x
β
j | → 0 in R over α, β. That is, for each

j ∈ N, the net (xαj ) is Cauchy in R and so there is xj ∈ R such that xαj → xj over α.
Put x := (xj)j∈N, then x ∈ s. Since for each j ∈ N xαj → xj over α in R, this means
that mj (xα − x)→ 0 in R. Hence, xα m−→ x. Therefore, (X,M) is m-complete.

Second, (X,M) has the Lebesgue property. Assume xα ↓ 0, our aim is to show that
xα

m−→ 0. We know xα = (xαn)n∈N . For each j ∈ N; xα ↓ 0, implies that xαj ↓ 0 in R.
That is mj(x

α) ↓ 0 in R. Thus, xα m−→ 0.

Finally, we show that (X,M) is um-complete. Suppose (xα) is um-Cauchy net. Then
for each u ∈ X+ we have |xα−xβ|∧u m−→ 0. Now, u = (un)n∈N , x

α = (xαn)n∈N . Let
j ∈ N then mj

(
|xα − xβ| ∧ u

)
→ 0 in R over α, β. if and only if |xαj − x

β
j | ∧ uj → 0

in R if and only if⇔ |xαj − x
β
j | → 0 in R over α, β.
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Thus, (xαj ) is Cauchy in R and so there is xj ∈ R such that xαj → xj in R over α.
Let x = (xj)j∈N ∈ s, then clearly, xα um−−→ x.

Lemma 15. Let (X,M) be an m-complete MNV L which satisfies Lebesgue and
Levi properties. Let B be a band in X. Then B is an m-complete MNV L in its own
right which in addition satisfies Lebesgue and Levi properties.

Proof. Let (xα) be an m-Cauchy net in B, then (xα) is an m-Cauchy in X. Since X
is m-complete, there is x ∈ X such that xα

m−→ x, but by [3, Theorem 2.21] B is
m-closed and so x ∈ B. Thus, B is m-complete.
Assume xα ↓ 0 in B. Since B is regular, see [30, Lemma 2.5], we have xα ↓ 0 in X.
ButX satisfies Lebesgue property so xα

m−→ 0, since (xα) inB, xα
m−→ 0 inB. Hence,

B satisfies Lebesgue property.
Suppose 0 ≤ xα ↑ in B, then 0 ≤ xα ↑ in X . Since X has Levi property, there is
x ∈ X such that 0 ≤ xα ↑ x in X, i.e. xα

o−→ x, but (xα) in B and B is order closed.
Hence, x ∈ B and so x ≥ xα for all α. If 0 ≤ z ≤ x and xα ↑ z in B, then by
regularity of B in X we have xα ↑ z in X, which implies z = x.

Next theorem generalizes Theorem 6.4 in [36].

Theorem 15. Let (X,M) be an m-complete MNVL with the pre-Lebesgue property.
Then X has the Lebesgue and Levi properties if and only if every m-bounded um-
closed subset of X is um-complete.

Proof. The necessity follows directly from Theorem 14.

For the sufficiency, first notice that, in an m-complete MNVL, the pre-Lebesgue and
Lebesgue properties coincide [3, Theorem 3.24].

If X does not have the Levi property then, by [3, Theorem 6.63], there is a disjoint
sequence (xn) in X+, which is not m-null, such that its sequence of partial sums
sn =

∑n
j=1 xj is m-bounded. Let A = {sn : n ∈ N}

um
. By Lemma 11, we have that

A is m-bounded. By Lemma 14, the sequence (sn) is um-Cauchy in X and so in A,
in contrary with that the sequence sn+1 − sn = xn+1 is not m-null.

Theorem 16. Let (X,M) be an m-complete metrizable MNVL, and let A be an m-
bounded sequentially um-closed subset of X . If X has the σ-Lebesgue and σ-Levi
properties then A is sequentially um-complete. Moreover, the converse holds if, in
addition, X is Dedekind complete.

Proof. SupposeM = {mk}k∈N. Let 0 ≤ xn be a um-Cauchy sequence in A. Let
e :=

∑∞
n=1

xn
2n

. For k ∈ N,

∞∑
n=1

mk

(
xn
2n

)
=
∞∑
n=1

1

2n
mk(xn) ≤ ck

∞∑
n=1

1

2n
<∞,

where mk(a) ≤ ck < ∞ for all a ∈ A. Since
∑∞

n=1
xn
2n

is absolutely m-convergent,
by Lemma 10,

∑∞
n=1

xn
2n

is m-convergent in X . Note that, xn ≤ 2ne, so xn ∈ Be for

46



all n ∈ N. Since X has the Levi property, X is σ-order complete (see [3, Definition
3.16]). Thus Be is a projection band. Also e is a weak unit in Be. Then, by the same
argument as in Theorem 14, we get that there is x ∈ Be such that xn

um−−→ x in Be

and so xn
um−−→ x in X . Since A is sequentially um-closed, we get x ∈ A. Thus A is

sequentially um-complete.

The converse follows from Proposition 16.

4.5 um-Compact sets

A subset A of an MNVL (X,M) is said to be (sequentially) um-compact, if it is (se-
quentially) compact in the um-topology. In this section, we characterize um-compact
subsets of X in terms of the Lebesgue and Levi properties. We begin with the fol-
lowing result which shows that um-compactness can be “localized” under certain
conditions.

Theorem 17. Let (X,M) be an MNVL possessing the Lebesgue property. Let {eγ}γ∈Γ

be a maximal orthogonal system. For each γ ∈ Γ, let Bγ be the band generated by
eγ , and Pγ be the corresponding band projection onto Bγ . Then xα

um−−→ 0 in X if
and only if Pγxα

um−−→ 0 in Bγ for all γ ∈ Γ.

Proof. For the forward implication, we assume that xα
um−−→ 0 in X . Let b ∈ (Bγ)+.

Then
|Pγxα| ∧ b = Pγ|xα| ∧ b ≤ |xα| ∧ b

m−→ 0,

that implies Pγxα
um−−→ 0 in Bγ .

For the backward implication, without lost of generality, we may assume that xα ≥ 0
for all α. Let u ∈ X+. Our aim is to show that xα ∧ u

m−→ 0. It is known that
xα ∧ u =

∑
γ∈Γ Pγ(xα ∧ u). Let F be a finite subset of Γ. Then

xα ∧ u =
∑
γ∈F

Pγ(xα ∧ u) +
∑
γ∈Γ\F

Pγ(xα ∧ u). (4.5.1)

Note ∑
γ∈F

Pγ(xα ∧ u) =
∑
γ∈F

Pγxα ∧ Pγu
m−→ 0. (4.5.2)

We have to control the second term in (4.5.1).∑
γ∈Γ\F

Pγ(xα ∧ u) ≤ 1

n

∑
γ∈F

Pγu+
∑
γ∈Γ\F

Pγu, (4.5.3)

where n ∈ N. Let F(Γ) be the collection of all finite subsets of Γ. Let ∆ = F(Γ)×N.
For each δ = (F, n), put

yδ =
1

n

∑
γ∈F

Pγu+
∑
γ∈Γ\F

Pγu.
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We show that (yδ) is decreasing. Let δ1 ≤ δ2 then δ1 = (F1, n1), δ2 = (F2, n2). Then
δ1 ≤ δ2 if and only if F1 ⊆ F2 and n1 ≤ n2. But n1 ≤ n2 if and only if 1

n1
≥ 1

n2
. So,

1

n1

∑
γ∈F1

Pγu ≥
1

n2

∑
γ∈F1

Pγu. (4.5.4)

Note also
1

n2

∑
γ∈F2

Pγu =
1

n2

∑
γ∈F1

Pγu+
1

n2

∑
γ∈F2\F1

Pγu. (4.5.5)

Since F1 ⊆ F2, Γ \F1 ⊇ Γ \F2 and hence,
∑

γ∈Γ\F1
Pγu ≥

∑
γ∈Γ\F2

Pγu. Note, that∑
γ∈Γ\F1

Pγu =
∑

γ∈F2\F1

Pγu+
∑

γ∈Γ\F2

Pγu. (4.5.6)

Now, ∑
γ∈F2\F1

Pγu ≥
1

n2

∑
γ∈F2\F1

Pγu. (4.5.7)

Combining (4.5.6) and (4.5.7), we get∑
γ∈Γ\F1

Pγu ≥
∑

γ∈Γ\F2

Pγu+
1

n2

∑
γ∈F2\F1

Pγu. (4.5.8)

Adding (4.5.4) and (4.5.8), we get

1

n1

∑
γ∈F1

Pγu+
∑

γ∈Γ\F1

Pγu ≥
1

n2

∑
γ∈F1

Pγu+
1

n2

∑
γ∈F2\F1

Pγu+
∑

γ∈Γ\F2

Pγu.

It follows from (4.5.5), that

1

n1

∑
γ∈F1

Pγu+
∑

γ∈Γ\F1

Pγu ≥
1

n2

∑
γ∈F2

Pγu+
∑

γ∈Γ\F2

Pγu,

that is yδ1 ≥ yδ2 . Next, we show yδ ↓ 0. Assume 0 ≤ x ≤ yδ for all δ ∈ ∆. Let
γ0 ∈ Γ be arbitrary and fix it. Let F = {γ0}, n ∈ N, then

0 ≤ x ≤ 1

n
Pγ0u+

∑
γ∈Γ\{γ0}

Pγu.

We apply Pγ0 for the expression above, so 0 ≤ Pγ0x ≤ 1
n
Pγ0u for all n ∈ N, and so

Pγ0x = 0. Since γ0 ∈ Γ was chosen arbitrary, we get Pγ0x = 0 for all γ ∈ Γ. Hence,
x = 0 and so yδ ↓ 0. Since (X,M) has the Lebesgue property, we get yδ

m−→ 0.
Therefore, by (4.5.3), ∑

γ∈Γ\F

Pγ(xα ∧ u) ≤ yδ
m−→ 0. (4.5.9)

Hence (4.5.1), (4.5.2), and (4.5.9) imply xα ∧ u
m−→ 0.

The next theorem and its proof should be compared with [36, Theorem 7.1].

48



Theorem 18. Let (X,M) be an MNVL possessing the Lebesgue and Levi properties.
Let {eγ}γ∈Γ be a maximal orthogonal system. Let A be a um-closed m-bounded
subset of X . Then A is um-compact if and only if Pγ(A) is um-compact in Bγ for
each γ ∈ Γ, where Bγ is the band generated by eγ and Pγ is the band projection
corresponding to Bγ .

Proof. Suppose A is um-compact. Since band projections are um-continuous, i.e.
continuous with respect to um-topology and a continuous image of a compact set is
compact, we conclude that Pγ(A) is um-compact in Bγ for all γ.

For the converse, suppose that Pγ(A) is um-compact in Bγ for every γ ∈ Γ. Let
H =

∏
γ∈Γ

Bγ, the formal product of all the bands Bγ, γ ∈ Γ. That is, H consists of

families (xγ)γ∈Γ indexed by Γ, where xγ ∈ Bγ. We equip H with the topology of
coordinatewise um-convergence; this is the product of um-topologies on the bands
that make up H. This makes H a topological vector space. Defined Φ : X → H
via Φ(x) = (Pγx)γ∈Γ . Clearly, Φ is linear. But {eγ : γ ∈ Γ} is maximal orthogonal
system, and so Φ is one-to-one. Then by Theorem 17, Φ is a homeomorphism from
X equipped with um-topology onto its range in H.
Let K be a subset of H defined by K =

∏
γ∈Γ

Pγ(A). By Tychonoff’s Theorem, K is

compact in H. It is easy to see that Φ (A) ⊆ K. We claim that Φ(A) is closed in H.
Indeed, suppose that Φ(xα) → h in H for some net (xα) in A. In particular, the net
(Φ(xα)) is Cauchy in H. Since Φ is a homeomorphism, the net (xα) is um-Cauchy in
A. Since (xα) is m-bounded and X satisfies Lebesgue and Levi property, (xα) um-
converges to some x ∈ X by Proposition 15. Since A is um-closed, we have x ∈ A.
It follows that h = Φ(x), so h ∈ Φ(A). Beingm-closed subset of a compact set, Φ(A)
is its self compact. Since Φ is homeomorphism, we conclude A is um-compact.

If (xα)α∈A is a net in a non-empty set X, then a net (xαβ)β∈B is said to be subnet of
(xα)α∈A if there is a function ϕ : B → A satisfying:

1. For each β ∈ B, xαβ = xϕ(β).

2. For each α0 ∈ A there exists some β0 ∈ B such that if β ≥ β0 then ϕ(β) ≥ α0.

See for example [4, Definition 2.15].

Lemma 16. Let X be a vector lattice and (xα)α∈A be an increasing net in X . If there
is a subnet (xαβ)β∈B such that xαβ ↑ x, then xα ↑ x.

Proof. We know there is a function ϕ : B → A such that if α0 ∈ A then there is
β0 ∈ B satisfying ϕ(β) ≥ α0 when β ≥ β0. Since xα ↑, xϕ(β) ≥ xα0 or xαβ ≥ xα0 .
Since xαβ ↑ x, x ≥ xα0 . But α0 ∈ A was arbitrary, thus x ≥ xα for all α ∈ A and so
x is an upper bound for (xα)α∈A. If z ≥ xα for all α ∈ A, then in particular z ≥ xαβ
for all β ∈ B and since xαβ ↑ x, z ≥ x. Therefore, xα ↑ x.
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The following theorem should be compared with [36, Theorem 7.5].

Theorem 19. Let (X,M) be an MNV L. The following are equivalent:

1. Any m-bounded and um-closed subset A of X is um-compact.

2. X is an atomic vector lattice and (X,M) has the Lebesgue and Levi properties.

Proof. (1) ⇒ (2). Let [a, b] be an order interval in X . For x ∈ [a, b], we have
a ≤ x ≤ b and so 0 ≤ x − a ≤ b − a. Consider the order interval [0, b − a] ⊆ X+.
Clearly, [0, b − a] is m-bounded and um-closed in X . By (1), the order interval
[0, b−a] is um-compact. Let (xα) be a net in [0, b−a]. Since [0, b−a] is um-compact,
there is a subset xαβ such that xαβ

um−−→ x in [0, b−a]. That is |xαβ−x|∧u
m−→ 0 for all

u ∈ [0, b−a]. Hence, |xαβ−x| = |xαβ−x|∧ (b−a)
m−→ 0. So, xαβ

m−→ x in [0, b−a].
Thus, [0, b − a] is m-compact. Consider the following shift operator Ta : X → X
given by Ta(x) := x + a. Clearly, Ta is continuous, and so Ta([0, b − a]) = [a, b] is
m-compact.
Since any order interval in X is m-compact, it follows from [3, Corollary 6.57] that
X is atomic and has the Lebesgue property. It remains to show that X has the Levi
property. Suppose 0 ≤ xα ↑ and is m-bounded. Let A = {xα}

um
. Then A is um-

closed and, by Lemma 11, A is an m-bounded subset of X . Thus, A is um-compact
and so, there are a subnet (xαβ) and x ∈ A such that xαβ

um−−→ x. Hence, by Lemma
13, xαβ ↑ x, and so xα ↑ x. Thus, X has the Levi property.

(2) ⇒(1). Let A be an m-bounded and um-closed subset of X . We show that A is
um-compact. Since X is atomic, there is a maximal orthogonal system {eγ}γ∈Γ of
atoms. For each γ ∈ Γ, let Pγ be the band projection corresponding to eγ . Clearly,
Pγ(A) is m-bounded. Now, by the same argument as in the proof of Theorem 7.1 in
[36], we get that Pγ(A) is um-closed in

∏
γ∈ΓBγ , and so it is um-closed in Bγ . But

um-closedness implies m-closedness. So Pγ(A) is m-bounded and m-closed in Bγ

for all γ ∈ Γ. Since each eγ is an atom in X , Bγ = span{eγ} is a one-dimensional
subspace. It follows from the Heine-Borel theorem that Pγ(A) is m-compact in Bγ ,
and so it is um-compact in Bγ for all γ ∈ Γ. Therefore, Theorem 18 implies that A
is um-compact in X .

Lemma 17. Let X be a topological space and Y ⊆ X. If A ⊆ Y and A is compact
in Y, then A is compact in X.

Proof. The inclusion map i : Y ↪→ X is continuous (let O open set in X, then
i−1(O) = O ∩ Y which is open in Y .)
Since A is compact in Y , i(A) = A is compact in X.

Lemma 18. Let X be a topological space. Let S ⊆ Y ⊆ X. If S is compact in X,
then S is compact in Y.

Proof. Let (Oα) be an open cover for S in Y. Then for each α, there is Gα open in
X such that Oα = Gα ∩ Y. Hence, S ⊆

⋃
α

Oα =
⋃
α

(Gα ∩ Y ) ⊆
⋃
α

Gα. Since S is
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compact in X , there is α1, . . . , αn such that S ⊆ Gα1 ∪ · · · ∪Gαn , which implies

S = S ∩ Y ⊆ (Gα1 ∪ · · · ∪Gαn) ∩ Y =
n⋃
i=1

(Gαi ∩ Y ) =
n⋃
i=1

Oαi .

Thus, S is compact in Y.

Lemma 19. Let (X,M) be a sequentially m-complete MNV L that satisfies the
Lebesgue property. Then X is σ-order (Dedekind) complete.

Proof. Assume 0 ≤ xn ↑≤ u. Since (X,M) satisfies the Lebesgue property, by [3,
Theorem 3.23], (X,M) satisfies the pre-Lebesgue property. By Theorem 3.22 in [3]
it follows that (xn) is m-Cauchy. Since (xn) is sequentially m-complete, xn

m−→ x for
some x ∈ X . Since xn ↑, by Lemma 12 xn ↑ x. Thus, X is σ-order complete.

In view of paragraph after [Definition 1.47,p.22] in [3] it follows that every σ-order
complete vector lattice satisfies (PPP).

Proposition 23. Let A be a subset of an m-complete metrizable MNVL (X,M).

1. If X has a countable topological orthogonal system, then A is sequentially
um-compact if and only if A is um-compact.

2. Suppose that A is m-bounded, and X has the Lebesgue property. If A is um-
compact, then A is sequentially um-compact.

Proof. (1). It follows immediately from Proposition 21.
(2). Let (xn) be a sequence in A. Find e ∈ X+ such that (xn) is contained in Be (e.g.,
take e =

∑∞
n=1

|xn|
2n

). Since A is um-compact, A is um-closed, but Be is um-closed,
so A ∩ Be is um-closed, again A is um-compact, so A ∩ Be is um-compact in A
and hence by Lemma 17 A ∩ Be is um-compact in X , and by Lemma 18 A ∩ Be is
um-compact in Be. Now, since X is m-complete and has the Lebesgue property, by
Lemma 15 Be is also m-complete and has the Lebesgue property, so by Corollary 6,
e is a quasi-interior point of Be. Thus, by Proposition 21, the um-topology on Be

is metrizable, consequently, A ∩ Be is sequentially um-compact in Be. It follows
that there is a subsequence (xnk) that um-converges in Be to some x ∈ A ∩ Be. It
follows from Lemma 19 that Be is a projection band, then Theorem 6, part 3 implies
xnk

um−−→ x in X . Therefore, A is sequentially um-compact.
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