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Mechanical Engineering Department, METU

Assoc. Prof. Dr. Ercan Gürses
Aerospace Engineering Department, METU

Assoc. Prof. Dr. Cihan Tekoğlu
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ABSTRACT

QUASI-INCOMPRESSIBLE AND QUASI-INEXTENSIBLE ELEMENT AND
MATERIAL FORMULATION FOR ANISOTROPIC MEDIUM

RODOPLU, Burak
M.S., Department of Mechanical Engineering
Supervisor : Assist. Prof. Dr. Hüsnü Dal

March 2018, 62 pages

The contribution presents a novel finite element formulation for quasi-inextensible
and quasi-incompressible finite hyperelastic behavior of transversely anisotropic ma-
terials and addresses its computational aspects. The formulation is presented in purely
Eulerian setting and based on the additive decomposition of the free energy function
into isotropic and anisotropic parts where the isotropic part is further decomposed
into isochoric and volumetric parts. For the quasi-incompressible response, the Q1P0
element formulation is outlined briefly where the pressure type Lagrange multiplier
and its conjugate enter the variational formulation as an extended set of variables. Us-
ing the similar argumentation, an extended Hu-Washizu type potential is introduced
where the average volume fiber stretch and fiber stress are additional field variables.
Within this context, the resulting Euler-Lagrange equations and the element formu-
lation resulting from the extended variational principle are derived. The numerical
implementation exploits the underlying variational structure leading to a canonical
symmetric structure. The efficiency of the proposed approached is demonstrated
through representative boundary value problems. The superiority of the proposed
element formulation over the standard Q1- and Q1P0-element formulation is studied
through convergence analyses. The proposed finite element formulation is modular
and shows excellent performance for fiber reinforced materials in the inextensibility
limit. Moreover, performance of the proposed formulation is studied for representa-
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tive boundary value problems applied to soft biological tissues such as human arterial
wall.

Keywords: anisotropy, hyperelasticity, quasi-incompressiblity, quasi-inextensibility,
mixed finite element design, mixed variational principles
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ÖZ

ANİZOTROPİK MALZEMELER İÇİN YARI-SIKIŞTIRILAMAZ VE
YARI-UZATILAMAZ ELEMAN VE MALZEME FORMÜLASYONU

RODOPLU, Burak
Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi : Dr. Öğr. Üyesi Hüsnü Dal

Mart 2018 , 62 sayfa

Bu tez anizotropik malzemelerin yarı-sıkıştırılamaz ve yarı-uzatılamaz hiper elastik
davranışları için yeni sonlu elemanlar formülasyonu sunmaktadır ve hesaba dayalı
konularına girmektedir. Sunulan formülasyon Euler formunda, malzemenin deforme
olmuş halinde, verilmektedir ve serbest enerji fonksiyonunun anizotropik ve izotropik
olarak ayrıştırılmasına dayanmaktadır. Bunun yanında serbest enerji fonksiyonunun
izotropik kısmı hacimsel ve izokorik olarak ayrıştırılmıştır. Q1P0 eleman formülas-
yonu yarı-sıkıştırılamaz davranışı modellemek için anlatılacaktır. Bu formülasyonda
basınç tipi Lagrange çarpanı ve onun çifti varyasyonel formülasyona genişletilmiş
değişken olarak girmektedir. Benzer yaklaşım kullanılarak, genişletilmiş Hu-Washizu
tipi potansiyel sunulmaktadır. Bu yaklaşımda, ekstradan ortalama fiber uzaması ve
fiber gerilimi alan değişkeni olarak eklenmiştir. Bu anlamda ortaya çıkan Euler-La-
grange denklemleri ile birlikte genişletilmiş varyasyonel prensipten oluşan eleman
formülasyonu türetilmiştir. Bu yaklaşımın verimliliği örnek sınır değerli problem-
ler üzerinde test edilmiştir. Bunun yanında, önerilen formülasyonla standart eleman
formülasyonu, Q1, ve Q1P0 eleman formülasyonu yakınsama çalışmaları yapılarak
karşılaştırılmıştır. Önerilen Q1P0F0 eleman formülasyonu anizotropik malzemeler
için diğer formülasyonlara nazaran daha iyi performans göstermiştir. Bunun yanında
önerilen formülasyonun performansı biyolojik dokular üzerinde çeşitli örnekler kul-
lanılarak test edilmiştir.
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Anahtar Kelimeler: anizotropi, hiper elastikiyet, yarı-sıkıştırılamaz, yarı-uzatılamaz,
karışık sonlu elemanlar, karışık varyasyonel prensipler
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CHAPTER 1

INTRODUCTION

Biological tissues and wood are some examples of natural anisotropic materials. Arte-

rial wall is one of the example of anisotropic biological tissues. Arterial wall consists

of mainly three layers as it can be seen in Figure 1.1 [20]. These three layers are the

innermost layer, intima, middle layer, media, and outermost layer, adventitia. They

contain fibers inside them and direction of the fibers are different for each layer. Be-

havior of each layer is studied by Holzapfel [22]. Arterial wall for soft biological

tissues shows exponential stiffening effect at high pressure values, because, as the

pressure increases there becomes gradual straightening and further elongation of col-

lagen fibers [20]. This behavior can be seen from Figure 1.2 (a-b) clearly. Figure

1.2 (a) shows the material behavior curve of the arterial wall under uniaxial loading

in fiber direction. As the axial stretch increases, axial stress increases sharply with

exponential behavior.

On the other hand, there are some man-made anisotropic materials, e.g. fiber rein-

forced materials and composites. These manufactured anisotropic materials are used

in various areas such as automotive and aerospace industries. For example, Figure

1.3 shows a Boeing 787 aircraft. Almost60% of the aircraft is made from anisotropic

materials. The aircraft mostly contains carbon laminates.

1.1 Finite Element Formulation

Shear locking is the one of the problems that are encounteredin finite element analy-

sis. Using linear elements is the main reason of this problem. Under bending loading,

linear elements introduce fictitious shear stress because of incorrect modelling of the

1
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Figure 1.1: Layers of the arterial wall as intima, media and adventitia [20].
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Figure 1.2: Material behavior curves of arterial wall for (a) axial stress-axial stretch
under uniaxial loading and (b) out of plane shear stress-amount of shear under simple
shear loading.

curvature in an element. Therefore, the element comes to equilibrium with smaller

bending displacements because of the shear stress. Then, itcan be said that the lock-

ing problem causes the element to behave stiffer than actualbehavior.

Different type of the locking, named as volumetric locking,occurs for some of the

anisotropic materials, such as biological tissues. These materials show very stiff volu-

metric response compared to bulk shear response which meansnearly incompressible

behavior. This incompressible behavior causes thelocking phenomena. The standard

displacement based finite element formulations show very poor performance in the

2



Figure 1.3: Boeing 787 Aircraft [10].

quasi-incompressible limit where bulk modulus is much higher than shear modulus.

The main reason of this situation is that the volume remains constant at each integra-

tion point of the element and this overconstraints the displacement field. Therefore,

the standard shape functions can include the incompressibility constraint by causing

artificial stiffening [27, 28].

Moreover, some of these anisotropic materials, such as fiber-reinforced composites

and biological tissues, exhibit much higher stiffness in the direction of the fiber com-

pared to transverse direction. This behavior can be seen from Figure 1.2 (a-b). Figure

1.2 (a) shows the behavior of arterial wall in fiber directionunder uniaxial loading

while Figure 1.2 (b) shows the behavior of arterial wall in transverse direction under

simple shear. It is clearly seen that material exhibits muchhigher stiffness in the di-

rection of fiber when stress results are compared. This causes the same mathematical

problem in the inextensibility limit. Also, inextensibility limit region can be seen

from Figure 1.2 (a). Therefore building robust and efficientfinite element formula-

tion for such anisotropic materials in the quasi-incompressible and quasi-inextensible

limits is an interesting topic.
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Usingh- or p-refinement strategies can be one of the solutions to the problem. Simply,

h-refinement means that number of the lower order elements is increased for better

solution, while higher order polynomials are used by keeping number of elements

constant inp-refinement technique. It is a fact that locking response is known to dis-

appear for higher order trianglesp > 4 [52] and computational cost is increased by

using lower order elements withh-refinement. Nevertheless, since lower order ele-

ments are more simple and robust than the higher order elements in case of nonlinear

Lagrangian hyperelastic formulations, they still preserve their popularity [53]. There-

fore, performance of the standard lower order elements has been tried to be improved

for the last decades.

Moreover, locking problem can be solved by different methods such asreduced in-

tegration, stabilization, mixed or hybrid element formulations[61]. Mixedor hybrid

element formulationsare types of variational methods where an additional stressor

strain type penalty term is defined as a Lagrange multiplier.The first hybrid formu-

lation of linear elasticity was offered by Pian et al. [43, 42, 44]. The formulation

consists of Hellinger–Reissner variational principle forlinear elastic medium. Also,

this formulation enhances stress approximation of the standard displacement formula-

tions under extreme deformation. Matrix inversion of the elasticity tensor at element

level is required and is not easy in case of nonlinear elasticity at finite strains [2].

Reduced integration schemesalong withstabilization techniquesis another strategy

to enhance the behavior of the linear pure displacement formulation against locking

problem [27, 32]. The assembly of the tangent and residual terms of polynomial shape

functions using less number of Gauss points than required can be followed with the

research of Zienkiewicz et al. [66]. However, reduced integration method can cause

hourglass modesor zero energy modes. Hourglass modesor zero energy modescan

be explained such that element distortion does not generatestrain energy because of

reduced number of integration points. This problem leads tomeaningless results, es-

pecially for coarse meshes. Therefore,Hourglass modescaused by the reduced inte-

gration should be stabilized [7, 48]. Hourglass stabilization methods are computation-

ally applicable because they decrease the number of computations at element level.

However, stabilization requires additional nonphysical parameters into formulation

which can affect the results under bending dominated cases.Also, enhanced strain

4



formulations(ESF) based on the introduction of auxiliary incompatible strain field

satisfying the material frame invariance and objectivity requirements were developed

[6, 54, 53, 55, 56] for finite strain elasticity and elastoplasticity problems. These for-

mulations are based on Hu–Washizu type variational principles. Moreover, extension

of them to the higher order gradient plasticity has been studied in [37, 38, 39]. En-

hanced strain formulations do not require the modification of the constitutive model

but nonlinear formulation create non-physical instabilities on element. These insta-

bilities cannot be eliminated by increasing the order of quadrature and modifying

the material model. Canceling terms at the element level canbe introduced in or-

der to minimize these hour-glass type instabilities [19, 29]. With the help of these

formulations, hourglass modes can be eliminated under compression but numerical

stability cannot be guaranteed for irregular distorted meshes and nonhomogeneous

stress states. This hourglass instabilities can be solved for highly distorted meshes

with the separation of element tangent matrix into constantand hourglass parts, and

by introducing a control technique based on a modal analysis[49, 62].

Q1P0element formulation was firstly mentioned by Nagtegaal et al. [40]. The for-

mulation is also named as themean dilatation approach. It is worked in Brezzi &

Fortin [15] for small strain cases and enlarged to large strain problems by Simó et

al. [58]. Simó & Taylor [57] used the formulation for hyperelastic materials in the

quasi-incompressibility limit. Enforcing incompressibility is achieved by introducing

an additional term into the potential functional which behaves as constraint.Q1P0

element formulation is studied in detail in literature [36,61]. The formulation is

improved to get better performance in bending dominated problems. Then, the for-

mulation is enlarged to the finite element implementation ofelasto-plastic material

response [13] and transversely anisotropic materials and soft tissues [60].

Ladyzhenskaya-Babuska-Brezi (LBB) conditionknown asinf-sup conditionis used to

justify the stability of mixed finite element method [3, 11, 30]. Also, stability for in-

compressible condition in linear elasticity is worked in [5]. However,LBB condition

study is not trivial for finite strain condition becauseQ1P0element formulation fails

to fulfill the inf-sup condition[61]. On the other hand, it is confirmed that formu-

lation is stable for a wide range of applications in quasi-incompressibility condition

undergoing large deformations [36].
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1.2 Constitutive Model

Three invariants{I1, I2, I3} are used to model the free energy function for isotropic

materials. Moreover,{I1, I2} invariants are enough to define the incompressible

isotropic behavior. The invariants and constitutive formulations will be defined in

Chapter 2 in detail.

In order to describe transversely isotropic behavior, additional two invariants{I4, I5},
generated by Cauchy Green tensor and reference unit vector,are introduced [9, 8,

50]. In fiber reinforced materials, free energy function uses unreinforced base matrix

enlarged by the fourth invariantI4 as an additional penalty function for stretching

in the fiber direction [46]. Similar method is applied to softbiological tissues [23].

Standard reinforcing modelis the name of the proposed function [46]. In this model

there are instabilities under simple shear, and uniaxial compression when the fiber

stiffness increases. Then, the material instability as loss of ellipticity of the standard

reinforcing model is studied in [47, 34, 35]. Moreover, inextensibility is worked for

transversely isotropic solid with unidirectional reinforcement in [1].

In literature, free energy function is divided into volumetric, isochoric and anisotropic

parts. Volumetric part is a function ofJ = detF and an isochoric part is a function

of the unimodular part of the deformation gradient which isF̄ = J−1/3F [17]. For

the isotropic region, split of volumetric and isochoric parts has lots of advantages in

the incompressible region. For instance, the split leads toeasy implementation of the

mean dilatation approachinto the finite element formulation. However, the split can

cause fictitious results in the compressible region [14]. Then it is described that split

of volumetric and isochoric parts should be applied only to the matrix part.

Moreover, a similar problem has been detected for the split of anisotropic part of the

free energy. It is shown that use of the fourth invariantĪ4 of the unimodular stretch

tensor creates similar fictitious results for uniaxial tension test in [21]. In the work,

uniaxial stress creates volume increase at small stretchescausing negative Poisson ra-

tio ν because exponential anisotropic free energy function competes with volumetric

free energy function in the quasi inextensibility limit allthrough the minimization of

the strain energy. This problem can be overcome by using the anisotropic free energy
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functionψani = ψani(I4) in terms of the fourth invariant of the deformation tensor.

In recent times, Hu-Washizu type mixed variational principles have been examined

to develop the formulation for inextensibility limit in biological tissues and fiber re-

inforced elastomers in [51, 63, 64, 65]. Therein, Zdunek et al. [64, 65] propose a

model based on the kinematic split of the deformation gradient into a purely spherical

part, a purely unimodular extensional part and an extensionfree unimodular tensor.

The Lagrangian element formulation using scalar conjugatepairs(p, θ) and(ρ, λ) for

pressure-dilatation and fiber stress-stretch is parallel to the mean dilatational approach

[58] (MDA). Then a five fields variational formulation which arises where the consis-

tent linearization and static condensation at element level causes purely displacement

element matrix. Convergence and stability of the solution are not shown in the for-

mulation. However, the models of the Schröder et al. [51] andWriggers et al. [63]

are mixed models combining mean dilatational approach for quasi incompressibility

and enhanced strain formulation for quasi-inextensibility by using extra deformation

measure in variational formula. In the formulation basic kinematic approach is used

where strain energy consists of extra decomposed isotropicand anisotropic parts.

Anisotropic part of the free energy functionψani for the biological tissues, especially

arteries, is worked in [26, 18, 24, 25, 4]. They propose some kinds of anisotropic

part of the free energy function. Firstly, one of the suggested anisotropic part of free

energy function consists of an exponential function by including a material param-

eter and a non-dimensional constant,k1 andk2, respectively, given in the work of

Holzapfel et al. [24]. Various kinds of fiber modelling for arteries are studied in the

review of Gasser et al. [18]. One of these models is fiber dispersion model for the

anisotropic free energy function. They use a single structure parameter in theψani to

represent the effects of collagen fiber distribution in an integral sense. Also, Holzapfel

& Ogden [25] use similar modelling of the anisotropic free energy function for the

passive myocardium. Most of these references use an exponential function for the

anisotropic part of the free energy function for arteries.

Moreover, determination of these material and non-dimensional parameters,k1 and

k2, is another important topic. This topic is examined in detail by [22, 16, 59]. In

these works, constitutive parameters for the aortas are determined for various age and

7



gender combinations of humans and average values for parameters are given. Studies

are also conducted for different regions of aortas such as abdominal and throacic.

Balzini & Holzapfel [4] offer constitutive constants for the media region of a human

carotid artery in the physiological loading domain, also Liet al. [31] offer material

constants for a human carotid artery. Moreover, material parameters for the human

iliac arteries are given in the research of Qi et al. [45]. Also, material parameters for

the passive myocardium are given in [25]. Furthermore, geometric parameters of the

layers of the aortas are examined in the work of the Holzapfel& Ogden [26].

In this work, theoretical and computational settings for almost incompressible and

inextensible material behavior depending on a saddle pointprinciple obtained from

a mixed potential will be presented. Also, a five-field Hu-Washizu type extended

variational formulation will be studied in the work. To summarize, mixed finite ele-

ment formulation which is an extended version ofQ1P0formulation to inextensibility

limit will be proposed in this study. Free energy function isdecomposed into purely

volumetric, isochoric and anisotropic parts. A similar exponential function for the

anisotropic part will be used in the work. Also, deformationgradient is divided into

two parts as unimodular and spherical. Moreover, anisotropic behavior is given by

using the fourth invariant with the simplified approach. A scalar kinematic variable,

λ, and a Lagrange multiplier,s, are used to enforce quasi inextensibility. An eight-

noded brick element is represented in the finite element formulation. However, it can

be combined with linear and higher order element formulations in a straightforward

manner.

After Chapter 1, theory including equation of motion, constitutive modelling, mixed

variational formulation and finite element formulation will be examined in detail in

Chapter 2. Then, the proposed model will be compared with theexisting models on

a simple example in Chapter 3. After validation, the proposed formulation will be

applied to a combined loading of the arterial wall which has more realistic geometry

and material parameters to see the behavior of the arteries in Chapter 4. Finally, the

thesis will be concluded with the conclusion and future workpart in Chapter 5.
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CHAPTER 2

THEORY

2.1 Governing equations of motion

Field equations and corresponding state variables of a transversely isotropic hypere-

lastic solid body are presented in this section. This section also contains the intro-

duction of the kinematics and integrity basis of the deformation and the constitutive

equations based on a Neo-Hookean hyperelastic model. Finally, the model is ex-

tended to transverse anisotropy through standard reinforcing model.

2.1.1 Geometric mappings and the field variables

A bodyB is a 3-D structure including material pointsP ∈ B and its motion as a

function of time is defined by using bijective mappings as

χ(P, t) =







B → B(P, t) ∈ R3 × R+

P 7→ x = χt(P) = χ(P, t).
(2.1)

The pointx = χ(P, t) stands for the position of the particleP at timet ∈ R+.

Also, X = χ(P, t0) ∈ R
3 can be defined as the location of material points at a

reference timet0 andχt(P) = χ(P, t) can be defined as the position map for a

frozen time framet. Moreover,ϕt = χt ◦χ−1
t0 (X) denotes deformation map such as

ϕt(X) =







B0 → B ∈ R3

X 7→ x = ϕ(X, t)
(2.2)

9



F

B0 B

x

f0
f

X

ϕ(X, t)

t

∂B0
ϕ ∂Bϕ

∂B0
t

∂Bt

Figure 2.1: Nonlinear deformation of a body [12].

maps the reference configurationX ∈ B0 of a material point on the spatial configu-

rationx ∈ B. Thedeformation gradientcan be defined as

F : TXB0 → TxB; F := ∇Xϕt(X). (2.3)

The deformation gradient maps the unit tangent of theLagrangian(reference) con-

figuration which isTX onto its counterpart in theEulerian (current) configuration

which isTx. The operators∇X [•] and∇x[•] can be defined as the spatial derivatives

with respect to the referenceX and currentx coordinates. Also the cofactor of the

deformation gradient and the Jacobian can be defined as

cof[F ] = det[F ]F−T and J := det[F ] > 0. (2.4)

Note that the conditionJ := det[F ] > 0 guarantees impenetrable deformationϕ.

Then, the deformation gradient defines the deformation of aninfinitesimal line, area

and volume element, respectively, as

dx = F dX , da = cof[F ]dA , dv = JdV , (2.5)

wheredX, dA anddV , respectively, can be defined as the infinitesimal line, area
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Figure 2.2: Definition ofright and left Cauchy Green tensors. (a) Current metricin
Lagrangian configuration. (b)Reference metricin Eulerian configuration.

and volume element in the undeformed state. Figure 2.1 showsthe general sketch

of the nonlinear deformation map. In the Figure 2.1, the reference configuration is

B0 ∈ R3 and the spatial configuration isB ∈ R3. ϕ : B × R 7→ R3 is the nonlinear

deformation map which maps at timet ∈ R+ material point positionX ∈ B0 onto

spatial positionx = ϕ(X, t) ∈ B. The deformation gradientF maps a Lagrangian

line element dX onto its Eulerian counterpart dx.

Moreover, theright Cauchy Green tensorand the inverse of theleft Cauchy Green

tensorscan be defined as

C = F TgF , (2.6)

c = F−TGF−1, (2.7)

whereg andG are the current and reference metric tensors in the neighborhoodsNX

of X andNx of x, respectively. These tensors are used for the mapping between the

co- and contravariant objects in the referenceB0 and the spatialB manifolds [33].

Also, theleft Cauchy Green tensoror theFinger tensorcan be defined as

b = c−1. (2.8)

Figure 2.2 (a-b) is useful for geometrical interpretation of these tensors. Figure 2.2 (a)

interprets theright Cauchy Green tensordefined in (2.6), and Figure 2.2 (b) interprets

the left Cauchy Green tensordefined in (2.7).

Then, the deformation gradient is divided into volumetric and unimodular parts in
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order to impose the quasi-incompressible behavior of soft biological tissues as

F vol := J1/3
1 and F̄ := J−1/3F , (2.9)

where

F = F volF̄ . (2.10)

The Lagrangian unit vectorf 0 is introduced to reflect anisotropic continuum. Under

the presence ofϕt, the Eulerian counterpart can be defined as

f = Ff 0 . (2.11)

Also, the boundaries of solid domain can be divided into Dirichlet and Neumann-type

boundaries such that

∂B = ∂Bϕ ∪ ∂Bt and ∂Bϕ ∩ ∂Bt = ∅. (2.12)

2.1.1.1 Stress tensors

We define a partP0 ⊂ B0 extracted from the reference configurationB0 and its

spatial counterpartPt ⊂ Bt with boundaries∂P0 and∂Pt. t can be defined as the

total stress vector and acts on the the surface elementda ⊂ ∂Pt on the deformed

state. The total stress vector can be introduced by using Cauchy’s stress theorem as

t(x, t;n) = σ · n, (2.13)

whereσ is Cauchy stress tensor. Then the Lagrangian and Eulerian unit area elements

can be defined as

dA = NdA and da = nda , (2.14)
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whereN andn are the surface normals of the undeformed and deformed configura-

tion. Then by using equalityT dA = tda the nominal stress tensorP can be defined

as

P dA = σda where P = JσF−T . (2.15)

2.1.2 Constitutive model: Transversely isotropic neoHookean model

As it is mentioned in the previous chapters, fiber reinforcedmaterials and biological

tissues exhibit nearly incompressible bulk response and inextensible behavior in the

fiber direction. Figure 2.3 simply demonstrates a schematicfor a fiber reinforced

composites. Free energy function can be defined for this kindof materials in the form

such as

ψ(g;F , f0) = ψvol(J) + ψiso(g; F̄ ) + ψani(g;F , f0), (2.16)

divided into three parts as volumetric, isochoric and anisotropic, respectively.Q1P0F0

mixed-element formulation for biological tissues is generated by using a quasi-in-

compressible Neo-Hookean type hyperelastic formulation in the decoupled form (2.16).

However, the proposed formulation can be used in combination of any isotropic hy-

perelastic solid model because of the generality. The free energy function for an

isotropic hyperelastic material is constructed by using three invariants as

I1 = trC, (2.17)

I2 =
1

2

[
I21 − tr(C2)

]
, (2.18)

I3 = detC = J2, (2.19)

whereC is the right Cauchy Green tensor defined in (2.6).
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Furthermore, the anisotropic response of the material is generated by introducing

additional invariants. Therefore, the two additional invariants are introduced in terms

of the reference unit vectorf 0

I4 := f0 ·Cf 0 I5 = f0 ·C2f 0, (2.20)

which is used to model the energy storage of the a single fiber reinforced micro-

structure.

Then, the parts of the free energy function defined in (2.16) can be modelled by using

these invariants. Firstly, the volumetric part of the free energy function is defined as;

ψvol(J) =
κ

4

(
J2 − 2 ln J − 1

)
, (2.21)

which constrains the quasi-incompressible material behavior [41]. The isochoric part

of the free energy function is defined by using a Neo-Hookean model.

ψiso(g; F̄ ) = c1(Ī1 − 3) . (2.22)

Note that2c1 = µ0 is the initial shear modulus. The anisotropic part of the free energy

function for the biological tissues can be defined as

ψani(g;F , f 0) =
k1
k2

(exp[k2〈I4 − 1〉2]− 1), (2.23)

which consists of an exponential function of the fourth invariant. The function is

suitable for the arteries taken from [18]. Also, the Macauley brackets〈•〉 filter out

the tensile deformations and it can be defined as

〈•〉 = | • | +(•)
2

. (2.24)

If two families of fibers are used, there should be a new invariant,I6, which represents

other family of fibers with a new reference unit vectorf ′

0.
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Figure 2.3: Transverse anisotropy: (a) stiff fibers embedded in soft matrix, (b) com-
posite laminate consisting of stiff and soft layers

The isochoric part of free energy function is included into formulation at Gauss

quadrature points while the volumetric and anisotropic parts which constrain quasi-

incompressible and quasi-inextensible behavior will takepart in the formulation at

element level.

Furthermore, the Kirchoff stress expression is divided into three parts similar to the

free energy function (2.16) as

τ := 2∂
g
ψ = τ vol + τ iso + τ ani, (2.25)

which are isotropic parts (volumetric and isochoric parts)and anisotropic part.

The spatial elasticity moduli builds the relation between Lie derivative or Oldroyd

rate of the Kirchhoff stresses and the Lie derivative of the spatial metricg via

£vτ = C : £vg/2, (2.26)

where£vg is equal to the symmetric rate of deformation tensor as

£vg = (gl+ lTg). (2.27)

Note thatl = Ḟ F−1 is the spatial velocity gradient.
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After these definitions, the Eulerian moduli expression canbe also divided into volu-

metric, isochoric and anisotropic parts, respectively.

C := 4∂2
gg
ψ(g;F , f 0) = C

vol + C
iso + C

ani (2.28)

Then, these volumetric, isochoric and anisotropic parts ofthe stress and the Eulerian

moduli will be defined, respectively. Firstly, the volumetric part of the Kirchoff stress

expression is

τ vol = 2∂
g
ψvol(J) = pg−1, (2.29)

where

p = Jψ′

vol(J) =
κ

2
(J2 − 1) . (2.30)

The Eulerian moduli term for the volumetric part can be defined as

C
vol := 4∂2

gg
U(J) = (p+ κ̂)g−1 ⊗ g−1 − 2pI , (2.31)

where

κ̂ = J2ψ′′

vol(J) =
κ

2
(J2 + 1) . (2.32)

The isochoric part of the Kirchoff stress can be defined as

τ iso := 2∂
g
ψiso(g;F ) = τ̄ : P, (2.33)

where

τ̄ = 2∂
g
ψiso(g; F̄ ) . (2.34)
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Inserting (2.22) into (2.33) results

τ iso = µ̂ dev b̄ with µ̂ = 2
∂ψiso

∂Ī1
= 2 (c1) . (2.35)

In equation 2.35,̄b is the unimodular part of the Finger tensor which can be defined

as

b̄ = J−2/3b. (2.36)

Isochoric part of the Eulerian moduli can be expressed as

Ciso := 4∂2
gg
ψiso(g;F )

= P :

[

C̄+
2

3
(τ̄ : g)I− 2

3
(τ̄ ⊗ g−1 + g−1 ⊗ τ̄ )

]

: PT ,

(2.37)

wherePab
cd is the fourth-order deviatoric projection tensor which canbe expressed as

P
ab
cd = [δac δ

b
d + δadδ

b
c ]/2− δabδcd/3. (2.38)

Also,

τ̄ = 2∂
g
ψiso(g; F̄ ) and C̄ := 4∂2

gg
ψiso(g; F̄ ) (2.39)

are the Kirchoff stress and the Eulerian moduli related withthe unimodular part of

the deformation gradient. Inserting (2.22) into (2.39)1, and (2.39)2 into (2.22), results

in

τ̄ = µ̂b̄ and C̄ = µ̂′b̄⊗ b̄ with µ̂′ = 0 . (2.40)

Finally, anisotropic part of the Kirchhoff stress can be defined as

τ ani = 2∂
g
ψani(g;F , f0) = 2k1〈I4 − 1〉 exp[k2〈I4 − 1〉2]f ⊗ f . (2.41)
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Moreover, the anisotropic part of the Eulerian moduli can bewritten as

Cani = 4∂2
gg
ψani(g;F , f 0)

= 4k1(1 + 2k2〈I4 − 1〉2) exp[k2〈I4 − 1〉2]f ⊗ f ⊗ f ⊗ f

(2.42)

2.2 Variational formulation for an anisotropic and incompr essible continuum

2.2.1 Variational formulation for finite elasticity

Potential functional forfinite elasticitycan be expressed in the form

Π̂(ϕ, t) = Π̂int(ϕ, t)− Π̂ext(ϕ, t) , (2.43)

where

Π̂int(ϕ, t) =

∫

B

ψ(g,F ) dV, (2.44)

Π̂ext(ϕ) =

∫

B

ϕ · ρ0γ̄ dV +

∫

∂Bt

ϕ · T̄ dA , (2.45)

whereΠ̂int(ϕ) is the energy stored in the body whilêΠext(ϕ) is the work done by

external forces. Also,ρ0, γ̄, T̄ andψ(g,F ) are the density, prescribed body force,

surface traction and volume specific free energy, respectively. The boundary value

problem leading to finite elasticity is generated from the elastic potential by theprin-

ciple of minimum potential energyin the variational form

ϕt = Arg

{

inf
ϕt∈W

Π̂(ϕ, t)

}

(2.46)

restrained by Dirichlet-type boundary condition

W = {ϕt | ϕt ∈ B ∧ ϕt = ϕ̄ on ∂Bu} . (2.47)
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The variation of (2.46) along with localization theorem results in theEuler–Lagrange

equationby using the stationary behavior of the potentialΠ̂(ϕ, t) as

J div[J−1τ ] + ρ0γ̄ = 0, (2.48)

which is the balance of linear momentum for quasi-static problems in domainB

along with Neumann-type boundary condition

P ·N = τ · n = T̄ on ∂Bt, (2.49)

where we have made use of the identity

JF−TN dA = n da, (2.50)

which is also known asNanson’s formula. Therein,T̄ = Jt is the scaled traction

vector.

TheQ1 element formulationis derived by applying the consistent linearization of the

weak form obtained as the first variation of (2.46). The weak form can be alternatively

obtained from the momentum balance equation (2.48) by Galerkin’s procedure.

2.2.2 A mixed variational formulation for a quasi-incompressible and quasi-

inextensible continuum

Two penalty terms can be added to the minimization problem (2.46) to constrain the

quasi-incompressible and quasi-inextensible behavior with the decomposed represen-

tation (2.16).

Π̂(ϕ, p, θ, s, λ) :=

∫

B

π∗(ϕ, p, θ, s, λ) dV − Π̂ext(ϕ, t) . (2.51)

The mixed potential density (π∗(ϕ, p, θ, s, λ)) introduced in equation (2.51) can be

defines as
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π∗(ϕ, p, θ, s, λ) = ψiso(g, F̄ ) + p(J − θ) + ψvol(θ)
︸ ︷︷ ︸

volumetric constraint

+ s(I4 − λ) + ψani(λ)
︸ ︷︷ ︸

inextensibility constraint

. (2.52)

In equation (2.52),p ands are penalty parameters used with the kinematic quantities

θ andλ, respectively.

Then, the motion of the body restrained by incompressibility and inextensibility con-

straints is defined by using themixed saddle point principle

{ϕt, θ, p, λ, s} = Arg

{

inf
ϕt∈W

inf
θ
inf
λ
sup
p

sup
s

Π̂(ϕ, t)

}

(2.53)

subjected to the boundary conditions

W = {ϕt | ϕt ∈ B ∧ ϕt = ϕ̄ on ∂Bu}. (2.54)

After these definitions, variations of (2.51) with respect to ϕ, p, θ, s andλ are taken

and this results in the weak form;

δϕΠ̂(ϕ, p, θ, s, λ) =

∫

B

{
(
τ iso + pJg−1 + 2sf ⊗ f

)
:
1

2
£δϕg

}

dV

− δΠ̂ext(ϕ) = 0 ,

δpΠ̂(ϕ, p, θ, s, λ) =

∫

B

δp (J − θ) dV = 0 ,

δθΠ̂(ϕ, p, θ, s, λ) =

∫

B

δθ (ψ′

vol(θ)− p) dV = 0 ,

δsΠ̂(ϕ, p, θ, s, λ) =

∫

B

δs (I4 − λ) dV = 0 ,

δλΠ̂(ϕ, p, θ, s, λ) =

∫

B

δλ (ψ′

ani(λ)− s) dV = 0 .

(2.55)

By using these weak form equations (2.55), mixed finite element method can be built.

In equation (2.55.1),£δϕg is the Lie derivative of the current metric along the vari-

20



ationδϕ. Taking the variation of the potential density (2.52),Euler–Lagrange equa-

tionsof the mixed variational principle can be written as

1. J div[J−1τ ] + ρ0γ̄ = 0

2. J − θ = 0

3. ψ′

vol(θ)− p = 0

4. I4 − λ = 0

5. ψ′

ani(λ)− s = 0

(2.56)

throughout the Neumann-type boundary conditionsWt = {σ · n = t on ∂Bt}.

2.2.3 Consistent linearization of the mixed potential

The following identity can be proven

1

2
£δϕg = sym (g∇xδϕ) . (2.57)

Therefore, the term1
2
£δϕg can be replaced withsym (g∇xδϕ) in equation (2.55.1).

Moreover, there is a nonlinearity in equation (2.55.1) in terms ofϕ. Also, equations

(2.55.2-5) behave as additional constraints on (2.55.1). Equation (2.55.1) can be lin-

earized consistently aroundϕ as

DδϕΠ̂ ·∆ϕ =

∫

B

g∇xδϕ :
{
∇x∆ϕ

(
τ iso + pJg−1 + 2sf ⊗ f

)}
dV

+

∫

B

g∇xδϕ :
{
pJV+ C

iso
}
: g∇x∆ϕ dV

+

∫

B

g∇xδϕ : J∆pg−1 dV.

+

∫

B

g∇xδϕ : 2∆sf ⊗ f dV

(2.58)

with the following description

V = g−1 ⊗ g−1 − 2Ig−1 , (2.59)
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whereIg−1
abcd is the fourth-order symmetric identity map which is defined as

Ig−1
abcd = (δacδbd + δadδbc)/2. (2.60)

Equation (2.55.1) stands for the balance of linear momentumand equations (2.55.2-

5) are the constraint equations driving incompressible andinextensible behavior for

quasi-static problems. The equations (2.55.2-5) will be enforced weakly within sub-

domainsBe such thatB0 ≈
⋃ne

e=1
Be wherene denotes the number of the subdo-

mains.

The kinematical variableθ and the penalty parameterp can be derived with equations

(2.55.2) and (2.55.3) within the subdomainBe as

θ̄ =
1

V e

∫

Be

J dV , (2.61)

p̄ =
1

V e

∫

Be

ψ′

vol(θ) dV = ψ′

vol(θ̄). (2.62)

Equations (2.61) and (2.62) result in a constant values for the θ̄ andp̄ which can be

explained as the mean dilatation and the mean pressure over the element domain. The

incremental forms of the mean pressurep̄ and the mean dilatation̄θ can be derived as

∆p̄ = ψ′′

vol(θ̄)∆θ̄, (2.63)

where

∆θ̄ =
1

V e

∫

Be

Jg−1 : g∇x∆ϕ dV. (2.64)

By using the same discretization in the derivation ofθ̄ andp̄, the kinematical variable

λ and the penalty parameters can be derived with (2.55.4) and (2.55.5) within the

subdomainBe as

λ̄ =
1

V e

∫

Be

I4 dV, (2.65)
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s̄ =
1

V e

∫

Be

ψ′

ani(λ) dV ≈ ψ′

ani(λ̄). (2.66)

Equations (2.65) and (2.66) result in a constant values forλ̄ and s̄ which can be

explained as the mean fiber stretch and the mean fiber stress over the element domain.

The incremental forms of the mean fiber stretch and mean fiber stress can be defined

as

∆s̄ = ψ′′

ani(λ̄)∆λ̄, (2.67)

where

∆λ̄ =
1

V e

∫

Be

2f ⊗ f : g∇x∆ϕ dV. (2.68)

The stresses and the moduli equations can be rederived as

τ̂ = τ iso + p̄Jg−1 + 2s̄f ⊗ f , (2.69)

Ĉ = p̄JV+ C
iso. (2.70)

Finally, by applying the symmetry of̂τ andĈ and substituting equations (2.63, 2.64,

2.67, 2.68) and (2.69) into equation (2.58), final equation for the linearized term can

be written as

DδϕΠ̂ ·∆ϕ =
n

A

e=1

{∫

Be

g∇xδϕ : ∇x∆ϕ τ̂ dV

+

∫

Be

g∇xδϕ : Ĉ : g∇x∆ϕ dV

+

∫

Be

Jg∇xδϕ : g−1 dV ψ′′

vol(θ̄)
1

V e

∫

Be

Jg∇x∆ϕ : g−1 dV

+

∫

Be

g∇xδϕ : 2f ⊗ f dV ψ′′

ani(λ̄)
1

V e

∫

Be

g∇x∆ϕ : 2f ⊗ f dV

}

(2.71)
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2.3 Finite element formulation

ϕ θ̄ p̄ λ̄ s̄

Figure 2.4: Q1P0F0 mixed finite element formulation sketch for quasi-
incompressible and quasi-inextensible hyperelasticity.

2.3.1 Element discretization

In this section, spatial discretization of variables will be conducted. The aim of this

step is to get algebraic correspondents of the residual equation (2.55.1) and to cre-

ate the element matrices from linearized equation (2.71). In the element phase, the

introduced mean values̄p, θ̄, s̄ andλ̄ are kept constant whereas the trilinear interpo-

lation is applied for fieldϕ as it is shown in Figure 2.4. Figure 2.4 is given in two

dimensional form for clarity. After that, interpolation ofthe field variables and the as-

sociated weight functions on each element domain is conducted by defining discrete

nodal values andC 0-continuous shape functions as

ϕh =

nen∑

I=1

N
I x̂I , (2.72)

δϕh =

nen∑

I=1

N
I δx̂I , (2.73)

∆ϕh =

nen∑

I=1

N
I ∆x̂I , (2.74)

wherenen means node number per element. The spatial gradient of the weight func-

tion and incremental field can be derived by using discretization in equations (2.73)

and (2.74) as
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∇x(δϕh) =

nen∑

I=1

δx̂I ⊗∇xNI , (2.75)

∇x∆ϕh =
nen∑

I=1

∆x̂I ⊗∇xNI . (2.76)

By inserting equations (2.72, 2.73, 2.74 2.75, 2.76) into (2.55), we can obtain the

residual vector in discrete form as

R
ϕ =

nel

A

e=1

nen∑

I=1

∫

Bh
e

[
∇xNI · τ̂ −N

Iρ0γ̄
]
dV −

nsel

A

e=1

nsen∑

I=1

∫

∂S e
t

N
I T̄ dA = 0 . (2.77)

In equation (2.77),
A

stands for an operator which is used for the assembly of element

contributions at the local element nodesI = 1, . . . , nen over nel subdomains.

Then, linearization of the residual expression can be defined as

LinRϕ = R
ϕ +

∂Rϕ

∂U
∆U , (2.78)

where

U =
nel

A

e=1

x̂h . (2.79)

Stiffness matrix can be obtained by inserting (2.72, 2.73, 2.74 2.75, 2.76) into (2.71)

as

K =
∂Rϕ

∂U
=

nel

A

e=1

Kel, (2.80)

whereKel is the element stiffness matrix. It can be divided into material, geometric,

volumetric and anisotropic contributions as

Kel = K
mat
el +K

geo
el +K

vol
el +K

ani
el . (2.81)
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Also, elemental average quantities can be expressed as;

∇xN̄I =

∫

Bh

el

J ∇xNI dV , (2.82)

∇xF̄I =

∫

Bh

el

∇xNI : f ⊗ f dV. (2.83)

Stiffness contributions can be derived by using elemental average quantities as

K
mat IJ
el =

∫

Bh

el

∇T
x N

I · Ĉ · ∇xNJ dV , (2.84)

K
vol IJ
el = ∇T

x N̄
I ψ

′′

vol(θ̄)

Ve
∇xN̄J , (2.85)

K
geo IJ
el =

∫

Bh

el

∇xNI · τ̂ · ∇xNJ dV , (2.86)

K
ani IJ
el = ∇T

x F̄
I ψ

′′

ani(λ̄)

Ve
∇xF̄J . (2.87)

An 8 noded brick element will be used in the upcoming representative examples.

Therefore, the shape functions and corresponding nodal values for this element can

be introduced as

N
I(ξ) =

1

8
(1 + ξ1ξ

I
1)(1 + ξ2ξ

I
2)(1 + ξ3ξ

I
3), (2.88)

ξI1 = [−1 + 1 + 1 − 1 − 1 + 1 + 1 − 1]

ξI2 = [−1 − 1 + 1 + 1 − 1 − 1 + 1 + 1]

ξI3 = [−1 − 1 − 1 − 1 + 1 + 1 + 1 + 1]

(2.89)
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ξ1

ξ2

ξ3

1 2

34

5 6

78

Figure 2.5: Bi-unit cube in the parameter space. Local coordinates are defined by
ξ ∈ A, whereA := {ξ ∈ R3 | −1 ≤ ξi ≤ +1 ; i = 1, 3}.

This shape functions are for a cubic structure in the parametric space as shown in

Figure 2.5. Flowchart for the computation of the element stiffness matrix can be seen

more clearly in Table 2.1.
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Table 2.1: Calculation ofQ1P0F0element stiffness matrix [12]

a) Volumetric and anisotropic contributions of stiffness matrix:

Mean parameters,̄θ, p̄, λ̄ ands̄, will be calculated.
{

LOOP [α = 1, 8] Given: placement̂xh = ûh + X̂
h
, shape functionsN(ξ) := N

I(ξ)

. Set:V e = ve = 0 λ̄ = 0

1. Calculate shape function, derivative of the shape function in parametric space and trans-
formation map atξ(α)

N(ξ), ∇ξN(ξ) and J = ∇ξNX̂
h

at ξ = ξ(α)

2. Calculate the material and spatial derivative of shape functions, and deformation gradient

∇XN = ∇ξNJ−1, F = ∇XNx̂ and ∇xN = ∇XNF−1

3. Calculate the initial and current element volume and the integrate the fiber stretchf =

Ff0

V e← V e + detJwα ve← ve + detJ detFwα

λ = f · gf λ̄← λ̄ + λdetJwα

4. Calculate∇xN̄ := ∇xN̄I and∇xF̄ := ∇xF̄I

∇xN̄← ∇xN̄+ detJ detFwα∇xN ∇xF̄← ∇xF̄+ detJwα∇xN : f ⊗ f

}

5. Calculatēθ, p̄, λ̄ ands̄

θ̄ =
ve

V e
p̄ = ψ′

vol(θ̄) λ̄← λ̄

V e
s̄ = ψ′

ani(λ̄)

6. CalculateKvol andKani

Kvol
3(I−1)+i, 3(J−1)+j = (N̄,x)

I
i

ψ′′

vol(θ̄)

V e
(N̄,x)

J
j

Kani
3(I−1)+i, 3(J−1)+j = (F̄,x)

I
i

ψ′′

ani(λ̄)

V e
(F̄,x)

J
j

b) Material and geometric part of the stiffness matrix:
{

LOOP [α = 1, 8]

7. CalculateKmat andKgeo

Kgeo
3(I−1)+a, 3(J−1)+a = Kgeo + (N,x)

I
i (N,x)

J
j τ

ij detJwα

Kmat
3(I−1)+i, 3(J−1)+k = Kmat + (N,x)

I
j Ĉ

ijkl(N,x)
J
l detJwα

}
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CHAPTER 3

VALIDATION OF THE MODEL

3.1 Model Description

This section contains comparison of the proposed formulation with the standard linear

displacement element (Q1) formulation and the mean dilatation approach denoted as

Q1P0 formulation. For this purpose, the model similar to the numerical example

recently studied by Schröder et al. [51] is analyzed. A square block is fixed at top

(y = 1) and bottom (y = 0) surfaces and left surface (x = 0) is subjected to an

uniformly distributed loadingq0 which can be clearly seen from Figure 3.1. Also,

the fibers are alignedα = 60◦ from the horizontal plane. The square block has

unit dimensions of1 × 1. The original problem is two dimensional. The current

formulation is reduced to two dimensional setting by clamping the nodes against the

motion in z−direction by applyinguz = 0 for all nodes. Therefore, this leads the

plane-strain problem as it is studied in the reference [51].

The fiber directionf 0 = [0.5,
√
3/2, 0] is kept constant and the loadingq0 is varied

asq0 = {50, 100, 150, 200} kPa in order to study the stability of the proposed for-

mulation towards inextensibility limit. The specimen is monotonically loaded to via

q(t) = qot. Initially, the time increment is taken as∆t = 1. If the global Newton-

Raphson algorithm does not converge within 15 time steps, the time increment is

decreased and the simulation is restarted fromt = 0.

In this set of analysis, material parameters, given in Table3.1, are kept constant.

These parameters represent the media layer of the arterial wall taken from the work

of Holzapfel et al. [24]. The material behavior can be seen from Figure 3.2 (a-b).
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q0

x

y

ux
α

f
0

Figure 3.1: Description of the model.

Table 3.1: Material parameters.

Parameter Value Unit Parameter Value Unit

κ 104 [kPa] µ = 2c1 27 [kPa]

k1 0.64 [kPa] k2 3.54 [-]

Axial Stretch

C
au

ch
y

A
xi

al
S

tr
es

s,
[k

P
a]

Amount of Shear

C
au

ch
y

S
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S

tr
es

s,
[k

P
a]

(a) (b)
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27
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45

0 0.2 0.4 0.6 0.8

Figure 3.2: Material behavior curves of arterial wall for (a) axial stress-axial stretch
under uniaxial loading and (b) out of plane shear stress-amount of shear under simple
shear loading.

Figure 3.2 (a) shows the behavior of arterial wall in fiber direction under uniaxial

loading while Figure 3.2 (b) shows the behavior of arterial wall in transverse direction

under simple shear. When Cauchy stress results are compared, it is clearly seen that

the material is much stiffer in the fiber direction with respect to transverse direction.

Furthermore, Figure 3.2 (a) exhibits exponential stiffening behavior of arterial wall
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in fiber direction. Material reaches inextensibility limitwith increasing axial stretch

values.

For the analysis,n × n brick elements are used and six set of mesh densities are

applied where number of elements per edge are varied asn = {2, 4, 8, 16, 32, 64}.

q0 value is increased step by step to show the convergence of theproposed formula-

tion towards the inextensibility limit with respect to the standard linear displacement

element (Q1) formulation and the mean dilatation approach (Q1P0).

3.2 Results

The results of the analyses can be seen in Figures 3.3, 3.5, 3.7, 3.9. In these figures,

the left columns show the number of iteration and right columns show the horizontal

displacement (ux) for the center of the left surface, see Figure 3.1. Also, horizontal

axis shows the number of elements per square block edge. As the number of the

elements increases, mesh size becomes finer.
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Figure 3.3: Comparison of theQ1, Q1P0 andQ1P0F0 element formulations for
pressure valueq0 = 50 kPa.

Figure 3.3 shows the results of the analyses conducted atq0 = 50 kPa. As it can

be seen from Figure 3.3,Q1 formulation is not convergent with the increased mesh

resolution. Moreover, mesh convergences of theQ1P0andQ1P0F0formulations are

almost equal to each other. Also, Figure 3.4 shows the fiber stress results atq0 = 50

kPa for a mesh size of 32 elements per edge. Fiber stress magnitudes are almost equal
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(a) (b)

(c)

0 40

Figure 3.4: Fiber stress results for (a)Q1 (b)Q1P0 and (c)Q1P0F0 element formu-
lations for pressure valueq0 = 50 kPa with mesh size 32 elements per edge.

for theQ1P0F0, Q1 andQ1P0formulations.
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Figure 3.5: Comparison of theQ1, Q1P0 andQ1P0F0 element formulations for
pressure valueq0 = 100 kPa.
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(a) (b)

(c)

0 140

Figure 3.6: Fiber stress results for (a)Q1 (b)Q1P0 and (c)Q1P0F0 element formu-
lations for pressure valueq0 = 100 kPa with mesh size 32 elements per edge.

Figure 3.5 shows the results of the analyses conducted atq0 = 100 kPa. As it is

shown in the figure 3.5,Q1 formulation is not convergent with the increased mesh

resolution. Moreover, mesh convergences of theQ1P0andQ1P0F0formulations are

close to each other. Also, Figure 3.6 shows the fiber stress results atq0 = 100 kPa for

a mesh size of 32 elements per edge. Fiber stress magnitudes are slightly higher for

theQ1andQ1P0formulations thanQ1P0F0formulation.

Figure 3.7 shows the results of the analyses conducted atq0 = 150 kPa.Q1 formula-

tion is not convergent with the increased mesh resolution. Mesh convergence of the

mid-displacement for increasing mesh density forQ1P0F0formulation is better than

Q1P0formulation. Also, Figure 3.8 shows the fiber stress resultsat q0 = 150 kPa for

a mesh size of 32 elements per edge. Fiber stress values are higher for theQ1 and

Q1P0formulations thanQ1P0F0formulation.
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Figure 3.7: Comparison of theQ1, Q1P0 andQ1P0F0 element formulations for
pressure valueq0 = 150 kPa.
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Figure 3.8: Fiber stress results for (a)Q1 (b)Q1P0 and (c)Q1P0F0 element formu-
lations for pressure valueq0 = 150 kPa with mesh size 32 elements per edge.
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Figure 3.9: Comparison of theQ1, Q1P0 andQ1P0F0 element formulations for
pressure valueq0 = 200 kPa.
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Figure 3.10: Fiber stress results for (a)Q1 (b) Q1P0 and (c)Q1P0F0 element for-
mulations for pressure valueq0 = 200 kPa with mesh size 32 elements per edge.
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Table 3.2: Comparison of CPU times forQ1, Q1P0andQ1P0F0formulations with
different mesh sizes atq0 = 200 kPa.

2× 2 4× 4 8× 8 16× 16 32× 32 64× 64

Q1 0.03 s 0.16 s 0.90 s 6.44 s 27.49 s 165.57 s

Q1P0 0.04 s 0.19 s 1.41 s 7.26 s 35.03 s 229.38 s

Q1P0F0 0.04 s 0.38 s 2.09 s 14.45 s 70.22 s 403.37 s

Figure 3.9 shows the results of the analyses conducted atq0 = 200 kPa.Q1 formula-

tion is not convergent with the increased mesh resolution. Mesh convergence of the

mid-displacement for increasing mesh density forQ1P0F0formulation is much bet-

ter thanQ1P0formulation. For example,Q1P0F0formulation reaches convergence

at 16 elements per edge whileQ1P0formulation reaches convergence at 64 elements

per edge.

Moreover, Table 3.2 shows the comparison of CPU times forQ1, Q1P0andQ1P0F0

formulations with different mesh sizes atq0 = 200 kPa. Analysis ofQ1P0F0formu-

lation at 16 elements per edge takes14.45 s while analysis ofQ1P0formulation at 64

elements per edge takes229.38 s. Therefore, when the results of Figure 3.9 and Table

3.2 are combined, it can be said thatQ1P0F0formulation reaches mesh convergence

at14.45 s whileQ1P0formulation reaches mesh convergence at229.38 s.

Also, Figure 3.10 shows the fiber stress results atq0 = 200 kPa for a mesh size of

32 elements per edge. Fiber stress magnitudes are much higher for theQ1 andQ1P0

formulations thanQ1P0F0formulation.

Moreover, Figure 3.11 demonstrates displacement results in x-direction atq0 = 200

kPa for mesh sizes of 16 and 32 elements per edge. When the displacement distri-

bution for theQ1 formulation is analyzed, increasing number of elements affects the

displacement results, especially forQ1 andQ1P0formulations. Moreover,Q1P0F0

has a better displacement distribution at less number of elements with respect toQ1

andQ1P0formulation.

When all figures are analyzed, it can be seen thatQ1 formulation is not convergent.

There should be more number of elements for the mesh convergence of theQ1 for-

mulation. Q1P0andQ1P0F0formulations have same convergence rate at low level
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(a) (b)

(c) (d)

(e) (f)

0 0.5

Figure 3.11:ux results for (a)Q1 (c) Q1P0 and (e)Q1P0F0 element formulations
with mesh size 16 elements per edge and (b)Q1 (d)Q1P0 and (f)Q1P0FO element
formulations with mesh size 32 elements per edge for pressure valueq0 = 200 kPa.

of pressure. However,Q1P0F0formulation converges to final displacement value at

less number of elements when the load is increased. This factdecreases computation

time by reducing number of the element needed for convergence.
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Moreover, when the fiber stress results are analyzed from Figures 3.4, 3.6, 3.8 and

3.10, it is seen that fiber stress is lower forQ1P0F0formulation compared to other

two formulations. This can be interpreted such thatQ1P0F0formulation can extend

much more compared toQ1 andQ1P0 formulations so fiber stress is much lower

for proposed formulation because artificial stiffening effects occur forQ1 andQ1P0

formulations in inextensible region.

Therefore, the proposed formulation is the most robust among all alternatives, show-

ing convergence with the less number of elements throughoutthe whole set of simu-

lations, especially at the limits of incompressibility andinextensibility.
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CHAPTER 4

IMPLEMENTATION OF THE MODEL

4.1 Model Description

In this chapterQ1P0F0formulation will be applied to an example of biological tissue

which is arterial wall. Figure 4.1 shows the geometry and mesh of the arterial wall

model.

u = 0

p̂

x

y

z

uz = 2mm
θz = −π/3

H

Figure 4.1: Geometry and mesh of the artery.

As it is mentioned in the introduction chapter, arterial wall consists of three main

layers as intima, media and adventitia. Figure 4.2 shows thelayers of the arterial wall

in terms of mesh configuration. Green elements represent theintima layer, yellow

elements represent the media layer, and blue elements represent the adventitia layer

as shown in Figure 4.2. In radial direction, intima layer contains3 elements in a

total thickness of0.3 mm, media layer contains5 elements in a total thickness of0.8
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Table 4.1: Geometrical parameters.

Parameter Value Unit Parameter Value Unit

dAo 14.0 [mm] dAi 13.4 [mm]

dMo 13.4 [mm] dMi 11.8 [mm]

dIo 11.8 [mm] dIi 11.2 [mm]

H 15.0 [mm]

mm and adventitia layer contains3 elements in a total thickness of0.3 mm. Totally,

intima, media and adventitia layers have7350, 12250 and7350 elements, respectively.

The total number of elements used in the analysis is26950.

adventitia

media

intima

Figure 4.2: Layers of the artery as intima, media and adventitia.

Geometrical parameters of the artery are given in Table 4.1.dAo anddAi represent

outer and inner diameters of the adventitia layer.dMo anddMi represent outer and inner

diameters of the media layer. Also,dIo anddIi represent the outer and inner diameters

of the intima layer. Moreover,H stands for the height of the cylinder. Geometrical

parameters reflect an real artery geometry taken from [26].

Each layer of the artery behaves differently. Also, fibers are located in each layer with
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f
0

z

circ

Figure 4.3: Fiber angle configuration.

Figure 4.4: Fiber angle configuration in the mesh.
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Table 4.2: Material parameters of intima layer.

Parameter Value Unit Parameter Value Unit

κI 104 [kPa] µI = 2cI1 33.86 [kPa]

kI
1 7.79 [kPa] kI

2 139.1 [-]

αI 46.8o [-]

Table 4.3: Material parameters of media layer.

Parameter Value Unit Parameter Value Unit

κM 104 [kPa] µM = 2cM1 16.08 [kPa]

kM
1 11.68 [kPa] kM

2 7.18 [-]

αM 41o [-]

different angles. Angleα is located in circumferential-axial plane of the cylinder and

it is defined as angle between fiber direction and circumferential axis as it can be seen

from Figure 4.3. Also, fiber angle configuration is given in the mesh of the artery in

Figure 4.4.

Material parameters of each layer are given in Tables 4.2, 4.3 and 4.4. κ is bulk

modulus,µ is shear modulus of each layer. Moreover,k1 andk2 are material constants

for anisotropic free energy function. Also, fiber angleα is given for each layer. These

parameters, which are taken from the work of Holzapfel [22],reflect behavior of the

human aortas.

Behavior of the arterial wall under the effects of multiple loadings will be analyzed in

this chapter. Loads to be applied are axial stretch, twist ofthe top surface and internal

pressure. In normal conditions, axial stretch expected forarterial wall is almost 10

percent so2 mm axial displacement (uz) is applied from the top (z = H) surface

as it can be seen from Figure 4.1. Also,−60o twist aroundz axis is given from the

top (z = H) surface of the cylinder. Finally, internal pressure is given to reflect the

Table 4.4: Material parameters of adventitia layer.

Parameter Value Unit Parameter Value Unit

κA 104 [kPa] µA = 2cA1 3.77 [kPa]

kA
1 0.36 [kPa] kA

2 45.88 [-]

αA 50.1o [-]
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Table 4.5: Applied loads and displacements.

Case Parameter Value Unit Parameter Value Unit Parameter Value Unit

1 p̂ 7.5 [kPa] uz 2 [mm] θz −π/3 [rad]

2 p̂ 10 [kPa] uz 2 [mm] θz −π/3 [rad]

3 p̂ 15 [kPa] uz 2 [mm] θz −π/3 [rad]

blood pressure of the artery. As a boundary condition, all displacements of the bottom

(z = 0) surface of the cylinder are restrained.

Blood pressure of human arteries can be altered. For a healthy human artery, blood

pressure changes between7.5-15 kPa. Analyses will be conducted for different pres-

sure values by keeping twist and axial stretch constant in order to analyze the effects

of blood pressure deeply. Therefore 3 different load cases will be applied by only

changing pressure and keeping other loads constant as it canbe seen from Table 4.5.

4.2 Results

In the following subsections, results of three different cases will be presented, as sum-

marized in Table 4.5. Also, comparison of the three different element formulations

(Q1, Q1P0, Q1P0F0) studied in Chapter 3 will be conducted for load case3 to show

the behavior of the formulations in real artery configuration in the final subsection.

4.2.1 Case 1

In this section, results for a relatively low pressurep̂ = 7.5 kPa will be demonstrated

with the other applied displacements. Radial displacementand tangential stress re-

sults are given in order to demonstrate behavior of the arterial wall.

Figure 4.5 represents the radial displacement results for step time increments0.24t,

0.48t, 0.72t and1.0t. The load given in case 1 of Table 4.5 is reached by increasing

from zero load to100% load incrementally in a time oft. For instance,24% of the

load is applied at the instant of0.24t. When the results are analyzed for the time1.0t,

the maximum radial displacement of the outer surface of the cylinder is about3.15
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(a) (b)

(c) (d)

0 3.15

Figure 4.5: Radial displacement results (mm) for step time (a)0.24t (b) 0.48t and (c)
0.72t (d) 1.0t for loadingsp̂ = 7.5 kPa,uz = 2 mm,θz = −π/3.

mm.

Also, Figure 4.6 shows the tangential stress results for theloads given in case 1 of

Table 4.5. For demonstration purposes, half of the cylinderis given to see the results

of the inner layer more clearly. As it can be seen from Figure 4.6, the inner layer in-

tima has higher tangential stress with respect to other layers. However, the difference

between tangential stresses of the layers are comparable, respectively.
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0 60

Figure 4.6: Tangential stress results (kPa) forp̂ = 7.5 kPa,uz = 2 mm,θz = −π/3.

4.2.2 Case 2

In this section, results for a relatively medium pressurep̂ = 10 kPa will be demon-

strated with the other applied displacements. Radial displacement and tangential

stress results are given in order to demonstrate the behavior of the arterial wall.

Figure 4.7 represents the radial displacement results for the step time increments

0.24t, 0.48t, 0.72t and 1.0t. When the results are analyzed for the time1.0t, the

maximum radial displacement of the outer surface of the cylinder is about3.3 mm.

Also, Figure 4.8 shows the tangential stress results for theloads given in case 2 of

Table 4.5. For demonstration purposes, half of the cylinderis given to see the results

of the inner layer more clearly. As it can be seen from Figure 4.8, the inner layer

intima has much higher tangential stress with respect to other layers.
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(a) (b)

(c) (d)

0 3.3

Figure 4.7: Radial displacement results (mm) for step time (a)0.24t (b) 0.48t and (c)
0.72t (d) 1.0t for loadingsp̂ = 10 kPa,uz = 2 mm,θz = −π/3.

4.2.3 Case 3

In this section, results for a relatively high pressurep̂ = 15 kPa will be demonstrated

with the other applied displacements. Radial displacementand tangential stress re-

sults are given in order to demonstrate the behavior of the arterial wall.

Figure 4.9 represents the radial displacement results for the step time increments

0.24t, 0.48t, 0.72t and1.0t. When the results are analyzed for the time1.0t, maxi-
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0 150

Figure 4.8: Tangential stress results (kPa) forp̂ = 10 kPa,uz = 2 mm,θz = −π/3.

mum radial displacement of the outer surface of the cylinderis about3.5 mm.

Also, Figure 4.10 shows the tangential stress results for the loads given in case 3 of

Table 4.5. For demonstration purposes, half of the cylinderis given to see the results

of the inner layer more clearly. As it can be seen from the Figure 4.10, the inner layer

intima has much higher tangential stress with respect to other layers.

When all three cases are compared, nonlinear behavior of theartery can be clearly ob-

served from Figure 4.5, Figure 4.7 and Figure 4.9. The internal pressure is increased

from 7.5 kPa up to15 kPa while radial displacement is only increased from3.15 mm

to 3.5 mm at the outer surface of the cylinder. This fact shows inextensible behavior

of arterial wall when the load is increased.

Also, when the tangential stress results are analyzed for three cases, stress of the
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(a) (b)

(c) (d)

0 3.5

Figure 4.9: Radial displacement results (mm) for step time (a)0.24t (b) 0.48t and (c)
0.72t (d) 1.0t for loadingsp̂ = 15 kPa,uz = 2 mm,θz = −π/3.

inner layer, intima, has increased sharply with increasingpressure. Maximum tan-

gential stress is increased from60 kPa to450 kPa by increasing internal pressure

from 7.5 kPa to15 kPa. However, middle layer media and outer layer adventitiaare

not significantly affected by the pressure increase.

All stress and displacement results indicate that the behavior of the arterial wall is in

the limit of inextensibility with the increased load. Moreover, proposed formulation

achieved to converge for all load cases successfully.
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0 450

Figure 4.10: Tangential stress results (kPa) forp̂ = 15 kPa,uz = 2 kPa,θz = −π/3.

4.2.4 Comparison of the models for case 3

Comparison of the proposed formulationQ1P0F0with theQ1, Q1P0formulations,

studied in Chapter 3, will also be conducted in this part of the chapter. The compar-

ison will be studied to see the behavior of the three formulations for more realistic

configuration of the artery. Load case3 will be applied to the model for all formula-

tions. Also, this comparison will be useful to see the behavior of the formulations for

combined loading.

Figure 4.11 shows the radial displacement map for three formulations. Although

minimum radial displacement is0.00 mm, minimum limit of the legend is given as

3.00 mm to analyze the region which has radial displacements between3.00 mm and

4.12 mm in detail and to compare results for inextensibility limit more clearly. When
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(a) (b)

(c)

3.00 4.12

Figure 4.11: Radial displacement results (mm) for (a)Q1 (b)Q1P0 and (c)Q1P0F0
for loadingsp̂ = 15 kPa,uz = 2 kPa,θz = −π/3.

the results of theQ1, Q1P0, Q1P0F0element formulations are compared from Figure

4.11, it is seen that proposed formulation,Q1P0F0, gives higher radial displacement

results thanQ1, Q1P0element formulations.Q1, Q1P0element formulations give

maximum radial displacement about3.96 mm while maximum radial displacement

for Q1P0F0element formulation is4.12 mm. To analyze more clearly the difference

between results, it should be noted that3.96 mm radial displacement is almost equal

to the maximum radial displacement of inner surface of cylinder forQ1P0F0element

formulation at load case 2 (p̂ = 10 kPa). Therefore, this means that the maximum
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radial displacement ofQ1, Q1P0element formulations at load case 3 (p̂ = 15 kPa)

is equal to maximum radial displacement ofQ1P0F0element formulation at load

case 2 (̂p = 10 kPa). This shows how proposed formulation can extend betterin the

inextensibility limit.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this study, a five field Hu-Washizu type variational principle for transversely aniso-

tropic materials in the quasi-incompressibility and quasi-inextensibility limit is pre-

sented. The main advantage of the proposedQ1P0F0formulation is the ease of ap-

plication at element level. The additional degrees of freedoms are condensed out with

numerical homogenization at element level. Also, matrix inversion is not needed for

the proposed formulation. Therefore, this fact enables quick and direct computation

of element stiffness matrix.

Moreover,Q1P0F0formulation does not need any extra kinematic assumptions so

application of the standard reinforcing model is very appropriate. Also, it is easy

to extendQ1P0 formulation toQ1P0F0element formulation. A few additional al-

gebraic operations are needed to extend the formulation. Also, constitutive model,

which is appropriate to human arteries, was used to show performance of the formu-

lation for biological tissues.

In Chapter 3, the proposed,Q1P0F0, element formulation was compared with the

standard linear displacement element, (Q1), formulation and the mean dilatation ap-

proach denoted asQ1P0 element formulation. Simple model was constructed for

comparison. A square block is loaded from one side with a pressure. Also, material

properties which is belong to human arterial walls are used.Formulations are com-

pared for different mesh sizes as2, 4, 8, 16,32 and64 elements per edge. Also, the

formulations are analyzed for4 different loading magnitudes to show the behavior of
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formulations in inextensibility limit. When the results are analyzed, it is clearly seen

that proposed formulation is more robust and shows better performance for coarse

meshes. Especially, the proposed formulation exhibit its advantages strongly at high

level of the loads. High level of the loads means that the model is closed to the

inextensibility limit.

After the validation of the proposed formulation,Q1P0F0element formulation was

implemented to more realistic artery structure in Chapter 4. Performance of the for-

mulation was tested for multiple loadings of the human arterial wall. These loadings

include internal pressure, axial stretch and torsion. Three different values of the pres-

sure were tested with the constant axial stretch and torsion. The aim of changing

pressure was that internal pressure of the artery can be varied highly and its effects

are trending topic in the research of the mechanics of artery. Therefore, three load

cases were investigated and when the results of all load cases are analyzed, the pro-

posed formulation achieved to converge for all three load cases successfully.

Moreover, as it is studied in the Chapter 3, one example is conducted for three el-

ement formulations asQ1, Q1P0 andQ1P0F0for load case 3 of Chapter 4. The

reason of this comparison is to show advantages of the proposed formulation in more

realistic structure of biological tissues (human arterialwall). Realistic structure of

a human arterial wall contains different layers with different material properties and

fiber angles and different loading types. Load case 3 is chosen for the comparison

because highest load levels are included in load case 3. Radial displacements results

were given for comparison for each element formulation. When the results of this

study are analyzed, proposedQ1P0F0formulation gives better results compared to

other two element formulations in terms of radial displacements because the proposed

formulation can extend better in inextensibility limit without being affected from ar-

tificial stiffening.

Therefore, when all case studies of this thesis are investigated,Q1P0F0element for-

mulation exhibit very good performance in normal conditions as well as in incom-

pressibility and inextensibility limits.
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5.2 Future Work

Q1P0F0element formulation can also be used to model the damage. Therefore,

future work of this study can be devoted to damage modelling of the fiber reinforced

materials and biological tissues by usingQ1P0F0element formulation.
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