
1

WEB SERVICE TESTING FOR DOMAIN SPECIFIC WEB SERVICE DISCOVERY
FRAMEWORK

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

SELMA UTKU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

FEBRUARY 2012

Approval of the thesis:

WEB SERVICE TESTING FOR DOMAIN SPECIFIC WEB SERVICE DISCOVERY

FRAMEWORK

submitted by SELMA UTKU in partial fulfillment of the requirements for the degree of
Master of Science in Computer Engineering Department, Middle East Technical Uni-
versity by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Assoc. Prof. Dr. Pınar Şenkul
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof.Dr. İsmail Hakkı Toroslu
Computer Engineering Dept., METU

Assoc. Prof. Dr. Pınar Şenkul
Computer Engineering Dept., METU

Prof. Dr. Nihan Kesim Çiçekli
Computer Engineering Dept., METU

Assoc. Prof. Dr. Halit Oğuztüzün
Computer Engineering Dept., METU

Assoc. Prof. Dr. Erdoğan Doğdu
Computer Engineering Dept., TOBB Uni.

Date:

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: SELMA UTKU

Signature :

iii

ABSTRACT

WEB SERVICE TESTING FOR DOMAIN SPECIFIC WEB SERVICE DISCOVERY
FRAMEWORK

Utku, Selma

M.Sc., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Pınar Şenkul

February 2012, 70 pages

The reliability of web services is important for both users and other service providers, with

which they are in interaction. Thus, to guarantee reliability of the web services that are in-

voked and integrated at runtime, automatic testing of web services is needed.

In web service testing, different test cases for web services are generated. The most important

issue is to generate the most appropriate value for input parameters of web services at runtime.

In this thesis, we developed a method for automatic web service testing that uses semantics

dependency-based and data mutation-based techniques to analyze web services and generate

different test cases. Thus, we both check whether the services function correctly by generating

appropriate input values from different data sources and check robustness of web services by

generating random and error-prone data inputs. With respect to the behaviors of web services,

the test values are calculated and saved to the database for each web service.

Keywords: web service, semantic web service discovery, testing of web services, semantic

dependency analysis, mutation analysis

iv

ÖZ

ALANA ÖZGÜ WEB SERVİS KEŞİF SİSTEMLERİNDE WEB SERVİSLERİN TEST
EDİLMESİ

Utku, Selma

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Pınar Şenkul

Şubat 2012, 70 sayfa

Etkileşim içinde oldukları web servislerin güvenilirlikleri, kullanıcılar ve diğer servis sağlayı-

cılar açısından oldukça önemlidir. Bu nedenle, çalışma zamanı sırasında çağrılan ve entegre

edilen servislerin, güvenilirliklerini garanti etmek için otomatik olarak test edilmeleri gerek-

mektedir.

Web servislerin test edilmesi işleminde, farklı test senaryoları üretilir. Bu konuda en önemli

husus ise, servislerin girdi parametreleri için en uygun değerin üretilmesidir. Bu tezde, web

servislerin otomatik olarak test edilmesi için bir yöntem geliştirilmiştir. Bu yöntemde, seman-

tik bağımlılık tabanlı ve veri mutasyon tabanlı teknikler kullanılarak, web servislerin analizi

ve değişik test senaryolarının üretilmesi sağlanmaktadır. Böylece, çeşitli veri kaynakları kul-

lanılarak, web servisler için en uygun parametre değerlerinin üretilmesi sağlanır ve bekle-

nilen davranışları sergileyip sergilemediği kontrol edilir. Bunun yanısıra özel girdi değerleri

üretilerek, web servislerin dayanıklılıkları ve hataya ne kadar açık oldukları da tespit edilir.

Elde edilen sonuçlar doğrultusunda her bir web servis için test puanları hesaplanır ve sisteme

kaydedilir.

v

Anahtar Kelimeler: web servis, semantik web servis keşfi, web servis testi, semantik bağımlılık

analizi, mutasyon analizi

vi

To my lovely family

vii

ACKNOWLEDGMENTS

I would like to express my deepest sense of gratitude to my advisor Dr. Pınar Şenkul for

her encouragement, supervision, advice and proper guidance throughout the development of

this thesis study. I also wish to thank my committee members who were generous with their

expertise and precious time.

My deepest gratitude goes to my family for their love and support throughout my life. I have

no suitable word that can fully describe my mother, Ayşe Utku’s everlasting love to me. I am

indebted to my father, Hüseyin Utku for his care and love. My sisters Belgin and Bilge, my

brother Bekir, thanks for their love, trust, understanding and every kind of support not only

throughout my thesis but also throughout my life.

I wish to thank ASELSAN A.Ş. for giving me the opportunity of continuing my education. I

would like to express my special appreciation to my colleagues and seniors in my department

for their support.

I would like to thank to my supportive friends and all people who have helped and inspired

me during my thesis study.

viii

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . v

ACKNOWLEDGMENTS . viii

TABLE OF CONTENTS . ix

LIST OF TABLES . xi

LIST OF FIGURES . xii

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation . 2

1.2 Contributions . 3

1.3 Thesis Organization . 3

2 RELATED WORK . 5

2.1 Robustness Testing of Web Service 5

2.2 WSDL-Based Web Service Testing 7

2.3 Mutation-Based Web Service Testing 8

2.4 Web Service Sampling . 10

3 WEB SERVICE TESTING IN A WEB SERVICE DISCOVERY SYSTEM . 13

3.1 Overall Architecture of DSWSD-S System 13

3.2 Overall Architecture of Testing Module 16

3.3 Graphical User Interface . 17

4 AUTOMATIC WEB SERVICE TESTING ALGORITHM 20

4.1 Semantic Dependency Analysis-Based Test Case Generation Method 22

4.2 Data Mutation-Based Test Case Generation Method 28

4.2.1 Conventional-Based Test Case Generation Method 29

ix

4.2.2 Ontology-Based Test Case Generation Method 31

4.3 Test Case Generation and Execution 33

5 CASE STUDIES AND EVALUATION . 38

5.1 Analysis Method for Test Results 38

5.2 Experiments . 43

5.2.1 Experiments with Web Services in DSWSD-S System . . 43

5.3 Experiments with External Web Services 52

5.4 Experiments with Syntactically Generated Web Services 53

6 CONCLUSION . 67

REFERENCES . 69

x

LIST OF TABLES

TABLES

Table 2.1 WSDL Mutation Operators [1] . 9

Table 4.1 Default Values of Web Service Parameters for Validation 21

Table 4.2 Mutant Groups for Numeric Types . 30

Table 4.3 Mutant Groups for DateTime Type . 30

Table 4.4 Mutant Groups for Enum Type . 30

Table 4.5 Mutant Groups for Boolean Type . 31

Table 5.1 The Calculation of Ratio of Successful Test Cases 39

Table 5.2 Definitions of Evaluation Terms . 39

Table 5.3 The Statistics about Experiments for ”Car” Domain 43

Table 5.4 The Statistics about Experiments for ”Aviation” Domain 44

Table 5.5 The Statistics about Experiments for ”Film” Domain 44

Table 5.6 The Statistics about Experiments for ”Sports” Domain 44

Table 5.7 The Definitions of Web Services of ”Flight Management System” 53

Table 5.8 The Definitions of Web Services of ”Car Reservation System” 60

Table 5.9 Mean Square Error Values of Test Results 66

xi

LIST OF FIGURES

FIGURES

Figure 2.1 The Overview of Framework Proposed by Martin et al. [2] 6

Figure 2.2 Test Case Generation Levels Proposed by Bai et al. [3] 7

Figure 2.3 The Overview of AbuJarour’s Approach [4] 10

Figure 2.4 A Schema-Based and Annotated Web Form by Sampling [4] 12

Figure 3.1 DSWSD-S System Architecture . 14

Figure 3.2 Domain-Specific Crawler Layer Architecture 15

Figure 3.3 The Architecture of Web Service Testing Module 16

Figure 3.4 The Graphical User Interface of Application - I 18

Figure 3.5 The Graphical User Interface of Application - II 19

Figure 3.6 The Graphical User Interface of Application - III 19

Figure 4.1 Input/Output Dependency Relations of Web Services 26

Figure 4.2 The DSWSD-S Ontology Instances for Input Parameter 31

Figure 4.3 The WordNet Instances for Input Parameter 32

Figure 5.1 The Test Results of Web Services in ”Car” Domain - I 45

Figure 5.2 The Test Results of Web Services in ”Car” Domain- II 45

Figure 5.3 The Test Results of Web Services in ”Aviation” Domain - I 46

Figure 5.4 The Test Results of Web Services in ”Aviation” Domain - II 46

Figure 5.5 The Test Results of Web Services in ”Film” Domain - I 47

Figure 5.6 The Test Results of Web Services in ”Film” Domain - II 47

Figure 5.7 The Test Results of Web Services in ”Sports” Domain - I 48

Figure 5.8 The Test Results of Web Services in ”Sports” Domain - II 48

xii

Figure 5.9 Successfully Tested Web Services in ”Car” Domain 50

Figure 5.10 Successfully Tested Web Services in ”Aviation” Domain 50

Figure 5.11 Successfully Tested Web Services in ”Film” Domain 51

Figure 5.12 Successfully Tested Web Services in ”Sports” Domain 51

Figure 5.13 The Test Results of External Web Services 52

Figure 5.14 The Return Value of Web Service, ”getAirways” 54

Figure 5.15 The Return Value of Web Service, ”getAirports” 54

Figure 5.16 The Return Value of Web Service, ”getFlightLines” 54

Figure 5.17 The Return Value of Web Service, ”getAirportsInCity” 55

Figure 5.18 The Return Value of Web Service, ”getFlightLinesTo” 56

Figure 5.19 The Return Value of Web Service, ”getFlightLinesFrom” 56

Figure 5.20 The Return Value of Web Service, ”getAirwaysInFlightLine” 57

Figure 5.21 The Return Value of Web Service, ”getAirwaysInFlightLineByID” 58

Figure 5.22 The Return Value of Web Service, ”getAirwaysInFlightLineByID” with

Switch Version . 58

Figure 5.23 The Return Value of Web Service, ”getFlightLineOfAirline” 59

Figure 5.24 The Test Results of Web Services of ”Flight Management System” 60

Figure 5.25 The Return Value of Web Service, ”getAllCities” 61

Figure 5.26 The Return Value of Web Service, ”getAllModels” 61

Figure 5.27 The Return Value of Web Service, ”getCostumers” 62

Figure 5.28 The Return Value of Web Service, ”getAvailableCarsInTown” 62

Figure 5.29 The Return Value of Web Service, ”getCarBookingsByTownId” 63

Figure 5.30 The Return Value of Web Service, ”getCarBookingsOfPerson” - I 63

Figure 5.31 The Return Value of Web Service, ”getCarBookingsOfPerson” - II 64

Figure 5.32 The Input Parameter Values of Web Service, ”insertNewCarBookingItem” 64

Figure 5.33 The Test Results of Web Services of ”Car Reservation System” 64

xiii

CHAPTER 1

INTRODUCTION

Web services provide interaction between different distributed applications and the use of

web services becomes one of the most preferable technologies by software developers and

users. Nowadays, the number of published web services has been increasing and this rapid

development brings some problems. There is a high number of public web services on the

Web and finding the most appropriate web service that is needed is a hard task for users. For

this, services must be filtered or ordered with respect to some criteria.

Another important problem stems from the dynamic nature of the Web. There are many web

services that are published and are becoming outdated very rapidly and there is no control

for their reliability. Therefore the testing of web services is needed before deployment. In

addition, web services are published, integrated and invoked at runtime. For this reason,

traditional offline and manual testing processes cannot satisfy the requirements of web service

testing. The dynamically selected web services to be included in a software application has

to be tested without human interaction [5].

Web service testing focuses on how to guarantee desired properties in web service such as

correctness, fault-tolerance, deadlock avoidance, reachability, liveness [6]. To test a web

service, different test cases are generated. The most important issue is to generate the most

appropriate value for input parameters of web services automatically and it is very time-

consuming process.

There are two types of web services; atomic web service and complex web service. Atomic

web service provides a request/response type of functionality and does not support transac-

tions. Complex web services provide business-to-business collaborations and business pro-

cess management [7]. In addition, different high-level modeling languages such as WSDL,

1

BPEL and OWL-S can be used for defining web services. In the literature, there are several

studies for testing of atomic or complex web services and they are based on one of the above

description languages [2], [3], [5], [8].

In this thesis, we present a method for automatic testing of web services. It is based on two

techniques. The first one is mutation analysis. In this technique, a web service is tested by

using random and specified values in different ranges that are set according to the parameter

types. The second technique analyzes a web service semantically and generates different

test cases in the light of the results of the analysis. After the web services are invoked by

using the input parameters that are generated by using these two methods, several results

are obtained. The test results are obtained by analyzing these results in two dimensions.

In the first dimension, the execution results are checked. If an exception occurs during the

execution of the web service request, the web service is considered unsuccessful, otherwise, it

is considered successful. The second dimension is based on checking whether the web service

returns different results and not the same results on all test cases execution.

The proposed method is implemented in a domain specific web service discovery system,

namely DSWSD-S, Domain Specific Web Service Discovery with Semantics [9], [10]. The

testing module in DSWSD-S is in charge of checking whether the discovered services function

correctly.

1.1 Motivation

There are many web services that are published and finding the most appropriate web services

that are needed is a hard task for users. DSWSD-S System enables the users to search for web

services easily. The found web service should satisfy the requirements of the users and their

reliability should be checked. Therefore, the main motivation of this thesis is to test whether

the web services, which are crawled by DSWSD-S System actually perform the advertised

tasks. In the testing process, web services are invoked by using different input parameter val-

ues. Web services in the system are atomic and in order to describe their interfaces for service

consumers, they use WSDL files, which contain poor information about the web services. In

the literature, the testing studies that focus on atomic web services use different methods to

generate input values and examine the invocation results for testing of web services. While

2

some of them just control the robustness of the web services, some of them make syntactic

dependency analysis of the web services to generate different values for input parameters.

These approaches in the literature were inadequate in order to design the testing module of

DSWSD-S System. For this reason, we developed the techniques presented in this thesis and

implemented the testing module, which can both check the robustness of web services by

generating random and error-prone data inputs and can check whether the services function

correctly by generating appropriate input values from different data sources.

1.2 Contributions

The main contributions of this thesis are as follows:

• A novel web service testing technique is generated. It is realized within a web ser-

vice discovery system, namely DSWSD-S. Testing of the web services discovered by

DSWSD-S System is automatically performed.

• A tool with a graphical user interface is developed, in order to enable the users to run

the testing algorithm step by step on the discovered web services.

• Data mutation-based test cases are generated.

• Semantic dependency analysis-based test cases are generated.

• The DSWSD-S ontology instances and WordNet ontology instances are used in gener-

ation of test cases.

• Interactions of the testing module with other modules in DSWSD-S system are pre-

sented.

1.3 Thesis Organization

This thesis is organized as follows:

Chapter 2 presents the related work on web service testing and input data generation algo-

rithms.

3

Chapter 3 describes the overall architecture of Domain Specific Web Service Discovery with

Semantics (DSWSD-S) System and and the web service testing module within the system. In

addition, a general overview of the architecture for web service testing module and designed

graphical user interface are given in the rest of Chapter 3.

In Chapter 4, the proposed web service testing algorithm is explained in detail.

Chapter 5 presents the case studies and evaluation of results and the statistical data about the

experiments is given in this chapter.

In Chapter 6, discussion and conclusion are presented. Some future work topics are sug-

gested.

4

CHAPTER 2

RELATED WORK

Web service testing is a problem-rich area, where there are several research works that con-

centrate on different aspects of the problem and are based on different methods. In Section

2.1, the studies, which aim to test the robustness of web services are mentioned. Section 2.2

explains the studies that concentrate on WSDL-based web service testing. In Section 2.3,

we present studies that use mutation testing method. In Section 2.4, a related work on web

service sampling is described.

Beside studies that are summarized in the following sections, there are also several studies

that propose methods using semantic model OWL-S for test data generation [5], [8], [11].

Since these studies are not directly related with this thesis, we very briefly summarize them

as follows. Wang et al. [5] propose a Petri-Net based testing approach. A Petri-Net model

is generated from the OWL-S process model and the test data are generated using ontology

reasoning. Zhu [8] proposes an ontology of software testing using semantic web services. Bai

et al. [11] also propose an approach for OWL-S semantic services. In their approach, a testing

ontology model that describes test relations, concepts and serves as a contract is introduced

and test data partitions are generated from ontology information.

2.1 Robustness Testing of Web Service

Before using the web service by service consumers, testing is needed to guarantee the cor-

rectness and robustness of web services. The study of Martin et al. [2] is one of studies that

emphasize on robustness testing of web services using WSDL. It presents a framework to

generate and execute test cases automatically and also generates the service consumer code

5

to invoke web services. The overview of the framework is given in Figure 2.1.

Figure 2.1: The Overview of Framework Proposed by Martin et al. [2]

In the code generation step, Axis [12] is used in order to generate client code from the

WSDL file, which is provided by service provider and describes the web service interfaces.

WSDL2Java class of Axis is very useful to easily implement this step. To generate tests,

JUnit generation tools are used. However, a wrapper class for the code, which is generated

by WSDL2Java should be manually implemented to use in unit-test generation tool. In test

generation step, JCrasher [13], which is a unit-test generation tool is used in order to auto-

matically generate JUnit tests. JCrasher generates -1, 0 and 1 for arguments with the integer

type and it can generate method sequences that create values for those arguments with non-

primitive types [2]. Thus, a robustness testing can be performed by causing that an undeclared

runtime exception occurs in invocation of the web services. As last step, generated JUnit tests

are executed and the obtained results are collected.

In this study, only robustness testing is performed. However, it is not adequate for testing of

web service. In our approach, in addition to checking robustness of test web services, it is

checked the behaviors of a web service when it is invoked by using the valid values. Also,

our approach generates various random and error-prone data inputs for all parameter types in

order to check robustness and reliability of web services.

6

2.2 WSDL-Based Web Service Testing

Web services are provided with a description files to describe their interfaces for service con-

sumers. As the description files, the web service providers usually use an XML-formatted

document called a Web Services Description Language (WSDL) document. Therefore, the

traditional test methods can not be used in testing of web service. Some of the studies that

deal with web service testing uses WSDL-based test case generation methods.

Figure 2.2: Test Case Generation Levels Proposed by Bai et al. [3]

Bai et al. [3] proposes an approach about WSDL-based test generation and test case docu-

mentation to provide reusability of generated test cases. Test cases are generated from four

levels: test data generation, individual test operation generation, operation flow generation,

and test specification generation [3]. Test data is generated by analysis WSDL message def-

initions. In individual test operation generation level, input parameters of web services are

analyzed and test operation are generated. In operation flow generation level, the sequence

of the web services are determined by analysis of dependencies between the web services. In

this approach, three dependencies are used; input dependency, input/output dependency and

7

output dependency. WS1 is input/output dependent on WS2 if at least one of the input param-

eters of WS1 has the same type with the output message of WS2. If two web services both

share their input message, they are input dependent. Two web services are output dependent

if they have the same output type [3]. In test specification generation level, test cases that are

generated from other levels are recorded in XML-based files called Service Test Specification

to reuse the test cases. The test generation levels are depicted in Figure 2.2.

In this approach, the dependency relations between the web services are syntactically ana-

lyzed and the obtained dependency results are used for operation flow generation. Our ap-

proach supports both syntactically and semantically dependency analysis and the analysis

results are used for input parameter value generation.

2.3 Mutation-Based Web Service Testing

Siblini et al. [1] propose a mutation testing method to test web services. In this work, mu-

tant operators to the WSDL document of web services are defined and mutated web service

interfaces are generated. With each modification, a new version of test case is created and it

is called mutant. There are two types of mutants. If the output of the mutant is different from

the output of the original version, the mutant is killed and it is called dead mutants. If the

outputs of test cases generated with mutant and the original version are same and it is called

equivalent mutant. The mutation score is calculated by using Equation 2.1 and the main goal

is to improve the mutation score to 1.0, indicating all mutants have been detected [1].

MutationS core =
numberO f DeadMutants

numberO f TotalMutants − numberO f EquivalentMutants
(2.1)

Mutant operators are applied to input parameters, output parameter of web services and the

data types that are defined in the WSDL document. The aim of this approach is finding errors

relevant to both the WSDL interface and the logic of web service programming. The mutation

operators are grouped; Switch group, Special group and Occurence group.

In mutant operators of the Switch group, the sequence of an element is replaced and by this

way, many various WSDL can be created. For each variation of mutant WSDL document,

replacement of one element with another one in the operation definition is performed. As

8

an example, we can handle a web service having 2 input parameters I1, I2 and one output

parameter O. One mutant replaces the sequence of I1 by the sequence of I2 and another

mutant replaces I1 by O.

In mutant operators of the Special group, the value of an element is modified. For instance,

the value of input parameters are set to boundary values, null values or the next value in the

same domain of the input parameters. Each modification can cause a different type of error.

Mutant operators of the group Occurrence delete or add an occurrence of an element. The

proposed mutation operators in all groups are listed in Table 2.1.

Table 2.1: WSDL Mutation Operators [1]

Mutation operator Group Description
STCE Switch Switch elements of the same type in
(SwitchTypesComplexTypeElement) the complexType element
STCA Switch Switch attributes of the same type in
(SwitchTypesComplexTypeAttribute) the complexType element
OTCE Occurrence Add or delete occurrence of an
(OccurrenceTypesComplexTypeElement) element in the complexType
OTCA Occurrence Add or delete an optional attribute in
(OccurrenceTypesComplexTypeAttribute) the complexType element
STEN Special Set the nil attribute to true in the
(SpeciaITypesElementNil) complexType element
STSE Switch Switch elements of the same data type
(SwitchTypesSimpleTypeElement) in the SimpleType element
STSA Switch Switch attributes of the same data type
(SwitchTypesSimpleTypeAttribute) in the SimpleType element
SMP Switch Switch parts of the same element type
(SwitchMessagesPart) in the Message element
SPM Switch Switch messages of same type in the
(SwitchPortTypeMessage) operation element that is defined in a

PortType element, which has as
operation of type request-response or
solicit-response

In this approach, mutant operators are defined and applied to the WSDL document of web

services. However, in our approach, data mutation is applied for input parameters. The input

parameter values are modified by using different data groups in order to generate test cases.

Like the approach proposed by Siblini et al. [1], switch mutant operator is defined. However,

switching of generated values of input parameters is performed in our approach and obtaining

different output values are expected when this operation is applied to input parameters.

9

2.4 Web Service Sampling

Typical information source for web services is service descriptions. As service providers

generally focus on the implementation of the web services, they generally do not provide

rich service descriptions and the lack of rich service descriptions is one of the challenges for

web service users. Therefore, gathering additional information about web services becomes

important. However, gathering such information manually is a hard and time consuming task.

In order to solve this problem, methods that automatically gather extra information about the

web services and enrich the web service descriptions are required.

AbuJarour et al. [4] propose an approach to generate annotations for web services, e.g.,

valid input parameters, examples of expected outputs and tags, by sampling invocations of

web services automatically. The generated annotations are integrated to web forms to help

service consumers for actual service invocations. In this approach, in order to generate valid

parameters, various resources such as random values, outputs of other web services that are

provided by the same web service provider and different providers, external data sources,

e.g., WordNet, DBpedia, Freebase are used. The overview of the approach that is proposed

by AbuJarour et al. is as shown in Figure 2.3.

Figure 2.3: The Overview of AbuJarour’s Approach [4]

Public web services are collected from Web and they are stored in a service registry. For each

10

web service in the registry, sampling steps are applied one by one.

The first step, which is also one of the most important steps of sampling, is value assignment

to input parameters. Firstly, some text processing is applied on the name of input parame-

ters. These processes are stopword removal, identification of common types and data type

deduction. The input parameter whose name includes stopwords used for authentication, user

identification and accounting are determined and ignored in next processes. UserID, keyID

and password are some of these stopwords. As the second process, name of input param-

eters that are commonly used in web services are determined. A set of values for common

data is manually created and value of the input parameters are assigned from this set. City,

state and postcode are some examples for the common parameters. Some of parameters

used for numeric or boolean data can be defined as String and to identify their actual type,

string analysis is performed under some assumptions. The parameters whose name starts with

a verb like allowNameEdit, hasStock, etc. have boolean type. The parameters whose name

includes the term ”number” like pageNumber, houseNumber, etc. have numeric type. For

such parameters, random values can be assigned. If the name and type of parameters are not

suitable for assigning value with mentioned methods, the relations between input and output

parameters of the web services of same provider are analyzed and if there is any matched

output parameter, the values of these outputs are utilized in assignment value to input param-

eters. Otherwise, the outputs of web services of other providers are retrieved. However, in

this case, the domain is very important. Although the input parameters and output parameters

have the same name, they can have different semantics due to the domain of web services. For

the input parameters that can not be assigned values, the last of value assignment methods is

applied. In this method, the external sources like WordNet, DBpedia, Freebase are used. By

using WordNet, the synset that is best matched with name of input parameter are tried to find

and its instance is assigned to value of input parameter.

After the value assignment to input parameters, web service is invoked automatically. As

last step of sampling, annotations are generated by parsing the obtained information after

each successful invocation. In parallel to the mentioned steps, a schema-based web form

are generated. After completing the steps labeled 2 and 3, the generated annotations and the

web form are integrated to enable the users to invoke the web service easily. An example of

schema-based web form, which is generated and integrated with the annotations is given in

Figure 2.4.

11

Figure 2.4: A Schema-Based and Annotated Web Form by Sampling [4]

The real invocations are made by the users and from each new invocation, additional annota-

tions can be obtained and saved to registry for the other automatic invocation.

12

CHAPTER 3

WEB SERVICE TESTING IN A WEB SERVICE DISCOVERY

SYSTEM

The web service testing approach that is presented in this thesis is implemented as part of

Domain Specific Web Service Discovery with Semantics (DSWSD-S) System [9], [10]. In

this chapter, DSWSD-S System and the web service testing module within this system are

described. Firstly, in Section 3.1, the overall architecture of DSWSD-S System and its layers

are presented. In Section 3.2, internal architecture of web service testing module and the

steps of the proposed approach are given in details. Finally, Section 3.3 presents the graphical

user interface of the application that is designed to perform the proposed web service testing

approach.

3.1 Overall Architecture of DSWSD-S System

DSWSD-S System is a service discovery system that uses domain-specific web service dis-

covery sub-systems. This system consists of different domains and for each domain, a sub-

system is built. Each subsystem is specialized for an ontology and it crawls over the web,

discovers and indexes web services semantically according to its own ontology. The aim of

DSWSD-S System is to provide following capabilities:

• Ability to handle the increasing number of web services and domains

• Providing service discovery with syntactic and semantic matching capabilities

• Keeping the web services up-to-date

13

• Providing both syntactic and semantic web service queries

• Providing automated quality of service calculation

• Providing automated service testing

There are many web services that are published and most of them are not registered to any

of the business registries. Therefore, the management of these web services and finding the

most appropriate web services that users need is a hard task. This system aims to provide

some facilities to solve these problems. The system analyzes the web services by associating

with the ontology and groups these associated web services. Each group is handled as a

domain-specific web service discovery node.

This system consists of two layers; Domain Specific Discovery Layer and Domain Specific

Crawler layer. The overall architecture of the system is given in Figure 3.1.

Figure 3.1: DSWSD-S System Architecture

In Domain Specific Crawler layer, each subsystem contains some business units that are re-

sponsible for the specific processes to fulfill the system requirements. The architecture of

Domain Specific Crawler layer is depicted in Figure 3.2. The main responsibility of this layer

is to generate web service database according to its own ontology. In generation of local

database, the first process is web service address acquisition and the purpose is to collect the

14

WSDL files of the web services. From the obtained WSDLs, the context of web services

are analyzed and controlled whether it is related to the ontology of the subsystem. The next

process is validation of the web services that are related to its own ontology. Each web ser-

vice is invoked with simple appropriate input parameters. Thus, it is checked whether the

web service is alive or not. The validated web services are passed to annotation module. The

responsibility of the annotation module is to check the compatibility of the service with the

domain ontology at hand and to annotate it if the service is found to be relevant. In service

annotation process, the name, input and output parameters of web services are compared with

the ontology terms by using syntactic and semantic matching. According to the comparison

results, relation of web services to the ontology are determined. The next process is the ser-

vice testing and it is the responsibility of testing module. This module and the testing process

constitute the scope of this thesis and they are explained in detail in Chapters 4 and 5. After

these processes, in order to find the web services that have the best quality, QoS of the relevant

web services are calculated.

Crawler module periodically searches the web and discovers the web services that are as-

sociated with the ontology. The local databases are updated by inserting new acquired web

services and removing the web services that lost the functionality. Thus, it supports obtaining

the up-to-date status (working properly / not functioning) of web service.

Figure 3.2: Domain-Specific Crawler Layer Architecture

The main responsibility of Domain-Specific Service Discovery layer is to provide a user inter-

face for the user to query the ontology specific web service database. The designed graphical

15

user interface allows the user to specify the keyword(s) to search, the domain information that

is interested in and set the service quality criteria for the desired services. Discovery layer

passes the inputs gathered from the user to syntactic and semantic matching engine by trans-

forming them into an S-USQL query sentence. It decides the crawler that will be searched

according to the specified inputs of the user and the web services that fulfill the given require-

ments are picked from the database of the corresponding crawler. Finally, list of obtained web

services is shown in the graphical user interface as search results.

3.2 Overall Architecture of Testing Module

In DSWSD-S, testing module is responsible for the automatic testing of web services and the

proposed approach for web service testing is implemented within this module. Figure 3.3

shows the overall architecture of the proposed approach for web service testing:

Figure 3.3: The Architecture of Web Service Testing Module

Web service testing process starts with getting the URLs of service providers from the database.

After that, for each service provider, the following steps are implemented. The initial step is

to download the WSDL document that describes the web services of the service provider and

to save it to local storage. By analyzing the the content of WSDL documents, information as

to which web services are provided and how to invoke are obtained. For each provided web

service, the validation process is performed in order to check whether it is alive or not and

16

the set of the validated web services that are provided are acquired. On this set, the analysis

process of the relations of web services with each other are performed, so that these rela-

tions can be used as input dependency relation, output dependency relation and input/output

dependency relation.

The next step is test case generation with data mutation-based method for each web service.

By this method, the values of input parameters are generated according to the parameters

that the service description contains. With the generated input parameters, the web service is

invoked and the invocation result is saved for analysis.

After the invocations of the all validated web services by using data mutation-based method

are completed, test case generation with semantic dependency analysis based-method for each

web service is performed. For each web service, the value assignment of input parameters of

web service is performed according to the method and the web service is invoked with the

generated input parameters. As in the previous step, for each invocation, the results are saved.

Finally, for each web service, the final test result is calculated by analyzing the results of all

invocations and it is saved to the database.

3.3 Graphical User Interface

For realization of the proposed approach, an application is designed. This application provides

a graphical user interface to test the web services automatically and enable the users to run

the algorithm step by step for the web services of each service provider. A snapshot of the

graphical user interface is as shown in Figure 3.4.

The user can list the all URLs of the service provider in database by clicking on ”Get URLs”.

The upper left part of the form is separated to view the URLs. If one of them is selected, the

descriptions of validated web services of the service provider are picked from database and

viewed in upper right part of the form. The description of the selected web service, including

the service name, the input parameters and output parameter can also be viewed.

The steps of the testing algorithm; dependency analysis of web services, mutant based-test

case generation, semantic dependency based-test case generation and analysis the invocation

results of web service will be mentioned in following sections in details. The user can perform

17

Figure 3.4: The Graphical User Interface of Application - I

each step for all web services one by one by through the associated buttons or all steps for all

web services are performed sequentially by clicking the ”Applied All Methods” button.

The middle left part of the window is separated for the execution logs. The logs give the

user some information about the execution status like start and end time of the steps, and the

occurred exceptions in invocation of the web service.

The generated test cases with the assigned value of input parameters and the return values,

the invocation results and the statistical information about the tests can be viewed in bottom

parts of the window as shown in Figure 3.5 and Figure 3.6.

18

Figure 3.5: The Graphical User Interface of Application - II

Figure 3.6: The Graphical User Interface of Application - III

19

CHAPTER 4

AUTOMATIC WEB SERVICE TESTING ALGORITHM

The proposed work in this thesis is based on atomic web services that are specified in WSDL.

Each service provider has a WSDL document to specify the information about the provided

web services. This document contains the names of the web services, the attributes of in-

put and output parameters of the web services and also user defined types. By using this

document, information about all services can be obtained.

Unfortunately, the obtained information is not sufficient to test the web services. The spec-

ification that is written in WSDL are available. However, the source code and behavioral

information of web service are not available. Therefore, only black-box testing can be per-

formed for validation and testing of web service.

The definition for web service validation and web service testing can be given as follows. Web

service validation is the process of checking whether the web service is still alive and acces-

sible or not by invoking the web service by simple appropriate parameter values. Whereas,

web service testing is the task of checking whether a web service functions as it should be.

Both processes require generation of input values for test cases. Firstly, the types of the input

and output parameters of a given web service should be identified. There are a set of funda-

mental types for parameters, such as boolean, character, integer and floating point number.

There are also user defined enumeration types to constrain the sets of values of a parameter.

By using these fundamental types, different complex types can be constructed, such as ar-

ray types, reference type, class type or data structures such as list or stack. To analyze and

generate a value for the parameter with one of the fundamental types is more straightforward

than with complex types. In order to generate test data of complex data types, the generator

20

recursively analyzes the structure of the data type until it reaches the fundamental type.

The second step is to assign the value to each input parameter of web service. This step is

different for validation and testing process due to the aim of the processes.

The aim of the validation process is to check whether the web service is still alive and ac-

cessible or not by invoking the web service. Therefore, setting simple default values to input

parameters is sufficient for validation process. The default values used for fundamental pa-

rameter types are as shown in Table 4.1.

Table 4.1: Default Values of Web Service Parameters for Validation

Parameter Type Parameter Value
Int64 or Int32 or Int16 or Byte 1
Double or Decimal or Single 1.0

Boolean true
String ”text”

DateTime Current Date and Time
Enum First value of the type of the parameter

After assigning input parameter values, web services are invoked and the responses are ana-

lyzed in order to check whether the service is still active.

The aim of the service testing process is to determine whether the appropriate outputs are

obtained for the given different inputs. In order to test a web service, it is expected that no

exception is taken when the web service is invoked by using the generated input values. An-

other important point in testing process is to check whether the service gives different outputs

for different input values. If a service always returns the same value in spite of different input

parameters, it is considered that it is a test service or this service has no implementation. Such

services are failed in test.

In the testing process, the most important issue is generating the most appropriate input values

for test cases. In this work, two different methods are used for generating the input values.

The first method uses dependency analysis to generate different candidate value for parameter.

In the second method, different random values in the range of parameter’s type and specific

values are generated. This method also uses external ontology sources for generation of input

values.

21

4.1 Semantic Dependency Analysis-Based Test Case Generation Method

A service provider can provide multiple services and some of them have interaction with the

other ones. In such a situation, for testing atomic web services, test cases can be generated by

using the return values of other web services.

Semantic dependency analysis contains three types of dependency; input dependency, output

dependency and input/output dependency.

• input dependent: A web service WS1 is ”input dependent” on WS2 if and only if WS1

and WS2 share at least one input parameter that has the same type and same name.

• output dependent: A web service WS1 is ”output dependent” on WS2 if and only if

output parameters of WS1 and WS2 have the same type and same name.

• input/output dependent: A web service WS1 is ”input/output dependent” on WS2 if

and only if at least one input parameter of WS1 has the same type and similar name

with at least one field of output parameter of WS2.

In this work, especially, semantic input/output dependencies are used. The generation of the

values for input parameters of each web service that are provided by the same service provider

is a very time consuming process. To deal with this problem, the input dependency and output

dependency are also used. However, the output and input dependency analysis is performed

just syntactically by comparing the types of input or output parameters of the web services.

Initially, input dependencies, output dependencies and the input/output dependencies between

all validated services of each service provider are analyzed and according to this analysis

result, the test case generation is performed. A web service may have no input parameter and

also may return no value. For each validated web service with at least one input parameter,

the dependencies with the other validated web services that are provided by the same service

provider and return a value except void are analyzed. For each validated web service, the

following steps are performed in the analysis phase.

Firstly, the number of input parameters and type of each one of them are obtained. After that,

in order to find the web services whose return parameter contains at least one field having the

same type with the analyzed input parameter, for each input parameter, the return parameters

22

of other validated web services are retrieved. The dependency results of the analyzed input

parameter are kept in a list.

If a web service with dependency is found, all fields of output parameters having the same type

with the analyzed input parameter are taken and the names of the fields are compared with the

name of input parameter and the similarity matching degree between them is calculated.

Nevertheless, the fields of output parameters whose type is the same as the type of the an-

alyzed input parameter can have no name. In this situation, the calculation of the matching

degree is impossible for these fields. The following alternatives are tried for matching degree

calculation.

If the name of the output parameter is available although its type is not matched with the input

parameters, the matching degree of the name of the output parameter with the name of input

parameter is calculated by applying the same method, which is used for the name of field of

output parameters. The similarity result and the name of output parameter and its web service

are recorded to dependency list of analyzed input parameter. In the worst case, both the output

parameter and each field of it do not have any name although itself or some of fields have the

same type as the analyzed input parameter. In this situation, the name of the web service

whose output parameter is analyzed is used in calculation of similarity degree.

In the matching degree calculation phase, the functions of word matching library [14], which

are extended from WordNet matching library are used. It performs both syntactic and seman-

tic matching. While finding matches, each term in the first parameter is compared with the all

of the terms in second parameters. In addition, these terms should conform to some special

conditions.

If the name of the parameters to be compared is composed of a set of words, in order to extract

the words, the following steps are performed for both input and output terms.

1. The term is split into tokens from capital cases or digits that are applicable to the case

[14].

2. Special characters like fg():;.,!”? are removed from each tokens.

3. Stop words such as ”get”, ”set”, ”list”, ”by”, ”id”, ”code”, ”and”, ”is”, etc. are removed

from token list.

23

4. The tokens in token list are combined by adding a space characters after each token and

a full string from tokens are obtained.

After each step is performed for both input term and output terms, the obtained results can be

fed into similarity function as an argument.

Matching each word of the first parameter term is performed by comparing all of words in

the second parameter term one by one. If the first parameter has m words and the second

parameter has n words, totally m x n comparisons are carried on. According to these word

comparisons, similarity of the words are calculated. In order to calculate similarity of each

pair of words, we need to find the synonyms of each word from different senses. Each syn-

onym can have different derivation hierarchies. Synonyms of each word and its derivation

hierarchies are obtained from WordNet. The hierarchy elements of first word are compared

with the hierarchy elements of second word. Then, the nearest common parent element and

the words’ derivation hierarchy levels are determined. In the light of this information, the

similarity of words is calculated by using Equation 4.1 [14].

similarity
(
term1wordi

, term2word j

)
=

2 ∗ derivation order o f nearest level
derivation level o f sense1 + derivation level o f sense2

(4.1)

After calculating all similarities, the similarity of words is decided as maximum of these

similarity values by using Equation 4.2 [14].

similarity
(
term1, term2word j

)
= maxi(similarity(term1wordi

, term2word j
)) (4.2)

After these processes, we obtain a similarity degree array with length of n. However, we

desire to get a single value as the similarity degree of whole output term to whole input term.

Therefore, the average value of these similarity degrees is calculated for the final similarity

value (S1) by using Equation 4.3.

similarity (term1, term2) =
1
n

n∑
j=1

similarity(term1, term2word j
) (4.3)

24

We devise also another method to calculate the similarity degree between input and output

terms. In this method, the distance between the input term and each ontology terms and the

distance between each output term and each ontology terms are calculated. These distances

are used to determine the ontological places of the terms. By calculating the average of the

differences of these distance values with each ontology term, the similarity value (S2) between

input term and output term is calculated by using Equation 4.4.

ontS im (term1, term2) = 1 − 1
N

N∑
k=1

|similarity(term1, ontTermk) − similarity(term2, ontTermk)|

(4.4)

where N is the count of the ontology terms.

As described above, similarity values from two different ways are obtained. These values are

named as S1 and S2. Final similarity value is calculated by using Equation 4.5.

f inalS imilarity (term1, term2) =
S 1 + S 2

2
(4.5)

The final similarity value with the name of the output term and the web service whose output

parameter is analyzed are recorded to input/output dependency list of analyzed input param-

eter. A sample list of input/output dependency relations of web services is shown in Figure

4.1.

The overall algorithm of dependency analysis for a web service that are mentioned above is

as follows.

25

Figure 4.1: Input/Output Dependency Relations of Web Services

26

Algorithm 4.1.1 AnalyzeInputOutputDependency

1: get input parameters of web service

2: for each inputParam ∈ input parameter list do

3: term1 ← name of inputParam

4: for each WS ∈ list of other web service provided by the same service provider do

5: maxS imilarity← 0

6: dependentField ← null

7: outputParam← output parameter of WS

8: if outputParam , void then

9: for each f ield ∈ field list of outputParam do

10: if type of inputParam = type of outputParam then

11: if name of f ield , null then

12: term2 ← name of f ield

13: else

14: if name of outputParam , null then

15: term2 ← name of outputParam

16: else

17: term2 ← name of WS

18: end if

19: end if

20: S 1← similarity(term1, term2)

21: S 2← ontS im(term1, term2)

22: f inalS imilarity← (S 1 + S 2)/2

23: if f inalS imilarity > maxS imilarity then

24: maxS imilarity← f inalS imilarity

25: dependentField ← f ield

26: end if

27: end if

28: end for

29: insert < WS , f ield,maxS imilarity > to similarity list of inputParam

30: end if

31: end for

32: end for

In input dependency analysis, other web services that have at least one common input param-

eter with the web service under analysis are searched. The input parameters must have both

27

the same name and the same type to accept the web services as input dependent.

In output dependency analysis, other web services that share the output parameters with the

web service in analysis phase are searched. The obtained web services are accepted as output

dependent with the web service in analysis. With the method mentioned above, for each pa-

rameter of all web services that are provided by the handled service provider, the dependency

analysis results are obtained. After these processes, by utilizing the final analysis results, dif-

ferent values for the input parameters and also different test cases are generated for each web

service.

4.2 Data Mutation-Based Test Case Generation Method

In software engineering, the purpose of the mutation testing is to help the tester develop

effective tests or locate weaknesses in the test data used for the program or in sections of

the code that are seldom or never accessed during execution [15]. The proposed method

is inspired from mutation testing methods, however the aim is quite different. The aim of

mutation testing is to measure test adequacy. On the other hand, the aim of data mutation

in the proposed method is to generate test case. In traditional mutation testing, mutation

operators are used to transform the program under test. In contrast, this method is applied for

generating random and error-prone data inputs.

In mutation-based test case generation, a parameter can have different values in the range of

its type domain. In this method, the various random and error-prone data input values are

generated and they are grouped. When we use the generated values in each range for input

parameter, we expect that invoked web service presents different behaviors.

We mention that types of input parameters can be fundamental or complex type. In case of

having complex type, the generator recursively analyzes the structure of the input parameter

type until it reaches the fundamental type. For some of types like Int64, Int32, Int16, Byte,

Decimal, Double, Single, Double, Boolean, Enum and DateTime where the range is limited,

conventional-based method can be used easily in order to generate value. When compared to

these types, generating a valid value for String typed input parameters is a challenging issue.

Therefore, different methods should be used. For this reason, we also use ontology-based test

case generation method for input parameter whose type is String.

28

However Numeric and DateTime input parameters can be defined with String type. For such

input parameters, we make some checking to detect the actual types of them and by using

conventional-based test case generation method, valid values are generated and converted to

String. If the name of the parameter contains ”id”, ”number” or ”count”, it is handled as Byte

type. If the name of the parameter contains ”DateTime” or ”Time”, it is handled as DateTime

type. If the name of the parameter contains ”Date”, it is handled as DateTime type and the

value is generated by using ”yyyy-MM-dd” format.

4.2.1 Conventional-Based Test Case Generation Method

In this method, various values in the range of its type are generated and the generated values

are grouped. For each group, the range of parameter value is also constrained. In Mutant

Version 0, positive values are generated for input parameters. When the web service is invoked

by using these values, it is expected that invoked web service returns a proper value. In Mutant

Version 1, 2, 3, 4, 5 and 6, error-prone input values are generated.

For numeric types, in Mutant Version 1, input parameter is set to 0. By this way, it can be

checked whether the web service prevents division by zero error or pointer address error.

In Mutant Version 2, the numeric input parameter is set to -1 and thus it is checked whether

unsigned to signed conversion error, out-of-bounds memory access error, signed/unsigned

mismatch warning in comparison is prevented by web service. Incorrect sign conversions can

lead to undefined behavior and the web service can be crashed. In the web service, the input

parameter can be assigned other variables. The developers often define the integer variable as

Int32, however signed/unsigned property of type is important. Some variables can be used to

define ”index”, ”size”, ”count” and such variables should have signed type and to assign -1 to

such variable can be lead the error.

In Mutant Version 3 and 4, boundary values are generated. In Mutant Version 5 and 6, very

high and low values are generated randomly. Thus, the fault resistance of the web service is

checked.

For each type, the values that can be generated are different. Therefore, the mutant groups

are constructed differently with respect to types. For numeric types, the mutant groups are

constructed as shown in Table 4.2. The mutant groups shown in Table 4.3 are for DateTime

29

type. For Enum type, the mutant groups are constructed as shown in Table 4.4 and Table 4.5

is for Boolean type.

Table 4.2: Mutant Groups for Numeric Types

Mutant Version 0 In this version, a value in range 1-100 is randomly generated.
Mutant Version 1 In this version, the value of parameter is set to 0
Mutant Version 2 In this version, the value of parameter is set to -1
Mutant Version 3 In this version, the value of parameter is set to the maximum value of

its range.
Mutant Version 4 In this version, the value of parameter is set to the minimum value of its

range.
Mutant Version 5 In this version, a positive value between 1000 and the maximum value

is randomly generated.
Mutant Version 6 In this version, a negative values between -1000 and the minimum value

is randomly generated.

Table 4.3: Mutant Groups for DateTime Type

Mutant Version 0 In this version, a time value between time of Today and time, 31.12.To-
day.Year 23:59:59 is randomly generated.

Mutant Version 1 In this version, the value of parameter is set to time, 1.1.1 1:1:1
Mutant Version 2 In this version, the value of parameter is set to time, 31.12.Today.Year

23:59:59
Mutant Version 3 In this version, the value of parameter is set to the maximum time value

of its range.
Mutant Version 4 In this version, the value of parameter is set to the minimum time value

of its range.
Mutant Version 5 In this version, a time value between time of Today and the maximum

time value is randomly generated.
Mutant Version 6 In this version, a time value between time of Today and the minimum

time value is randomly generated.

Table 4.4: Mutant Groups for Enum Type

Mutant Version 0 In this version, an integer representing one of the values in the enum is
generated.

Mutant Version 1 and 2 In this version, the value of parameter is set to first value in the enum.
Mutant Version 3 and 5 In this version, the value of parameter is set to upper value in the enum.
Mutant Version 4 and 6 In this version, the value of parameter is set to the lower value in the

enum.

As another mutant version for the test case generation, switching the values of input param-

eters with the same type is performed. As source test cases, we use the test cases that are

30

Table 4.5: Mutant Groups for Boolean Type

Mutant Version 0, 1 and 2 In this version, the value of parameter is set to true.
Mutant Version 3, 4, 5 and 6 In this version, the value of parameter is set to false.

generated in version 0 and provide that the web services are invoked successfully. The val-

ues of input parameters having the same type are randomly mixed and new test cases are

generated by this way.

4.2.2 Ontology-Based Test Case Generation Method

This method is used in order to generate valid values for String typed textual input parameters.

In DSWSD-S System, each subnode has its own ontology. Having such an ontology is useful

for extracting the domain instances for parameters. If they are available, the instances can

be directly taken from the ontology or the ontology can be populated with instances by using

public resources.

Some of the obtained DSWSD-S ontology instances for input parameter are listed in Figure

4.2.

Figure 4.2: The DSWSD-S Ontology Instances for Input Parameter

31

In ontology version, DSWSD-S ontology is used as the external resource and the following

steps are performed in order to generate the values of input parameters.

As the first step, the name of input parameters are semantically compared with the ontology

terms in order to find the similarity value and ontological position of the input parameters.

We obtain the ontology terms with matching degree above the threshold value. The domain

instances of these ontology terms are used for generating the values of input parameters.

As another version, WordNet [16], is used for generation of input parameter value. In Word-

Net, nouns are organized into hierarchies based on different relations between synsets. Two

of these relations are more meaningful for us in process of generation input value.

Hyponym: The specific term used to designate a member of a class. X is a hyponym of Y if

X is a (kind of) Y [16].

Instance: A proper noun that refers to a particular, unique referent (as distinguished from

nouns that refer to classes). This is a specific form of hyponym [16].

Figure 4.3: The WordNet Instances for Input Parameter

We check whether there is any instance for the ontology term corresponding to the name

of input parameter. If it has at least one instance, a random one of them is used for input

32

parameter value in test case generation. Otherwise, the hyponym terms of the name of input

parameter are searched and if any term is obtained, the instances of the obtained hyponym

terms are searched. If it has at least one instance, a random one of them is assigned to input

parameter as value. Some of the obtained WordNet instances for input parameter are listed in

Figure 4.3.

4.3 Test Case Generation and Execution

In this phase, the overall process of test case generation is described. For all of validated web

services, different test cases based on both semantic analysis operation and data mutations are

generated.

Firstly, the test case generation based on data mutant analysis is performed. By using each

version of mutant value generation mentioned in the previous section, different values are

generated for each input parameter. Web service is invoked with these input parameters and

return value is obtained.

In Mutant Version 0, 5 different values in the given range are generated for each input param-

eter. By setting the input parameters to these generated values, the test case is prepared for

the web service. The next step is test case execution. In this phase, web services are invoked

and the results are checked. If an exception occurs during the execution of the web service

request, then the web service is accepted as unsuccessful. This result is recorded to statistics

of testing of web service. On the other hand, it is expected that the web services that cause no

exception have different return values. Currently, a web service pass the test if it produces dif-

ferent outputs to different inputs. However, the obtained result value will be further analyzed

in detail.

The similar steps are followed in the other mutant versions. In Mutant Version 1, 2, 3, 4, 5 and

6, just one test case is generated. To test the web service successfully, it is expected that no

exception is occurred. In Mutant Version 5 and 6, the possibility of being failed is higher than

the other versions because the web services might not handle the values in these ranges. As

mentioned for Mutant Version 0, the return values are analyzed in detail and the test results

are recorded.

33

For mutant version in which the values of input parameters from ontology instances are ob-

tained, one test case is generated in which the values of input parameters from WordNet

instances are obtained.

As the last mutation version, input parameter switching is performed. The test cases that

are generated in mutant version 0 and that provide successful test result are used again in

switching version, if the parameters are suitable.

As the second phase, test case generation based on dependency analysis is performed. If the

web service has no input parameter, it is invoked without generating any input value and the

invocation result is analyzed. If it has at least one input parameter, the value set is generated

for each input parameter by performing the following steps.

Firstly, the dependency list is analyzed. If it has no dependency with the return parameters of

the other web services, considering its type, a random value is generated by using version 0 in

the mutant-based method. Otherwise, by starting with the first web service in the dependency

list, the test cases of web services is analyzed to get the appropriate value from its return

value.

The dependency relation list contains the information as to which web service’s output pa-

rameter has dependency and its dependency degree. The list is sorted by dependency degree,

therefore the analysis operation is started with the first one. If the first web service in the list

has no successful test case, it is not used for generation and the analysis is continued with

the next web service in the dependency list. In case of failure, these steps are recursively

performed until a web service in the dependency list has successfully executed test case is.

The dependency relation list contains also the name of the field with the same type as the

input parameter for which it is to be used to generate a value. By utilizing this data, the value

is acquired from the return value of the web service, whose successful test case is determined.

Therefore the output value is analyzed to find this field and get its value. If this field is

the element of an array, one of the values in list is selected randomly. The acquired value

for input parameter can be equal to null, 0 or empty string ””. In this case, this value is

not preferred as input value and therefore, the next web service in dependency list is tried.

When an appropriate dependency is not obtained from the dependency list, a random value is

generated by using ’version 0’ in the mutant-based method.

34

After the values are generated for all input parameters of web services in testing phase, it is

ready to be invoked. After this state, the following steps are the same as the testing process

in which the mutation method is used. The services are invoked and the return values are

analyzed to decide whether it passes the test. As the final process, the test results are recorded.

As an important point for performance, before the test case generation, the input dependencies

are checked from the earlier test results. If a web service with input dependency is success-

fully tested before, the values of the input parameters of this web service can be again used

for the web service in test phase.

The algorithm of test case generation and execution that are described above is given in Al-

gorithm 4.3.2 and 4.3.3.

Algorithm 4.3.2 GenerateAndInvokeTestCase

1: for i← 0, 6 do

2: if i ≥ 0 then

3: countTestCase← 1

4: else

5: countTestCase← 5

6: end if

7: for j = 1→ countTestCase do

8: T ← create a new test case

9: for each p ∈ input parameter list do

10: generate value in the range of mutant version i

11: assign generated value to p

12: end for

13: InvokeTestCase(T)

14: insert T to test case list

15: end for

16: end for

17: T ← create a new test case

18: for each p ∈ input parameter list do

19: calculate the similarities between the name of p and ontology terms

20: ontTerm← ontology term, which provides highest similarity

21: get ontology instances of ontTerm from DSWSD database

22: assign one of found ontology instances to p

23: end for

35

24: InvokeTestCase(T)

25: insert T to test case list

26: T ← create a new test case

27: for each p ∈ input parameter list do

28: get WordNet instances of similar WordNet ontology term

29: assign one of found WordNet instances to p

30: end for

31: InvokeTestCase(T)

32: insert T to test case list

33: if at least two parameters have the same type then

34: success f ulTestCaseList← the list of test cases, which provide S UCCES S FUL result

35: for each p ∈ success f ulTestCaseList do

36: T ← create a new test case

37: switch the values of parameters, which have the same type randomly

38: assign switched values to parameters

39: InvokeTestCase(T)

40: insert T to test case list

41: end for

42: end if

43: i← 0

44: while i ≤ 5 do

45: for each p ∈ input parameter list do

46: if length of input/output dependent web service list > 0 then

47: for each DW ∈ input/output dependency list do

48: DS T ← list of DW’s successful test cases, which are generated with dependency ver-

sion

49: for each sourceTestCase ∈ DS T do

50: if return value of sourceTestCase , null then

51: get the value of dependent field of return value of sourceTestCase

52: assign this value to p

53: break

54: end if

55: end for

56: if the value of p is assigned then

57: break

58: end if

59: end for

36

60: end if

61: end for

62: InvokeTestCase(T)

63: insert T to test case list

64: i← i+1

65: end while

Algorithm 4.3.3 InvokeTestCase(testCase)

1: execute the new test case

2: if exception occurs then

3: result of testCase← UNS UCCES S FUL

4: else

5: result of testCase← S UCCES S FUL

6: save the return value of T

7: end if

37

CHAPTER 5

CASE STUDIES AND EVALUATION

This chapter consists of two parts. The first part is about the analysis method. The second part

presents the experimental results of the proposed algorithm and some statistical information.

5.1 Analysis Method for Test Results

As we described in previous sections, web service invocation results are obtained by calling

a web service by using the input parameters that are generated with data mutation based

methods and semantic dependency analysis based method.

The test results are generated by examining the invocation results in two dimensions. The first

one is based on checking the execution results. An exception can occur during the execution

of the web service request. In this case, the web service is accepted as unsuccessful. This

result will be recorded to database of web service test statistics. On the other hand, if it causes

no exception, it is accepted as successful. The second analysis dimension is examining the

difference of invocation results for various test cases.

The calculation of final test value of a web service is summarized in Table 5.1 and Table 5.2.

Table 5.1 shows how to calculate the ratio of the successful test cases that are generated by

using each data generation method. First column presents number of the successful test cases

and the first row presents number of the total test cases for each data generation method. In

Table 5.2, the terms that is given in Table 5.1 are described.

38

Table 5.1: The Calculation of Ratio of Successful Test Cases

/ NMT0 NMT1 NMT2 NMT3 NMT4 NMT5 NMT6 NOT NWT NS IT NDT

NS MT0 R0

NS MT1 R1

NS MT2 R2

NS MT3 R3

NS MT4 R4

NS MT5 R5

NS MT6 R6

NS OT R7

NS WT R8

NS S IT R9

NS DT R10

Table 5.2: Definitions of Evaluation Terms

Term Definition

NS MT0 The number of successful test cases in which the input parameters are generated by

mutant version 0.

NMT0 The number of total test cases in which the input parameters are generated by mutant

version 0.

R0 The ratio of successful test cases using mutant version 0.

NS MT1 The number of successful test cases in which the input parameters are generated by

mutant version 1.

NMT1 The number of total test cases in which the input parameters are generated by mutant

version 1.

R1 The ratio of successful test cases using mutant version 1.

NS MT2 The number of successful test cases in which the input parameters are generated by

mutant version 2.

NMT2 The number of total test cases in which the input parameters are generated by mutant

version 2.

R2 The ratio of successful test cases using mutant version 2.

NS MT3 The number of successful test cases in which the input parameters are generated by

mutant version 3.

NMT3 The number of total test cases in which the input parameters are generated by mutant

version 3.

R3 The ratio of successful test cases using mutant version 3.

39

Table 5.2 – Definitions of Evaluation Terms (continued)

Term Definition

NS MT4 The number of successful test cases in which the input parameters are generated by

mutant version 4.

NMT4 The number of total test cases in which the input parameters are generated by mutant

version 4.

R4 The ratio of successful test cases using mutant version 4.

NS MT5 The number of successful test cases in which the input parameters are generated by

mutant version 5.

NMT5 The number of total test cases in which the input parameters are generated by mutant

version 5.

R5 The ratio of successful test cases using mutant version 5.

NS MT6 The number of successful test cases in which the input parameters are generated by

mutant version 6.

NMT6 The number of total test cases in which the input parameters are generated by mutant

version 6.

R6 The ratio of successful test cases using mutant version 6.

NS OT The number of successful test cases in which the input parameters are generated by

using ontology instances.

NOT The number of total test cases in which the input parameters are generated by using

ontology instances.

R7 The ratio of successful test cases using ontology instances.

NS WT The number of successful test cases in which the input parameters are generated by

using WordNet instances.

NWT The number of total test cases in which the input parameters are generated by using

WordNet instances.

R8 The ratio of successful test cases using WordNet instances.

NS S IT The number of successful test cases in which the input parameters are generated based

on mutation, switching the values of input parameters with the same type.

NS IT The number of total test cases generated by using switching method.

R9 The ratio of successful test cases using input parameter switching method.

NS DT The number of successful test cases in which the input parameters are generated by

using semantic dependency analysis-based method.

40

Table 5.2 – Definitions of Evaluation Terms (continued)

Term Definition

NDT The number of total test cases in which the input parameters are generated by using

semantic dependency analysis-based method.

R10 The ratio of successful test cases generated by using semantic dependency analysis-

based method.

If the web service has just one parameter, the test case generation by using switching method

is not performed. Therefore, NS IT is equal to 0 and in this case, the calculation is not applied.

In the previous sections, we mentioned that the input parameters are generated by switching

the input parameters of the source test cases. As the source test cases, we use the test cases

that are generated in the version 0 and provide successful result when the web services are

invoked. Therefore, it can be said that NS IT is equal to NS MT0.

To calculate the overall ratio of successful test cases generated by using the input parameter

generation methods (VRRS T), Equation 5.1 and 5.2 are used.

If NS IT is equal to 0,

VRRS T = (R0 + R1 + R2 + R3 + R4 + R5 + R6 + R7 + R8 + R10)/10 (5.1)

Else

VRRS T = (R0 + R1 + R2 + R3 + R4 + R5 + R6 + R7 + R8 + R9 + R10)/11 (5.2)

In testing process, the second dimension is based on checking whether the service gives dif-

ferent outputs for different input values. If a service always returns the same value in spite of

different input parameters, it is considered as a test service or this service has no implementa-

tion. If the same output value is obtained after all successful execution of test cases, the web

services is failed for this point.

DS T = 0 (5.3)

41

where DS T is the result of difference checking for all successful test cases. Otherwise, it is

accepted as successful in test DS T = 1.

The other difference checking is for the input parameter switching method. It is expected that

different return values are obtained after the executions of the test cases that use the switching

method and the source test cases whose input parameters are switched to generate the new

test case. For each test case using input parameter switching method, if the return values of

itself and source test case are different, it is accepted as successful in this checking process.

Otherwise it is failed in test.

For the ratio of successful test cases that are generated by using the input parameter switching

method and give different return value from its source test case (RDS S T), Equation 5.4 is used.

RDS S T = NDS S IT/NS S IT (5.4)

where NDS S IT is the number of successful test cases that are generated by using the input

parameter switching method and gives, different return value from its source test case and

NS S IT is the number of successful test cases that are generated by using the input parameter

switching method.

If there is no successful test case using switching input method (NS S IT is equal to 0), this

calculation is not applied.

The test result of these two difference checking process are calculated separately.

If NS S IT is not equal to 0,

VRDS T = (DS T + RDS S T)/2 (5.5)

Else

VRDS T = DS T (5.6)

By using the obtained results of the web services for two points mentioned above, the final test

result is calculated. In testing of a web service, its successful invocation is more important

than its returning different values. The web services that throw exception when they are

invoked are never preferred by the service consumers. Therefore, the overall success result of

the test cases is more weighted than the differences of obtained outputs. Equation 5.7 is used

42

for the final test result.

VR f inal = (VRRS T ∗ 0.7) + (VRDS T ∗ 0.3) (5.7)

5.2 Experiments

5.2.1 Experiments with Web Services in DSWSD-S System

In DSWSD-S System, a set of nodes on different domains have been constructed. Each node

crawls for and collects the web services related with its own domain. In our experiments, the

proposed method is tested on the collected web services in the nodes of ”Car”, ”Aviation”,

”Film” and ”Sports” domains.

For the web services in ”Car” domain, the statistics about the collected web services are

presented in Table 5.3.

Table 5.3: The Statistics about Experiments for ”Car” Domain

Total number of web service providers 904
Total number of validated web services 5713
Total number of input parameters 15284
Total number of string input parameters 9966
Total number of string input parameters 1426
whose value can be assigned from WordNet instances
Average number of services per service provider 6.3
Average number of input parameter per web service 2.7

The number of the web services that are provided by the same provider are so varying that

one service provider has only one web service whereas the other one has 54 web services.

Some of them has no input parameter, on the other hand, there is a web service having 50

input parameters. There are both the input parameters with very complex types and with

fundamental types. While some web services have no output parameter and it means that it

returns ”void”, some of them return complex typed results.

For the web services in ”Aviation” domain, the statistics about the collected services are

presented in Table 5.4.

For the web services in ”Film” domain, the statistics about the collected services are presented

43

Table 5.4: The Statistics about Experiments for ”Aviation” Domain

Total number of web service providers 33
Total number of validated web services 137
Total number of input parameters 163
Total number of string input parameters 105
Total number of string input parameters 10
whose value can be assigned from WordNet instances
Average number of services per service provider 4.2
Average number of input parameter per web service 1.2

in Table 5.5.

Table 5.5: The Statistics about Experiments for ”Film” Domain

Total number of web service providers 60
Total number of validated web services 187
Total number of input parameters 233
Total number of string input parameters 162
Total number of string input parameters 3
whose value can be assigned from WordNet instances
Average number of services per service provider 3.1
Average number of input parameter per web service 1.2

For the web services in ”Sports” domain, the statistics about the collected services are pre-

sented in Table 5.6.

Table 5.6: The Statistics about Experiments for ”Sports” Domain

Total number of web service providers 60
Total number of validated web services 187
Total number of input parameters 218
Total number of string input parameters 148
Total number of string input parameters 3
whose value can be assigned from WordNet instances
Average number of services per service provider 3.1
Average number of input parameter per web service 1.2

In the previous sections, it is mentioned that the test results of web services are obtained by

using data mutation based methods and semantic dependency analysis based method. These

results are recorded to database in details. For the web services in ”Car” domain, the obtained

44

results are as shown in Figure 5.1 and Figure 5.2. Figure 5.3 and Figure 5.4 show the test

results of the web services in ”Aviation” domain. In Figure 5.5 and Figure 5.6, the results

of the web services in ”Film” domain are presented. Figure 5.7 and Figure 5.8 show the test

results of the web services in ”Sports” domain.

Figure 5.1: The Test Results of Web Services in ”Car” Domain - I

Figure 5.2: The Test Results of Web Services in ”Car” Domain- II

In the test results, final result column shows to which degree a web service is tested success-

45

Figure 5.3: The Test Results of Web Services in ”Aviation” Domain - I

Figure 5.4: The Test Results of Web Services in ”Aviation” Domain - II

46

Figure 5.5: The Test Results of Web Services in ”Film” Domain - I

Figure 5.6: The Test Results of Web Services in ”Film” Domain - II

47

Figure 5.7: The Test Results of Web Services in ”Sports” Domain - I

Figure 5.8: The Test Results of Web Services in ”Sports” Domain - II

48

fully.

In ”Car” domain, for 349 web services of all web services, the final test value is 1, it means that

they are successfully tested. The final test value of 2545 web services is 0, which means that

they are totally failed in testing process. Some of the web services that are totally successfully

tested are listed in Figure 5.9. 2501 web services are successfully invoked in all test cases that

are generated by using data mutation-based method. 2649 web services are successful in all

test cases that are generated by using semantic dependency-based method. 2474 web services

are successful in both of two methods. Number of web services that return same values in all

successful invocations and are test method is 2453.

In ”Aviation” domain, 28 web services of all web services are successfully tested. Therefore

their final test value is 1. These services are listed in Figure 5.10. 10 web services are

totally failed. 126 web services are successfully invoked in all test cases that are generated

by using data mutation-based method. 80 web services are successful in all test cases that

are generated by using semantic dependency-based method. In both of two methods, 125

web services are successful. 48 web services are test method and return same values in all

successful invocations.

In ”Film” domain, 35 web services of all web services are successfully tested. Therefore their

final test value is 1. These services are listed in Figure 5.11. 12 web services are totally failed.

170 web services are successfully invoked in all test cases that are generated by using data

mutation-based method. 110 web services are successful in all test cases that are generated

by using semantic dependency-based method. In both of two methods, 108 web services

are successful. 60 web services are test method and return same values in all successful

invocations.

In ”Sports” domain, 36 web services of all web services are successfully tested.Therefore

their final test value is 1. These services are listed in Figure 5.12. 12 web services are

totally failed. 172 web services are successfully invoked in all test cases that are generated

by using data mutation-based method. 108 web services are successful in all test cases that

are generated by using semantic dependency-based method. In both of two methods, 108

web services are successful. 58 web services are test method and return same values in all

successful invocations.

49

Figure 5.9: Successfully Tested Web Services in ”Car” Domain

Figure 5.10: Successfully Tested Web Services in ”Aviation” Domain

50

Figure 5.11: Successfully Tested Web Services in ”Film” Domain

Figure 5.12: Successfully Tested Web Services in ”Sports” Domain

51

5.3 Experiments with External Web Services

In addition to the collected web services in DSWSD nodes, the testing process is performed

for a set of web services obtained from several external services resources. These service

resources are strikeiron.com [17] and webserviceX.net [18].

StrikeIron offers the commercial data services such as Email Verification, Global Address

Verification, SMS Alerts and Notifications, Online Sales Tax etc. and provides an engine

to reduce the complexity for developers and business users who want to integrate live data

from any number of sources [17]. WebserviceX.net provides programmable business logic

components and standing data that serve as ”black boxes ” to provide access to functionality

and data via web services. It offers web services such as Stock Quote, Currency Convertor,

Global Weather, London Gold and Silver Fixing, SendSMSWorld [18].

There are many studies that use these rich service providers for different purposes. One of

them is the study that is presented by AbuJarour et al. [4] to generate annotations for web ser-

vices. In our study, a total of 34 web services provided by strikeiron.com and webserviceX.net

are tested and the obtained test results are listed in Figure 5.13.

Figure 5.13: The Test Results of External Web Services

52

5.4 Experiments with Syntactically Generated Web Services

In order to evaluate the accuracy of the proposed method, we created web service providers

that include various services, whose behaviors are already known. These web services are

pertained to ”Aviation” and ”Car ”domains.

For ”Aviation” domain, the provided web services are used to get the information about flights

in Turkey and the definitions of these web services are given in Table 5.7.

Table 5.7: The Definitions of Web Services of ”Flight Management System”

Web Service Definitions
System.String sayHello() It always return the same value, ”helloWorld” string.
System.String[] getAirways() It returns the list of the airline in system
AirportClass[] getAirports() It returns the list of the airports in system
FlightLineClass[] getFlightLines() It returns the list of the flightlines in system
System.String[] getAirportsInCity
(String city)

It returns the available airports in city given as input pa-
rameter.

FlightLineClass[] getFlightLinesTo
(String coming)

It returns the flightlines whose arrival airport is given as
input parameter.

FlightLineClass[] getFlightLines-
From (String takeoff)

It returns the flightlines whose departure airport is given
as input parameter.

System.String[] getAirwaysIn-
FlightLine (String takeoff, String
arrival)

It returns the list of airways, which have flightline, names
of the arrival and departure airports are given as parame-
ter

System.String[] getAirwaysIn-
FlightLineByID (Int32 takeof-
fAerodromeID, Int32 arrivalAero-
dromeID)

It returns the list of airways, which have flightline, IDs of
the arrival and departure airports are given as parameter.

FlightLineClass[] getFlightLineO-
fAirline (String airline)

It returns the list of flightlines of the airline, which is
given as parameter.

Boolean isRouteBidirectional
(String cityName1, String city-
Name2, String airway)

If the flights of the between the cities given as parameter
are bi-directional, it returns true. Otherwise, it returns
false.

For each web service, the proposed approach is applied and the test results are obtained after

the testing process. As we mentioned in previous sections, different input values are generated

for each parameter and with these generated input parameters, web services are invoked.

After the invocation, the return values of web services are analyzed. Some examples of the

generated values of input parameters and the obtained return values are given bellow.

System.String sayHello(): This web service is a test web service and always returns the same

value, ”helloWorld” string. Although it is invoked successfully and returns a value, the test

result is low since it is a test web service.

53

System.String[] getAirways(): When this service is invoked, the obtained list is shown in

Figure 5.14.

Figure 5.14: The Return Value of Web Service, ”getAirways”

AirportClass[] getAirports(): When this service is invoked, the obtained list is shown in

Figure 5.15.

Figure 5.15: The Return Value of Web Service, ”getAirports”

Figure 5.16: The Return Value of Web Service, ”getFlightLines”

FlightLineClass[] getFlightLines(): When this service is invoked, the obtained list is shown

54

in Figure 5.16.

System.String[] getAirportsInCity(String city): This service has one input parameter whose

type is String and the name is city. With semantic dependency analysis-based method, the

return types of other web services are retrieved in order to find a dependent output field.

After analysis, it is found out that getAirports web service whose output parameter type has

a field with type String and name city provides the most similar input/output dependency. A

randomly selected value from the AirportClass list items is used as the input parameter of

getAirportsInCity.

When the following value is generated for input parameter, namely city, Figure 5.17 shows

the obtained return value.

• city< S tring > value: ”Istanbul”

Figure 5.17: The Return Value of Web Service, ”getAirportsInCity”

FlightLineClass[] getFlightLinesTo(String coming): This service has one input parameter

whose type of is String and the name is coming. When all fields of output parameters hav-

ing the same type are searched, it is found that arrivalAirport field of output parameter of

getFlightLines web service is most semantically similar to the input parameter coming. The

similarity degree is calculated as 0.967. By using the return value of getFlightLines, different

values for input parameter coming are generated.

When the following value is generated for input parameter coming, the output value is ob-

tained as shown in Figure 5.18.

• coming< S tring > value: ”Adnan Menderes”

55

Figure 5.18: The Return Value of Web Service, ”getFlightLinesTo”

FlightLineClass[] getFlightLinesFrom(String takeoff): This service has one input parameter

whose type is String and the name is takeoff. When all fields of output parameters having

the same type are searched, it is found that departureAirport field of output parameter of

getFlightLines web service is semantically most similar to the input parameter takeoff. The

similarity degree is calculated as 0.973. By using the return value of getFlightLines, different

values for input parameter takeoff are generated.

When the following value is generated for departure airport, Figure 5.19 shows the obtained

return value.

• takeoff< S tring > value: ”Atatürk”

Figure 5.19: The Return Value of Web Service, ”getFlightLinesFrom”

System.String[] getAirwaysInFlightLine(String takeoff, String arrival): For two input param-

eters of getAirwaysInFlightLine, all fields of output parameters having the same type are

searched. It is found that departureAirport field of output parameter of getFlightLines web

56

service is most semantically similar to the input parameter takeoff and arrivalAirport field

of output parameter of getFlightLines web service is semantically most similar to the input

parameter arrival. The similarity degree between takeoff and departureAirport is 0.973 and

the similarity degree between arrival and arrivalAirport is 1. By using the return values of

getFlightLines, different values for input parameters takeoff and arrival are generated.

When the following values are generated for input parameters, the output value is obtained as

shown in Figure 5.20.

• takeoff< S tring > value: ”Atatürk”

• arrival< S tring > value: ”Adnan Menderes”

Figure 5.20: The Return Value of Web Service, ”getAirwaysInFlightLine”

System.String[] getAirwaysInFlightLineByID(Int32 takeoffAerodromeID, Int32 arrivalAero-

dromeID): For two input parameters of getAirwaysInFlightLineByID, all fields of output pa-

rameters having the same type are searched. It is found that airportID field of output param-

eter of getAirports web service is most semantically similar to the input parameter takeof-

fAerodromeID and airportID field of output parameter of getAirports web service is semanti-

cally most similar to the input parameter arrivalAerodromeID. The similarity degree between

takeoffAerodromeID and airportID is 0.696 and the similarity degree between arrivalAero-

dromeID and airportID is 0.712. By using the return values of getAirports, different values

for input parameters takeoffAerodromeID and arrivalAerodromeID are generated.

When the following values are generated for input parameters, the output value is obtained as

shown in Figure 5.21.

57

• takeoffAerodromeID< Int32 > value: 2

• arrivalAerodromeID< Int32 > value: 13

Figure 5.21: The Return Value of Web Service, ”getAirwaysInFlightLineByID”

The switch parameters version is applied on the service, System.String[] getAirwaysInFlight-

LineByID(Int32 takeoffAerodromeID, Int32 arrivalAerodromeID) and different results as shown

in Figure 5.22 are obtained.

• takeoffAerodromeID< Int32 > value: 13

• arrivalAerodromeID< Int32 > value: 2

Figure 5.22: The Return Value of Web Service, ”getAirwaysInFlightLineByID” with Switch
Version

FlightLineClass[] getFlightLineOfAirline(String airline): This service has one input param-

eter whose type is String and the name is airline. When all fields of output parameters having

the same type are searched, it is found that airWay field of output parameter of getFlightLines

web service is semantically most similar to the input parameter airline. The similarity degree

58

is calculated as 0.920. By using the return value of getFlightLines, different values for input

parameter airline are generated.

When the following value is generated for input parameter, the return value that can be shown

in Figure 5.23 is obtained.

• airline< S tring > value: ”OnurAir”

Figure 5.23: The Return Value of Web Service, ”getFlightLineOfAirline”

Boolean isRouteBidirectional (String cityName1, String cityName2, String airway): For three

input parameters of isRouteBidirectional, all fields of output parameters having the same type

are searched. It is found that city field of output parameter of getAirports web service is

semantically most similar to the input parameter cityName1 and cityName2. The similarity

degree between cityName1 and city is 0.75 and the similarity degree between cityName2 and

city is 0.75. For the input parameter airway, airWay field of output parameter of getFlight-

Lines web service has the highest semantic similarity. The similarity degree between airway

and airWay is 0.865. By using the return values of getAirports and getFlightLines, different

values for input parameters cityName1, cityName2 and airway are generated.

Whenever this web service invoked with the generated values like the following values for

input parameters, it always throws exception. Therefore, this web service fails in testing

process.

• cityName1< S tring > value: ”Trabzon”

• cityName2< S tring > value: ”Istanbul”

59

• airway< S tring > value: ”Pegasus”

For the web services of ”Flight Management System”, with analysis of invocation results

and the obtained return values of these web services, difference checking result, successful

invocation result and final test result are obtained. These test results of web services are listed

in Figure 5.24.

Figure 5.24: The Test Results of Web Services of ”Flight Management System”

For ”Car” domain, the generated web services are on car reservation management. Definitions

of these web services are given in Table 5.8.

Table 5.8: The Definitions of Web Services of ”Car Reservation System”

Web Service Definitions
System.String getValue() It always return the same value, ”helloWorld” string.
CityProperty[] getAllCities() This service returns the list of the cities in which car

reservation can be made.
ModelProperty[] getAllCarMod-
els()

It returns the list of the car models, which can be reserved.

PersonInformation[] getCos-
tumers()

It returns the list of the costumers in reservation system.

CarProperties[] getAvailable-
CarsInTown (Int32 townId, Int32
modelId)

It returns the list of cars, which has the model given as
parameter and is available in the town whose id is given
as parameter.

CarBookingClass[] getCarBook-
ingsByTownId(Int32 townId)

It queries the car reservations in town whose id is given
as parameter and returns the list of found reservation.

CarBookingClass[] getCarBook-
ingsByTownName(String town-
Name)

It queries the car reservations in town whose name is
given as parameter and returns the list of found reserva-
tion.

CarBookingClass[] getCarBook-
ingsByDate (String startDate)

It queries the car reservations whose start date is given as
parameter and returns the list of found reservation.

CarBookingClass[] getCarBook-
ingsOfPerson(String personName)

It is used for getting the list of the car reservations made
by the person whose name is given as parameter.

Int32 insertNewCarBookingItem
(Int32 personId, String person-
Name, Int32 rentalCarId, String
startDate, String stopDate)

It inserts a new car reservation to the system with the
given parameters.

60

The testing process are performed for each web service and the test results are obtained. Some

examples of the generated values of input parameters and the obtained return values are given

bellow.

System.String getValue(): This web service is a test web service and always returns the same

value, ”helloWorld” string. Although it is invoked successfully and return a result, the test

result is low since it is a test web service.

CityProperty[] getAllCities(): When this web service is invoked, the obtained return value is

as shown in Figure 5.25.

Figure 5.25: The Return Value of Web Service, ”getAllCities”

ModelProperty[] getAllCarModels(): When this web service is invoked, the obtained return

value is as shown in Figure 5.26.

Figure 5.26: The Return Value of Web Service, ”getAllModels”

PersonInformation[] getCostumers(): When this web service is invoked, the obtained return

value is as shown in Figure 5.27.

61

Figure 5.27: The Return Value of Web Service, ”getCostumers”

CarProperties[] getAvailableCarsInTown(Int32 townId, Int32 modelId): For the parameters

of this web service, the following values are generated for input parameters and when it is

invoked with the generated input values, the return value shown in Figure 5.28 is obtained.

• townId< Int32 > value: 1

• modelId< Int32 > value: 3

Figure 5.28: The Return Value of Web Service, ”getAvailableCarsInTown”

CarBookingClass[] getCarBookingsByTownId(Int32 townId): For the parameter of this web

service, the following value is generated for input parameters and when it is invoked with the

generated input values, the return value that can be shown in Figure 5.29 is obtained.

• townId< Int32 > value: 3

CarBookingClass[] getCarBookingsByTownName(String townName): When it is invoked

with the generated input values, it sometimes returns a value successfully. However, in some

62

Figure 5.29: The Return Value of Web Service, ”getCarBookingsByTownId”

of test cases, it throws exception. Therefore, the final test result is low. For instance, the test

case that uses the following input parameter results with an exception.

• townName< S tring > value: Boston

CarBookingClass[] getCarBookingsOfPerson(String personName): For the personName in-

put parameter of this web service, different values can be generated as follows. The output

generated with the first input instance for personName is shown in Figure 5.30.

• personName< S tring > value: ”henry martin”

Figure 5.30: The Return Value of Web Service, ”getCarBookingsOfPerson” - I

The output generated for the second instance of ”getCarBookingsOfPerson” web service is

shown in Figure 5.31.

• personName< S tring > value: ”Michael Boon”

63

Figure 5.31: The Return Value of Web Service, ”getCarBookingsOfPerson” - II

Int32 insertNewCarBookingItem(Int32 personId, String personName, Int32 rentalCarId, String

startDate, String stopDate): For the input parameters of this web service, the generated val-

ues are given in Figure 5.32. With the generated input paremeter values, it returns 1 and it

means that the reservation is made successfully.

• return < Int32 >: 1

Figure 5.32: The Input Parameter Values of Web Service, ”insertNewCarBookingItem”

Figure 5.33: The Test Results of Web Services of ”Car Reservation System”

For the web services of ”Car Reservation System”, with analysis of invocation results and the

64

obtained return values of these web services, difference checking result, successful invocation

result and final test result are obtained. These test results of web services are listed in Figure

5.33.

After testing of syntactically generated web services, in order to obtain the accuracy of our

proposed algorithm, we calculate the root mean square error (RMSE) by using the obtained

final test result. The root mean squared error of test value is evaluated by Equation 5.8.

√√√
1
n

N∑
k=1

(Ek − Tk)2 (5.8)

where Ek is the estimated test value by our algorithm, Tk is the target expected test value of

test web service and N is the length of the test web service set.

Accuracy results for the syntactically generated web services and average accuracy are pre-

sented in Table 5.9. The sum of square of the errors is 0.7595 and the average of square of

the errors is 0.055. As the final result, the root mean square error is 0.2346, which means

that the proposed algorithm within thesis predicts the test values of web services with 0.2346

accuracy error.

65

Table 5.9: Mean Square Error Values of Test Results

Web Service Name Expected (T) Estimated (E) (E - T)2

sayHello 0.5 0.7 0.04
getAirways 1 0.7 0.09
getAirports 1 0.7 0.09
getFlightLines 1 0.7 0.09
getAirportsInCity 1 1 0
getFlightLinesTo 1 1 0
getFlightLinesFrom 1 1 0
getAirwaysInFlightLine 1 0.85 0.0225
getAirwaysInFlightLineByID 1 0.94 0.0036
getFlightLineOfAirline 1 1 0
isRouteBidirectional 0 0 0
getValue 0.5 0.7 0.04
getAllCities 1 0.7 0.09
getAllCarModels 1 0.7 0.09
getCostumers 1 0.7 0.09
getAvailableCarsInTown 1 0.85 0.0225
getCarBookingsByTownId 1 1 0
getCarBookingsByTownName 0 0.63 0.3969
getCarBookingsByDate 1 0.7 0.09
getCarBookingsOfPerson 1 1 0
insertNewCarBookingItem 1 0.97 0.0009
The root mean square error 0.2346

66

CHAPTER 6

CONCLUSION

In this thesis, we proposed a method to automatically test discovered web services. This

method is realized within a web service discovery framework, DSWSD-S that aims to facil-

itate web service discovery process by finding the most appropriate and successfully tested

web services. The module of the DSWSD-S System, which is responsible for testing is de-

veloped. To realize the proposed method, an application is designed and a graphical user

interface is also presented to test the web services automatically and run the algorithm step

by step for the web services of each service provider.

In our approach, mutation-based and semantics-based input data generation methods are used

and with these methods, the most suitable input values are aimed to generate. The first method

is data mutation. By using this method, the web services are tested by using random and

specific values in different ranges. Values in these ranges are generated according to the

input type. Different data groups are constructed to generate values for input parameters.

The proposed data mutation analysis is inspired from the studies of Martin et al. [2], which

emphasizes robustness testing of web services and Siblini et al. [1] which proposes a mutation

testing method. However techniques proposed in these studies are not directly applied, but

rather modified and extended with new properties. Unlike [2], our work includes various

error-prone input value generation for different types in order to check the robustness of web

services. Siblini et al. [1] defines mutant operators to the WSDL document of web services.

Unlike it, data mutation is applied for input parameters in this study. Switching of generated

values of input parameters is one of the applied operations. In this method, the ontology-based

data generation is performed by utilizing the instances of DSWSD-S ontology and WordNet

ontology.

67

In the second method, the web services are analyzed semantically to generate different test

cases by using the obtained results of analysis. AbuJarour et al. [4] and Bai et al. [3] propose

a method using relations between the web services. In the study of Bai et al., the dependencies

are syntactically analyzed and the dependency results are used for operation flow generation.

However, in our study, both syntactically and semantically dependency analysis are performed

for input parameter value generation. We follow a method, which is similar to AbuJarour and

colleagues’ method to generate values for input parameters. However, while they use the

obtained values to generate annotations for web services, we used them in testing of web

services.

The web services are invoked by using the input parameters that are generated with these two

methods and the invocation results are used for calculating the test results. The test results

are obtained by the analysis of invocation results in two different ways. In the first direction,

it is checked whether an exception occurs during the execution of the web service request or

not. The web services, which throw no exceptions are accepted as successful. In the second

direction, it is checked whether the web service returns different results for different test cases.

We can also develop a structure, which enables the user to specify how to evaluate the func-

tions of the web services in testing process. For example, we currently expect that a web

service returns different values for different input values and the web services which always

return the same value have has low test values. However, the user can prefer that he/she does

not care about the difference of return values of web services in testing process.

In this study, we test web services using WSDL and to generate values for the input parameters

of web services, we semantically analyze the relations between the input parameters and

ontology terms of DSWSD-S System ontologies and WordNet ontology. However, if we test

the web services using OWL-S, it is not needed. The OWL-S enables the ontology-based

semantic specification of the service inputs, outputs, preconditions and effects. The relations

between the input parameters and terms in its own ontology are given and the related ontology

instances can be directly used for input parameter values without no semantically analysis.

As a future work, test case generation methods can be extended and the generated test cases

of successfully tested web services can be used in testing of syntactically and semantically

similar web services.

68

REFERENCES

[1] R. Siblini and N. Mansour, “Testing web services,” Proc. 3rd ACS/IEEE Int Computer
Systems and Applications Conf, 2005.

[2] E. Martin, S. Basu, and T. Xie, “Automated robustness testing of web services,” In
Proceedings of the 4th SOAWS, October 2006.

[3] X. Bai, W. Dong, W. T. Tsai, and Y. Chen, “Wsdl-based automatic test case generation
for web services testing,” Proc. of SOSE, pp. 207–212, 2005.

[4] M. AbuJarour and S. Oergel, “Automatic sampling of web services,” Proc. IEEE Int Web
Services (ICWS) Conf, pp. 291–298, 2011.

[5] Y. Wang, X. Bai, J. Li, and R. Huang, “Ontology-based test case generation for testing
web services,” Proc. of ISADS, pp. 43–50, 2007.

[6] D. Dranidis, D. Kourtesis, and E. Ramollari, “Formal verification of web service be-
havioural conformance through testing,” Annals of Mathematics, Computing & Telein-
formatics, vol. 1, pp. 36–43, 2007.

[7] “Certpedia-articles. available: http://www.certpedia.com/?p=2533. last accessed 06th
jan 2012..”

[8] Y. Zhang and H. Zhu, “Ontology for service oriented testing of web services,” in Proc.
SOSE, pp. 129–134, 2008.

[9] D. Canturk and P. Senkul, “Using semantic information for distributed web service dis-
covery,” International journal of Web Science, in press, 2011.

[10] D. Canturk and P. Senkul, “Service acquisition and validation in a distributed service
discovery system consisting of domain-specific sub-systems,” Proc. of ICEIS, pp. 93–
99, 2010.

[11] X. Bai, S. Lee, W. T. Tsai, and Y. Chen, “Ontology-based test modeling and partition
testing of web services,” Proc. of ICWS, pp. 465–472, 2008.

[12] “Apache, Axis. available: http://ws.apache.org/axis/. last accessed 28th jan 2012..”

[13] C. Csallner and Y. Smaragdakis, “JCrasher: An automatic robustness tester for Java,”
Software: Practice & Experience, vol. 34, pp. 1025–1050, 2004.

[14] D. Canturk and P. Senkul, “Semantic annotation of web services with lexicon-based
alignment,” IEEE 7th World Congress on Services (Services 2011), pp. 355–362, 2011.

[15] “Wikipedia, ”mutation testing”. available: http://en.wikipedia.org/wiki/mutation testing.
last accessed 06th jan 2012..”

69

[16] “Wordnet, ”an electronic lexical database”. available:
http://wordnet.princeton.edu/wordnet/. last accessed 06th jan 2012.”

[17] “Strikeiron. available: http://www.strikeiron.com/. last accessed 19th nov 2011..”

[18] “Webservicex.net. available: http://www.webservicex.net/ws/. last accessed 19th nov
2011..”

[19] X. Bai, Y. Wang, G. Dai, W. T. Tsai, and Y. Chen, “A framework for contract-based
collaborative verification and validation of web services,” CBSE’07 Proceedings of the
10th international conference on Component-based software engineering, pp. 258–273,
2007.

[20] C. Bartolini, A. Bertolino, E. Marchetti, and A. Polini, “Ws-taxi: A wsdl-based testing
tool for web services,” in Proc. Int. Conf. Software Testing Verification and Validation
ICST ’09, pp. 326–335, 2009.

[21] T. Cao, P. Felix., R. Castanet, and I. Berrada, “Online testing framework for web ser-
vices,” in Proc. Third Int Software Testing, Verification and Validation (ICST) Conf,
pp. 363–372, 2010.

[22] T. Cao, T. Phan-Quang, P. Felix, and R. Castanet, “Automated runtime verification for
web services,” Proc. of ICWS, pp. 76–82, 2010.

[23] W. Dong and H. Yu, “Web service testing method based on fault-coverage,” in Proc.
10th IEEE Int. Enterprise Distributed Object Computing Conf. Workshops EDOCW ’06,
2006.

[24] Y. Jiang, Y. Li, S. Hou, and L. Zhang, “Test-data generation for web services based
on contract mutation,” in Proc. Third IEEE Int. Conf. Secure Software Integration and
Reliability Improvement SSIRI 2009, pp. 281–286, 2009.

[25] M. S. Jokhio, “Goal-based testing of semantic web services,” Proc. of ASE, pp. 707–711,
2009.

[26] S. Lee, X. Bai, and Y. Chen, “Automatic mutation testing and simulation on owl-s spec-
ified web services,” in Proc. 41st Annual Simulation Symp. ANSS 2008, pp. 149–156,
2008.

[27] H. Mei and L. Zhang, “A framework for testing web services and its supporting tool,”
Proc. of SOSE, pp. 199–206, 2005.

[28] L. Shan and H. Zhu, “Generating structurally complex test cases by data mutation: A
case study of testing an automated modelling tool.,” Computer Journal, pp. 571–588,
2007.

[29] W. T. Tsai, Y. Chen, and R. Paul, “Specification-based verification and validation of
web services and service-oriented operating systems,” in Proc. 10th IEEE Int. Workshop
Object-Oriented Real-Time Dependable Systems WORDS 2005, pp. 139–147, 2005.

[30] W. T. Tsai, R. Paul, Y. Wang, C. Fan, and D. Wang, “Extending wsdl to facilitate web
services testing,” Proc. of HASE, pp. 171–172, 2002.

[31] W. T. Tsai, X. Wei, Y. Chen, and R. Paul, “A robust testing framework for verifying
web services by completeness and consistency analysis,” in Proc. IEEE Int. Workshop
Service-Oriented System Engineering SOSE 2005, pp. 151–158, 2005.

70

