A THESIS SUBMITTED TO
 THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY

BY
YILMAZ KELGÖKMEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY
IN
CHEMISTRY

SYNTHESIS OF HIGHLY SUBSTITUTED ALKYNYLPYRIDINES AND DEVELOPMENT OF NEW METHODOLOGIES FOR THE SYNTHESIS OF 1,4-OXAZEPINES, 1,4-THIAZEPINES AND 5-METHYLPYRIDINES

submitted by YILMAZ KELGÖKMEN in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry Department, Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar

Dean, Graduate School of Natural and Applied Sciences
Prof. Dr. Cihangir Tanyeli
Head of Department, Chemistry \qquad
Prof. Dr. Metin Zora
Supervisor, Chemistry Dept., METU \qquad

Examining Committee Members:

Prof. Dr. Metin Balcı
Chemistry Dept., METU \qquad
Prof. Dr. Metin Zora
Chemistry Dept., METU \qquad
Prof. Dr. Canan Ünaleroğlu
Chemistry Dept., Hacettepe University
Prof. Dr. Adnan Bulut
Chemistry Dept., Kırıkkale University \qquad
Assoc. Prof. Dr. Akın Akdağ
Chemistry Dept., METU

I hereby declare that all information in this document has been obtained and presented in accordance with all academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Abstract

\title{ SYNTHESIS OF HIGHLY SUBSTITUTED ALKYNYLPYRIDINES AND DEVELOPMENT OF NEW METHODOLOGIES FOR THE SYNTHESIS OF 1,4-OXAZEPINES, 1,4-THIAZEPINES AND 5-METHYLPYRIDINES }

Kelgökmen, Yılmaz
PhD, Department of Chemistry
Supervisor: Prof. Dr. Metin Zora
April 2018, 375 pages

Convenient syntheses of pyridines, 1,4-oxazepines and 1,4-thiazepines have become an important research area among organic chemists since they constitute scaffolds of many medicinal substances. Recently, N-propargylic β-enaminones have been widely used for the facile synthesis of potent biologically active heterocycles. Many research groups have focused on the proper synthesis of various heterocycles by using N-propargylic β-enaminones. One of the such recent reports using these precursors is the formation of 5-iodopyridines by iodinemediated electrophilic cyclization reaction. Accordingly, in this thesis work, the first aim is to further functionalize 5 -iodopyridines by utilizing Sonogashira crosscoupling reaction. With this way, we have synthesized 28 new 5 -alkynylpyridines in $40-99 \%$ yields. Secondly, for the synthesis of 1,4 -oxazepines, we have reinvestigated ZnCl_{2}-mediated 7-exo-dig cyclization in refluxing CHCl_{3} to get higher yields in shorter reaction durations. Thus, we have achieved the smooth synthesis of many 2-methylene-2,3-dihydro-1,4-oxazepine derivatives in good to high yields ($66-95 \%$) in $1.5-12.0 \mathrm{~h}$. In some cases, conversion of alkyl-substituted 1,4 -oxazepines to the corresponding pyrrole derivatives has been observed to some extent during their isolation on silica gel. In the third part of the thesis work, we
have prepared novel starting N-propargylic thio- β-enaminones from the corresponding N-propargylic β-enaminone precursors by using Lawesson's reagent (LR). Then, we have examined the cyclization reactions of these thio- β enaminones by using ZnCl_{2} in refluxing CHCl_{3}. We have synthesized 20 novel 2-methylene-2,3-dihydro-1,4-thiazepines in 67-90\% yields by using this unprecedented synthetic methodology. Finally, base-catalyzed cyclization reactions of N-propargylic thio- β-enaminones have been investigated, which afforded methyl-substituted pyridines via sulfur extrusion. Accordingly, in the presence of diisopropylamine (DIPA) at room temperature, many alkylpyridines have been synthesized in moderate to high yields (46-85\%), except for one derivative (13%).

Keywords: Pyridines, 1,4-Oxazepines, 1,4-Thiazepines, 7-Exo-dig cyclization, N Propargylic thio- β-enaminones

ÖZ

ÇOK GRUPLU ALKİNİLPİRİDİNLERİN SENTEZİ VE 1,4-OKSAZEPİNLER, 1,4-TİYAZEPİNLER VE 5-METİLPİRİDİNLERİN SENTEZİ İÇİN YENİ METODOLOJİLERİN GELİŞTİRİLMESİ

Kelgökmen, Yılmaz
Doktora, Kimya Bölümü
Tez Yöneticisi: Prof. Dr. Metin Zora
Nisan 2018, 375 sayfa

Birçok tıbbi maddenin yapı iskelelerini oluşturduklarından dolayı piridinlerin, 1,4oksazepinlerin ve 1,4-tiyazepinlerin elverişli sentezleri organik kimyacılar arasında önemli bir araştırma alanı olmuştur. Son dönemlerde, biyolojik olarak aktif olabilecek heterohalkaların kolay sentezi için N-proparjilik β-enaminonlar yaygın olarak kullanılmaktadır. Birçok araştırma grubu N-proparjilik β-enaminonları kullanarak çeşitli heterohalkaların uygun sentezi üzerine odaklanmıştır. Bu öncü maddeler ile son dönemdeki çalışmalardan bir tanesi de iyot aracıllğı ile gerçekleşen elektrofilik halkalaşma tepkimesiyle 5-iyotpiridinlerin oluşumudur. Bu doğrultuda bu tez çalışmasındaki ilk amacımız Sonogashira çapraz kenetlenme reaksiyonundan faydalanılarak 5-iyotpiridinleri daha da işlevsel hale getirmektir. Bu şekilde \%40-99 verimlerle 28 yeni 5 -alkinilpiridin sentezledik. İkinci olarak, 1,4-oksazepinlerin sentezi için, daha kısa sürede daha yüksek verimler elde etmek amacıyla ZnCl_{2} aracılı 7-exo-dig halkalaşmasını kaynayan CHCl_{3} içinde gerçekleştirmek suretiyle tekrar araştırdık. Böylece birçok 2-metilen-2,3-dihidro-1,4-oksazepin türevinin iyi ve yüksek verimlerle (\%66-95) 1.5-12.0 saat arasında değișen zamanlarla sorunsuz sentezini başardık. Bazı durumlarda alkil sübstitüye 1,4-oksazepinlerin silika jel ile izolasyonu esnasında bir dereceye kadar ilgili pirol
türevlerine dönüşümleri gözlemlenmiştir. Tezin üçüncü bölümünde Lawesson reaktifi kullanarak ilgili N-proparjilik β-enaminon öncülerinden yeni başlangıç N proparjilik tiyo- β-enaminonları hazırladık. Sonrasında ZnCl_{2} kullanarak kaynayan CHCl_{3} içerisinde bu tiyo- β-enaminonların halkalaşma reaksiyonunu inceledik. Bu eşsiz sentetik metodolojiyi kullanarak 20 yeni 2,3-dihidro-1,4-tiyazepin türevini \%67-90 verimlerle sentezledik. Son olarak sülfür ekstrüzyonu ile metil sübstitüye piridinleri oluşturan N-proparjilik tiyo- β-enaminonların baz katalizörlü halkalaşma reaksiyonları araştırılmıştır. Böylece diisopropilamin (DIPA) varlığında oda sıcaklığında birçok alkilpiridin, biri dışında (\%13), orta ve yüksek verimlerle (\%46-85) sentezlenmiştir.

Anahtar kelimeler: Piridinler, 1,4-Oksazepinler, 1,4-Tiyazepinler, 7-Exo-dig halkalaşması, N-Proparjilik tiyo- β-enaminonlar

To My Dear Devoted Family

ACKNOWLEDGMENTS

First of all, I would like to express my deep sense of thanks to my supervisor, Prof. Dr. Metin Zora, for his continual guidance and endless support throughout the my doctorate period. Not only his objective behaviour towards the matters but also being open to the my opinions always encouraged me to make the best of my studies. On the other hand, he always helped me with his sincere thoughts about my daily life issues.

I would like to thank Prof. Dr. Arif Kıvrak and Dr. Sedef Karabiyikoglu for their helps and supports in the beginning of my research.

I also thank all Zora`s research past group members, Deniz Demirci, Fulya Karahan, Yasemin Çayan, Ezel Dikmen Çelik, Ecem Teke, N. Esra Yazıcı Aksakal and present group members, Eda Karadeniz, Elif Serel Yılmaz, Esra Korkmaz, Nilay Kanova, Gizem Tütün for their friendship, helps and tolerances during my laboratory process.

I am especially grateful to all faculty member of Department of Chemistry since I have learnt lots of valuable information and improved my scientific point of view from their high-level education and training.

I would also thank all staff of Department of Chemistry for their administrative and technical assistants and particularly to Betül Eymur Dönmez for running the NMR experiments.

I would like to thank the specialist Zeynep Erdoğan in UNAM for her help in High Resolution Mass Spectrometry (HRMS) analyses.

I would like to thank the Scientific and Technological Research Council of Turkey (TÜBİTAK, Grant No: 114Z811) and Research Fund of Middle East Technical University for financial support during my PhD study.

Finally, I am extremely thankful to my father, mother, brother and sister for their emotional and material support in all situations. They always believed in and trusted me with their endless patients. Without of their love and support, it would be impossible to be successful at this study. Especially, my one-and-a-half-year-old twin nephews, Deniz and Asya, have recently provided high moral motivation in completion of my thesis work with pure warmness in their smiles.

TABLE OF CONTENTS
ABSTRACT v
ÖZ. vii
ACKNOWLEDGMENTS x
TABLE OF CONTENTS xii
LIST OF TABLES xxiv
LIST OF FIGURES xxv
LIST OF SCHEMES xxxix
LIST OF ABBREVIATIONS xli
CHAPTERS

1. INTRODUCTION 1
1.1 Pyridines 2
1.1.1 Synthesis of Pyridines 3
1.1.2 Importance of Pyridines 6
1.1.3 Alkynylpyridines 9
1.2 Seven-membered Heterocyclic Compounds 11
1.2.1 Synthesis of Oxazepines 13
1.2.2 Importance of Oxazepines 16
1.2.3 Synthesis of Thiazepines 17
1.2.4 Importance of Thiazepines 20
1.3 Aim of Thesis 21
2. RESULTS AND DISCUSSIONS 25
2.1 Synthesis of Starting Materials 25
2.1.1 Synthesis of α, β-Alkynic Ketones 63 25
2.1.2 \quad Synthesis of N-Propargylic β-Enaminones 32 28
2.1.3 \quad Synthesis of N-Propargylic β-Enaminones 7 32
2.1.4 Synthesis of 5-Iodopyridines 55 33
2.1.5 Synthesis of N-Propargylic Thio- β-enaminones 58 36
2.2 Synthesis of Target Compounds 40
2.2.1 Synthesis of 5-Alkynylpyridines 57 40
2.2.2 Synthesis of 2,3-Dihydro-1,4-oxazepines 33 47
2.2.3 Synthesis of 2,3-Dihydro-1,4-thiazepines 59 56
2.2.4 Synthesis of 5-Methylpyridines 61 63
3. CONCLUSION 73
4. EXPERIMENTAL 77
4.1 General Procedure for the Synthesis of α, β-Alkynic Ketones 63 78
4.1.1 1,3-Diphenylprop-2-yn-1-one (63a) 78
4.1.2 3-(4-Methoxyphenyl)-1-phenylprop-2-yn-1-one (63b) 78
4.1.3 3-(2-Methoxyphenyl)-1-phenylprop-2-yn-1-one (63c) 79
4.1.4 1-Phenyl-3-(p-tolyl)prop-2-yn-1-one (63d) 79
4.1.5 1-Phenyl-3-(m-tolyl)prop-2-yn-1-one (63e) 80
4.1.6 1-Phenyl-3-(4-(trifluoromethyl)phenyl)prop-2-yn-1-one (63f) 80
4.1.7 3-(4-(Dimethylamino)phenyl)-1-phenylprop-2-yn-1-one (63g) 80
4.1.8 3-(3-Fluorophenyl)-1-phenylprop-2-yn-1-one (63h) 81
4.1.9 3-(2-Bromophenyl)-1-phenylprop-2-yn-1-one (63i) 81
4.1.10 3-(4-(tert-Butyl)phenyl)-1-phenylprop-2-yn-1-one (63j) 82
4.1.11 2-(5-Oxo-5-phenylpent-3-yn-1-yl)isoindoline-1,3-dione (63k) 82
4.1.12 1-Phenylhept-2-yn-1-one (63I) 82
4.1.13 1-Phenyl-3-(thiophen-3-yl)prop-2-yn-1-one (63m) 83
4.1.14 1-(2-Bromophenyl)-3-phenylprop-2-yn-1-one (63n) 83
4.1.15 1-(2-Bromophenyl)-3-(4-methoxyphenyl)prop-2-yn-1-one (630) 84
4.1.16 1-(2-Bromophenyl)-3-(2-methoxyphenyl)prop-2-yn-1-one (63p) 84
4.1.17 1-(2-Bromophenyl)-3-(p-tolyl)prop-2-yn-1-one (63q) 84
4.1.18 1-(2-Bromophenyl)-3-(m-tolyl)prop-2-yn-1-one (63r) 85
4.1.19 1-(2-Bromophenyl)-3-(4-(trifluoromethyl)phenyl)prop-2-yn-1-one (63s) 85
4.1.20 1-(2-Bromophenyl)-3-(3-fluorophenyl)prop-2-yn-1-one (63t) 86
4.1.21 1,3-Bis(2-bromophenyl)prop-2-yn-1-one (63u) 86
4.1.22 1-(4-Methoxyphenyl)-3-phenylprop-2-yn-1-one (63v) 87
4.1.23 3-Phenyl-1-(p-tolyl)prop-2-yn-1-one ($63 \mathbf{w}$) 87
4.1.24 3-(Thiophen-3-yl)-1-(p-tolyl)prop-2-yn-1-one (63x) 88
4.1.25 1-(4-Chlorophenyl)-3-phenylprop-2-yn-1-one (63y) 88
4.1.26 1-(4-Chlorophenyl)-3-(3-fluorophenyl)prop-2-yn-1-one (63z) 88
4.2 General Procedure for the Synthesis of N-Propargylic β-Enaminones 32 89
4.2.1 1,3-Diphenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (32a) 89
4.2.2 3-(4-Methoxyphenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop- 2-en-1-one (32b) 90
4.2.3 3-(2-Methoxyphenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop- 2-en-1-one (32c) 90
4.2.4 1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(p-tolyl)prop-2-en-1-one (32d) 91
4.2.5 1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(m-tolyl)prop-2-en-1-one (32e) 91
4.2.6 1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(4-(trifluoromethyl)phenyl) prop-2-en-1-one (32f) 91
4.2.7 3-(4-(Dimethylamino)phenyl)-1-phenyl-3-(prop-2-yn-1-ylamino) prop-2-en-1-one (32g) 92
4.2.8 3-(3-Fluorophenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop- 2-en-1-one (32h) 92
4.2.9 3-(2-Bromophenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop- 2-en-1-one (32i) 93
4.2.10 3-(4-(tert-Butyl)phenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop- 2-en-1-one ($\mathbf{3 2 j}$) 93
4.2.11 2-(5-Oxo-5-phenyl-3-(prop-2-yn-1-ylamino)pent-3-en-1- yl)isoindoline-1,3-dione (32k) 94
4.2.12 1-Phenyl-3-(prop-2-yn-1-ylamino)hept-2-en-1-one (321) 94
4.2.13 1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(thiophen-3-yl)prop- 2-en-1-one ($\mathbf{3 2 m}$) 95
4.2.14 1-(2-Bromophenyl)-3-phenyl-3-(prop-2-yn-1-ylamino)prop- 2-en-1-one (32n) 95
4.2.15 1-(2-Bromophenyl)-3-(4-methoxyphenyl)-3-(prop-2-yn-1- ylamino)prop-2-en-1-one (320) 96
4.2.16 1-(2-Bromophenyl)-3-(2-methoxyphenyl)-3-(prop-2-yn-1- ylamino)prop-2-en-1-one ($\mathbf{3 2} \mathbf{p}$) 96
4.2.17 1-(2-Bromophenyl)-3-(prop-2-yn-1-ylamino)-3-(p-tolyl)prop- 2-en-1-one ($\mathbf{3 2 q}$) 97
4.2.18 1-(2-Bromophenyl)-3-(prop-2-yn-1-ylamino)-3-(m-tolyl)prop- 2-en-1-one (32r) 97
4.2.19 1-(2-Bromophenyl)-3-(prop-2-yn-1-ylamino)
-3-(4-(trifluoromethyl)phenyl)prop-2-en-1-one (32s) 98
4.2.20 1-(2-Bromophenyl)-3-(3-fluorophenyl)-3-(prop-2-yn-1-ylamino) prop-2-en-1-one (32t) 98
4.2.21 1,3-Bis(2-bromophenyl)-3-(prop-2-yn-1-ylamino)prop- 2-en-1-one (32u) 99
4.2.22 1-(4-Methoxyphenyl)-3-phenyl-3-(prop-2-yn-1-ylamino)prop- 2-en-1-one (32v) 99
4.2.23 3-Phenyl-3-(prop-2-yn-1-ylamino)-1-(p-tolyl)prop- 2-en-1-one (32w) 100
4.2.24 3-(Prop-2-yn-1-ylamino)-3-(thiophen-3-yl)-1-(p-tolyl)prop- 2-en-1-one ($\mathbf{3 2 x}$) 100
4.2.25 1-(4-Chlorophenyl)-3-phenyl-3-(prop-2-ynylamino)prop- 2-en-1-one ($\mathbf{3 2} \mathbf{2}$) 100
4.2.26 1-(4-Chlorophenyl)-3-(3-fluorophenyl)-3-(prop-2-yn-1-ylamino) prop-2-en-1-one ($\mathbf{3 2 z}$) 101
4.2.27 4-Phenyl-4-(prop-2-ynylamino)but-3-en-2-one (32aa) 101
4.3 General Procedure for the Synthesis of N-Propargylic β-Enaminones 7 102
4.3.1 1,3-Diphenyl-3-((3-phenylprop-2-yn-1-yl)amino)prop- 2-en-1-one (7a) 102
4.3.2 3-(4-Methoxyphenyl)-1-phenyl-3-((3-phenylprop-2-yn-1- yl)amino)prop-2-en-1-one (7b) 103
4.3.3 1-Phenyl-3-((3-phenylprop-2-yn-1-yl)amino)hept-2-en-1-one (71) 103
4.3.4 1-Phenyl-3-((3-phenylprop-2-yn-1-yl)amino)-3-(thiophen-3-yl) prop-2-en-1-one (7 m) 104
4.3.5 4-Phenyl-4-((3-phenylprop-2-yn-1-yl)amino)but-3-en-2-one (7aa) 104
4.3.6 3-((3-(3-Bromophenyl)prop-2-yn-1-yl)amino) -1,3-diphenylprop-2-en-1-one (7ab) 105
4.3.7 3-(But-2-yn-1-ylamino)-1,3-diphenylprop-2-en-1-one (7ac) 105
4.4 General Procedure for the Synthesis of 5-Iodopyridines 55 106
4.4.1 (5-Iodo-2,4-diphenylpyridin-3-yl)(phenyl)methanone (55a) 106
4.4.2 (5-Iodo-2-(4-methoxyphenyl)-4-phenylpyridin-3- yl)(phenyl)methanone (55b) 107
4.4.3 (2-Butyl-5-iodo-4-phenylpyridin-3-yl)(phenyl)methanone (55I) 107
4.4.4 (5-Iodo-4-phenyl-2-(thiophen-3-yl)pyridin-3-yl)(phenyl) methanone ($\mathbf{5 5 m}$) 108
4.4.5 1-(5-Iodo-2,4-diphenylpyridin-3-yl)ethanone (55aa) 108
4.4.6 (4-(3-Bromophenyl)-5-iodo-2-phenylpyridin-3- yl)(phenyl)methanone (55ab) 109
4.4.7 (5-Iodo-4-methyl-2-phenylpyridin-3-yl)(phenyl)methanone (55ac) 109
4.5 General Procedure for the Synthesis of of N-Propargylic Thio- β-enaminones 58 110
4.5.1 1,3-Diphenyl-3-(prop-2-yn-1-ylamino)prop-2-ene-1-thione (58a) 110
4.5.2 3-(4-Methoxyphenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop- 2-ene-1-thione (58b) 110
4.5.3 3-(2-Methoxyphenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop- 2-ene-1-thione (58c) 111
4.5.4 1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(p-tolyl)prop- 2-ene-1-thione (58d) 111
4.5.5 1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(m-tolyl)prop- 2-ene-1-thione (58e) 112
4.5.6 1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(4-(trifluoromethyl)phenyl) prop-2-ene-1-thione (58f) 112
4.5.7 3-(3-Fluorophenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop- 2-ene-1-thione (58h) 113
4.5.8 3-(2-Bromophenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop- 2-ene-1-thione (58i) 113
4.5.9 3-(4-(tert-Butyl)phenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop- 2-ene-1-thione (58j) 114
4.5.10 1-Phenyl-3-(prop-2-yn-1-ylamino)hept-2-ene-1-thione (581) 114
4.5.11 1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(thiophen-3-yl)prop- 2-ene-1-thione ($\mathbf{5 8 m}$) 115
4.5.12 1-(2-Bromophenyl)-3-phenyl-3-(prop-2-yn-1-ylamino)prop- 2-ene-1-thione (58n) 115
4.5.13 1-(2-Bromophenyl)-3-(prop-2-yn-1-ylamino)-3-(m-tolyl)prop- 2-ene-1-thione (58r) 116
4.5.14 1-(2-Bromophenyl)-3-(prop-2-yn-1-ylamino)-3-(4- (trifluoromethyl)phenyl)prop-2-ene-1-thione (58s) 116
4.5.15 1-(2-Bromophenyl)-3-(3-fluorophenyl)-3-(prop-2-yn-1-ylamino) prop-2-ene-1-thione (58t) 117
4.5.16 1-(4-Methoxyphenyl)-3-phenyl-3-(prop-2-yn-1-ylamino)prop- 2-ene-1-thione (58v) 118
4.5.17 3-Phenyl-3-(prop-2-yn-1-ylamino)-1-(p-tolyl)prop- 2-ene-1-thione (58w) 118
4.5.18 3-(Prop-2-yn-1-ylamino)-3-(thiophen-3-yl)-1-(p-tolyl)prop- 2-ene-1-thione (58x) 119
4.5.19 1-(4-Chlorophenyl)-3-phenyl-3-(prop-2-yn-1-ylamino)prop- 2-ene-1-thione (58y) 119
4.5.20 1-(4-Chlorophenyl)-3-(3-fluorophenyl)-3-(prop-2-yn-1-ylamino) prop-2-ene-1-thione (58z) 120
4.5.21 1,3-Diphenyl-3-((3-phenylprop-2-yn-1-yl)amino)prop- 2-ene-1-thione (84) 120
4.6 General Procedure for the Synthesis of 5-Alkynylpyridines 57 121
4.6.1 (2,4-Diphenyl-5-(phenylethynyl)pyridin-3-yl)(phenyl) methanone (57a) 121
4.6.2 (5-((4-Methoxyphenyl)ethynyl)-2,4-diphenylpyridin-3- yl)(phenyl)methanone (57b) 122
4.6.3 (2,4-Diphenyl-5-(p-tolylethynyl)pyridin-3-yl)(phenyl) methanone (57d) 122
4.6.4 (2,4-Diphenyl-5-(m-tolylethynyl)pyridin-3-yl)(phenyl) methanone (57e) 123
4.6.5 (2,4-Diphenyl-5-((4-(trifluoromethyl)phenyl)ethynyl)pyridin-3- yl)(phenyl)methanone (57f) 123
4.6.6 (5-((4-(Dimethylamino)phenyl)ethynyl)-2,4-diphenylpyridin-3- yl)(phenyl)methanone (57g) 124
4.6.7 (5-((3-Fluorophenyl)ethynyl)-2,4-diphenylpyridin-3- yl)(phenyl)methanone (57h) 125
4.6.8 2-(4-(5-Benzoyl-4,6-diphenylpyridin-3-yl)but-3-yn-1-yl) isoindoline-1,3-dione ($\mathbf{5 7 k}$) 125
4.6.9 (5-(Hex-1-yn-1-yl)-2,4-diphenylpyridin-3-yl)(phenyl) methanone (571) 126
4.6.10 (2,4-Diphenyl-5-(thiophen-3-ylethynyl)pyridin-3- yl)(phenyl)methanone (57m) 126
4.6.11 (5-(Hept-1-yn-1-yl)-2,4-diphenylpyridin-3-yl)(phenyl) methanone (57n) 127
4.6.12 (5-(3-Cyclopentylprop-1-yn-1-yl)-2,4-diphenylpyridin-3- yl)(phenyl)methanone (570) 128
4.6.13 (5-((1-Hydroxycyclohexyl)ethynyl)-2,4-diphenylpyridin-3- yl)(phenyl)methanone (57p) 128
4.6.14 (2,4-Diphenyl-5-(pyridin-2-ylethynyl)pyridin-3- yl)(phenyl)methanone (57q) 129
4.6.15 5-(Ferrocenylethynyl)-(2,4-diphenylpyridin-3-yl)(phenyl) methanone (57r) 129
4.6.16 (2-(4-Methoxyphenyl)-4-phenyl-5-(phenylethynyl)pyridin-3- yl)(phenyl)methanone (57ba) 130
4.6.17 (2-(4-Methoxyphenyl)-5-((4-methoxyphenyl)ethynyl)-4- phenylpyridin-3-yl)(phenyl)methanone (57bb) 131
4.6.18 (2-(4-Methoxyphenyl)-4-phenyl-5-(p-tolylethynyl)pyridin-3- yl)(phenyl)methanone (57bd) 131
4.6.19 (2-(4-Methoxyphenyl)-4-phenyl-5-(thiophen-3-ylethynyl) pyridin-3-yl)(phenyl)methanone (57bm) 132
4.6.20 (5-(Ferrocenylethynyl)-2-(4-methoxyphenyl)-4-phenylpyridin-3- yl)(phenyl)methanone (57br) 133
4.6.21 (2-Butyl-4-phenyl-5-(phenylethynyl)pyridin-3-yl)(phenyl) methanone (57la) 133
4.6.22 Phenyl(4-phenyl-5-(phenylethynyl)-2-(thiophen-3-yl)pyridin-3- yl)methanone ($\mathbf{5 7 m a}$) 134
4.6.23 Phenyl(4-phenyl-2-(thiophen-3-yl)-5-(p-tolylethynyl)pyridin-3- yl)methanone ($\mathbf{5 7} \mathbf{m d}$) 134
4.6.24 Phenyl(4-phenyl-2-(thiophen-3-yl)-5-(thiophen-3-ylethynyl) pyridin-3-yl)methanone (57mm) 135
4.6.25 Phenyl(4-phenyl-5-(ferrocenylethynyl)-2-(thiophen-3-yl) pyridin-3-yl)methanone ($\mathbf{5 7 m r}$) 136
4.6.26 1-(2,4-Diphenyl-5-(phenylethynyl)pyridin-3-yl)ethanone (57aaa) 136
4.6.27 (4-(3-Bromophenyl)-2-phenyl-5-(phenylethynyl)pyridin-3- yl)(phenyl)methanone (57aba) 137
4.6.28 (4-Methyl-2-phenyl-5-(phenylethynyl)pyridin-3- yl)(phenyl)methanone (57aca) 137
4.7 General Procedure for the Synthesis of 2,3-Dihydro-1,4-oxazepines 33138
4.7.1 2-Methylene-5,7-diphenyl-2,3-dihydro-1,4-oxazepine (33a) 138
4.7.2 5-(4-Methoxyphenyl)-2-methylene-7-phenyl-2,3-dihydro-1,4- oxazepine (33b) 139
4.7.3 5-(2-Methoxyphenyl)-2-methylene-7-phenyl-2,3-dihydro-1,4- oxazepine (33c) 139
4.7.4 2-Methylene-7-phenyl-5-(p-tolyl)-2,3-dihydro-1,4-oxazepine (33d) 140
4.7.5 2-Methylene-7-phenyl-5-(m-tolyl)-2,3-dihydro-1,4-oxazepine (33e) 140
4.7.6 2-Methylene-7-phenyl-5-(4-(trifluoromethyl)phenyl)- 2,3-dihydro-1,4-oxazepine ($\mathbf{3 3 f}$) 141
4.7.7 $\quad N, N$-Dimethyl-4-(2-methylene-7-phenyl-2,3-dihydro- 1,4-oxazepin-5-yl)aniline (33g) 141
4.7.8 5-(3-Fluorophenyl)-2-methylene-7-phenyl-2,3-dihydro- 1,4-oxazepine (33h) 142
4.7.9 5-(2-Bromophenyl)-2-methylene-7-phenyl-2,3-dihydro- 1,4-oxazepine (33i) 143
4.7.10 2-(2-Methylene-7-phenyl-2,3-dihydro-1,4-oxazepin-5-yl) isoindoline-1,3-dione (33k) and 2-(2-(3-benzoyl-4-methyl-1 H - pyrrol-2-yl)ethyl)isoindoline-1,3-dione (71k) 143
4.7.11 5-Butyl-2-methylene-7-phenyl-2,3-dihydro-1,4-oxazepine (331) and (2-butyl-4-methyl-1 H -pyrrol-3-yl)(phenyl)methanone (711) 144
4.7.12 2-Methylene-7-phenyl-5-(thiophen-3-yl)-2,3-dihydro- 1,4-oxazepine ($\mathbf{3 3 m}$) 145
4.7.13 7-(2-Bromophenyl)-2-methylene-5-phenyl-2,3-dihydro- 1,4-oxazepine (33n) 146
4.7.14 7-(2-Bromophenyl)-5-(4-methoxyphenyl)-2-methylene- 2,3-dihydro-1,4-oxazepine (330) 146
4.7.15 7-(2-Bromophenyl)-5-(2-methoxyphenyl)-2-methylene- 2,3-dihydro-1,4-oxazepine (33p) 147
4.7.16 7-(2-Bromophenyl)-2-methylene-5-(p-tolyl)-2,3-dihydro- 1,4-oxazepine (33q) 147
4.7.17 7-(2-Bromophenyl)-2-methylene-5-(m-tolyl)-2,3-dihydro- 1,4-oxazepine ($\mathbf{3 3 r}$) 148
4.7.18 7-(2-Bromophenyl)-2-methylene-5-(4-(trifluoromethyl)phenyl)- 2,3-dihydro-1,4-oxazepine (33s) 148
4.7.19 7-(2-Bromophenyl)-5-(3-fluorophenyl)-2-methylene- 2,3-dihydro-1,4-oxazepine (33t) 149
4.7.20 5,7-Bis(2-bromophenyl)-2-methylene-2,3-dihydro- 1,4-oxazepine ($\mathbf{3 3 u}$) 149
4.7.21 7-(4-Chlorophenyl)-5-(3-fluorophenyl)-2-methylene- 2,3-dihydro-1,4-oxazepine (33z) 150
4.8 Reaction of N-Propargylic β-Enaminone $7 \mathbf{a}$ with ZnCl_{2} 150
4.9 Reaction of 2,3-Dihydro-1,4-oxazepine 33a with SiO_{2} 151
4.10 General Procedure for the Synthesis of 1,4-Thiazepines $\mathbf{5 9}$ and $\mathbf{8 5}$ 152
4.10.1 2-Methylene-5,7-diphenyl-2,3-dihydro-1,4-thiazepine (59a) 152
4.10.2 5-(4-Methoxyphenyl)-2-methylene-7-phenyl-2,3-dihydro- 1,4-thiazepine (59b) 153
4.10.3 5-(2-Methoxyphenyl)-2-methylene-7-phenyl-2,3-dihydro-1,4- thiazepine (59c) 153
4.10.4 2-Methylene-7-phenyl-5-(p-tolyl)-2,3-dihydro- 1,4-thiazepine (59d) 154
4.10.5 2-Methylene-7-phenyl-5-(m-tolyl)-2,3-dihydro- 1,4-thiazepine (59e) 154
4.10.6 2-Methylene-7-phenyl-5-(4-(trifluoromethyl)phenyl)- 2,3-dihydro-1,4-thiazepine (59f) 155
4.10.7 5-(3-Fluorophenyl)-2-methylene-7-phenyl-2,3-dihydro- 1,4-thiazepine (59h) 155
4.10.8 5-(2-Bromophenyl)-2-methylene-7-phenyl-2,3-dihydro- 1,4-thiazepine (59i) 156
4.10.9 5-(4-(tert-Butyl)phenyl)-2-methylene-7-phenyl-2,3-dihydro- 1,4-thiazepine ($\mathbf{5 9 j}$) 156
4.10.10 5-Butyl-2-methylene-7-phenyl-2,3-dihydro-1,4-thiazepine (591). 157
4.10.11 2-Methylene-7-phenyl-5-(thiophen-3-yl)-2,3-dihydro- 1,4-thiazepine ($\mathbf{5 9 m}$) 157
4.10.12 7-(2-Bromophenyl)-2-methylene-5-phenyl-2,3-dihydro- 1,4-thiazepine (59n) 158
4.10.13 7-(2-Bromophenyl)-2-methylene-5-(m-tolyl)-2,3-dihydro- 1,4-thiazepine (59r) 158
4.10.14 7-(2-Bromophenyl)-2-methylene-5-(4-(trifluoromethyl)phenyl)- 2,3-dihydro-1,4-thiazepine (59s) 159
4.10.15 7-(2-Bromophenyl)-5-(3-fluorophenyl)-2-methylene- 2,3-dihydro-1,4-thiazepine (59t) 159
4.10.16 7-(4-Methoxyphenyl)-2-methylene-5-phenyl-2,3-dihydro- 1,4-thiazepine (59v). 160
4.10.17 2-Methylene-5-phenyl-7-(p-tolyl)-2,3-dihydro- 1,4-thiazepine (59w) 160
4.10.18 2-Methylene-5-(thiophen-3-yl)-7-(p-tolyl)-2,3-dihydro- 1,4-thiazepine ($\mathbf{5 9 x}$) 161
4.10.19 7-(4-Chlorophenyl)-2-methylene-5-phenyl-2,3-dihydro- 1,4-thiazepine ($\mathbf{5 9} \mathbf{y}$) 161
4.10.20 7-(4-Chlorophenyl)-5-(3-fluorophenyl)-2-methylene-2,3-dihydro- 1,4-thiazepine (59z) 162
4.10.21 (Z)-2-Benzylidene-5,7-diphenyl-2,3-dihydro-1,4-thiazepine (85). 162
4.11 General Procedure for the Synthesis of 5-Methylpyridines 61 163
4.11.1 5-Methyl-2,4-diphenylpyridine (61a) 163
4.11.2 2-(4-Methoxyphenyl)-5-methyl-4-phenylpyridine (61b) 164
4.11.3 2-(2-Methoxyphenyl)-5-methyl-4-phenylpyridine (61c) 164
4.11.4 5-Methyl-4-phenyl-2-(p-tolyl)pyridine (61d) 165
4.11.5 5-Methyl-4-phenyl-2-(m-tolyl)pyridine (61e) 165
4.11.6 5-Methyl-4-phenyl-2-(4-(trifluoromethyl)phenyl)pyridine (61f) 166
4.11.7 2-(3-Fluorophenyl)-5-methyl-4-phenylpyridine (61h) 166
4.11.8 2-(2-Bromophenyl)-5-methyl-4-phenylpyridine (61i) 167
4.11.9 2-(4-(tert-Butyl)phenyl)-5-methyl-4-phenylpyridine (61j) 167
4.11.10 2-Butyl-5-methyl-4-phenylpyridine (611) 168
4.11.11 5-Methyl-4-phenyl-2-(thiophen-3-yl)pyridine (61m) 168
4.11.12 4-(2-Bromophenyl)-5-methyl-2-phenylpyridine (61n) 168
4.11.13 4-(2-Bromophenyl)-5-methyl-2-(m-tolyl)pyridine (61r) 169
4.11.14 4-(2-Bromophenyl)-5-methyl-2-(4-(trifluoromethyl)phenyl) pyridine (61s) 170
4.11.15 4-(2-Bromophenyl)-2-(3-fluorophenyl)-5-methylpyridine (61t) 170
4.11.16 4-(4-Methoxyphenyl)-5-methyl-2-phenylpyridine (61v) 171
4.11.17 5-Methyl-2-phenyl-4-(p-tolyl)pyridine (61w) 171
4.11.18 5-Methyl-2-(thiophen-3-yl)-4-(p-tolyl)pyridine (61x). 172
4.11.19 4-(4-Chlorophenyl)-5-methyl-2-phenylpyridine (61y) 172
4.11.20 4-(4-Chlorophenyl)-2-(3-fluorophenyl)-5-methylpyridine (61z) 173
4.12 Reaction of N-Propargylic Thio- β-enaminone $\mathbf{8 4}$ with DBU 173
REFERENCES 175
APPENDICES 183
A. NMR SPECTRA. 183
CURRICULUM VITAE 373

LIST OF TABLES

TABLES

Table 1. Synthesized α, β-alkynic ketone derivatives 63 26
Table 2. Synthesized N-propargylic β-enaminone derivatives 32 29
Table 3. Synthesized N-propargylic β-enaminone derivatives 7 33
Table 4. Synthesized 5-iodopyridine derivatives $\mathbf{5 5}$ 33
Table 5. Synthesized N-propargylic thio- β-enaminone derivatives 58 38
Table 6. Optimization studies for Sonogashira cross-coupling reaction of 5-iodopyridine $\mathbf{5 5 a}$ with phenylacetylene (56a) 42
Table 7. Synthesized 5-alkynylpyridine derivatives $\mathbf{5 7}$ 44
Table 8. Optimization studies for Zn -mediated cyclization reaction of N-propargylic β-enaminone 32 49
Table 9. Synthesized 2,3-dihydro-1,4-oxazepine derivatives $\mathbf{3 3}$ 51
Table 10. Optimization studies for ZnCl_{2}-mediated cyclization reaction of N-propargylic thio- β-enaminone 58a 57
Table 11. Synthesized 2,3-dihydro-1,4-thiazepine derivatives 59 60
Table 12. Optimization studies for cyclization reaction of N-propargylic thio- β-enaminone 58 in basic conditions 66
Table 13. Synthesized 5-methylpyridine derivatives $\mathbf{6 1}$ 68
Table 14. Optimization studies for conversion of 2,3-dihydro-1,4-thiazepine 59a to 5-methylpyridine 61a 72

LIST OF FIGURES

FIGURES

Figure 1. Structure of harvoni (ledipasvir/sofosbuvir) 2
Figure 2. Structures of pyridine-containing natural products in frogs 6
Figure 3. Structures of fuzanin C and fuzanin D 6
Figure 4. Structures of vitamin B_{3} (nicotinic acid and nicotinamide) and vitamin B_{6} (pyridoxine, pyridoxal, pyridoxic acid and pyridoxamine) 7
Figure 5. Structure of nexium (esomeprazole) 7
Figure 6. Structures of rosiglitazone and pioglitazone 8
Figure 7. Structures of vismodegib, sorafenib and crizotinib 8
Figure 8. Structures of pirfenidone and rupatadine 9
Figure 9. Structures of symmetrical bis-alkynylpyridine derivatives $\mathbf{1 3}$ and $\mathbf{1 4}$ 9
Figure 10. General structures of alkynylpyridines 15, 16, and 17 10
Figure 11. General structure of 3-alkynylpyridines 18 10
Figure 12. Structures of highly fluorescent $\boldsymbol{\pi}$-conjugated oligomers 19 10
Figure 13. Some examples of seven-membered heterocycles. 11
Figure 14. Structures of natural products having seven-membered heterocycles.. 12
Figure 15. Structures of drugs having seven-membered heterocycles 13
Figure 16. Biologically active benzoxazepine derivatives 16
Figure 17. Structure of a novel dihydrobenzoxazepine derivative. 16
Figure 18. Structures of some drugs bearing 1,4-oxazepine cores 17
Figure 19. Biologically active thiazepine derivatives 20
Figure 20. Structures of quetiapine and diltiazem. 21
Figure 21. Structures of 1,3-thiazepine-containing alkaloids 21
Figure 22. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 32a 31
Figure 23. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 32a 32
Figure $24 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 5 a}$. 35
Figure $25 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 5 a}$ 35
Figure 26. Chemical structure of Lawesson's reagent (LR) 36
Figure 27. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7 a}$ 46
Figure 28. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 a}$ 47
Figure 29. Structures of pyrrole derivatives isolated along with 1,4-oxazepines 52
Figure $30 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 3 a}$ 53
Figure 31. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3 a}$ 53
Figure 32. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 9 a}$ 58
Figure 33 . ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 9 a}$ 58
Figure 34. NOESY NMR spectrum of compound $\mathbf{8 5}$ 62
Figure $35 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 1 a}$ 70
Figure 36. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 a}$ 70
Figure 37. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 a}$ 184
Figure 38. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 a}$ 184
Figure 39. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 b}$ 185
Figure $40 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 b}$ 185
Figure $41 .{ }^{1} \mathrm{H}$ NMR spectrum of compound 63 c 186
Figure $42 .{ }^{13} \mathrm{C}$ NMR spectrum of compound 63 c 186
Figure 43. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 d}$ 187
Figure 44. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 d}$ 187
Figure $45 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 e}$ 188
Figure $46 .{ }^{13} \mathrm{C}$ NMR spectrum of compound 63 e. 188
Figure $47 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 f}$. 189
Figure 48. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 f}$ 189
Figure 49. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 g}$. 190
Figure 50. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 g}$ 190
Figure 51. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 h}$. 191
Figure 52. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 h}$. 191
Figure 53. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 i}$. 192
Figure $54 .{ }^{13} \mathrm{C}$ NMR spectrum of compound 63 i 192
Figure 55. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 j}$. 193
Figure 56. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 j}$. 193
Figure 57. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 k}$ 194
Figure 58. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 k}$. 194
Figure 59. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 631 195
Figure $60 .{ }^{13} \mathrm{C}$ NMR spectrum of compound 631 195
Figure 61. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 m}$ 196
Figure 62. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 m}$ 196
Figure 63. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 n}$. 197
Figure $64 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 n}$ 197
Figure $65 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 0}$. 198
Figure 66. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 0}$. 198
Figure 67. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 p}$ 199
Figure 68. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 p}$ 199
Figure 69. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 q}$. 200
Figure 70. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 q}$ 200
Figure 71. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3}$ r. 201
Figure 72. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3} \mathrm{r}$ 201
Figure 73. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 63 s 202
Figure 74. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 63 s 202
Figure 75. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 t}$. 203
Figure 76. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 t}$. 203
Figure 77. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 u}$. 204
Figure 78. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 u}$ 204
Figure 79. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 v}$. 205
Figure $80 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 v}$. 205
Figure 81. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 w}$ 206
Figure 82. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 w}$. 206
Figure 83. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 x}$. 207
Figure $84 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 x}$. 207
Figure 85. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 y}$. 208
Figure $86 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 y}$ 208
Figure 87. ${ }^{1}$ H NMR spectrum of compound $\mathbf{6 3 z}$ 209
Figure 88. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 z}$ 209
Figure 89. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 32a 210
Figure $90 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2}$ a 210
Figure 91. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 b}$. 211
Figure $92 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 b}$. 211
Figure $93 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2}$ c. 212
Figure 94. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 32c. 212
Figure $95 .{ }^{1} \mathrm{H}$ NMR spectrum of compound 32d 213
Figure 96. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 d}$. 213
Figure 97. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 e}$. 214
Figure $98 .{ }^{13} \mathrm{C}$ NMR spectrum of compound 32e 214
Figure $99 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 f}$. 215
Figure $100 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 f}$. 215
Figure 101. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 g}$. 216
Figure $102 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 g}$. 216
Figure 103. ${ }^{1}$ H NMR spectrum of compound $\mathbf{3 2 h}$. 217
Figure 104. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 h}$ 217
Figure 105. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 i}$. 218
Figure $106 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 i}$. 218
Figure 107. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 j}$ 219
Figure 108. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 j}$ 219
Figure 109. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 k}$. 220
Figure $110 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 k}$ 220
Figure 111. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 1}$. 221
Figure 112. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 1}$ 221
Figure 113. NOESY NMR spectrum of compound $\mathbf{3 2 1}$. 222
Figure $114 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 m}$. 222
Figure 115. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 m}$ 223
Figure 116. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 n}$. 223
Figure 117. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 n}$ 224
Figure 118. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 0}$. 224
Figure $119 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 0}$ 225
Figure 120. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2}$ p 225
Figure $121 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2} \mathbf{p}$ 226
Figure 122. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 q}$ 226
Figure $123 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 q}$ 227
Figure 124. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 r}$ 227
Figure 125 . ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 r}$ 228
Figure 126. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 s}$ 228
Figure $127 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 s}$ 229
Figure 128. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 t}$ 229
Figure 129. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 t}$ 230
Figure 130. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 u}$ 230
Figure 131 . ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 u}$. 231
Figure 132. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 v}$ 231
Figure $133 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 v}$ 232
Figure 134. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 w}$ 232
Figure $135 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 w}$ 233
Figure 136. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 x}$ 233
Figure $137 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 x}$. 234
Figure 138. ${ }^{1}$ H NMR spectrum of compound $\mathbf{3 2 y}$ 234
Figure 139 . ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2} \mathbf{y}$ 235
Figure $140 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 z}$ 235
Figure $141 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 z}$ 236
Figure 142. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 32aa 236
Figure 143. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 32aa 237
Figure 144. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 7 a 237
Figure 145. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 7 a 238
Figure 146. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 7b 238
Figure 147. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{7 b}$ 239
Figure 148. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 71 239
Figure 149. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 71 240
Figure $150 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $7 \mathbf{m}$ 240
Figure $151 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{7 m}$ 241
Figure $152 .{ }^{1} \mathrm{H}$ NMR spectrum of compound 7aa. 241
Figure 153. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 7aa. 242
Figure 154. ${ }^{1}$ H NMR spectrum of compound 7ab 242
Figure $155 .{ }^{13} \mathrm{C}$ NMR spectrum of compound 7ab 243
Figure 156. ${ }^{1}$ H NMR spectrum of compound 7ac 243
Figure $157 .{ }^{13} \mathrm{C}$ NMR spectrum of compound 7ac 244
Figure $158 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 5 a}$. 244
Figure 159. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 5 a}$ 245
Figure 160. ${ }^{1}$ H NMR spectrum of compound 55b 245
Figure 161. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 5 b}$ 246
Figure 162. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 551 246
Figure 163. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 5 I}$ 247
Figure $164 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 5 m}$ 247
Figure $165 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 5 m}$ 248
Figure $166 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 5 a}$ a 248
Figure 167. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 55aa 249
Figure 168. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 5 a b}$ 249
Figure 169. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 5 a b}$ 250
Figure 170. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 55ac 250
Figure 171. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 5 a c}$ 251
Figure $172 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 8 a}$ 251
Figure 173. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 a}$ 252
Figure 174. ${ }^{1}$ H NMR spectrum of compound $\mathbf{5 8 b}$. 252
Figure $175 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 b}$ 253
Figure 176. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 8 c}$ 253
Figure $177 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 c}$ 254
Figure 178. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 8 d}$ 254
Figure 179. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 d}$ 255
Figure 180. ${ }^{1}$ H NMR spectrum of compound $\mathbf{5 8 e}$ 255
Figure 181. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 58e 256
Figure 182. ${ }^{1}$ H NMR spectrum of compound $\mathbf{5 8 f}$ 256
Figure 183. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 f}$. 257
Figure 184. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 8 h}$ 257
Figure $185 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 h}$ 258
Figure 186. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 8 i}$. 258
Figure 187. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 i}$ 259
Figure 188. ${ }^{1}$ H NMR spectrum of compound $\mathbf{5 8 j}$ 259
Figure 189. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 j}$ 260
Figure 190. ${ }^{1}$ H NMR spectrum of compound $\mathbf{5 8 1}$ 260
Figure 191. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 1}$ 261
Figure 192. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 8 m}$ 261
Figure 193. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 m}$ 262
Figure 194. ${ }^{1}$ H NMR spectrum of compound $\mathbf{5 8 n}$ 262
Figure 195. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 n}$. 263
Figure 196. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 8 r}$. 263
Figure 197. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 r}$ 264
Figure 198. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 8 s}$ 264
Figure 199. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 s}$ 265
Figure 200. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 8 t}$. 265
Figure 201. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 t}$ 266
Figure 202. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 8 v}$ 266
Figure 203. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 v}$ 267
Figure 204. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 8 w}$ 267
Figure 205. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 w}$. 268
Figure 206. ${ }^{1}$ H NMR spectrum of compound $\mathbf{5 8 x}$ 268
Figure 207. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 x}$ 269
Figure 208. ${ }^{1}$ H NMR spectrum of compound $\mathbf{5 8 y}$ 269
Figure 209. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 y}$ 270
Figure $210 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 8 z}$ 270
Figure 211. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 z}$ 271
Figure 212. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8 4}$. 271
Figure 213. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{8 4}$ 272
Figure 214. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7}$ a 272
Figure 215. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 a}$ 273
Figure 216. ${ }^{1}$ H NMR spectrum of compound 57b 273
Figure 217. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 b}$ 274
Figure 218. DEPT-90 NMR spectrum of compound 57b 274
Figure 219. DEPT-135 NMR spectrum of compound $\mathbf{5 7 b}$ 275
Figure $220 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7 d}$ 275
Figure $221 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 d}$ 276
Figure 222. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7} \mathrm{e}$ 276
Figure 223. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 e}$ 277
Figure 224. ${ }^{1}$ H NMR spectrum of compound $\mathbf{5 7 f}$ 277
Figure $225 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 f}$ 278
Figure 226. ${ }^{1}$ H NMR spectrum of compound $\mathbf{5 7} \mathbf{g}$ 278
Figure 227. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 g}$ 279
Figure 228. ${ }^{1}$ H NMR spectrum of compound $\mathbf{5 7 h}$ 279
Figure 229. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 h}$ 280
Figure 230. ${ }^{1}$ H NMR spectrum of compound $\mathbf{5 7 k}$ 280
Figure $231 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 k}$ 281
Figure 232. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 571 281
Figure 233. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 571 282
Figure 234 . ${ }^{1}$ H NMR spectrum of compound $\mathbf{5 7 m}$ 282
Figure 235. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 m}$ 283
Figure 236. ${ }^{1}$ H NMR spectrum of compound $\mathbf{5 7 n}$ 283
Figure 237. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 n}$ 284
Figure 238. ${ }^{1}$ H NMR spectrum of compound $\mathbf{5 7 o}$ 284
Figure $239 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 o}$ 285
Figure $240 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7} \mathbf{p}$ 285
Figure $241 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7} \mathbf{p}$ 286
Figure $242 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7} \mathbf{q}$ 286
Figure $243 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 q}$ 287
Figure 244. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7 r}$ 287
Figure 245 . ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7} \mathbf{r}$ 288
Figure 246. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 57ba 288
Figure 247. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 b a}$ 289
Figure 248. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7 b b}$ 289
Figure 249. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 b b}$ 290
Figure $250 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7 b d}$ 290
Figure 251. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7} \mathbf{b d}$ 291
Figure 252. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7 b m}$ 291
Figure 253. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 b m}$ 292
Figure $254 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7 b r}$ 292
Figure 255. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 b r}$ 293
Figure 256. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 571a 293
Figure 257. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 571a 294
Figure 258. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7} \mathbf{m a}$ 294
Figure 259. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 m a}$ 295
Figure 260. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7} \mathbf{m d}$ 295
Figure 261. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7} \mathbf{m d}$ 296
Figure 262. ${ }^{1}$ H NMR spectrum of compound $\mathbf{5 7} \mathbf{m m}$ 296
Figure 263 . ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7} \mathbf{m m}$ 297
Figure 264. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7} \mathbf{m r}$ 297
Figure 265. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7} \mathbf{m r}$ 298
Figure 266. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7 a a}$ 298
Figure 267. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 57aaa 299
Figure 268. ${ }^{1}$ H NMR spectrum of compound 57aba 299
Figure 269. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7} \mathbf{a b a}$ 300
Figure 270. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7 a c a}$ 300
Figure 271. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 57 aca 301
Figure 272. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 3 a}$ 301
Figure 273. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3 a}$ 302
Figure 274. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 3 b}$ 302
Figure $275 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3 b}$ 303
Figure 276. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3 c}$ 303
Figure 277. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3 c}$ 304
Figure 278. ${ }^{1}$ H NMR spectrum of compound 33d 304
Figure 279. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3 d}$ 305
Figure 280. ${ }^{1}$ H NMR spectrum of compound 33e 305
Figure $281 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3 e}$ 306
Figure 282. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 3 f}$ 306
Figure $283 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3 f}$ 307
Figure $284 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 3 g}$ 307
Figure $285 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3 g}$ 308
Figure 286. ${ }^{1}$ H NMR spectrum of compound $\mathbf{3 3 h}$ 308
Figure $287 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3 h}$ 309
Figure 288. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 3 i}$ 309
Figure 289. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3 i}$ 310
Figure $290 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 3 k}$ 310
Figure 291. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3 k}$ 311
Figure 292. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 331 311
Figure 293. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 331 312
Figure 294. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 3 m}$ 312
Figure 295. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3 m}$ 313
Figure 296. ${ }^{1}$ H NMR spectrum of compound $\mathbf{3 3 n}$ 313
Figure 297. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3 n}$ 314
Figure 298. ${ }^{1}$ H NMR spectrum of compound $\mathbf{3 3 o}$ 314
Figure 299. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 33 o 315
Figure 300. ${ }^{1}$ H NMR spectrum of compound $\mathbf{3 3}$ p 315
Figure $301 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3 p}$ 316
Figure 302. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 3 q}$ 316
Figure $303 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3 q}$ 317
Figure 304. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 3} \mathbf{r}$ 317
Figure $305 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3 r}$ 318
Figure 306. ${ }^{1}$ H NMR spectrum of compound 33s 318
Figure 307. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 33 s 319
Figure 308. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 3 t}$ 319
Figure 309. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3 t}$ 320
Figure 310 . ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 3 u}$ 320
Figure $311 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3 u}$ 321
Figure $312 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 3 z}$ 321
Figure 313 . ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3 z}$ 322
Figure 314. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 71a 322
Figure $315 .{ }^{13} \mathrm{C}$ NMR spectrum of compound 71a 323
Figure $316 .{ }^{1} \mathrm{H}$ NMR spectrum of a mixture of compounds $\mathbf{3 3 k}$ and $\mathbf{7 1 k}$ with a ratio of 1.15:1.00, respectively 324
Figure 317. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 711 325
Figure $318 .{ }^{13} \mathrm{C}$ NMR spectrum of compound 711 325
Figure $319 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8 2}$ 326
Figure 320. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{8 2}$ 326
Figure $321 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 9}$ a 327
Figure $322 .{ }^{13} \mathrm{C}$ NMR spectrum of compound 59a 327
Figure 323. ${ }^{1}$ H NMR spectrum of compound 59b 328
Figure $324 .{ }^{13} \mathrm{C}$ NMR spectrum of compound 59b 328
Figure $325 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 9} \mathrm{c}$ 329
Figure $326 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 9 c}$ 329
Figure 327. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 9 d}$ 330
Figure $328 .{ }^{13} \mathrm{C}$ NMR spectrum of compound 59d 330
Figure 329 . ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 9}$ e. 331
Figure $330 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 9 e}$ 331
Figure $331 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 9 f}$ 332
Figure $332 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 9 f}$. 332
Figure 333 . ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 9}$ 333
Figure $334 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 9 h}$ 333
Figure $335 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 9 i}$ 334
Figure 336. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 9 i}$ 334
Figure 337. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 9} \mathbf{j}$ 335
Figure $338 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 9} \mathbf{j}$ 335
Figure 339. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 9 1}$ 336
Figure 340. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 9 1}$ 336
Figure $341 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 9 m}$ 337
Figure $342 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 9} \mathrm{m}$ 337
Figure 343 . ${ }^{1}$ H NMR spectrum of compound $\mathbf{5 9}$ n 338
Figure $344 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 9 n}$ 338
Figure $345 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 9 r}$ 339
Figure $346 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 9 r}$ 339
Figure 347. ${ }^{1}$ H NMR spectrum of compound $\mathbf{5 9}$ s 340
Figure $348 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 9}$ s 340
Figure $349 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 9 t}$ 341
Figure $350 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 9 t}$ 341
Figure $351 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 9 v}$ 342
Figure $352 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 9 v}$ 342
Figure 353 . ${ }^{1}$ H NMR spectrum of compound $\mathbf{5 9 w}$ 343
Figure $354 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 9 w}$ 343
Figure $355 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 9} \mathbf{x}$. 344
Figure $356 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 9 x}$ 344
Figure $357 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 9} \mathbf{y}$ 345
Figure $358 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 9} \mathbf{y}$ 345
Figure $359 .{ }^{1}$ H NMR spectrum of compound $\mathbf{5 9 z}$ 346
Figure $360 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 9 z}$. 346
Figure $361 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8 5}$. 347
Figure $362 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{8 5}$. 347
Figure 363. DEPT-90 NMR spectrum of compound $\mathbf{8 5}$ 348
Figure 364. DEPT-135 NMR spectrum of compound $\mathbf{8 5}$ 348
Figure 365 . NOESY NMR spectrum of compound $\mathbf{8 5}$. 349
Figure 366. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 61a 349
Figure 367 . ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 a}$ 350
Figure 368. DEPT-90 NMR spectrum of compound 61a 350
Figure 369. DEPT-135 NMR spectrum of compound 61a 351
Figure 370. COSY NMR spectrum of compound 61a 351
Figure 371. HSQC NMR spectrum of compound 61a 352
Figure 372. HMBC NMR spectrum of compound 61a 352
Figure 373 . ${ }^{1}$ H NMR spectrum of compound 61b 353
Figure $374 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 b}$ 353
Figure $375 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 1 c}$ 354
Figure $376 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 c}$ 354
Figure $377 .{ }^{1} \mathrm{H}$ NMR spectrum of compound 61d 355
Figure $378 .{ }^{13} \mathrm{C}$ NMR spectrum of compound 61d 355
Figure 379 . ${ }^{1}$ H NMR spectrum of compound $\mathbf{6 1 e}$ 356
Figure $380 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 e}$ 356
Figure $381 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 1 f}$ 357
Figure $382 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 f}$. 357
Figure 383 . ${ }^{1}$ H NMR spectrum of compound $\mathbf{6 1 h}$ 358
Figure $384 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 h}$ 358
Figure $385 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 1 i}$ 359
Figure $386 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 i}$ 359
Figure 387. ${ }^{1}$ H NMR spectrum of compound $\mathbf{6 1 j}$ 360
Figure $388 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 j}$ 360
Figure 389. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 611 361
Figure $390 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 1 m}$ 361
Figure 391. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 m}$ 362
Figure 392. ${ }^{1}$ H NMR spectrum of compound $\mathbf{6 1 n}$ 362
Figure 393 . ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 n}$ 363
Figure 394. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 1 r}$ 363
Figure $395 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 r}$ 364
Figure 396. ${ }^{1}$ H NMR spectrum of compound $\mathbf{6 1 s}$ 364
Figure $397 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 s}$ 365
Figure 398. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 1 t}$ 365
Figure $399 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 t}$ 366
Figure $400 .{ }^{1}$ H NMR spectrum of compound $\mathbf{6 1 v}$ 366
Figure $401 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 v}$ 367
Figure $402 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 1 w}$ 367
Figure 403 . ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 w}$ 368
Figure 404. ${ }^{1}$ H NMR spectrum of compound 61x 368
Figure $405 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 x}$ 369
Figure $406 .{ }^{1}$ H NMR spectrum of compound $\mathbf{6 1 y}$ 369
Figure 407. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 y}$ 370
Figure 408. ${ }^{1}$ H NMR spectrum of compound $\mathbf{6 1 z}$. 370
Figure $409 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 z}$ 371
Figure $410 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8 9}$ 371
Figure $411 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{8 9}$ 372

LIST OF SCHEMES

SCHEMES
Scheme 1. Resonance forms of pyridine 2
Scheme 2. Chichibabin pyridine synthesis 3
Scheme 3. Pd- and Cu-catalyzed synthesis of pyridines 3 3
Scheme 4. Synthesis of highly substituted pyridines 6 4
Scheme 5. CuBr-catalyzed synthesis of pyridines 4
Scheme 6. Synthesis of differently substituted pentaarylpyridine derivative 10 5
Scheme 7. Proposed reaction mechanism of base-mediated synthesis of hydroxyl-substituted pyridines 12 5
Scheme 8. Synthesis of fully unsaturated 1,4 -oxazepines and formation of corresponding pyridine and pyrrole derivatives 14
Scheme 9. Synthesis of 1,4-benzoxapine derivatives 28 14
Scheme 10. Synthesis of triazole-fused benzoxazepine derivative 31 15
Scheme 11. Synthesis of monocyclic 1,4-oxazepine derivatives 33 15
Scheme 12. Synthesis of benzo[b][1,4]-oxazepine derivatives $\mathbf{3 5}$ 15
Scheme 13. Synthesis of fully unsaturated stable monocyclic 1,4-thiazepine 40. 18
Scheme 14. Synthesis of 1,4-thiazepin-5(4H)-ones 44 18
Scheme 15. Synthesis of dibenzo-fused 1,4-thiazepines 47 19
Scheme 16. Synthesis of triaryl-1,3-thiazepine derivatives 50 19
Scheme 17. Synthesis of dihydro-1,4-thiazepines 54 20
Scheme 18. Synthesis of 5-iodopyridines 55 22
Scheme 19. Synthesis of 5-alkynylpyridines 57 22
Scheme $20 . \mathrm{ZnCl}_{2}$-mediated synthesis of monocyclic 1,4-oxazepines 33 23
Scheme 21. ZnCl_{2}-mediated synthesis of monocyclic 1,4-thiazepines 59 23
Scheme 22. Base-mediated synthesis of fully unsaturated monocyclic 1,4-thiazepines $\mathbf{6 0}$ and/or 5-methylpyridines $\mathbf{6 1}$ 24
Scheme 23. Synthesis of α, β-alkynic ketones 63 25
Scheme 24. Synthesis of N-propargylic β-enaminones 32 28
Scheme 25. Proposed mechanism for the formation of 5-iodopyridines 55 36
Scheme 26. Synthesis of N-propargylic thio- β-enaminones 58 37
Scheme 27. Proposed mechanism for the formation of N-propargylic thio- β-enaminone derivatives $\mathbf{5 8}$ 40
Scheme 28. Synthesis of 5-alkynylpyridines 57 40
Scheme 29. Synthesis of 2,3-dihydro-1,4-oxazepines 33 in modified conditions 47
Scheme 30 . General reaction for the pyrrole formations 50
Scheme 31. Proposed mechanism for the formation of 2,3-dihydro- 1,4-oxazepine derivatives 33 54
Scheme 32. Proposed mechanism for the formation of pyrroles 71 55
Scheme 33 . Formation of pyridine $\mathbf{8 2}$ from phenyl-substituted N-propargylic β-enaminone 7a 55
Scheme 34. Proposed mechanism for the formation of pyridine $\mathbf{8 2}$ 56
Scheme $35 . \mathrm{ZnCl}_{2}$-mediated reactions of alkyne-tethered N-propargylic thio- β-enaminone $\mathbf{8 4}$ (a) and alkyne-tethered N-propargylic β-enaminone $7 \mathbf{a}(\mathbf{b})$ in refluxing CHCl_{3} 62
Scheme 36. Plausible mechanism for the formation of 1,4-thiazepines $(\mathbf{5 9}, \mathbf{8 5})$ 63
Scheme 37. Synthesis of 5-methylpyridines 61 64
Scheme 38. Base-mediated reaction of alkyne-tethered thio- β-enaminone $\mathbf{8 4}$ 67
Scheme 39. Proposed mechanism for the formation of trisubstituted pyridines 61 and 89 from corresponding N-propargylic thio- β-enaminones 58 and 84 71
Scheme 40. General synthetic pathways for the synthesis of target compounds. 73

LIST OF ABBREVIATIONS

ACN	acetonitrile
br	broad (spectral)
δ	chemical shift
J	coupling constant
DCE	1,2 -dichloroethane
DCM	dichloromethane
DIPA	diisopropylamine
DMF	dimethylformamide
d	doublet (spectral)
dd	doublet of doublets (spectral)
FT	fourier transform
Hz	hertz
LR	Lawesson`s reagent
mL	milliliter(s)
mmol	milimole
m	multiplet (spectral)
ppm	parts per million (in NMR)
q	quartet (spectral)
rt	room temperature
s	singlet (spectral)
THF	tetrahydrofuran
TLC	thin layer chromatography
TEA	triethylamine
td	triplet of doublets(spectral)
t	triplet (spectral)

CHAPTER 1

INTRODUCTION

Organic chemistry as one of the major classes of chemistry mainly deals with synthesis, characterization and description of carbon-containing materials. Carboninvolving compounds have an important role in maintaining continuity of life. Energy production with oxygen from the air, carrying genetic information by DNA and RNA, various types of reactions catalyzed by enzymes are some of the obligatory vital events that include carbon chemistry. In addition, the active roles of organic chemistry have recently become more obvious in other disciplines such as bioengineering, nanotechnology and medicine. ${ }^{1}$

In particular, heterocyclic compounds, having at least one different atom other than carbon, such as nitrogen, oxygen, sulfur in their ring skeletons, constitute a vast majority of organic molecules. They have been found in many natural products, bioactive molecules and vitamins. ${ }^{2-4}$ Also, they have become prominent scaffolds of a variety of marketed drugs. ${ }^{5}$ For instance, harvoni (a combination of ledipasvir and sofosbuvir), which is used for treatment of the hepatitis C disease, ${ }^{6}$ contains certain heterocyclic units in its structure such as tetrahydrofuran, pyrimidinedione, pyrrolidine, imidazole and piperidine (Figure 1). Of the top twenty pharmaceutical products produced worldwide in 2015, it was at the top of the sales list. ${ }^{7}$

Figure 1. Structure of harvoni (ledipasvir/sofosbuvir).

Among heterocycles, six-membered heterocyclic motifs, especially pyridines, are one of the most permanently studied ones owing to their importance in various areas such as medicine. ${ }^{8}$ Also, seven-membered heterocyclic compounds like oxazepines and thiazepines play an important role in the construction of potent biologically active libraries. ${ }^{9}$

1.1 Pyridines

Pyridines are one of the six-membered heterocyclic aromatic compounds having one nitrogen heteroatom in their ring skeletons. In 1849, the first pyridine was discovered in bone oil by Scottish chemist Thomas Anderson. Körner and Dewar independently designated its structure in 1864. It can be considered as resonance hybrid due to having a large dipole of 2.23 D (Scheme 1). ${ }^{10}$

Scheme 1. Resonance forms of pyridine.

1.1. \quad Synthesis of Pyridines

After the exploration of pyridine in bone oil, its early synthesis gained great importance among organic chemists. In 1876, Ramsay achieved its first synthesis via the reaction of acetylene with hydrogen cyanide in a hot tube. ${ }^{11}$ After that pyridine synthesis was continued by various types of methods such as Hantzsch reaction, ${ }^{12}$ Ciamician-Dennstedt rearrangement, ${ }^{13}$ and Guareschi-Thorpe reaction. ${ }^{13,14}$

In 1924, Chichibabin found a new methodology for the synthesis of substituted pyridines 2, which was heavily used in the mass production of pyridine derivatives. ${ }^{15}$ In this reaction, at elevated temperatures ($300-400{ }^{\circ} \mathrm{C}$), aldehyde derivatives $\mathbf{1}$ were condensed with ammonia in the presence of solid catalysts such as alumina (Scheme 2).

Scheme 2. Chichibabin pyridine synthesis.

Recently, efficient and facile synthesis of pyridines has been in progress and appeared as an important topic by synthetic chemists. Larock research group developed a new method for the synthesis of pyridines, including transition metalcatalyzed route to afford 2,4-di- and 2,4,5-trisubstituted pyridines 3 (Scheme 3). ${ }^{16}$

Scheme 3. Pd- and Cu-catalyzed synthesis of pyridines 3.

Also, Cheng and co-workers synthesized highly substituted pyridine derivatives via C-H activation (Scheme 4). ${ }^{17} \alpha, \beta$-Unsaturated ketoximes 4 were activated by rhodium complex and reacted with alkynes 5 to give polysubstituted pyridine derivatives 6 .

Scheme 4. Synthesis of highly substituted pyridines 6.

Cacchi research group performed a remarkable study in $2008 .{ }^{18}$ They used N propargylic β-enaminones 7 as beneficial intermediates for the synthesis of various pyridine derivatives 8 (Scheme 5). Catalytic usage of CuBr enabled 6-endo-dig cyclization of β-enaminones 7 and formed target pyridines 8 .

Scheme 5. CuBr-catalyzed synthesis of pyridines.

In 2014, Schmitt et al. have achieved the synthesis of the first prototypical pentaaryl-substituted pyridine derivative 10, bearing five different aryl groups, starting from commercially available 2-chloro-3-hydroxypyridine (9) (Scheme 6). ${ }^{19}$ Their strategy involves regioselective halogenations, protection and activation of phenol groups and five successive Suzuki-Miyaura cross-coupling reactions using five different aryl boronic acids.

Scheme 6. Synthesis of differently substituted pentaarylpyridine derivative 10.

Most recently, Guan research group has developed an approach towards the synthesis of hydroxyl-substituted pyridine derivatives 12, called pyridols (Scheme 7). ${ }^{20}$ They have proposed the formation of corresponding pyridols $\mathbf{1 2}$ via $\mathrm{K}_{2} \mathrm{CO}_{3}$ mediated nucleophilic cyclization of γ, δ-alkynyl oximes 11, followed by an unusual [1,3]-rearrangement of the resulting O-vinyl oximes.

Scheme 7. Proposed reaction mechanism for the synthesis of hydroxyl-substituted pyridines 12.

1.1.2 Importance of Pyridines

One of the most important reasons to develop facile methodologies for the synthesis of pyridines is that they have distinct place in the structures of many biologically active natural products. For example, skin extracts of dendrobatid frogs contain many pyridine-bearing alkaloids, as depicted in Figure 2. ${ }^{21}$ Among them, epibatidine has been shown to display more potent analgesic activity than morphine. ${ }^{21,22}$ In addition, nicotine, also found in many plants, has an active role in oxidative stress, apoptosis and dopamine reward systems. ${ }^{23}$

Figure 2. Structures of pyridine-containing natural products in frogs.

In 2009, two new pyridine-containing natural products, fuzanin C and fuzanin D , were recognized in culture supernatant of Kitasatospora sp. IFM10917, isolated from a soil sample collected in Japan (Figure 3). Fuzanin D was proved to demonstrate cytotoxic property against DLD-1 cells. ${ }^{24}$ Their recently synthesized analogues have also been potentially active against HT29 colon cancer lines. ${ }^{25}$

Figure 3. Structures of fuzanin C and fuzanin D.

Furthermore, water-soluble B_{3} and B_{6} vitamins include variable pyridine derivatives as illustrated in Figure 4. Deficiency of vitamin B_{3} may cause pellagra disease in humans. Vitamin B_{6} plays an active role in amino acid metabolism. ${ }^{2}$

Figure 4. Structures of vitamin B_{3} (nicotinic acid and nicotinamide) and vitamin B_{6} (pyridoxine, pyridoxal, pyridoxic acid and pyridoxamine).

In addition to occurrence in natural bioactive molecules, pyridines have prominently gained importance in pharmaceutical industry. In 2014, according to the analysis of the structural diversity of nitrogen heterocycles, among all U.S. FDA approved pharmaceuticals, pyridine moiety became the second most prevalently used nitrogen-bearing heterocycle. ${ }^{26}$ Moreover, in 2015, nexium (esomeprazole) including tetrasubstituted pyridine derivative placed in the top twenty pharmaceutical products by sales worldwide (Figure 5). ${ }^{7}$ It functions as proton-pump inhibitor and used in the treatment of gastric ulcer disease and functional dyspepsia. ${ }^{27}$

Figure 5. Structure of nexium (esomeprazole).

There are also type-2 diabetes drugs containing pyridine scaffolds in their structures. To illustrate, rosiglitazone and pioglitazone act as significant agents in controlling the metabolism of carbohydrates and fatty acids (Figure 6). ${ }^{28}$

Figure 6. Structures of rosiglitazone and pioglitazone.

Moreover, pyridines have been employed to construct bioactive molecules used in treatment of different types of cancer diseases. For example, vismodegib is used in the cure of metastatic or locally advanced basal cell carcinoma (BCC). ${ }^{29}$ Sorafenib ${ }^{30}$ and crizotinib ${ }^{31}$ are also used in treatment of advanced primary liver cancer and non-small cell lung cancer (NSCLC), respectively (Figure 7).

Figure 7. Structures of vismodegib, sorafenib and crizotinib.

Furthermore, pirfenidone, a pyridinone derivative, has appeared to exert antifibrotic, anti-inflammatory and antioxidant activities. ${ }^{32}$ Rupatadine has been stated to show anti-allergic and antihistaminic properties (Figure 8). ${ }^{33}$

Figure 8. Structures of pirfenidone and rupatadine.

1.1.3 Alkynylpyridines

In particular, alkynylpyridines have a unique place in medicinal chemistry. Recently, the trends of their useful performance on biological processes have been increasing remarkably. In 2004, Ahn and co-workers synthesized symmetrical bisalkynylpyridine derivatives $\mathbf{1 3}$ and $\mathbf{1 4}$ by Sonogashira reaction, the structures of which are shown in Figure 9. They have verified their strong anti-angiogenic activities on the human umbilical vein endothelial cells (HUVEC). ${ }^{34}$

Figure 9. Structures of symmetrical bis-alkynylpyridine derivatives $\mathbf{1 3}$ and $\mathbf{1 4 .}$

One year later, Chua et al. discovered novel alkynylpyridines 15, $\mathbf{1 6}$ and 17 (Figure 10) having potent metabotropic glutamate receptor (mGlu5) antagonists based on structure-activity relationship studies. ${ }^{35}$ Various cyclohexenyl and dehydropiperidinyl groups have been involved in the corresponding potent antagonist pyridine moieties.

Figure 10. General structures of alkynylpyridines 15, 16, and 17.

Additionally, many 5-alkynylpyridine derivatives have been patented in 2013 since they show inhibiting activity of PI3K alpha and can be used as SMAC mimetics for the treatment of diseases such as cancer. ${ }^{36}$ A most recent discovery of 3alkynylpyridines $\mathbf{1 8}$ (Figure 11) has emerged in 2017 for their use in treatment or prevention of anemia such as anemia secondary to chronic kidney disease and other similar diseases. ${ }^{37}$

Figure 11. General structure of 3-alkynylpyridines 18.

Alkynylpyridines possess not only beneficial effects on certain types of diseases but also exhibit good opto-electronic properties for the preparation of conjugated oligomers and complexes. In 2004, Takayama research group has prepared highly fluorescent π-conjugated oligomers 19 having sequential 2 -vinyl-5-alkynylpyridine units in their structures (Figure 12). ${ }^{38}$

Figure 12. Structures of highly fluorescent $\boldsymbol{\pi}$-conjugated oligomers 19.

In 2016, Starck, Pal and Parker described four anionic europium(III) complexes, each of which bears three aryl-alkynyl pyridine groups permitting different microscopy applications, such as time-gated FRET microscopy. These probes can be used to treat the disease by time-dependent measurements of lysosomal pH in the presence or absence of novel potential drugs. ${ }^{39}$

Alkynylpyridines can also be further diversified and derivatized due to nucleophilic, electrophilic, radicalic and cycloaddition reactivity of their triple bonds. Accordingly, by utilizing their chemical reactivity properties, new potentially biologically active and well behaved opto-electronic substances can be synthesized by organic chemists.

1.2 Seven-membered Heterocyclic Compounds

Seven-membered heterocyclic compounds constitute significant class of heterocycles in organic chemistry. They vary with the number and kind of heteroatoms in their ring structures (Figure 13). ${ }^{40}$

Figure 13. Some examples of seven-membered heterocycles.

Researchers made many efforts for the initial syntheses of seven-membered heterocylic compounds in the past. In 1964, the first thermally very unstable 1 H azepine was obtained as a result of alkaline hydrolysis of N ethoxycarbonylazepine. ${ }^{41}$ Although the synthesis of first representative monocyclic oxepine derivative was achieved in the same year by Vogel research group, ${ }^{42}$ the
existence of unsubstituted oxepine with it valence tautomeric form was reported in $1967 .{ }^{43}$ The same strategy did not give the corresponding thiepine because of readily occured sulfur extrusion. ${ }^{44}$ Many attempts were made for the synthesis of simple and stable thiepine derivatives until 1979. ${ }^{45}$ In 1979, Murata et al. synthesized the first stable and simple monocyclic thiepine bearing bulky groups. ${ }^{46}$ On the other hand, the first seven-membered monocylic 1H-1,2-diazepine derivative was produced by photolysis of N -acyliminopyridinium ylide and its only isolation as iron tricarbonyl complex was succeeded. ${ }^{47}$ In contrast to these monocyclic seven-membered heterocycles, their first benzo-fused analogues were much easily synthesized and isolated more efficiently due to aromaticity of benzene ring. ${ }^{43 \mathrm{~b}, 48}$

First descriptions of seven-membered heterocyclic compounds have led to an increasing rate in the convenient syntheses of these heterocycles by several methods. ${ }^{9,49-51}$ Another important effect for the synthetic improvements of these molecules is that they exist in a number of biologically active natural products. ${ }^{5,51,52}$ Two oxepine-containing aranotin extracted from Arachniotus aureus has showed antiviral activity. ${ }^{52,53}$ Also, the roots of Stemona plants, having many pyrrolo[1,2-a]azepine-bearing alkaloids, such as croomine, have been used for years in treatment of some diseases like bronchitis and tuberculosis (Figure 14). ${ }^{52,54}$

Figure 14. Structures of natural products having seven-membered heterocycles.

Besides that, seven-membered heterocyclic scaffolds have concretely been involved in medicinal chemistry. For example, oxetorone, zotepine and nimetazepam have been used as analgesic, antipsychotic and hypnotic, respectively (Figure 15). ${ }^{5,55}$

Figure 15. Structures of drugs having seven-membered heterocycles.

1.2.1 Synthesis of Oxazepines

Synthesis of aryl-fused benzoxapine derivatives dates from 1957. ${ }^{56}$ In the beginning of 1980's the first synthesis of monocyclic 1,2-oxazepinum perchlorate derivative and a tentatively assigned trisubstituted 1,2-oxazepine were reported by different research groups. ${ }^{57}$ Tsuchiya et al. pioneered the synthesis of monocyclic 1,4 -oxazepines after the discovery of corresponding synthesis of 1,3 -isomer. ${ }^{58}$ In 1986, the same research group accomplished the first synthesis of fully unsaturated 1,4-oxazepine derivatives 21 in 90-95\% yields by irradiation of tricycloheptenes 20 in acetonitrile (ACN) (Scheme 8). ${ }^{59}$ Thermal rearrangements of compounds 21a and 21b at $100-120{ }^{\circ} \mathrm{C}$ afforded corresponding 5-hydroxypyridines 22 in $65-75 \%$ yields. Interestingly, 6,7-dimethyl-5-phenyl-1,3-oxazepine (23) was formed in 90% yield upon heating of dimethyl substituted oxazepine derivative 21c at $80^{\circ} \mathrm{C}$. The formation of these products could be explained over oxanocaradiene intermediate which may appear during the isomerization of compounds 20 to give 21. N formylpyrrole derivative 24 was also obtained quantitatively by treatment of 1,3oxazepine derivative $\mathbf{2 3}$ with HCl in THF.

Scheme 8. Synthesis of fully unsaturated 1,4-oxazepines and formation of corresponding pyridine and pyrrole derivatives.

Many other different methodologies have emerged for the proper synthesis of 1,4oxazepine derivatives. ${ }^{9,56}$ Development of useful methods has also been recently one of the hot topics among organic chemists. In 2012, Jiang research group has synthesized various benzo[1,4]oxazepine derivatives 28 by tandem reaction of o aminophenols $\mathbf{2 5}$ with bromoalkynes 26 and isocyanides 27 (Scheme 9). ${ }^{60}$

Scheme 9. Synthesis of 1,4-benzoxapine derivatives 28.

Two years later, single-step construction of triazole-fused benzoxazepine derivative 31 from the reaction of o-propargylic azidobenzoate 29 and phenyl sulfonate 30 under MW irradiation was accomplished by Sen research group (Scheme 10). ${ }^{61}$ In this method, $\mathrm{Cu}(\mathrm{phen})\left(\mathrm{PPh}_{3}\right) \mathrm{Br}$ was used as a catalyst and basic alumina acted as a support material and base.

Scheme 10. Synthesis of triazole-fused benzoxazepine derivative 31.

In 2015, Karunakar and co-workers reported the another synthesis of 1,4-oxazepine derivatives by using gold and silver catalysts. Intramolecular electrophilic cyclization of terminal N-propargylic β-enaminones 32 resulted in formation of corresponding oxazepine compounds 33 (Scheme 11). ${ }^{62}$

Scheme 11. Synthesis of monocyclic 1,4-oxazepine derivatives 33.

In addition, Shen et al. have developed a new methodology for the synthesis of substituted benzo[b][1,4]-oxazepines. The base-promoted cyclization of N -(2haloaryl)enaminones $\mathbf{3 4}$ at $120^{\circ} \mathrm{C}$ yielded desired target molecules 35 (Scheme 12). ${ }^{63}$

Scheme 12. Synthesis of benzo[b][1,4]-oxazepine derivatives 35 .

1.2.2 Importance of Oxazepines

Oxazepine scaffolds are valuable building blocks in medicinal chemistry since they exist in a variety of biologically active compounds used as, such as antihistaminic, antipyretic, anti-inflammatory, antidepressant agents. ${ }^{51,56,64}$ Some dibenzoxazepine and triazolobenzoxazepine derivatives exhibited high analgesic ${ }^{65}$ and anticonvulsant ${ }^{9,66}$ activities, respectively (Figure 16).

Figure 16. Biologically active benzoxazepine derivatives.

Recently, Takeuchi et al. have discovered a novel dihydrobenzoxazepine derivative acting as highly potent and selective mammalian target of rapamycin (mTOR) inhibitor with low nanomolar concentration (Figure 17). ${ }^{67}$

Figure 17. Structure of a novel dihydrobenzoxazepine derivative.

Moreover, there are pharmaceutical products bearing the 1,4-oxazepine cores in their structures used in treatment of chronic disorders (Figure 18). For example, loxapine ${ }^{68}$ has widely been used in the treatment of schizophrenia. For the curation of depressive disorders, amoxapine ${ }^{69}$ and sintamil ${ }^{70}$ have been utilized.

Figure 18. Structures of some drugs bearing 1,4-oxazepine cores.

1.2.3 Synthesis of Thiazepines

To the best of our knowledge, synthesis of monocyclic fully unsaturated 1,2thiazepines has not been reported yet, whereas first stable examples of 1,2benzothiazepines were demonstrated in 1976 by the ring expansion of corresponding 1,2-benzoisothiazoles. ${ }^{71}$ Bradsher et al. explored earlier synthesis of pyridobenzo-1,3-thiazepinium salts from suitable 2-phenylthiopyridines. ${ }^{72}$ There are many studies describing the synthesis of tetra- and perhydro-1,4-thiazepine derivatives especially through penicilin chemistry. ${ }^{73}$ Notably, first synthesis of monocyclic dihydro-1,4-thiazepine was achieved by Tsuchiya research group in 1983 as in the case of 1,4-oxazepines. ${ }^{58 b}$ In 1986, Murata and co-workers developed a first multi-step synthesis of fully unsaturated stable monocyclic 1,4thiazepine derivative (Scheme 13). ${ }^{74}$ They initially prepared the precursor dihydrothiopyranone $\mathbf{3 6}$ from 2-tert-butyl-5-pivaloylthiophene in seven steps. Tosylation reaction after treating it with hydroxylamine gave a mixture of oximes, syn-37a and anti-37b. Then, Beckmann rearrangement in basic medium and oxidation with mCPBA were employed subsequently to yield corresponding sulfoxide derivatives $\mathbf{3 8 a}$ and $\mathbf{3 8 b}$. As a result of Pummerer reaction of sulfoxide 38a, desired 1,4-thiazepinone derivative 39 was obtained in 79\% yield. Lastly, 2,7-di-tert-butyl-5-methoxy-1,4-thiazepine (40) was formed after reacting compound 39 with a methylating agent. The generated thiazepine 40 was stable up to $130^{\circ} \mathrm{C}$ but in the presence of $\mathrm{Ph}_{3} \mathrm{P}$ at $110{ }^{\circ} \mathrm{C}$ it was converted to 2-methoxypyridine derivative 41 (Scheme 13).

Scheme 13. Synthesis of fully unsaturated stable monocyclic 1,4-thiazepine 40.

Recently, many researchers have concentrated on investigating various new techniques in order to develop thiazepine ring systems. ${ }^{9,75}$ In 2014, Yang et al. reported transition metal-free synthesis of fused 1,4-thiazepines in one-pot manner. ${ }^{76}$ 2-Mercaptonicotinamide derivative 42 was reacted with 1,2-dihalo-4nitrobenzene 43 via Smiles rearrangement process in basic medium to afford 1,4-thiazepin-5(4H)-ones 44 (Scheme 14).

Scheme 14. Synthesis of 1,4-thiazepin-5(4H)-ones 44.

Shortly after, Sharma research group has performed base-catalyzed condensation of 2-aminothiophenols 45 with 2-chlorobenzaldehydes 46 followed by copper-assisted intramolecular S-arylation to form dibenzo-fused 1,4-thiazepine derivatives 47 (Scheme 15). ${ }^{77}$

Scheme 15. Synthesis of dibenzo-fused 1,4-thiazepines 47.

An efficient synthesis of novel triaryl-1,3-thiazepine derivatives $\mathbf{5 0}$ via ring expansion of triarylthiopyrylium salts $\mathbf{4 8}$ using a specific ionic liquid bearing azide anions 49 has been succeeded by Mouradzadegun and co-workers. However, mechanistic formation of triarylpyridine derivatives $\mathbf{5 1}$ as side products by sulfur extrusion was a drawback for the chemoselectivity of this methodology (Scheme 16). ${ }^{78}$

Scheme 16. Synthesis of triaryl-1,3-thiazepine derivatives 50.

In 2017, Preet and Cannoo have established a ring expansion strategy to synthesize dihydro-1,4-thiazepines $\mathbf{5 4}$ in high yields. Thiazolium salts $\mathbf{5 2}$ were reacted with 3-chloro-1-(aryl)-propan-1-one 53 in the presence of base via ultrasonication (Scheme 17). ${ }^{79}$

Scheme 17. Synthesis of dihydro-1,4-thiazepines 54.

1.2.4 Importance of Thiazepines

Many thiazepine-embedded compounds, especially 1,4-thiazepine bearing ones, have been introduced to exhibit diverse biological activities, such as anticonvulsant, ${ }^{66 a}$ antifungal, antimicrobial, ${ }^{75,80}$ antioxidant and cytotoxic properties (Figure 19). ${ }^{81}$

Figure 19. Biologically active thiazepine derivatives.

Notably, compounds including thiazepine moieties have played an active role in treatment of mental health problems and cardiovascular disorders. Accordingly, quetiapine ${ }^{82}$ and diltiazem, ${ }^{83}$ are used as antipsychotics and chalcium channel blockers, respectively (Figure 20).

Figure 20. Structures of quetiapine and diltiazem.

In addition to synthetically bioactive derivatives, thiazepine units are found in the structures of natural products. Very recently, Mohammed and Mohamed have brought about the existence of three promising bioactive 1,3-thiazepine-containing alkaloids in the extract of Ixora undulata Roxb. leaves (Figure 21). ${ }^{84}$

Figure 21. Structures of 1,3-thiazepine-containing alkaloids.

1.3 Aim of Thesis

N-Propargylic β-enaminones have commonly been used as useful substrates among organic chemists to generate N-heterocycles since they are multifaceted and derivatizable building blocks as well as easily handed in low-cost. ${ }^{85}$ Not only pyridine derivatives, ${ }^{18,86}$ but also many different pyrroles, ${ }^{85,87}$ azaanthraquinones, ${ }^{88}$ azabicycloheptadienes ${ }^{89}$ and pyridoacridinones ${ }^{90}$ have been produced from variable N-propargylic β-enaminone precursors. In this regard, our research group have recently shown the formation of 5-iodopyridines 55 via iodine-mediated electrophilic cyclization of N-propargylic β-enaminones 7 in the presence of sodium bicarbonate (Scheme 18). ${ }^{91}$

Scheme 18. Synthesis of 5-iodopyridines 55.

Derivatization of 5-iodopyridines $\mathbf{5 5}$ by substitution of iodine with alkynyl groups may result in formation of potentially bioactive alkynylpyridine derivatives. ${ }^{34-37}$ Thus, our first aim was to synthesize polysubstituted novel 5-alkynylpyridines $\mathbf{5 7}$ via Pd-catalyzed Sonogashira cross-coupling reaction between 5-iodopyridines 55 and terminal alkynes 56 (Scheme 19).

Scheme 19. Synthesis of 5-alkynylpyridines 57.

As mentioned above, there have been many successful reactions with N propargylic β-enaminones to synthesize five and six-membered heterocyles as well as aryl-fused ones. However, there is only one study involving directly synthesis of monocyclic seven-membered oxazepines from N-propargylic β-enaminones. In that method, as stated before, Au- and Ag-catalyed intramolecular cyclization of β enaminones afforded monocyclic 1,4-oxazepine derivatives. ${ }^{62}$ In one case, fully unsaturated monocyclic 1,4-oxazepines have been observed as the reaction intermediates during synthesis of 2-(1 H -pyrrolyl)pyridines. ${ }^{86 \mathrm{~b}}$

Lack of methodologies have prompted us to develop new strategies for the synthesis of monocyclic 1,4-oxazepines. In this respect, our research group has recently found a new method for the synthesis of monocyclic 1,4-oxazepines 33 from corresponding N-propargylic β-enaminones 32. ZnCl_{2}-mediated 7 -exo-dig intramolecular cyclization in refluxing DCM has yielded 1,4-oxazepine derivatives

33 (Scheme 20). This new process has provided an economically better alternative with the usage of low-cost ZnCl_{2} for the synthesis of 1,4 -oxazepine derivatives. However, in some cases, the yields were not so good and reactions were accomplished in longer reaction times ($9-24 \mathrm{~h}$.). Therefore, as a second aim of the project, we decided to modify the reaction conditions to obtain better yields of 1,4oxazepine derivatives from related N-propargylic β-enaminones in shorter reaction times (Scheme 20).

Scheme 20. ZnCl_{2}-mediated synthesis of monocyclic 1,4-oxazepines 33.

In the same manner, there is room for improvement of synthesis of monocyclic 1,4thiazepines. According to our knowledge, there is no any example reporting formation of them from thionated N-propargylic β-enaminones. In the light of our experience in the synthesis of monocyclic 1,4 -oxazepines $\mathbf{3 3}$, as a third aim, we will investigate ZnCl_{2}-mediated intramolecular cyclization reactions of thionated N-propargylic β-enaminones 58 to obtain monocyclic 2,3-dihydro-1,4-thiazepines 59. For this reason, we will first prepare thionated N-propargylic β-enaminones 58 from N-propargylic β-enaminones 32 by Lawesson's reagent (LR) (Scheme 21).

Scheme 21. ZnCl_{2}-mediated synthesis of monocyclic 1,4-thiazepines 59.

Moreover, we will also examine the reaction of thionated N-propargylic β enaminones 58 under basic conditions to isolate fully unsaturated 1,4-thiazepines 60 and/or 5-methylpyridine derivatives 61 due to sulfur extrusion ${ }^{44}$ (Scheme 22).

Scheme 22. Base-mediated synthesis of fully unsaturated monocyclic 1,4thiazepines $\mathbf{6 0}$ and/or 5-methylpyridines $\mathbf{6 1}$.

Briefly, the scope, limitations and proposed mechanisms for the syntheses of 5alkynylpyridines 57, monocyclic 1,4-oxazepines 33 under modified conditions, monocyclic 2,3-dihydro-1,4-thiazepines 59, fully unsaturated monocyclic 1,4thiazepines $\mathbf{6 0}$ and/or 5-methylpyidines $\mathbf{6 1}$ will be discussed in detail.

CHAPTER 2

RESULTS AND DISCUSSIONS

2.1 Synthesis of Starting Materials

2.1.1 Synthesis of $\boldsymbol{\alpha}, \boldsymbol{\beta}$-Alkynic Ketones 63

At the initial stage of the project, we have readily synthesized α, β-alkynic ketones 63 via Sonogashira cross-coupling of aryl chlorides 62 with terminal alkynes 56. We employed a Pd- and Cu-catalyzed reaction by taking 1.0 equiv. of terminal alkyne $\mathbf{5 6}$ and 1.2 equiv. of aryl chloride $\mathbf{6 2}$ in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ under argon atmosphere (Scheme 23).

Scheme 23. Synthesis of α, β-alkynic ketones 63 .

26 alkynic ketone derivatives $\mathbf{6 3}$ were synthesized in $50-99 \%$ yields in addition to commercially obtained acetyl-bearing alkynic ketone, 4-phenylbut-3-yn-2-one (63aa), as shown in Table 1.

Table 1. Synthesized α, β-alkynic ketone derivatives $63 .{ }^{a}$

63d (81\%)

63j (94\%)

63m (87\%)

63n (50\%)

63p (78\%)

63q (61\%)

Table1. Continued.

${ }^{a}$ Isolated yields. ${ }^{b}$ Commercially obtained.

2.1.2 Synthesis of \boldsymbol{N}-Propargylic $\boldsymbol{\beta}$-Enaminones $\mathbf{3 2}$

After obtaining α, β-alkynic ketones 63, we have synthesized N-propargylic β enaminones 32 by conjugate addition of propargyl amine to corresponding alkynic ketones 63 (Scheme 24). It is noteworthy to mention that we have isolated only Z isomer of N-propargylic β-enaminones 32. Interestingly E izomers were not formed in these reactions. Cacchi research group ${ }^{18}$ and we have elucidated single Z isomer formation by NOESY experiments. We have clearly showed the NOE interaction between vinylic hydrogen and allylic hydrogens of compound 321, whose structure is given in Table 2 (for the correlation of related atoms see Figure 113 in Appendices). In addition to NOE interaction, existence of intramolecular Hbonding also $(\mathrm{N}-\mathrm{H} \cdots \mathrm{O})$ acts as an active role in the stability of Z isomer of N propargylic β-enaminones $\mathbf{3 2}$.

Scheme 24. Synthesis of N-propargylic β-enaminones 32.

We have totally synthesized $27 N$-propargylic β-enaminone derivatives 32 as depicted in Table 2. Except for compound $\mathbf{3 2 k}$, whose yield was 61%, the obtained yields were good and high (73-98\%). Their structural analyses were performed mainly by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra.

Table 2. Synthesized N-propargylic β-enaminone derivatives 32. ${ }^{a}$

Table 2. Continued.

32u (86\%)

32v (98\%)

32w (93\%)

32x (75\%)

32y (95\%)

$32 z$ (91\%)

32aa (73\%)
${ }^{a}$ Isolated yields.

As a representative example, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 32a are given in Figures 22 and 23, respectively. As seen in the ${ }^{1} \mathrm{H}$ NMR spectrum, due to H bonding ($\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$) $\mathrm{N}-\mathrm{H}$ proton resonates at lower field (11.33 ppm) as a broad singlet. Phenyl protons appear between 7.37 and 7.95 ppm as multiplet. Vinylic proton gives a singlet at 5.85 ppm . In the higher field of spectrum, the signals of methylenic proton and alkynyl proton appear at 3.95 and 2.31 ppm , as doublet of doublets ($J=6.3,2.5 \mathrm{~Hz}$) and triplet ($J=2.5 \mathrm{~Hz}$), respectively. In the case of ${ }^{13} \mathrm{C}$ NMR, there are 14 different carbon signals. One belongs to carbonyl carbon peak resonating at 189.3 ppm . At $166.0 \mathrm{ppm}, \beta$ ipso carbon peak signal (N-C) is observed. The resonance signals resonating between 127.3 and 140.1 ppm belong to aromatic carbons. The signal of $\alpha \mathrm{CH}$ carbon appears at 94.8 ppm . The remaining three signals, appearing at $79.9,72.6,34.3 \mathrm{ppm}$, relate to peaks of alkynyl carbons and methylenic CH_{2} carbon, respectively.

Figure 22. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 32a.

Figure 23. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 32a.

2.1.3 Synthesis of \boldsymbol{N}-Propargylic $\boldsymbol{\beta}$-Enaminones 7

Some of the β-enaminones $\mathbf{3 2}$ having terminal alkyne units in their structures were subjected to Sonogashira cross-coupling reaction with aryl iodides 64. This Pdcatalyzed reaction under basic conditions at room temperature afforded functionalized aryl-substituted N-propargylic β-enaminones 7 in $83-96 \%$ yields (Table 3). Since the Sonogashira conditions were not applicable for the alkyl halides, in one case, 2-butynylamine was directly reacted with 1,3-diphenylprop-2-yn-1-one (63a) to generate butynyl-substituted β-enaminone 7ac. By this way, the synthesis of compound 7ac was achieved in high yield (93\%). Hence, totally seven different N-propargylic β-enaminones were ready for the iodine-mediated electrophilic cyclization.

Table 3. Synthesized N-propargylic β-enaminone derivatives 7. ${ }^{a}$

${ }^{a}$ Isolated yields.

2.1.4 Synthesis of 5-Iodopyridines 55

Electrophilic cyclization of N-propargylic β-enaminones 7 with I_{2} under basic conditions were investigated by our research group. ${ }^{91}$ The best optimized conditions were applied for the synthesis of 5 -iodopyridines 55. By taking 3.0 equiv. of both I_{2} and NaHCO_{3} in refluxing ACN under open atmosphere, seven iodo-substituted pyridine derivatives $\mathbf{5 5}$ were synthesized from the corresponding N-propargylic β-enaminones 7 in 47-80\% yields.

Table 4. Synthesized 5-iodopyridine derivatives 55. ${ }^{a}$

${ }^{a}$ Isolated yields.

Formation of these target compounds were deduced from especially their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. Characteristic α-proton peaks of pyridines observed at about 9.10 ppm as singlet and their bonded carbons resonate in between 157.0 and 157.7 ppm . As expected, iodine-attached carbon atoms resonate at high field due to heavy-atom effect. Their signals appear between 98.0 and 100.4 ppm. Representative ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 5}$ a were given in Figure 24 and 25 , respectively.

Figure 24. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 5 a}$.

Figure 25. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 5 a}$.

The proposed mechanism for the synthesis of 5-iodopyridines $\mathbf{5 5}$ is described in Scheme $25 .{ }^{91}$ Firstly, iodine interacts with alkyne group of N-propargylic β enaminone and forms iodonium ion 65. Subsequently, 6-endo-dig electrophilic cyclization occurs by α-carbon and generates intermediate 66. Then, deprotonation with base gives 1,2-dihydropyridine 67. Lastly, aerobic and/or iodine-assisted oxidation produces the target iodopyridine compounds 55 (Scheme 25).

Scheme 25. Proposed mechanism for the formation of 5-iodopyridines 55.

2.1.5 Synthesis of \boldsymbol{N}-Propargylic Thio- $\boldsymbol{\beta}$-enaminones 58

According to recent studies about thionation reactions, 2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane 2,4-disulfide known as Lawesson's reagent (LR), whose structure is given in Figure 26, has recently been preferred to be used as the thionating reagent in synthetic organic chemistry. ${ }^{92}$

Figure 26. Chemical structure of Lawesson's reagent (LR).

In this part of thesis work, thionation reaction of N-propargylic β-enaminones 32 with LR has been investigated to obtain the corresponding thionated N-propargylic β-enaminone derivatives 58 (Scheme 26).

Scheme 26. Synthesis of N-propargylic thio- β-enaminones 58.

We initially performed the reaction of N-propargylic β-enaminone derivative 32a $\left(\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Ph}\right)$ by using 0.5 equiv. of LR in refluxing benzene $\left(80^{\circ} \mathrm{C}\right)$ under argon atmosphere. As a result of this reaction, we isolated N-propargylic thio- β enaminone 58a in 85% yield in 0.5 h with some decomposition (Table 5). In order to prevent the decomposition and to get higher yield, we decreased the reaction temperature. When the temperature was lowered to $60{ }^{\circ} \mathrm{C}$, the same reaction afforded compound 58a in 94\% yield. On the other hand, lowering the temperature to room temperature decreased the yield of 58a to 50% in 24 h . Therefore, thionation reactions of N-propargylic β-enaminones were conducted with 0.5 equiv. of LR in benzene at $60^{\circ} \mathrm{C}$ under argon atmosphere.

By using this reaction conditions, we synthesized various N-propargylic thio- β enaminone derivatives $\mathbf{5 8}$ from the corresponding β-enaminone derivatives $\mathbf{3 2}$ as summarized in Table 5. For 14 derivatives, thionation reactions proceeded efficiently and afforded the corresponding thionated N-propargylic β-enaminones 58 in good to high yields ($60-94 \%$). However, in two cases, we isolated the target compounds 58b and $\mathbf{5 8 r}$ in 23% and 25% yields, respectively, which were the lowest ones among the synthesized derivatives. For this reason, we performed the same reactions at room temperature to get higher yields by preventing possible decomposition. We obtained the same products in relatively higher yields (55\% and 50%) at room temperature. In the same manner, the reactions of omethoxyphenyl and other 2-bromo-substituted N-propargylic β-enaminones (58c, $\mathbf{5 8 n}, \mathbf{5 8 s}, \mathbf{5 8 t}$) with LR were directly carried out at room temperature. These reactions afforded the corresponding thionated enaminones in $79 \%, 31 \%, 48 \%$ and 41% yields, respectively, in longer reaction times.

Table 5. Synthesized N-propargylic thio- β-enaminone derivatives 58. ${ }^{a}$

58e $\left(60 \%, 60^{\circ} \mathrm{C}\right)$

$58 f\left(75 \%, 60^{\circ} \mathrm{C}\right)$

$58 \mathrm{~h}\left(73 \%, 60^{\circ} \mathrm{C}\right)$

$58 i\left(71 \%, 60^{\circ} \mathrm{C}\right)$

58j $\left(77 \%, 60^{\circ} \mathrm{C}\right)$

$581\left(87 \%, 60^{\circ} \mathrm{C}\right)$

$58 \mathrm{~m}\left(82 \%, 60^{\circ} \mathrm{C}\right)$

58n (31\%, rt)

58r $\left(25 \%, 60^{\circ} \mathrm{C}\right)$ (50\%, rt)

58s (48\%, rt)

58 t (41%, rt)

58v $\left(70 \%, 60^{\circ} \mathrm{C}\right)$

Table 5. Continued.

${ }^{a}$ All the reactions were performed with 1.0 equiv. of compound $\mathbf{3 2}$ and 0.5 equiv. of LR under argon and the yields are of isolated yields. ${ }^{b}$ When the same reaction was performed at rt and reflux conditions, it afforded the N-propargylic thio- β enaminone 58a in 50% and 85% yields, respectively.

It can be deduced from these results that strong electron donating groups such as methoxy group on phenyl rings of N-propargylic β-enaminones ($\mathbf{3 2 b}$ and 32c) rapidly activates the thionation reaction at room temperature. Due to this reason, elevating the temperature to $60{ }^{\circ} \mathrm{C}$ may promote decompositions of generated thionated N-propargylic β-enaminones ($\mathbf{5 8 b}$ and $\mathbf{5 8 c}$) and can lead their isolations in lower yields. For the 2-bromo-substituted ones (32n, 32r, 32s, 32t), high temperature may also cause coordination of in-situ generated ylides with bromo group while interaction with carbonyl group occurs during the reaction. This may lower the formation yields of compounds $\mathbf{5 8 n}, \mathbf{5 8 s}, \mathbf{5 8 t}$ at $60^{\circ} \mathrm{C}$ as in the case of compound 58r formation.

The proposed mechanism for this transformation is shown in Scheme 27. It starts with the in-situ dissociation of one equiv. of LR to two equiv. of phenylphsophine disulfide compounds 68. Then, carbonyl functional group of N-propargylic β enaminone $\mathbf{3 2}$ reacts with this ylide $\mathbf{6 8}$ by the resonance effect and generating four-
membered ring 69. Lastly, ring opening of this intermediate 69 affords the desired thionated ketone $\mathbf{5 8}$ and thioxo phosphineoxide $\mathbf{7 0}$ as a byproduct.

Scheme 27. Proposed mechanism for the formation of N-propargylic thio- β-enaminone derivatives 58.

2.2 Synthesis of Target Compounds

2.2.1 Synthesis of 5-Alkynylpyridines 57

Synthesis of 5-alkynylpyridines $\mathbf{5 7}$ from 5-iodopyridines $\mathbf{5 5}$ by using Sonogashira cross-coupling reaction establishes the goal of this part of thesis work (Scheme 28).

Scheme 28. Synthesis of 5-alkynylpyridines 57.

First of all, optimization studies were run to get higher yields of 5-alkynylpyridine derivatives 57. For this purpose, cross-coupling reaction of diphenyl-substituted iodopyridine derivative 55a with phenyl acetylene (56a) at different reaction conditions has been investigated (Table 6). Initially, 5 -iodopyridine compound 55a has been reacted with 1.5 equiv. of phenyl acetylene (56a) by using $5 \mathrm{~mol} \%$ of both $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ and CuI in various solvents, in turn with DCM, THF, ACN, dioxane, DMF and DMSO (Table 6, entries 1-6). Except for those in DMF and DMSO, other overnight reactions, affording alkynyl product 57 a in $40-79 \%$ yields, did not go to fully completion and starting material 55a was recovered with some decomposition. Although the yield obtained in DMF (83\%) was very close to the one obtained in DMSO (82\%), we continued reactions with DMF because of easier removal of it than DMSO. Raising the temperature to $65{ }^{\circ} \mathrm{C}$ increased the yield from 83% to 91% (Table 6, entry 7). However, performing the reaction at $100{ }^{\circ} \mathrm{C}$ gave the desired product in 76% yield (Table 6, entry 8). Apparently, higher temperature than $65^{\circ} \mathrm{C}$ might cause decompositon of the reaction product 57a and lowered the yield. After determining the reaction temperature as $65^{\circ} \mathrm{C}$, effective number of equivalents of terminal alkyne 56a was determined. Reaction with 1.0 equiv. of phenyl acetylene (56a) decreased the yield (68\%) while higher number of equivalents did not change the yield (91\%) (Table 6, entries 9-10). In the absence of the Pd catalyst, 5-alkynylpyridine 57a was not formed and starting material was recovered in 89% yield (Table 6 , entry 11). By using $2 \mathrm{~mol} \%$ of Pd catalyst, the same reaction afforded the target compound 57a in 78\% yield (Table 6, entry 12). Lastly, the reaction was carried out in the absence of Cu catalyst. In this reaction, the yield of obtained product was slightly lower (89\%) (Table 6, entry 13). As a result of these reactions, the highest yield (91%) was obtained by using 1.5 equiv. of terminal alkyne 56a, $5 \mathrm{~mol} \%$ of $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ and $5 \mathrm{~mol} \%$ of CuI in DMF at 65 ${ }^{\circ} \mathrm{C}$ (Table 6, entry 7). These optimized reaction conditions were applied for Sonogashira reaction of 5-iodopyridines $\mathbf{5 5}$ with terminal alkynes $\mathbf{5 6}$ to synthesize a diverse range of 5-alkynylpyridine derivatives 57 .

Table 6. Optimization studies for Sonogashira cross-coupling reaction of 5-iodopyridine 55a with phenylacetylene (56a) ${ }^{a}$

Entry	Alkyne (equiv.)	$\begin{gathered} \mathbf{P d C l}_{2}\left(\mathbf{P P h}_{3}\right)_{2} \\ (\mathbf{m o l} \%) \end{gathered}$	$\begin{gathered} \mathrm{CuI} \\ (\mathrm{~mol} \mathrm{\%}) \end{gathered}$	Solvent	Temp. (${ }^{\circ} \mathrm{C}$)	Time (h)	Yield ${ }^{b}$ (\%)
1	1.5	5	5	DCM	rt	24	40^{c}
2	1.5	5	5	THF	rt	24	79^{d}
3	1.5	5	5	ACN	rt	24	78^{e}
4	1.5	5	5	Dioxane	rt	24	74^{f}
5	1.5	5	5	DMF	rt	24	83
6	1.5	5	5	DMSO	rt	24	82
7	1.5	5	5	DMF	65	1.5	91
8	1.5	5	5	DMF	100	1.5	76
9	1.0	5	5	DMF	65	1.5	68
10	2.0	5	5	DMF	65	1.5	91
11	1.5	-	5	DMF	65	1.5	- ${ }^{\text {g }}$
12	1.5	2	5	DMF	65	4.0	78
13	1.5	5	-	DMF	65	1.5	89

${ }^{a}$ Reactions were performed on a scale of 0.15 mmol of 5-iodopyridine 55a in 2.25 mL of solvent by using 2.25 mL of $\mathrm{Et}_{3} \mathrm{~N}$ under argon with the indicated conditions. ${ }^{b}$ Isolated yields. ${ }^{c}$ The starting 5-iodopyridine 55a was recovered in 45% yield as well. ${ }^{d}$ The starting 5 -iodopyridine 55a was recovered in 13% yield as well. ${ }^{e}$ The starting 5-iodopyridine 55a was recovered in 10% yield as well. ${ }^{f}$ The starting 5iodopyridine 55a was recovered in 8% yield as well. ${ }^{g}$ Product formation was not observed and the starting 5-iodopyridine 55a was recovered in 89% yield.

As shown in Table 7, we synthesized totally 28 new 5-alkynylpyridine derivatives 57 from the corresponding iodopyridines 55 and terminal alkynes 56. In the majority of them, the coupling reactions were carried out efficiently and afforded target alkynylpyridines 57 in good to high yields. The isolated yields of all derivatives were in a range of 40% and 99%. Two fluorine-containing alkynyl pyridines, $\mathbf{5 7}$ f and $\mathbf{5 7 h}$ were synthesized in 92% and 95% yields, respectively. Also, six thiophen-3-yl- and thiophen-3-ylethynyl-substituted pyridine derivatives, $\mathbf{5 7 m}, \mathbf{5 7 b m}, \mathbf{5 7 m a}, \mathbf{5 7} \mathbf{m d}, \mathbf{5 7} \mathbf{m m}$ and $\mathbf{5 7} \mathbf{m r}$, were synthesized in $\mathbf{7 3 - 9 8 \%}$ yields. It should be mentioned that in the structure of compound $\mathbf{5 7} \mathbf{m r}$, there is a ferrocenyl unit as well. Other than this derivative, two ferrocenylethynyl-substituted pyridines, $\mathbf{5 7 r}$ and $\mathbf{5 7 b r}$, were synthesized in excellent yields (99% and 92%, respectively). On the other hand, one pyridin-2-ylethynyl-substituted pyridine derivative, $\mathbf{5 7 q}$, was synthesized in an acceptable yield (40\%). Moreover, different alkyl groups, such as butyl, pentyl, cyclopentylmethyl, hydroxycyclohexyl and N phthalimidylethyl were included in the structures of alkynylpyridine compounds, $\mathbf{5 7 1}, \mathbf{5 7 n}, \mathbf{5 7 o}, \mathbf{5 7} \mathrm{p}$ and $\mathbf{5 7 k}$, which were synthesized in $66-87 \%$ yields.

Table 7. Synthesized 5-alkynylpyridine derivatives 57. ${ }^{a}$

Table 7. Continued.

57ma (90\%)

57 mr (80%)
57aaa (91\%)

57aba (84\%)

57aca (85\%)
${ }^{a}$ Isolated yields.

All the structures of synthesized 5-alkynylpyridines 57 were supported by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR analyses. In their corresponding ${ }^{13} \mathrm{C}$ NMR data, there were characteristic peaks verifying the formation of target compounds 57 . For instance, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 57a are depicted in Figures 27 and 28, respectively. In the ${ }^{1} \mathrm{H}$ NMR spectrum, it can be clearly seen that the pyridine hydrogen peak resonates at 9.06 ppm as a singlet while it appears at 9.16 ppm in the ${ }^{1} \mathrm{H}$ NMR of starting compound $\mathbf{5 5 a}$ (see Figure 24). In the ${ }^{13} \mathrm{C}$ NMR spectrum, the signal at 98.7 ppm corresponding to carbon attached to iodine in starting material 55a (see Figure 25) is disappeared. Instead, in this region, there are characteristic alkynyl carbon peaks appearing at 85.5 and 96.6 ppm . These peaks strongly indicate that an acetylene unit is incorporated in the molecule. Also, the carbon having a hydrogen (C-H) in pyridine unit resonates in relatively higher field (152.5 ppm) as compared to that of signal (157.5 ppm) in ${ }^{13} \mathrm{C}$ NMR spectrum of starting compound $\mathbf{5 5 a}$.

Figure 27. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7 a}$.

Figure 28. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 a}$.

2.2.2 Synthesis of 2,3-Dihydro-1,4-oxazepines 33

Zinc-mediated cyclization of N-propargylic β-enaminones $\mathbf{3 2}$ in refluxing DCM for the synthesis of 2,3-dihydro-1,4-oxazepines $\mathbf{3 3}$ has recently been achieved by Zora research group. ${ }^{93}$ Alternatively, the modification of the reaction conditions to obtain monocyclic 1,4-oxazepine derivative 33 in shorter reaction time and higher yield constitutes the goal of this chapter of thesis work (Scheme 29).

Scheme 29. Synthesis of 2,3-dihydro-1,4-oxazepines 33 in modified conditions.

For this reason, we have made a quick optimization as depicted in Table 8. We have carried out several reactions in order to get shorter reaction time as compared to previously found one (Table 8 , entry 1). With N-propargylic β-enaminone 32a in hand, firstly, metallic Zn dust was tried to produce the reaction product, 2-methylene-5,7-diphenyl-2,3-dihydro-1,4-oxazepine (33a), which was carried out in

DCM for 9.0 h (Table 8, entry 2). However, there was no reaction with Zn dust, showing that the reaction mainly proceeds with Zn^{2+} cation, instead of metallic Zn . Thus, the optimization reactions were continued with ZnCl_{2}. In order to decrease the reaction time, the amount of ZnCl_{2} was increased from 1.0 equiv. to 1.5 equiv. (Table 8, entry 3). In this case, the reaction proceeded in 8.0 h , which was only 1.0 h shorter than previous reaction time (9.0 h). In other words, increasing ZnCl_{2} amount did not affect the reaction time substantially. After that, the type of solvent was changed in order to proceed the cyclization reaction at higher temperature than $40{ }^{\circ} \mathrm{C}$. By refluxing in CHCl_{3} for 5.0 h , the reaction afforded the target compound 33a in 95% yield (Table 8, entry 4). Reducing the reaction time from 5.0 h to 1.5 h did not affect the yield so the same yield was obtained (Table 8, entry 5). Notably, the reaction at higher temperature such as in refluxing DCE did not improve the yield (Table 8, entry 6). The reason might be the possible decomposition of reaction product 33a at higher temperature. As a result of these optimization studies, new optimal reaction conditions (i.e., in refluxing CHCl_{3}) to generate $1,4-$ oxazepine derivative 33a in high yield (95%) in shorter reaction time (1.5 h) was established (Table 8, entry 5).

Table 8. Optimization studies for Zn -mediated cyclization reaction of N-propargylic β-enaminone $\mathbf{3 2}^{a}$

Entry	$\begin{gathered} {[\mathrm{Zn}]} \\ \text { (equiv.) } \end{gathered}$	Solvent	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Yield ${ }^{b}$ (\%)
1	ZnCl_{2} (1.0)	DCM	reflux	9.0	$95^{\text {c }}$
2	Zn dust (1.0)	DCM	reflux	9.0	${ }^{\text {d }}$
3	ZnCl_{2} (1.5)	DCM	reflux	8.0	95
4	ZnCl_{2} (1.0)	CHCl_{3}	reflux	5.0	95
5	ZnCl_{2} (1.0)	CHCl_{3}	reflux	1.5	95
6	ZnCl_{2} (1.0)	DCE	reflux	3.0	76

${ }^{a}$ Reaction were performed on a scale of 0.3 mmol of N-propargylic β-enaminone 32a in 5.0 mL of solvent under argon with the indicated conditions. ${ }^{b}$ Isolated yields. ${ }^{c}$ The best yield which was obtained from afore studies by Zora research group. ${ }^{d}$ Product formation was not observed and the starting N-propargylic β enaminone $\mathbf{3 2}$ was recovered with some decomposition.

We have synthesized 21 different 2,3-dihydro-1,4-oxazepine derivatives 33 by applying the optimized reaction conditions. The structures and yields of the synthesized 1,4-oxazepine derivatives $\mathbf{3 3}$ are given in Table 9 . The isolated yields were good and high ($72 \%-95 \%$) in the case of 17 derivatives. For compound 33c and 33 u , the obtained yields (66% and 68%, respectively) were fair. Only in two cases, the cyclization reaction afforded target compounds $\mathbf{3 3 g}$ and $\mathbf{3 3 k}$ both in 40% yields. On the other hand, the reaction durations for the formations of $191,4-$ oxazepine derivatives 33 were maximum 6.0 h . However, the reactions for the formation of compound $\mathbf{3 3 i}$ and $\mathbf{3 3 k}$ were completed barely in 12.0 h and 9.0 h , respectively. Interestingly, in some cases, pyrrole formations were observed during isolation step by column chromatography on SiO_{2} (Scheme 30).

Scheme 30. General reaction for the pyrrole formations.

Two pyrrole derivatives, 71k and 711, were isolated together with corresponding 1,4-oxazepine derivatives, $\mathbf{3 3} \mathbf{k}$ and $\mathbf{3 3 1}$, from flash-column chromatography in 12% and 9% yields, respectively. However, they had not been formed during the cyclization reaction since there had been no characteristic peaks in their crude NMR spectra. To figure out the effect of SiO_{2}, firstly pure 1,4-oxazepine derivative 331 was directly subjected to flash-column chromatography on silica gel. From this rechromatography, 9% yield of pyrrole derivative 711 was obtained while 72% yield of 1,4-oxazepine 331 was recovered. There was a 19% of loss due to probable decomposition during isolation. It means that SiO_{2} played an active role for the pyrrole (71 k and 711) formations. Also, 80% yield of conversion of compound 331 to pyrrole 721 was obtained in the presence of SiO_{2} in refluxing EtOAc. The same reaction was carried out with phenyl-substituted 1,4-oxazepine derivative 33a but it did not produce any corresponding pyrrole derivative 71a. Only in elevated temperatures (in refluxing dioxane) it produced pyrrole 71a in 26% yield as well as recovery of starting compound 33a in 11% yield. The remaining 63% of $\mathbf{3 3 a}$ was possibly decomposed. SiO_{2}-catalyzed mechanism for the formation of pyrroles 71 will later be proposed. It can be inferred from these results that alkyl-substituted 1,4-oxazepines ($\mathbf{3 3 k}$ and $\mathbf{3 3 1}$) were not so stable as phenyl-substituted ones $\mathbf{3 3}$.

Table 9. Synthesized 2,3-dihydro-1,4-oxazepine derivatives 33. ${ }^{a}$

Table 9. Continued.

${ }^{a}$ Isolated yields. ${ }^{b}$ Along with $\mathbf{3 3 k}$, pyrrole isomer $\mathbf{7 1 k}$ was also isolated in 12% yield (see Figure 29 for its structure). ${ }^{c}$ Along with 331, pyrrole isomer 711 was also isolated in 9% yield (see Figure 29 for its structure).

Figure 29. Structures of pyrrole derivatives isolated along with 1,4-oxazepines.

Formation of 1,4-oxazepine derivatives 33 were mainly confirmed by analysis of their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data. For instance, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 33a were demonstrated in Figures 30 and 31, respectively. In the ${ }^{1} H$ NMR spectrum, the protons of exo-methylenic carbon give distinct high-field signals at 4.40 ppm and 4.76 ppm as doublets with small coupling constants $(J=1.4-1.5 \mathrm{~Hz})$. A singlet appearing at 4.57 ppm belongs to protons of the methylenic carbon in the seven-membered ring. The other olefinic proton resonates as singlet at 6.41 ppm . Remaining 10 phenyl hydrogens appear as multiplet between 7.38 and 7.87 ppm .

In the ${ }^{13} \mathrm{C}$ NMR spectrum, there are three ipso carbon peaks belonging to the seven-membered ring carbons coming at $167.1,159.0$ and 158.2 ppm . Eight different phenyl carbon peaks appear in between 126.4 ppm and 139.8 ppm . The signals rising at 99.8 and 55.6 ppm belong to the olefinic and methylenic carbons of the ring, respectively. The remaining exo-methylenic carbon signal is observed at 94.0 ppm .

Figure 30. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 33a.

Figure 31. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 33a.

The suggested mechanism for the generation of 1,4 -oxazepine derivatives is described in Scheme 31. Initially, zinc chloride coordinates through the triple bond of the alkyne unit $\mathbf{3 2}$ and forms intermediate 72. After that, carbonyl oxygen is coordinated with zinc by amido-imido tautomerization and generates intermediate 73, providing closeness of carbonyl oxygen and alkynyl group to each other. Then, vinyl zinc intermediate 74 is constituted via intramolecular 7-exo-dig cyclization. Lastly, in-situ hydolysis with HCl gives target 2,3-dihydro-1,4-oxazepine derivatives 33.

Scheme 31. Proposed mechanism for the formation of 2,3-dihydro-1,4-oxazepine derivatives 33.

A possible SiO_{2}-catalyzed mechanism for the formation of pyrroles 71 from 1,4oxazepines 33 is introduced in Scheme 32. Enhancement of electrophilicity of α carbon by coordination of silica gel through nitrogen facilitates nucleophilic attack of water to intermediate $\mathbf{7 5}$ so that it can produce hemiketal 76. Afterwards, ring is opened to give dienol intermediate 77, which rearranges to isomer 78 via keto-enol tautomerization. Subsequently, intramolecular aldol condensation takes place to afford compound 79. Dehydration of compound $\mathbf{8 0}$ gives $2 H$-pyrrole 81. Lastly, valence isomerization affords pyrrole derivatives 71.

Scheme 32. Proposed mechanism for the formation of pyrroles 71.

Additionally, we studied the reaction of phenyl-substituted N-propargylic β enaminone 7a with ZnCl_{2} in refluxing CHCl_{3}. Surprisingly, pyridine derivative $\mathbf{8 2}$ was formed in 28% yield instead of expected 2,3-dihydro-1,4-oxazepine derivative 83 (Scheme 33).

Scheme 33. Formation of pyridine $\mathbf{8 2}$ from phenyl-substituted N-propargylic β-enaminone 7a.

In this reaction pathway, most probably, coordination of carbonyl oxygen with zinc moiety could not occur. Only, alkynyl group is activated so that nucleophilic α carbon of starting compound $7 \mathbf{a}$ attacks to the alkyne functionality and affords pyridine derivative $\mathbf{8 2}$ via 6 -endo-dig cyclization (Scheme 34).

Scheme 34. Proposed mechanism for the formation of pyridine 82.

2.2.3 Synthesis of 2,3-Dihydro-1,4-thiazepines 59

Investigation of cyclization of N-propargylic thio- β-enaminones $\mathbf{5 8}$ by using ZnCl_{2} comprises the basis of this section of the thesis work. They were prepared from N propargylic β-enaminones 32 by employing thionation reaction with LR. The representative phenyl-substituted thionated- N-propargylic β-enaminone 58a was used for its cyclization reaction to find optimized reaction conditions with the best yield. In the light of the experience from the cyclization of N-propargylic β enaminones 32 into 2,3-dihydro-1,4-oxazepines 33, studies have been carried out by using 1.0 equiv. of ZnCl_{2} as a mediator in chlorinated solvents, such as DCM, CHCl_{3} and DCE, under reflux conditions (Table 10). All these reactions have afforded the expected 2,3-dihydro-1,4-thiazepine compound 59a in high yields (88$90 \%$) (Table 10, entries 1-3). When the reactions have been performed in the absence of ZnCl_{2} in CHCl_{3} and DCE, the expected compound $\mathbf{5 9}$ a was obtained
but in low yields as 16% and 22%, respectively (Table 1 , entries 4 and 5). Although the starting material 58a was recovered to some extent in those cases, it is important to note that the decomposition have mainly occurred in refluxing DCE. As a result of these reactions, we have adopted the condition of the reaction given in Entry 2 as the optimized reaction conditions since it gave the highest yield of the product (90%) in a shorter reaction time (1.5 h).

Table 10. Optimization studies for ZnCl_{2}-mediated cyclization reaction of N-propargylic thio- β-enaminone $\mathbf{5 8}^{a}$

Entry	$\mathbf{Z n C l}_{\mathbf{2}}$ (equiv.)	Solvent	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Yield ${ }^{b}$ (\%)
1	1.0	DCM	reflux	9.0	90
2	1.0	CHCl_{3}	reflux	1.5	90
3	1.0	DCE	reflux	1.0	88
4	-	CHCl_{3}	reflux	15.0	$16^{\text {c }}$
5	-	DCE	reflux	15.0	22^{d}

${ }^{a}$ Reactions were performed on a scale of 0.3 mmol of N-propargylic thio- β enaminone 58a in 5.0 mL of solvent under argon with the indicated conditions. ${ }^{b}$ Isolated yields. ${ }^{c}$ The starting N-propargylic thio- β-enaminone 58a was also recovered in 63% yield. ${ }^{d}$ The starting N-propargylic thio- β-enaminone 58a was also recovered in 28% yield.

Formation of 2,3-dihydro-1,4-thiazepine 59a was principally confirmed by its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, which are given in Figures 32 and 33, respectively. According to the ${ }^{1} \mathrm{H}$ NMR spectrum, protons of exo-methylenic carbon resonate very close to each other appearing as high-field signals at 5.21 ppm and 5.18 ppm as doublet with small coupling constant $(J=0.7 \mathrm{~Hz})$ and broad singlet. Around 0.30 ppm higher-field, there is a singlet peak at 4.81 ppm corresponding to the protons of methylenic carbon in the seven-membered ring, where other olefinic
proton resonates as singlet at 6.81 ppm . Other 10 aromatic hydrogens rise as multiplets between 7.39 and 7.83 ppm as expected. In the ${ }^{13} \mathrm{C}$ NMR spectrum, exo-methylenic carbon signal is observed at 110.4 ppm . The signals occuring at 59.3 and 123.2 ppm belong to the peaks of methylenic and olefinic carbons on the ring, respectively. Eight distinct phenyl carbon peaks emerge in between 127.6 ppm and 140.1 ppm . Remaining three ipso-carbon peaks belonging to the ring appear at $145.2,150.0$ and 167.4 ppm .

Figure 32. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 9}$ a.

Figure 33. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 9}$ a.

By employing the optimized reaction conditions, we have synthesized many 2,3-dihydro-1,4-thiazepine derivatives 59 from their corresponding thionated N propargylic β-enaminones 58 as given in Table 11. Cyclization reactions proceeded efficiently and afforded the corresponding 2,3-dihydro-1,4-thiazepine derivatives in good to high yields ($67-90 \%$). Due to potential biological activity of fluorinebearing substituents in new organic compounds, ${ }^{94}$ three derivatives containing fluorine (59h, 59t, 59z) and two derivatives containing trifluoromethyl groups (59f, 59s) have been synthesized in good yields (69-85\%). We have also produced compound $\mathbf{5 9 m}$ and $\mathbf{5 9 x}$ both including thiophenyl group in their structures in 76% and 83% yields, respectively. Moreover, many derivatives containing methyl, tertbutyl, methoxy, bromo and chloro groups on different positions of the phenyl substituents of target compounds have been synthesized in a range of $67-87 \%$ yields. Furthermore, butyl-substituted 1,4-thiazepine 591 was synthesized in 78% yield. Importantly, there was no observable conversion to any other heterocycles during its isolation by flash-column chromatography in contrast to its 1,4oxazepine analog $\mathbf{3 3 1}$ which produced pyrrole derivative $\mathbf{7 1 1}$ during its isolation. It might be due to higher stability of compound 591, as compared to $\mathbf{3 3 1}$.

Table 11. Synthesized 2,3-dihydro-1,4-thiazepine derivatives 59. ${ }^{a}$
(

Table 11. Continued.

${ }^{a}$ Isolated yields.

In order to expand the scope of the seven-exo-dig cyclization reaction, we have also elaborated on ZnCl_{2}-mediated reactivity of phenyl-substituted N -propargylic thio-β-enaminone 84, which was prepared from its carbonyl analogue 7a via thionation with LR (Scheme 35a). Interestingly, it produced 1,4-thiazepine derivative 85 in 63% yield although its carbonyl analogue had formed trisubstituted pyridine derivative $\mathbf{8 2}$ instead of the corresponding 1,4-oxazepine compound $\mathbf{8 3}$ (Scheme 35b). Presumably, greater nucleophilicity of sulfur atom in thicarbonyl group has played an active role in the formation of 1,4-thiazepine compound $\mathbf{8 5}$ rather than corresponding pyridine occurrence.

Scheme 35. ZnCl_{2}-mediated reactions of alkyne-tethered N-propargylic thio- β enaminone 84 (a) and alkyne-tethered N-propargylic β-enaminone $7 \mathbf{7 a}(\mathbf{b})$ in refluxing CHCl_{3}.

It should be mentioned that geometry of double bond in compound $\mathbf{8 5}$ was determined to be Z by the NOESY experiment (Figure 34). An NOE interaction between methylenic hydrogens $\left(\mathrm{CH}_{2}\right)$ on the ring and exo double bond hydrogen (=C $\underline{H} P h$) was observed, approving the Z configuration of exo double bond.

Figure 34. NOESY NMR spectrum of compound $\mathbf{8 5}$.
(Cross peaks in circles represent the NOE interactions shown on the structure).

A plausible mechanism for the formation of 2-methylene-2,3-dihydro-1,4thiazepines 59 and phenyl-substituted 1,4-thiazepine $\mathbf{8 5}$ is described in Scheme 29. Initially, electrophilicity of alkyne moiety increases via coordination of zinc chloride to triple bond of alkyne unit and forming intermediate 86. After that, thiocarbonyl sulfur is coordinated with zinc by amido-imido tautomerization and generates intermediate 87 , providing a close proximity of sulfur and alkynyl groups. Then, vinyl zinc intermediate $\mathbf{8 8}$ is established via intramolecular cyclization. Lastly, in-situ hydolysis with HCl gives target 2,3-dihydro-1,4thiazepine derivatives $\mathbf{5 9}$ and phenyl-substituted 1,4-thiazepine derivative $\mathbf{8 5}$.

Scheme 36. Plausible mechanism for the formation of 1,4-thiazepines (59, 85).

2.2.4 Synthesis of 5-Methylpyridines 61

In the last stage of the thesis work, we focused on examination of reactivity of N propargylic thio- β-enaminones 58 under basic conditions (Scheme 37).

Scheme 37. Reaction of N-propargylic thio- β-enaminones 58 in basic conditions.

For this purpose, phenyl-substituted N-propargylic thio- β-enaminone 58a was initially used as a representative starting material in the cyclization reactions. Many reactions of compound 58a in different basic conditions were carried out. The results were given in Table 12. In many cases, both trisusbtituted pyridine derivative 61a and 2,3-dihydro-1,4-thiazepine derivative 59a were formed as a main product and a side product, respectively. At first, diisopropylamine (DIPA) was used as a base and under neat conditions no reaction was observed (Table 12, entry 1). Then, DMF was chosen as a reaction solvent. In DMF, at room temperature and $50^{\circ} \mathrm{C}, N$-propargylic thio- β-enaminone 58a underwent cyclization reactions by using 0.1 mL of DIPA to afford 5-methylpyridine 61a in 75% and 67% yields, respectively (Table 12, entries 2 and 3). Thus, we continued the optimization studies at room temprature. Using higher amount of DIPA (0.2 mL) did not complete the reaction in 4.5 h (Table 12, entry 4). When the reaction time was increased from 4.5 to 16.0 h , the corresponding pyridine compound 61a was isolated in 79% yield (Table 12, entry 5). Although using 0.3 mL of DIPA lead to rise of yield only by 1% (Table 12 , entry 6), with 0.5 mL of DIPA, highest yield of pyridine 61a (85\%) formation was achieved only in 2.0 h (Table 12, entry 7). Two times increase of base did not change the yield of products (Table 12, entry 8). We also tried the cyclization reaction in ACN and DMSO but the obtained yields were lower and/or same and the reaction durations were longer compared with those in DMF using the same amount of base (Table 12, entries 9 and 10). In the same way, employing the reactions with triethylamine (TEA) instead of DIPA, did not enhance the yield of main product 61a (Table 12, entries 11 and 12). Moreover, 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU) was used as a base in a series of reactions in variable conditions, none of which has improved the yield of target compound 61a
(Table 12, entries 13-18). Furthermore, NaH -mediated reactions lowered the yield of 61a by using either 1.0 equiv. or 2.0 equiv. (Table 12, entries 19 and 20). Lastly, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ was tried but lowest yield (27\%) of main product 61a and comparable yield (10%) of side product 59a were obtained (Table 12, entry 21). It should also be mentioned that in many cases, 1,4-thiazepine derivative 59a was generated in a range of 4% to 9% yields as a side product (Table 12, entries 2-13). Also, no reaction conditions were found for the formation of fully-unsaturated 1,4thiazepine derivative $\mathbf{6 0}$. As a result of these optimization reactions, using 0.5 mL of DIPA for 0.3 mmol of starting material 58a in DMF at room temperature was determined as the best reaction conditions since the highest yield (85\%) of target compound 61a was obtained in these conditions although it produced 2,3-dihydro-1,4-thiazepine compound 59a as well (Table 12, entry 7).

Table 12. Optimization studies for cyclization reaction of N -propargylic thio- β-enaminone 58 in basic conditions ${ }^{a}$

	Amount of Base				
Entry		Solvent	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	$\begin{gathered} \text { Yield: }(61 \mathbf{a}+59 a)^{b} \\ (\%) \end{gathered}$
1	DIPA (1.0 mL)	-	rt	3.0	NR^{c}
2	DIPA (0.1 mL)	DMF	rt	40.0	$(75+4)$
3	DIPA (0.1 mL)	DMF	50	1.0	$(67+5)$
4	DIPA (0.2 mL)	DMF	rt	4.5	$(61+5)^{d}$
5	DIPA (0.2 mL)	DMF	rt	16.0	$(79+5)$
6	DIPA (0.3 mL)	DMF	rt	5.0	$(80+5)$
7	DIPA (0.5 mL)	DMF	rt	2.0	$(85+5)$
8	DIPA (1.0 mL)	DMF	rt	2.0	$(85+5)$
9	DIPA (0.2 mL)	ACN	rt	20.0	$(79+5)$
10	DIPA (0.2 mL)	DMSO	rt	20.0	$(69+5)$
11	TEA (0.2 mL)	DMF	rt	20.0	$(62+8)^{e}$
12	TEA (0.2 mL)	DMF	rt	48.0	$(77+9)$
13	DBU (0.2 equiv.)	DMF	rt	20.0	$(51+5)^{f}$
14	DBU (0.4 equiv.)	DMF	rt	3.0	$(69+0)$
15	DBU (1.0 equiv.)	DMF	rt	3.0	$(72+0)$
16	DBU (2.0 equiv.)	DMF	rt	3.0	$(59+0)$
17	DBU (2.0 equiv.)	DMF	0 to rt	3.0	$(63+0)$
18	DBU (2.0 equiv.)	ACN	rt	3.0	$(68+0)$
19	NaH (1.0 equiv.)	DMF	rt	3.0	$(45+0)$
20	NaH (2.0 equiv.)	DMF	rt	3.0	$(45+0)$
21	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.0 equiv.)	DMF	rt	3.0	$(27+10)$

${ }^{\text {a }}$ The reactions were carried out on a 0.30 mmol scale of N-propargylic-thio- $\beta-$ enaminone 58a in given amount of solvent under indicated conditions in entries. ${ }^{b}$ Isolated yield. ${ }^{c}$ NR: No Reaction. The starting thio- β-enaminone 58a was recovered in 97% yield. ${ }^{d}$ The starting thio- β-enaminone 58a was recovered in 18% yield as well. ${ }^{e}$ The starting thio- β-enaminone 58a was recovered in 16% yield as well. ${ }^{f}$ The starting thio- β-enaminone 58a was recovered in 10% yield as well.

By using the optimized reaction conditions (Table 12, entry 7), we synthesized a diverse range of trisubstituted pyridine derivatives $\mathbf{6 1}$ in moderate to high yields (46-85\%), which are depicted in Table 13. Only one derivative 611 bearing a butyl group was synthesized in low yield (13\%). In all cases, formation of 2,3-dihydro-1,4-thiazepine derivatives 59 were also observed as side products and they were isolated in 2-13\% yields. Many compounds having electron donating and electron withdrawing groups on phenyl susbstituents were tolerated under the determined reaction conditions. For instance, nine pyridines, 61b-61e, 61j, 61r, 61v-61x containing one of the methyl, methoxy, and tert-butyl groups, which are attached to the corresponding phenyl rings, were synthesized in 46-83\% yields. Since fluorinecontaining compounds may show effective biological activity, ${ }^{94}$ three pyridines, 61h, 61t and 61z, having one fluoro group and two ones, 61f and 61s, having trifluoromethyl group on the related phenyl rings were produced in 51-71\% yields. The optimized reaction conditions were also efficient in the synthesis of other halocontaining ones. Bromine and chlorine-bearing pyridines 61i, 61n, 61r-61t, 61y$\mathbf{6 1 z}$, were isolated in a range of $49-71 \%$ yields. It should be noted that methyl, trifluoromethyl, fluorine substituents were also involved in the structures of 61r61t and 61z. It is important to state that we have introduced another heterocycle, thiophenyl group, to the corresponding pyridine compounds, $\mathbf{6 1 m}$ and $\mathbf{6 1 x}$, which were synthesized in 69% and 77% yields, respectively.

In addition, reactivity of phenyl-substituted N-propargylic thio- β-enaminone $\mathbf{8 4}$ with a base was explored. Taking 1.0 equiv. of DBU as a base, only 5 -benzyl-2,4diphenylpyridine (89) was isolated in 32% yield (Scheme 38). Notably, no formation of 2-benzyl-1,4-thiazepine derivative $\mathbf{9 0}$ was observed in this reaction.

Scheme 38. Base-mediated reaction of alkyne-tethered thio- β-enaminone 84.

Table 13. Synthesized 5-methylpyridine derivatives 61. ${ }^{a}$

Table 13. Continued.

${ }^{a}$ Isolated yields.

All the structures of synthesized trisubstituted pyridines $\mathbf{6 1}$ and $\mathbf{8 9}$ were proved especially by the analysis of their corresponding ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. Their HRMS data also helped us to figure out non-existence of sulfur atom in the target molecule. Thus, possible formation of fully-unsaturated 1,4-thiazepine derivatives 60 was eliminated. On the other hand, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of representative 2,4-diphenyl-5-methylpyridine (61a) compound shown in Figures 35 and 36, respectively, are compatible with those given in literature. ${ }^{95}$ In the ${ }^{1} \mathrm{H}$ NMR spectrum, two separate signals belong to pyridine protons appear as singlets at 8.61 and 7.63 ppm . Two of 10 phenyl protons resonate at 8.03 ppm as doublet. Other eight protons give multiplet between 7.53 and 7.37 ppm . Also, at higher field region, the singlet of methyl protons can easily be seen at 2.32 ppm . In the ${ }^{13} \mathrm{C}$ NMR spectrum, there are 14 different signals as expected. Characteristically, C-H signals of pyridine ring resonate at 151.3 and 121.0 ppm . Remaining aromatic $\mathrm{C}-\mathrm{H}$ signals appear between 128.8 and 126.8 ppm . In addition, quatenary carbon peaks rise in lower field region (155.4-129.2 ppm). The last high-field signal at 17.0 ppm belongs to CH_{3} group.

Figure 35. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 1 a}$.

Figure 36. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 a}$.

The proposed mechanism for the formation of 5-methylpyridines 61 and 5benzylpyridine 89 is outlined in Scheme 39, which proceeds through propargylallene isomerization. ${ }^{96}$ First, DIPA abstracts a proton from methylene group of thionated N-propargylic β-enaminone 58 and $\mathbf{8 4}$ to form allenyl carbanion 91. Delivering a proton from diisopropylamonium ion forms allene intermediate 92. Then cyclization reaction takes place by attacking of thicarbonyl sulfur to central electrophilic carbon of allene through resonance interaction. By this way, seven-
membered 1,4-thiazepinium ion $\mathbf{9 3}$ is generated. It readily rearranges by proton shifting to afford the corresponding 1,4-thiazepine intermediates $\mathbf{6 0}$ and $\mathbf{9 0}$, the isolations of which could not be achieved. Next, valence isomerization gives 7thionorcaradiene derivative 94 . Then, sulfur extrusion rapidly occurs and affords final pyridine products 61 and 89 .

Scheme 39. Proposed mechanism for the formation of trisubstituted pyridines 61 and 89 from corresponding N-propargylic thio- β-enaminones 58 and 84 .

We have also interested in conversion of 2,3-dihydro-1,4-thiazepine compounds 59 to 5-methylpyridines 61 and/or 2-methyl-1,4-thiazepines 60. For this purpose, compound 59a was selected as a representative dihydro-1,4-thiazepine compound. We have carried out some reactions with this molecule in basic conditions, which are shown in Table 14. Firstly, reactions were run with DIPA in DMF at room temperature and $60^{\circ} \mathrm{C}$. However, the maximum yield of 5-methylpyridine 61a was only 11% in both conditions (Table 14, entries 1-2). In the same way, using 1.0 equiv. of NaH at room temperature did not improve the conversion yield (10\%) (Table 14, entry 3). When the same reaction was conducted at $60^{\circ} \mathrm{C}$, the yield of conversion to 5 -methylpyridine 61a was increased to 37% (Table 14, entry 4). Additionally, 2.0 equiv. of NaH enhanced the yield of 5-methylpyridine 61a 4\% more (Table 14, entry 5). One can infer from these results that stronger base (NaH)
and higher temperature $\left(60^{\circ} \mathrm{C}\right)$ are required to achieve conversion reaction in an acceptable yield. It is important to state that we have never isolated 2-methyl-1,4thiazepine compound $\mathbf{6 0}$ from these reactions. The reason is that, [1,3]-H shift in compound 59a in basic conditions most probably forms unstable 2-methyl-1,4thiazepine $\mathbf{6 0}$ as an intermediate during the reaction. Then, as depicted in Scheme 39, it immediately undergoes valence isomerization and sulfur extrusion occurs, affording final pyridine product 61a.

Table 14. Optimization studies for conversion of 2,3-dihydro-1,4-thiazepine 59a to 5-methylpyridine 61a. ${ }^{a}$

Entry	Amount of Base	Solvent	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	$\begin{gathered} \text { Yield (61a) } \\ (\%)^{b} \end{gathered}$
1	DIPA (0.2 mL)	DMF	rt	96.0	$7^{\text {c }}$
2	DIPA (0.2 mL)	DMF	60	9.0	11^{d}
3	NaH (1.0 equiv.)	DMF	rt	96.0	10^{e}
4	NaH (1.0 equiv.)	DMF	60	5.0	37
5	NaH (2.0 equiv.)	DMF	60	0.5	41

${ }^{a}$ Reactions were performed on a scale of 0.30 mmol of 1,4-thiazepine 59a in 0.5 mL of solvent with the indicated conditions. ${ }^{b}$ Isolated yields. ${ }^{c}$ The starting 1,4thiazepine 59a was recovered in 59% yield as well. ${ }^{d}$ The starting 1,4-thiazepine 59a was recovered in 58% yield as well. ${ }^{e}$ The starting 1,4-thiazepine 59a was recovered in 21% yield as well.

CHAPTER 3

CONCLUSION

In brief, many novel and potentially bioactive 5-alkynylpyridines, 2,3-dihydro-1,4oxazepines, 2,3-dihydro-1,4-thiazepines and trisubstituted pyridines have been synthesized in good to high yields (Scheme 40).

Scheme 40. General synthetic pathways for the synthesis of target compounds.

Facile methodologies with optimized reaction conditions for the proper synthesis of each heterocyclic unit have been determined successfully.

In the first chapter, important strategies for the synthetic improvement of such kind of pyridines, oxazepines and thiazepines were mainly stated from a detailed literature survey. Additionally, their natural and pharmaceutical importance were explored and supported with several examples.

Then, firstly, preparation of starting materials was described in a detail (Scheme 40). In the synthesis of α, β-alkynic ketones, Pd- and Cu-catalyzed Sonogashira cross-coupling reactions of aryl chlorides with terminal alkynes were used and many alkynic ketone derivatives were synthesized in $50-99 \%$ yields. Conjugate addition of propargyl amine to alkynic ketones gave the corresponding N propargylic β-enaminones in 61-98\% yields. Isolation of only Z isomers of β enaminones from these reactions was confirmed by the NOESY experiments. They were also further functionalized with aryl iodides by Sonogashira reaction to obtain phenyl-substituted N-propargylic β-enaminones in $83-96 \%$ yields. Then, they were subjected to electrophilic cyclization by using 3.0 equiv. of both I_{2} and NaHCO_{3} in refluxing ACN under open atmosphere. Thus, seven 5 -iodopyridine derivatives were synthesized in $47-80 \%$ yields. For the synthesis of N-propargylic thio- β enaminones, Lawesson's reagent (LR) was selected to be used due to their recent applications in the conversion of carbonyl groups to thiocarbonyl functiones. 20 derivatives of N-propargylic thio- β-enaminones were synthesized from their corresponding β-enaminone precursors by using 0.5 equiv. of $L R$ at room temperature and/or $60^{\circ} \mathrm{C}$ in 23-94\% yields.

After preparation of those starting materials, proper reaction conditions for the facile synthesis of target compounds were investigated. A series of optimization reactions were carried out to synthesize 5-alkynylpyridines by using representative phenyl-substituted 5-iodopyridine derivative. As a result of these reactions, the best yield (91%) was achieved by using 1.5 equiv. of terminal alkyne, $5 \mathrm{~mol} \%$ of $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ and $5 \mathrm{~mol} \%$ of CuI in DMF at $65{ }^{\circ} \mathrm{C}$. These optimized reaction conditions were employed for Sonogashira reaction of 5-iodopyridines with termi-
nal alkynes and 28 novel 5-alkynylpyridine derivatives were synthesized in 40$99 \%$ yields. These results were published in RSC Advances in $2016 .{ }^{97}$

In addition, an alternative reaction conditions (i.e., in CHCl_{3} at reflux conditions) was found for the ZnCl_{2}-mediated generation of monocyclic 1,4-oxazepines. This modified condition provided 19 derivatives of 1,4 -oxazepines in good to high yields ($66-95 \%$) with short reaction times ($1.5-12.0 \mathrm{~h}$) in most cases. Only in two cases, target 1,4-oxazepine compounds were isolated in 40% yields. On the other hand, ZnCl_{2}-mediated cyclization of phenyl-substituted N-propargylic β-enaminone afforded a corresponding pyridine derivative in 28% yield, instead of the related 1,4-oxazepine compounds. Also, conversion of alkyl-substituted 1,4-oxazepines to corresponding pyrrole derivatives during flash-column chromatography were observed to some extent and studied thoroughly in the presence of silica-gel $\left(\mathrm{SiO}_{2}\right)$. These new results were published together with early results in European Journal of Organic Chemistry in 2017. ${ }^{93}$

Moreover, the modified reaction conditions for the synthesis of 2,3-dihydro-1,4oxazepines were also imparted to the synthesis of thiazepines. By using 1.0 equiv. of ZnCl_{2} in refluxing $\mathrm{CHCl}_{3}, 20$ new 2,3-dihydro-1,4-thiazepines were synthesized from thionated N-propargylic β-enaminones in $67-90 \%$ yields. In these conditions, interestingly, phenyl-substituted N-propargylic thio- β-enaminone afforded the corresponding 1,4-thiazepine derivative in 63% yield in contrast to the case of its β-enaminone anlaogue.

Lastly, N-propargylic thio- β-enaminones were subjected to cyclization reaction to afford monocyclic 1,4-thiazepines and/or 5-methylpyridines under basic conditions. Many reactions regarding the optimization of the conditions were performed with phenyl-substituted N-propargylic thio- β-enaminone. In all cases, except for neat conditions, 5-methylpyridine compound was formed as the major product through the sulfur extrusion of the fully-unsaturated 1,4-thiazepine intermediate, which could not be isolated in any case. Running the reaction with 0.5 mL of DIPA for 0.3 mmol of starting material in DMF at room temperature was found the best reaction conditions. By using the optimized reaction conditions,
many methyl-substituted pyridine derivatives were synthesized in moderate to high yields (46-85\%), except for butyl-substituted one (13\%).

CHAPTER 4

EXPERIMENTAL

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 400 and 100 MHz , respectively. Chemical shifts are reported in parts per million (ppm) relative to CDCl_{3} (7.26 and 77.16 ppm in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, respectively). Coupling constants (J) are reported in Hertz (Hz), and spin multiplicities are presented by the following symbols: s (singlet), br s (broad singlet), d (doublet), t (triplet), q (quartet), m (multiplet). DEPT ${ }^{13} \mathrm{C}$ NMR information is given in parentheses as $\mathrm{C}, \mathrm{CH}, \mathrm{CH}_{2}$ and CH_{3}. Infrared spectra (IR) were recorded by using attenuated total reflection (ATR). Band positions are reported in reciprocal centimeters $\left(\mathrm{cm}^{-1}\right)$. Mass spectra (MS) and high resolution mass spectra (HRMS) were obtained by using Electrospray Ionization (ESI) with Micro-Tof; m / z values are reported (For each measurement, the mass scale was recalibrated with sodium formate clusters, and samples were dissolved and measured in MeOH or $\mathrm{CH}_{3} \mathrm{CN}$). Flash chromatography was performed using thick-walled glass columns and "flash grade" silica gel (230-400 mesh) or aluminium oxide (neutral, 70-230 mesh). Thin layer chromatography (TLC) was performed by using commercially prepared 0.25 mm silica gel or aluminium oxide (neutral) plates and visualization was effected with short wavelength UV lamp (254 nm). The relative proportions of solvents in chromatography solvent mixtures refer to the volume:volume ratio. All commercially available reagents were used directly without purification unless otherwise stated. All solvents used in reactions and chromatography were distilled and/or dried properly for purity. The inert atmosphere was created by slight positive pressure (ca. 0.1 psi) of argon. All glassware was dried in oven prior to use.

4.1 General Procedure for the Synthesis of α, β-Alkynic Ketones 63

A mixture of the corresponding aryl chloride $62(3.0 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.05$ $\mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(3.0 \mathrm{mmol})$ in anhydrous THF $(7.5 \mathrm{~mL})$ were stirred for 10 min at room temperature under argon. $\mathrm{CuI}(0.1 \mathrm{mmol})$ was then added and the reaction mixture was stirred for another 10 min . After the addition of the appropriate terminal alkyne 56 (2.5 mmol) over 15 min , the resulting mixture was stirred at room temperature for approximately 6 h (Note that the progress of the reaction was monitored by routine TLC for the disappearance of alkyne). After the reaction was completed, ethyl acetate (50 mL) was added, and the resulting solution was washed with $0.1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$ and subsequently with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL) in a separatory funnel. Then combined water phases were extracted with ethyl acetate (50 mL) again. After the layers were separated, organic phase was dried over MgSO_{4} and evaporated on a rotary evaporator to give the crude product, which was purified by flash chromatography on silica gel using hexane/ethyl acetate (19:1) as the eluent to afford the corresponding α, β-alkynic ketone $\mathbf{6 3}$.

4.1.1 1,3-Diphenylprop-2-yn-1-one (63a)

Benzoyl chloride (62a) ($421.7 \mathrm{mg}, 3.0 \mathrm{mmol}$) $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(36.0 \mathrm{mg}, 0.05 \mathrm{mmol})$, $\mathrm{Et}_{3} \mathrm{~N}$ ($303.6 \mathrm{mg}, 3.0 \mathrm{mmol}$), $\mathrm{CuI}(19.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ and phenylacetylene (56a) $(255.4 \mathrm{mg}, 2.5 \mathrm{mmol})$ were employed to afford $500.2 \mathrm{mg}(97 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.29-8.20(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.67(\mathrm{~m}, 2 \mathrm{H})$, 7.67-7.61 (m, 1H), 7.57-7.46 (m, 3H), 7.47-7.40 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 178.2(\mathrm{C}=\mathrm{O}), 137.1(\mathrm{C}), 134.3(\mathrm{CH}), 133.2(\mathrm{CH}), 130.9(\mathrm{CH}), 129.7$ $(\mathrm{CH}), 128.83(\mathrm{CH}), 128.77(\mathrm{CH}), 120.3(\mathrm{C}), 93.2(\mathrm{C}), 87.0(\mathrm{C})$. The spectral data were in agreement with those reported previously for this compound. ${ }^{98-102}$

4.1.2 3-(4-Methoxyphenyl)-1-phenylprop-2-yn-1-one (63b)

Benzoyl chloride (62a) ($421.7 \mathrm{mg}, 3.0 \mathrm{mmol}$) $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(36.0 \mathrm{mg}, 0.05 \mathrm{mmol})$,
$\mathrm{Et}_{3} \mathrm{~N}$ ($303.6 \mathrm{mg}, 3.0 \mathrm{mmol}$), $\mathrm{CuI}(19.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 4-ethynylanisole ($\mathbf{5 6 b}$) ($330.4 \mathrm{mg}, 2.5 \mathrm{mmol}$) were employed to afford 448.9 mg (76%) of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23-8.15(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.55(\mathrm{~m}, 3 \mathrm{H})$, 7.51-7.43 (m, 2H), 6.94-6.85 (m, 2H), $3.78(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 177.9 (C=O), 161.7 (C), 137.0 (C), 135.1 (CH), 133.9 (CH), 129.4 (CH), 128.5 $(\mathrm{CH}), 114.4(\mathrm{CH}), 111.8(\mathrm{C}), 94.3(\mathrm{C}), 86.9(\mathrm{C}), 55.3\left(\mathrm{OCH}_{3}\right)$. The spectral data were in agreement with those reported previously for this compound. ${ }^{98,100,102,103}$

4.1.3 3-(2-Methoxyphenyl)-1-phenylprop-2-yn-1-one (63c)

Benzoyl chloride (62a) ($421.7 \mathrm{mg}, 3.0 \mathrm{mmol}$) $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(36.0 \mathrm{mg}, 0.05 \mathrm{mmol})$, $\mathrm{Et}_{3} \mathrm{~N}$ ($303.6 \mathrm{mg}, 3.0 \mathrm{mmol}$), $\mathrm{CuI}(19.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 2-ethynylanisole (56c) ($330.4 \mathrm{mg}, 2.5 \mathrm{mmol}$) were employed to afford 460.7 mg (78%) of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.34-8.28(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.54(\mathrm{~m}, 2 \mathrm{H})$, 7.52-7.45 (m, 2H), 7.40 (ddd, $J=8.5,7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.87(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.1$ (C=O), 161.9 (C), 137.1 (C), 134.9 $(\mathrm{CH}), 133.9(\mathrm{CH}), 132.7(\mathrm{CH}), 129.7(\mathrm{CH}), 128.5(\mathrm{CH}), 120.7(\mathrm{CH}), 110.9(\mathrm{CH})$, $109.3(\mathrm{C}), 91.2(\mathrm{C}), 90.6(\mathrm{C}), 55.9\left(\mathrm{OCH}_{3}\right)$. The spectral data were in agreement with those reported previously for this compound. ${ }^{100}$

4.1.4 1-Phenyl-3-(p-tolyl)prop-2-yn-1-one (63d)

Benzoyl chloride (62a) ($421.7 \mathrm{mg}, 3.0 \mathrm{mmol}$) $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(36.0 \mathrm{mg}, 0.05 \mathrm{mmol})$, $\mathrm{Et}_{3} \mathrm{~N}(303.6 \mathrm{mg}, 3.0 \mathrm{mmol}), \mathrm{CuI}(19.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 4-ethynyltoluene ($\mathbf{5 6 d}$) ($290.4 \mathrm{mg}, 2.5 \mathrm{mmol}$) were employed to afford $446.1 \mathrm{mg}(81 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.27-8.19(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.50$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 178.0(\mathrm{C}=\mathrm{O}), 141.6(\mathrm{C}), 136.9(\mathrm{C}), 134.0(\mathrm{CH}), 133.1(\mathrm{CH}), 129.5(\mathrm{CH})$, $128.6(\mathrm{CH}), 117.0(\mathrm{C}), 93.9(\mathrm{C}), 86.8(\mathrm{C}), 21.8\left(\mathrm{CH}_{3}\right)($ Note that two CH peaks overlap on each other). The spectral data were in agreement with those reported previously for this compound. ${ }^{98,100,101,103,104}$

4.1.5 1-Phenyl-3-(m-tolyl)prop-2-yn-1-one (63e)

Benzoyl chloride (62a) ($421.7 \mathrm{mg}, 3.0 \mathrm{mmol}) \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(36.0 \mathrm{mg}, 0.05 \mathrm{mmol})$, $\mathrm{Et}_{3} \mathrm{~N}(303.6 \mathrm{mg}, 3.0 \mathrm{mmol}), \mathrm{CuI}(19.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 3-ethynyltoluene (56e) ($290.4 \mathrm{mg}, 2.5 \mathrm{mmol}$) were employed to afford $523.1 \mathrm{mg}(95 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.27-8.22(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.60(\mathrm{~m}, 1 \mathrm{H})$, 7.56-7.46 (m, 4H), 7.34-7.26 (m, 2H), $2.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 177.9 ($\mathrm{C}=\mathrm{O}$), 138.5 (C), 136.9 (C), $134.0(\mathrm{CH}), 133.5(\mathrm{CH}), 131.7(\mathrm{CH}), 130.2$ $(\mathrm{CH}), 129.5(\mathrm{CH}), 128.59(\mathrm{CH}), 128.57(\mathrm{CH}), 119.9(\mathrm{C}), 93.5(\mathrm{C}), 86.7(\mathrm{C}), 21.1$ $\left(\mathrm{CH}_{3}\right)$. The spectral data were in agreement with those reported previously for this compound. ${ }^{101,103,104}$

4.1.6 1-Phenyl-3-(4-(trifluoromethyl)phenyl)prop-2-yn-1-one (63f)

Benzoyl chloride (62a) ($421.7 \mathrm{mg}, 3.0 \mathrm{mmol}) \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(36.0 \mathrm{mg}, 0.05 \mathrm{mmol})$, $\mathrm{Et}_{3} \mathrm{~N}$ ($303.6 \mathrm{mg}, 3.0 \mathrm{mmol}$), $\mathrm{CuI}(19.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 4-ethynyl- $\alpha, \alpha, \alpha-$ trifluorotoluene ($\mathbf{5 6 f}$) $(425.3 \mathrm{mg}, 2.5 \mathrm{mmol})$ were employed to afford 411.4 mg (60%) of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.20-8.10(\mathrm{~m}, 2 \mathrm{H})$, $7.72(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.51-7.42(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.8(\mathrm{C}=\mathrm{O}), 136.7(\mathrm{C}), 134.6(\mathrm{CH}), 133.3(\mathrm{CH}), 132.4\left(\mathrm{q},{ }^{2} \mathrm{~J}=\right.$ $32.5 \mathrm{~Hz}, \mathrm{C}$), $129.8(\mathrm{CH}), 128.9(\mathrm{CH}), 125.8\left(\mathrm{q},{ }^{3} J=3.7 \mathrm{~Hz}, \mathrm{CH}\right)$, 124.1 (C), 123.2 ($\mathrm{q},{ }^{1} J=272.7 \mathrm{~Hz}, \mathrm{CF}_{3}$), 90.6 (C), 88.2 (C). The spectral data were in agreement with those reported previously for this compound. ${ }^{103,105}$

4.1.7 3-(4-(Dimethylamino)phenyl)-1-phenylprop-2-yn-1-one (63g)

Benzoyl chloride (62a) ($421.7 \mathrm{mg}, 3.0 \mathrm{mmol}$) $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(36.0 \mathrm{mg}, 0.05 \mathrm{mmol})$, $\mathrm{Et}_{3} \mathrm{~N}(303.6 \mathrm{mg}, 3.0 \mathrm{mmol})$, $\mathrm{CuI}(19.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 4-ethynyl- $\mathrm{N}, \mathrm{N}-$ dimethylaniline ($\mathbf{5 6 g}$) ($363.0 \mathrm{mg}, 2.5 \mathrm{mmol}$) were employed to afford 592.1 mg (95%) of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29-8.20(\mathrm{~m}, 2 \mathrm{H})$, $7.65-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.52(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.69-6.61(\mathrm{~m}, 2 \mathrm{H}), 3.0(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 177.9$ (C=O), $151.8(\mathrm{C}), 137.4(\mathrm{C}), 135.2(\mathrm{CH}), 133.5$ $(\mathrm{CH}), 129.3(\mathrm{CH}), 128.5(\mathrm{CH}), 111.6(\mathrm{CH}), 105.4(\mathrm{C}), 97.8(\mathrm{C}), 87.9(\mathrm{C}), 39.9$ $\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$. The spectral data were in agreement with those reported previously for this compound. ${ }^{106}$

4.1.8 3-(3-Fluorophenyl)-1-phenylprop-2-yn-1-one (63h)

Benzoyl chloride (62a) ($421.7 \mathrm{mg}, 3.0 \mathrm{mmol}$) $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(36.0 \mathrm{mg}, 0.05 \mathrm{mmol})$, $\mathrm{Et}_{3} \mathrm{~N}$ ($303.6 \mathrm{mg}, 3.0 \mathrm{mmol}$), $\mathrm{CuI}(19.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 1-ethynyl-3fluorobenzene ($\mathbf{5 6 h}$) ($300.3 \mathrm{mg}, 2.5 \mathrm{mmol}$) were employed to afford 330.7 mg (59%) of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09-7.98(\mathrm{~m}, 2 \mathrm{H})$, $7.50-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{dt}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.18$ $(\mathrm{m}, 1 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{tdd}, J=8.4,2.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.5(\mathrm{C}=\mathrm{O}), 162.1\left(\mathrm{~d},{ }^{1} J=248.2 \mathrm{~Hz}, \mathrm{CF}\right), 136.6(\mathrm{C}), 134.2(\mathrm{CH})$, $130.4\left(\mathrm{~d},{ }^{3} J=8.4 \mathrm{~Hz}, \mathrm{CH}\right), 129.4(\mathrm{CH}), 128.8\left(\mathrm{~d},{ }^{4} J=3.1 \mathrm{~Hz}, \mathrm{CH}\right), 128.6(\mathrm{CH})$, $121.8\left(\mathrm{~d},{ }^{3} J=9.1 \mathrm{~Hz}, \mathrm{C}\right), 119.5\left(\mathrm{~d},{ }^{2} J=23.3 \mathrm{~Hz}, \mathrm{CH}\right), 118.1\left(\mathrm{~d},{ }^{2} J=21.2 \mathrm{~Hz}, \mathrm{CH}\right)$, $90.9\left(\mathrm{~d},{ }^{4} J=3.4 \mathrm{~Hz}, \mathrm{C}\right), 87.1$ (C). The spectral data were in agreement with those reported previously for this compound. ${ }^{102}$

4.1.9 3-(2-Bromophenyl)-1-phenylprop-2-yn-1-one (63i)

Benzoyl chloride (62a) ($421.7 \mathrm{mg}, 3.0 \mathrm{mmol}$) $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(36.0 \mathrm{mg}, 0.05 \mathrm{mmol})$, $\mathrm{Et}_{3} \mathrm{~N}$ ($303.6 \mathrm{mg}, 3.0 \mathrm{mmol}$), CuI ($19.1 \mathrm{mg}, 0.1 \mathrm{mmol}$) and 1-bromo-2ethynylbenzene ($\mathbf{5 6 i} \mathbf{)}$) $452.6 \mathrm{mg}, 2.5 \mathrm{mmol}$) were employed to afford 605.9 mg (85%) of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10$ (dd, $J=5.2$, $3.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.47$ (dd, $J=7.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.5,2 \mathrm{H})$, 7.18-7.05 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.7$ (C=O), 136.8 (C), 135.3 $(\mathrm{CH}), 134.3(\mathrm{CH}), 132.8(\mathrm{CH}), 131.9(\mathrm{CH}), 129.8(\mathrm{CH}), 128.7(\mathrm{CH}), 127.4(\mathrm{CH})$, 126.8 (C), 122.7 (C), 90.6 (C), 90.4 (C). The spectral data were in agreement with those reported previously for this compound. ${ }^{107}$

4.1.10 3-(4-(tert-Butyl)phenyl)-1-phenylprop-2-yn-1-one (63j)

Benzoyl chloride (62a) ($421.7 \mathrm{mg}, 3.0 \mathrm{mmol}$) $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(36.0 \mathrm{mg}, 0.05 \mathrm{mmol})$, $\mathrm{Et}_{3} \mathrm{~N}$ ($303.6 \mathrm{mg}, 3.0 \mathrm{mmol}$), $\mathrm{CuI}(19.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 1-(tert-butyl)-4ethynylbenzene ($\mathbf{5 6 j}$) ($452.6 \mathrm{mg}, 2.5 \mathrm{mmol}$) were employed to afford 605.9 mg (94\%) of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.27-8.22 (m, 2 H), 7.65-7.57 (m, 3H), 7.50 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.8$ (C=O), 154.4 (C), 136.9 (C), 133.9 (CH), 132.9 $(\mathrm{CH}), 129.4(\mathrm{CH}), 128.5(\mathrm{CH}), 125.7(\mathrm{CH}), 116.9(\mathrm{C}), 93.7(\mathrm{C}), 86.7(\mathrm{C}), 34.9(\mathrm{C})$, $30.9\left(\mathrm{CH}_{3}\right)$. The spectral data were in agreement with those reported previously for this compound. ${ }^{106,108}$

4.1.11 2-(5-Oxo-5-phenylpent-3-yn-1-yl)isoindoline-1,3-dione (63k)

Benzoyl chloride (62a) ($421.7 \mathrm{mg}, 3.0 \mathrm{mmol}$) $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(36.0 \mathrm{mg}, 0.05 \mathrm{mmol})$, $\mathrm{Et}_{3} \mathrm{~N} \quad(303.6 \mathrm{mg}, 3.0 \mathrm{mmol}), \mathrm{CuI}(19.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ and N -(3butynyl)phthalimide (56k) ($498.0 \mathrm{mg}, 2.5 \mathrm{mmol}$) were employed to afford 477.7 $\mathrm{mg}(63 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.07-8.03 (m, $2 \mathrm{H}), 7.89-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.32(\mathrm{~m}$, $2 \mathrm{H}), 4.01(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.8(\mathrm{C}=\mathrm{O}), 167.9(\mathrm{C}=\mathrm{O}), 136.6(\mathrm{C}), 134.3(\mathrm{CH}), 134.1(\mathrm{CH}), 132.0(\mathrm{C}), 129.7$ $(\mathrm{CH}), 128.6(\mathrm{CH}), 123.6(\mathrm{CH}), 91.5(\mathrm{C}), 80.9(\mathrm{C}), 35.8\left(\mathrm{CH}_{2}\right), 19.2\left(\mathrm{CH}_{2}\right)$; IR (neat): $3069,2670,2234,1769,1706,1686,1638,1594,1578,1451,1425,1391$, 1362, 1310, 1281, 1256, 1177, 1111, 1071, 993, 866, 797, $702 \mathrm{~cm}^{-1}$; MS (ESI, m / z): $304.10[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{NO}_{3}: 304.0968[\mathrm{M}+\mathrm{H}]^{+}$, found: 304.0975.

4.1.12 1-Phenylhept-2-yn-1-one (631)

Benzoyl chloride (62a) ($421.7 \mathrm{mg}, 3.0 \mathrm{mmol}$) $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(36.0 \mathrm{mg}, 0.05 \mathrm{mmol})$, $\mathrm{Et}_{3} \mathrm{~N}$ ($303.6 \mathrm{mg}, 3.0 \mathrm{mmol}$), $\mathrm{CuI}(19.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 1-hexyne (561) (205.4
$\mathrm{mg}, 2.5 \mathrm{mmol})$ were employed to afford $437.7 \mathrm{mg}(94 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.17-8.10(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.44(\mathrm{~m}$, $2 \mathrm{H}), 2.50(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.66(\mathrm{p}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.51$ (sextet, $J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.1(\mathrm{C}=\mathrm{O}), 136.9$ (C), $133.8(\mathrm{CH}), 129.4(\mathrm{CH}), 128.4(\mathrm{CH}), 96.7(\mathrm{C}), 79.6(\mathrm{C}), 29.8\left(\mathrm{CH}_{2}\right), 22.0$ $\left(\mathrm{CH}_{2}\right), 18.8\left(\mathrm{CH}_{2}\right), 13.4\left(\mathrm{CH}_{3}\right)$. The spectral data were in agreement with those reported previously for this compound. ${ }^{99,100}$

4.1.13 1-Phenyl-3-(thiophen-3-yl)prop-2-yn-1-one (63m)

Benzoyl chloride (62a) ($421.7 \mathrm{mg}, 3.0 \mathrm{mmol}$) $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(36.0 \mathrm{mg}, 0.05 \mathrm{mmol})$, $\mathrm{Et}_{3} \mathrm{~N}(303.6 \mathrm{mg}, 3.0 \mathrm{mmol}), \mathrm{CuI}(19.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 3-ethynylthiophene ($\mathbf{5 6 m}$) ($270.4 \mathrm{mg}, 2.5 \mathrm{mmol}$) were employed to afford $461.7 \mathrm{mg}(87 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.26-8.17(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{dd}, J=$ $3.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{dd}, J=5.0,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32(\mathrm{dd}, J=5.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.1(\mathrm{C}=\mathrm{O})$, $137.0(\mathrm{C}), 134.2(\mathrm{CH}), 134.0(\mathrm{CH}), 130.4(\mathrm{CH}), 129.6(\mathrm{CH}), 128.7(\mathrm{CH}), 126.4$ (CH), 119.5 (C), 88.6 (C), 87.3 (C). IR (neat): 3105, 3063, 2184, 1631, 1266, 1217, 1167, 1032, 1014, 784, 695, 652, $625 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $213.04[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI): calcd. for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{OS}: 213.0369[\mathrm{M}+\mathrm{H}]^{+}$, found: 213.0392.

4.1.14 1-(2-Bromophenyl)-3-phenylprop-2-yn-1-one (63n)

2-Bromobenzoyl chloride ($\mathbf{6 2 b}$) $(658.4 \mathrm{mg}, 3.0 \mathrm{mmol}) \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(36.0 \mathrm{mg}, 0.05$ $\mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ ($303.6 \mathrm{mg}, 3.0 \mathrm{mmol}$), $\mathrm{CuI}(19.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ and phenylacetylene (56a) ($255.4 \mathrm{mg}, 2.5 \mathrm{mmol}$) were employed to afford 356.5 mg (50%) of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10-8.05(\mathrm{~m}, 1 \mathrm{H}), 7.72-7.68(\mathrm{~m}$, 1 H), 7.66-7.61 (m, 2H), 7.51-7.34 (m, 5H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.6$ $(\mathrm{C}=\mathrm{O}), 137.6(\mathrm{C}), 135.0(\mathrm{CH}), 133.5(\mathrm{CH}), 133.2(\mathrm{CH}), 132.8(\mathrm{CH}), 131.1(\mathrm{CH})$, $128.8(\mathrm{CH}), 127.5(\mathrm{CH}), 121.3(\mathrm{C}), 120.1(\mathrm{C}), 94.3(\mathrm{C}), 88.1(\mathrm{C})$. The spectral data were in agreement with those reported previously for this compound. ${ }^{109}$

4.1.15 1-(2-Bromophenyl)-3-(4-methoxyphenyl)prop-2-yn-1-one (630)

2-Bromobenzoyl chloride (62b) ($658.4 \mathrm{mg}, 3.0 \mathrm{mmol}$) $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(36.0 \mathrm{mg}, 0.05$ $\mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(303.6 \mathrm{mg}, 3.0 \mathrm{mmol}), \mathrm{CuI}(19.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 4-ethynylanisole (56b) $(330.4 \mathrm{mg}, 2.5 \mathrm{mmol})$ were employed to afford $527.9 \mathrm{mg}(67 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{dd}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.69(\mathrm{dd}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.37(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.89(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.7(\mathrm{C}=\mathrm{O}), 162.1(\mathrm{C}), 138.1(\mathrm{C}), 135.4(\mathrm{CH}), 135.0(\mathrm{CH}), 133.2$ $(\mathrm{CH}), 132.6(\mathrm{CH}), 127.5(\mathrm{CH}), 121.2(\mathrm{C}), 114.6(\mathrm{CH}), 111.9(\mathrm{C}), 95.8(\mathrm{C}), 88.3$ (C), $55.6\left(\mathrm{OCH}_{3}\right)$. The spectral data were in agreement with those reported previously for this compound. ${ }^{110}$

4.1.16 1-(2-Bromophenyl)-3-(2-methoxyphenyl)prop-2-yn-1-one (63p)

2-Bromobenzoyl chloride (62b) ($658.4 \mathrm{mg}, 3.0 \mathrm{mmol}) \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(36.0 \mathrm{mg}, 0.05$ $\mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(303.6 \mathrm{mg}, 3.0 \mathrm{mmol}), \mathrm{CuI}(19.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 2-ethynylanisole (56c) ($330.4 \mathrm{mg}, 2.5 \mathrm{mmol}$) were employed to afford $614.6 \mathrm{mg}(78 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.66(\mathrm{dd}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, \mathrm{J}=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 2 \mathrm{H})$, $7.34(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{td}, J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.2(\mathrm{C}=\mathrm{O}), 161.9(\mathrm{C}), 137.2$ (C), $134.96(\mathrm{CH}), 134.92(\mathrm{CH}), 133.6(\mathrm{CH}), 133.3(\mathrm{CH}), 132.9(\mathrm{CH}), 127.3(\mathrm{CH})$, $121.2(\mathrm{C}), 120.7(\mathrm{CH}), 110.9(\mathrm{CH}), 109.1(\mathrm{C}), 92.1(\mathrm{C}), 91.4(\mathrm{C}), 55.9\left(\mathrm{OCH}_{3}\right)$. The spectral data were in agreement with those reported previously for this compound. ${ }^{110}$

4.1.17 1-(2-Bromophenyl)-3-(p-tolyl)prop-2-yn-1-one (63q)

2-Bromobenzoyl chloride (62b) ($658.4 \mathrm{mg}, 3.0 \mathrm{mmol}) \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(36.0 \mathrm{mg}, 0.05$ $\mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(303.6 \mathrm{mg}, 3.0 \mathrm{mmol}), \mathrm{CuI}(19.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 4-ethynyltoluene
($\mathbf{5 6 d}$) ($290.4 \mathrm{mg}, 2.5 \mathrm{mmol}$) were employed to afford 456.2 mg (61%) of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06(\mathrm{dd}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.70(\mathrm{dd}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.37(\mathrm{td}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.7(\mathrm{C}=\mathrm{O}), 141.9(\mathrm{C}), 137.9(\mathrm{C}), 135.0(\mathrm{CH}), 133.33(\mathrm{CH})$, $133.29(\mathrm{CH}), 132.8(\mathrm{CH}), 129.6(\mathrm{CH}), 127.5(\mathrm{CH}), 121.3(\mathrm{C}), 117.0(\mathrm{C}), 95.1(\mathrm{C})$, $88.1(\mathrm{C}), 21.9\left(\mathrm{CH}_{3}\right)$. The spectral data were in agreement with those reported previously for this compound. ${ }^{110}$

4.1.18 1-(2-Bromophenyl)-3-(m-tolyl)prop-2-yn-1-one (63r)

2-Bromobenzoyl chloride (62b) $(658.4 \mathrm{mg}, 3.0 \mathrm{mmol}) \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(36.0 \mathrm{mg}, 0.05$ $\mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ ($303.6 \mathrm{mg}, 3.0 \mathrm{mmol}$), $\mathrm{CuI}(19.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 3-ethynyltoluene (56e) ($290.4 \mathrm{mg}, 2.5 \mathrm{mmol}$) were employed to afford $463.7 \mathrm{mg}(62 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{dd}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.60(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=10.7,4.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.28(\mathrm{td}, J=7.7,1.6 \mathrm{~Hz}$, 1H), 7.23-7.16 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.6$ ($\mathrm{C}=\mathrm{O}$), 138.6 (C), 137.7 (C), $135.0(\mathrm{CH}), 133.6(\mathrm{CH}), 133.4(\mathrm{CH}), 132.8(\mathrm{CH}), 132.0(\mathrm{CH}), 130.4$ (CH), 128.7 (CH), 127.5 (CH), 121.3 (C), 119.9 (C), 94.7 (C), 87.8 (C), 21.3 $\left(\mathrm{CH}_{3}\right)$; IR (neat): $2918,2185,1646,1584,1562,1482,1463,1430,1300,1262$, 1221, 1127, 1063, 1017, 901, 783, $737 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $299.01[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{12}{ }^{79} \mathrm{BrO}$: $299.0066[\mathrm{M}+\mathrm{H}]^{+}$, found: 299.0070.

4.1.19 1-(2-Bromophenyl)-3-(4-(trifluoromethyl)phenyl)prop-2-yn-1-one (63s)

2-Bromobenzoyl chloride (62b) ($658.4 \mathrm{mg}, 3.0 \mathrm{mmol}$) $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(36.0 \mathrm{mg}, 0.05$ $\mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(303.6 \mathrm{mg}, 3.0 \mathrm{mmol}), \mathrm{CuI}(19.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 4-ethynyl- $\alpha, \alpha, \alpha-$ trifluorotoluene ($\mathbf{5 6 f}$) $(425.3 \mathrm{mg}, 2.5 \mathrm{mmol})$ were employed to afford 679.8 mg (77%) of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{dd}, J=7.7$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=$
$8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{td}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.2(\mathrm{C}=\mathrm{O}), 137.2(\mathrm{C}), 135.2(\mathrm{CH}), 133.8(\mathrm{CH}), 133.3(\mathrm{CH})$, $133.0(\mathrm{CH}), 132.5\left(\mathrm{q},{ }^{2} J=32.9 \mathrm{~Hz}, \mathrm{C}\right), 127.6(\mathrm{CH}), 125.7\left(\mathrm{q},{ }^{3} J=3.8 \mathrm{~Hz}, \mathrm{CH}\right)$, 123.9 (C), 123.6 (q, ${ }^{1} J=272.8 \mathrm{~Hz}, \mathrm{CF}_{3}$), 121.5 (C), 91.6 (C), 89.1 (C); IR (neat): $3058,2200,1648,1611,1583,1562,1462,1432,1402,1318,1296,1275,1203$, 1172, 1119, 1105, 1067, 1055, 1014, 999, 849, $780 \mathrm{~cm}^{-1}$.

4.1.20 1-(2-Bromophenyl)-3-(3-fluorophenyl)prop-2-yn-1-one (63t)

2-Bromobenzoyl chloride (62b) ($658.4 \mathrm{mg}, 3.0 \mathrm{mmol}$) $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(36.0 \mathrm{mg}, 0.05$ $\mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ ($303.6 \mathrm{mg}, 3.0 \mathrm{mmol}$), $\mathrm{CuI}(19.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 1-ethynyl-3fluorobenzene ($\mathbf{5 6 h}$) ($300.3 \mathrm{mg}, 2.5 \mathrm{mmol}$) were employed to afford 530.5 mg (70%) of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06$ (dd, $J=7.7$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 1 \mathrm{H})$, 7.18 (tdd, $J=8.3,2.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.1(\mathrm{C}=\mathrm{O})$, $162.2\left(\mathrm{~d},{ }^{1} J=248.4 \mathrm{~Hz}, \mathrm{CF}\right), 137.1$ (C), $135.0(\mathrm{CH}), 133.6(\mathrm{CH}), 132.8(\mathrm{CH})$, 130.5 (d, ${ }^{3} J=8.6 \mathrm{~Hz}, \mathrm{CH}$), 129.0 (d, ${ }^{4} J=3.0 \mathrm{~Hz}, \mathrm{CH}$), 127.5 (CH), 121.8 (d, ${ }^{3} J=$ $9.4 \mathrm{~Hz}, \mathrm{C}), 121.3(\mathrm{C}), 119.6\left(\mathrm{~d},{ }^{2} J=23.1 \mathrm{~Hz}, \mathrm{CH}\right), 118.4\left(\mathrm{~d},{ }^{2} J=21.2 \mathrm{~Hz}, \mathrm{CH}\right)$, 92.1 (d, ${ }^{4} J=3.2 \mathrm{~Hz}, \mathrm{C}$), 88.1 (C); IR (neat): 3071, 2191, 1648, 1575, 1482, 1463, 1426, 1297, 1264, 1219, 1148, 1129, 1078, 1059, 1010, 999, 958, 864, 790, 778 cm^{-1}; MS (ESI, m/z): $302.98[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{9}{ }^{79} \mathrm{BrFO}$: $302.9815[\mathrm{M}+\mathrm{H}]^{+}$, found: 302.9823 .

4.1.21 1,3-Bis(2-bromophenyl)prop-2-yn-1-one (63u)

2-Bromobenzoyl chloride (62b) ($658.4 \mathrm{mg}, 3.0 \mathrm{mmol}$) $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(36.0 \mathrm{mg}, 0.05$ $\mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ ($303.6 \mathrm{mg}, 3.0 \mathrm{mmol}$), $\mathrm{CuI}(19.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 1-bromo-2ethynylbenzene ($\mathbf{5 6 i} \mathbf{)}$ ($452.6 \mathrm{mg}, 2.5 \mathrm{mmol}$) were employed to afford 582.5 mg (64%) of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.19$ (dd, $J=7.7$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{td}, J=7.6,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32-7.16(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.9(\mathrm{C}=\mathrm{O}), 136.7(\mathrm{C})$,
$135.22(\mathrm{CH}), 135.15(\mathrm{CH}), 133.8(\mathrm{CH}), 133.7(\mathrm{CH}), 132.9(\mathrm{CH}), 132.1(\mathrm{CH})$, $127.5(\mathrm{CH}), 126.9$ (C), 122.5 (C), 121.4 (C), 91.4 (C), 91.0 (C) (Note that two CH peaks overlap on each other); IR (neat): 3051, 2188, 1647, 1581, 1562, 1463, 1431, 1293, 1272, 1244, 1202, 1131, 1059, 1044, 1027, 997, 946, 820, $754 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (ESI, m/z): 362.90 and $364.90[M+H]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{9}{ }^{79} \mathrm{Br}_{2} \mathrm{O}$: $362.9015[\mathrm{M}+\mathrm{H}]^{+}$, found: 362.9018 ; calcd. for $\mathrm{C}_{15} \mathrm{H}_{9}{ }^{79} \mathrm{Br}^{81} \mathrm{BrO}: 364.8895[\mathrm{M}+\mathrm{H}]^{+}$, found: 364.9001 .

4.1.22 1-(4-Methoxyphenyl)-3-phenylprop-2-yn-1-one (63v)

4-Methoxybenzoyl chloride (62c) $(511.8 \mathrm{mg}, 3.0 \mathrm{mmol}) \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(36.0 \mathrm{mg}$, $0.05 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(303.6 \mathrm{mg}, 3.0 \mathrm{mmol}), \mathrm{CuI}(19.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ and phenylacetylene (56a) ($255.4 \mathrm{mg}, 2.5 \mathrm{mmol}$) were employed to afford 584.8 mg (99\%) of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22-8.17(\mathrm{~m}, 2 \mathrm{H})$, 7.70-7.64 (m, 2H), 7.50-7.44 (m, 1H), $7.41(\mathrm{tt}, J=6.8,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-6.95(\mathrm{~m}$, $2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.8(\mathrm{C}=\mathrm{O}), 164.6(\mathrm{C}), 133.1$ $(\mathrm{CH}), 132.1(\mathrm{CH}), 130.7(\mathrm{CH}), 130.5(\mathrm{C}), 128.8(\mathrm{CH}), 120.5(\mathrm{C}), 114.0(\mathrm{CH}), 92.4$ (C), $87.1(\mathrm{C}), 55.7\left(\mathrm{CH}_{3}\right)$. The spectral data were in agreement with those reported previously for this compound. ${ }^{98,100}$

4.1.23 3-Phenyl-1-(p-tolyl)prop-2-yn-1-one (63w)

4-Methylbenzoyl chloride (62d) ($463.8 \mathrm{mg}, 3.0 \mathrm{mmol}$) $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(36.0 \mathrm{mg}$, $0.05 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(303.6 \mathrm{mg}, 3.0 \mathrm{mmol})$, $\mathrm{CuI}(19.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ and phenylacetylene (56a) ($255.4 \mathrm{mg}, 2.5 \mathrm{mmol}$) were employed to afford 523.2 mg (95\%) of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13-8.10(\mathrm{~m}, 2 \mathrm{H})$, 7.70-7.66 (m, 2H), 7.51-7.45 (m, 1H), 7.44-7.38 (m, 2H), $7.31(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $2.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.8$ (C=O), 145.3 (C), 134.7 (C), $133.1(\mathrm{CH}), 130.8(\mathrm{CH}), 129.8(\mathrm{CH}), 129.5(\mathrm{CH}), 128.8(\mathrm{CH}), 120.4(\mathrm{C}), 92.7(\mathrm{C})$, $87.1(\mathrm{C}), 21.9\left(\mathrm{CH}_{3}\right)$. The spectral data were in agreement with those reported previously for this compound. ${ }^{98,100}$

4.1.24 3-(Thiophen-3-yl)-1-(p-tolyl)prop-2-yn-1-one (63x)

4-Methylbenzoyl chloride (62d) ($463.8 \mathrm{mg}, 3.0 \mathrm{mmol}$) $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(36.0 \mathrm{mg}$, $0.05 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(303.6 \mathrm{mg}, 3.0 \mathrm{mmol})$, $\mathrm{CuI}(19.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $3-$ ethynylthiophene ($\mathbf{5 6 m}$) $(270.4 \mathrm{mg}, 2.5 \mathrm{mmol})$ were employed to afford 418.8 mg (74\%) of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.83(\mathrm{dd}, J=2.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=5.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.28(\mathrm{~m}$, $3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.8(\mathrm{C}=\mathrm{O}), 145.3(\mathrm{C}), 134.7$ (C), $133.8(\mathrm{CH}), 130.4(\mathrm{CH}), 129.8(\mathrm{CH}), 129.4(\mathrm{CH}), 126.3(\mathrm{CH}), 119.6(\mathrm{C}), 88.1$ (C), $87.3(\mathrm{C}), 21.9\left(\mathrm{CH}_{3}\right)$.

4.1.25 1-(4-Chlorophenyl)-3-phenylprop-2-yn-1-one (63y)

4-Chlorobenzoyl chloride (62e) ($525.1 \mathrm{mg}, 3.0 \mathrm{mmol}$) $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(36.0 \mathrm{mg}, 0.05$ $\mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(303.6 \mathrm{mg}, 3.0 \mathrm{mmol}), \mathrm{CuI}(19.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ and phenylacetylene ($\mathbf{5 6 a}$) ($255.4 \mathrm{mg}, 2.5 \mathrm{mmol}$) were employed to afford 595.7 mg (99%) of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19-8.13(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.65(\mathrm{~m}$, $2 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.8$ $(\mathrm{C}=\mathrm{O}), 140.8(\mathrm{C}), 135.5(\mathrm{C}), 133.2(\mathrm{CH}), 131.1(\mathrm{CH}), 131.0(\mathrm{CH}), 129.1(\mathrm{CH})$, $128.9(\mathrm{CH}), 120.0(\mathrm{C}), 93.8(\mathrm{C}), 86.7$ (C). The spectral data were in agreement with those reported previously for this compound. ${ }^{100,111}$

4.1.26 1-(4-Chlorophenyl)-3-(3-fluorophenyl)prop-2-yn-1-one (63z)

4-Chlorobenzoyl chloride (62e) ($525.0 \mathrm{mg}, 3.0 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(36.0 \mathrm{mg}$, $0.05 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(303.6 \mathrm{mg}, 3.0 \mathrm{mmol}), \mathrm{CuI}(19.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 1-ethynyl-3-fluorobenzene ($\mathbf{5 6 h}$) ($300.3 \mathrm{mg}, 2.5 \mathrm{mmol}$) were employed to afford 517.3 mg (80%) of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17-8.10(\mathrm{~m}, 2 \mathrm{H})$, $7.53-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{ddd}, J=8.9,2.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ $(\operatorname{tdd}, J=8.4,2.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.5(\mathrm{C}=\mathrm{O}), 162.4$ (d, $\left.{ }^{1} J=248.7 \mathrm{~Hz}, \mathrm{CF}\right), 141.0$ (C), 135.2 (C), 131.0 (CH), 130.6 (d, ${ }^{3} J=8.4 \mathrm{~Hz}$,

CH), 129.2 (CH), $129.1\left(\mathrm{~d},{ }^{4} J=3.1 \mathrm{~Hz}, \mathrm{CH}\right), 121.8\left(\mathrm{~d},{ }^{3} J=9.3 \mathrm{~Hz}, \mathrm{C}\right), 119.8\left(\mathrm{~d},{ }^{2} J\right.$ $=23.3 \mathrm{~Hz}, \mathrm{CH}$), 118.5 (d, ${ }^{2} J=20.9 \mathrm{~Hz}, \mathrm{CH}$), $91.7\left(\mathrm{~d},{ }^{4} J=3.2 \mathrm{~Hz}, \mathrm{C}\right), 86.9(\mathrm{C})$; IR (neat): 3059, 2203, 1634, 1582, 1481, 1428, 1399, 1360, 1305, 1248, 1168, 1154, $1108,1088,1031,1009,954,890,784 \mathrm{~cm}^{-1}$.

4.2 General Procedure for the Synthesis of \boldsymbol{N}-Propargylic $\boldsymbol{\beta}$-Enaminones 32

To a stirred solution of the corresponding α, β-alkynic ketone $\mathbf{6 3}(2.5 \mathrm{mmol})$ in absolute $\mathrm{MeOH}(10 \mathrm{~mL})$ was added propargylamine $(3.0 \mathrm{mmol})$ and the resulting mixture was heated at reflux conditions $\left(65{ }^{\circ} \mathrm{C}\right)$ for approximately 6 h (Note that the progress of the reaction was monitored by routine TLC for the disappearance of alkynic ketone). After the reaction was over, the solvent was removed on a rotary evaporator, and ethyl acetate (50 mL) and a saturated NaCl solution (50 mL) were added. After the layers were separated, the aqueous layer was extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4} and evaporated on a rotary evaporator to give the crude product, which was purified by flash chromatography on silica gel using hexane/ethyl acetate ($9: 1$ followed by 4:1) as the eluent to afford the corresponding β-enaminone 32.

4.2.1 1,3-Diphenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (32a)

1,3-Diphenylprop-2-yn-1-one (63a) ($515.6 \mathrm{mg}, 2.5 \mathrm{mmol}$) and propargylamine $(165.3 \mathrm{mg}, 3.0 \mathrm{mmol})$ were employed to afford $633.8 \mathrm{mg}(97 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.95-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.55-$ 7.37 (m, 8H), 5.85 (br s, 1H), $3.95(\mathrm{dd}, J=6.3,2.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.31 (t, $J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.3$ (C=O), 166.0 (C), 140.1 (C), 135.1 (C), $131.1(\mathrm{CH}), 130.0(\mathrm{CH}), 128.8(\mathrm{CH}), 128.4(\mathrm{CH}), 128.0(\mathrm{CH}), 127.3(\mathrm{CH}), 94.8$ $(\mathrm{CH}), 79.9(\mathrm{C}), 72.6(\mathrm{CH}), 34.3\left(\mathrm{CH}_{2}\right)$. The spectral data were in agreement with those reported previously for this compound. ${ }^{18}$

4.2.2 3-(4-Methoxyphenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1one (32b)

3-(4-Methoxyphenyl)-1-phenylprop-2-yn-1-one (63b) ($590.7 \mathrm{mg}, 2.5 \mathrm{mmol}$) and propargylamine ($165.3 \mathrm{mg}, 3.0 \mathrm{mmol}$) were employed to afford $713.8 \mathrm{mg}(98 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.35$ (br s, 1H), 7.94-7.87 $(\mathrm{m}, 2 \mathrm{H}), 7.48-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.02-6.96(\mathrm{~m}, 2 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=6.3$ and $2.5 \mathrm{~Hz}, 2 \mathrm{H}$), $3.86(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $189.0(\mathrm{C}=\mathrm{O}), 166.0(\mathrm{C}), 161.0(\mathrm{C}), 140.2(\mathrm{C}), 131.0(\mathrm{CH}), 129.6(\mathrm{CH}), 128.3(\mathrm{CH})$, $127.3(\mathrm{CH}), 114.2(\mathrm{CH}), 94.7(\mathrm{CH}), 80.1(\mathrm{C}), 72.5(\mathrm{CH}), 55.5\left(\mathrm{OCH}_{3}\right), 34.4\left(\mathrm{CH}_{2}\right)$ (Note that two C peaks overlap on each other). IR (neat): 3285, 3056, 2931, 2837, 1593, 1559, 1497, 1247, 1173, 1142, 1023, 836, 757, $689 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $292.13[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{2}: 292.1332[\mathrm{M}+\mathrm{H}]^{+}$, found: 292.1337.

4.2.3 3-(2-Methoxyphenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1one (32c)

3-(2-Methoxyphenyl)-1-phenylprop-2-yn-1-one (63c) ($590.7 \mathrm{mg}, 2.5 \mathrm{mmol}$) and propargylamine ($165.3 \mathrm{mg}, 3.0 \mathrm{mmol}$) were employed to afford $626.4 \mathrm{mg}(86 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.51$ (br s, 1H), 7.96-7.86 (m, 2H), 7.48-7.35 (m, 4H), $7.31(\mathrm{dd}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 4.00-3.70(\mathrm{~m}, 5 \mathrm{H}), 2.27(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.8$ (C=O), 163.3 (C), 156.0 (C), 140.1 (C), $131.2(\mathrm{CH}), 130.7(\mathrm{CH}), 129.8(\mathrm{CH}), 128.1(\mathrm{CH}), 127.1(\mathrm{CH}), 123.6(\mathrm{C}), 120.9$ $(\mathrm{CH}), 110.8(\mathrm{CH}), 94.0(\mathrm{CH}), 79.4(\mathrm{C}), 72.1(\mathrm{CH}), 55.5\left(\mathrm{OCH}_{3}\right), 33.8\left(\mathrm{CH}_{2}\right)$; IR (neat): $3285,2935,1732,1594,1567,1482,1455,1326,1241,1145,1114,1056$, 1023, 808, 753, $692 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $292.13[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{2}$: $292.1332[\mathrm{M}+\mathrm{H}]^{+}$, found: 292.1341.

4.2.4 1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(p-tolyl)prop-2-en-1-one (32d)

1-Phenyl-3-p-tolylprop-2-yn-1-one (63d) (550.7 mg, 2.5 mmol$)$ and propargylamine ($165.3 \mathrm{mg}, 3.0 \mathrm{mmol}$) were employed to afford $633.3 \mathrm{mg}(92 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.40(\mathrm{brt}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.97-7.89 (m, 2H), 7.49-7.37 (m, 5H), 7.28 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.87$ (s, 1H), 3.96 (dd, $J=6.3,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.9$ (C=O), 166.1 (C), 140.0 (C), 131.9 (C), 130.9 (C), 129.3 $(\mathrm{CH}), 128.2(\mathrm{CH}), 127.7(\mathrm{CH}), 127.1(\mathrm{CH}), 94.5(\mathrm{CH}), 79.9(\mathrm{C}), 72.4(\mathrm{CH}), 34.1$ $\left(\mathrm{CH}_{2}\right), 21.3\left(\mathrm{CH}_{3}\right)$ (Note that two CH peaks overlap on each other); IR (neat): 3288, 3056, 3025, 2919, 1579, 1554, 1498, 1326, 1295, 1141, 1055, 1023, 825, 754, $690 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $276.14[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}: 276.1383[\mathrm{M}+\mathrm{H}]^{+}$, found: 276.1390

4.2.5 1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(m-tolyl)prop-2-en-1-one (32e)

1-Phenyl-3-m-tolylprop-2-yn-1-one (63e) (550.7 mg, 2.5 mmol$)$ and propargylamine ($165.3 \mathrm{mg}, 3.0 \mathrm{mmol}$) were employed to afford $653.9 \mathrm{mg}(95 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.40(\mathrm{brt}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.97-7.89 (m, 2H), 7.48-7.24 (m, 7H), 5.86 (s, 1H), 3.93 (dd, $J=6.3,2.5 \mathrm{~Hz}, 2 \mathrm{H}$), $2.41(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.8(\mathrm{C}=\mathrm{O})$, 165.9 (C), 139.8 (C), 138.4 (C), 134.6 (C), $130.8(\mathrm{CH}), 130.4(\mathrm{CH}), 128.4(\mathrm{CH})$, $128.2(\mathrm{CH}), 128.1(\mathrm{CH}), 127.0(\mathrm{CH}), 124.7(\mathrm{CH}), 94.3(\mathrm{CH}), 79.8(\mathrm{C}), 72.4(\mathrm{CH})$, $34.0\left(\mathrm{CH}_{2}\right), 21.2\left(\mathrm{CH}_{3}\right)$; IR (neat): 3224, 3055, 2113, 1667, 1594, 1550, 1476, 1324, 1270, 1226, 1173, 1134, 1054, 1024, 789, $733 \mathrm{~cm}^{-1}$; MS (ESI, m/z): 276.14 $[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}: 276.1383[\mathrm{M}+\mathrm{H}]^{+}$, found: 276.1380.

4.2.6 1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(4-(trifluoromethyl)phenyl)prop-2-en-1-one (32f)

1-Phenyl-3-(4-(trifluoromethyl)phenyl)prop-2-yn-1-one (63f) ($685.6 \mathrm{mg}, 2.5 \mathrm{mmol}$
) and propargylamine ($165.3 \mathrm{mg}, 3.0 \mathrm{mmol}$) were employed to afford 666.9 mg (81%) of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.27$ (br t, $J=5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=5.2,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.49-7.36(\mathrm{~m}, 3 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=6.4,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{t}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.4$ (C=O), 164.0 (C), 139.6 (C), 138.4 (C), $131.8\left(\mathrm{q},{ }^{2} J=32.7 \mathrm{~Hz}, \mathrm{C}\right), 131.3(\mathrm{CH}), 128.4(\mathrm{CH}), 128.3(\mathrm{CH}), 127.2$ (CH), 125.7 ($\mathrm{q},{ }^{3} J=3.7 \mathrm{~Hz}, \mathrm{CH}$), $123.8\left(\mathrm{q},{ }^{1} J=272.4 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$), $94.9(\mathrm{CH}), 79.5$ (C), $72.8(\mathrm{CH}), 34.2\left(\mathrm{CH}_{2}\right)$; IR (neat): $3055,2116,1600,1583,1548,1502,1430$, 1321, 1294, 1240, 1225, 1163, 1104, 1072, 1050, 1015, 925, 849, $737 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $330.11[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}: 330.1100$ $[\mathrm{M}+\mathrm{H}]^{+}$, found: 330.1100.

4.2.7 3-(4-(Dimethylamino)phenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (32g)

3-(4-(Dimethylamino)phenyl)-1-phenylprop-2-yn-1-one (63g) (623.3 mg, 2.5 mmol) and propargylamine ($165.3 \mathrm{mg}, 3.0 \mathrm{mmol}$) were employed to afford 639.2 $\mathrm{mg}(84 \%)$ of the indicated product. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.47$ (brt, $J=$ $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.93$ (dd, $J=7.6,1.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.48-7.35 (m, 5H), 6.72 (d, $J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 4.05$ (dd, $J=6.2,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{~s}, 6 \mathrm{H}), 2.34(\mathrm{t}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.2$ (C=O), 166.9 (C), 151.4 (C), 140.4 (C), $130.6(\mathrm{CH}), 129.2(\mathrm{CH}), 128.1(\mathrm{CH}), 127.0(\mathrm{CH}), 121.7(\mathrm{C}), 111.5(\mathrm{CH}), 94.0$ $(\mathrm{CH}), 80.3(\mathrm{C}), 72.3(\mathrm{CH}), 40.1\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 34.4\left(\mathrm{CH}_{2}\right)$; IR (neat): 3208, 2884, $2805,2111,1614,1579,1502,1481,1446,1328,1264,1233,1194,1141,1054$, 928, 815, 797, 743, $729 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $305.17[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}: 305.1648[\mathrm{M}+\mathrm{H}]^{+}$, found: 305.1653.

4.2.8 3-(3-Fluorophenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (32h)

3-(3-Fluorophenyl)-1-phenylprop-2-yn-1-one (63h) ($560.6 \mathrm{mg}, 2.5 \mathrm{mmol}$) and
propargylamine ($165.3 \mathrm{mg}, 3.0 \mathrm{mmol}$) were employed to afford $628.4 \mathrm{mg}(90 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.27$ (br s, 1H), 7.98-7.88 (m, 2H), 7.55-7.39 (m, 4H), 7.33-7.14 (m, 3H), $5.86(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=6.4,2.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.35(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.5(\mathrm{C}=\mathrm{O})$, 164.2 (C), $162.7\left(\mathrm{~d},{ }^{1} J=248.4 \mathrm{~Hz}, \mathrm{CF}\right), 139.8$ (C), $137.0\left(\mathrm{~d},{ }^{3} J=7.6 \mathrm{~Hz}, \mathrm{C}\right), 131.3$ $(\mathrm{CH}), 130.6\left(\mathrm{~d},{ }^{3} J=8.2 \mathrm{~Hz}, \mathrm{CH}\right), 128.4(\mathrm{CH}), 127.3(\mathrm{CH}), 123.8\left(\mathrm{~d},{ }^{4} J=3.1 \mathrm{~Hz}\right.$, CH), $116.9\left(\mathrm{~d},{ }^{2} J=21.0 \mathrm{~Hz}, \mathrm{CH}\right), 115.2\left(\mathrm{~d},{ }^{2} J=22.7 \mathrm{~Hz}, \mathrm{CH}\right), 94.8(\mathrm{CH}), 79.7(\mathrm{C})$, $72.8(\mathrm{CH}), 34.3\left(\mathrm{CH}_{2}\right)$; IR (neat): 3222, 1600, 1570, 1549, 1520, 1474, 1431, 1323, 1299, 1284, 1265, 1250, 1226, 1203, 1025, 1000, 965, 876, $788 \mathrm{~cm}^{-1}$; MS (ESI, m / z): $280.11[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{FNO}: 280.1132[\mathrm{M}+\mathrm{H}]^{+}$, found: 280.1134 .

4.2.9 3-(2-Bromophenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (32i)

3-(2-Bromophenyl)-1-phenylprop-2-yn-1-one (63i) (712.8 mg, 2.5 mmol) and propargylamine ($165.3 \mathrm{mg}, 3.0 \mathrm{mmol}$) were employed to afford $714.4 \mathrm{mg}(84 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.82-7.69$ $(\mathrm{m}, 2 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H})$, 3.78 (ddd, $J=17.7,4.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.58$ (ddd, $J=17.6,7.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{t}$, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.2(\mathrm{C}=\mathrm{O}), 163.2(\mathrm{C}), 139.6(\mathrm{C})$, $135.5(\mathrm{C}), 132.9(\mathrm{CH}), 131.0(\mathrm{CH}), 130.8(\mathrm{CH}), 129.8(\mathrm{CH}), 128.2(\mathrm{CH}), 127.6$ $(\mathrm{CH}), 127.1(\mathrm{CH}), 121.4(\mathrm{CBr}), 93.9(\mathrm{CH}), 79.0(\mathrm{C}), 72.6(\mathrm{CH}), 33.6\left(\mathrm{CH}_{2}\right)$; IR (neat): 3291, 1732, 1595, 1572, 1549, 1462, 1322, 1306, 1254, 1145, 1054, 1024, 944, 853, $749 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $340.03[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{15}{ }^{79} \mathrm{BrNO}: 340.0332[\mathrm{M}+\mathrm{H}]^{+}$, found: 340.0329 .

4.2.10 3-(4-(tert-Butyl)phenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (32j)

3-(4-(tert-Butyl)phenyl)-1-phenylprop-2-yn-1-one (63j) (655.9 mg, 2.5 mmol) and
propargylamine ($165.3 \mathrm{mg}, 3.0 \mathrm{mmol}$) were employed to afford $722.1 \mathrm{mg}(91 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.34(\mathrm{~m}, 7 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{br} \mathrm{s}$, 1 H), 1.37 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.0$ (C=O), 166.1 (C), 153.2 (C), 140.1 (C), 132.0 (C), $131.0(\mathrm{CH}), 128.3(\mathrm{CH}), 127.7(\mathrm{CH}), 127.2(\mathrm{CH}), 125.7$ $(\mathrm{CH}), 94.6(\mathrm{CH}), 80.0(\mathrm{C}), 72.5(\mathrm{CH}), 34.9(\mathrm{C}), 34.4\left(\mathrm{CH}_{2}\right), 31.3\left(\mathrm{CH}_{3}\right)$.

4.2.11 2-(5-Oxo-5-phenyl-3-(prop-2-yn-1-ylamino)pent-3-en-1-yl)isoindoline-1,3-dione (32k)

2-(5-Oxo-5-phenylpent-3-yn-1-yl)isoindoline-1,3-dione (63k) (758.3 mg, 2.5 mmol) and propargylamine ($165.3 \mathrm{mg}, 3.0 \mathrm{mmol}$) were employed to afford 546.5 $\mathrm{mg}(61 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.30$ (br t, $J=$ $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.72(\mathrm{~m}, 4 \mathrm{H}), 7.70-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.29(\mathrm{~m}, 3 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H})$, $4.21(\mathrm{dd}, J=6.2,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.03-3.87(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{t}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.0(\mathrm{C}=\mathrm{O}), 167.9(\mathrm{C}), 162.8(\mathrm{C}=\mathrm{O})$, 139.7 (C), 134.1 (CH), 131.9 (CH), 130.9 (C), 128.2 (CH), 127.0 (CH), 123.4 $(\mathrm{CH}), 93.0(\mathrm{CH}), 79.2(\mathrm{C}), 72.8(\mathrm{CH}), 36.0\left(\mathrm{CH}_{2}\right), 32.4\left(\mathrm{CH}_{2}\right), 30.8\left(\mathrm{CH}_{2}\right)$; IR (neat): $3260,1775,1713,1594,1580,1392,1337,1247,1188,1098,970,753 \mathrm{~cm}^{-}$ ${ }^{1}$; MS (ESI, m/z): $359.14[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}: 359.1390$ $[\mathrm{M}+\mathrm{H}]^{+}$, found: 359.1399.

4.2.12 1-Phenyl-3-(prop-2-yn-1-ylamino)hept-2-en-1-one (32I)

1-Phenylhept-2-yn-1-one (631) ($465.7 \mathrm{mg}, 2.5 \mathrm{mmol}$) and propargylamine (165.3 $\mathrm{mg}, 3.0 \mathrm{mmol})$ were employed to afford $573.2 \mathrm{mg}(95 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.48$ (br s, 1H), 7.89-7.83 (m, 2H), 7.46-7.36 (m, $3 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=6.2,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.42-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{t}, J=2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.67-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.44$ (sextet, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.8$ (C=O), 168.2 (C), 140.4 (C), 130.7 (CH), $128.2(\mathrm{CH}), 127.1(\mathrm{CH}), 92.2(\mathrm{CH}), 79.2(\mathrm{C}), 72.5(\mathrm{CH}), 32.3\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right)$,
$30.2\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right), 13.9\left(\mathrm{CH}_{3}\right)$; IR (neat): 3296, 3064, 2953, 2866, 1578 , 1558, 1544, 1280, 1244, 1107, 1025, 784, 663, $628 \mathrm{~cm}^{-1}$; MS (ESI, m/z): 242.15 $[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}: 242.1545[\mathrm{M}+\mathrm{H}]^{+}$, found: 242.1524 .

4.2.13 1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(thiophen-3-yl)prop-2-en-1-one (32m)

1-Phenyl-3-(thiophen-3-yl)prop-2-yn-1-one ($\mathbf{6 3 m}$) ($530.7 \mathrm{mg}, 2.5 \mathrm{mmol}$) and propargylamine ($165.3 \mathrm{mg}, 3.0 \mathrm{mmol}$) were employed to afford $614.9 \mathrm{mg}(92 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.44(\mathrm{brt}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.95-7.86 (m, 2H), 7.59 (dd, $J=2.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{dd}, J=$ $5.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=6.4,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{t}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.5$ (C=O), 160.3 (C), 139.6 (C), 135.1 (C), $130.7(\mathrm{CH}), 128.0(\mathrm{CH}), 127.0(\mathrm{CH}), 126.9(\mathrm{CH}), 126.5(\mathrm{CH}), 126.1(\mathrm{CH}), 93.9$ $(\mathrm{CH}), 79.9(\mathrm{C}), 72.6(\mathrm{CH}), 33.9\left(\mathrm{CH}_{2}\right)$; IR (neat): 3249, 3214, 1653, 1593, 1577, 1290, 1247, 1227, 1079, 1057, 799, 754, $720 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $268.08[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NOS}$: $268.0796[\mathrm{M}+\mathrm{H}]^{+}$, found: 268.0775.

4.2.14 1-(2-Bromophenyl)-3-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1one (32n)

1-(2-Bromophenyl)-3-phenylprop-2-yn-1-one (63n) ($712.8 \mathrm{mg}, 2.5 \mathrm{mmol}$) and propargylamine ($165.3 \mathrm{mg}, 3.0 \mathrm{mmol}$) were employed to afford $740.0 \mathrm{mg}(87 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=$ $8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.40(\mathrm{~m}, 6 \mathrm{H}), 7.30(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.15(\mathrm{~m}$, $1 \mathrm{H}), 5.47(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=6.4,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.1$ ($\mathrm{C}=\mathrm{O}$), 165.8 (C), 143.1 (C), 134.4 (C), 133.4 (CH), $130.3(\mathrm{CH}), 130.1(\mathrm{CH}), 129.2(\mathrm{CH}), 128.8(\mathrm{CH}), 127.9(\mathrm{CH}), 127.2(\mathrm{CH}), 119.5$ (CBr), $98.4(\mathrm{CH}), 79.6(\mathrm{C}), 72.8(\mathrm{CH}), 34.4\left(\mathrm{CH}_{2}\right)$; IR (neat): 3290, 1731, 1588, 1560, 1483, 1461, 1427, 1317, 1244, 1145, 1082, 1023, 949, $751 \mathrm{~cm}^{-1}$; MS (ESI, m / z): $340.03[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{15}{ }^{79} \mathrm{BrNO}: 340.0332[\mathrm{M}+\mathrm{H}]^{+}$, found: 340.0333 .

4.2.15 1-(2-Bromophenyl)-3-(4-methoxyphenyl)-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (320)

1-(2-Bromophenyl)-3-(4-methoxyphenyl)prop-2-yn-1-one (630) (787.9 mg, 2.5 $\mathrm{mmol})$ and propargylamine ($165.3 \mathrm{mg}, 3.0 \mathrm{mmol}$) were employed to afford 703.5 $\mathrm{mg}(76 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.11(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $7.56(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.21-7.15 (m, 1H), 6.98-6.92 (m, 2H), $5.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=6.4,2.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.8$ (C=O), 165.9 (C), 161.1 (C), 143.3 (C), 133.4 (CH), $130.3(\mathrm{CH}), 129.6(\mathrm{CH}), 129.3$ (CH), 127.2 (CH), 126.7 (C), 119.5 (CBr), $114.2(\mathrm{CH}), 98.3(\mathrm{CH}), 79.9(\mathrm{C}), 72.7$ (CH), $55.5\left(\mathrm{OCH}_{3}\right), 34.50\left(\mathrm{CH}_{2}\right)$; IR (neat): 3286, 1587, 1558, 1490, 1323, 1296, 1247, 1174, 1083, 1021, 873, $759 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $370.04[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{17}{ }^{79} \mathrm{BrNO}_{2}: 370.0437[\mathrm{M}+\mathrm{H}]^{+}$, found: 370.0440 .

4.2.16 1-(2-Bromophenyl)-3-(2-methoxyphenyl)-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (32p)

1-(2-Bromophenyl)-3-(2-methoxyphenyl)prop-2-yn-1-one (63p) (787.9 mg, 2.5 $\mathrm{mmol})$ and propargylamine ($165.3 \mathrm{mg}, 3.0 \mathrm{mmol}$) were employed to afford 703.5 $\mathrm{mg}(76 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $7.57(\mathrm{dd}, J=8.0,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 1 \mathrm{H})$, $7.35-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.02-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{t}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.8$ (C=O), 163.4 (C), 156.1 (C), 143.2 (C), $133.4(\mathrm{CH}), 131.5(\mathrm{CH}), 130.2(\mathrm{CH}), 130.0(\mathrm{CH}), 129.4(\mathrm{CH}), 127.1(\mathrm{CH}), 123.4$ (C), $121.0(\mathrm{CH}), 119.6(\mathrm{CBr}), 111.0(\mathrm{CH}), 98.0(\mathrm{CH}), 79.3(\mathrm{C}), 72.3(\mathrm{CH}), 55.7$ $\left(\mathrm{OCH}_{3}\right), 34.1\left(\mathrm{CH}_{2}\right)$; IR (neat): 3247, 2190, 1587, 1536, 1485, 1461, 1328, 1237, 1163, 1084, 1065, 1023, 796, $753 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $370.04[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{17}{ }^{79} \mathrm{BrNO}_{2}: 370.0437[\mathrm{M}+\mathrm{H}]^{+}$, found: 370.0440 .

4.2.17 1-(2-Bromophenyl)-3-(prop-2-yn-1-ylamino)-3-(p-tolyl)prop-2-en-1one (32q)

1-(2-Bromophenyl)-3-(p-tolyl)prop-2-yn-1-one (63q) (747.9 mg, 2.5 mmol) and propargylamine ($165.3 \mathrm{mg}, 3.0 \mathrm{mmol}$) were employed to afford $752.8 \mathrm{mg}(85 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.13(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=$ $8.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.48$ (dd, $J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{td}, J$ $=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~s}$, $1 \mathrm{H}), 4.00(\mathrm{dd}, J=6.4,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.9$ ($\mathrm{C}=\mathrm{O}$), 166.1 (C), 143.2 (C), 140.3 (C), 133.4 (CH), $131.5(\mathrm{C}), 130.3(\mathrm{CH}), 129.4(\mathrm{CH}), 129.3(\mathrm{CH}), 127.9(\mathrm{CH}), 127.2(\mathrm{CH}), 119.5$ $(\mathrm{CBr}), 98.3(\mathrm{CH}), 79.8(\mathrm{C}), 72.7(\mathrm{CH}), 34.4\left(\mathrm{CH}_{2}\right), 21.4\left(\mathrm{CH}_{3}\right)$; IR (neat): 3280, 1586, 1571, 1492, 1310, 1256, 1046, 1080, 1021, 827, 791, $757 \mathrm{~cm}^{-1}$; MS (ESI, m / z): $354.05[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{17}{ }^{79} \mathrm{BrNO}: 354.0488[\mathrm{M}+\mathrm{H}]^{+}$, found: 354.0489.

4.2.18 1-(2-Bromophenyl)-3-(prop-2-yn-1-ylamino)-3-(m-tolyl)prop-2-en-1one (32r)

1-(2-Bromophenyl)-3-(m-tolyl)prop-2-yn-1-one (63r) ($747.9 \mathrm{mg}, 2.5 \mathrm{mmol}$) and propargylamine ($165.3 \mathrm{mg}, 3.0 \mathrm{mmol}$) were employed to afford $770.5 \mathrm{mg}(87 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=$ $8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 1 \mathrm{H}), 5.47(\mathrm{~s}$, $1 \mathrm{H}), 3.98(\mathrm{dd}, J=6.4,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.9$ (C=O), 166.1 (C), 143.0 (C), 138.5 (C), 134.2 (C), 133.3 (CH), 130.8 (CH), 130.2 (CH), 129.1 (CH), $128.5(\mathrm{CH}), 128.3(\mathrm{CH}), 127.1$ $(\mathrm{CH}), 124.8(\mathrm{CH}), 119.4(\mathrm{CBr}), 98.1(\mathrm{CH}), 79.6(\mathrm{C}), 72.7(\mathrm{CH}), 34.3\left(\mathrm{CH}_{2}\right), 21.4$ $\left(\mathrm{CH}_{3}\right)$; IR (neat): $3289,1731,1561,1479,1359,1256,1082,1023,758 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (ESI, m/z): $354.05[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{17}{ }^{79} \mathrm{BrNO}: 354.0488$ $[\mathrm{M}+\mathrm{H}]^{+}$, found: 354.0490.

4.2.19 1-(2-Bromophenyl)-3-(prop-2-yn-1-ylamino)-3-(4-(trifluoromethyl)phenyl)prop-2-en-1-one (32s)

1-(2-Bromophenyl)-3-(4-(trifluoromethyl)phenyl)prop-2-yn-1-one (63s) (882.8 mg, 2.5 mmol) and propargylamine ($165.3 \mathrm{mg}, 3.0 \mathrm{mmol}$) were employed to afford $898.1 \mathrm{mg}(88 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.02$ (br $\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{dd}, J=$ $8.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ $(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{dd}, J=6.5,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{t}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.3$ (C=O), 163.8 (C), 142.6 (C), $137.9(\mathrm{C}), 133.4(\mathrm{CH}), 131.9\left(\mathrm{q},{ }^{2} J=32.8 \mathrm{~Hz}, \mathrm{C}\right), 130.5(\mathrm{CH}), 129.2(\mathrm{CH}), 128.4$ (CH), $127.2(\mathrm{CH}), 125.7\left(\mathrm{q},{ }^{3} J=3.7 \mathrm{~Hz}, \mathrm{CH}\right), 123.7\left(\mathrm{q},{ }^{1} J=272.4 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 119.3$ (CBr), $98.6(\mathrm{CH}), 79.3(\mathrm{C}), 73.0(\mathrm{CH}), 34.3\left(\mathrm{CH}_{2}\right)$; IR (neat): 3297, 1587, 1561, 1319, 1167, 1125, 1063, 1018, 849, $740 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $408.02[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{14}{ }^{79} \mathrm{BrF}_{3} \mathrm{NO}: 408.0205[\mathrm{M}+\mathrm{H}]^{+}$, found: 408.0206 .

4.2.20 1-(2-Bromophenyl)-3-(3-fluorophenyl)-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (32t)

1-(2-Bromophenyl)-3-(3-fluorophenyl)prop-2-yn-1-one (63t) (787.9 mg, 2.5 mmol) and propargylamine ($165.3 \mathrm{mg}, 3.0 \mathrm{mmol}$) were employed to afford 850.7 $\mathrm{mg}(95 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 7.57 (dd, $J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.12(\mathrm{~m}$, $3 \mathrm{H}), 5.47(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=6.4,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.4$ (C=O), 164.2 (C), 162.6 (d, $\left.{ }^{1} J=248.4 \mathrm{~Hz}, \mathrm{CF}\right), 142.9$ (C), 136.4 (d, $\left.{ }^{3} J=7.6 \mathrm{~Hz}, \mathrm{C}\right), 133.5(\mathrm{CH}), 130.6\left(\mathrm{~d},{ }^{3} J=8.2 \mathrm{~Hz}, \mathrm{CH}\right), 130.5(\mathrm{CH})$, $129.3(\mathrm{CH}), 127.3(\mathrm{CH}), 123.8\left(\mathrm{~d},{ }^{4} J=3.1 \mathrm{~Hz}, \mathrm{CH}\right), 119.5(\mathrm{CBr}), 117.1\left(\mathrm{~d},{ }^{2} J=\right.$ $21.0 \mathrm{~Hz}, \mathrm{CH}), 115.3\left(\mathrm{~d},{ }^{2} J=22.9 \mathrm{~Hz}, \mathrm{CH}\right), 98.5(\mathrm{CH}), 79.5(\mathrm{C}), 73.0(\mathrm{CH}), 34.4$ $\left(\mathrm{CH}_{2}\right)$; IR (neat): 3294, 1562, 1477, 1321, 1224, 1197, 1079, 1023, 872, 790, 758 cm^{-1}; MS (ESI, m/z): $358.02[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{14}{ }^{79} \mathrm{BrFNO}$: $358.0237[\mathrm{M}+\mathrm{H}]^{+}$, found: 358.0239.

4.2.21 1,3-Bis(2-bromophenyl)-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (32u)

1,3-Bis(2-bromophenyl)prop-2-yn-1-one (63u) (910.1 mg, 2.5 mmol) and propargylamine ($165.3 \mathrm{mg}, 3.0 \mathrm{mmol}$) were employed to afford $901.1 \mathrm{mg}(86 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.02(\mathrm{brt}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.39-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{td}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H})$, 3.92 (ddd, $J=17.7,5.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ (ddd, $J=17.7,7.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{t}$, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.2(\mathrm{C}=\mathrm{O}), 163.2(\mathrm{C}), 142.6(\mathrm{C})$, $135.0(\mathrm{C}), 133.2(\mathrm{CH}), 132.8(\mathrm{CH}), 130.9(\mathrm{CH}), 130.3(\mathrm{CH}), 129.6(\mathrm{CH}), 129.0$ (CH), 127.6 (CH), $127.0(\mathrm{CH}), 121.2$ (CBr), 119.3 (CBr), 97.7 (CH), 78.6 (C), 72.8 (CH), $33.7\left(\mathrm{CH}_{2}\right)$; IR (neat): 3291, 1704, 1586, 1548, 1457, 1426, 1355, 1255, 1074, 1023, $750 \mathrm{~cm}^{-1}$; MS (ESI, m/z): 417.94 and $419.94[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{14}{ }^{79} \mathrm{Br}_{2} \mathrm{NO}: 417.9437[\mathrm{M}+\mathrm{H}]^{+}$, found: 417.9442; calcd. for $\mathrm{C}_{18} \mathrm{H}_{14}{ }^{79} \mathrm{Br}^{81} \mathrm{Br}$ NO: 419.9417 [M+H] ${ }^{+}$, found: 419.9420 .

4.2.22 1-(4-Methoxyphenyl)-3-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1one (32v)

1-(4-Methoxyphenyl)-3-phenylprop-2-yn-1-one (63v) ($590.7 \mathrm{mg}, 2.5 \mathrm{mmol}$) and propargylamine ($165.3 \mathrm{mg}, 3.0 \mathrm{mmol}$) were employed to afford $713.9 \mathrm{mg}(98 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.23(\mathrm{brt}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.92-7.86 (m, 2H), 7.52-7.42 (m, 5H), 6.93-6.86 (m, 2H), $5.81(\mathrm{~s}, 1 \mathrm{H}), 3.91$ (dd, J $=6.4,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 188.3(\mathrm{C}=\mathrm{O}), 165.3$ (C), 162.1 (C), 135.2 (C), 132.7 (C), $129.8(\mathrm{CH})$, $129.2(\mathrm{CH}), 128.7(\mathrm{CH}), 127.9(\mathrm{CH}), 113.5(\mathrm{CH}), 94.4(\mathrm{CH}), 80.0(\mathrm{C}), 72.4(\mathrm{CH})$, $55.4\left(\mathrm{CH}_{3}\right), 34.2\left(\mathrm{CH}_{2}\right)$. The spectral data were in agreement with those reported previously for this compound. ${ }^{18}$

4.2.23 3-Phenyl-3-(prop-2-yn-1-ylamino)-1-(p-tolyl)prop-2-en-1-one (32w)

3-Phenyl-1-(p-tolyl)prop-2-yn-1-one (63w) (550.7 mg, 2.5 mmol$)$ and propargylamine ($165.3 \mathrm{mg}, 3.0 \mathrm{mmol}$) were employed to afford $640.3 \mathrm{mg}(93 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.32(\mathrm{brt}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.86-7.81 (m, 2H), 7.54-7.44 (m, 5H), 7.22 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.85$ (s, 1H), 3.94 (dd, $J=6.3$ and $2.5 \mathrm{~Hz}, 2 \mathrm{H}$), $2.39(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.1$ (C=O), 165.6 (C), 141.5 (C), 137.4 (C), 135.1 (C), 129.9 $(\mathrm{CH}), 129.1(\mathrm{CH}), 128.8(\mathrm{CH}), 128.0(\mathrm{CH}), 127.3(\mathrm{CH}), 94.7(\mathrm{CH}), 80.0(\mathrm{C}), 72.5$ (CH), $34.3\left(\mathrm{CH}_{2}\right), 21.6\left(\mathrm{CH}_{3}\right)$; IR (neat): 3290, 3052, 2920, 1559, 1542, 1480, 1321, 1289, 1270, 1177, 1142, 756, $696 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $276.14[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}: 276.1383[\mathrm{M}+\mathrm{H}]^{+}$, found: 276.1390.

4.2.24 3-(Prop-2-yn-1-ylamino)-3-(thiophen-3-yl)-1-(p-tolyl)prop-2-en-1-one (32x)

3-(Thiophen-3-yl)-1-(p-tolyl)prop-2-yn-1-one (63x) ($565.7 \mathrm{mg}, 2.5 \mathrm{mmol}$) and propargylamine ($165.3 \mathrm{mg}, 3.0 \mathrm{mmol}$) were employed to afford $527.6 \mathrm{mg}(75 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 11.40$ (br s, 1H), 7.84 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.66 (dd, $J=3.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.43 (dd, $J=5.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=5.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.94$ (s, 1H), $4.05(\mathrm{dd}, J=6.4,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 188.9$ (C=O), 160.4 (C), 141.5 (C), 137.2 (C), 135.6 (C), $129.0(\mathrm{CH}), 127.4(\mathrm{CH}), 127.2(\mathrm{CH}), 126.6(\mathrm{CH}), 126.3(\mathrm{CH}), 94.2(\mathrm{CH}), 80.2$ (C), $72.6(\mathrm{CH}), 34.3\left(\mathrm{CH}_{2}\right), 21.5\left(\mathrm{CH}_{3}\right)$.

4.2.25 1-(4-Chlorophenyl)-3-phenyl-3-(prop-2-ynylamino)prop-2-en-1-one (32y)

1-(4-Chlorophenyl)-3-phenylprop-2-yn-1-one ($63 \mathbf{y}$) ($601.8 \mathrm{mg}, 2.5 \mathrm{mmol}$) and propargylamine ($165.3 \mathrm{mg}, 3.0 \mathrm{mmol}$) were employed to afford $702.5 \mathrm{mg}(95 \%)$ of
the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.90-7.77$ $(\mathrm{m}, 2 \mathrm{H}), 7.47(\mathrm{br} \mathrm{s}, 5 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 2 \mathrm{H}), 5.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=6.3$ and $2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $187.7(\mathrm{C}=\mathrm{O})$, 166.3 (C), 138.4 (C), 137.2 (C), 134.8 (C), $130.1(\mathrm{CH}), 128.9(\mathrm{CH}), 128.7(\mathrm{CH})$, $128.6(\mathrm{CH}), 127.9(\mathrm{CH}), 94.4(\mathrm{CH}), 79.7(\mathrm{C}), 72.7(\mathrm{CH}), 34.4\left(\mathrm{CH}_{2}\right)$. The spectral data were in agreement with those reported previously for this compound. ${ }^{18}$

4.2.26 1-(4-Chlorophenyl)-3-(3-fluorophenyl)-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (32z)

1-(4-Chlorophenyl)-3-(3-fluorophenyl)prop-2-yn-1-one (63z) (646.7 mg, 2.5 mmol) and propargylamine ($165.3 \mathrm{mg}, 3.0 \mathrm{mmol}$) were employed to afford 713.8 $\mathrm{mg}(91 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $7.90-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.26-7.15 (m, 2H), $5.79(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=6.2,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{t}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.9(\mathrm{C}=\mathrm{O}), 164.6(\mathrm{C}), 162.7\left(\mathrm{~d},{ }^{1} J=248.5\right.$ $\mathrm{Hz}, \mathrm{CF}), 138.1$ (C), 137.4 (C), 136.8 (d, $\left.{ }^{3} J=7.8 \mathrm{~Hz}, \mathrm{C}\right), 130.6$ (d, $\left.{ }^{3} J=8.3 \mathrm{~Hz}, \mathrm{CH}\right)$, $128.7(\mathrm{CH}), 128.6(\mathrm{CH}), 123.7\left(\mathrm{~d},{ }^{4} J=3.0 \mathrm{~Hz}, \mathrm{CH}\right), 117.0\left(\mathrm{~d},{ }^{2} J=21.1 \mathrm{~Hz}, \mathrm{CH}\right)$, $115.2\left(\mathrm{~d},{ }^{2} J=22.9 \mathrm{~Hz}, \mathrm{CH}\right), 94.4(\mathrm{CH}), 79.5(\mathrm{C}), 72.9(\mathrm{CH}), 34.3\left(\mathrm{CH}_{2}\right)$; IR (neat): $3232,1570,1545,1473,1325,1282,1265,1231,1092,1065,878,764 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (ESI, m/z): $314.07[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{ClFNO}: 314.0743$ $[\mathrm{M}+\mathrm{H}]^{+}$, found: 314.0746.

4.2.27 4-Phenyl-4-(prop-2-ynylamino)but-3-en-2-one (32aa)

4-Phenylbut-3-yn-2-one (63aa) ($360.5 \mathrm{mg}, 2.5 \mathrm{mmol}$) and propargylamine (165.3 $\mathrm{mg}, 3.0 \mathrm{mmol})$ were employed to afford $363.6 \mathrm{mg}(73 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.48-7.36(\mathrm{~m}, 5 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H})$, $3.84(\mathrm{dd}, J=6.4$ and $2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.8(\mathrm{C}=\mathrm{O}), 164.2(\mathrm{C}), 134.7(\mathrm{C}), 129.8(\mathrm{CH}), 128.7(\mathrm{CH})$, $127.9(\mathrm{CH}), 98.2(\mathrm{CH}), 80.0(\mathrm{C}), 72.3(\mathrm{CH}), 34.1\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{3}\right)$. The spectral
data were in agreement with those reported previously for this compound. ${ }^{18}$

4.3 General Procedure for the Synthesis of \boldsymbol{N}-Propargylic $\boldsymbol{\beta}$-Enaminones 7

To a stirred solution of the corresponding β-enaminone 32 (1.8 mmol) in DMF $(0.45 \mathrm{~mL})$ at room temperature under argon was added $(i-\mathrm{Pr})_{2} \mathrm{NH}(3.6 \mathrm{~mL})$, $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.036 \mathrm{mmol})$ and $\mathrm{CuI}(0.036 \mathrm{mmol})$ in turn and the reaction mixture was stirred for 10 min . The appropriate aryl iodide $\mathbf{6 4}(2.8 \mathrm{mmol})$ was then added and the resulting mixture was stirred at room temperature for approximately $3-5 \mathrm{~h}$ (Note that stirring was continued until β-enaminone $\mathbf{3 2}$ was completely consumed as monitored by routine TLC). After the reaction was over, ethyl acetate (50 mL) was added, and the resulting solution was washed with $0.1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$ and subsequently with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$ in a separatory funnel. After the layers were separated, organic phase was dried over MgSO_{4} and evaporated on a rotary evaporator to give the crude product, which was purified by flash chromatography on silica gel using hexane/ethyl acetate ($9: 1$ followed by $4: 1$) as the eluent to afford the corresponding β-enaminone 7.

4.3.1 1,3-Diphenyl-3-((3-phenylprop-2-yn-1-yl)amino)prop-2-en-1-one (7a)

1,3-Diphenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (32a) (470.8 mg, 1.8 $\mathrm{mmol}),(i-\mathrm{Pr})_{2} \mathrm{NH}(3.6 \mathrm{~mL}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(25.8 \mathrm{mg}, 0.036 \mathrm{mmol}), \mathrm{CuI}(6.9 \mathrm{mg}$, 0.036 mmol) and iodobenzene ($\mathbf{6 4 a}$) ($571.3 \mathrm{mg}, 2.8 \mathrm{mmol}$) were employed to afford $534.5 \mathrm{mg}(88 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $11.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.95-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.46-$ $7.39(\mathrm{~m}, 5 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 3 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.0$ ($\mathrm{C}=\mathrm{O}$), 165.9 (C), $140.0(\mathrm{C}), 135.1$ (C), 131.7 (CH), $130.9(\mathrm{CH}), 129.8(\mathrm{CH}), 128.7(\mathrm{CH}), 128.4(\mathrm{CH}), 128.3(\mathrm{CH}), 128.2(\mathrm{CH}), 127.9$ $(\mathrm{CH}), 127.2(\mathrm{CH}), 122.6(\mathrm{C}), 94.5(\mathrm{CH}), 85.2(\mathrm{C}), 84.2(\mathrm{C}), 35.0\left(\mathrm{CH}_{2}\right)$; IR (neat): 3056, 3031, 2922, 2853, 1594, 1582, 1559, 1476, 1293, 1224, 1139, 1054, 1023, $747,688 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $338.15[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{NO}$: $338.1545[\mathrm{M}+\mathrm{H}]^{+}$, found: 338.1548 .

4.3.2 3-(4-Methoxyphenyl)-1-phenyl-3-((3-phenylprop-2-yn-1-yl)amino)prop-2-en-1-one (7b)

3-(4-Methoxyphenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one ($524.5 \mathrm{mg}, 1.8 \mathrm{mmol}$), ($i-\mathrm{Pr})_{2} \mathrm{NH}(3.6 \mathrm{~mL}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(25.8 \mathrm{mg}, 0.036 \mathrm{mmol})$, CuI ($6.9 \mathrm{mg}, 0.036 \mathrm{mmol}$) and iodobenzene ($\mathbf{6 4 a}$) ($571.3 \mathrm{mg}, 2.8 \mathrm{mmol}$) were employed to afford $555.6 \mathrm{mg}(84 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 11.48(\mathrm{brt}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.46-$ $7.39(\mathrm{~m}, 5 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.04-6.97(\mathrm{~m}, 2 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=6.3$ $\mathrm{Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.9$ (C=O), 166.1 (C), 160.9 (C), 140.3 (C), 131.8 (CH), 130.9 (CH), 129.5 (CH), $128.5(\mathrm{CH}), 128.4$ $(\mathrm{CH}), 128.3(\mathrm{CH}), 127.4(\mathrm{C}), 127.2(\mathrm{CH}), 122.7(\mathrm{C}), 114.2(\mathrm{CH}), 94.5(\mathrm{CH}), 85.4$ (C), 84.2 (C), $55.5\left(\mathrm{CH}_{3}\right), 35.2\left(\mathrm{CH}_{2}\right)$; IR (neat): 3057, 3003, 2934, 2838, 1667, 1594, 1582, 1560, 1498, 1295, 1250, 1176, 837, 760, $699 \mathrm{~cm}^{-1} ;$ MS (ESI, m/z): $368.16[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{NO}_{2}: 368.1651[\mathrm{M}+\mathrm{H}]^{+}$, found: 368.1644.

4.3.3 1-Phenyl-3-((3-phenylprop-2-yn-1-yl)amino)hept-2-en-1-one (71)

1-Phenyl-3-(prop-2-yn-1-ylamino)hept-2-en-1-one (32I) (434.4 mg, 1.8 mmol), (i$\mathrm{Pr}_{2} \mathrm{NH}(3.6 \mathrm{~mL}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(25.8 \mathrm{mg}, 0.036 \mathrm{mmol}), \mathrm{CuI}(6.9 \mathrm{mg}, 0.036 \mathrm{mmol})$ and iodobenzene (64a) ($571.3 \mathrm{mg}, 2.8 \mathrm{mmol}$) were employed to afford 514.3 mg (90%) of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.49$ (br t, $J=5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.81-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 3 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H})$, 4.19 (d, $J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.37-2.29(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.36$ (hextet, $J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.6(\mathrm{C}=\mathrm{O})$, 168.3 (C), 140.5 (C), $131.8(\mathrm{CH}), 130.6(\mathrm{CH}), 128.5(\mathrm{CH}), 128.3(\mathrm{CH}), 128.2$ $(\mathrm{CH}), 127.0(\mathrm{CH}), 122.5(\mathrm{C}), 92.2(\mathrm{CH}), 84.5(\mathrm{C}), 84.1(\mathrm{C}), 33.1\left(\mathrm{CH}_{2}\right), 32.0$ $\left(\mathrm{CH}_{2}\right), 30.3\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right), 13.9\left(\mathrm{CH}_{3}\right)$; IR (neat): 3059, 2956, 2928, 2870, 1718, 1594, 1579, 1559, 1314, 1267, 755, $690 \mathrm{~cm}^{-1}$; MS (ESI, m/z): 318.19 $[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}: 318.1858[\mathrm{M}+\mathrm{H}]^{+}$, found: 318.1856.

4.3.4 1-Phenyl-3-((3-phenylprop-2-yn-1-yl)amino)-3-(thiophen-3-yl)prop-2-en-1-one (7m)

1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(thiophen-3-yl)prop-2-en-1-one (32m) (481.3 $\mathrm{mg}, 1.8 \mathrm{mmol}),(i-\mathrm{Pr})_{2} \mathrm{NH}(3.6 \mathrm{~mL}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(25.3 \mathrm{mg}, 0.036 \mathrm{mmol}), \mathrm{CuI}(6.9$ $\mathrm{mg}, 0.036 \mathrm{mmol})$ and iodobenzene ($\mathbf{6 4 a}$) ($571.3 \mathrm{mg}, 2.8 \mathrm{mmol}$) were employed to afford $513.1 \mathrm{mg}(83 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $11.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.68$ (br s, 1H), 7.53-7.38 (m, 6H), 7.37$7.27(\mathrm{~m}, 4 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 188.7 (C=O), 160.4 (C), 139.9 (C), 135.5 (C), 131.6 (CH), $130.88(\mathrm{CH}), 128.4$ $(\mathrm{CH}), 128.2(\mathrm{CH}), 128.1(\mathrm{CH}), 127.2(\mathrm{CH}), 127.0(\mathrm{CH}), 126.5(\mathrm{CH}), 126.2(\mathrm{CH})$, $122.3(\mathrm{C}), 94.0(\mathrm{CH}), 85.2(\mathrm{C}), 84.2(\mathrm{C}), 34.9\left(\mathrm{CH}_{2}\right)$; IR (neat): 3095, 3063, 2922, 1559, 1507, 1273, 1226, 1174, 1068, 1022, 754, $688 \mathrm{~cm}^{-1}$; MS (ESI, m/z): 344.11 $[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NOS}: 344.1109[\mathrm{M}+\mathrm{H}]^{+}$, found: 344.1107.

4.3.5 4-Phenyl-4-((3-phenylprop-2-yn-1-yl)amino)but-3-en-2-one (7aa)

4-Phenyl-4-(prop-2-yn-1-ylamino)but-3-en-2-one (32aa) ($358.7 \mathrm{mg}, 1.8 \mathrm{mmol}$), (i $\mathrm{Pr}_{2} \mathrm{NH}(3.6 \mathrm{~mL}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(25.8 \mathrm{mg}, 0.036 \mathrm{mmol}), \mathrm{CuI}(6.9 \mathrm{mg}, 0.036 \mathrm{mmol})$ and iodobenzene (64a) ($571.3 \mathrm{mg}, 2.8 \mathrm{mmol}$) were employed to afford 475.8 mg (96\%) of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 7.50-7.43 (m, 5H), 7.43-7.38 (m, 2H), 7.34-7.27 (m, 3H), $5.18(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=$ $5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.6(\mathrm{C}=\mathrm{O}), 164.1(\mathrm{C})$, $134.8(\mathrm{C}), 131.6(\mathrm{CH}), 129.6(\mathrm{CH}), 128.5(\mathrm{CH}), 128.3(\mathrm{CH}), 128.2(\mathrm{CH}), 127.8$ $(\mathrm{CH}), 122.6(\mathrm{C}), \quad 98.0(\mathrm{CH}), 85.4(\mathrm{C}), 83.9(\mathrm{C}), 34.8\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{3}\right)$. The spectral data were in agreement with those reported previously for this compound. ${ }^{18}$ one (7ab)

1,3-Diphenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (32a) (470.4 mg, 1.8 $\mathrm{mmol}),(i-\mathrm{Pr})_{2} \mathrm{NH}(3.6 \mathrm{~mL}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(25.3 \mathrm{mg}, 0.036 \mathrm{mmol})$, $\mathrm{CuI}(6.9 \mathrm{mg}$, $0.036 \mathrm{mmol})$ and 3-bromoiodobenzene ($\mathbf{6 4 b}$) ($792.2 \mathrm{mg}, 2.8 \mathrm{mmol}$) were employed to afford $644.5 \mathrm{mg}(86 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 11.42 (br t, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.95-7.89 (m, 2H), 7.57-7.48 (m, 6H), 7.47-7.39 (m, $4 \mathrm{H}), 7.34(\mathrm{dt}, J=7.8$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 4.17$ (d, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.3$ (C=O), 165.9 (C), 140.1 (C), $135.1(\mathrm{C}), 134.6(\mathrm{CH}), 131.7(\mathrm{CH}), 131.1(\mathrm{CH}), 130.4(\mathrm{CH}), 129.9(\mathrm{CH})$, $129.8(\mathrm{CH}), 128.8(\mathrm{CH}), 128.4(\mathrm{CH}), 128.0(\mathrm{CH}), 127.3(\mathrm{CH}), 124.6(\mathrm{C}), 122.2$ (C), $94.8(\mathrm{CH}), 86.6(\mathrm{C}), 82.7(\mathrm{C}), 35.0\left(\mathrm{CH}_{2}\right)$; IR (neat): 3061, 2981, 1773, 1667, 1593, 1560, 1474, 1325, 1243, 1044, 1023, 784, 757, $695 \mathrm{~cm}^{-1}$; MS (ESI, m/z): 416.06 and $418.06[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{19}{ }^{79} \mathrm{BrNO}: 416.0650$ $[\mathrm{M}+\mathrm{H}]^{+}$, found: 416.0628; calcd. for $\mathrm{C}_{24} \mathrm{H}_{19}{ }^{81} \mathrm{BrNO}: 418.0630[\mathrm{M}+\mathrm{H}]^{+}$, found: 418.0616 .

4.3.7 3-(But-2-yn-1-ylamino)-1,3-diphenylprop-2-en-1-one (7ac)

1,3-Diphenylprop-2-yn-1-one (63a) ($515.6 \mathrm{mg}, 2.5 \mathrm{mmol}$) and 2-butynylamine (but-2-yn-1-amine) ($207.3 \mathrm{mg}, 3.0 \mathrm{mmol}$) were employed to afford 640.2 mg (93%) of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 7.93-7.87 (m, 2H), 7.54-7.35 (m, 8H), $5.80(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{dq}, J=6.1$ and 2.4 Hz , $2 \mathrm{H}), 1.80(\mathrm{t}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.8(\mathrm{C}=\mathrm{O}), 165.9$ (C), 140.1 (C), 135.1 (C), 130.9 (CH), 129.7 (CH), 128.6 (CH), 128.2 (CH), 127.8 $(\mathrm{CH}), 127.1(\mathrm{CH}), 94.1(\mathrm{CH}), 80.4(\mathrm{C}), 75.0(\mathrm{C}), 34.7\left(\mathrm{CH}_{2}\right), 3.6\left(\mathrm{CH}_{3}\right)$; IR (neat): 3055, 2952, 2929, 1735, 1586, 1544, 1522, 1482, 1439, 1361, 1330, 1272, 1249, 1226, 1181, 1148, 1130, 1056, 1023, 924, 873, 768, 751, $691 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $276.14[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}: 276.1388[\mathrm{M}+\mathrm{H}]^{+}$, found: 276.1386.

4.4 General Procedure for the Synthesis of 5-Iodopyridines 55

To a stirred solution of the corresponding N-propargylic β-enaminone 7 (0.25 $\mathrm{mmol})$ in acetonitrile $(10 \mathrm{~mL})$ were added iodine $(0.75 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(0.75$ mmol). The resulting mixture was then refluxed under air for nearly $8-10 \mathrm{~h}$ (Note that stirring was continued until β-enaminone 7 was completely consumed as monitored by routine TLC). After the reaction was over, the solvent was removed on a rotary evaporator, and ethyl acetate $(30 \mathrm{~mL})$ and a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(30 \mathrm{~mL})$ were added (Note that the treatment of the reaction mixture with a saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution removes the unreacted/excess I_{2}). After the layers were separated, the aqueous layer was extracted with ethyl acetate (3 x 30 $\mathrm{mL})$. The combined organic layers were dried over MgSO_{4} and evaporated on a rotary evaporator to give the crude product, which was purified by flash chromatography on silica gel using hexane/ethyl acetate ($9: 1$ followed by $4: 1$) as the eluent to afford the corresponding iodopyridine 55.

4.4.1 (5-Iodo-2,4-diphenylpyridin-3-yl)(phenyl)methanone (55a)

1,3-Diphenyl-3-((3-phenylprop-2-yn-1-yl)amino)prop-2-en-1-one (7a) (84.4 mg, $0.25 \mathrm{mmol}), \mathrm{I}_{2}(190.4 \mathrm{mg}, 0.75 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(63.0 \mathrm{mg}, 0.75 \mathrm{mmol})$ were employed to afford $92.3 \mathrm{mg}(80 \%)$ of the indicated product as an off-white solid: $\mathrm{mp} 166.9-167.8{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.16(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 2 \mathrm{H})$, $7.40-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{tt}, J=7.4$ and $1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-6.92(\mathrm{~m}, 8 \mathrm{H}), 6.78(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.7$ (C=O), $157.5(\mathrm{CH}), 155.9$ (C), 152.5 (C), 139.4 (C), 138.4 (C), 137.2 (C), 135.3 (C), 133.4 (CH), 129.3 (CH), 129.1 (CH), 129.0 (CH), 128.7 (CH), 128.5 (CH), $128.4(\mathrm{CH}), 128.0(\mathrm{CH}), 128.0(\mathrm{CH})$, 98.6 (C); IR (neat): 3066, 1667, 1503, 1443, 1421, 1311, 1279, 1225, 945, 762, 698, 683, 653, 570; MS (ESI, m/z): $462.03[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{INO}: 462.0349[\mathrm{M}+\mathrm{H}]^{+}$, found: 462.0345 .

4.4.2 (5-Iodo-2-(4-methoxyphenyl)-4-phenylpyridin-3-yl)(phenyl)methanone (55b)

3-(4-Methoxyphenyl)-1-phenyl-3-((3-phenylprop-2-yn-1-yl)amino)prop-2-en-1one ($7 \mathbf{b}$) $(91.9 \mathrm{mg}, 0.25 \mathrm{mmol}), \mathrm{I}_{2}(190.4 \mathrm{mg}, 0.75 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(63.0 \mathrm{mg}$, $0.75 \mathrm{mmol})$ were employed to afford $76.2 \mathrm{mg}(62 \%)$ of the indicated product as a yellow solid: mp 175.2-176.4 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.12(\mathrm{~s}, 1 \mathrm{H}), 7.44-$ $7.34(\mathrm{~m}, 4 \mathrm{H}), 7.27(\mathrm{tt}, J=7.4$ and $1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.07(\mathrm{~m}, 4 \mathrm{H}), 6.99(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $6.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.70-6.64(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 196.0 (C=O), 160.3 (C), 157.3 (CH), 155.5 (C), 152.4 (C), 139.4 (C), 137.2 (C), 134.9 (C), $133.4(\mathrm{CH}), 131.0(\mathrm{C}), 130.5(\mathrm{CH}), 129.3(\mathrm{CH}), 128.6(\mathrm{CH}), 128.4$ $(\mathrm{CH}), 128.3(\mathrm{CH}), 128.1(\mathrm{CH}), 113.9(\mathrm{CH}), 97.9(\mathrm{C}), 55.3\left(\mathrm{CH}_{3}\right)$; IR (neat): 2963, 2839, 1658, 1535, 1471, 1411, 1327, 1228, 1160, 1012, 837, 777, 633, 614, 582; MS (ESI, m/z): $492.05[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{INO}_{2}: 492.0460$ $[\mathrm{M}+\mathrm{H}]^{+}$, found: 492.0454 .

4.4.3 (2-Butyl-5-iodo-4-phenylpyridin-3-yl)(phenyl)methanone (55I)

1-Phenyl-3-((3-phenylprop-2-yn-1-yl)amino)hept-2-en-1-one (7l) (79.5 mg, 0.25 $\mathrm{mmol}), \mathrm{I}_{2}(190.4 \mathrm{mg}, 0.75 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(63.0 \mathrm{mg}, 0.75 \mathrm{mmol})$ were employed to afford $71.8 \mathrm{mg}(65 \%)$ of the indicated product as a light yellowish orange solid: mp 99.5-101.2 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.99(\mathrm{~s}, 1 \mathrm{H})$, 7.47$7.42(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{tt}, J=7.4$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 6.93(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.60(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.20$ (hextet, $J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.74(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.2(\mathrm{C}=\mathrm{O})$, 158.5 (C), 157.2 (CH), 151.1 (C), 139.2 (C), 137.0 (C), 135.6 (C), 133.8 (CH), $129.3(\mathrm{CH}), 128.59(\mathrm{CH}), 128.55(\mathrm{CH}), 128.2(\mathrm{CH}), 128.1(\mathrm{CH}), 96.4(\mathrm{C}), 35.7$ $\left(\mathrm{CH}_{2}\right), 31.7\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right), 13.9\left(\mathrm{CH}_{3}\right)$; IR (neat): 2959, 2924, 2855, 1657, 1592, 1577, 1543, 145, 1312, 1275, 1226, 943, 759, 696, 682; MS (ESI, m/z): $442.07[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{INO}: 442.0668[\mathrm{M}+\mathrm{H}]^{+}$, found: 442.0654 .

4.4.4 (5-Iodo-4-phenyl-2-(thiophen-3-yl)pyridin-3-yl)(phenyl)methanone (55m)

1-Phenyl-3-((3-phenylprop-2-yn-1-yl)amino)-3-(thiophen-3-yl)prop-2-en-1-one ($7 \mathbf{m}$) ($85.9 \mathrm{mg}, 0.25 \mathrm{mmol}$), $\mathrm{I}_{2}(190.4 \mathrm{mg}, 0.75 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(63.0 \mathrm{mg}, 0.75$ mmol) were employed to afford $87.3 \mathrm{mg}(75 \%)$ of the indicated product as a light yellow solid: mp 154.8-155.7 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.20(\mathrm{~s}, 1 \mathrm{H})$, 7.57$7.51(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{dd}, J=5.0$ and 3.0 Hz , 1H), 7.09 (br s, 1H), $6.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.1$ (C=O), 157.3 (CH), 152.2 (C), 150.4 (C), 139.5 (C), 139.1 (C), 136.9 (C), 134.4 (C), 133.7 (CH), $129.2(\mathrm{CH}), 128.6(\mathrm{CH}), 128.5(\mathrm{CH}), 128.4(\mathrm{CH}), 128.2(\mathrm{CH}), 128.0(\mathrm{CH})$, 126.8 (CH), 125.9 (CH), 97.9 (C); IR (neat): 2963, 1652, 1590, 1540, 1514, 1493, 1431, 1310, 1285, 1229, 940, 782, 759, 695, 666; MS (ESI, m/z): $467.99[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{22} \mathrm{H}_{15}$ INOS: $467.9919[\mathrm{M}+\mathrm{H}]^{+}$, found: 467.9913.

4.4.5 1-(5-Iodo-2,4-diphenylpyridin-3-yl)ethanone (55aa)

4-Phenyl-4-((3-phenylprop-2-yn-1-yl)amino)but-3-en-2-one (7aa) (68.9 mg, 0.25 $\mathrm{mmol})$, $\mathrm{I}_{2}(190.4 \mathrm{mg}, 0.75 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(63.0 \mathrm{mg}, 0.75 \mathrm{mmol})$ were employed to afford $45.0 \mathrm{mg}(47 \%)$ of the indicated product as a brownish yellow solid: mp 108.3-110.8 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.14(\mathrm{~s}, 1 \mathrm{H}), 7.59-7.55$ $(\mathrm{m}, 2 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 6 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 203.1(\mathrm{C}=\mathrm{O}), 157.0(\mathrm{CH}), 154.6(\mathrm{C}), 151.0(\mathrm{C}), 139.6(\mathrm{C}), 138.5(\mathrm{C})$, $137.9(\mathrm{C}), 129.4(\mathrm{CH}), 129.1(\mathrm{CH}), 129.0(\mathrm{CH}), 128.9(2 \times \mathrm{CH}), 128.6(\mathrm{CH}), 98.6$ (C), $32.4\left(\mathrm{CH}_{3}\right)$; IR (neat): $3058,2935,1698,1627,1531,1407,1347,1300,1196$, 1068, 765, 690, 637; MS (ESI, m/z): $400.02[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{15}$ INO: $400.0198[\mathrm{M}+\mathrm{H}]^{+}$, found: 400.0192.

4.4.6 (4-(3-Bromophenyl)-5-iodo-2-phenylpyridin-3-yl)(phenyl)methanone (55ab)

3-((3-(3-Bromophenyl)prop-2-yn-1-yl)amino)-1,3-diphenylprop-2-en-1-one (7ab) ($104.1 \mathrm{mg}, 0.25 \mathrm{mmol}$), $\mathrm{I}_{2}(190.4 \mathrm{mg}, 0.75 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(63.0 \mathrm{mg}, 0.75$ $\mathrm{mmol})$ were employed to afford $77.0 \mathrm{mg}(57 \%)$ of the indicated product as an orangish yellow solid: mp 133.5-134.9 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.16$ (s, $1 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.20-6.87(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.5(\mathrm{C}=\mathrm{O}), 157.6(\mathrm{CH}), 156.1(\mathrm{C}), 150.9$ (C), 141.1 (C), 138.3 (C), 137.1 (C), $135.2(\mathrm{C}), 133.7(\mathrm{CH}), 131.8(\mathrm{CH}), 129.3(\mathrm{CH}), 129.2(\mathrm{CH}), 129.1$ $(\mathrm{CH}), 128.9(\mathrm{CH}), 128.5(\mathrm{CH}), 128.4(\mathrm{CH}), 128.1(\mathrm{CH}), 127.4(\mathrm{CH}), 122.3(\mathrm{C})$, 98.0 (C); IR (neat): 3054, 2161, 1655, 1591, 1531, 1455, 1419, 1307, 1224, 1072, 1020, 936, 761, 689, 653; MS (ESI, m/z): 539.95 and $541.94[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{16}{ }^{79} \mathrm{BrINO}$: $539.9460[\mathrm{M}+\mathrm{H}]^{+}$, found: 539.9452; calcd. for $\mathrm{C}_{24} \mathrm{H}_{16}{ }^{81} \mathrm{BrINO}: 541.9439[\mathrm{M}+\mathrm{H}]^{+}$, found: 541.9434.

4.4.7 (5-Iodo-4-methyl-2-phenylpyridin-3-yl)(phenyl)methanone (55ac)

3-(But-2-yn-1-ylamino)-1,3-diphenylprop-2-en-1-one (7ac) ($68.9 \mathrm{mg}, 0.25 \mathrm{mmol}$), $\mathrm{I}_{2}(190.4 \mathrm{mg}, 0.75 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(63.0 \mathrm{mg}, 0.75 \mathrm{mmol})$ were employed to afford $50.9 \mathrm{mg}(51 \%)$ of the indicated product as a yellow solid: mp 137.2-140.0 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.07(\mathrm{~s}, 1 \mathrm{H}), 7.63-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.41(\mathrm{~m}$, $3 \mathrm{H}), 7.31(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 197.1(\mathrm{C}=\mathrm{O}), 157.3(\mathrm{CH}), 155.7(\mathrm{C}), 147.9(\mathrm{C}), 138.6(\mathrm{C}), 136.6(\mathrm{C})$, 135.4 (C), $134.0(\mathrm{CH}), 129.5(\mathrm{CH}), 129.1(\mathrm{CH}), 128.9(\mathrm{CH}), 128.8(\mathrm{CH}), 128.4$ (CH), 100.3 (C), $25.4\left(\mathrm{CH}_{3}\right)$; IR (neat): 3057, 3025, 1735, 1663, 1594, 1580, 1542, $1448,1425,1369,1312,1285,1252,1228,1174,1119,1073,934,885,796,770$, $749,652,607 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $400.02[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{19} \mathrm{H}_{15}$ INO: $400.0198[\mathrm{M}+\mathrm{H}]^{+}$, found: 400.0203.

4.5 General Procedure for the Synthesis of of \boldsymbol{N}-Propargylic Thio- $\boldsymbol{\beta}$ enaminones 58

To a stirred solution of the corresponding N-propargylic β-enaminone 32 or 7 (1.0 mmol) in absolute benzene (10.0 mL) was added Lawesson`s Reagent (LR) (0.5 mmol) and the resulting mixture was heated at $60{ }^{\circ} \mathrm{C}$ for approximately 0.5 h or stirred at room temperature (Note that the progress of the reaction was monitored by routine TLC for the disappearance of N-propargylic β-enaminone $\mathbf{3 2}$ or 7). After the reaction was over, the solvent was removed on a rotary evaporator, and resulted mixture was directly purified by flash chromatography on silica gel using hexane/ethyl acetate ($9: 1$ followed by $4: 1$) as the eluent to afford the corresponding thionated β-enaminone $\mathbf{5 8}$ or $\mathbf{8 4}$.

4.5.1 1,3-Diphenyl-3-(prop-2-yn-1-ylamino)prop-2-ene-1-thione (58a)

1,3-Diphenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (32a) (261.3 mg, 1.00 mmol) and LR ($202.2 \mathrm{mg}, 0.50 \mathrm{mmol}$) were employed to afford the indicated product $\left(260.7 \mathrm{mg}(94 \%)\right.$ at $\left.60^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 7.74 (dd, $J=7.6,1.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.51 (s, 5H), 7.38-7.30 (m, 3H), 6.63 (s, 1H), 4.08 (dd, $J=6.1,2.5 \mathrm{~Hz}, 2 \mathrm{H}$), $2.41(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 206.2 (C=S), 167.2 (C), 148.8 (C), 135.0 (C), 130.5 (CH), 129.6 (CH), 129.1 (CH), $128.1(\mathrm{CH}), 127.7(\mathrm{CH}), 127.0(\mathrm{CH}), 113.4(\mathrm{CH}), 78.5(\mathrm{C}), 73.8(\mathrm{CH}), 34.6\left(\mathrm{CH}_{2}\right)$; IR (neat): $3275,1581,1556,1528,1481,1444,1373,1340,1320,1263,1201$, $1125,1063,1025,998,962,932,827,779,758,719,702,677,648,589,538,489$ cm^{-1}; MS (ESI, m/z): $278.10[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NS}: 278.0998$ $[\mathrm{M}+\mathrm{H}]^{+}$, found: 278.1003.

4.5.2 3-(4-Methoxyphenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-ene-1thione (58b)

3-(4-Methoxyphenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (32b)
($291.3 \mathrm{mg}, 1.00 \mathrm{mmol}$) and LR ($202.2 \mathrm{mg}, 0.50 \mathrm{mmol}$) were employed to afford the indicated product ($70.7 \mathrm{mg}(23 \%)$ at $60{ }^{\circ} \mathrm{C} ; 169.1 \mathrm{mg}(55 \%)$ at rt$) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=7.5,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=$ $6.0,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, CDCl_{3}) $\delta 204.7$ (C=S), 167.1 (C), 161.4 (C), 148.9 (C), 129.4 (CH), 128.0 (CH), $127.0(\mathrm{C}), 126.9(\mathrm{CH}), 114.4(\mathrm{CH}), 113.6(\mathrm{CH}), 78.6(\mathrm{C}), 73.6(\mathrm{CH}), 55.5\left(\mathrm{OCH}_{3}\right)$, $34.6\left(\mathrm{CH}_{2}\right)$. (Note that two CH peaks overlap on each other); IR (neat): 3277, 2837, 1604, 1584, 1558, 1495, 1459, 1373, 1334, 1307, 1291, 1245, 1175, 1128, 1074, 1021, 942, 810, 787, 760, 713, 692, 642, $549 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $308.11[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NOS}: 308.1104[\mathrm{M}+\mathrm{H}]^{+}$, found: 308.1093.

4.5.3 3-(2-Methoxyphenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-ene-1thione (58c)

3-(2-Methoxyphenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one
(32c) ($291.3 \mathrm{mg}, 1.00 \mathrm{mmol}$) and LR ($202.2 \mathrm{mg}, 0.50 \mathrm{mmol}$) were employed to afford the indicated product ($242.9 \mathrm{mg}(79 \%)$ at rt$).{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.67$ (br s, 1H), 7.84-7.74 (m, 2H), 7.54-7.45 (m, 1H), 7.41-7.29 (m, 4H), 7.09 (td, $J=$ $7.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 4.19-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}$, $3 \mathrm{H}), 2.37(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.3$ (C=S), 164.7 (C), 155.7 (C), 148.6 (C), $131.8(\mathrm{CH}), 129.2(\mathrm{CH}), 129.1(\mathrm{CH}), 127.8(\mathrm{CH}), 126.8$ $(\mathrm{CH}), 123.5(\mathrm{C}), 121.0(\mathrm{CH}), 113.2(\mathrm{CH}), 111.0(\mathrm{CH}), 77.9(\mathrm{C}), 73.2(\mathrm{CH}), 55.5$ $\left(\mathrm{OCH}_{3}\right), 34.1\left(\mathrm{CH}_{2}\right)$; IR (neat): $3277,2909,2126,1586,1566,1525,1485,1447$, $1433,1373,1333,1318,1250,1205,1164,1140,1105,1059,1022,931,916,811$, 757, 711, 684, 665, 648, 549, $493 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $308.11[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NOS}$: $308.1104[\mathrm{M}+\mathrm{H}]^{+}$, found: 308.1111 .

4.5.4 1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(p-tolyl)prop-2-ene-1-thione (58d)

1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(p-tolyl)prop-2-en-1-one (32d) (275.3 mg,
$1.00 \mathrm{mmol})$ and LR ($202.2 \mathrm{mg}, 0.50 \mathrm{mmol}$) were employed to afford the indicated product ($195.2 \mathrm{mg}(67 \%)$ at $\left.60^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 7.79-7.74 (m, 2H), 7.45-7.39 (m, 2H), 7.38-7.28 (m, 5H), $6.65(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J$ $=6.0,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, CDCl_{3}) $\delta 205.2$ (C=S), 167.3 (C), 148.7 (C), 140.8 (C), 131.9 (C), 129.6 (CH), $129.4(\mathrm{CH}), 127.9(\mathrm{CH}), 127.5(\mathrm{CH}), 126.8(\mathrm{CH}), 113.3(\mathrm{CH}), 78.5(\mathrm{C}), 73.6(\mathrm{CH})$, $34.5\left(\mathrm{CH}_{2}\right), 21.4\left(\mathrm{CH}_{3}\right)$; IR (neat): 3285, 2916, 1580, 1555, 1485, 1444, 1373, 1333, 1259, 1179, 1124, 1019, 814, 759, 690, $496 \mathrm{~cm}^{-1}$; MS (ESI, m/z): 292.11 $[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NS}: 292.1155[\mathrm{M}+\mathrm{H}]^{+}$, found: 292.1145.

4.5.5 1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(m-tolyl)prop-2-ene-1-thione (58e)

1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(m-tolyl)prop-2-en-1-one (32e) (275.3 mg, $1.00 \mathrm{mmol})$ and LR ($202.2 \mathrm{mg}, 0.50 \mathrm{mmol}$) were employed to afford the indicated product $\left(174.8 \mathrm{mg}(60 \%)\right.$ at $\left.60^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $7.69-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.14(\mathrm{~m}, 7 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=6.0,2.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.30(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.5(\mathrm{C}=\mathrm{S})$, 167.3 (C), 148.7 (C), 138.9 (C), 134.8 (C), 131.1 (CH), 129.4 (CH), $128.8(\mathrm{CH})$, $128.0(\mathrm{CH}), 127.9(\mathrm{CH}), 126.8(\mathrm{CH}), 124.5(\mathrm{CH}), 113.2(\mathrm{CH}), 78.5(\mathrm{C}), 73.6(\mathrm{CH})$, $34.5\left(\mathrm{CH}_{2}\right), 21.4\left(\mathrm{CH}_{3}\right)$; IR (neat): 3285, 2922, 2169, 2113, 1935, 1591, 1562, 1523, 1478, 1444, 1375, 1333, 1261, 1166, 1066, 1029, 916, 790, 790, 759, 692 cm^{-1}; MS (ESI, m/z): $292.11[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NS}: 292.1155$ $[\mathrm{M}+\mathrm{H}]^{+}$, found: 292.1145.

4.5.6 1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(4-(trifluoromethyl)phenyl)prop-2-ene-1-thione (58f)

1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(4-(trifluoromethyl)phenyl)prop-2-en-1-one (32f) $(329.3 \mathrm{mg}, 1.00 \mathrm{mmol})$ and $\mathrm{LR}(202.2 \mathrm{mg}, 0.50 \mathrm{mmol})$ were employed to afford the indicated product ($259.0 \mathrm{mg}(75 \%)$ at $60{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 14.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.84-7.72(\mathrm{~m}, 4 \mathrm{H}), 7.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.31$
$(\mathrm{m}, 3 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=6.1,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.1$ (C=S), 165.1 (C), 148.5 (C), 138.4 (C), 132.3 (q , $\left.{ }^{2} J=32.9 \mathrm{~Hz}, \mathrm{C}\right) 129.9(\mathrm{CH}), 128.2(\mathrm{CH}), 128.1(\mathrm{CH}), 126.8(\mathrm{CH}), 126.0\left(\mathrm{q},{ }^{3} J=\right.$ $3.7 \mathrm{~Hz}, \mathrm{CH}$), 123.7 (q, ${ }^{1} J=272.6 \mathrm{~Hz}, \mathrm{CF}_{3}$), 112.7 (CH), 78.2 (C), 74.0 (CH), 34.5 $\left(\mathrm{CH}_{2}\right)$; IR (neat): $3289,3057,1584,1561,1534,1502,1487,1446,1408,1319$, 1263, 1164, 1109, 1065, 1015, 846, 762, 717, 690, $612 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $346.09[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NS}: 346.0872[\mathrm{M}+\mathrm{H}]^{+}$, found: 346.0861 .

4.5.7 3-(3-Fluorophenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-ene-1thione (58h)

3-(3-Fluorophenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one
(32h)
($279.3 \mathrm{mg}, 1.00 \mathrm{mmol}$) and LR ($202.2 \mathrm{mg}, 0.50 \mathrm{mmol}$) were employed to afford the indicated product ($215.6 \mathrm{mg}(73 \%)$ at $60{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $14.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.85-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.29-$ $7.21(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=6.1,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 207.2(\mathrm{C}=\mathrm{S}), 165.2(\mathrm{C}), 162.5\left(\mathrm{~d},{ }^{1} J=249.1 \mathrm{~Hz}\right.$, CF), 148.5 (C), 136.7 ($\mathrm{d},{ }^{3} J=7.6 \mathrm{~Hz}, \mathrm{C}$), 130.8 (d, $\left.{ }^{3} J=8.2 \mathrm{~Hz}, \mathrm{CH}\right), 129.7(\mathrm{CH})$, $128.0(\mathrm{CH}), 126.8(\mathrm{CH}), 123.4\left(\mathrm{~d},{ }^{4} J=3.2 \mathrm{~Hz}, \mathrm{CH}\right), 117.4\left(\mathrm{~d},{ }^{2} J=20.8 \mathrm{~Hz}, \mathrm{CH}\right)$, $114.8\left(\mathrm{~d},{ }^{2} J=23.1 \mathrm{~Hz}, \mathrm{CH}\right), 112.7(\mathrm{CH}), 78.2(\mathrm{C}), 73.8(\mathrm{CH}), 34.4\left(\mathrm{CH}_{2}\right)$; IR (neat): 3289, 3057, 1563, 1525, 1475, 1442, 1374, 1334, 1261, 1183, 1113, 1073, 1000, 878, 789, 759, 728, 688, $521 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $296.09[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{FNS}: 296.0904[\mathrm{M}+\mathrm{H}]^{+}$, found: 296.0898.

4.5.8 3-(2-Bromophenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-ene-1thione (58i)

3-(2-Bromophenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one ($340.2 \mathrm{mg}, 1.00 \mathrm{mmol}$) and LR ($202.2 \mathrm{mg}, 0.50 \mathrm{mmol}$) were employed to afford the indicated product ($253.0 \mathrm{mg}(71 \%)$ at $\left.60{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$14.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.79-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.40-$ $7.29(\mathrm{~m}, 5 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 4.06$ (ddd, $J=17.8,4.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ (ddd, $J=$ $17.8,6.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 207.2 (C=S), 164.7 (C), 148.3 (C), 135.7 (C), 133.2 (CH), 131.3 (CH), 129.6 (CH), $129.2(\mathrm{CH}), 127.92(\mathrm{CH}), 127.88(\mathrm{CH}), 126.8(\mathrm{CH}), 121.0(\mathrm{CBr}), 112.3(\mathrm{CH}), 77.6$ (C), 73.7 (CH), $34.0\left(\mathrm{CH}_{2}\right)$; IR (neat): 3286, 1556, 1524, 1461, 1428, 1373, 1332, 1258, 1201, 1131, 1068, 1023, 924, 820, 759, 713, 682, 644, $546 \mathrm{~cm}^{-1}$; MS (ESI, m / z): $356.01[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{15}{ }^{79} \mathrm{BrNS}: 356.0103[\mathrm{M}+\mathrm{H}]^{+}$, found: 356.0058 .

4.5.9 3-(4-(tert-Butyl)phenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-ene-

 1-thione (58j)3-(4-(tert-Butyl)phenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (32j) ($317.4 \mathrm{mg}, 1.00 \mathrm{mmol}$) and LR ($202.2 \mathrm{mg}, 0.50 \mathrm{mmol}$) were employed to afford the indicated product ($256.8 \mathrm{mg}(77 \%)$ at $60{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 14.48 (br s, 1H), 7.74 (dd, $J=7.7,1.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.52 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.45 (d, J $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 3 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=6.0,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.42$ (t, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.5(\mathrm{C}=\mathrm{S})$, 167.4 (C), 154.1 (C), 149.0 (C), 132.1 (C), 129.5 (CH), 128.1 (CH), 127.6 (CH), $127.0(\mathrm{CH}), 126.0(\mathrm{CH}), 113.6(\mathrm{CH}), 78.7(\mathrm{C}), 73.7(\mathrm{CH}), 35.1(\mathrm{C}), 34.7\left(\mathrm{CH}_{2}\right)$, $31.3\left(\mathrm{CH}_{3}\right)$; IR (neat): $3285,2959,1733,1578,1548,1496,1444,1364,1334$, 1264, 1203, 1133, 1103, 1073, 1016, 940, 841, 763, 731, 692, 601, $555 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (ESI, m/z): $334.16[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NS}: 334.1624[\mathrm{M}+\mathrm{H}]^{+}$, found: 334.1635.

4.5.10 1-Phenyl-3-(prop-2-yn-1-ylamino)hept-2-ene-1-thione (581)

1-Phenyl-3-(prop-2-yn-1-ylamino)hept-2-en-1-one (32I) ($241.3 \mathrm{mg}, 1.00 \mathrm{mmol}$) and LR ($202.2 \mathrm{mg}, 0.50 \mathrm{mmol}$) were employed to afford the indicated product (223.9 mg (87\%) at $60{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.49$ (br s, 1 H), 7.81-
$7.69(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.28(\mathrm{~m}, 3 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=5.7,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.55-$ $2.36(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.46($ sextet, $J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 0.98(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.6(\mathrm{C}=\mathrm{S}), 170.3$ (C), $148.5(\mathrm{C}), 129.0(\mathrm{CH}), 127.7(\mathrm{CH}), 126.6(\mathrm{CH}), 111.8(\mathrm{CH}), 77.4(\mathrm{C}), 73.5$ (CH), $33.1\left(\mathrm{CH}_{2}\right), 32.3\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 22.4\left(\mathrm{CH}_{2}\right), 13.6\left(\mathrm{CH}_{3}\right)$; IR (neat): 3204, 2951, 2866, 2123, 1580, 1528, 1459, 1386, 1338, 1317, 1299, 1249, 1194, 1090, 1030, 994, 969, 944, 918, 866, 823, 786, 759, 726, 684, 624, 555, $515 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (ESI, m/z): $258.13[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NS}: 258.1311[\mathrm{M}+\mathrm{H}]^{+}$, found: 258.1314 .

4.5.11 1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(thiophen-3-yl)prop-2-ene-1thione (58m)

1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(thiophen-3-yl)prop-2-en-1-one (32m) (267.3 $\mathrm{mg}, 1.00 \mathrm{mmol}$) and LR ($202.2 \mathrm{mg}, 0.50 \mathrm{mmol}$) were employed to afford the indicated product ($232.4 \mathrm{mg}(82 \%)$ at $60{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.49$ (br s, 1 H), $7.82-7.70(\mathrm{~m}, 3 \mathrm{H}), 7.47(\mathrm{dd}, J=5.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 4 \mathrm{H})$, $6.73(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=6.2,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.6$ ($\mathrm{C}=\mathrm{S}$), 161.9 (C), 148.9 (C), 135.7 (C), 129.6 (CH), 128.1 $(\mathrm{CH}), 127.32(\mathrm{CH}), 127.30(\mathrm{CH}) 127.2(\mathrm{CH}), 126.9(\mathrm{CH}), 113.1(\mathrm{CH}), 78.8(\mathrm{C})$, $73.9(\mathrm{CH}), 34.6\left(\mathrm{CH}_{2}\right)$; IR (neat): 3285, 3080, 2916, 1730, 1591, 1567, 1488, 1444, 1410, 1371, 1310, 1238, 1176, 1073, 1044, 865, 792, 758, $691 \mathrm{~cm}^{-1}$; MS (ESI, m / z): $284.06[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NS}_{2}: 284.0562[\mathrm{M}+\mathrm{H}]^{+}$, found: 284.0570 .

4.5.12 1-(2-Bromophenyl)-3-phenyl-3-(prop-2-yn-1-ylamino)prop-2-ene-1thione (58n)

1-(2-Bromophenyl)-3-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one
(32n) ($340.2 \mathrm{mg}, 1.00 \mathrm{mmol}$) and LR ($202.2 \mathrm{mg}, 0.50 \mathrm{mmol}$) were employed to afford the indicated product ($110.4 \mathrm{mg}(31 \%)$ at rt$).{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.31$
(br s, 1H), 7.59-7.47 (m, 6H), $7.41(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 1 \mathrm{H})$, 7.12 (td, $J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=6.1,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{t}, J$ $=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.6(\mathrm{C}=\mathrm{S}), 166.7(\mathrm{C}), 150.5(\mathrm{C})$, 134.4 (C), $132.8(\mathrm{CH}), 130.7(\mathrm{CH}), 129.1(\mathrm{CH}), 129.0(\mathrm{CH}), 128.8(\mathrm{CH}), 127.7$ $(\mathrm{CH}), 127.2(\mathrm{CH}), 118.1(\mathrm{CBr}), 116.5(\mathrm{CH}), 78.2(\mathrm{C}), 74.0(\mathrm{CH}), 34.7\left(\mathrm{CH}_{2}\right)$; IR (neat): $3285,3056,1585,1560,1526,1484,1462,1429,1377,1334,1249,1205$, 1128, 1062, 1023, 940, 753, 732, $696 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $356.01[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{15}{ }^{79} \mathrm{BrNS}: 356.0103[\mathrm{M}+\mathrm{H}]^{+}$, found: 356.0099 .

4.5.13 1-(2-Bromophenyl)-3-(prop-2-yn-1-ylamino)-3-(m-tolyl)prop-2-ene-1thione (58r)

1-(2-Bromophenyl)-3-(prop-2-yn-1-ylamino)-3-(m-tolyl)prop-2-en-1-one
(32r) ($354.2 \mathrm{mg}, 1.00 \mathrm{mmol}$) and LR ($202.2 \mathrm{mg}, 0.50 \mathrm{mmol}$) were employed to afford the indicated product ($92.6 \mathrm{mg}(25 \%)$ at $60{ }^{\circ} \mathrm{C}$; $185.2 \mathrm{mg}(50 \%)$ at rt$) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 2 \mathrm{H})$, 7.36-7.27 (m, 4H), 7.12 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 4.20-4.07(\mathrm{~m}, 2 \mathrm{H}), 2.49-$ $2.39(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.2$ (C=S), 167.1 (C), 150.5 (C), 139.0 (C), 134.3 (C), $132.8(\mathrm{CH}), 131.5(\mathrm{CH}), 129.0(\mathrm{CH}), 128.9(\mathrm{CH}), 128.8$ $(\mathrm{CH}), 128.2(\mathrm{CH}), 127.3(\mathrm{CH}), 124.8(\mathrm{CH}), 118.1(\mathrm{CBr}), 116.5(\mathrm{CH}), 78.3(\mathrm{C})$, $73.9(\mathrm{CH}), 34.8\left(\mathrm{CH}_{2}\right), 21.5\left(\mathrm{CH}_{3}\right)$; IR (neat): 3278, 2920, 2165, 2044, 1563, 1527, 1481, 1462, 1428, 1377, 1333, 1262, 1173, 1116, 1067, 1049, 1025, 790, 757, 702 cm^{-1}; MS (ESI, m/z): $370.02[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{17}{ }^{79} \mathrm{BrNS}$: $370.0260[\mathrm{M}+\mathrm{H}]^{+}$, found: 370.0243.

4.5.14 1-(2-Bromophenyl)-3-(prop-2-yn-1-ylamino)-3-(4-(trifluoromethyl)phenyl)prop-2-ene-1-thione (58s)

1-(2-Bromophenyl)-3-(prop-2-yn-1-ylamino)-3-(4-(trifluoromethyl)phenyl)prop-2-en-1-one (32s) ($408.2 \mathrm{mg}, 1.00 \mathrm{mmol}$) and LR ($202.2 \mathrm{mg}, 0.50 \mathrm{mmol}$) were employed to afford the indicated product ($203.7 \mathrm{mg}(48 \%)$ at rt). ${ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.13(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.43(\mathrm{dd}, J=8.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 1 \mathrm{H})$, $7.05-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=6.2,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{t}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.9$ (C=S), 164.6 (C), 150.3 (C), 137.9 (C), $132.9(\mathrm{CH}), 132.5\left(\mathrm{q},{ }^{2} J=33.0 \mathrm{~Hz}, \mathrm{C}\right), 129.1(\mathrm{CH}), 128.2(\mathrm{CH}), 127.3(\mathrm{CH}), 126.1$ (q, $\left.{ }^{3} J=3.7 \mathrm{~Hz}, \mathrm{CH}\right), 123.6\left(\mathrm{q},{ }^{1} J=272.5 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$), $117.9(\mathrm{CBr}), 116.1(\mathrm{CH}), 78.0$ (C), $74.3(\mathrm{CH}), 34.7\left(\mathrm{CH}_{2}\right)$. (Note that two CH peaks overlap on each other); IR (neat): $3298,2919,1733,1616,1563,1536,1464,1431,1409,1320,1240,1164$, 1110, 1065, 1014, 943, 835, 759, 727, $597 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $424.00[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{14}{ }^{79} \mathrm{BrF}_{3} \mathrm{NS}: 423.9977$ [M+H] ${ }^{+}$, found: 423.9981 .

4.5.15 1-(2-Bromophenyl)-3-(3-fluorophenyl)-3-(prop-2-yn-1-ylamino)prop-2-ene-1-thione (58t)

1-(2-Bromophenyl)-3-(3-fluorophenyl)-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (32t) $(358.2 \mathrm{mg}, 1.00 \mathrm{mmol})$ and $\operatorname{LR}(202.2 \mathrm{mg}, 0.50 \mathrm{mmol})$ were employed to afford the indicated product ($153.5 \mathrm{mg}(41 \%)$ at rt$).{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 14.25 (br s, 1H), 7.55 (dd, $J=8.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.49 (td, $J=8.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39$ (dd, $J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.19$ (m, 2H), 7.13 (ddd, $J=9.2$, $7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=6.1,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{t}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.0(\mathrm{C}=\mathrm{S}), 164.8(\mathrm{C}), 162.6\left(\mathrm{~d},{ }^{1} J=249.2\right.$ $\mathrm{Hz}, \mathrm{CF}), 150.3(\mathrm{C}), 136.2\left(\mathrm{~d},{ }^{3} J=7.9 \mathrm{~Hz}, \mathrm{C}\right), 132.8(\mathrm{CH}), 130.9\left(\mathrm{~d},{ }^{3} J=8.2 \mathrm{~Hz}\right.$, $\mathrm{CH}), 129.01(\mathrm{CH}), 128.95(\mathrm{CH}), 127.3(\mathrm{CH}), 123.5\left(\mathrm{~d},{ }^{4} J=3.0 \mathrm{~Hz}, \mathrm{CH}\right), 117.9$ (CBr), $117.7\left(\mathrm{~d},{ }^{2} J=20.8 \mathrm{~Hz}, \mathrm{CH}\right), 116.0(\mathrm{CH}), 114.9\left(\mathrm{~d},{ }^{2} J=23.2 \mathrm{~Hz}, \mathrm{CH}\right), 78.0$ (C), $74.2(\mathrm{CH}), 34.7\left(\mathrm{CH}_{2}\right)$; IR (neat): $3285,2349,2164,1563,1526,1477,1462$, 1431, 1376, 1334, 1252, 1186, 1111, 1024, 877, 789, 756, 671, $521 \mathrm{~cm}^{-1}$; MS (ESI, m / z): $374.00[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{14}{ }^{79} \mathrm{BrFNS}: 374.0009[\mathrm{M}+\mathrm{H}]^{+}$, found: 373.9991 .

4.5.16 1-(4-Methoxyphenyl)-3-phenyl-3-(prop-2-yn-1-ylamino)prop-2-ene-1thione (58v)

1-(4-Methoxyphenyl)-3-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one
(32v) ($291.3 \mathrm{mg}, 1.00 \mathrm{mmol}$) and LR ($202.2 \mathrm{mg}, 0.50 \mathrm{mmol}$) were employed to afford the indicated product ($215.2 \mathrm{mg}(70 \%)$ at $60{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 14.39 (br t, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.79 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.49 (s, 5 H), 6.84 (d, $J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=6.0,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{t}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.5$ (C=S), 166.7 (C), 161.2 (C), 141.1 (C), $135.0(\mathrm{C}), 130.3(\mathrm{CH}), 128.9(\mathrm{CH}), 128.6(\mathrm{CH}), 127.5(\mathrm{CH}), 113.1(\mathrm{CH})$, $112.0(\mathrm{CH}), 78.5(\mathrm{C}), 73.5(\mathrm{CH}), 55.3\left(\mathrm{OCH}_{3}\right), 34.4\left(\mathrm{CH}_{2}\right)$; IR (neat): 3283, 2930, 2835, 1732, 1599, 1560, 1503, 1460, 1441, 1373, 1333, 1300, 1245, 1170, 1125, 1109, 1062, 1026, 827, 766, 694, $510 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $308.11[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NOS}$: $308.1104[\mathrm{M}+\mathrm{H}]^{+}$, found: 308.1118 .

4.5.17 3-Phenyl-3-(prop-2-yn-1-ylamino)-1-(p-tolyl)prop-2-ene-1-thione (58w)

3-Phenyl-3-(prop-2-yn-1-ylamino)-1-(p-tolyl)prop-2-en-1-one (32w) (275.3 mg, $1.00 \mathrm{mmol})$ and LR ($202.2 \mathrm{mg}, 0.50 \mathrm{mmol}$) were employed to afford the indicated product ($247.7 \mathrm{mg}(85 \%)$ at $60^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.47$ (br s, 1 H), $7.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~s}, 5 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 4.07$ $(\mathrm{dd}, J=6.1,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.8$ (C=S), 166.9 (C), 146.0 (C), 139.9 (C), 135.0 (C), 130.3 (CH), $129.0(\mathrm{CH}), 128.7(\mathrm{CH}), 127.6(\mathrm{CH}), 126.9(\mathrm{CH}), 112.8(\mathrm{CH}), 78.5(\mathrm{C}), 73.6$ (CH), $34.5\left(\mathrm{CH}_{2}\right), 21.3\left(\mathrm{CH}_{3}\right)$; IR (neat): 3284, 3024, 2917, 1732, 1585, 1560, 1526, 1504, 1483, 1444, 1372, 1334, 1259, 1216, 1179, 1125, 1110, 1043, 1001, 940, 810, 766, 694, 639, $491 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $292.12[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NS}: 292.1155[\mathrm{M}+\mathrm{H}]^{+}$, found: 292.1168 .

4.5.18 3-(Prop-2-yn-1-ylamino)-3-(thiophen-3-yl)-1-(p-tolyl)prop-2-ene-1thione (58x)

3-(Prop-2-yn-1-ylamino)-3-(thiophen-3-yl)-1-(p-tolyl)prop-2-en-1-one ($281.4 \mathrm{mg}, 1.00 \mathrm{mmol}$) and LR ($202.2 \mathrm{mg}, 0.50 \mathrm{mmol}$) were employed to afford the indicated product ($178.5 \mathrm{mg}(60 \%)$ at $\left.60{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 14.47 (br s, 1H), 7.73 (dd, $J=3.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.70-7.65$ (m, 2H), 7.47 (dd, $J=$ $5.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=5.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~s}$, $1 \mathrm{H}), 4.16(\mathrm{dd}, J=6.2,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.2$ (C=S), 161.7 (C), 146.0 (C), 139.9 (C), 135.7 (C), $128.7(\mathrm{CH}), 127.22(\mathrm{CH}), 127.17(\mathrm{CH}), 127.14(\mathrm{CH}), 126.9(\mathrm{CH}), 112.6(\mathrm{CH})$, $78.8(\mathrm{C}), 73.8(\mathrm{CH}), 34.5\left(\mathrm{CH}_{2}\right), 21.3\left(\mathrm{CH}_{3}\right)$; IR (neat): 3282, 2915, 1730, 1569, 1537, 1493, 1405, 1370, 1332, 1257, 1216, 1178, 1110, 1082, 1062, 1018, 945, 921, 868, 786, $639 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $298.07[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NS}_{2}$: $298.0719[\mathrm{M}+\mathrm{H}]^{+}$, found: 298.0718.

4.5.19 1-(4-Chlorophenyl)-3-phenyl-3-(prop-2-yn-1-ylamino)prop-2-ene-1thione (58y)

1-(4-Chlorophenyl)-3-phenyl-3-(prop-2-yn-1-ylamino)prop-2-e-1-one (32y) (295.8 $\mathrm{mg}, 1.00 \mathrm{mmol}$) and LR ($202.2 \mathrm{mg}, 0.50 \mathrm{mmol}$) were employed to afford the indicated product ($230.8 \mathrm{mg}(74 \%)$ at $60{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.50$ (br s, 1H), 7.71 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.48(\mathrm{~m}, 5 \mathrm{H}), 7.31(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.61(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=6.0,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.5$ (C=S), 167.3 (C), 146.8 (C), 135.6 (C), 134.6 (C), 130.6 (CH), $129.0(\mathrm{CH}), 128.2(\mathrm{CH}), 128.1(\mathrm{CH}), 127.5(\mathrm{CH}), 113.0(\mathrm{CH}), 78.2(\mathrm{C}), 73.8$ (CH), $34.6\left(\mathrm{CH}_{2}\right)$; IR (neat): 3260, 1587, 1561, 1523, 1478, 1441, 1396, 1368, 1327, 1259, 1198, 1129, 1090, 1010, 937, 830, 804, 768, 736, 702, 658, 545, 510 $\mathrm{cm}^{-1} ;$ MS (ESI, m/z): $312.06[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClNS}$: $312.0608[\mathrm{M}+\mathrm{H}]^{+}$, found: 312.0607.

4.5.20
 1-(4-Chlorophenyl)-3-(3-fluorophenyl)-3-(prop-2-yn-1-ylamino)prop-2-ene-1-thione (58z)

1-(4-Chlorophenyl)-3-(3-fluorophenyl)-3-(prop-2-yn-1-ylamino)prop-2-en-1-one ($\mathbf{3 2 z}$) $(313.8 \mathrm{mg}, 1.00 \mathrm{mmol})$ and LR ($202.2 \mathrm{mg}, 0.50 \mathrm{mmol}$) were employed to afford the indicated product (267.2 mg (81%) at $60{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 14.43(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.72-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.29(\mathrm{~m}$, $3 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=6.1,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{t}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.9$ (C=S), 165.6 (C), 162.6 (d, ${ }^{1} J=$ $249.3 \mathrm{~Hz}, \mathrm{CF}$), 146.7 (C), 136.6 (d, ${ }^{3} J=7.6 \mathrm{~Hz}, \mathrm{C}$), 135.8 (C), 131.0 ($\mathrm{d},{ }^{3} J=8.3$ $\mathrm{Hz}, \mathrm{CH}), 128.2(\mathrm{CH}), 128.1(\mathrm{CH}), 123.4\left(\mathrm{~d},{ }^{4} \mathrm{~J}=3.1 \mathrm{~Hz}, \mathrm{CH}\right), 117.6\left(\mathrm{~d},{ }^{2} J=21.0\right.$ $\mathrm{Hz}, \mathrm{CH}), 114.9\left(\mathrm{~d},{ }^{2} \mathrm{~J}=23.0 \mathrm{~Hz}, \mathrm{CH}\right), 112.5(\mathrm{CH}), 78.1$ (C), $74.0(\mathrm{CH}), 34.5$ $\left(\mathrm{CH}_{2}\right)$; IR (neat): $3247,3065,2923,1566,1525,1476,1434,1398,1372,1330$, 1257, 1183, 1156, 1090, 1011, 881, 784, 743, 668, $521 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $330.05[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{ClFNS}: 330.0514[\mathrm{M}+\mathrm{H}]^{+}$, found: 330.0518.

4.5.21 1,3-Diphenyl-3-((3-phenylprop-2-yn-1-yl)amino)prop-2-ene-1-thione

 (84)N-Propargylic β-enaminone $7 \mathbf{7 a}(500.0 \mathrm{mg}, 1.48 \mathrm{mmol})$ and Lawesson`s Reagent (LR) ($299.3 \mathrm{mg}, 0.74 \mathrm{mmol}$) were employed to afford the indicated product (418.5 $\mathrm{mg}(80 \%)$ at $60{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.87-7.77(\mathrm{~m}$, $2 \mathrm{H}), 7.60-7.52(\mathrm{~m}, 5 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.30(\mathrm{~m}, 6 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 4.32$ (d, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.3$ ($\mathrm{C}=\mathrm{S}$), 167.0 (C), 148.7 (C), 134.9 (C), $131.7(\mathrm{CH}), 130.3(\mathrm{CH}), 129.4(\mathrm{CH}), 128.9(\mathrm{CH}), 128.7(\mathrm{CH})$, $128.3(\mathrm{CH}), 127.9(\mathrm{CH}), 127.5(\mathrm{CH}), 126.8(\mathrm{CH}), 122.1(\mathrm{C}), 113.3(\mathrm{CH}), 85.1(\mathrm{C})$, 83.7 (C), $35.4\left(\mathrm{CH}_{2}\right)$; IR (neat): 3054, 1583, 1557, 1524, 1480, 1442, 1375, 1334, 1261, 1204, 1123, 1061, 999, 937, 842, 753, 721, $688 \mathrm{~cm}^{-1}$; MS (ESI, m/z): 354.13 $[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{NS}: 354.1311[\mathrm{M}+\mathrm{H}]^{+}$, found: 354.1370.

4.6 General Procedure for the Synthesis of 5-Alkynylpyridines 57

In a two-neck round-bottom flask equipped with a reflux condenser, 5-iodopyridine derivative $55(0.20 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.01 \mathrm{mmol})$ and $\mathrm{CuI}(0.01 \mathrm{mmol})$ were dissolved in a mixture of triethylamine (3.0 mL) and DMF (1.5 mL) by vigorous stirring under argon. Meanwhile, separately in a flask under argon, the corresponding terminal alkyne $\mathbf{5 6}(0.30 \mathrm{mmol})$ was dissolved in DMF $(1.5 \mathrm{~mL})$ and added slowly to the first reaction flask over 20 min . Then the resulting reaction mixture was heated at $65^{\circ} \mathrm{C}$ with stirring under argon. After the reaction was over, as indicated by the routine TLC analysis, the reaction mixture was transferred into a separatory funnel, and ethyl acetate (30 mL) and a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ were added. After the layers were separated, the aqueous layer was extracted with ethyl acetate ($2 \times 30 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4} and evaporated on a rotary evaporator. The resulting crude product was purified by flash chromatography on silica gel using hexane/ethyl acetate (9:1 followed by $4: 1$) as eluent to afford the corresponding 5-alkynylpyridine 57.

4.6.1 (2,4-Diphenyl-5-(phenylethynyl)pyridin-3-yl)(phenyl)methanone (57a)

(5-Iodo-2,4-diphenylpyridin-3-yl)(phenyl)methanone (55a) ($92.3 \mathrm{mg}, 0.20 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{CuI}(1.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ and phenylacetylene (56a) ($30.6 \mathrm{mg}, 0.30 \mathrm{mmol}$) were employed to afford $79.3 \mathrm{mg}(91 \%)$ of the indicated product as a yellow solid ($R_{f}=0.53$ in $4: 1$ hexane/ethyl acetate): mp $151.8-153.5{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.06(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.52(\mathrm{~m}, 4 \mathrm{H})$, 7.41-7.36 (m, 1H), 7.35-7.21 (m, 15H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.4$ (C=O), 155.4 (C), 152.5 (CH), 150.4 (C), 139.1 (C), 137.6 (C), 135.9 (C), 133.8 (C), $133.3(\mathrm{CH}), 131.6(\mathrm{CH}), 129.6(\mathrm{CH}), 129.4(\mathrm{CH}), 129.3(\mathrm{CH}), 129.0(\mathrm{CH})$, $128.9(\mathrm{CH}), 128.5(\mathrm{CH}), 128.42(\mathrm{CH}), 128.38(2 \times \mathrm{CH}), 127.9(\mathrm{CH}), 122.6(\mathrm{C})$, 119.0 (C), 96.6 (C), 85.5 (C); IR (neat): 3056, 3025, 2960, 2922, 2214, 1669, 1593, $1578,1553,1516,1489,1434,1377,1323,1286,1259,1221,1176,1095,1071$, 1016, 1003, 921, 873, 801, 770, 701, 686, 670, 640, 529, $514 \mathrm{~cm}^{-1}$; MS (ESI, m/z):
$436.17[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{NO}: 436.1695[\mathrm{M}+\mathrm{H}]^{+}$, found: 436.1692.

4.6.2 (5-((4-Methoxyphenyl)ethynyl)-2,4-diphenylpyridin-3yl)(phenyl)methanone (57b)

(5-Iodo-2,4-diphenylpyridin-3-yl)(phenyl)methanone (55a) (92.3 mg, 0.20 mmol), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{CuI}(1.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ and 4-ethynylanisole ($\mathbf{5 6 b}$) $(39.6 \mathrm{mg}, 0.30 \mathrm{mmol})$ were employed to afford $53.1 \mathrm{mg}(57 \%)$ of the indicated product as a yellow solid ($R_{f}=0.37$ in $4: 1$ hexane/ethyl acetate): mp $181.5-184.3{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.92(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 4 \mathrm{H})$, $7.27(\mathrm{tt}, J=7.4$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.09(\mathrm{~m}, 10 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.74-6.69$ (m, 2H), 3.70 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.5(\mathrm{C}=\mathrm{O}), 160.2(\mathrm{CO})$, 155.1 (C), 152.3 (CH), 150.1 (C), 139.2 (C), 137.6 (C), 136.1 (C), 133.8 (C), 133.3 $(\mathrm{CH}), 133.2(\mathrm{CH}), 129.6(\mathrm{CH}), 129.4(\mathrm{CH}), 129.3(\mathrm{CH}), 128.9(\mathrm{CH}), 128.5(\mathrm{CH})$, 128.4 ($2 \times \mathrm{CH}$), 127.9 (CH), 119.4 (C), 114.7 (C), 114.1 (CH), 96.9 (C), 84.4 (C), $55.4\left(\mathrm{CH}_{3}\right)$; IR (neat): $3054,3025,2962,2936,2217,1671,1602,1509,1441$, 1292, 1254, 1227, 1174, 1162, 1030, 992, 877, 833, 807, 768, 757, 697, 672, 534, $509 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $466.18[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI): calcd. for $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{NO}_{2}$: $466.1802[\mathrm{M}+\mathrm{H}]^{+}$, found: 466.1802 .

4.6.3 (2,4-Diphenyl-5-(p-tolylethynyl)pyridin-3-yl)(phenyl)methanone (57d)

(5-Iodo-2,4-diphenylpyridin-3-yl)(phenyl)methanone (55a) (92.3 mg, 0.20 mmol), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{CuI}(1.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ and 4-ethynyltoluene ($\mathbf{5 6 d}$) ($34.8 \mathrm{mg}, 0.30 \mathrm{mmol}$) were employed to afford $88.1 \mathrm{mg}(98 \%)$ of the indicated product as a yellow solid ($R_{f}=0.57$ in $4: 1$ hexane/ethyl acetate): mp $170.3-174.5{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.93(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 4 \mathrm{H})$, 7.27 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.22-7.09 (m, 10H), 7.05 (d, $8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 6.99 (d, 8.0 Hz , $2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.5(\mathrm{C}=\mathrm{O}), 155.3(\mathrm{C}), 152.5$ (CH), 150.2 (C), 139.2 (C), 139.1 (C), 137.6 (C), 136.0 (C), 133.8 (C), 133.3 (CH),
$131.5(\mathrm{CH}), 129.6(\mathrm{CH}), 129.4(\mathrm{CH}), 129.3(\mathrm{CH}), 129.2(\mathrm{CH}), 128.9(\mathrm{CH}), 128.5$ (CH), 128.4 ($2 \times \mathrm{CH}$), 127.9 (CH), 119.6 (C), 119.2 (C), 96.9 (C), 84.9 (C), 21.6 $\left(\mathrm{CH}_{3}\right)$; IR (neat): $3053,3025,2215,2197,1671,1597,1579,1553,1508,1438$, 1315, 1262, 1226, 1175, 1161, 1074, 993, 875, 813, 767, 756, 696, 671, 655, 638, 577, 529, $507 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $450.18[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI): calcd. for $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{NO}: 450.1852[\mathrm{M}+\mathrm{H}]^{+}$, found: 450.1847 .

4.6.4 (2,4-Diphenyl-5-(m-tolylethynyl)pyridin-3-yl)(phenyl)methanone (57e)

(5-Iodo-2,4-diphenylpyridin-3-yl)(phenyl)methanone (55a) ($92.3 \mathrm{mg}, 0.20 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{CuI}(1.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ and 3-ethynyltoluene ($\mathbf{5 6 e}$) $(34.8 \mathrm{mg}, 0.30 \mathrm{mmol})$ were employed to afford $85.4 \mathrm{mg}(95 \%)$ of the indicated product as an orange solid ($R_{f}=0.47$ in $4: 1$ hexane/ethyl acetate): mp $126.4-129.5{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.05(\mathrm{~s}, 1 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 4 \mathrm{H})$, $7.39(\mathrm{tt}, J=7.4$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.20(\mathrm{~m}, 10 \mathrm{H}), 7.18(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.5$ ($\mathrm{C}=\mathrm{O}$), 155.4 (C), $152.6(\mathrm{CH}), 150.3(\mathrm{C}), 139.1(\mathrm{C})$, 138.1 (C), 137.6 (C), 135.9 (C), 133.8 (C), $133.4(\mathrm{CH}), 132.2(\mathrm{CH}), 129.8(\mathrm{CH})$, $129.6(\mathrm{CH}), 129.5(\mathrm{CH}), 129.4(\mathrm{CH}), 129.2(\mathrm{CH}), 129.0(\mathrm{CH}), 128.7(\mathrm{CH}), 128.5$ (CH), 128.4 (CH), 128.3 (CH), 127.9 (CH), 122.4 (C), 119.1 (C), 96.9 (C), 85.2 (C), $21.3\left(\mathrm{CH}_{3}\right)$; IR (neat): $3058,3024,2208,1734,1669,1593,1578,1552,1515$, $1483,1447,1438,1375,1324,1314,1284,1260,1232,1205,1175,1000,910$, 849, 784, 770, 758, 699, 670, 640, 593, $517 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $450.19[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{NO}: 450.1852[\mathrm{M}+\mathrm{H}]^{+}$, found: 450.1862 .

4.6.5 (2,4-Diphenyl-5-((4-(trifluoromethyl)phenyl)ethynyl)pyridin-3-

 yl)(phenyl)methanone (57f)(5-Iodo-2,4-diphenylpyridin-3-yl)(phenyl)methanone (55a) ($92.3 \mathrm{mg}, 0.20 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{CuI}(1.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ and 4-ethynyl- $\alpha, \alpha, \alpha-$ trifluorotoluene (56f) ($51.0 \mathrm{mg}, 0.30 \mathrm{mmol}$) were employed to afford 92.6 mg (92
$\%)$ of the indicated product as a red solid ($R_{f}=0.43$ in 4:1 hexane/ethyl acetate): $\mathrm{mp} 158.1-159.7^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.07(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.52(\mathrm{~m}, 6 \mathrm{H})$, $7.39(\mathrm{tt}, J=7.4$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 10 \mathrm{H}), 7.24(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.3$ (C=O), 156.0 (C), 152.6 (CH), 150.9 (C), 139.0 (C), 137.5 (C), 135.8 (C), 133.9 (C), 133.5 (CH), 131.8 (CH), 130.5 ($\mathrm{q},{ }^{2} J=32.0$ $\mathrm{Hz}, \mathrm{C}), 129.5(\mathrm{CH}), 129.4(\mathrm{CH}), 129.3(\mathrm{CH}), 129.2(\mathrm{CH}), 128.7(\mathrm{CH}), 128.47$ (CH), $128.45(\mathrm{CH}), 128.0(\mathrm{CH}), 126.4(\mathrm{C}), 125.4\left(\mathrm{q},{ }^{3} J=3.8 \mathrm{~Hz}, \mathrm{CH}\right), 123.9\left(\mathrm{q},{ }^{1} J\right.$ $=271.2 \mathrm{~Hz}, \mathrm{CF}_{3}$), 118.4 (C), 95.0 (C), 87.8 (C); IR (neat): 3056, 3027, 2325, 1668, $1613,1596,1579,1515,1495,1437,1404,1377,1329,1287,1223,1165,1121$, $1105,1064,1015,1002,921,875,840,767,755,715,696,672,596,576,523 \mathrm{~cm}^{-}$ ${ }^{1}$; MS (ESI, m/z): $504.16[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{33} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}: 504.1570$ $[\mathrm{M}+\mathrm{H}]^{+}$, found: 504.1564.

4.6.6 (5-((4-(Dimethylamino)phenyl)ethynyl)-2,4-diphenylpyridin-3yl)(phenyl)methanone (57g)

(5-Iodo-2,4-diphenylpyridin-3-yl)(phenyl)methanone (55a) ($92.3 \mathrm{mg}, 0.20 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{CuI}(1.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ and 4-ethynyl- $\mathrm{N}, \mathrm{N}-$ dimethylaniline ($\mathbf{5 6 g}$) ($43.6 \mathrm{mg}, 0.30 \mathrm{mmol}$) were employed to afford 68.9 mg (72\%) of the indicated product as a yellow solid ($R_{f}=0.33$ in $4: 1$ hexane/ethyl acetate): mp 178.5-181.0 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.90(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.42$ (m, 4H), $7.26(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.09(\mathrm{~m}, 10 \mathrm{H}), 7.00(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H})$, 6.47 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), $2.86(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.7(\mathrm{C}=\mathrm{O})$, 154.5 (C), 152.1 (CH), 150.5 (C), 149.5 (C), 139.3 (C), 137.7 (C), 136.2 (C), 133.7 (C), $133.2(\mathrm{CH}), 132.8(2 \times \mathrm{CH}), 129.7(\mathrm{CH}), 129.4(\mathrm{CH}), 129.2(\mathrm{CH}), 128.8(\mathrm{CH})$, $128.3(2 \times \mathrm{CH}), 127.8(\mathrm{CH}), 119.9(\mathrm{C}), 111.8(\mathrm{CH}), 109.2(\mathrm{C}), 98.5(\mathrm{C}), 83.8(\mathrm{C})$, $40.2\left(\mathrm{CH}_{3}\right)$; IR (neat): 2914, 2853, 2802, 2187, 1669, 1579, 1549, 1522, 1491, $1442,1370,1332,1315,1287,1262,1228,1200,1155,1129,1072,1030,1011$, 991, 945, 873, 810, 766, 755, 694, 649, 636, 578, 525, $514 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $479.21[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}: 479.2118[\mathrm{M}+\mathrm{H}]^{+}$, found: 479.2133.

4.6.7 (5-((3-Fluorophenyl)ethynyl)-2,4-diphenylpyridin-3yl)(phenyl)methanone (57h)

(5-Iodo-2,4-diphenylpyridin-3-yl)(phenyl)methanone (55a) ($92.3 \mathrm{mg}, 0.20 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{CuI}(1.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ and 1-ethynyl-3fluorobenzene ($\mathbf{5 6 h}$) ($36.0 \mathrm{mg}, 0.30 \mathrm{mmol}$) were employed to afford 86.2 mg (95\%) of the indicated product as a yellow solid ($R_{f}=0.43$ in $4: 1$ hexane/ethyl acetate): mp 132.1-135.6 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.05(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.53$ $(\mathrm{m}, 4 \mathrm{H}), 7.39(\mathrm{tt}, J=7.4 \mathrm{and} 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.21(\mathrm{~m}, 11 \mathrm{H}), 7.06-6.99(\mathrm{~m}, 2 \mathrm{H})$, 6.92 (ddd, $J=9.3,2.4$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.3$ (C=O), $162.4\left(\mathrm{~d},{ }^{1} J=245.6 \mathrm{~Hz}, \mathrm{CF}\right), 155.8(\mathrm{C}), 152.6(\mathrm{CH}), 150.6(\mathrm{C}), 139.0(\mathrm{C})$, 137.5 (C), 135.8 (C), 133.9 (C), 133.4 (CH), 130.0 (d, $\left.{ }^{3} J=8.4 \mathrm{~Hz}, \mathrm{CH}\right), 129.5$ $(\mathrm{CH}), 129.4(\mathrm{CH}), 129.3(\mathrm{CH}), 129.1(\mathrm{CH}), 128.7(\mathrm{CH}), 128.4(2 \times \mathrm{CH}), 128.0$ (CH), 127.5 (d, $\left.{ }^{4} J=2.9 \mathrm{~Hz}, \mathrm{CH}\right), 124.4\left(\mathrm{~d},{ }^{3} J=9.4 \mathrm{~Hz}, \mathrm{C}\right), 118.5(\mathrm{C}), 118.3\left(\mathrm{~d},{ }^{2} J\right.$ $=22.7 \mathrm{~Hz}, \mathrm{CH}), 116.2\left(\mathrm{~d},{ }^{2} J=21.4 \mathrm{~Hz}, \mathrm{CH}\right), 95.2\left(\mathrm{~d},{ }^{4} J=3.5 \mathrm{~Hz}, \mathrm{C}\right), 86.4(\mathrm{C})$; IR (neat): 3061, 3027, 2213, 1670, 1605, 1593, 1577, 1553, 1486, 1448, 1427, 1315, 1260, 1232, 1206, 1176, 1134, 1005, 932, 873, 854, 786, 770, 757, 741, 699, 680, $661,592,517 \mathrm{~cm}^{-1}$. MS (ESI, m/z): $454.16[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{32} \mathrm{H}_{21} \mathrm{FNO}$: $454.1602[\mathrm{M}+\mathrm{H}]^{+}$, found: 454.1619.

4.6.8 2-(4-(5-Benzoyl-4,6-diphenylpyridin-3-yl)but-3-yn-1-yl)isoindoline-1,3dione (57k)

(5-Iodo-2,4-diphenylpyridin-3-yl)(phenyl)methanone (55a) (92.3 mg, 0.20 mmol), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{CuI}(1.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ and $\mathrm{N}-(3-$ butynyl)phthalimide (56k) ($59.8 \mathrm{mg}, 0.30 \mathrm{mmol}$) were employed to afford 70.3 mg (66\%) of the indicated product as a yellowish brown solid $\left(R_{f}=0.10\right.$ in $4: 1$ hexane/ethyl acetate): $\mathrm{mp} 340.0{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.76$ $(\mathrm{s}, 1 \mathrm{H}), 7.83-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.27(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.20-7.00(\mathrm{~m}, 10 \mathrm{H}), 3.70(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.5$ (C=O), 168.0 (C=O), $155.2(\mathrm{C}), 153.2(\mathrm{CH})$,
150.3 (C), 139.1 (C), 137.6 (C), 135.8 (C), 134.2 (CH), 133.7 (C), 133.3 (C), 132.1 $(\mathrm{CH}), 129.4(\mathrm{CH}), 129.3(\mathrm{CH}), 129.2(\mathrm{CH}), 128.9(\mathrm{CH}), 128.4(\mathrm{CH}), 128.3(\mathrm{CH})$, $128.3(\mathrm{CH}), 127.8(\mathrm{CH}), 123.5(\mathrm{CH}), 118.8(\mathrm{C}), 93.3(\mathrm{C}), 78.2(\mathrm{C}), 36.5\left(\mathrm{CH}_{2}\right)$, $19.6\left(\mathrm{CH}_{2}\right)$; IR (neat): 3057, 2924, 2853, 2232, 1772, 1708, 1668, 1595, 1580, 1555, 1521, 1495, 1436, 1393, 1361, 1303, 1241, 1214, 1188, 1158, 1112, 1074, 1044, 998, 961, 939, 892, 867, 735, 717, 695, 625, 582, $529 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $533.19[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{36} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}$: $533.1860[\mathrm{M}+\mathrm{H}]^{+}$, found: 533.1856.

4.6.9 (5-(Hex-1-yn-1-yl)-2,4-diphenylpyridin-3-yl)(phenyl)methanone (571)

(5-Iodo-2,4-diphenylpyridin-3-yl)(phenyl)methanone (55a) ($92.3 \mathrm{mg}, 0.20 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{CuI}(1.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ and 1 -hexyne (56I) ($24.6 \mathrm{mg}, 0.30 \mathrm{mmol}$) were employed to afford $66.5 \mathrm{mg}(80 \%)$ of the indicated product as a light yellow solid ($R_{f}=0.52$ in 4:1 hexane/ethyl acetate): mp 107.5$109.1{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.91(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.34$ $(\mathrm{m}, 1 \mathrm{H}), 7.27-7.18(\mathrm{~m}, 10 \mathrm{H}), 2.28(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.37$ (quintet, $J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.21$ (sextet, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.83(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 196.6(\mathrm{C}=\mathrm{O}), 154.7$ (C), 152.9 (CH), 150.2 (C), 139.2 (C), 137.7 (C), 136.1 (C), 133.7 (C), 133.3 (CH), 129.4 (2 x CH), 129.2 (CH), 128.8 (CH), 128.3 $(\mathrm{CH}), 128.3(\mathrm{CH}), 128.3(\mathrm{CH}), 127.8(\mathrm{CH}), 119.6(\mathrm{C}), 98.2(\mathrm{C}), 76.5(\mathrm{C}), 30.3$ $\left(\mathrm{CH}_{2}\right), 21.7\left(\mathrm{CH}_{2}\right), 19.3\left(\mathrm{CH}_{2}\right), 13.7\left(\mathrm{CH}_{3}\right)$; IR (neat): 3053, 2955, 2926, 2855, $2224,1668,1635,1593,1579,1555,1519,1495,1449,1435,1378,1318,1291$, 1260, 1214, 1175, 1077, 1025, 1000, 934, 926, 846, 799, 768, 754, 701, 689, 664, $587,517 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $416.20[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{NO}$: $416.2009[\mathrm{M}+\mathrm{H}]^{+}$, found: 416.202.

4.6.10 (2,4-Diphenyl-5-(thiophen-3-ylethynyl)pyridin-3$\mathbf{y l}$)(phenyl)methanone ($\mathbf{5 7 m}$)

(5-Iodo-2,4-diphenylpyridin-3-yl)(phenyl)methanone (55a) ($92.3 \mathrm{mg}, 0.20 \mathrm{mmol}$),
$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{CuI}(1.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ and 3ethynylthiophene ($\mathbf{5 6 m}$) ($32.4 \mathrm{mg}, 0.30 \mathrm{mmol}$) were employed to afford 86.5 mg (98%) of the indicated product as a light yellow solid ($R_{f}=0.50$ in 4:1 hexane/ethyl acetate): mp 147.5-149.2 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.92(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.42$ $(\mathrm{m}, 4 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.11(\mathrm{~m}, 12 \mathrm{H}), 6.83(\mathrm{dd}, J=5.0$ and $1.1 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.4$ (C=O), 155.3 (C), 152.4 (CH), 150.2 (C), 139.1 (C), 137.5 (C), 135.9 (C), 133.8 (C), 133.3 (CH), $129.6(\mathrm{CH}), 129.5(\mathrm{CH})$, $129.4(\mathrm{CH}), 129.4(\mathrm{CH}), 129.2(\mathrm{CH}), 128.9(\mathrm{CH}), 128.5(\mathrm{CH}), 128.4(2 \mathrm{x} \mathrm{CH})$, $127.9(\mathrm{CH}), 125.6(\mathrm{CH}), 121.7$ (C), 119.0 (C), 91.9 (C), 85.1 (C); IR (neat): 3093, $3061,2209,1668,1593,1578,1555,1514,1493,1448,1437,1375,1361,1316$, $1285,1259,1224,1210,1176,1080,1004,931,856,796,769,757,694,684,630$, $594,511 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{ESI}, \mathrm{m} / \mathrm{z}): 442.13[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{30} \mathrm{H}_{20}$ NOS: $442.1260[\mathrm{M}+\mathrm{H}]^{+}$, found: 442.1262.

4.6.11 (5-(Hept-1-yn-1-yl)-2,4-diphenylpyridin-3-yl)(phenyl)methanone (57n)

(5-Iodo-2,4-diphenylpyridin-3-yl)(phenyl)methanone (55a) ($92.3 \mathrm{mg}, 0.20 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{CuI}(1.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ and 1-heptyne (56n) $(28.9 \mathrm{mg}, 0.30 \mathrm{mmol})$ were employed to afford $68.7 \mathrm{mg}(80 \%)$ of the indicated product as a yellow solid ($R_{f}=0.63$ in 4:1 hexane/ethyl acetate): mp 117.1-120.4 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.81(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.27(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.18-7.08(\mathrm{~m}, 10 \mathrm{H}), 2.17(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.30$ (quintet, $J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.20-1.06(\mathrm{~m}, 4 \mathrm{H}), 0.76(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 196.6 (C=O), 154.8 (C), 153.0 (CH), 150.2 (C), 139.2 (C), 137.7 (C), 136.1 (C), 133.7 (C), $133.3(\mathrm{CH}), 129.4(2 \times \mathrm{CH}), 129.2(\mathrm{CH}), 128.8(\mathrm{CH}), 128.4(\mathrm{CH}), 128.3$ $(2 \times \mathrm{CH}), 127.8(\mathrm{CH}), 119.7(\mathrm{C}), 98.3(\mathrm{C}), 76.6(\mathrm{C}), 30.9\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{2}\right), 22.3$ $\left(\mathrm{CH}_{2}\right), 19.6\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right)$; IR (neat): 2952, 2923, 2855, 2223, 1667, 1593, $1578,1554,1519,1495,1448,1434,1377,1317,1290,1260,1213,1175,1076$, $1042,1024,1000,934,799,769,753,716,688,664,612,586,511 \mathrm{~cm}^{-1} ; \mathrm{MS}$
(ESI, m/z): $430.22[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{NO}: 430.2165[\mathrm{M}+\mathrm{H}]^{+}$, found: 430.2163 .

4.6.12 (5-(3-Cyclopentylprop-1-yn-1-yl)-2,4-diphenylpyridin-3-

 yl)(phenyl)methanone (570)(5-Iodo-2,4-diphenylpyridin-3-yl)(phenyl)methanone (55a) ($92.3 \mathrm{mg}, 0.20 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{CuI}(1.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ and 3-cyclopentyl-1propyne ($\mathbf{5 6 0}$) ($32.5 \mathrm{mg}, 0.30 \mathrm{mmol}$) were employed to afford $76.8 \mathrm{mg}(87 \%)$ of the indicated product as an orange solid ($R_{f}=0.63$ in $4: 1$ hexane/ethyl acetate): mp $132.8-135.3{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.81(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 4 \mathrm{H})$, 7.28-7.23 (m, 1H), 7.19-7.07 (m, 10H), $2.19(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.86-1.74(\mathrm{~m}$, $1 \mathrm{H}), 1.54-1.34(\mathrm{~m}, 6 \mathrm{H}), 1.03-0.92(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.6$ (C=O), 154.7 (C), 153.0 (CH), 150.2 (C), 139.2 (C), 137.6 (C), 136.1 (C), 133.7 (C), $133.2(\mathrm{CH}), 129.4(\mathrm{CH}), 129.4(\mathrm{CH}), 129.2(\mathrm{CH}), 128.8(\mathrm{CH}), 128.32(\mathrm{CH})$, $128.30(\mathrm{CH}), 128.2(\mathrm{CH}), 127.8(\mathrm{CH}), 119.7(\mathrm{C}), 97.7(\mathrm{C}), 76.6(\mathrm{C}), 38.8(\mathrm{CH})$, $31.8\left(\mathrm{CH}_{2}\right), 25.3\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{2}\right)$; IR (neat): 3063, 3026, 2947, 2861, 2218, $1668,1593,1578,1550,1518,1493,1448,1432,1375,1317,1292,1259,1212$, 1176, 1095, 1077, 1040, 1024, 1000, 928, 843, 800, 769, 755, 718, 688, 642, 584, $515 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $442.22[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{NO}$: $442.2165[\mathrm{M}+\mathrm{H}]^{+}$, found: 442.2179.

4.6.13 (5-((1-Hydroxycyclohexyl)ethynyl)-2,4-diphenylpyridin-3-

 yl)(phenyl)methanone (57p)(5-Iodo-2,4-diphenylpyridin-3-yl)(phenyl)methanone (55a) ($92.3 \mathrm{mg}, 0.20 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{CuI}(1.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ and 1-ethynyl-1cyclohexanol ($\mathbf{5 6 p}$) ($37.3 \mathrm{mg}, 0.30 \mathrm{mmol}$) were employed to afford $60.4 \mathrm{mg}(66 \%)$ of the indicated product as a yellow solid ($R_{f}=0.07$ in $4: 1$ hexane/ethyl acetate): $\mathrm{mp} 181.9-185.0{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.93(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.37(\mathrm{~m}, 4 \mathrm{H})$, $7.27(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.08(\mathrm{~m}, 10 \mathrm{H}), 2.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.65(\mathrm{~d}, J=10.7 \mathrm{~Hz}$,
$2 \mathrm{H}), 1.46-1.16(\mathrm{~m}, 6 \mathrm{H}), 0.99(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 196.3 (C=O), 155.3 (C), 152.6 (CH), 150.8 (C), 138.8 (C), 137.5 (C), 135.9 (C), $133.9(\mathrm{C}), 133.4(\mathrm{CH}), 129.4(\mathrm{CH}), 129.3(2 \mathrm{x} \mathrm{CH}), 129.0(\mathrm{CH}), 128.4(\mathrm{CH}), 128.4$ ($2 \times \mathrm{CH}$), $127.9(\mathrm{CH}), 118.8(\mathrm{C}), 100.8(\mathrm{C}), 80.1(\mathrm{C}), 69.1(\mathrm{C}), 39.7\left(\mathrm{CH}_{2}\right), 25.1$ $\left(\mathrm{CH}_{2}\right), 23.1\left(\mathrm{CH}_{2}\right)$; IR (neat): 3270, 2956, 2857, 2199, 1664, 1591, 1579, 1557, 1523, 1438, 1408, 1314, 1297, 1259, 1210, 1083, 1057, 1029, 1015, 968, 934, 871, 802, 766, 692, 648, 638, $580 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $458.21[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI): calcd. for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{NO}_{2}$: $458.2115[\mathrm{M}+\mathrm{H}]^{+}$, found: 458.2127 .

4.6.14 (2,4-Diphenyl-5-(pyridin-2-ylethynyl)pyridin-3-yl)(phenyl)methanone (57q)

(5-Iodo-2,4-diphenylpyridin-3-yl)(phenyl)methanone (55a) ($92.3 \mathrm{mg}, 0.20 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{CuI}(1.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ and 2-ethynylpyridine ($\mathbf{5 6 q}$) $(30.9 \mathrm{mg}, 0.30 \mathrm{mmol})$ were employed to afford $34.9 \mathrm{mg}(40 \%)$ of the indicated product as a brown solid ($R_{f}=0.03$ in $4: 1$ hexane/ethyl acetate): mp $160.9-163.8{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.05(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.53-7.41(\mathrm{~m}, 5 \mathrm{H}), 7.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.11(\mathrm{~m}, 11 \mathrm{H}), 6.96(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.3(\mathrm{C}=\mathrm{O}), 156.2(\mathrm{C}), 153.2(\mathrm{CH})$, 150.9 (C), 150.1 (CH), 142.9 (C), 139.0 (C), 137.5 (C), 136.3 (CH), 135.7 (C), $133.9(\mathrm{CH}), 133.4(\mathrm{CH}), 129.6(\mathrm{CH}), 129.5(\mathrm{CH}), 129.3(\mathrm{CH}), 129.1(\mathrm{CH}), 128.7$ (CH), 128.4 ($2 \times \mathrm{CH}$), $128.0(\mathrm{CH}), 127.6(\mathrm{CH}), 123.2(\mathrm{C}), 118.0(\mathrm{C}), 95.2(\mathrm{C}), 85.3$ (C); IR (neat): 3066, 2958, 2920, 2850, 1670, 1593, 1577, 1560, 1553, 1517, 1492, $1462,1436,1423,1377,1329,1314,1286,1260,1224,1173,1079,1026,1005$, 985, 931, 876, 802, 776, 756, 698, 629, $511 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $437.17[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{31} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}$: $437.1648[\mathrm{M}+\mathrm{H}]^{+}$, found: 437.1658.

4.6.15 5-(Ferrocenylethynyl)-(2,4-diphenylpyridin-3-yl)(phenyl)methanone (57r)

(5-Iodo-2,4-diphenylpyridin-3-yl)(phenyl)methanone (55a) (92.3 mg, 0.20 mmol),
$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{CuI}(1.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ and ethynylferrocene ($\mathbf{5 6 r} \mathbf{r})(63.0 \mathrm{mg}, 0.30 \mathrm{mmol})$ were employed to afford $107.6 \mathrm{mg}(99 \%)$ of the indicated product as a red solid ($R_{f}=0.55$ in 4:1 hexane/ethyl acetate): mp 190.9$194.0{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.87(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.26(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.09(\mathrm{~m}, 10 \mathrm{H}), 4.19(\mathrm{t}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.11-4.07(\mathrm{~m}, 2 \mathrm{H})$, $3.93(\mathrm{~s}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.5(\mathrm{C}=\mathrm{O}), 154.7(\mathrm{C}), 152.3(\mathrm{CH})$, 149.9 (C), 139.2 (C), 137.6 (C), 136.3 (C), 133.8 (C), 133.3 (CH), 129.44 (CH), $129.38(\mathrm{CH}), 129.2(\mathrm{CH}), 128.8(\mathrm{CH}), 128.4(\mathrm{CH}), 128.3(2 \mathrm{x} \mathrm{CH}), 127.9(\mathrm{CH})$, 119.6 (C), 96.4 (C), 81.6 (C), $71.4(\mathrm{CH}), 70.1(\mathrm{CH}), 69.2(\mathrm{CH}), 64.1$ (C); IR (neat): 3026, 2961, 2214, 1655, 1596, 1580, 1555, 1515, 1495, 1469, 1430, 1413, 1318, $1262,1228,1174,1106,1044,1028,1000,971,916,823,814,772,756,729,710$, 695, 643, 602, 574, 523, 497, 484, $460 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $542.15[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. For $\mathrm{C}_{36} \mathrm{H}_{26}{ }^{54} \mathrm{FeNO}$: $542.1405[\mathrm{M}+\mathrm{H}]^{+}$, found: 542.1466.

4.6.16 (2-(4-Methoxyphenyl)-4-phenyl-5-(phenylethynyl)pyridin-3-

yl)(phenyl)methanone (57ba)

(5-Iodo-2-(4-methoxyphenyl)-4-phenylpyridin-3-yl)(phenyl)methanone (55b) (98.3 $\mathrm{mg}, 0.20 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{CuI}(1.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ and phenylacetylene (56a) ($30.6 \mathrm{mg}, 0.30 \mathrm{mmol}$) were employed to afford 72.6 mg (78\%) of the indicated product as a yellow solid ($R_{f}=0.33$ in $4: 1$ hexane/ethyl acetate): mp 154.1-155.5 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.91(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.41$ $(\mathrm{m}, 4 \mathrm{H}), 7.28(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.10(\mathrm{~m}, 12 \mathrm{H}), 6.72-6.68(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.8$ (C=O), 160.3 (CO), 155.0 (C), 152.5 (CH), 150.4 (C), 137.6 (C), 136.0 (C), 133.4 (CH), 131.7 (C), 131.6 (CH), 130.7 (CH), 129.6 (C), $129.5(\mathrm{CH}), 129.4(\mathrm{CH}), 128.8(\mathrm{CH}), 128.5(\mathrm{CH}), 128.4(2 \times \mathrm{CH})$, $127.9(\mathrm{CH}), 122.7(\mathrm{C}), 118.4(\mathrm{C}), 113.9(\mathrm{CH}), 96.4(\mathrm{C}), 85.6(\mathrm{C}), 55.3\left(\mathrm{CH}_{3}\right) ;$ IR (neat): $3019,2965,2933,2839,2219,1665,1609,1595,1578,1515,1489,1437$, $1416,1378,1320,1248,1225,1175,1110,1072,1022,1002,929,874,841,812$, $760,732,699,679,639,584,522 \mathrm{~cm}^{-1} ;$ MS (ESI, m/z): $466.18[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS
(ESI): calcd. for $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{NO}_{2}$: $466.1802[\mathrm{M}+\mathrm{H}]^{+}$, found: 466.1820 .

4.6.17 (2-(4-Methoxyphenyl)-5-((4-methoxyphenyl)ethynyl)-4-phenylpyridin-3-yl)(phenyl)methanone (57bb)

(5-Iodo-2-(4-methoxyphenyl)-4-phenylpyridin-3-yl)(phenyl)methanone (55b) (98.3 $\mathrm{mg}, 0.20 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{CuI}(1.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ and 4-ethynylanisole ($\mathbf{5 6 b}$) ($39.6 \mathrm{mg}, 0.30 \mathrm{mmol}$) were employed to afford 86.2 mg (87%) of the indicated product as a yellow solid ($R_{f}=0.20$ in $4: 1$ hexane/ethyl acetate): mp 179.0-180.0 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.99(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.50$ (m, 4H), $7.39(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 7 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.77$ $(\mathrm{m}, 4 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.8(\mathrm{C}=\mathrm{O})$, 160.2 (CO), 160.1 (CO), 154.6 (C), 152.2 (CH), 150.0 (C), 137.63 (C), 137.61 (C), 136.1 (C), $133.3(\mathrm{CH}), 133.1(\mathrm{CH}), 131.7(\mathrm{C}), 130.7(\mathrm{CH}), 129.6(\mathrm{CH}), 129.4$ $(\mathrm{CH}), 128.4(2 \times \mathrm{CH}), 127.8(\mathrm{CH}), 118.8(\mathrm{C}), 114.8(\mathrm{C}), 114.1(\mathrm{CH}), 113.9(\mathrm{CH})$, $96.7(\mathrm{C}), 84.5(\mathrm{C}), 55.4\left(\mathrm{CH}_{3}\right), 55.3\left(\mathrm{CH}_{3}\right)$; IR (neat): 2957, 2933, 2835, 2200, 1666, 1603, 1578, 1508, 1437, 1416, 1377, 1289, 1246, 1224, 1173, 1129, 1108, 1028, 1001, 931, 876, 831, 808, 790, 761, 698, 677, 579, $535 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $496.19[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{NO}_{3}: 496.1907[\mathrm{M}+\mathrm{H}]^{+}$, found: 496.1921.

4.6.18 (2-(4-Methoxyphenyl)-4-phenyl-5-(p-tolylethynyl)pyridin-3$\mathbf{y l}$ (phenyl)methanone (57bd)

(5-Iodo-2-(4-methoxyphenyl)-4-phenylpyridin-3-yl)(phenyl)methanone (55b) (98.3 $\mathrm{mg}, 0.20 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{CuI}(1.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ and 4-ethynyltoluene ($\mathbf{5 6 d}$) ($34.8 \mathrm{mg}, 0.30 \mathrm{mmol}$) were employed to afford 95.0 mg (99\%) of the indicated product as a yellow solid ($R_{f}=0.33$ in $4: 1$ hexane/ethyl acetate): mp 167.2-169.4 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.01(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{dt}$, $J=5.8$ and $5.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.21(\mathrm{~m}, 7 \mathrm{H}), 7.16-7.07(\mathrm{~m}, 4 \mathrm{H})$, 6.84-6.78 (m, 2H), $3.75(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.8$
(C=O), 160.2 (CO), 154.8 (C), 152.4 (CH), 150.2 (C), 139.0 (C), 137.6 (C), 136.0 (C), $133.4(\mathrm{CH}), 133.3(\mathrm{C}), 131.7(\mathrm{C}), 131.5(\mathrm{CH}), 130.7(\mathrm{CH}), 129.6(\mathrm{CH}), 129.4$ $(\mathrm{CH}), 129.2(\mathrm{CH}), 128.4(2 \times \mathrm{CH}), 127.8(\mathrm{CH}), 119.6(\mathrm{C}), 118.6(\mathrm{C}), 113.9(\mathrm{CH})$, $96.7(\mathrm{C}), 85.0(\mathrm{C}), 55.3\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right)$; IR (neat): 3031, 3004, 2933, 2810, $2219,1614,1594,1577,1509,1492,1438,1379,1318,1291,1247,1225,1177$, 1044, 1028, 992, 875, 842, 819, 764, 698, 623,583, 532, $515 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $480.20[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{NO}_{2}: 480.1958[\mathrm{M}+\mathrm{H}]^{+}$, found: 480.1975 .

4.6.19 (2-(4-Methoxyphenyl)-4-phenyl-5-(thiophen-3-ylethynyl)pyridin-3$\mathbf{y l}$)(phenyl)methanone (57bm)

(5-Iodo-2-(4-methoxyphenyl)-4-phenylpyridin-3-yl)(phenyl)methanone (55b) (98.3 $\mathrm{mg}, 0.20 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{CuI}(1.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ and 3-ethynylthiophene ($\mathbf{5 6 m}$) ($32.4 \mathrm{mg}, 0.30 \mathrm{mmol}$) were employed to afford 92.4 mg (98\%) of the indicated product as an orange solid ($R_{f}=0.30$ in 4:1 hexane/ethyl acetate): mp 139.5-140.5 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.00(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.51$ $(\mathrm{m}, 4 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.21(\mathrm{~m}, 9 \mathrm{H}), 6.92(\mathrm{dd}, J=5.0$ and $1.1 \mathrm{~Hz}, 1 \mathrm{H})$, 6.82-6.78 (m, 2H), $3.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.8(\mathrm{C}=\mathrm{O})$, 160.3 (CO), 154.9 (C), 152.3 (CH), 150.3 (C), 137.6 (C), $136.0(\mathrm{C}), 133.38(\mathrm{CH})$, 133.35 (C), 131.7 (C), $130.7(\mathrm{CH}), 129.7(\mathrm{CH}), 129.5(\mathrm{CH}), 129.4(\mathrm{CH}), 129.3$ (CH), $128.4(2 \times \mathrm{CH}), 127.9(\mathrm{CH}), 125.6(\mathrm{CH}), 121.8(\mathrm{C}), 118.4(\mathrm{C}), 113.9(\mathrm{CH})$, 91.7 (C), 85.2 (C), $55.3\left(\mathrm{CH}_{3}\right)$; IR (neat): 3106, 2951, 2926, 2834, 2228, 1658, $1596,1575,1510,1491,1438,1409,1304,1294,1247,1223,1206,1172,1110$, 1029, 1018, 929, 834, 820, 785, 767, 715, 697, 677, 624, $534 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $472.14[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}: 472.1366[\mathrm{M}+\mathrm{H}]^{+}$, found: 472.1386.

4.6.20 (5-(Ferrocenylethynyl)-2-(4-methoxyphenyl)-4-phenylpyridin-3yl)(phenyl)methanone (57br)

(5-Iodo-2-(4-methoxyphenyl)-4-phenylpyridin-3-yl)(phenyl)methanone (55b) (98.3 $\mathrm{mg}, 0.20 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{CuI}(1.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ and ethynylferrocene ($\mathbf{5 6 r}$) ($63.0 \mathrm{mg}, 0.30 \mathrm{mmol}$) were employed to afford 105.5 mg (92%) of the indicated product as a red solid ($R_{f}=0.33$ in $4: 1$ hexane/ethyl acetate): mp 175.1-178.8 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.85(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=8.6 \mathrm{~Hz}$, $4 \mathrm{H}), 7.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 5 \mathrm{H}), 7.14(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.21-4.17(\mathrm{~m}, 2 \mathrm{H}), 4.11-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 5 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.8$ (C=O), 160.2 (C), 154.3 (C), 152.3 (CH), 150.0 (C), 137.6 (C), 136.4 (C), 133.4 (CH), 133.3 (C) 131.8 (C), 130.7 (CH), 129.4 (2 x CH), 128.4 ($2 \times \mathrm{CH}$), 127.9 (CH), 119.1 (C), 113.4 (CH), 96.1 (C), 81.7 (C), 71.4 $(\mathrm{CH}), 70.1(\mathrm{CH}), 69.2(\mathrm{CH}), 64.2(\mathrm{C}), 55.3\left(\mathrm{CH}_{3}\right)$; IR (neat): 2958, 2931, 2836, 2211, 1664, 1607, 1578, 1555, 1512, 1466, 1449, 1429, 1416, 1374, 1320, 1307, $1245,1228,1175,1107,1041,1027,999,917,822,792,695,676,647,585,569$, 536, $486 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $572.16[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{37} \mathrm{H}_{28}{ }^{54} \mathrm{FeNO}_{2}$: $572.1511[\mathrm{M}+\mathrm{H}]^{+}$, found: 572.1584.

4.6.21 (2-Butyl-4-phenyl-5-(phenylethynyl)pyridin-3-yl)(phenyl)methanone (571a)

(2-Butyl-5-iodo-4-phenylpyridin-3-yl)(phenyl)methanone (551) (88.3 mg, 0.20 $\mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol})$, $\mathrm{CuI}(1.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ and phenylacetylene (56a) ($30.6 \mathrm{mg}, 0.30 \mathrm{mmol}$) were employed to afford 71.5 mg (86%) of the indicated product as an orangish yellow solid $\left(R_{f}=0.57\right.$ in 4:1 hexane/ethyl acetate): mp $86.2-89.1{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.80$ (s, $1 \mathrm{H}), 7.49(\mathrm{dd}, J=5.2$ and $3.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.36(\mathrm{tt}, J=7.1$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.10$ $(\mathrm{m}, 12 \mathrm{H}), 2.61(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.61(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.22$ (sextet, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $0.75(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.0(\mathrm{C}=\mathrm{O}), 158.4(\mathrm{C})$, 152.5 (CH), 149.0 (C), 137.3 (C), 135.9 (C), 133.9 (C), 133.7 (CH), 131.5 (CH),
$129.7(\mathrm{CH}), 129.4(\mathrm{CH}), 128.7(\mathrm{CH}), 128.5(2 \times \mathrm{CH}), 128.4(\mathrm{CH}), 127.8(\mathrm{CH})$, $122.8(\mathrm{C}), 117.5(\mathrm{C}), 95.5(\mathrm{C}), 85.6(\mathrm{C}), 36.2\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{2}\right), 13.9$ $\left(\mathrm{CH}_{3}\right)$; IR (neat): 3052, 2954, 2928, 2865, 1735, 1665, 1596, 1579, 1560, 1525, 1490, 1447, 1421, 1326, 1281, 1266, 1223, 1154, 1071, 1002, 992, 916, 882, 754, $717,701,688,669,522 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $416.20\left[\mathrm{M}^{+}\right.$; HRMS (ESI): calcd. for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{NO}: 416.2009[\mathrm{M}+\mathrm{H}]^{+}$, found: 416.2032.

4.6.22 Phenyl(4-phenyl-5-(phenylethynyl)-2-(thiophen-3-yl)pyridin-3yl)methanone (57 ma)

(5-Iodo-4-phenyl-2-(thiophen-3-yl)pyridin-3-yl)(phenyl)methanone (55m) (93.5 $\mathrm{mg}, 0.20 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{CuI}(1.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ and phenylacetylene (56a) ($30.6 \mathrm{mg}, 0.30 \mathrm{mmol}$) were employed to afford 79.5 mg (90%) of the indicated product as a yellow solid $\left(R_{f}=0.50\right.$ in $4: 1$ hexane/ethyl acetate): mp 177.1-181.2 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.89(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.47$ $(\mathrm{m}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J=2.9$ and $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.14(\mathrm{~m}, 10 \mathrm{H})$, 7.12 (ddd, $J=5.1,3.0$ and $1.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.9$ (C=O), 152.5 (CH), 150.2 (C), 149.9 (C), 140.3 (C), 137.4 (C), 135.8 (C), 133.6 (CH), 133.0 (C), 131.6 (CH), 129.6 (CH), 129.4 (CH), 128.8 (CH), 128.6 (CH), $128.54(\mathrm{CH}), 128.48(\mathrm{CH}), 128.4(\mathrm{CH}), 127.9(\mathrm{CH}), 127.0(\mathrm{CH}), 125.8(\mathrm{CH})$, 122.7 (C), 118.7 (C), 96.6 (C), 85.6 (C); IR (neat): 3057, 3027, 2211, 1734, 1669, $1594,1578,1555,1526,1490,1440,1346,1324,1285,1257,1223,1174,1158$, $1078,1002,908,878,867,783,765,703,686,674,641,622,522 \mathrm{~cm}^{-1}$; MS (ESI, m / z): $442.13[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{NOS}: 442.1260[\mathrm{M}+\mathrm{H}]^{+}$, found: 442.1283.

4.6.23 Phenyl(4-phenyl-2-(thiophen-3-yl)-5-(p-tolylethynyl)pyridin-3yl)methanone (57 md)

(5-Iodo-4-phenyl-2-(thiophen-3-yl)pyridin-3-yl)(phenyl)methanone (55m) (93.5 $\mathrm{mg}, 0.20 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{CuI}(1.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ and

4-ethynyltoluene ($\mathbf{5 6 d}$) ($34.8 \mathrm{mg}, 0.30 \mathrm{mmol}$) were employed to afford 68.3 mg (75\%) of the indicated product as a yellow solid ($R_{f}=0.48$ in $4: 1$ hexane/ethyl acetate): mp 184.4-187.0 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.87(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.47$ (m, 2H), 7.45 (dd, $J=3.0$ and $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 7 \mathrm{H}), 7.12$ (dd, $J=5.1$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.05-6.94 (m, 4H), $2.24(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 197.0(\mathrm{C}=\mathrm{O}), 152.4(\mathrm{CH}), 150.0(\mathrm{C}), 149.7(\mathrm{C}), 140.2$ (C), 139.1 (C), 137.4 (C), $135.8(\mathrm{C}), 133.6(\mathrm{CH}), 133.0(\mathrm{C}), 131.5(\mathrm{CH}), 129.6(\mathrm{CH}), 129.4(\mathrm{CH})$, $129.2(\mathrm{CH}), 128.6(\mathrm{CH}), 128.49(\mathrm{CH}), 128.45(\mathrm{CH}), 127.9(\mathrm{CH}), 126.9(\mathrm{CH})$, $125.8(\mathrm{CH}), 119.6(\mathrm{C}), 118.8(\mathrm{C}), 96.9(\mathrm{C}), 85.0(\mathrm{C}), 21.7\left(\mathrm{CH}_{3}\right)$; IR (neat): 3055, 3024, 2213, 1670, 1594, 1556, 1524, 1507, 1495, 1441, 1327, 1286, 1260, 1224, 1174, 1155, 1121, 1103, 1077, 1001, 1077, 1001, 908, 868, 816, 791, 764, 702, 686, 670, 617, 579, $530 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $456.14[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI): calcd. for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{NOS}$: $456.1417[\mathrm{M}+\mathrm{H}]^{+}$, found: 456.1438.

4.6.24 Phenyl(4-phenyl-2-(thiophen-3-yl)-5-(thiophen-3-ylethynyl)pyridin-3yl)methanone (57 mm)

(5-Iodo-4-phenyl-2-(thiophen-3-yl)pyridin-3-yl)(phenyl)methanone (55m) (93.5 $\mathrm{mg}, 0.20 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{CuI}(1.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ and 3-ethynylthiophene (56m) ($32.4 \mathrm{mg}, 0.30 \mathrm{mmol}$) were employed to afford 65.3 mg (73\%) of the indicated product as a brown solid ($R_{f}=0.35$ in $4: 1$ hexane/ethyl acetate): mp 189.0-192.2 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.86(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.46$ (m, 2H), $7.45(\mathrm{dd}, J=2.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.10(\mathrm{~m}, 10 \mathrm{H})$, $6.81(\mathrm{dd}, J=5.0$ and $1.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.9(\mathrm{C}=\mathrm{O})$, 152.3 (CH), 150.1 (C), 149.8 (C), 140.2 (C), 137.4 (C), 135.8 (C), 133.6 (CH), $133.0(\mathrm{C}), 129.7(\mathrm{CH}), 129.6(\mathrm{CH}), 129.4(2 \times \mathrm{CH}), 128.6(\mathrm{CH}), 128.51(\mathrm{CH})$, $128.45(\mathrm{CH}), 127.9(\mathrm{CH}), 127.0(\mathrm{CH}), 125.8(\mathrm{CH}), 125.6(\mathrm{CH}), 121.8(\mathrm{C}), 118.7$ (C), 91.9 (C), 85.2 (C); IR (neat): 3093, 3080, 2209, 1732, 1666, 1593, 1558, 1517, 1493, 1443, 1342, 1313, 1299, 1226, 1207, 1174, 1078, 1007, 930, 881, 850, 791, $778,761,717,702,676,641,612,566 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $448.08[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{NOS}_{2}: 448.0824[\mathrm{M}+\mathrm{H}]^{+}$, found: 448.0848 .

4.6.25 Phenyl(4-phenyl-5-(ferrocenylethynyl)-2-(thiophen-3-yl)pyridin-3yl)methanone ($\mathbf{5 7 m r}$)

(5-Iodo-4-phenyl-2-(thiophen-3-yl)pyridin-3-yl)(phenyl)methanone (55m) (93.5 $\mathrm{mg}, 0.20 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{CuI}(1.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ and ethynylferrocene (56r) ($63.0 \mathrm{mg}, 0.30 \mathrm{mmol}$) were employed to afford 87.9 mg (80%) of the indicated product as a red solid ($R_{f}=0.50$ in $4: 1$ hexane/ethyl acetate): mp 176.8-178.5 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.86(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=8.3$ and $1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{dd}, J=2.9$ and $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.20$ $(\mathrm{m}, 7 \mathrm{H}), 7.16(\mathrm{dd}, J=5.1$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{t}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{t}, J=1.8$ $\mathrm{Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.6(\mathrm{C}=\mathrm{O}), 152.3(\mathrm{CH})$, 149.7 (C), 149.2 (C), 140.5 (C), 137.6 (C), 136.3 (C), 133.5 (CH), 133.0 (C), 129.7 $(\mathrm{CH}), 129.4(\mathrm{CH}), 128.7(\mathrm{CH}), 128.6(\mathrm{CH}), 128.4(\mathrm{CH}), 128.0(\mathrm{CH}), 126.8(\mathrm{CH})$, $125.6(\mathrm{CH}), 119.3(\mathrm{C}), 96.4$ (C) $81.9(\mathrm{C}), 71.5(\mathrm{CH}), 70.2(\mathrm{CH}), 69.2(\mathrm{CH}), 64.4$ (C); IR (neat): $3107,3089,2212,1734,1667,1594,1578,1559,1524,1474,1447$, $1435,1412,1344,1315,1218,1175,1160,1104,1043,1024,1001,911,881,850$, 831, 808, 780, 721, 699, 679, 610, 576, 534, 494, 483, $466 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $548.10[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{34} \mathrm{H}_{24}{ }^{54} \mathrm{FeNOS}$: $548.0969[\mathrm{M}+\mathrm{H}]^{+}$, found: 548.1042.

4.6.26 1-(2,4-Diphenyl-5-(phenylethynyl)pyridin-3-yl)ethanone (57aaa)

1-(5-Iodo-2,4-diphenylpyridin-3-yl)ethanone (55aa) (79.8 mg, 0.20 mmol), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{CuI}(1.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ and phenylacetylene (56a) ($30.6 \mathrm{mg}, 0.30 \mathrm{mmol}$) were employed to afford $68.0 \mathrm{mg}(91 \%)$ of the indicated product as a yellow solid ($R_{f}=0.53$ in $4: 1$ hexane/ethyl acetate): mp $129.8-132.5{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.84(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 2 \mathrm{H})$, 7.41-7.34 (m, 6H), 7.34-7.30 (m, 2H), 7.22-7.15 (m, 3H), $7.13(\mathrm{dt}, J=8.0$ and 2.1 $\mathrm{Hz}, 2 \mathrm{H}$), $1.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.9$ ($\mathrm{C}=\mathrm{O}$), $154.0(\mathrm{C})$, $152.0(\mathrm{CH}), 148.8(\mathrm{C}), 139.1(\mathrm{C}), 136.6(\mathrm{C}), 136.1(\mathrm{C}), 131.6(\mathrm{CH}), 129.4(\mathrm{CH})$, $129.3(\mathrm{CH}), 129.1(\mathrm{CH}), 128.88(\mathrm{CH}), 128.75(\mathrm{CH}), 128.4(\mathrm{CH}), 128.3(2 \times \mathrm{CH})$,
122.6 (C), 119.1 (C), 96.7 (C), 85.4 (C), $32.7\left(\mathrm{CH}_{3}\right)$; IR (neat): 3054, 2208, 1960, 1897, 1703, 1554, 1518, 1487, 1440, 1411, 1375, 1348, 1325, 1309, 1196, 1178, 1101, 1073, 1025, 974, 919, 910, 754, 701, 690, 668, 651, $511 \mathrm{~cm}^{-1}$; MS (ESI, m / z): $374.15[\mathrm{M}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{NO}: 374.1539[\mathrm{M}+\mathrm{H}]^{+}$, found: 374.1543.

4.6.27 (4-(3-Bromophenyl)-2-phenyl-5-(phenylethynyl)pyridin-3yl)(phenyl)methanone (57aba)

(4-(3-Bromophenyl)-5-iodo-2-phenylpyridin-3-yl)(phenyl)methanone ($108.0 \mathrm{mg}, 0.20 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{CuI}(1.9 \mathrm{mg}, 0.01$ $\mathrm{mmol})$ and phenylacetylene (56a) ($30.6 \mathrm{mg}, 0.30 \mathrm{mmol}$) were employed to afford $82.3 \mathrm{mg}(84 \%)$ of the indicated product as an orangish yellow solid ($R_{f}=0.45 \mathrm{in}$ 4:1 hexane/ethyl acetate): mp $168.0-171.0{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.05$ $(\mathrm{s}, 1 \mathrm{H}), 7.60-7.51(\mathrm{~m}, 5 \mathrm{H}), 7.42(\mathrm{ddd}, J=5.3,3.3$ and $1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}$, $5 \mathrm{H}), 7.28(\mathrm{dt}, J=10.9$ and $4.7 \mathrm{~Hz}, 5 \mathrm{H}), 7.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.2$ (C=O), 155.6 (C), 152.7 (CH), 148.6 (C), 139.0 (C), 137.9 (C), 137.5 (C), 133.7 (CH), 133.6 (CH), 132.7 (C), 131.8 (CH), 131.7 (CH), $129.6(\mathrm{CH}), 129.4(\mathrm{CH}), 129.3(\mathrm{CH}), 129.1(\mathrm{CH}), 129.1(\mathrm{CH}), 128.6(\mathrm{CH})$, $128.54(2 \times \mathrm{CH}), 128.48(\mathrm{CH}), 122.4$ (C), 121.9 (C), 118.8 (C), 97.3 (C), $85.0(\mathrm{C}) ;$ IR (neat): 3057, 3027, 2217, 2201, 1731, 1665, 1595, 1552, 1490, 1477, 1437, $1324,1285,1257,1222,1176,1072,1004,994,875,785,754,726,689,526 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $514.08[\mathrm{M}]^{+} ;$HRMS (ESI): calcd. for $\mathrm{C}_{32} \mathrm{H}_{21}{ }^{79} \mathrm{BrNO}: 514.0801$ $[\mathrm{M}+\mathrm{H}]^{+}$, found: 514.0817.

4.6.28 (4-Methyl-2-phenyl-5-(phenylethynyl)pyridin-3-

 yl)(phenyl)methanone (57aca)(5-Iodo-4-methyl-2-phenylpyridin-3-yl)(phenyl)methanone (55ac) (79.8 mg, 0.20 $\mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol})$, $\mathrm{CuI}(1.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ and phenylacetylene (56a) ($30.6 \mathrm{mg}, 0.30 \mathrm{mmol}$) were employed to afford 63.5 mg (85%) of the indicated product as an light yellow solid $\left(R_{f}=0.50\right.$ in $4: 1$
hexane/ethyl acetate): mp 104.0-107.1 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.81$ (s, $1 \mathrm{H}), 7.55(\mathrm{dd}, J=5.2$ and $3.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{dt}, J=5.0$ and $3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.35$ $(\mathrm{m}, 3 \mathrm{H}), 7.31(\mathrm{dd}, J=5.9$ and $2.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.23(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.11(\mathrm{~m}$, $3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.5(\mathrm{C}=\mathrm{O}), 154.8(\mathrm{C}), 152.3$ (CH), 146.9 (C), 139.2 (C), 136.9 (C), 134.2 (C), 133.9 (CH), 131.8 (CH), 129.5 $(\mathrm{CH}), 129.2(\mathrm{CH}), 129.1(\mathrm{CH}), 128.9(\mathrm{CH}), 128.8(\mathrm{CH}), 128.6(\mathrm{CH}), 128.4(\mathrm{CH})$, 122.7 (C), 119.9 (C), 97.5 (C), 84.8 (C), $18.1\left(\mathrm{CH}_{3}\right)$; IR (neat): 3049, 2923, 2851, 1993, 1595, 1529, 1487, 1438, 1375, 1319, 1285, 1247, 1207, 1175, 1148, 1068, 1026, 999, 963, 938, 889, 844, 754, 712, 699, 687, $531 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $374.16[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{NO}: 374.1539[\mathrm{M}+\mathrm{H}]^{+}$, found: 374.1604.

4.7 General Procedure for the Synthesis of 2,3-Dihydro-1,4-oxazepines 33

To a stirred solution of the corresponding N-propargylic β-enaminone 32 (0.30 $\mathrm{mmol})$ in $\mathrm{CHCl}_{3}(5.0 \mathrm{~mL})$ at room temperature under argon were added ZnCl_{2} $(0.30 \mathrm{mmol})$. The resulting mixture was then refluxed (Note that reaction was continued until N-propargylic β-enaminone 32 was completely consumed as monitored by routine TLC). After the reaction was over, the solvent was removed on a rotary evaporator, and ethyl acetate (40 mL) and a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ were added. After the layers were separated, the aqueous layer was extracted with ethyl acetate ($2 \times 30 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4} and evaporated on a rotary evaporator to give the crude product, which was purified by flash chromatography on silica gel using hexane/ethyl acetate ($9: 1$ followed by $4: 1$) as the eluent to afford the corresponding 1,4oxazepine derivative 33.

4.7.1 2-Methylene-5,7-diphenyl-2,3-dihydro-1,4-oxazepine (33a)

1,3-Diphenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (1a) ($78.4 \mathrm{mg}, 0.30 \mathrm{mmol}$) and $\mathrm{ZnCl}_{2}(40.9 \mathrm{mg}, 0.30 \mathrm{mmol})$ were employed to afford the indicated product ($74.5 \mathrm{mg}(95 \%)$ in refluxing CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.87-7.72 (m,
$4 \mathrm{H}), 7.51-7.38(\mathrm{~m}, 6 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=1.4 \mathrm{~Hz} 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 4.40(\mathrm{~d}$, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.1$ (C), 159.0 (C), 158.2 (C), 139.8 (C), $135.2(\mathrm{C}), 130.2(\mathrm{CH}), 130.1(\mathrm{CH}), 128.7(\mathrm{CH}), 128.4(\mathrm{CH}), 127.5$ $(\mathrm{CH}), 126.4(\mathrm{CH}), 99.8(\mathrm{CH}), 94.0\left(\mathrm{CH}_{2}\right), 55.6\left(\mathrm{CH}_{2}\right)$; IR (neat): 3104, 3059, 2994, 2955, 2837, 1656, 1627, 1587, 1570, 1491, 1446, 1361, 1313, 1290, 1260, 1230, 1191, 1176, 1110, 1076, 1055, 1027, 999, 946, 926, 882, 832, 804, $762 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $262.12[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}: 262.1226[\mathrm{M}+\mathrm{H}]^{+}$, found: 262.1236. The spectral data were in agreement with those reported previously for this compound. ${ }^{62}$

4.7.2 5-(4-Methoxyphenyl)-2-methylene-7-phenyl-2,3-dihydro-1,4-oxazepine (33b)

3-(4-Methoxyphenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one
(32b) ($131.1 \mathrm{mg}, 0.45 \mathrm{mmol}$) and $\mathrm{ZnCl}_{2}(61.3 \mathrm{mg}, 0.45 \mathrm{mmol})$ were employed to afford the indicated product ($95.7 \mathrm{mg}(73 \%)$ in refluxing $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.79-7.74 (m, 4H), 7.46-7.41 (m, 3H), 6.95-6.89 (m, 2H), $6.39(\mathrm{~s}, 1 \mathrm{H})$, $4.73(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.38(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.4$ (C), 161.4 (C), 158.9 (C), 158.6 (C), 135.4 (C), $132.4(\mathrm{C}), 130.2(\mathrm{CH}), 129.1(\mathrm{CH}), 128.7(\mathrm{CH}), 126.4(\mathrm{CH}), 113.8(\mathrm{CH}), 99.9$ $(\mathrm{CH}), 93.7\left(\mathrm{CH}_{2}\right), 55.5\left(\mathrm{OCH}_{3}\right), 55.3\left(\mathrm{CH}_{2}\right)$; IR (neat): 3081, 3052, 2996, 2953, 2835, 1656, 1630, 1604, 1586, 1562, 1510, 1492, 1462, 1432, 1367, 1315, 1299, 1254, 1199, 1172, 1109, 1063, 1029, 999, 869, 856, 820, $762 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $292.13[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{2}: 292.1332[\mathrm{M}+\mathrm{H}]^{+}$, found: 292.1346.

4.7.3 5-(2-Methoxyphenyl)-2-methylene-7-phenyl-2,3-dihydro-1,4-oxazepine (33c)

3-(2-Methoxyphenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one
(32c) $(110.7 \mathrm{mg}, 0.38 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(51.8 \mathrm{mg}, 0.38 \mathrm{mmol})$ were employed to afford
the indicated product ($73.1 \mathrm{mg}\left(66 \%\right.$) in refluxing CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.75-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{dd}, J=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 4 \mathrm{H})$, 7.03-6.97 (m, 1H), $6.94(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.56(\mathrm{~s}, 2 \mathrm{H}), 4.40(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 167.7 (C), 157.8 (C), 157.3 (C), 156.8 (C), 135.5 (C), 130.8 (CH), 130.3 (CH), $130.0(\mathrm{CH}), 128.6(\mathrm{CH}), 126.4(\mathrm{CH}), 120.9(\mathrm{CH}), 111.6(\mathrm{CH}), 102.6(\mathrm{CH}), 94.2$ $\left(\mathrm{CH}_{2}\right), 55.9\left(\mathrm{OCH}_{3}\right), 55.7\left(\mathrm{CH}_{2}\right)$ (Note that one C and one CH peak overlap on each other); IR (neat): $3059,2937,2836,1731,1710,1657,1623,1597,1567,1487$, $1461,1434,1365,1321,1241,1179,1161,1120,1063,1046,1020,904,813,751$ $\mathrm{cm}^{-1} ;$ MS (ESI, m/z): $292.13[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{2}$: $292.1332[\mathrm{M}+\mathrm{H}]^{+}$, found: 292.1345 .

4.7.4 2-Methylene-7-phenyl-5-(p-tolyl)-2,3-dihydro-1,4-oxazepine (33d)

1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(p-tolyl)prop-2-en-1-one (32d) ($88.1 \mathrm{mg}, 0.32$ $\mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(43.6 \mathrm{mg}, 0.32 \mathrm{mmol})$ were employed to afford the indicated product ($65.2 \mathrm{mg}(74 \%)$ in refluxing CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80-$ 7.74 (m, 2H), 7.71 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.40(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.39(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 166.9$ (C), 158.8 (C), 158.4 (C), 140.2 (C), 137.1 (C), 135.3 (C), $130.1(\mathrm{CH}), 129.1(\mathrm{CH}), 128.6(\mathrm{CH}), 127.4(\mathrm{CH}), 126.3(\mathrm{CH}), 100.0$ (CH), $93.7\left(\mathrm{CH}_{2}\right), 55.4\left(\mathrm{CH}_{2}\right), 21.4\left(\mathrm{CH}_{3}\right)$; IR (neat): 3112, 3055, 3025, 3000, 2962, 2836, 1659, 1624, 1584, 1561, 1508, 1492, 1446, 1362, 1316, 1292, 1264, 1229, 1198, 1179, 1109, 1063, 1028, 950, 882, 854, 812, $758 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $276.14[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}: 276.1383[\mathrm{M}+\mathrm{H}]^{+}$, found: 276.1386.

4.7.5 2-Methylene-7-phenyl-5-(m-tolyl)-2,3-dihydro-1,4-oxazepine (33e)

1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(m-tolyl)prop-2-en-1-one (32e) $\quad(90.9 \mathrm{mg}$, $0.33 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(45.0 \mathrm{mg}, 0.33 \mathrm{mmol})$ were employed to afford the indicated product ($67.3 \mathrm{mg}(74 \%)$ in refluxing CHCl_{3}). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84-$
7.77 (m, 2H), 7.67 (s, 1H), 7.61 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.24$ $(\mathrm{m}, 2 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 4.42(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.3$ (C), 158.9 (C), $158.2(\mathrm{C})$, 139.7 (C), 138.1 (C), 135.3 (C), $130.9(\mathrm{CH}), 130.2(\mathrm{CH}), 128.7(\mathrm{CH}), 128.3(\mathrm{CH})$, $128.0(\mathrm{CH}), 126.4(\mathrm{CH}), 124.7(\mathrm{CH}), 99.9(\mathrm{CH}), 93.9\left(\mathrm{CH}_{2}\right), 55.5\left(\mathrm{CH}_{2}\right), 21.5$ $\left(\mathrm{CH}_{3}\right)$; IR (neat): 3056, 3026, 2920, 1707, 1657, 1622, 1596, 1546, 1491, 1447, 1373, 1315, 1260, 1198, 1067, 1044, 1024, 999, 907, 831, 787, $764 \mathrm{~cm}^{-1}$; MS (ESI, m / z): $276.14[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}: 276.1383[\mathrm{M}+\mathrm{H}]^{+}$, found: 276.1394 .

4.7.6 2-Methylene-7-phenyl-5-(4-(trifluoromethyl)phenyl)-2,3-dihydro-1,4oxazepine (33f)

1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(4-(trifluoromethyl)phenyl)prop-2-en-1-one (32f) $(98.8 \mathrm{mg}, 0.30 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(40.9 \mathrm{mg}, 0.30 \mathrm{mmol})$ were employed to afford the indicated product ($81.0 \mathrm{mg}(82 \%)$ in refluxing CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.80-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.50-7.41(\mathrm{~m}, 3 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 4.42(\mathrm{~d}$, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.0$ (C), 159.8 (C), 157.8 (C), 143.1 (C), 135.0 (C), $131.9\left(\mathrm{q},{ }^{2} J=32.4 \mathrm{~Hz}, \mathrm{C}\right), 130.5(\mathrm{CH}), 128.8(\mathrm{CH}), 127.9$ (CH), $126.5(\mathrm{CH}), 125.4\left(\mathrm{q},{ }^{3} J=3.7 \mathrm{~Hz}, \mathrm{CH}\right), 124.2\left(\mathrm{q},{ }^{1} J=272.2 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 99.0$ $(\mathrm{CH}), 94.7\left(\mathrm{CH}_{2}\right), 55.8\left(\mathrm{CH}_{2}\right)$; IR (neat): $3109,3085,3054,3039,1660,1623$, $1586,1565,1491,1446,1408,1365,1326,1315,1264,1201,1183,1153,1105$, 1067, 1014, 947, 884, 861, 819, $759 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $330.11[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}: 330.1100[\mathrm{M}+\mathrm{H}]^{+}$, found: 330.1101.

4.7.7 N,N-Dimethyl-4-(2-methylene-7-phenyl-2,3-dihydro-1,4-oxazepin-5yl)aniline (33g)

3-(4-(Dimethylamino)phenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one ($\mathbf{3 2 g}$) $(91.3 \mathrm{mg}, 0.30 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(40.9 \mathrm{mg}, 0.30 \mathrm{mmol})$ were employed to
afford the indicated product ($36.5 \mathrm{mg}\left(40 \%\right.$) in refluxing CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 3 \mathrm{H}), 6.75-$ $6.65(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.37(\mathrm{~d}, J=1.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.01 ($\mathrm{s}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.4$ (C), 159.0 (C), 158.5 (C), 151.8 (C), 135.5 (C), $130.0(\mathrm{CH}), 128.7(\mathrm{CH}), 128.6(\mathrm{CH}), 127.2(\mathrm{C}), 126.3$ $(\mathrm{CH}), 111.5(\mathrm{CH}), 100.3(\mathrm{CH}), 93.2\left(\mathrm{CH}_{2}\right), 54.9\left(\mathrm{CH}_{2}\right), 40.4\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right)$; IR (neat): 2891, 2828, 1737, 1646, 1629, 1606, 1578, 1548, 1523, 1490, 1447, 1357, 1317, 1267, 1189, 1107, 1059, 811, 758, $683 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $305.17[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}: 305.1648[\mathrm{M}+\mathrm{H}]^{+}$, found: 305.1662.

4.7.8 5-(3-Fluorophenyl)-2-methylene-7-phenyl-2,3-dihydro-1,4-oxazepine (33h)

3-(3-Fluorophenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (32h) (89.4 $\mathrm{mg}, 0.32 \mathrm{mmol}$) and $\mathrm{ZnCl}_{2}(43.6 \mathrm{mg}, 0.32 \mathrm{mmol})$ were employed to afford the indicated product ($80.5 \mathrm{mg}\left(90 \%\right.$) in refluxing CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.79-7.74 (m, 2H), 7.59-7.56 (m, 1 H$), ~ 7.55-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.41(\mathrm{~m}$, $3 \mathrm{H}), 7.37$ (td, $J=8.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ (tdd, $J=8.3,2.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H})$, $4.78(\mathrm{~d}, J=0.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\delta 166.0$ (C), 162.9 (d, $\left.{ }^{1} J=246.2 \mathrm{~Hz}, \mathrm{CF}\right), 159.5$ (C), 158.0 (C), 142.1 (d, ${ }^{3} J=7.1$ $\mathrm{Hz}, \mathrm{C}), 135.1(\mathrm{C}), 130.4(\mathrm{CH}), 130.0\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, \mathrm{CH}\right), 128.7(\mathrm{CH}), 126.4(\mathrm{CH})$, $123.2\left(\mathrm{~d},{ }^{4} J=2.5 \mathrm{~Hz}, \mathrm{CH}\right), 116.7\left(\mathrm{~d},{ }^{2} J=21.6 \mathrm{~Hz}, \mathrm{CH}\right), 114.5\left(\mathrm{~d},{ }^{2} J=22.7 \mathrm{~Hz}\right.$, $\mathrm{CH})$, $99.2(\mathrm{CH}), 94.4\left(\mathrm{CH}_{2}\right), 55.6\left(\mathrm{CH}_{2}\right)$. IR (neat): 3102, 2993, 2951, 2837, 1731, $1704,1656,1624,1569,1483,1447,1431,1361,1313,1296,1261,1248,1196$, 1174, 1104, 1077, 1055, 874, 825, 790, $762 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $280.11[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{FNO}: 280.1132[\mathrm{M}+\mathrm{H}]^{+}$, found: 280.1137.

4.7.9 5-(2-Bromophenyl)-2-methylene-7-phenyl-2,3-dihydro-1,4-oxazepine (33i)

3-(2-Bromophenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one ($112.3 \mathrm{mg}, 0.33 \mathrm{mmol}$) and $\mathrm{ZnCl}_{2}(45.0 \mathrm{mg}, 0.33 \mathrm{mmol})$ were employed to afford the indicated product ($82.0 \mathrm{mg}\left(73 \%\right.$) in refluxing CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.78-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.32(\mathrm{~m}, 5 \mathrm{H})$, 7.27-7.20 (m, 1H), $6.13(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 4.44(\mathrm{~d}, J=$ $1.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.6(\mathrm{C}), 157.9(\mathrm{C}), 157.2(\mathrm{C}), 142.0$ (C), $135.0(\mathrm{C}), 133.2(\mathrm{CH}), 130.2(\mathrm{CH}), 130.2(\mathrm{CH}), 130.1(\mathrm{CH}), 128.6(\mathrm{CH})$, $127.5(\mathrm{CH}), 126.4(\mathrm{CH}), 121.3(\mathrm{CBr}), 101.4(\mathrm{CH}), 95.2\left(\mathrm{CH}_{2}\right), 56.1\left(\mathrm{CH}_{2}\right)$; IR (neat): 3058, 1657, 1623, 1597, 1571, 1464, 1365, 1318, 1294, 1257, 1193, 1153, 1119, 1066, 1045, 1024, 848, 826, $757 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $340.03[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{15}{ }^{79} \mathrm{BrNO}: 340.0332[\mathrm{M}+\mathrm{H}]^{+}$, found: 340.0330.

4.7.10 2-(2-Methylene-7-phenyl-2,3-dihydro-1,4-oxazepin-5-yl)isoindoline-1,3-dione (33k) and 2-(2-(3-benzoyl-4-methyl-1 H-pyrrol-2-yl)ethyl)isoindoline-1,3-dione (71k)

2-(5-Oxo-5-phenyl-3-(prop-2-yn-1-ylamino)pent-3-en-1-yl)isoindoline-1,3-dione ($\mathbf{3 2 k}$) $(75.1 \mathrm{mg}, 0.21 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(28.6 \mathrm{mg}, 0.21 \mathrm{mmol})$ were employed. Chromatographic purification of crude product on silica gel produced a mixture of two compounds. The mixture was then rechromatographed on aluminium oxide (neutral), which afforded two fractions. The product in the first fraction was identified as 2-(2-methylene-7-phenyl-2,3-dihydro-1,4-oxazepin-5-yl)isoindoline-1,3-dione (33k) ($30.0 \mathrm{mg}(40 \%)$ in refluxing CHCl_{3}). Second fraction produced a mixture of 1,4 -oxazepine $\mathbf{3 3 k}$ and pyrrole $71 \mathbf{k}$. Spectroscopic identification of pyrrole 71k was made by peak picking of ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture. Yield of pyrrole 71k was calculated by the integration of the related ${ }^{1} \mathrm{H}$ NMR peaks of the mixture, which was found to be 12% (equivalent to 9.0 mg) in refluxing CHCl_{3}.

33k: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) δ 7.83-7.79
$(\mathrm{m}, 2 \mathrm{H}), 7.69-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 3 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H})$, $4.67(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}), 4.24(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 2.77(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.2$ (C=O), 158.1 (C), 157.0 (C), 134.9 (C), 133.9 (CH), 132.6 (CH), 132.3 (C), 130.2 (C), 128.6 $(\mathrm{CH}), 126.4(\mathrm{CH}), 123.3(\mathrm{CH}), 100.4(\mathrm{CH}), 94.6\left(\mathrm{CH}_{2}\right), 55.2\left(\mathrm{CH}_{2}\right), 38.4\left(\mathrm{CH}_{2}\right)$, $36.0\left(\mathrm{CH}_{2}\right)$; IR (neat): 3393, 3180, 2917, 2848, 1764, 1698, 1644, 1596, 1468, 1419, 1400, 1362, 1319, 1258, 1091, 992, 829, 760, $718 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $359.14[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}: 359.1390[\mathrm{M}+\mathrm{H}]^{+}$, found: 359.1400 .

71k: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.28(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, in $7.84-7.75(\mathrm{~m}, 2 \mathrm{H})$, in 7.69-7.65 (m, 2H), in 7.41-7.34 (m, 5H), $6.55(\mathrm{dd}, J=2.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H})$, in 2.84-2.74 (m, 2H), $2.26(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H})$. As mentioned above, pyrrole $\mathbf{7 1 k}$ could not be isolated in pure state from flash column chromatography. That's why; further characterization of this compound could not be achieved.

4.7.11 5-Butyl-2-methylene-7-phenyl-2,3-dihydro-1,4-oxazepine (331) and (2-butyl-4-methyl-1H-pyrrol-3-yl)(phenyl)methanone (711)

1-Phenyl-3-(prop-2-yn-1-ylamino)hept-2-en-1-one (32I) ($72.4 \mathrm{mg}, 0.30 \mathrm{mmol}$) and $\mathrm{ZnCl}_{2}(40.9 \mathrm{mg}, 0.30 \mathrm{mmol})$ were employed. Chromatographic purification of crude product on silica gel produced a mixture of two compounds. The mixture was then rechromatographed on aluminium oxide (neutral), which afforded two fractions. The product in the first fraction was identified as 5-butyl-2-methylene-7-phenyl-2,3-dihydro-1,4-oxazepine (33I) (52.1 mg (72\%) in refluxing CHCl_{3}). The product in the second fraction was assigned as (2-butyl-4-methyl-1 H -pyrrol-3$\mathrm{yl})($ phenyl $)$ methanone (711) ($6.5 \mathrm{mg}(9 \%)$ in refluxing CHCl_{3}).

331: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72-7.63$ (m, 2H), 7.44-7.35 (m, 3H), 5.88 $(\mathrm{s}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~s}, 3 \mathrm{H}), 2.43-2.34(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{tt}, J=7.8$, $6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.37$ (sextet, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3$ (C), 157.8 (C), 157.1 (C), 135.2 (C), $130.0(\mathrm{CH}), 128.6$
$(\mathrm{CH}), 126.3(\mathrm{CH}), 100.9(\mathrm{CH}), 93.8\left(\mathrm{CH}_{2}\right), 55.2\left(\mathrm{CH}_{2}\right), 40.3\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{2}\right)$, $22.5\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right)$; IR (neat): 3268, 2957, 2928, 2870, 1703, 1623, 1596, 1450, 1428, 1378, 1266, 1175, 1107, 1072, 1025, 767, $699 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $242.15[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}: 242.1539[\mathrm{M}+\mathrm{H}]^{+}$, found: 242.1541 .

711: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.45$ (br s, 1H), 7.47-7.31 (m, 5H), 6.56 (dd, $J=2.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.51-1.42(\mathrm{~m}$, $2 \mathrm{H}), 1.10$ (sextet, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $0.73(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 200.8(\mathrm{C}=\mathrm{O}), 136.6(\mathrm{C}), 133.7(\mathrm{C}), 129.2(\mathrm{CH}), 128.6(\mathrm{CH}), 128.5(\mathrm{CH})$, $122.2(\mathrm{C}), 121.8(\mathrm{C}), 117.0(\mathrm{CH}), 42.2\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{2}\right), 22.4\left(\mathrm{CH}_{2}\right), 13.9\left(\mathrm{CH}_{3}\right)$, $12.6\left(\mathrm{CH}_{3}\right)$; IR (neat): $3467,3194,3056,2954,2928,1708,1679,1622,1450$, 1421, 1402, 1340, 1281, 1060, 768, $696 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $242.16[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}: 242.1539[\mathrm{M}+\mathrm{H}]^{+}$, found: 242.1551.

4.7.12 2-Methylene-7-phenyl-5-(thiophen-3-yl)-2,3-dihydro-1,4-oxazepine (33m)

1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(thiophen-3-yl)prop-2-en-1-one (32m) (82.9 $\mathrm{mg}, 0.31 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(42.3 \mathrm{mg}, 0.31 \mathrm{mmol})$ were employed to afford the indicated product ($69.6 \mathrm{mg}(84 \%)$ in refluxing CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 7.81-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{dd}, J=2.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=5.1,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{dd}, J=5.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.40(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.3$ (C), 158.6 (C), 158.1 (C), 142.9 (C), 135.2 (C), 130.2 (CH), 128.7 (CH), 126.9 $(\mathrm{CH}), 126.4(\mathrm{CH}), 126.0(\mathrm{CH}), 125.7(\mathrm{CH}), 99.5(\mathrm{CH}), 94.1\left(\mathrm{CH}_{2}\right), 55.4\left(\mathrm{CH}_{2}\right)$; IR (neat): 3098, 2989, 2954, 2832, 1656, 1626, 1577, 1492, 1448, 1352, 1312, 1283, 1261, 1194, 1110, 1057, 1028, 872, 764, $689 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $268.08[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NOS}: 268.0791[\mathrm{M}+\mathrm{H}]^{+}$, found: 268.0791.

4.7.13 7-(2-Bromophenyl)-2-methylene-5-phenyl-2,3-dihydro-1,4-oxazepine (33n)

1-(2-Bromophenyl)-3-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (32n) (88.5 $\mathrm{mg}, 0.26 \mathrm{mmol}$) and $\mathrm{ZnCl}_{2}(35.4 \mathrm{mg}, 0.26 \mathrm{mmol})$ were employed to afford the indicated product (71.7 mg (81%) in refluxing CHCl_{3}). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}) $\delta 7.76-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{dd}, J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=7.6,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 1 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 3 \mathrm{H}), 4.29(\mathrm{~d}$, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.8$ (C), 159.7 (C), 158.9 (C), $139.2(\mathrm{C}), 137.9(\mathrm{C}), 133.5(\mathrm{CH}), 130.9(\mathrm{CH}), 130.8(\mathrm{CH}), 130.3(\mathrm{CH}), 128.5$ $(\mathrm{CH}), 127.54(\mathrm{CH}), 127.47(\mathrm{CH}), 122.1(\mathrm{CBr}), 104.7(\mathrm{CH}), 94.2\left(\mathrm{CH}_{2}\right), 55.6$ $\left(\mathrm{CH}_{2}\right)$; IR (neat): 3246, 3055, 2966, 2841, 1655, 1629, 1587, 1563, 1485, 1464, 1434, 1360, 1313, 1253, 1189, 1180, 1114, 1077, 1064, 1025, 953, 857, 831, 755 cm^{-1}; MS (ESI, m/z): $340.03[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{15}{ }^{79} \mathrm{BrNO}$: $340.0332[\mathrm{M}+\mathrm{H}]^{+}$, found: 340.0332 .

4.7.14 7-(2-Bromophenyl)-5-(4-methoxyphenyl)-2-methylene-2,3-dihydro-1,4-oxazepine (33o)

1-(2-Bromophenyl)-3-(4-methoxyphenyl)-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (320) ($74.0 \mathrm{mg}, 0.20 \mathrm{mmol}$) and $\mathrm{ZnCl}_{2}(27.3 \mathrm{mg}, 0.20 \mathrm{mmol})$ were employed to afford the indicated product ($66.6 \mathrm{mg}\left(90 \%\right.$) in refluxing CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{dd}, J=8.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=7.6$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 1 \mathrm{H})$, , 6.97-6.90 (m, 2H), $6.05(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 3 \mathrm{H}), 4.38(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.9$ (C), 161.4 (C), 159.33 (C), 159.30 (C), 137.9 (C), 133.4 (CH), 131.9 (C), $130.87(\mathrm{CH}), 130.83(\mathrm{CH}), 129.0(\mathrm{CH}), 127.5(\mathrm{CH}), 122.1(\mathrm{CBr})$, $113.7(\mathrm{CH}), 104.8(\mathrm{CH}), 93.7\left(\mathrm{CH}_{2}\right), 55.4\left(\mathrm{OCH}_{3}\right), 55.3\left(\mathrm{CH}_{2}\right)$; IR (neat): 2993, 2952, 2835, 1656, 1627, 1603, 1587, 1569, 1510, 1492, 1461, 1361, 1312, 1192, $1168,1107,1072,1028,1000,945,855,821,759 \mathrm{~cm}^{-1}$; MS (ESI, m/z): 370.04 $[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{17}{ }^{79} \mathrm{BrNO}_{2}: 370.0437[\mathrm{M}+\mathrm{H}]^{+}$, found: 370.0442.

4.7.15 7-(2-Bromophenyl)-5-(2-methoxyphenyl)-2-methylene-2,3-dihydro-1,4-oxazepine (33p)

1-(2-Bromophenyl)-3-(2-methoxyphenyl)-3-(prop-2-yn-1-ylamino)prop-2-en-1-one ($\mathbf{3 2} \mathbf{2})(74.0 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(27.3 \mathrm{mg}, 0.20 \mathrm{mmol})$ were employed to afford the indicated product ($65.1 \mathrm{mg}(88 \%)$ in refluxing CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{dd}, J=7.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ (dd, $J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=$ $1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.5$ (C), $158.9(\mathrm{C})$, 157.2 (C), 157.1 (C), 138.1 (C), 133.3 (CH), 130.83 (CH), 130.77 (CH), 130.7 $(\mathrm{CH}), 130.3(\mathrm{CH}), 129.6(\mathrm{C}) 127.4(\mathrm{CH}), 122.2(\mathrm{CBr}), 120.9(\mathrm{CH}), 111.4(\mathrm{CH})$, $107.7(\mathrm{CH}), 93.8\left(\mathrm{CH}_{2}\right), 55.9\left(\mathrm{OCH}_{3}\right), 55.8\left(\mathrm{CH}_{2}\right)$; IR (neat): 2962, 2831, 1656, $1630,1591,1569,1486,1465,1433,1360,1313,1300,1253,1189,1162,1113$, 1076, 1027, 943, 872, 851, 832, $751 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $370.04[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{17}{ }^{79} \mathrm{BrNO}_{2}: 370.0437[\mathrm{M}+\mathrm{H}]^{+}$, found: 370.0440 .

4.7.16 7-(2-Bromophenyl)-2-methylene-5-(p-tolyl)-2,3-dihydro-1,4-oxazepine (33q)

1-(2-Bromophenyl)-3-(prop-2-yn-1-ylamino)-3-(p-tolyl)prop-2-en-1-one (32q) $(102.7 \mathrm{mg}, 0.29 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(39.5 \mathrm{mg}, 0.29 \mathrm{mmol})$ were employed to afford the indicated product ($92.4 \mathrm{mg}(90 \%)$ in refluxing CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=7.6,1.5$ Hz, 1H), 7.44-7.37 (m, 1H), 7.33-7.27 (m, 1H), 7.23 (d, J = 8.0 Hz, 2H), 6.06 (s, 1 H), $4.70(\mathrm{~s}, 3 \mathrm{H}), 4.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.6 (C), 159.5 (C), 159.0 (C), 140.5 (C), 137.8 (C), 136.3 (C), 133.4 (CH), 130.9 $(\mathrm{CH}), 130.8(\mathrm{CH}), 129.2(\mathrm{CH}), 127.5(\mathrm{CH}), 127.4(\mathrm{CH}), 122.1(\mathrm{CBr}), 104.8(\mathrm{CH})$, $94.0\left(\mathrm{CH}_{2}\right), 55.4\left(\mathrm{CH}_{2}\right), 21.5\left(\mathrm{CH}_{3}\right)$; IR (neat): 2951, 2920, 2839, 1656, 1626, $1610,1589,1562,1509,1467,1434,1353,1310,1277,1252,1181,1107,1071$, 1040, 1030, 861, 812, $754 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $354.05[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI)
calcd. for $\mathrm{C}_{19} \mathrm{H}_{17}{ }^{79} \mathrm{BrNO}: 354.0488[\mathrm{M}+\mathrm{H}]^{+}$, found: 354.0489.

4.7.17 7-(2-Bromophenyl)-2-methylene-5-(m-tolyl)-2,3-dihydro-1,4oxazepine (33r)

1-(2-Bromophenyl)-3-(prop-2-yn-1-ylamino)-3-(m-tolyl)prop-2-en-1-one ($77.9 \mathrm{mg}, 0.22 \mathrm{mmol}$) and $\mathrm{ZnCl}_{2}(30.0 \mathrm{mg}, 0.22 \mathrm{mmol})$ were employed to afford the indicated product ($74.0 \mathrm{mg}\left(95 \%\right.$) in refluxing CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.75-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.17(\mathrm{~m}, 4 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 3 \mathrm{H}), 4.40(\mathrm{~s}$, 1 H), $2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.9$ (C), 159.5 (C), 158.9 (C), 139.1 (C), 138.2 (C), 137.8 (C), 133.5 (CH), $131.0(\mathrm{CH}), 130.9(\mathrm{CH}), 130.8(\mathrm{CH})$, 128.3 (CH), 128.0 (CH), 127.5 (CH), 124.6 (CH), 122.1 (CBr), 104.8 (CH), 94.1 $\left(\mathrm{CH}_{2}\right), 55.5\left(\mathrm{CH}_{2}\right), 21.5\left(\mathrm{CH}_{3}\right)$; IR (neat): 3021, 2921, 2855, 1653, 1632, 1592, $1572,1466,1355,1310,1255,1184,1106,1066,1039,1021,951,862,831,796$, $757 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $354.05[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{17}{ }^{79} \mathrm{BrNO}$: $354.0488[\mathrm{M}+\mathrm{H}]^{+}$, found: 354.0495.

4.7.18 7-(2-Bromophenyl)-2-methylene-5-(4-(trifluoromethyl)phenyl)-2,3-dihydro-1,4-oxazepine (33s)

1-(2-Bromophenyl)-3-(prop-2-yn-1-ylamino)-3-(4-(trifluoromethyl)phenyl)prop-2-en-1-one (32s) ($93.9 \mathrm{mg}, 0.23 \mathrm{mmol}$) and $\mathrm{ZnCl}_{2}(31.4 \mathrm{mg}, 0.23 \mathrm{mmol})$ were employed to afford the indicated product ($85.4 \mathrm{mg}(91 \%)$ in refluxing CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.57$ (dd, $J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 4.43(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.6$ (C), 160.2 (C), 158.5 (C), 142.5 (C), 137.6 (C), 133.5 (CH), 131.9 (q, $\left.{ }^{2} J=32.5 \mathrm{~Hz}, \mathrm{C}\right), 131.1(\mathrm{CH}), 130.7(\mathrm{CH}), 127.8(\mathrm{CH}), 127.6(\mathrm{CH})$, $125.4\left(\mathrm{q},{ }^{3} J=3.7 \mathrm{~Hz}, \mathrm{CH}\right), 124.1\left(\mathrm{q},{ }^{1} J=272.3 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 122.0(\mathrm{CBr}), 104.0(\mathrm{CH})$, $94.8\left(\mathrm{CH}_{2}\right), 55.8\left(\mathrm{CH}_{2}\right)$; IR (neat): 3054, 2985, 1650, 1632, 1595, 1571, 1467, $1443,1408,1359,1320,1256,1185,1173,1119,1105,1071,1062,1029,1013$,

954, 853, $767 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $408.02[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{14}{ }^{79} \mathrm{BrF}_{3} \mathrm{NO}: 408.0205[\mathrm{M}+\mathrm{H}]^{+}$, found: 408.0213.

4.7.19 7-(2-Bromophenyl)-5-(3-fluorophenyl)-2-methylene-2,3-dihydro-1,4oxazepine (33t)

1-(2-Bromophenyl)-3-(3-fluorophenyl)-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (32t) $(96.7 \mathrm{mg}, 0.27 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(36.8 \mathrm{mg}, 0.27 \mathrm{mmol})$ were employed to afford the indicated product ($83.2 \mathrm{mg}(86 \%)$ in refluxing CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57(\mathrm{dd}, J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.42(\mathrm{~m}$, $2 \mathrm{H}), 7.34-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.01(\mathrm{~m}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 4.62$ $(\mathrm{d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 4.31(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 165.7$ (C), 162.9 (d, $\left.{ }^{1} J=246.2 \mathrm{~Hz}, \mathrm{CF}\right), 160.2$ (C), 158.5 (C), 141.3 (d, ${ }^{3} J$ $=7.7 \mathrm{~Hz}, \mathrm{C}), 137.6(\mathrm{C}), 133.5(\mathrm{CH}), 131.1(\mathrm{CH}), 130.8(\mathrm{CH}), 130.0\left(\mathrm{~d},{ }^{3} J=8.1\right.$ $\mathrm{Hz}, \mathrm{CH}), 127.6(\mathrm{CH}), 123.2\left(\mathrm{~d},{ }^{4} J=2.5 \mathrm{~Hz}, \mathrm{CH}\right), 122.0(\mathrm{CBr}), 117.21\left(\mathrm{~d},{ }^{2} J=21.4\right.$ $\mathrm{Hz}, \mathrm{CH}), 114.4\left(\mathrm{~d},{ }^{2} J=22.8 \mathrm{~Hz}, \mathrm{CH}\right), 104.1(\mathrm{CH}), 94.7\left(\mathrm{CH}_{2}\right), 55.5\left(\mathrm{CH}_{2}\right)$; IR (neat): $3063,2959,1657,1625,1571,1484,1468,1439,1359,1309,1297,1277$, 1258, 1241, 1194, 1161, 1110, 1072, 1042, 1027, 1010, 981, 945, 897, 857, 786, $756 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $358.02[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{14}{ }^{79} \mathrm{BrFNO}$: $358.0237[\mathrm{M}+\mathrm{H}]^{+}$, found: 358.0242 .

4.7.2 5,7-Bis(2-bromophenyl)-2-methylene-2,3-dihydro-1,4-oxazepine (33u)

1,3-Bis(2-bromophenyl)-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (32u) (83.8 mg, $0.20 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(27.3 \mathrm{mg}, 0.20 \mathrm{mmol})$ were employed to afford the indicated product ($57.0 \mathrm{mg}(68 \%)$ in refluxing CHCl_{3}). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65$ (dd, $J=7.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.60(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45$ (dd, $J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.21(\mathrm{~m}$, $2 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 4.43(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.6$ (C), 158.7 (C), 158.1 (C), 141.4 (C), 137.6 (C), 133.4 $(\mathrm{CH}), 133.2(\mathrm{CH}), 130.9(\mathrm{CH}), 130.6(\mathrm{CH}), 130.4(\mathrm{CH}), 130.2(\mathrm{CH}), 127.6(\mathrm{CH})$,
$127.5(\mathrm{CH}), 122.1(\mathrm{CBr}), 121.3(\mathrm{CBr}), 106.3(\mathrm{CH}), 95.1\left(\mathrm{CH}_{2}\right), 56.1\left(\mathrm{CH}_{2}\right)$; IR (neat): $3055,2973,1656,1629,1589,1577,1562,1466,1428,1360,1316,1300$, 1247, 1190, 1117, 1075, 1024, 943, 854, 828, $753 \mathrm{~cm}^{-1}$; MS (ESI, m/z): 417.94 and $419.94[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{14}{ }^{79} \mathrm{Br}_{2} \mathrm{NO}: 417.9437[\mathrm{M}+\mathrm{H}]^{+}$, found: 417.9432; calcd. for $\mathrm{C}_{18} \mathrm{H}_{14}{ }^{79} \mathrm{Br}^{81} \mathrm{Br} \mathrm{NO}: 419.9417[\mathrm{M}+\mathrm{H}]^{+}$, found: 419.9417 .

4.7.21 7-(4-Chlorophenyl)-5-(3-fluorophenyl)-2-methylene-2,3-dihydro-1,4oxazepine (33z)

1-(4-Chlorophenyl)-3-(3-fluorophenyl)-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (32z) ($72.2 \mathrm{mg}, 0.23 \mathrm{mmol}$) and $\mathrm{ZnCl}_{2}(31.4 \mathrm{mg}, 0.23 \mathrm{mmol})$ were employed to afford the indicated product ($55.6 \mathrm{mg}(77 \%)$ in refluxing $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{dd}, J=7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.48(\mathrm{~m}$, $1 \mathrm{H}), 7.44-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.55(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.8(\mathrm{C})$, 162.9 (d, $\left.{ }^{1} J=246.3 \mathrm{~Hz}, \mathrm{CF}\right), 158.4$ (C), 157.8 (C), 141.9 (d, $\left.{ }^{3} J=7.1 \mathrm{~Hz}, \mathrm{C}\right), 136.5$ (C), 133.5 (C), 130.0 (d, $\left.{ }^{3} J=8.1 \mathrm{~Hz}, \mathrm{CH}\right), 128.9(\mathrm{CH}), 127.7(\mathrm{CH}), 123.2\left(\mathrm{~d},{ }^{4} J=\right.$ $2.6 \mathrm{~Hz}, \mathrm{CH}), 117.10\left(\mathrm{~d},{ }^{2} J=21.5 \mathrm{~Hz}, \mathrm{CH}\right), 114.5\left(\mathrm{~d},{ }^{2} J=22.7 \mathrm{~Hz}, \mathrm{CH}\right), 99.3(\mathrm{CH})$, $94.7\left(\mathrm{CH}_{2}\right), 55.5\left(\mathrm{CH}_{2}\right)$; IR (neat): 3297, 2997, 1657, 1623, 1591, 1573, 1484, $1439,1402,1362,1314,1259,1178,1090,1055,1010,984,881,819,783 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $314.08[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{ClFNO}: 314.0743$ $[\mathrm{M}+\mathrm{H}]^{+}$, found: 314.0750.

4.8 Reaction of N-Propargylic $\boldsymbol{\beta}$-Enaminone 7 a with $\mathbf{Z n C l}_{2}$

To a stirred solution of 1,3-diphenyl-3-((3-phenylprop-2-yn-1-yl)amino)prop-2-en-1-one ($7 \mathbf{a}$) ($57.4 \mathrm{mg}, 0.17 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(3 \mathrm{~mL})$ at room temperature under argon were added $\mathrm{ZnCl}_{2}(23.2 \mathrm{mg}, 0.17 \mathrm{mmol})$. The resulting mixture was then refluxed (Note that reaction was continued until N-propargylic β-enaminone 7a was completely consumed as monitored by routine TLC). After the reaction was over, the solvent was removed on a rotary evaporator, and ethyl acetate (25 mL)
and a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ were added. After the layers were separated, the aqueous layer was extracted with ethyl acetate ($2 \times 20 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4} and evaporated on a rotary evaporator to give the crude product, which was purified by flash chromatography on silica gel using hexane/ethyl acetate ($9: 1$ followed by 4:1) as the eluent to 16.0 $\mathrm{mg}(28 \%)$ in refluxing CHCl_{3} of (2,4-diphenylpyridin-3-yl)(phenyl)methanone (82). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.87(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 2 \mathrm{H})$, 7.54-7.49 (m, 2H), $7.39(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.19(\mathrm{~m}$, $10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.3$ (C=O), 157.2 (C), $149.9(\mathrm{CH}), 149.3$ (C), 139.6 (C), 137.9 (C), 137.7 (C), 133.7 (C), 133.3 (CH), 129.4 (CH), 129.3 $(\mathrm{CH}), 128.8(\mathrm{CH}), 128.7(\mathrm{CH}), 128.5(2 \times \mathrm{CH}), 128.4(\mathrm{CH}), 128.3(\mathrm{CH}), 123.2$ (CH); IR (neat): 3054, 1663, 1595, 1538, 1492, 1441, 1384, 1293, 1248, 1178, 1155, 1026, 921, 858, 753, $695 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $336.14[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{NO}: 336.1383[\mathrm{M}+\mathrm{H}]^{+}$, found: 336.1398. The spectral data were in agreement with those reported previously for this compound. ${ }^{112}$

4.9 Reaction of 2,3-Dihydro-1,4-oxazepine 33a with SiO_{2}

To a stirred solution of 2-methylene-5,7-diphenyl-2,3-dihydro-1,4-oxazepine (33a) ($55.0 \mathrm{mg}, 0.21 \mathrm{mmol}$) in EtOAc (5.0 mL) at room temperature were added excess SiO_{2}. The resulting mixture was then refluxed (Note that reaction was continued for 5 h and monitored by routine TLC). Due to no change in TLC in 5 h , EtOAc was evaporated and the mixture was again refluxed with 5.0 mL of 1,4-dioxane (Note that reaction was continued for 15 h and monitored by routine TLC). After $15 \mathrm{~h}, 1$, 4-dioxane was evaporated on a rotary evaporator and chromatographic purification with silica gel using hexane/ethyl acetate ($15: 1$ followed by $9: 1$) as the eluent afforded two products. The mixture was then rechromatographed on aluminium oxide (neutral), which afforded two fractions. The product in the first fraction was identified as starting material, 2-methylene-5,7-diphenyl-2,3-dihydro-1,4-oxazepine (33a) $(6.1 \mathrm{mg}, 11 \%)$. The product in the second fraction was assigned as (4-methyl-2-phenyl-1 H -pyrrol-3-yl)(phenyl)methanone (71a) (14.3 mg, 26\%).

71a: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.67-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.33-$ $7.27(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.08(\mathrm{~m}, 7 \mathrm{H}), 6.68-6.64(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.0$ (C=O), 139.6 (C), 136.4 (C), 132.4 (C), 131.9 $(\mathrm{CH}), 129.9(\mathrm{CH}), 128.3(\mathrm{CH}), 128.2(\mathrm{CH}), 127.8(\mathrm{CH}), 127.4(\mathrm{CH}), 122.4(\mathrm{C})$, $120.5(\mathrm{C}), 117.4(\mathrm{CH}), 11.7\left(\mathrm{CH}_{3}\right)$; IR (neat): 3259, 3057, 2922, 1721, 1614, 1595, 1574, 1449, 1424, 1282, 1241, 1072, 901, 767, 732, $692 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $262.12[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}: 262.1226[\mathrm{M}+\mathrm{H}]^{+}$, found: 262.1239 .

4.10 General Procedure for the Synthesis of 1,4-Thiazepines 59 and 85

To a stirred solution of the corresponding thionated N-propargylic β-enaminone 58 or $\mathbf{8 4}(0.30 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ at room temperature under argon were added ZnCl_{2} (0.30 mmol). The resulting mixture was then refluxed (Note that reaction was continued until thionated N-propargylic β-enaminone $\mathbf{5 8}$ or $\mathbf{8 4}$ was completely consumed as monitored by routine TLC). After the reaction was over, the solvent was removed on a rotary evaporator, and ethyl acetate (40 mL) and a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ were added. After the layers were separated, the aqueous layer was extracted with ethyl acetate ($2 \times 30 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4} and evaporated on a rotary evaporator to give the crude product, which was purified by flash chromatography on silica gel using hexane/ethyl acetate ($9: 1$ followed by $4: 1$) as the eluent to afford the corresponding 1,4-thiazepine $\mathbf{5 9}$ or $\mathbf{8 5}$.

4.10.1 2-Methylene-5,7-diphenyl-2,3-dihydro-1,4-thiazepine (59a)

1,3-Diphenyl-3-(prop-2-yn-1-ylamino)prop-2-ene-1-thione (58a) (83.2 mg, 0.30 $\mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(40.9 \mathrm{mg}, 0.30 \mathrm{mmol})$ were employed to afford $74.9 \mathrm{mg}(90 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.65$ $(\mathrm{m}, 2 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 6 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H})$, $4.81(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4$ (C), 150.0 (C), 145.2 (C), 140.1
(C), $139.4(\mathrm{C}), 130.3(\mathrm{CH}), 129.9(\mathrm{CH}), 128.8(\mathrm{CH}), 128.5(\mathrm{CH}), 127.7(\mathrm{CH})$, $127.6(\mathrm{CH}), 123.2(\mathrm{CH}), 110.4\left(\mathrm{CH}_{2}\right), 59.3\left(\mathrm{CH}_{2}\right)$; IR (neat): 2945, 2846, 1613, $1569,1488,1443,1328,1308,1262,1236,1164,1067,1027,999,943,921,901$, 875, 856, 779, 755, 686, 567, $548 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $278.10[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NS}: 278.0998[\mathrm{M}+\mathrm{H}]^{+}$, found: 278.0992.

4.10.2 5-(4-Methoxyphenyl)-2-methylene-7-phenyl-2,3-dihydro-1,4thiazepine (59b)

3-(4-Methoxyphenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-ene-1-thione (58b) ($86.1 \mathrm{mg}, 0.28 \mathrm{mmol}$) and $\mathrm{ZnCl}_{2}(38.2 \mathrm{mg}, 0.28 \mathrm{mmol})$ were employed to afford $68.9 \mathrm{mg}(80 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80-7.74$ $(\mathrm{m}, 2 \mathrm{H}), 7.72-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 3 \mathrm{H}), 6.96-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H})$, $5.17(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.5$ (C), 161.4 (C), 149.3 (C), 145.9 (C), 140.2 (C), $132.1(\mathrm{C}), 129.8(\mathrm{CH}), 129.2(\mathrm{CH}), 128.8(\mathrm{CH}), 127.6(\mathrm{CH}), 123.6(\mathrm{CH}), 113.8$ $(\mathrm{CH}), 109.8\left(\mathrm{CH}_{2}\right), 59.1\left(\mathrm{CH}_{2}\right), 55.4\left(\mathrm{OCH}_{3}\right)$; IR (neat): 2938, 2851, 1602, 1564, 1506, 1447, 1413, 1324, 1307, 1233, 1167, 1111, 1081, 1026, 940, 863, 834, 763, $734,695,660,620,565,548,515 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $308.11[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NOS}$: $308.1104[\mathrm{M}+\mathrm{H}]^{+}$, found: 308.1107.

4.10.3 5-(2-Methoxyphenyl)-2-methylene-7-phenyl-2,3-dihydro-1,4thiazepine (59c)

3-(2-Methoxyphenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-ene-1-thione (58c) ($110.7 \mathrm{mg}, 0.36 \mathrm{mmol}$) and $\mathrm{ZnCl}_{2}(49.0 \mathrm{mg}, 0.36 \mathrm{mmol})$ were employed to afford $77.5 \mathrm{mg}(70 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.67-7.60 $(\mathrm{m}, 2 \mathrm{H}), 7.54(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.01(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.94(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 2 \mathrm{H}), 3.86$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.2$ (C), 157.4 (C), 146.5 (C), 145.1 (C), $140.3(\mathrm{C}), 130.9(\mathrm{CH}), 130.3(\mathrm{CH}), 129.9(\mathrm{C}), 129.5(\mathrm{CH}), 128.6(\mathrm{CH}), 127.7$
$(\mathrm{CH}), 125.9(\mathrm{CH}), 121.1(\mathrm{CH}), 111.7(\mathrm{CH}), 110.2\left(\mathrm{CH}_{2}\right), 59.5\left(\mathrm{CH}_{2}\right), 56.0\left(\mathrm{OCH}_{3}\right)$; IR (neat): 2942, 2837, 1612, 1595, 1578, 1561, 1486, 1433, 1332, 1287, 1242, $1162,1116,1093,1048,1023,944,903,845,772,749,696,672,651,567,541$ cm^{-1}; MS (ESI, m/z): $308.11[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NOS}$: $308.1104[\mathrm{M}+\mathrm{H}]^{+}$, found: 308.1104.

4.10.4 2-Methylene-7-phenyl-5-(p-tolyl)-2,3-dihydro-1,4-thiazepine (59d)

1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(p-tolyl)prop-2-ene-1-thione (58d) (96.2 mg , $0.33 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(45.0 \mathrm{mg}, 0.33 \mathrm{mmol})$ were employed to afford 81.7 mg (85%) of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76-7.65(\mathrm{~m}, 4 \mathrm{H})$, 7.47-7.39 (m, 3H), $7.23(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.18(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 167.1 (C), 149.5 (C), 145.6 (C), 140.4 (C), 140.1 (C), 136.7 (C), 129.8 (CH), 129.2 $(\mathrm{CH}), 128.7(\mathrm{CH}), 127.64(\mathrm{CH}), 127.62(\mathrm{CH}), 123.6(\mathrm{CH}), 110.1\left(\mathrm{CH}_{2}\right), 59.2$ $\left(\mathrm{CH}_{2}\right), 21.5\left(\mathrm{CH}_{3}\right)$; IR (neat): 2940, 2847, 1607, 1572, 1561, 1487, 1444, 1332, 1308, 1263, 1236, 1179, 1164, 1113, 1081, 1017, 942, 916, 884, 861, 841, 820, $763,696,658,567,531,497 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $292.12[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NS}: 292.1155[\mathrm{M}+\mathrm{H}]^{+}$, found: 292.1161.

4.10.5 2-Methylene-7-phenyl-5-(m-tolyl)-2,3-dihydro-1,4-thiazepine (59e)

1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(m-tolyl)prop-2-ene-1-thione (58e) (72.9 mg , 0.25 mmol) and $\mathrm{ZnCl}_{2}(34.1 \mathrm{mg}, 0.25 \mathrm{mmol})$ were employed to afford 59.0 mg (81%) of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60-7.56(\mathrm{~m}, 2 \mathrm{H})$, $7.54(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.17-$ $7.14(\mathrm{~m}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 2.30$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.5$ (C), 149.8 (C), 145.4 (C), 140.1 (C), $139.4(\mathrm{C}), 138.2(\mathrm{C}), 131.1(\mathrm{CH}), 129.8(\mathrm{CH}), 128.8(\mathrm{CH}), 128.3(\mathrm{CH}), 128.2$ $(\mathrm{CH}), 127.6(\mathrm{CH}), 125.0(\mathrm{CH}), 123.5(\mathrm{CH}), 110.4\left(\mathrm{CH}_{2}\right), 59.2\left(\mathrm{CH}_{2}\right), 21.5\left(\mathrm{CH}_{3}\right)$; IR (neat): 2959, 2915, 2857, 1605, 1569, 1486, 1443, 1380, 1323, 1305, 1267,
$1220,1175,1155,1088,996,946,922,882,869,844,791,758,712,692,561,531$ cm^{-1}; MS (ESI, m/z): $292.12[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NS}: 292.1155$ $[\mathrm{M}+\mathrm{H}]^{+}$, found: 292.1160.

4.10.6 2-Methylene-7-phenyl-5-(4-(trifluoromethyl)phenyl)-2,3-dihydro-1,4thiazepine (59f)

1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(4-(trifluoromethyl)phenyl)prop-2-ene-1thione ($\mathbf{5 8 f}$) $(89.8 \mathrm{mg}, 0.26 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(35.4 \mathrm{mg}, 0.26 \mathrm{mmol})$ were employed to afford $62.9 \mathrm{mg}(70 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.91 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.72-7.64$ (m, 4H), 7.49-7.39 (m, 3H), 6.81 (s, 1H), 5.25 (d, $J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 166.1$ (C), 151.2 (C), 144.7 (C), 142.9 (C), 139.9 (C), $132.0\left(\mathrm{q},{ }^{2} J=32.4\right.$ $\mathrm{Hz}, \mathrm{C}), 130.1(\mathrm{CH}), 128.9(\mathrm{CH}), 128.1(\mathrm{CH}), 127.6(\mathrm{CH}), 125.5\left(\mathrm{q},{ }^{3} J=3.7 \mathrm{~Hz}\right.$, $\mathrm{CH}), 124.2\left(\mathrm{q},{ }^{1} \mathrm{~J}=272.2 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 122.2(\mathrm{CH}), 111.2\left(\mathrm{CH}_{2}\right), 59.7\left(\mathrm{CH}_{2}\right) ; \mathrm{IR}$ (neat): 3035, 2951, 2849, 1613, 1556, 1491, 1445, 1410, 1322, 1260, 1237, 1158, 1116, 1084, 1064, 1016, 945, 917, 890, 867, 835, 770, 751, 722, 696, 666, 599, $572,514 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $346.09[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~F}-$ ${ }_{3} \mathrm{NS}: 346.0872[\mathrm{M}+\mathrm{H}]^{+}$, found: 346.0884.

4.10.7 5-(3-Fluorophenyl)-2-methylene-7-phenyl-2,3-dihydro-1,4-thiazepine (59h)

3-(3-Fluorophenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-ene-1-thione $(94.5 \mathrm{mg}, 0.32 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(43.6 \mathrm{mg}, 0.32 \mathrm{mmol})$ were employed to afford $65.2 \mathrm{mg}(69 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72-7.63$ (m, 2H), 7.60-7.51 (m, 2H), 7.47-7.35 (m, 4H), $7.13(\mathrm{tdd}, J=8.3,2.6,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.81(\mathrm{~s}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.1$ (C), 162.9 (d, $\left.{ }^{1} J=246.1 \mathrm{~Hz}, \mathrm{CF}\right), 150.7$ (C), 144.9 (C), 141.8 (d, $\left.{ }^{3} J=7.1 \mathrm{~Hz}, \mathrm{C}\right), 140.0(\mathrm{C}), 130.0(\mathrm{CH}), 129.9(\mathrm{CH}), 128.8$ $(\mathrm{CH}), 127.6(\mathrm{CH}), 123.5\left(\mathrm{~d},{ }^{4} J=2.5 \mathrm{~Hz}, \mathrm{CH}\right), 122.5(\mathrm{CH}), 117.2\left(\mathrm{~d},{ }^{2} J=21.3 \mathrm{~Hz}\right.$,

CH), $114.6\left(\mathrm{~d},{ }^{2} J=22.7 \mathrm{~Hz}, \mathrm{CH}\right), 110.8\left(\mathrm{CH}_{2}\right), 59.4\left(\mathrm{CH}_{2}\right)$; IR (neat): 3053, 2949, $1616,1567,1481,1436,1309,1261,1243,1168,1149,1075,1061,988,949,926$, 874, 826, 790, 755, 685, 657, 566, $524 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $296.09[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{FNS}: 296.0904[\mathrm{M}+\mathrm{H}]^{+}$, found: 296.0907.

4.10.8 5-(2-Bromophenyl)-2-methylene-7-phenyl-2,3-dihydro-1,4-thiazepine (59i)

3-(2-Bromophenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-ene-1-thione $(85.5 \mathrm{mg}, 0.24 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(32.7 \mathrm{mg}, 0.24 \mathrm{mmol})$ were employed to afford $57.3 \mathrm{mg}(67 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71-7.57$ $(\mathrm{m}, 3 \mathrm{H}), 7.50-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{~s}$, $1 \mathrm{H}), 4.88(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 169.2$ (C), 150.0 (C), 143.7 (C), 141.8 (C), 139.9 (C), 133.2 (CH), $130.4(\mathrm{CH}), 130.2(\mathrm{CH}), 129.8(\mathrm{CH}), 128.7$ $(\mathrm{CH}), 127.6(2 \mathrm{xCH}), 123.4(\mathrm{CH}), 121.6(\mathrm{CBr}), 111.7\left(\mathrm{CH}_{2}\right), 59.8\left(\mathrm{CH}_{2}\right)$; IR (neat): $3055,2850,1731,1612,1559,1489,1465,1426,1268,1235,1211,1160,1090$, 1024, 944, 913, 868, 837, 754, 730, 693, 641, $552 \mathrm{~cm}^{-1}$; MS (ESI, m/z): 356.01 $[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{15}{ }^{79} \mathrm{BrNS}: 356.0103[\mathrm{M}+\mathrm{H}]^{+}$, found: 356.0105 .

4.10.9 5-(4-(tert-Butyl)phenyl)-2-methylene-7-phenyl-2,3-dihydro-1,4thiazepine (59j)

3-(4-(tert-Butyl)phenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-ene-1-thione ($\mathbf{5 8 j} \mathbf{j})(110.1 \mathrm{mg}, 0.33 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(45.0 \mathrm{mg}, 0.33 \mathrm{mmol})$ were employed to afford $95.7 \mathrm{mg}(87 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.73-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 3 \mathrm{H})$, $6.90(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.0(\mathrm{C}), 153.6(\mathrm{C}), 149.4$ (C), 145.6 (C), 140.2 (C), 136.7 (C), $129.8(\mathrm{CH}), 128.7(\mathrm{CH}), 127.7(\mathrm{CH}), 127.4(\mathrm{CH}), 125.4(\mathrm{CH}), 123.6(\mathrm{CH}), 110.0$ $\left(\mathrm{CH}_{2}\right), 59.2\left(\mathrm{CH}_{2}\right), 34.9(\mathrm{C}), 31.3\left(\mathrm{CH}_{3}\right)$; IR (neat): 2959, 2903, 2865, 1607, 1566,
$1489,1460,1445,1405,1362,1325,1305,1268,1236,1189,1110,1081,1017$, 943, 832, 764, 747, 693, 662, $552 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $334.16[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NS}: 334.1624[\mathrm{M}+\mathrm{H}]^{+}$, found: 334.1636.

4.10.10 5-Butyl-2-methylene-7-phenyl-2,3-dihydro-1,4-thiazepine (591)

1-Phenyl-3-(prop-2-yn-1-ylamino)hept-2-ene-1-thione (581) (77.2 mg, 0.30 mmol) and $\mathrm{ZnCl}_{2}(40.9 \mathrm{mg}, 0.30 \mathrm{mmol})$ were employed to afford $60.2 \mathrm{mg}(78 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.35(\mathrm{~m}$, $3 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 2.43-2.36(\mathrm{~m}, 2 \mathrm{H}), 1.66-$ $1.55(\mathrm{~m}, 2 \mathrm{H}), 1.39$ (sextet, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.1$ (C), 147.9 (C), 144.7 (C), 140.1 (C), 129.7 (CH), 128.7 $(\mathrm{CH}), 127.6(\mathrm{CH}), 124.2(\mathrm{CH}), 110.2\left(\mathrm{CH}_{2}\right), 59.0\left(\mathrm{CH}_{2}\right), 40.3\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right)$, $22.6\left(\mathrm{CH}_{2}\right)$, $14.1\left(\mathrm{CH}_{3}\right)$; IR (neat): 3234, 2956, 2927, 2869, 1600, 1561, 1489, 1444, 1377, 1314, 1273, 1204, 1175, 1073, 1028, 999, 912, 759, 694, $616 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (ESI, m/z): $258.13[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NS}: 258.1311[\mathrm{M}+\mathrm{H}]^{+}$, found: 258.1312.

4.10.11 2-Methylene-7-phenyl-5-(thiophen-3-yl)-2,3-dihydro-1,4-thiazepine (59m)

1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(thiophen-3-yl)prop-2-ene-1-thione
(58m) $(90.7 \mathrm{mg}, 0.32 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(43.6 \mathrm{mg}, 0.32 \mathrm{mmol})$ were employed to afford $68.9 \mathrm{mg}(76 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-7.62$ $(\mathrm{m}, 3 \mathrm{H}), 7.56(\mathrm{dd}, J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{dd}, J=5.1,2.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.6$ (C), 149.6 (C), 145.0 (C), 142.6 (C), 140.0 (C), 129.9 $(\mathrm{CH}), 128.8(\mathrm{CH}), 127.6(\mathrm{CH}), 126.9(\mathrm{CH}), 126.3(\mathrm{CH}), 126.0(\mathrm{CH}), 122.7(\mathrm{CH})$, $110.5\left(\mathrm{CH}_{2}\right), 59.1\left(\mathrm{CH}_{2}\right)$; IR (neat): 3046, 2929, 2851, 1605, 1567, 1517, 1489, $1442,1410,1389,1299,1252,1231,1219,1192,1157,1084,988,946,922,865$, 832, 761, 722, 689, 664, 627, 597, 564, $547 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $284.06[\mathrm{M}+\mathrm{H}]^{+}$;

HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NS}_{2}$: $284.0562[\mathrm{M}+\mathrm{H}]^{+}$, found: 284.0563.

4.10.12 7-(2-Bromophenyl)-2-methylene-5-phenyl-2,3-dihydro-1,4thiazepine (59n)

1-(2-Bromophenyl)-3-phenyl-3-(prop-2-yn-1-ylamino)prop-2-ene-1-thione (58n) ($74.8 \mathrm{mg}, 0.21 \mathrm{mmol}$) and $\mathrm{ZnCl}_{2}(28.6 \mathrm{mg}, 0.21 \mathrm{mmol})$ were employed to afford $62.8 \mathrm{mg}(84 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88-7.79$ $(\mathrm{m}, 2 \mathrm{H}), 7.67(\mathrm{dd}, J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.67$ $(\mathrm{s}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.5(\mathrm{C}), 149.3$ (C), 145.8 (C), 140.9 (C), 139.3 (C), $133.4(\mathrm{CH}), 130.8(\mathrm{CH}), 130.33(\mathrm{CH}), 130.29$ $(\mathrm{CH}), 128.5(\mathrm{CH}), 127.7(\mathrm{CH}), 127.6(\mathrm{CH}), 126.4(\mathrm{CH}), 122.5(\mathrm{CBr}), 110.5\left(\mathrm{CH}_{2}\right)$, $59.4\left(\mathrm{CH}_{2}\right)$; IR (neat): $3055,2942,2848,1725,1613,1572,1462,1431,1324$, $1260,1232,1160,1087,1067,1050,1025,941,920,865,752,689,646,579,556$, $519 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $356.01[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{15}{ }^{79} \mathrm{BrNS}$: $356.0103[\mathrm{M}+\mathrm{H}]^{+}$, found: 356.0105 .

4.10.13 7-(2-Bromophenyl)-2-methylene-5-(m-tolyl)-2,3-dihydro-1,4thiazepine (59r)

1-(2-Bromophenyl)-3-(prop-2-yn-1-ylamino)-3-(m-tolyl)prop-2-ene-1-thione (58r) $(66.7 \mathrm{mg}, 0.18 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(24.5 \mathrm{mg}, 0.18 \mathrm{mmol})$ were employed to afford $56.0 \mathrm{mg}(84 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72-7.65$ $(\mathrm{m}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.34-7.25(\mathrm{~m}, 3 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 2 \mathrm{H})$, $2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.0(\mathrm{C}), 150.0(\mathrm{C}), 145.5(\mathrm{C}), 140.9$ (C), 138.9 (C), 138.3 (C), $133.4(\mathrm{CH}), 131.4(\mathrm{CH}), 130.8(\mathrm{CH}), 130.4(\mathrm{CH}), 128.40$ $(\mathrm{CH}), 128.35(\mathrm{CH}), 127.6(\mathrm{CH}), 126.3(\mathrm{CH}), 125.1(\mathrm{CH}), 122.5(\mathrm{CBr}), 111.0$ $\left(\mathrm{CH}_{2}\right), 59.1\left(\mathrm{CH}_{2}\right), 21.5\left(\mathrm{CH}_{3}\right)$; IR (neat): 3051, 2918, 2850, 1712, 1613, 1579, 1536, 1462, 1427, 1307, 1267, 1160, 1071, 1049, 1025, 942, 918, 864, 846, 790, $755,728,687,646,580,561,508 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $370.03[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS
(ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{17}{ }^{79} \mathrm{BrNS}: 370.0260[\mathrm{M}+\mathrm{H}]^{+}$, found: 370.0266 .

4.10.14 7-(2-Bromophenyl)-2-methylene-5-(4-(trifluoromethyl)phenyl)-2,3-dihydro-1,4-thiazepine (59s)

1-(2-Bromophenyl)-3-(prop-2-yn-1-ylamino)-3-(4-(trifluoromethyl)phenyl)prop-2-ene-1-thione (58s) ($110.3 \mathrm{mg}, 0.26 \mathrm{mmol}$) and $\mathrm{ZnCl}_{2}(35.4 \mathrm{mg}, 0.26 \mathrm{mmol})$ were employed to afford $84.9 \mathrm{mg}(77 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.34(\mathrm{dd}, J=7.6,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.27(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{td}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H})$, $5.12(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 165.3 (C), 150.5 (C), 145.0 (C), 142.6 (C), 140.6 (C), 133.4 (CH), 132.0 (q, ${ }^{2} J=$ $32.4 \mathrm{~Hz}, \mathrm{C}), 130.7(\mathrm{CH}), 130.5(\mathrm{CH}), 128.1(\mathrm{CH}), 127.7(\mathrm{CH}), 125.4\left(\mathrm{q},{ }^{3} \mathrm{~J}=3.8\right.$ $\mathrm{Hz}, \mathrm{CH}), 125.3(\mathrm{CH}), 124.2\left(\mathrm{q},{ }^{1} J=272.2 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 122.4(\mathrm{CBr}), 111.3\left(\mathrm{CH}_{2}\right)$, $59.7\left(\mathrm{CH}_{2}\right)$; IR (neat): 3058, 2947, 2852, 1734, 1616, 1571, 1464, 1431, 1408, $1319,1234,1163,1121,1081,1065,1015,941,834,760,748,725,688,648,595$ cm^{-1}; MS (ESI, m/z): $424.00[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{14}{ }^{79} \mathrm{BrF}_{3} \mathrm{NS}$: $423.9977[\mathrm{M}+\mathrm{H}]^{+}$, found: 423.9983.

4.10.15 7-(2-Bromophenyl)-5-(3-fluorophenyl)-2-methylene-2,3-dihydro-1,4thiazepine (59t)

1-(2-Bromophenyl)-3-(3-fluorophenyl)-3-(prop-2-yn-1-ylamino)prop-2-ene-1thione (58t) $(74.9 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(27.3 \mathrm{mg}, 0.20 \mathrm{mmol})$ were employed to afford $60.6 \mathrm{mg}(81 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.68 (dd, $J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.62-7.53 (m, 2H), 7.47-7.35 (m, 3H), 7.30-7.25 (m, $1 \mathrm{H}), 7.14$ (tdd, $J=8.3,2.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.21$ $(\mathrm{s}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.3\left(\mathrm{~d},{ }^{4} \mathrm{~J}=3.0 \mathrm{~Hz}, \mathrm{C}\right)$, $162.9\left(\mathrm{~d},{ }^{1} J=246.3 \mathrm{~Hz}, \mathrm{CF}\right), 150.1$ (C), 145.2 (C), 141.5 (d, $\left.{ }^{3} J=6.9 \mathrm{~Hz}, \mathrm{C}\right), 140.7$ (C), $133.4(\mathrm{CH}), 130.7(\mathrm{CH}), 130.5(\mathrm{CH}), 130.0\left(\mathrm{~d},{ }^{3} J=8.1 \mathrm{~Hz}, \mathrm{CH}\right), 127.6(\mathrm{CH})$, $125.6(\mathrm{CH}), 123.5\left(\mathrm{~d},{ }^{4} J=2.8 \mathrm{~Hz}, \mathrm{CH}\right), 122.5(\mathrm{CBr}), 117.2\left(\mathrm{~d},{ }^{2} J=21.2 \mathrm{~Hz}, \mathrm{CH}\right)$,
$114.6\left(\mathrm{~d},{ }^{2} \mathrm{~J}=22.7 \mathrm{~Hz}, \mathrm{CH}\right), 111.0\left(\mathrm{CH}_{2}\right), 59.5\left(\mathrm{CH}_{2}\right)$; IR (neat): 3067, 2945, 2850 , $1731,1613,1575,1484,1463,1433,1308,1263,1237,1176,1152,1050,1025$, 985, $943,920,874,846,787,756,730,705,686,647,578 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $374.00[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{14}{ }^{79} \mathrm{BrFNS}: 374.0009[\mathrm{M}+\mathrm{H}]^{+}$, found: 374.0013.

4.10.16 7-(4-Methoxyphenyl)-2-methylene-5-phenyl-2,3-dihydro-1,4thiazepine (59v)

1-(4-Methoxyphenyl)-3-phenyl-3-(prop-2-yn-1-ylamino)prop-2-ene-1-thione (58v) $(86.1 \mathrm{mg}, 0.28 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(27.3 \mathrm{mg}, 0.28 \mathrm{mmol})$ were employed to afford $70.6 \mathrm{mg}(82 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{dd}, J$ $=7.3,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.39(\mathrm{~m}, 3 \mathrm{H}), 6.93(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.5$ (C), 161.0 (C), 149.3 (C), 145.4 (C), 139.6 (C), 132.3 (C), $130.2(\mathrm{CH}), 129.0(\mathrm{CH}), 128.4(\mathrm{CH}), 127.7(\mathrm{CH}), 122.0(\mathrm{CH}), 114.1(\mathrm{CH})$, $110.0\left(\mathrm{CH}_{2}\right), 59.3\left(\mathrm{CH}_{2}\right), 55.5\left(\mathrm{OCH}_{3}\right)$; IR (neat): 2940, 2846, 1602, 1564, 1503, 1446, 1435, 1328, 1306, 1288, 1252, 1238, 1177, 1161, 1113, 1087, 1068, 1028, 944, 921, 879, 846, 826, 772, 721, 700, 688, 634, 562, 544, $505 \mathrm{~cm}^{-1}$; MS (ESI, m / z): $308.11[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NOS}: 308.1104[\mathrm{M}+\mathrm{H}]^{+}$, found: 308.1113 .

4.10.17 2-Methylene-5-phenyl-7-(p-tolyl)-2,3-dihydro-1,4-thiazepine (59w)

3-Phenyl-3-(prop-2-yn-1-ylamino)-1-(p-tolyl)prop-2-ene-1-thione (58w) (90.3 mg , $0.31 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(42.3 \mathrm{mg}, 0.31 \mathrm{mmol})$ were employed to afford 74.1 mg (82%) of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85-7.79(\mathrm{~m}, 2 \mathrm{H})$, $7.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H})$, $5.20(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4$ (C), 149.8 (C), 145.4 (C), 140.1 (C), 139.5 (C), 137.2 (C), 130.2 (CH), $129.4(\mathrm{CH}), 128.4(\mathrm{CH}), 127.7(\mathrm{CH}), 127.5(\mathrm{CH}), 122.6(\mathrm{CH}), 110.1\left(\mathrm{CH}_{2}\right), 59.3$
$\left(\mathrm{CH}_{2}\right), 21.4\left(\mathrm{CH}_{3}\right)$; IR (neat): 3025, 2943, 2851, 1611, 1568, 1504, 1492, 1444, 1326, 1307, 1259, 1235, 1178, 1160, 1088, 1066, 1031, 1001, 940, 919, 881, 866, 848, 815, 770, 688, 651, 636, 563, 529, $503 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $292.12[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NS}: 292.1155[\mathrm{M}+\mathrm{H}]^{+}$, found: 292.1157.

4.10.18 2-Methylene-5-(thiophen-3-yl)-7-(p-tolyl)-2,3-dihydro-1,4-thiazepine (59x)

3-(Prop-2-yn-1-ylamino)-3-(thiophen-3-yl)-1-(p-tolyl)prop-2-ene-1-thione
(58x) $(65.4 \mathrm{mg}, 0.22 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(30.0 \mathrm{mg}, 0.22 \mathrm{mmol})$ were employed to afford $54.3 \mathrm{mg}(83 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67$ (dd, J $=2.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{dd}, J=5.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 2.40$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.7$ (C), 149.5 (C), 145.2 (C), 142.7 (C), 140.1 (C), $137.2(\mathrm{C}), 129.5(\mathrm{CH}), 127.5(\mathrm{CH}), 127.0(\mathrm{CH}), 126.2(\mathrm{CH}), 125.9$ $(\mathrm{CH}), 122.1(\mathrm{CH}), 110.2\left(\mathrm{CH}_{2}\right), 59.1\left(\mathrm{CH}_{2}\right), 21.4\left(\mathrm{CH}_{3}\right)$; IR (neat): 2929, 2843, 1606, 1574, 1504, 1450, 1408, 1373, 1310, 1235, 1185, 1168, 1082, 1018, 950, 922, 897, 867, 835, 812, 777, 726, 682, 655, 639, 591, 562, $521 \mathrm{~cm}^{-1}$; MS (ESI, m / z): $298.07[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NS}_{2}: 298.0719[\mathrm{M}+\mathrm{H}]^{+}$, found: 298.0723.

4.10.19 7-(4-Chlorophenyl)-2-methylene-5-phenyl-2,3-dihydro-1,4thiazepine (59y)

1-(4-Chlorophenyl)-3-phenyl-3-(prop-2-yn-1-ylamino)prop-2-ene-1-thione (58y) ($99.8 \mathrm{mg}, 0.32 \mathrm{mmol}$) and $\mathrm{ZnCl}_{2}(43.6 \mathrm{mg}, 0.32 \mathrm{mmol})$ were employed to afford $85.8 \mathrm{mg}(86 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82-7.75$ $(\mathrm{m}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.35(\mathrm{~m}, 5 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H})$, $5.18(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.1$ (C), $148.5(\mathrm{C})$, 145.1 (C), 139.3 (C), 138.5 (C), 135.8 (C), 130.3 (CH), 129.0 (CH), 128.9 (CH), $128.5(\mathrm{CH}), 127.6(\mathrm{CH}), 123.7(\mathrm{CH}), 110.6\left(\mathrm{CH}_{2}\right), 59.2\left(\mathrm{CH}_{2}\right)$; IR (neat): 3020,

2954, 1613, 1590, 1574, 1483, 1443, 1396, 1323, 1310, 1293, 1234, 1168, 1088, $1067,1027,1011,944,882,850,823,765,722,708,685,658,614,570,560 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $312.06[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClNS}: 312.0608$ $[\mathrm{M}+\mathrm{H}]^{+}$, found: 312.0603.

4.10.20 7-(4-Chlorophenyl)-5-(3-fluorophenyl)-2-methylene-2,3-dihydro-1,4thiazepine (59z)

1-(4-Chlorophenyl)-3-(3-fluorophenyl)-3-(prop-2-yn-1-ylamino)prop-2-ene-1thione ($\mathbf{5 8 z}$) ($75.9 \mathrm{mg}, 0.23 \mathrm{mmol}$) and $\mathrm{ZnCl}_{2}(31.4 \mathrm{mg}, 0.23 \mathrm{mmol})$ were employed to afford $64.5 \mathrm{mg}(85 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{td}$, $J=8.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.9\left(\mathrm{~d},{ }^{4} J=2.4 \mathrm{~Hz}, \mathrm{C}\right), 162.9\left(\mathrm{~d},{ }^{1} J=246.4 \mathrm{~Hz}, \mathrm{CF}\right), 149.4$ (C), 144.6 (C), 141.6 ($\mathrm{d},{ }^{3} J=7.1 \mathrm{~Hz}, \mathrm{C}$), 138.3 (C), 136.1 (C), 130.0 (d, ${ }^{3} J=8.1$ $\mathrm{Hz}, \mathrm{CH}), 129.05(\mathrm{CH}), 128.95(\mathrm{CH}), 123.4\left(\mathrm{~d},{ }^{4} J=2.6 \mathrm{~Hz}, \mathrm{CH}\right), 122.9(\mathrm{CH}), 117.3$ $\left(\mathrm{d},{ }^{2} J=21.4 \mathrm{~Hz}, \mathrm{CH}\right), 114.6\left(\mathrm{~d},{ }^{2} J=22.7 \mathrm{~Hz}, \mathrm{CH}\right), 111.1\left(\mathrm{CH}_{2}\right), 59.4\left(\mathrm{CH}_{2}\right)$; IR (neat): 2962, 1615, 1598, 1572, 1483, 1431, 1397, 1326, 1269, 1239, 1163, 1145, 1089, 1062, 1012, 988, 949, 920, 884, 862, 827, 816, 786, 726, 700, 676, 654, 624, 577, 563, 544, $523 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $330.05[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{ClFNS}: 330.0514[\mathrm{M}+\mathrm{H}]^{+}$, found: 330.0516 .

4.10.21 (Z)-2-Benzylidene-5,7-diphenyl-2,3-dihydro-1,4-thiazepine (85)

1,3-Diphenyl-3-((3-phenylprop-2-yn-1-yl)amino)prop-2-ene-1-thione (84) (78.6 $\mathrm{mg}, 0.22 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(30 \mathrm{mg}, 0.22 \mathrm{mmol})$ were employed to afford 49.5 mg , (63%) of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88-7.80(\mathrm{~m}, 2 \mathrm{H})$, 7.76-7.69 (m, 2H), 7.50 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 6 \mathrm{H}), 7.34(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.22(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.1$ (C), 150.1 (C), 140.3 (C), 139.2 (C), 137.6 (C), 136.1 (C), $130.4(\mathrm{CH}), 129.9(\mathrm{CH}), 128.81(\mathrm{CH}), 128.75(\mathrm{CH}), 128.5(\mathrm{CH}), 128.4(\mathrm{CH})$,
$127.9(\mathrm{CH}), 127.8(\mathrm{CH}), 127.2(\mathrm{CH}), 125.4(\mathrm{CH}), 123.8(\mathrm{CH}), 61.3\left(\mathrm{CH}_{2}\right)$; IR (neat): 3050, 3021, 2921, 2854, 1611, 1596, 1567, 1488, 1443, 1309, 1259, 1213, 1183, 1089, 1069, 1026, 990, 941, 910, 864, 848, 780, 753, 686, $647 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $354.13[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{NS}: 354.1311[\mathrm{M}+\mathrm{H}]^{+}$, found: 354.1320.

4.11 General Procedure for the Synthesis of 5-Methylpyridines 61

To a stirred solution of the corresponding thio- β-enaminone $\mathbf{5 8}$ (0.3 mmol) in DMF $(0.5 \mathrm{~mL})$ at room temperature under argon was added $(i-\operatorname{Pr})_{2} \mathrm{NH}(0.5 \mathrm{~mL})$, and the resulting mixture was stirred at room temperature. (Note that stirring was continued until thio- β-enaminone $\mathbf{5 8}$ was completely consumed as monitored by routine TLC). After the reaction was over, ethyl acetate (40 mL) was added, and the resulting solution was washed with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (15 mL) in a separatory funnel. After the layers were separated, the aqueous layer was extracted with ethyl acetate ($2 \times 30 \mathrm{~mL}$). Then, organic phase was dried over MgSO_{4} and evaporated on a rotary evaporator to give the crude product, which was purified by flash chromatography on silica gel using hexane/ethyl acetate (15:1 followed by $9: 1$) as the eluent to afford the 5-methylpyridine $\mathbf{6 1}$.

4.11.1 5-Methyl-2,4-diphenylpyridine (61a)

1,3-Diphenyl-3-(prop-2-yn-1-ylamino)prop-2-ene-1-thione (58a) (83.2 mg, 0.30 $\mathrm{mmol})$ and $(i-\mathrm{Pr})_{2} \mathrm{NH}(0.50 \mathrm{~mL}, 3.56 \mathrm{mmol})$ were employed to afford 62.4 mg (85%) of the indicated product and 4.2 mg (5\%) of 2-methylene-5,7-diphenyl-2,3-dihydro-1,4-thiazepine (59a). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.61(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.37(\mathrm{~m}, 8 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.4(\mathrm{C}), 151.3(\mathrm{CH}), 150.0(\mathrm{C}), 139.5(\mathrm{C}), 139.4(\mathrm{C}), 129.2(\mathrm{C})$, $128.8(\mathrm{CH}), 128.74(\mathrm{CH}), 128.65(\mathrm{CH}), 128.6(\mathrm{CH}), 128.1(\mathrm{CH}), 126.8(\mathrm{CH})$, $121.0(\mathrm{CH}), 17.0\left(\mathrm{CH}_{3}\right)$; IR (neat): 3056, 2999, 2921, 1735, 1591, 1574, 1541, $1495,1474,1442,1370,1241,1229,1075,1025,1000,918,892,850,775,746$,
$715,696,632,597,536 \mathrm{~cm}^{-1}$. The spectral data were in agreement with those reported previously for this compound. ${ }^{113}$

4.11.2 2-(4-Methoxyphenyl)-5-methyl-4-phenylpyridine (61b)

3-(4-Methoxyphenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-ene-1-thione (58b) $(104.5 \mathrm{mg}, 0.34 \mathrm{mmol})$ and $(i-\mathrm{Pr})_{2} \mathrm{NH}(0.57 \mathrm{~mL}, 4.03 \mathrm{mmol})$ were employed to afford $71.1 \mathrm{mg}(76 \%)$ of the indicated product and $9.4 \mathrm{mg}(9 \%)$ of 5-(4-methoxyphenyl)-2-methylene-7-phenyl-2,3-dihydro-1,4-thiazepine (59b). ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.55(\mathrm{~s}, 1 \mathrm{H}), 7.99-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.36(\mathrm{~m}$, 5 H), 7.03-6.95 (m, 2H), $3.85(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 160.3 (C), 155.0 (C), 151.1 (CH), 150.0 (C), 139.6 (C), 132.0 (C), 128.7 (CH), $128.54(\mathrm{CH}), 128.49(\mathrm{C}), 128.04(\mathrm{CH}), 128.01(\mathrm{CH}), 120.3(\mathrm{CH}), 114.2(\mathrm{CH}), 55.4$ $\left(\mathrm{OCH}_{3}\right), 17.0\left(\mathrm{CH}_{3}\right)$; IR (neat): 2991, 2956, 2931, 2835, 1606, 1592, 1542, 1513, $1494,1472,1441,1416,1369,1305,1239,1171,1110,1028,896,854,826,786$, 775, 757, 742, 712, 704, 679, 657, 626, $568 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $276.14[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}: 276.1383[\mathrm{M}+\mathrm{H}]^{+}$, found: 276.1393.

4.11.3 2-(2-Methoxyphenyl)-5-methyl-4-phenylpyridine (61c)

3-(2-Methoxyphenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-ene-1-thione (58c) $(110.7 \mathrm{mg}, 0.36 \mathrm{mmol})$ and $(i-\operatorname{Pr})_{2} \mathrm{NH}(0.60 \mathrm{~mL}, 4.27 \mathrm{mmol})$ were employed to afford $45.4 \mathrm{mg}(46 \%)$ of the indicated product and $8.9 \mathrm{mg}(8 \%)$ of 5-(2-methoxyphenyl)-2-methylene-7-phenyl-2,3-dihydro-1,4-thiazepine (59c). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.61(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H})$, $7.51-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.09(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}$, $3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.0$ (C), $154.0(\mathrm{C}), 150.9$ $(\mathrm{CH}), 149.0(\mathrm{C}), 139.7(\mathrm{C}), 131.2(\mathrm{CH}), 129.8(\mathrm{CH}), 129.1(\mathrm{C}), 128.82(\mathrm{CH})$, $128.78(\mathrm{C}), 128.5(\mathrm{CH}), 127.9(\mathrm{CH}), 125.4(\mathrm{CH}), 121.1(\mathrm{CH}), 111.4(\mathrm{CH}), 55.7$ $\left(\mathrm{OCH}_{3}\right), 17.2\left(\mathrm{CH}_{3}\right)$; IR (neat): 2995, 2954, 2930, 2834, 1593, 1578, 1540, 1495, $1465,1435,1367,1277,1240,1177,1121,1058,1024,897,852,795,772,752$,

703, 633, $601 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $276.14[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}: 276.1383[\mathrm{M}+\mathrm{H}]^{+}$, found: 276.1390.

4.11.4 5-Methyl-4-phenyl-2-(p-tolyl)pyridine (61d)

1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(p-tolyl)prop-2-ene-1-thione (58d) (99.1 mg, $0.34 \mathrm{mmol})$ and $(i-\operatorname{Pr})_{2} \mathrm{NH}(0.57 \mathrm{~mL}, 4.03 \mathrm{mmol})$ were employed to afford 65.4 $\mathrm{mg}(74 \%)$ of the indicated product and $7.9 \mathrm{mg}(8 \%)$ of 2-methylene-7-phenyl-5-($p-$ tolyl)-2,3-dihydro-1,4-thiazepine (59d). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.61$ (s, $1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.4$ (C), 151.2 (CH), 150.0 (C), 139.6 (C), 138.7 (C), 136.6 (C), 129.5 (CH), 128.9 (C), 128.7 $(\mathrm{CH}), 128.6(\mathrm{CH}), 128.0(\mathrm{CH}), 126.7(\mathrm{CH}), 120.7(\mathrm{CH}), 21.3\left(\mathrm{CH}_{3}\right), 17.1\left(\mathrm{CH}_{3}\right)$; IR (neat): 3024, 2919, 1592, 1574, 1542, 1494, 1473, 1442, 1369, 1179, 1111, 1042, 1018, 889, 822, 772, 754, 738, 702, 627, $564 \mathrm{~cm}^{-1}$; MS (ESI, m/z): 260.14 $[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}: 260.1434[\mathrm{M}+\mathrm{H}]^{+}$, found: 260.1442.

4.11.5 5-Methyl-4-phenyl-2-(m-tolyl)pyridine (61e)

1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(m-tolyl)prop-2-ene-1-thione (58e) (99.1 mg , $0.34 \mathrm{mmol})$ and $(i-\operatorname{Pr})_{2} \mathrm{NH}(0.57 \mathrm{~mL}, 4.03 \mathrm{mmol})$ were employed to afford 58.5 mg (66\%) of the indicated product and $5.0 \mathrm{mg}(5 \%)$ of 2-methylene-7-phenyl-5-(m -tolyl)-2,3-dihydro-1,4-thiazepine (59e). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.62$ (s, $1 \mathrm{H}), 7.91-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.25(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.47(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.5(\mathrm{C}), 151.2(\mathrm{CH})$, 150.0 (C), 139.6 (C), 139.4 (C), 138.4 (C), 129.5 (CH), 129.2 (C), 128.7 (2 xCH), $128.6(\mathrm{CH}), 128.1(\mathrm{CH}), 127.6(\mathrm{CH}), 123.9(\mathrm{CH}), 121.1(\mathrm{CH}), 21.6\left(\mathrm{CH}_{3}\right), 17.1$ $\left(\mathrm{CH}_{3}\right)$; IR (neat): $3060,2989,2918,1590,1542,1495,1471,1451,1440,1383$, 1358, 1229, 1061, 1040, 888, 816, 799, 770, 757, 740, 632, 601, $553 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (ESI, m/z): $260.14[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}: 260.1434[\mathrm{M}+\mathrm{H}]^{+}$, found: 260.1446 .

4.11.6 5-Methyl-4-phenyl-2-(4-(trifluoromethyl)phenyl)pyridine (61f)

1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(4-(trifluoromethyl)phenyl)prop-2-ene-1thione ($\mathbf{5 8 f}$) $(86.3 \mathrm{mg}, 0.25 \mathrm{mmol})$ and $(i-\mathrm{Pr})_{2} \mathrm{NH}(0.42 \mathrm{~mL}, 2.96 \mathrm{mmol})$ were employed to afford $44.0 \mathrm{mg}(56 \%)$ of the indicated product and $4.3 \mathrm{mg}(5 \%)$ of 2-methylene-7-phenyl-5-(4-(trifluoromethyl)phenyl)-2,3-dihydro-1,4-thiazepine (59f). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.61(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.8$ (C), $151.6(\mathrm{CH}), 150.4$ (C), 142.8 (C), 139.3 (C), 130.7 ($\left.\mathrm{q},{ }^{2} J=32.4 \mathrm{~Hz}, \mathrm{C}\right), 130.4(\mathrm{C}), 128.73(\mathrm{CH}), 128.67(\mathrm{CH}), 128.3(\mathrm{CH})$, $127.1(\mathrm{CH}) 125.8\left(\mathrm{q},{ }^{3} J=3.7 \mathrm{~Hz}, \mathrm{CH}\right), 124.2\left(\mathrm{q},{ }^{1} J=272.2 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 121.4(\mathrm{CH})$, $17.2\left(\mathrm{CH}_{3}\right)$; IR (neat): 2994, 1617, 1594, 1577, 1542, 1493, 1475, 1411, 1326, 1153, 1117, 1102, 1069, 1013, 999, 893, 847, 775, 758, 734, 703, 653, 640, 618, $590 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $314.12[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}$: $314.1151[\mathrm{M}+\mathrm{H}]^{+}$, found: 314.1163 .

4.11.7 2-(3-Fluorophenyl)-5-methyl-4-phenylpyridine (61h)

3-(3-Fluorophenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-ene-1-thione $(97.5 \mathrm{mg}, 0.33 \mathrm{mmol})$ and $(i-\mathrm{Pr})_{2} \mathrm{NH}(0.55 \mathrm{~mL}, 3.91 \mathrm{mmol})$ were employed to afford $58.5 \mathrm{mg}(67 \%)$ of the indicated product and 4.9 mg (5\%) of 5-(3-fluorophenyl)-2-methylene-7-phenyl-2,3-dihydro-1,4-thiazepine (59h). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.59(\mathrm{~s}, 1 \mathrm{H}), 7.81-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.36(\mathrm{~m}$, $6 \mathrm{H}), 7.08(\mathrm{td}, J=8.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $163.5\left(\mathrm{~d},{ }^{1} J=245.3 \mathrm{~Hz}, \mathrm{CF}\right), 154.0\left(\mathrm{~d},{ }^{4} J=2.5 \mathrm{~Hz}, \mathrm{C}\right), 151.4(\mathrm{CH}), 150.2$ (C), 141.7 (d, ${ }^{3} J=7.5 \mathrm{~Hz}, \mathrm{C}$), 139.3 (C), 130.3 (d, ${ }^{3} J=8.3 \mathrm{~Hz}, \mathrm{CH}$), 130.0 (C), 128.7 (CH), $128.2(\mathrm{CH}), 122.3\left(\mathrm{~d},{ }^{4} J=2.5 \mathrm{~Hz}, \mathrm{CH}\right), 121.1(\mathrm{CH}), 115.6\left(\mathrm{~d},{ }^{2} J=21.2 \mathrm{~Hz}\right.$, $\mathrm{CH}), 113.8\left(\mathrm{~d},{ }^{2} \mathrm{~J}=22.8 \mathrm{~Hz}, \mathrm{CH}\right), 17.1\left(\mathrm{CH}_{3}\right)$ (Note that two CH peaks overlap on each other); IR (neat): $3063,3026,1612,1582,1545,1494,1465,1440,1359$, $1253,1198,1170,1150,1072,1051,991,900,880,822,787,771,755,737,690$, 632, $597 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $264.12[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{FN}$: $264.1183[\mathrm{M}+\mathrm{H}]^{+}$, found: 264.1195.

4.11.8 2-(2-Bromophenyl)-5-methyl-4-phenylpyridine (61i)

3-(2-Bromophenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-ene-1-thione $(89.1 \mathrm{mg}, 0.25 \mathrm{mmol})$ and $(i-\mathrm{Pr})_{2} \mathrm{NH}(0.42 \mathrm{~mL}, 2.96 \mathrm{mmol})$ were employed to afford $49.0 \mathrm{mg}(60 \%)$ of the indicated product and $11.6 \mathrm{mg}(13 \%)$ of $5-(2-$ bromophenyl)-2-methylene-7-phenyl-2,3-dihydro-1,4-thiazepine (59i). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.63(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=7.7$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.40(\mathrm{~m}, 6 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.10$ (C), 151.1 (CH), 149.1 (C), 141.2 (C), 139.2 (C), $133.4(\mathrm{CH}), 131.6(\mathrm{CH}), 129.7(\mathrm{CH}), 129.6(\mathrm{C}), 128.8(\mathrm{CH}), 128.6(\mathrm{CH})$, $128.2(\mathrm{CH}), 127.6(\mathrm{CH}), 125.2(\mathrm{CH}), 122.1(\mathrm{CBr}), 17.2\left(\mathrm{CH}_{3}\right)$; IR (neat): 3055, 3024, 2997, 2956, 2923, 1594, 1562, 1538, 1493, 1461, 1440, 1427, 1368, 1256, 1075, 1046, 1024, 1001, 896, 852, 772, 751, 701, 655, $631 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $324.04[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{15}{ }^{79} \mathrm{BrN}: 324.0382[\mathrm{M}+\mathrm{H}]^{+}$, found: 324.0392 .

4.11.9 2-(4-(tert-Butyl)phenyl)-5-methyl-4-phenylpyridine (61j)

3-(4-(tert-Butyl)phenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-ene-1-thione ($\mathbf{5 8 j}$) $(116.7 \mathrm{mg}, 0.35 \mathrm{mmol})$ and $(i-\mathrm{Pr})_{2} \mathrm{NH}(0.58 \mathrm{~mL}, 4.15 \mathrm{mmol})$ were employed to afford $71.2 \mathrm{mg}(68 \%)$ of the indicated product and $5.8 \mathrm{mg}(5 \%)$ of 5 -(4-(tert-butyl)phenyl)-2-methylene-7-phenyl-2,3-dihydro-1,4-thiazepine (59j). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.58(\mathrm{~s}, 1 \mathrm{H}), 7.98-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{ddd}, J=$ 8.2, 5.1, $1.6 \mathrm{~Hz}, 4 \mathrm{H}$), 7.46-7.43 (m, 1H), 7.41-7.37 (m, 2H), $2.32(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.4(\mathrm{C}), 151.9(\mathrm{C}), 151.3(\mathrm{CH}), 149.9(\mathrm{C})$, 139.6 (C), 136.6 (C), 128.9 (C), $128.7(\mathrm{CH}), 128.6(\mathrm{CH}), 128.0(\mathrm{CH}), 126.5(\mathrm{CH})$, $125.8(\mathrm{CH}), 120.8(\mathrm{CH}), 34.8(\mathrm{C}), 31.4\left(\mathrm{CH}_{3}\right), 17.1\left(\mathrm{CH}_{3}\right)$; IR (neat): 2960, 2903, 2865, 1592, 1541, 1494, 1474, 1369, 1268, 1112, 1022, 1013, 889, 839, 772, 734, 701, 657, $625 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $302.19[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}$: $302.1916[\mathrm{M}+\mathrm{H}]^{+}$, found: 302.1903.

4.11.10 2-Butyl-5-methyl-4-phenylpyridine (611)

1-Phenyl-3-(prop-2-yn-1-ylamino)hept-2-ene-1-thione (581) (87.5 mg, 0.34 mmol) and $(i-\mathrm{Pr})_{2} \mathrm{NH}(0.57 \mathrm{~mL}, 4.03 \mathrm{mmol})$ were employed to afford $9.6 \mathrm{mg}(13 \%)$ of the indicated product and 1.8 mg (2%) of 5-butyl-2-methylene-7-phenyl-2,3-dihydro-1,4-thiazepine (591). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.41$ (s, 1H), 7.48-7.37 (m, $3 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 2.84-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{tt}, J=$ $7.8,6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 1.40 (sextet, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$), 0.94 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$); IR (neat): 2954, 2926, 2857, 1618, 1595, 1543, 1480, 1407, 1385, 1274, 1196, 1074, 1046, 881, 774, 736, 701, $630 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $226.16[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}: 226.1590[\mathrm{M}+\mathrm{H}]^{+}$, found: 226.1596.

4.11.11 5-Methyl-4-phenyl-2-(thiophen-3-yl)pyridine (61m)

1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(thiophen-3-yl)prop-2-ene-1-thione $(90.7 \mathrm{mg}, 0.32 \mathrm{mmol})$ and $(i-\operatorname{Pr})_{2} \mathrm{NH}(0.53 \mathrm{~mL}, 3.79 \mathrm{mmol})$ were employed to afford $55.3 \mathrm{mg}(69 \%)$ of the indicated product and $5.4 \mathrm{mg}(6 \%)$ of 2-methylene-7-phenyl-5-(thiophen-3-yl)-2,3-dihydro-1,4-thiazepine (59m). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.51(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=3.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{dd}, J=5.0,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.53-7.35(\mathrm{~m}, 7 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.6(\mathrm{C})$, $151.2(\mathrm{CH}), 150.0(\mathrm{C}), 142.2(\mathrm{C}), 139.4(\mathrm{C}), 129.0(\mathrm{C}), 128.63(\mathrm{CH}), 128.59(\mathrm{CH})$, $128.1(\mathrm{CH}), 126.3(\mathrm{CH}), 123.0(\mathrm{CH}), 120.8(\mathrm{CH}), 17.1\left(\mathrm{CH}_{3}\right)$. (Note that two CH peaks overlap on each other); IR (neat): 3089, 3059, 2918, 1592, 1535, 1495, 1473, 1441, 1377, 1334, 1272, 1226, 1200, 1074, 1043, 1022, 1000, 916, 891, 863, 838, 798, 771, 751, 738, 703, 677, 628, $595 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $252.08[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NS}: 252.0842[\mathrm{M}+\mathrm{H}]^{+}$, found: 252.0839 .

4.11.12 4-(2-Bromophenyl)-5-methyl-2-phenylpyridine (61n)

1-(2-Bromophenyl)-3-phenyl-3-(prop-2-yn-1-ylamino)prop-2-ene-1-thione $(60.6 \mathrm{mg}, 0.17 \mathrm{mmol})$ and $(i-\operatorname{Pr})_{2} \mathrm{NH}(0.28 \mathrm{~mL}, 2.02 \mathrm{mmol})$ were employed to
afford $29.1 \mathrm{mg}(53 \%)$ of the indicated product and 6.1 mg (10%) of 7-(2-bromophenyl)-2-methylene-5-phenyl-2,3-dihydro-1,4-thiazepine (59n). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.53(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{td}, J=7.9,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.1$ (C), 150.8 (CH), 149.6 (C), 140.3 (C), 139.1 (C), 133.0 (CH), 130.1 (C), $130.1(\mathrm{CH}), 129.7(\mathrm{CH}), 128.91(\mathrm{CH}), 128.85(\mathrm{CH}), 127.6(\mathrm{CH}), 126.9(\mathrm{CH})$, $122.6(\mathrm{CBr}), 120.9(\mathrm{CH}), 16.6\left(\mathrm{CH}_{3}\right)$; IR (neat): 3051, 2919, 1600, 1561, 1544, $1483,1464,1431,1381,1368,1257,1225,1065,1016,996,887,850,777,765$, 745, 732, 693, $666 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $324.04[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{15}{ }^{79} \mathrm{BrN}: 324.0382[\mathrm{M}+\mathrm{H}]^{+}$, found: 324.0399.

4.11.13 4-(2-Bromophenyl)-5-methyl-2-(m-tolyl)pyridine (61r)

1-(2-Bromophenyl)-3-(prop-2-yn-1-ylamino)-3-(m-tolyl)prop-2-ene-1-thione (58r) $(66.7 \mathrm{mg}, 0.18 \mathrm{mmol})$ and $(i-\mathrm{Pr})_{2} \mathrm{NH}(0.30 \mathrm{~mL}, 2.13 \mathrm{mmol})$ were employed to afford $30.0 \mathrm{mg}(49 \%)$ of the indicated product and $4.7 \mathrm{mg}(7 \%)$ of $7-(2-$ bromophenyl)-2-methylene-5-(m-tolyl)-2,3-dihydro-1,4-thiazepine (59r). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.61(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ (td, $J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.2$ (C), 150.7 (CH), 149.6 (C), 140.3 (C), 139.0 (C), 138.5 (C), $133.0(\mathrm{CH}), 130.2(\mathrm{CH}), 130.1(\mathrm{C}), 129.7(\mathrm{CH}), 128.8(\mathrm{CH}), 127.63(\mathrm{CH})$, $127.62(\mathrm{CH}), 124.0(\mathrm{CH}), 122.6(\mathrm{CBr}), 121.0(\mathrm{CH}), 21.7\left(\mathrm{CH}_{3}\right), 16.6\left(\mathrm{CH}_{3}\right)$. (Note that two CH peaks overlap on each other); IR (neat): 3049, 2950, 2918, 1599, 1584, 1561, 1543, 1463, 1431, 1380, 1358, 1260, 1226, 1092, 1063, 1020, 995, 882, 817, 791, 748, 729, 700, 666, $629 \mathrm{~cm}^{-1}$; MS (ESI, m/z): 338.06 [M+H] ${ }^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{17}{ }^{79} \mathrm{BrN}$: $338.0539[\mathrm{M}+\mathrm{H}]^{+}$, found: 338.0554 .

4.11.14 4-(2-Bromophenyl)-5-methyl-2-(4-(trifluoromethyl)phenyl)pyridine (61s)

1-(2-Bromophenyl)-3-(prop-2-yn-1-ylamino)-3-(4-(trifluoromethyl)phenyl)prop-2-ene-1-thione (58s) ($110.3 \mathrm{mg}, 0.26 \mathrm{mmol}$) and ($i-\mathrm{Pr})_{2} \mathrm{NH}(0.43 \mathrm{~mL}, 3.08 \mathrm{mmol})$ were employed to afford $55.2 \mathrm{mg}(54 \%)$ of the indicated product and 11.0 mg (10\%) of 7-(2-bromophenyl)-2-methylene-5-(4-(trifluoromethyl)phenyl)-2,3-dihydro-1,4-thiazepine (59s). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.55$ (s, 1H), 8.04 (d, J $=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22$ $(\mathrm{td}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.6$ (C), 151.3 (CH), 149.7 (C), 142.6 (C), 140.0 (C), 133.1 (CH), 131.2 (C), 130.7 (q, $\left.{ }^{2} J=32.4 \mathrm{~Hz}, \mathrm{C}\right), 130.2(\mathrm{CH}), 129.9(\mathrm{CH}), 127.7(\mathrm{CH})$, $127.1(\mathrm{CH}), 125.8\left(\mathrm{q},{ }^{3} J=3.7 \mathrm{~Hz}, \mathrm{CH}\right), 124.4\left(\mathrm{q},{ }^{1} J=274.0 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 122.5(\mathrm{CBr})$, $121.2(\mathrm{CH}), 16.6\left(\mathrm{CH}_{3}\right)$; IR (neat): 2926, 1616, 1603, 1562, 1485, 1466, 1433, 1412, 1385, 1321, 1257, 1158, 1117, 1068, 1013, 891, 847, 835, 767, 746, 727, $706,658,629,618 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $392.03[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{14}{ }^{79} \mathrm{BrF}_{3} \mathrm{~N}: 392.0256[\mathrm{M}+\mathrm{H}]^{+}$, found: 392.0271.

4.11.15 4-(2-Bromophenyl)-2-(3-fluorophenyl)-5-methylpyridine (61t)

1-(2-Bromophenyl)-3-(3-fluorophenyl)-3-(prop-2-yn-1-ylamino)prop-2-ene-1thione (58t) $(116.0 \mathrm{mg}, 0.31 \mathrm{mmol})$ and $(i-\operatorname{Pr})_{2} \mathrm{NH}(0.52 \mathrm{~mL}, 3.68 \mathrm{mmol})$ were employed to afford $54.5 \mathrm{mg}(51 \%)$ of the indicated product and $10.4 \mathrm{mg}(9 \%)$ of $7-$ (2-bromophenyl)-5-(3-fluorophenyl)-2-methylene-2,3-dihydro-1,4-thiazepine (59t). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.53(\mathrm{~s}, 1 \mathrm{H}), 7.72-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.33$ (td, $J=7.8,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{td}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=7.5,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.01$ (tdd, $J=8.3,2.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.5\left(\mathrm{~d},{ }^{1} J=245.4 \mathrm{~Hz}, \mathrm{CF}\right), 155.8\left(\mathrm{~d},{ }^{4} J=2.4 \mathrm{~Hz}, \mathrm{C}\right), 151.1(\mathrm{CH}), 149.6$ (C), 141.7 (d, ${ }^{3} J=7.6 \mathrm{~Hz}, \mathrm{C}$), 140.1 (C), 133.1 (CH), 130.8 (C), 130.3 (d, ${ }^{3} J=8.2 \mathrm{~Hz}$, $\mathrm{CH}), 130.2(\mathrm{CH}), 129.8(\mathrm{CH}), 127.7(\mathrm{CH}), 122.6(\mathrm{CBr}), 122.4\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.8 \mathrm{~Hz}, \mathrm{CH}\right)$, $120.9(\mathrm{CH}), 115.7\left(\mathrm{~d},{ }^{2} J=21.3 \mathrm{~Hz}, \mathrm{CH}\right), 113.9\left(\mathrm{~d},{ }^{2} J=22.7 \mathrm{~Hz}, \mathrm{CH}\right), 16.6\left(\mathrm{CH}_{3}\right)$;

IR (neat): 2977, 1735, 1601, 1585, 1561, 1544, 1486, 1461, 1371, 1243, 1201, $1175,1155,1046,1020,905,878,825,788,763,730,695,666,629 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $342.03[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{14}{ }^{79} \mathrm{BrFN}: 342.0288$ $[\mathrm{M}+\mathrm{H}]^{+}$, found: 342.0302.

4.11.16 4-(4-Methoxyphenyl)-5-methyl-2-phenylpyridine (61v)

1-(4-Methoxyphenyl)-3-phenyl-3-(prop-2-yn-1-ylamino)prop-2-ene-1-thione (58v) $(86.1 \mathrm{mg}, 0.28 \mathrm{mmol})$ and $(i-\mathrm{Pr})_{2} \mathrm{NH}(0.47 \mathrm{~mL}, 3.32 \mathrm{mmol})$ were employed to afford $40.5 \mathrm{mg}(53 \%)$ of the indicated product and 6.0 mg (7\%) of 7-(4-methoxyphenyl)-2-methylene-5-phenyl-2,3-dihydro-1,4-thiazepine (59v). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}$), $3.88(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.6(\mathrm{C})$, 155.4 (C), 151.3 (CH), 149.8 (C), 139.5 (C), 131.8 (C), 130.0 (CH), 129.4 (C), $128.83(\mathrm{CH}), 128.78(\mathrm{CH}), 126.9(\mathrm{CH}), 121.2(\mathrm{CH}), 114.1(\mathrm{CH}), 55.5\left(\mathrm{OCH}_{3}\right)$, $17.3\left(\mathrm{CH}_{3}\right)$; IR (neat): $2928,2834,1608,1594,1576,1511,1474,1442,1369$, 1295, 1246, 1176, 1109, 1043, 1029, 889, 833, 778, 750, 695, $606 \mathrm{~cm}^{-1}$; MS (ESI, m / z): $276.14[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}: 276.1383[\mathrm{M}+\mathrm{H}]^{+}$, found: 276.1396. ${ }^{114}$

4.11.17 5-Methyl-2-phenyl-4-(p-tolyl)pyridine (61w)

3-Phenyl-3-(prop-2-yn-1-ylamino)-1-(p-tolyl)prop-2-ene-1-thione (58w) (93.3 mg , $0.32 \mathrm{mmol})$ and $(i-\operatorname{Pr})_{2} \mathrm{NH}(0.53 \mathrm{~mL}, 3.79 \mathrm{mmol})$ were employed to afford 69.0 mg (83%) of the indicated product and 6.5 mg (7\%) of 2-methylene-5-phenyl-7-(p -tolyl)-2,3-dihydro-1,4-thiazepine (59w). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.62$ (s, $1 \mathrm{H}), 8.09-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32(\mathrm{~s}, 4 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.3$ (C), 151.2 (CH), 150.1 (C), 139.4 (C), 137.9 (C), 136.5 (C), 129.33 (C), 129.26 $(\mathrm{CH}), 128.8(\mathrm{CH}), 128.7(\mathrm{CH}), 128.6(\mathrm{CH}), 126.8(\mathrm{CH}), 121.1(\mathrm{CH}), 21.3\left(\mathrm{CH}_{3}\right)$,
$17.2\left(\mathrm{CH}_{3}\right)$; IR (neat): $3025,2919,1594,1542,1511,1474,1444,1381,1369$, 1183, 1111, 1074, 1038, 1024, 889, 853, 821, 777, 747, 707, 694, $605 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (ESI, m/z): $260.14[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}: 260.1434[\mathrm{M}+\mathrm{H}]^{+}$, found: 260.1446 .

4.11.18 5-Methyl-2-(thiophen-3-yl)-4-(p-tolyl)pyridine (61x)

3-(Prop-2-yn-1-ylamino)-3-(thiophen-3-yl)-1-(p-tolyl)prop-2-ene-1-thione (58x) $(86.3 \mathrm{mg}, 0.29 \mathrm{mmol})$ and $(i-\operatorname{Pr})_{2} \mathrm{NH}(0.48 \mathrm{~mL}, 3.44 \mathrm{mmol})$ were employed to afford $59.5 \mathrm{mg}(77 \%)$ of the indicated product and $8.6 \mathrm{mg}(10 \%)$ of 2-methylene-5-(thiophen-3-yl)-7-(p-tolyl)-2,3-dihydro-1,4-thiazepine (59x). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{dd}, J=3.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=5.1,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=5.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 4 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$, 2.19 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.5(\mathrm{C}), 151.1(\mathrm{CH}), 150.0(\mathrm{C})$, 142.2 (C), 138.0 (C), 136.5 (C), 129.3 (CH), 129.0 (C), 128.6 (CH), $126.3(\mathrm{CH})$, $122.9(\mathrm{CH}), 120.9(\mathrm{CH}), 21.4\left(\mathrm{CH}_{3}\right), 17.2\left(\mathrm{CH}_{3}\right)$. (Note that two CH peaks overlap on each other); IR (neat): 2919, 1594, 1540, 1511, 1474, 1444, 1419, 1380, 1335, 1184, 1112, 1051, 1037, 868, 843, 821, 794, 751, 727, 713, 677, $605 \mathrm{~cm}^{-1} ;$ MS (ESI, m/z): $266.10[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NS}: 266.0998[\mathrm{M}+\mathrm{H}]^{+}$, found: 266.1010 .

4.11.19 4-(4-Chlorophenyl)-5-methyl-2-phenylpyridine (61y)

1-(4-Chlorophenyl)-3-phenyl-3-(prop-2-yn-1-ylamino)prop-2-ene-1-thione $(109.1 \mathrm{mg}, 0.35 \mathrm{mmol})$ and $(i-\operatorname{Pr})_{2} \mathrm{NH}(0.58 \mathrm{~mL}, 4.15 \mathrm{mmol})$ were employed to afford $65.5 \mathrm{mg}(67 \%)$ of the indicated product and 4.4 mg (4\%) of 7-(4-chlorophenyl)-2-methylene-5-phenyl-2,3-dihydro-1,4-thiazepine (59y). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.49(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.28$ $(\mathrm{m}, 5 \mathrm{H}), 7.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 155.5 (C), $151.4(\mathrm{CH}), 148.8$ (C), 139.2 (C), 137.9 (C), 134.3 (C), $130.1(\mathrm{CH})$, $129.1(\mathrm{C}), 128.90(\mathrm{CH}), 128.85(\mathrm{CH}), 126.8(\mathrm{CH}), 120.8(\mathrm{CH}), 17.0\left(\mathrm{CH}_{3}\right)$. (Note
that two CH peaks overlap on each other); IR (neat): 3059, 2999, 2961, 1602, 1588, $1540,1491,1473,1442,1384,1370,1243,1228,1178,1087,1051,1036,1015$, 997, 894, 843, 830, 780, 749, 710, 694, 665, $599 \mathrm{~cm}^{-1}$; MS (ESI, m/z): 280.09 $[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClN}: 280.0888[\mathrm{M}+\mathrm{H}]^{+}$, found: 280.0901.

4.11.20 4-(4-Chlorophenyl)-2-(3-fluorophenyl)-5-methylpyridine (61z)

1-(4-Chlorophenyl)-3-(3-fluorophenyl)-3-(prop-2-yn-1-ylamino)prop-2-ene-1thione (58z) $(89.1 \mathrm{mg}, 0.27 \mathrm{mmol})$ and $(i-\mathrm{Pr})_{2} \mathrm{NH}(0.45 \mathrm{~mL}, 3.20 \mathrm{mmol})$ were employed to afford $57.0 \mathrm{mg}(71 \%)$ of the indicated product and $6.2 \mathrm{mg}(7 \%)$ of 7-(4-chlorophenyl)-5-(3-fluorophenyl)-2-methylene-2,3-dihydro-1,4-thiazepine (59z). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.57(\mathrm{~s}, 1 \mathrm{H}), 7.77-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H})$, 7.48-7.44 (m, 2H), 7.41 (dd, $J=10.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.34-7.28 (m, 2H), 7.12-7.05 $(\mathrm{m}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.4\left(\mathrm{~d},{ }^{1} \mathrm{~J}=245.5 \mathrm{~Hz}, \mathrm{CF}\right)$, $154.1\left(\mathrm{~d},{ }^{4} J=2.5 \mathrm{~Hz}, \mathrm{C}\right), 151.5(\mathrm{CH}), 149.0(\mathrm{C}), 141.5\left(\mathrm{~d},{ }^{3} J=7.3 \mathrm{~Hz}, \mathrm{C}\right), 137.7$ (C), 134.4 (C), 130.3 (d, $\left.{ }^{3} J=8.2 \mathrm{~Hz}, \mathrm{CH}\right), 130.0(\mathrm{CH}), 129.8(\mathrm{C}), 128.9(\mathrm{CH})$, $122.3\left(\mathrm{~d},{ }^{4} J=2.8 \mathrm{~Hz}, \mathrm{CH}\right), 120.9(\mathrm{CH}), 115.7\left(\mathrm{~d},{ }^{2} J=21.4 \mathrm{~Hz}, \mathrm{CH}\right), 113.8\left(\mathrm{~d},{ }^{2} J=\right.$ $22.8 \mathrm{~Hz}, \mathrm{CH}$), $17.1\left(\mathrm{CH}_{3}\right)$; IR (neat): 3040, 1614, 1584, 1570, 1541, 1496, 1469, 1437, 1377, 1358, 1254, 1197, 1172, 1152, 1092, 1054, 1033, 1010, 992, 906, 877, 845, 817, 776, 750, 724, 697, 682, 655, $627 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $298.08[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{CIFN}$: 298.0793 [M+H] ${ }^{+}$, found: 298.0793.

4.12 Reaction of \boldsymbol{N}-Propargylic Thio- β-enaminone 84 with DBU

1,3-Diphenyl-3-((3-phenylprop-2-yn-1-yl)amino)prop-2-ene-1-thione (84) (106.0 $\mathrm{mg}, 0.30 \mathrm{mmol}$) and DBU ($45.7 \mathrm{mg}, 0.30 \mathrm{mmol}$) in 0.5 mL of ACN were employed to afford 30.9 mg (32\%) 5-benzyl-2,4-diphenylpyridine (89). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.63(\mathrm{~s}, 1 \mathrm{H}), 8.09-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.47(\mathrm{~m}$, $2 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.05(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.5(\mathrm{C}), 151.6(\mathrm{CH}), 150.6$ (C), 140.4 (C), 139.2 (C), 139.1 (C), 132.3 (C), 129.0 (CH), 128.9 (CH), 128.8
$(\mathrm{CH}), 128.7(\mathrm{CH}), 128.6(2 \times \mathrm{CH}), 128.2(\mathrm{CH}), 126.9(\mathrm{CH}), 126.3(\mathrm{CH}), 121.5$ (CH), $36.3\left(\mathrm{CH}_{2}\right)$; IR (neat): $3057,3025,1590,1538,1493,1473,1444,1373$, $1178,1156,1074,1027,888,759,716,695,670 \mathrm{~cm}^{-1}$; MS (ESI, m/z): 322.16 $[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}: 322.1590[\mathrm{M}+\mathrm{H}]^{+}$, found: 322.1599. ${ }^{115}$

REFERENCES

(1) Solomons, T. W. G.; Fryhle, C. B.; Snyder, S. A. Organic Chemistry, 11th ed.; Wiley \& Sons: New York, 2012.
(2) Combs, G. F., Jr. The Vitamins: Fundamental Aspects in Nutrition and Health, 3th ed.; Elsevier: Oxford, 2008; Chapters 12-13, pp 295-329.
(3) Saini, M. S.; Kumar, A.; Dwivedi, J.; Singh, R. Int. J. Pharm. Sci. Res. 2013, 4, 66.
(4) Martins, P.; Jesus, J.; Santos, S.; Raposo, L. R.; Roma-Rodrigues, C.; Baptista, P. V.; Fernandes, A. R. Molecules 2015, 20, 16852.
(5) Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Curr. Opin. Chem. Biol. 2010, 14, 347.
(6) (a) Keating, G. M. Drugs 2015, 75, 675. (b) Harvoni. 2015. Sofosbuvir/ledipasvir. Summary of Product Characteristics; Gilead Sciences; Food \& Drug Administration; Hayes, UK.;. http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/205834s001lbl. pdf/ (accessed July 12, 2017).
(7) IMS Health. Top 20 pharmaceutical products by sales worldwide in 2015 (in billion U.S. dollars). https://www.statista.com/statistics/258022/top-10-pharmaceutical-products-by-global-sales-2011/ (accessed July 12, 2017).
(8) (a) Altaf, A. A.; Shahzad, A.; Gul, Z.; Rasool, N.; Badshah, A.; Lal, B.; Khan, E. J. Drug Design and Med. Chem. 2015, 1, 1. (b) Gribble, G. W.; Kishbaugh, T. L. S. Progress in Heterocyclic Chemistry; Gribble, G. W., Joule, J. A., Eds; Elseiver: Oxford, 2016; Vol. 28, Chapter 6.1, pp 391-437.
(9) (a) Ryan, J. H.; Green, J. L.; Hyland, C.; Smith, J. A.; Williams, C. C. Progress in Heterocyclic Chemistry; Gribble, G. W., Joule, J. A., Eds; Elseiver: Oxford, 2011; Vol. 23, Chapter 7, pp 465-504. (b) Meyer, A. G.; Smith, J. A.; Hyland, C.; Williams, C. C.; Bissember, A. C.; Nicholls, T. P. Progress in Heterocyclic Chemistry; Gribble, G. W., Joule, J. A., Eds; Elseiver: Oxford, 2016; Vol. 28, Chapter 7, pp 579-622.
(10) Lawrence, S. A. Amines: synthesis, properties, and applications; Cambridge University Press; Cambridge, 2004; Chapter 4, p 150.
(11) Scriven, E. F. V.; Toomey, J. E.; Murugan, R. Pyridine and Pyridine Derivatives. Kirk-Othmer Encyclopedia of Chemical Technology; Wiley \& Sons: New York, 2001; Vol. 20, p 2.
(12) Saini, A.; Kumar, S.; Sandhu, J. S. J. Sci. Ind. Res. 2008, 67, 95.
(13) Papeo, G.; Pulici, M. Molecules 2013, 18, 10870.
(14) Galli, U.; Ciraolo, E.; Massarotti, A.; Margaria, J. P.; Sorba, G.; Hirsch, E.; Tron, G. C. Molecules 2015, 20, 17275.
(15) (a) Tschitschibabin, A. E. J. Prakt. Chem. 1924, 122. (b) Frank, R. L.; Seven, R. P. J. Am. Chem. Soc. 1949, 71, 2629.
(16) Roesch, K. R.; Larock, R. C. J. Org. Chem. 2002, 67, 86.
(17) Parthasarathy, K.; Jeganmohan, M.; Cheng, C. -H. Org. Lett. 2008, 10, 325.
(18) Cacchi, S.; Fabrizi, G.; Filisti, E. Org. Lett. 2008, 10, 2629.
(19) Doebelin, C.; Wagner, P.; Bihel, F.; Humbert, N.; Kenfack, C. A.; Mely, Y.; Bourguignon, J. -J.; Schmitt, M. J. Org. Chem. 2014, 79, 908.
(20) Wang, S.; Guo, Y. -Q.; Ren, Z. -H.; Wang, Y. -Y.; Guan, Z. -H. Org. Lett. 2017, 19, 1574.
(21) Daly, J. W.; Spande, T. F.; Garraffo, H. M. J. Nat. Prod. 2005, 68, 1556.
(22) Spande, T. F.; Garraffo, H. M.; Edwards, M. W.; Yeh, H. J. C.; Pannell, L.; Daly, J. W. J. Am. Chem. Soc. 1992, 114, 3475.
(23) (a) Jain, R.; Mukherjee, K. Ind. J. Pharmacol. 2003, 35, 281. (b) Yildiz, D. Toxicon 2004, 43, 619.
(24) Aida, W.; Ohtsuki, T.; Li, X.; Ishibashi, M. Tetrahedron 2009, 65, 369.
(25) Kumar, S. N.; Kumar, C. H. N. S. P.; Srihari, E.; Kancharla, S.; Srinivas, K.; Shrivastava, S.; Naidu, V. G. M.; Rao, V. J. RSC Adv. 2014, 4, 8365.
(26) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257.
(27) McKeage, K.; Blick, S. K. A.; Croxtall, J. D.; Lyseng-Williamson, K. A.; Keating, G. M. Drugs 2008, 68, 1571.
(28) Baumann, M.; Baxendale, I. R. Bellstein J. Org. Chem. 2013, 9, 2265.
(29) Keating, G. M. Drugs 2012, 72, 1535.
(30) Keating, G. M.; Santoro, A. Drugs 2009, 69, 223.
(31) Curran, M. P. Drugs 2012, 72, 99.
(32) Carter, N. J. Drugs 2011, 71, 1721.
(33) Keam, S. J.; Plosker, G. L. Drugs 2007, 67, 457.
(34) Ahn, C. M.; Shin, W. -S.; Woo, H. B.; Lee, S.; Lee, H. -W. Bioorg. Med. Chem. Lett. 2004, 14, 3893.
(35) Chua, P. C.; Nagasawa, J. Y.; Bleicher, L. S.; Munoz, B.; Schweiger, E. J.; Tehrani, L.; Anderson, J. J.; Cramer, M.; Chung, J.; Green, M. D.; King, C. D.; Reyes-Manalo, G.; Cosford, N. D. P. Bioorg. Med. Chem. Lett. 2005, 15, 4589.
(36) (a) Wunberg, T.; Kraemer, O.; van der Veen, L. US Patent 0023533 A1, 2013. (b) Reiser, U.; Bader, G.; Spevak, W.; Steffen, A.; Parkes, A. L. US Patent 0225567 A1, 2013. (c) Wunberg, T.; Kraemer, O.; van der Veen, L. US Patent 8598157 B2, 2013.
(37) Xiaojin, Z.; Qidong, Y.; Yonghua, L.; Tianhan, H.; Xingsen, W.; Haopeng, S.; Xiaoke, G.; Xiaoli, X. CN Patent 059623 A1, 2017.
(38) Takayama, Y.; Hanazawa, T.; Andou, T.; Muraoka, K.; Ohtani, H.; Takahashi, M.; Sato, F. Org. Lett. 2004, 6, 4253.
(39) Starck, M.; Pal, R.; Parker, D. Chem. Eur. J. 2016, 22, 570.
(40) (a) Field, L.; Tuleen, D. L. Chemistry of Heterocyclic Compounds; Rosowsky, A. Ed; Wiley \& Sons: New York, 1972; Vol. 26, Chapter 10, pp 391-437. (b) Proctor, G. R. Aromatic and Heteroaromatic Chemistry: Volume 7; Suschitzky, H.; Meth-Cohn, O. Eds; The Royal Society of Chemistry; Cambridge, 1979; Vol. 7, Chapter 5, pp 218-226.
(41) Hafner, K. Angew. Chem. Int. Ed. Engl. 1964, 3, 165.
(42) Vogel, E.; Schubart, R.; Böll, W. A. Angew. Chem. Int. Ed. Engl. 1964, 3, 510.
(43) (a) Paquette, L. A.; Barrett, J. H. J. Am. Chem. Soc. 1966, 88, 1718. (b) Vogel, E.; Gunther, H. Angew. Chem. Int. Ed. Engl. 1967, 6, 385.
(44) Barton, T. J.; Martz, M. D.; Zika, R. G. J. Org. Chem. 1972, 37, 552.
(45) (a) Hoffman Jr, J. M.; Schlessinger, R. H. J. Am. Chem. Soc. 1970, 92, 5263. (b) Reinhoudt, D. N.; Kouwenhoven, C. G. Tetrahedron 1974, 30, 2093. (c) Yano, S.; Nishino, K.; Nakasuji, K.; Murata, I. Chem. Lett. 1978, 723.
(46) Nishino, K.; Yano, S.; Kohashi, Y.; Yamamoto, K.; Murata, I. J. Am. Chem. Soc. 1979, 101, 5059.
(47) Streith, J.; Cassal, J. -M. Angew. Chem. Int. Ed. Engl. 1968, 7, 129.
(48) (a) Dimroth, K.; Pohl, G. Angew. Chem. Int. Ed. 1961, 73, 436. (b) Dimroth, K.; Pohl, G; Follmann, H. Chem. Ber. 1966, 99, 634. (c) Tsuchiya, T.; Kurita, J. J. Org. Chem. 1977, 42, 1856. (d) Tsuchiya, T.; Enkaku, M.; Kurita, J.; Swanishi, H. J. Chem. Soc., Chem. Commun. 1979, 534. (e) Tsuchiya, T.; Enkaku, M.; Kurita, J.; Swanishi, H. Chem. Pharm. Bull. 1979, 27, 2183. (f) Kurita, J.; Enkaku, M.; Tsuchiya, T. Chem. Pharm. Bull. 1982, 30, 3764.
(49) Rousseau, G.; Homsi, F. Chem. Soc. Rev. 1997, 26, 453.
(50) Kantorowski, E. J.; Kurth, M. J. Tetrahedron 2000, 56, 4317.
(51) Driowya, M.; Saber, A.; Marzag, H.; Demange, L.; Bougrin, K.; Benhida, R. Molecules 2016, 21, 1032.
(52) Diana, P.; Cirrincione, G. Biosynthesis of Heterocycles, From Isolation to Gene Cluster; Wiley \& Sons: NJ, 2015; Chapter 7, pp 651-755.
(53) Nagarajan, R.; Huckstep, L. L.; Lively, D. H.; DeLong, D. C.; Marsh, M. M.; Neuss, N. J. Am. Chem. Soc. 1968, 90, 2980.
(54) Martin, S. F.; Barr, K. J. J. Am. Chem. Soc. 1996, 118, 3299.
(55) Liegeois, J. -F.; Eyrolles, L.; Ellenbroek, B. A.; Lejeune, C.; Carato, P.; Bruhwyler, J.; Geczy, J.; Damas, J.; Delarge, J. J. Med. Chem. 2002, 45, 5136.
(56) Kwiecien, H.; Smist, M.; Wrzesniewska, A. Curr. Org. Synth. 2012, $9,828$.
(57) (a) Zvezdina, E. A.; Golyanskaya, O. M.; Andreeva, I. M.; Popova, A. N.; Medyantseva, E. A.; Dorofeenko, G. N. Zh. Org. Khim. 1981, 17, 881. (b) Kurihara, T.; Nasu, K.; Mizuhara, Y.; Hayashi, K. Chem. Pharm. Bull. 1982, 30, 2742.
(58) (a) Mukai, T.; Kumagai, T.; Yamashita, Y. Heterocycles 1981, 15, 1569. (b) Kurita, J.; Iwata, K.; Hasebe, M.; Tsuchiya, T. J. Chem. Soc., Chem. Comтии. 1983, 941.
(59) Kurita, J.; Iwata, K.; Tsuchiya, T. J. Chem. Soc., Chem. Commun. 1986, 1188.
(60) Liu, B.; Li, Y.; Yin, M.; Wu, W.; Jiang, H. Chem. Commun. 2012, 48, 11446.
(61) Chatterjee, N.; Sarkar, S.; Pal, R.; Sen, A. K. Tetrahedron Lett. 2014, 55, 2261.
(62) Goutham, K.; Kumar, D. A.; Suresh, S.; Sridhar, B.; Narender, R.; Karunakar, G. V. J. Org. Chem. 2015, 80, 11162.
(63) Shen, J.; Xue, L.; Lin, X.; Cheng, G.; Cui, X. Chem. Commun. 2016, 52, 3292.
(64) Klunder, J. M.; Hargrave, K. D.; West, M.; Cullen, E.; Pal, K.; Behnke, M. L.; Kapadia, S. R.; McNeil, D. W.; Wu, J. C.; Chow, G. C.; Adams, J. J. Med. Chem. 1992, 35, 1887.
(65) (a) Hallinan, E. A.; Hagen, T. J.; Husa, R. K.; Tsymbalov, S.; Rao, S. N.; vanHoeck, J. -P.; Rafferty, M. F.; Stapelfeld, A.; Savage, M. A.; Reichman, M. J. Med. Chem. 1993, 36, 3293. (b) Hallinan, E. A.; Hagen, T. J.; Tsymbalov, S.; Husa, R. K.; Lee, A. C.; Stapelfeld, A.; Savage, M. A. J. Med. Chem. 1996, 39, 609.
(66) (a) Garg, N.; Chandra, T.; Jain, A. A. B.; Kumar, A. Eur. J. Med. Chem. 2010, 45, 1529. (b) Deng, X. -Q.; Wei, C. -X.; Li, F. -N.; Sun, Z. -G.; Quan, Z. -S. Eur. J. Med. Chem. 2010, 45, 3080.
(67) Takeuchi, C. S.; Kim, B. G.; Blazey, C. M.; Ma, S.; Johnson, H. W. B.; Anand, N. K.; Arcalas, A.; Baik, T. G.; Buhr, C. A.; Cannoy, J.; Epshteyn, S.; Joshi, A.; Lara, K.; Lee, M. S.; Wang, L.; Leahy, J. W.; Nuss, J. M.; Aay, N.; Aoyama, R.; Foster, P.; Lee, J.; Lehoux, I.; Munagala, N.; Plonowski, A.; Rajan, S.; Woolfrey, J.; Yamaguchi, K.; Lamb, P.; Miller, N. J. Med. Chem. 2013, 56, 2218.
(68) (a) Heel, R. C.; Brogden, R. N.; Speight, T. M.; Avery, G. S. Drugs 1978, 15, 198. (b) Chakrabarti, A.; Bagnall, A. M.; Chue, P.; Fenton, M.; Palanisamy, V.; Wong, W.; Xia, J. Loxapine for schizophrenia (Review). In The Cochrane Collaboration; Wiley \& Sons: New York, 2012.
(69) Jue, S. G.; Dawson, G. W.; Brogden, R. N. Drugs 1982, 24, 1.
(70) (a) Sing, G. Indian J. Psychiatry 1980, 22, 195. (b) Johnson, O.; Jones, D. W.; Nagarajan, K.; Bhadbhade, M. M.; Venkatesan, K. J. Crystallogr. Spectrosc. Res. 1992, 22, 579.
(71) (a) Abramovitch, R. A.; More, K. M.; Shinkai, I.; Srinivasan, P. C. Heterocycles 1976, 5, 95. (b) Abramovitch, R. A; Mavunkel, B.; Stowers, J. R. J. Chem. Soc., Chem. Commun. 1983, 520.
(72) Bradsher, C. K.; Quin, L. D.; LeBleu, R. E.; McDonald, J. W. J. Org. Chem. 1961, 26, 4944.
(73) (a) Sheehan, J. C.; Cruickshank, P. A. J. Am. Chem. Soc. 1956, 78, 3680. (b) Leonard, N. J.; Wilson Jr, E.; J. Am. Chem. Soc. 1964, 86, 5307. (c) Leonard, N. J.; Ning, R. Y. J. Org. Chem. 1966, 31, 3928. (d) Black, D. K.
J. Chem. Soc. 1966, 1708. (e) Blondeau, P.; Gauthier, R.; Berse, C.; Gravel, D. Can. J. Chem. 1971, 49, 3866.
(74) Yamamoto, K.; Yamazaki, S.; Osedo, H.; Murata, I. Angew. Chem. Int. Ed. Engl. 1986, 25, 635.
(75) (a) Levai, A.; Kiss-Szikszai, A. Arkivoc 2008, i, 65. (b) Pawar, S. S. Int. J. Pharm. Bio. Sci. 2013, 4, 68. (c) Sekhar, B. C. Acta. Chim. Slov. 2014, 61, 651. (d) Dighe, N. S.; Vikhe, S. B.; Tambe, P. R.; Dighe, A. S.; Dengale, S. S.; Dighe, S. B. IJPC 2015, 5, 31.
(76) Yang, B.; Tan, X.; Guo, R.; Chen, S.; Zhang, Z.; Chu, X.; Xie, C.; Zhang, D.; Ma, C. J. Org. Chem. 2014, 79, 8040.
(77) Saha, D.; Wadhwa, P.; Sharma, A. RSC Adv. 2015, 5, 33067.
(78) Mouradzadegun, A.; Elahi, S.; Ghanbarzadeh, P. Phosphorus, Sulfur, and Silicon 2015, 190, 2031.
(79) Preet, S.; Cannoo, D. S. J. Chin. Chem. Soc. 2017, 64, 296.
(80) (a) Bariwal, J. B.; Upadhyay, K. D.; Manvar, A. T.; Trivedi, J. C.; Singh, J. S.; Jain, K. S.; Shah, A. K. Eur. J. Med. Chem. 2008, 43, 2279. (b) Kumar, M.; Sharma, K.; Fogla, A. K.; Sharma, K.; Rathore, M. Res. Chem. Intermed. 2013, 39, 2555. (c) Gaikwad, S. V.; Bhake, A. B.; Bhandarkar, S. E. Int. J. Chem. Sci. 2015, 13, 1474.
(81) (a) Shi, F.; Zeng, X. -N.; Cao, X. -D.; Zhang, S.; Jiang, B.; Zheng, W. -F.; Tu, S. -J. Bioorg. Med. Chem. Lett. 2012, 22, 743. (b) Srikanth, A.; Sarveswari, S.; Vijayakumar, V.; Gridharan, P.; Karthikeyan, S. Med. Chem. Res. 2015, 24, 553.
(82) (a) Dando, T. M.; Keating, G. M. Drugs 2005, 65, 2533. (b) Ahmed, A.; Molvi, K. I.; Nazim, S.; Baig, I.; Memon, T.; Rahil, M. J. Chem. Pharm. Res. 2012, 4, 872.
(83) (a) Buckley, M. M. -T.; Grant, S. M.; Goa, K. L.; McTavish, D.; Sorkin, E. M. Drugs 1990, 39, 757. (b) Mehanna, A. S.; Kim, J. Y. Bioorg. Med. Chem. 2005, 13, 4323.
(84) (a) Mohammed, M. M. D.; Ibrahim, N. A.; Chen, M.; Zhai, L. Nat. Prod. Chem. Res. 2014, 2, 128. (b) Mohammed, M. M. D.; Mohamed, K. M. Med. Chem. Res. 2017. 1.
(85) (a) Vessally, E. RSC Adv. 2016, 6, 18619. (b) Arshadi, S.; Vesally, E.; Edjlali, L.; Ghorbani-Kalhor, E.; Hosseinzadeh-Khanmiri, R. RSC Adv. 2017, 7, 13198.
(86) (a) Martins, M. A. P.; Rossatto, M.; Frizzo, C. P.; Scapin, E.; Buriol, L.; Zanatta, N.; Bonacorso, H. G. Tetrahedron Lett. 2013, 54, 847. (b) Cheng, G.; Weng, Y.; Yang, X.; Cui, X. Org. Lett. 2015, 17, 3790.
(87) (a) Saito, A.; Konishi, T.; Hanzawa, Y. Org. Lett. 2010, 12, 372. (b) Goutham, K.; Mangania, N. S. V. M. R.; Suresh, S.; Raghavaiah, P.; Karunakar, G. V. Org. Biomol. Chem. 2014, 12, 2869. (c) Yang, X.; Wang, Y.; Hu, F.; Kan, X.; Yang, C.; Liu, J.; Liu, P.; Zhang, Q. RSC Adv. 2016, 6, 68454.
(88) (a) Jiang, C.; Xu, M.; Wang, S.; Wang, H.; Yao, Z. -J. J. Org. Chem. 2010, 75, 4323. (b) Fei, N.; Yin, H.; Wang, S.; Wang, H.; Yao, Z. -J. Org. Lett. 2011, 13, 4208.
(89) Goutham, K.; Nagaraju, V.; Suresh, S.; Raghavaiah, P.; Karunakar, G. V. RSC Adv. 2014, 4, 21054.
(90) Yin, H.; Kong, F.; Wang, S.; Yao, Z. -J. Tetrahedron Lett. 2012, 53, 7078.
(91) Karabiyikoglu, S.; Kelgokmen, Y.; Zora, M. Tetrahedron 2015, 71, 4324.
(92) Ozturk, T.; Ertas, E.; Mert, O. Chem. Rev. 2007, 107, 5210.
(93) Kelgokmen, Y.; Cayan, Y.; Zora, M. Eur. J. Org. Chem. 2017, 7167.
(94) (a) Park, B. K.; Kitteringham, N. R.; O'Neill, P. M. Annu. Rev. Pharmacol. Toxicol. 2001, 41, 443. (b) Filler, R.; Saha, R. Future Med. Chem. 2009, 1, 777. (c) Liang, T.; Neumann, C. N.; Ritter, T.; Angew. Chem. Int. Ed. 2013, 52, 8214. (d) Wang, J.; Sanchez-Rosello, M.; Acena, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
(95) Shen, J.; Cai, D.; Kuai, C.; Liu, Y.; Wei, M.; Cheng, G.; Cui, X. J. Org. Chem. 2005, 80, 6584.
(96) Menges, N.; Sari, O.; Abdullayev, Y.; Sağ Erdem, S.; Balci, M. J. Org. Chem. 2013, 78, 5184.
(97) Kelgokmen, Y.; Zora, M. RSC Adv. 2016, 6, 4608.
(98) Chen, L.; Li, C. -J. Org. Lett. 2004, 6, 3151.
(99) Cox, R. J.; Ritson, D. J.; Dane, T. A.; Berge, J.; Charmant, J. P. H.; Kantacha, A. Chem. Commun. 2005, 1037.
(100) Chen, J. -Y.; Lin, T. -C.; Chen, S. -C.; Chen, A. -J.; Mou, C. -Y.; Tsai, F. Y. Tetrahedron 2009, 65, 10134.
(101) Gandeepan, P.; Parthasarathy, K.; Su, T. -H.; Chenga, C. -H. Adv. Synth. Catal. 2012, 354, 457.
(102) Zhang, C.; Liu, J.; Xia, C. Org. Biomol. Chem. 2014, 12, 9702.
(103) C. Bai, S. Jian, X. Yao, Y. Li, Catal. Sci. Technol. 2014, 4, 3261.
(104) Li, H.; Neumann, H.; Beller, M.; Wu, X. -F Angew. Chem. Int. Ed. 2014, 53, 3183.
(105) Atobe, S.; Masuno, H.; Sonoda, M.; Suzuki, Y.; Shinohara, H.; Shibata, S.; Ogawa, A. Tetrahedron Lett. 2012, 53, 1764.
(106) Wu, X. -F.; Neumann, H.; Beller, M. Chem. Eur. J. 2010, 16, 12104.
(107) Shiroodi, R. K.; Soltani, M.; Gevorgyan, V. J. Am. Chem. Soc. 2014, 136, 9882.
(108) Liu, J.; Peng, X.; Sun, W.; Zhao, Y.; Xia, C. Org. Lett. 2008, 10, 3933.
(109) Zhao, T.; Xu, B. Org. Lett. 2010, 12, 212.
(110) Takahashi, I.; Morita, F.; Kusagaya, S.; Fukaya, H.; Kitagawa, O. Tetrahedron: Asymmetry 2012, 23, 1657.
(111) Alonso, D. A.; Najera, C.; Pacheco, M. C. J. Org. Chem. 2004, 69, 1615.
(112) Song, Z.; Huang, X.; Yi, W.; Zhang, W. Org. Lett. 2016, 18, 5640.
(113) Shen, J.; Cai, D.; Kuai, C.; Liu, Y.; Wei, M.; Cheng, G.; Cui, X. J. Org. Chem. 2015, 80, 6584.
(114) Hardegger, L. A.; Habegger, J.; Donohoe, T. J. Org. Lett. 2015, 17, 3222.
(115) Katritzky, A. R.; Chapman, A. V.; Cook, M. J.; Millet, G. H. J. Chem. Soc., Perkin Trans. 1, 1980, 2743.

APPENDIX A

NMR SPECTRA

Bruker Spectrospin Avance DPX400 Ultrashield spectromer was used for the records of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, DEPT-90, DEPT-135, COSY, HETCOR, NOESY and HMBC NMR spectra. Chemical shifts are reported in parts per million (ppm) relative to CDCl_{3} (7.26 and 77.16 ppm in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, respectively).

NMR spectra of synthesized starting materials and products are given below.

Figure 37. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 a}$.

Figure 38. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 a}$.

Figure 39. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 b}$.

Figure 40. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 b}$.

Figure 41. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 c}$.

Figure 42. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 c}$.

Figure 43. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 d}$.

Figure 44. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 d}$.

Figure 45. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 63 e .

Figure 46. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 63 e .

Figure 47. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 f}$.

Figure 48. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 f}$.

Figure 49. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 g}$.

Figure 50. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 g}$.

Figure 51. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 h}$.

Figure 52. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 h}$.

Figure 53. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 i}$.

Figure 54. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 i}$.

Figure 55. ${ }^{1}$ H NMR spectrum of compound $\mathbf{6 3 j}$.

Figure 56. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 j}$.

Figure 57. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 k}$.

Figure 58. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 k}$.

Figure 59. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 631.

Figure 60. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 631 .

Figure 61. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 m}$.

Figure 62. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 m}$.

Figure 63. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 n}$.

Figure 64. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 n}$.

Figure 65. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 630.

Figure 66. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 0}$.

Figure 67. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 p}$.

Figure 68. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 p}$.

Figure 69. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 q}$.

Figure 70. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 q}$.

Figure 71. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 r}$.

Figure 72. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 r}$.

Figure 73. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 s}$.

Figure 74. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 63 s .

Figure 75. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 t}$.

Figure 76. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 63 t .

Figure 77. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 u}$.

Figure 78. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 u}$.

Figure 79. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 v}$.

Figure 80. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 v}$.

Figure 81. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 w}$.

Figure 82. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 w}$.

Figure 83. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 x}$.

Figure 84. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 x}$.

Figure 85. ${ }^{1}$ H NMR spectrum of compound $\mathbf{6 3 y}$.

Figure 86. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 y}$.

Figure 87. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 3 z}$.

Figure 88. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 3 z}$.

Figure 89. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 32a.

Figure 90. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 32a.

Figure 91. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 b}$.

Figure 92. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 b}$.

Figure 93. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 c}$.

Figure 94. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 32c.

Figure 95. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 32d.

Figure 96. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 32d.

Figure 97. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 32 e .

Figure 98. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 32 e.

Figure 99. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 f}$.

Figure 100. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 f}$.

Figure 101. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 g}$.

Figure 102. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 g}$.

Figure 103. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 h}$.

Figure 104. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 h}$.

Figure 105. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 32i.

Figure 106. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 32i.

Figure 107. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 j}$.

Figure 108. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 j}$.

Figure 109. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 k}$.

Figure 110. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 k}$.

Figure 111. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 321.

Figure 112. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 321 .

Figure 113. NOESY NMR spectrum of compound 321.
(Cross peaks in circles represent the NOE interactions \mathbf{a}, \mathbf{b} and \mathbf{c} on the structure)

Figure 114. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 m}$.

Figure 115. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 m}$.

Figure 116. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 n}$.

Figure 117. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 n}$.

Figure 118. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 0}$.

Figure 119. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 0}$.

Figure 120. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 p}$.

Figure 121. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 p}$.

Figure 122. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 q}$.

Figure 123. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 32q.

Figure 124. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 r}$.

Figure 125. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 r}$.

Figure 126. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 32s.

Figure 127. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 32s.

Figure 128. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 32t.

Figure 129. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 32t.

Figure 130. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 u}$.

Figure 131. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 u}$.

Figure 132. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 v}$.

Figure 133. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 32v.

Figure 134. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 32w.

Figure 135. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $32 \mathbf{w}$.

Figure 136. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 x}$.

Figure 137. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 x}$.

Figure 138. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 y}$.

Figure 139. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 y}$.

Figure 140. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 z}$.

Figure 141. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 z}$.

Figure 142. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 32aa.

Figure 143. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 32aa.

Figure 144. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 7a.

Figure 145. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $7 \mathbf{a}$.

Figure 146. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{7 b}$.

Figure 147. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 7b.

Figure 148. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $7 \mathbf{l}$.

Figure 149. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 71.

Figure 150. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{7 m}$.

Figure 151. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 7 m .

Figure 152. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 7aa.

Figure 153. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 7aa.

Figure 154. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 7ab.

Figure 155. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 7ab.

Figure 156. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 7ac.

Figure 157. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 7ac.

Figure 158. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 5 a}$.

Figure 159. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 5 a}$.

Figure 160. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 55b.

Figure 161. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 5 b}$.

Figure 162. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 551 .

Figure 163. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 551.

Figure 164. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 5 m}$.

Figure 165. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 5 m}$.

Figure 166. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 55aa.

Figure 167. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 5 a}$ a.

Figure 168. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 5 a b}$.

Figure 169. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 5 a b}$.

Figure 170. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 55ac.

Figure 171. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 55ac.

Figure 172. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 8 a}$.

Figure 173. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 58a.

Figure 174. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 8 b}$.

Figure 175. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 b}$.

Figure 176. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 8 c}$.

Figure 177. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 c}$.

Figure 178. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 8 d}$.

Figure 179. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 58d.

Figure 180. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 8 e}$.

Figure 181. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 58 e .

Figure 182. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 8 f}$.

Figure 183. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 f}$.

Figure 184. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 8 h}$.

Figure 185. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 h}$.

Figure 186. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 8 i}$.

Figure 187. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 i}$.

Figure 188. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 8 j}$.

Figure 189. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 j}$.

Figure 190. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 8 1}$.

Figure 191. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 581.

Figure 192. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 8 m}$.

Figure 193. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 m}$.

Figure 194. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 8 n}$.

Figure 195. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 n}$.

Figure 196. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 8 r}$.

Figure 197. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 r}$.

Figure 198. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 58s.

Figure 199. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 58s.

Figure 200. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 8 t}$.

Figure 201. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 t}$.

Figure 202. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 8 v}$.

Figure 203. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 v}$.

Figure 204. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 8 w}$.

Figure 205. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 w}$.

Figure 206. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 8 x}$.

Figure 207. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 x}$.

Figure 208. ${ }^{1}$ H NMR spectrum of compound $\mathbf{5 8 y}$.

Figure 209. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 y}$.

Figure 210. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 8 z}$.

Figure 211. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 8 z}$.

Figure 212. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 84.

Figure 213. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 84 .

Figure 214. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7 a}$.

Figure 215. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 a}$.

Figure 216. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7 b}$.

Figure 217. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 b}$.

Figure 218. DEPT-90 NMR spectrum of compound 57b.

Figure 219. DEPT-135 NMR spectrum of compound 57b.

Figure 220. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7 d}$.

Figure 221. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 d}$.

Figure 222. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7}$ e.

Figure 223. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 e}$.

Figure 224. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7 f}$.

Figure 225. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 f}$.

Figure 226. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7} \mathbf{g}$.

Figure 227. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7}$.

Figure 228. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7 h}$.

Figure 229. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 h}$.

Figure 230. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7 k}$.

Figure 231. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 k}$.

Figure 232. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 571.

Figure 233. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 571.

Figure 234. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7 m}$.

Figure 235. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7}$ m.

Figure 236. ${ }^{1}$ H NMR spectrum of compound $\mathbf{5 7 n}$.

Figure 237. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 n}$.

Figure 238. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7 0}$.

Figure 239. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 0}$.

Figure 240. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7} \mathbf{p}$.

Figure 241. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7} \mathbf{p}$.

Figure 242. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7 q}$.

Figure 243. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 q}$.

Figure 244. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7}$ r.

Figure 245. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7} \mathbf{r}$.

Figure 246. ${ }^{1}$ H NMR spectrum of compound 57ba.

Figure 247. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 57ba.

Figure 248. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7 b b}$.

Figure 249. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 b b}$.

Figure 250. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7 b d}$.

Figure 251. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 57bd.

Figure 252. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 57bm.

Figure 253. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 b m}$.

Figure 254. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7 b r}$.

Figure 255. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 b r}$.

Figure 256. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 571a.

Figure 257. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 571a.

Figure 258. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7} \mathbf{m a}$.

Figure 259. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 m a}$.

Figure 260. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7} \mathbf{m d}$.

Figure 261. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7} \mathbf{m d}$.

Figure 262. ${ }^{1}$ H NMR spectrum of compound $\mathbf{5 7 m m}$.

Figure 263. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 m m}$.

Figure 264. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7} \mathbf{m r}$.

Figure 265. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7} \mathbf{m r}$.

Figure 266. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 57aaa.

Figure 267. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 57aaa.

Figure 268. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7} \mathbf{a b a}$.

Figure 269. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 7 a b a}$.

Figure 270. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 7 a c a}$.

Figure 271. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 57aca.

Figure 272. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 3 a}$.

Figure 273. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3 a}$.

Figure 274. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 3 b}$.

Figure 275. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 33b.

Figure 276. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3 c}$.

Figure 277. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3 c}$.

Figure 278. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 33d.

Figure 279. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 33d.

Figure 280. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 3 e}$.

Figure 281. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 33e.

Figure 282. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 3 f}$.

Figure 283. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 33f.

Figure 284. ${ }^{1}$ H NMR spectrum of compound $\mathbf{3 3 g}$.

Figure 285. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3 g}$.

Figure 286. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 3 h}$.

Figure 287. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3 h}$.

Figure 288. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 3 i}$.

Figure 289. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3 i}$.

Figure 290. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 3 k}$.

Figure 291. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3 k}$.

Figure 292. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 331 .

Figure 293. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 331.

Figure 294. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 3 m}$.

Figure 295. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3 m}$.

Figure 296. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 3 n}$.

Figure 297. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3 n}$.

Figure 298. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 3 0}$.

Figure 299. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 330 .

Figure 300. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 3 p}$.

Figure 301. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3 p}$.

Figure 302. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 33q.

Figure 303. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 33q.

Figure 304. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 3 r}$.

Figure 305. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3 r}$.

Figure 306. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 33s.

Figure 307. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 33s.

Figure 308. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 33t.

Figure 309. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 33t.

Figure 310. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 3 u}$.

Figure 311. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3 u}$.

Figure 312. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 3 z}$.

Figure 313. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 3 z}$.

Figure 314. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 71a.

Figure 315. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 71a.

Figure 316. ${ }^{1} \mathrm{H}$ NMR spectrum of a mixture of compounds $\mathbf{3 3 k}$ and $\mathbf{7 1 k}$ with a ratio of 1.15:1.00, respectively.

Note that pyrrole 71k could not be obtained in pure state from flash column chromatography since it came together with 1,4 -oxazepine $\mathbf{3 3 k}$ in the last fractions of column chromatography. Peak assignments were made by peak picking. In the spectrum (Figure 316), peaks belong to 1,4 -oxazepine $\mathbf{3 3 k}$ are shown by blue arrows while those belong to pyrrole 71 k are depicted by red arrows. For ${ }^{1} \mathrm{H}$ NMR data of pyrrole $\mathbf{7 1 k}$, see experimental part.

Figure 317. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 711.

Figure 318. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 711.

Figure 319. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8 2}$.

Figure 320. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{8 2}$.

Figure 321. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 59a.

Figure 322. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 59a.

Figure 323. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 59b.

Figure 324. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 59b.

Figure 325. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 59c.

Figure 326. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 9 c}$.

Figure 327. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 59d.

Figure 328. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 59d.

Figure 329. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 9}$ e.

Figure 330. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 59e.

Figure 331. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 59 f .

Figure 332. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 59 f .

Figure 333. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 9 h}$.

Figure 334. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 9 h}$.

Figure 335. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 9 i}$.

Figure 336. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 59i.

Figure 337. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 9 j}$.

Figure 338. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 9 j}$.

Figure 339. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 591.

Figure 340. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 591.

Figure 341. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 9 m}$.

Figure 342. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 9 m}$.

Figure 343. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 9 n}$.

Figure 344. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 9 n}$.

Figure 345. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 9}$ r.

Figure 346. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 9 r}$.

Figure 347. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 9}$ s.

Figure 348. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 9} \mathrm{s}$.

Figure 349. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 59t.

Figure 350. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 59t.

Figure 351. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 9 v}$.

Figure 352. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 9 v}$.

Figure 353. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 9 w}$.

Figure 354. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 9 w}$.

Figure 355. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 9 x}$.

Figure 356. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 9 x}$.

Figure 357. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 9} \mathbf{y}$.

Figure 358. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 9} \mathbf{y}$.

Figure 359. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 9 z}$.

Figure 360. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 9 z}$.

Figure 361. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 85.

Figure 362. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{8 5}$.

Figure 363. DEPT-90 NMR spectrum of compound $\mathbf{8 5}$.

Figure 364. DEPT-135 NMR spectrum of compound $\mathbf{8 5}$.

Figure 365. NOESY NMR spectrum of compound $\mathbf{8 5}$.
(Cross peaks in circles represent the NOE interactions shown on the structure)

Figure 366. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 1 a}$.

Figure 367. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 a}$.

Figure 368. DEPT-90 NMR spectrum of compound 61a.

Figure 369. DEPT-135 NMR spectrum of compound 61a.

Figure 370. COSY NMR spectrum of compound 61a.

Figure 371. HSQC NMR spectrum of compound 61a.

Figure 372. HMBC NMR spectrum of compound 61a.

Figure 373. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 1 b}$.

Figure 374. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 b}$.

Figure 375. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 1 c}$.

Figure 376. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 c}$.

Figure 377. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 1 d}$.

Figure 378. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 61d.

Figure 379. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 1 e}$.

Figure 380. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 e}$.

Figure 381. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 1 f}$.

Figure 382. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 f}$.

Figure 383. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 1 h}$.

Figure 384. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 h}$.

Figure 385. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 1 i}$.

Figure 386. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 61i.

Figure 387. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 1 j}$.

Figure 388. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 j}$.

Figure 389. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 611.

Figure 390. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 1 m}$.

Figure 391. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 m}$.

Figure 392. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 1 n}$.

Figure 393. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 n}$.

Figure 394. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 1 r}$.

Figure 395. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 r}$.

Figure 396. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 1 s}$.

Figure 397. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 61s.

Figure 398. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 1 t}$.

Figure 399. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 61t.

Figure 400. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 1 v}$.

Figure 401. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 v}$.

Figure 402. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 1 w}$.

Figure 403. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 w}$.

Figure 404. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 1 x}$.

Figure 405. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 x}$.

Figure 406. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 1 y}$.

Figure $407 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 y}$.

Figure 408. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 1 z}$.

Figure 409. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 z}$.

Figure 410. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 89.

Figure 411. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 89.

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Kelgökmen, Yılmaz
Nationality: Turkish (T.C.)
Date and Place of Birth: 28 August 1985, İskilip
Marital Status: Single
Phone: +90 5386850953
email: 19yilmazkelgokmen03@gmail.com; ygokmen@metu.edu.tr

EDUCATION

Degree	Institution	Year of Graduation
PhD	METU Department of Chemistry	2018
BS	METU Department of Chemistry	2010

WORK EXPERIENCE

Year	Place	Enrollment		
2012 December-Present	METU	Research and Teaching		
Department of Chemistry Asssistant				
	Chemistry Teacher for			
2009 October-2010 August	ANKARA	Culy-2009 August		
	Dolunay Dershanesi	TAI		Middle School Students
:---				
Intern Chemistry				

FOREIGN LANGUAGE

Advanced level English

PUBLICATIONS

1. Metin ZORA, Ezel DİKMEN, Yılmaz KELGÖKMEN. (One-pot synthesis of iodine-substituted 1,4-oxazepines). Tetrahedron Lett. 2018, 59, 823 (DOI:
10.1016/j.tetlet.2018.01.048).
2. Yılmaz KELGÖKMEN, Yasemin ÇAYAN, Metin ZORA. (Zinc ChlorideMediated Synthesis of 1,4-Oxazepines from N-Propargylic β-Enaminones). Eur. J. Org. Chem. 2017, 7167 (DOI: 10.1002/ejoc.201701433).
3. Metin ZORA, Deniz DEMİRCİ, Arif KIVRAK, Yılmaz KELGÖKMEN. (One-pot synthesis of 4 (phenylselanyl)-substituted pyrazoles). Tetrahedron Lett. 2016, 57, 993 (DOI: 10.1016/j.tetlet.2016.01.071).
4. Yılmaz KELGÖKMEN, Metin ZORA. (Facile synthesis of heavily-substituted alkynylpyridines via a Sonogashira approach). $R S C$ Adv. 2016, 6, 4608 (DOI: 10.1039/c5ra21701f).
5. Sedef KARABIYIKOĞLU, Yılmaz KELGÖKMEN, Metin ZORA. (Facile synthesis of iodopyridines from N-propargylic β-enaminones via iodine-mediated electrophilic cyclization). Tetrahedron 2015, 71, 4324 (DOI:
10.1016/j.tet.2015.04.070).
6. Metin ZORA, Arif KIVRAK, Yılmaz KELGÖKMEN. (A novel one-pot synthesis of ferrocenylsubstituted1,2,4-oxadiazoles). J. Organomet. Chem. 2014, 759, 67 (DOI: 10.1016/j.jorganchem.2014.02.018).

INTERNATIONAL CONFERENCE PROCEEDINGS

1. Metin ZORA, Yılmaz KELGÖKMEN, Yasemin ÇAYAN. (Development of a new methodology for synthesis of 1,4-oxazepines). 254. American-ChemicalSociety Meeting, Washington, 20 August-24 August 2017 (Oral Presentation).
2. Metin ZORA, Ezel DİKMEN, Yılmaz KELGÖKMEN. (Synthesis of 2-(iodomethylene)-2,3-dihydro-1,4-oxazepines). 254. American-Chemical-Society Meeting, Washington, 20 August -24 August 2017 (Poster Presentation).
3. Yılmaz KELGÖKMEN, Yasemin ÇAYAN, Metin ZORA. (2,3-Dihidro-1,4oksazepin Türevlerinin N-Proparjilik β-Enaminon Bileşiklerinden Sentezi).
Uluslararası Katılımlı 5. İlaç Kimyası Kongresi, Antalya, $\mathbf{3 0}$ March-2 April 2017 (Oral Presentation).
4. Ezel DİKMEN, Yılmaz KELGÖKMEN, Metin ZORA. (2-(İyodometilen)-2,3-dihidro-1,4-oksazepin Türevlerinin N-Proparjilik β-Enaminon Bileşiklerinden Sentezi). Uluslararası Katılımlı 5. İlaç Kimyası Kongresi, Antalya, 30 March -2 April 2017 (Poster Presentation).
5. Elif Serel YILMAZ, Yılmaz KELGÖKMEN, Metin ZORA. (Synthesis of alkynyl-substituted pyrroles). Anatolian Conference on Synthetic Organic Chemistry (ACSOC II), Aydın, 21 March-24 March 2016 (Poster Presentation).
6. Metin ZORA, Deniz DEMİRCİ, Arif KIVRAK, Yılmaz KELGÖKMEN.
(Efficient one-pot synthesis of 4-(phenylselanyl)-substituted pyrazoles). Anatolian Conference on Synthetic Organic Chemistry (ACSOC II), Aydın, 21 March-24
March 2016 (Poster Presentation).
7. Metin ZORA, Sedef KARABIYIKOĞLU, Yılmaz KELGÖKMEN, Özge

İBİS. (Development of new methodologies for the synthesis of pyridine derivatives). Anatolian Conference on Synthetic Organic Chemistry (ACSOC II), Aydın, 21 March-24 March 2016 (Poster Presentation).
8. Yılmaz KELGÖKMEN, Metin ZORA. (Facile Synthesis of AlkenylSubstituted Pyridines). Trans Mediterranean Colloquium on Heterocyclic Chemistry TRAMECH VIII, Antalya, 11 November- 15 November 2015 (Poster Presentation).
9. Metin ZORA, Yılmaz KELGÖKMEN, Nihan Zulay KILIÇASLAN. (Synthesis of highly substituted pyridines by Pd-catalyzed Sonogashira and SuzukiMiyaura couplings of 4-iodopyridines. 243. American-Chemical-Society Meeting, SanDiego, 25 March-29 March 2012 (Poster Presentation).

NATIONAL CONFERENCE PROCEEDINGS

1. Yılmaz KELGÖKMEN, Yasemin ÇAYAN, Metin ZORA. (N-Proparjilik β Enaminon Bileşiklerinden 2,3-Dihidro-1,4-oksazepin Türevlerinin Sentezi). 29. Ulusal Kimya Kongresi, Ankara, 10 September-14 September 2017 (Oral Presentation).
2. Ezel DİKMEN, Yılmaz KELGÖKMEN, Metin ZORA. (N-Proparjilik β Enaminon Bileşiklerinden 2-(İyodometilen)-2,3-dihidro-1,4-oksazepin Türevlerinin Sentezi). 29. Ulusal Kimya Kongresi, Ankara, 10 September -14 September 2017 (Poster Presentation).
3. Yılmaz KELGÖKMEN, Metin ZORA. (cis-2,3-Divinil-1-heterosiklopropan Bilesiklerinin Cope Düzenlenmelerinin Yogunluk Fonksiyonu Teorisi (DFT) ile Incelenmesi). 1. Ulusal Hesaplamalı Kimya Çalıstayı, Van, 29 May-31 May 2014 (Poster Presentation).
4. Yılmaz KELGÖKMEN, Ezel DİKMEN, Yasemin ÇAYAN, Metin ZORA. (5Alkinilpiridin Türevlerinin Pd-katalizli Sonogashira Kenetlenme Tepkimesi ile 5İyotpiridin Bileşiklerinden Sentezi). 26.Ulusal Kimya Kongresi, Muğla, 1 October-6 October 2012 (Poster Presentation).
