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ABSTRACT

EXOTIC 4-MANIFOLDS AND HYPERELLIPTIC LEFSCHETZ
FIBRATIONS

Altunöz, Tülin
Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Mustafa Korkmaz

February 2018, 91 pages

In this thesis, we explicitly construct genus-3 Lefschetz fibrations over S2 whose total
space is T2 × S2#6CP2

using the monodromy of Matsumoto’s genus-2 Lefschetz fi-
bration over S2. We also present exotic minimal symplectic 4-manifolds 3CP2#kCP2

for k = 13, . . . , 19 by twisted fiber summing of our monodromy or the genus-3 ver-
sion of generalized Matsumoto’s fibration constructed by Korkmaz or by applying
lantern substitutions to these twisted fiber sums. In addition, we generalize our con-
struction of genus-3 Lefschetz fibration to genus-3k Lefschetz fibrations over S2 us-
ing the generalized Matsumoto’s genus-2k Lefschetz fibration over S2 constructed by
Korkmaz and independently by Cadavid. Using the generalized version of our mon-
odromy, we derive exotic 4-manifolds via Luttinger surgery and twisted fiber sum.
Secondly, we prove that the minimal number of singular fibers in a hyperelliptic Lef-
schetz fibration over a sphere is 2g + 4 for even g ≥ 4 , and also, we find a lower
bound for odd g ≥ 5 when the fibration is holomorphic. In addition, we discuss the
number of singular fibers of a hyperelliptic Lefschetz fibration over a sphere which
does not carry a complex structure.

Keywords: Lefschetz Fibrations, Hyperelliptic Lefschetz fibrations, Exotic 4-manifolds,
Mapping Class Groups.

v



ÖZ

EGZOTİK 4-MANİFOLDLAR VE HİPERELİPTİK LEFSCHETZ LİF
DEMETLERİ

Altunöz, Tülin
Doktora, Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Mustafa Korkmaz

Şubat 2018 , 91 sayfa

Bu tezde, Matsumoto’nun cinsi 2 olan S2 üzerindeki Lefschetz liflemesini kullanarak
cinsi 3 ve total uzayı T2 × S2#6CP2

olan S2 üzerinde Lefschetz liflemeleri ürettik.
Ayrıca, elde ettiğimiz Lefschetz liflemelerine ya da Korkmaz ve bağımsız olarak Ca-
david’ın elde ettiği cinsi 3 olan genelleştirilmiş Matsumoto Lefschetz liflemesine lif
toplamını ve bu lif toplamlarına lantern değişimini uygulayarak k = 13, . . . , 19 için
egzotik minimal simplektik 3CP2#kCP2

manifoldlarını elde ettik. Bunlara ek olarak,
elde ettiğimiz cinsi 3 olan S2 üzerindeki Lefschetz liflemesini genelleştirerek cinsi 3k

olan S2 üzerindeki Lefschetz liflemeleri elde ettik. Bu Lefschetz liflemelerini kullana-
rak, Luttinger operasyonu ve lif toplamı aracılığıyla egzotik 4-manifoldlar elde ettik.
İkinci olarak, küre üzerindeki holomorfik hiperelliptik Lefschetz liflemelerinin tekil
liflerinin minimal sayılarının g ≥ 4 ve çift olmak üzere 2g + 4 olduğunu, g ≥ 5 ve
tek olmak üzere 2g + 6 dan büyük ya da eşit olduğunu ispatladık. Ek olarak, total
uzayı kompleks yapı taşımayan küre üzerindeki hiperelliptik Lefschetz liflemelerinin
singüler liflerini araştırdık.

Anahtar Kelimeler: Lefschetz Liflemeleri, Hipereliptik Lefschetz Liflemeleri, Egzo-
tik 4-manifoldlar, Gönderim Sınıfı Grupları.
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CHAPTER 1

INTRODUCTION

There is a close relationship between objects in 4-dimensional topology and algebra

by virtue of the pioneering works of Donaldson and Gompf. By the remarkable work

of Donaldson, it was shown that every closed symplectic 4-manifold has a structure of

a Lefschetz pencil which, after blowing up at its base points, yields a Lefschetz fibra-

tion [23]. Conversely, Gompf [38] proved that the total space of a genus-g Lefschetz

fibration admits a symplectic structure if g ≥ 2. This relation between symplectic

4-manifolds and Lefschetz fibrations provides a way to understand any symplectic

4-manifold via a positive factorization of its monodromy, if it exists. Given a genus-g

Lefschetz fibration f : X → S2, one can associate to it the identity word W = 1 in

the mapping class group of a closed orientable genus-g surface. Conversely, one can

construct a genus-g Lefschetz fibration over S2 corresponding to a given monodromy

consisting of right handed Dehn twist factorization tα1tα2 · · · tαn = 1 in the mapping

class group of the regular fiber.

Proving the existence of minimal symplectic structures on 4-manifolds and construct-

ing such manifolds in the homeomorphism classes of simply connected 4-manifolds

with very small topology, such as rational surfaces with b+2 = 1, 3 have been an

interesting topic that has used several construction techniques such as rational blow-

downs, knot surgery, fiber sums and Luttinger surgeries. (e.g. [1, 6, 11, 22, 32, 33,

34, 36, 37, 47, 59, 60, 65].) Recently [7, 4, 5, 9, 28, 29, 27], some authors have ap-

plied some relations in the mapping class group, such as lantern relation or Luttinger

surgery, to construct Lefchetz fibrations with b+2 = 1, 3. For instance, in [15, 2, 7],

genus-2 Lefschetz fibrations are studied and exotic genus-2 Lefschetz fibrations with
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b+2 ≤ 3 are obtained via several constructions and especially their monodromies.

Also, Akhmedov and Monden constructed some higher genus fibrations via lantern

and daisy substitutions [3]. We would like to specify that the aim of this study is not

only to construct exotic smooth structures on very small 4-manifolds with b+2 = 3

but also to use the twisted fiber sum operation and lantern substitution corresponding

to the symplectic rational blowdown surgery along a −4 sphere [28] to study smooth

structures on various 4-manifolds using the monodromies of Lefschetz fibrations with

small numbers of singular fibers.

In this thesis, we construct a relation W = 1 in the mapping class group of a closed

orientable genus-3 surface, denoted by Mod3, using Matsumoto’s well known rela-

tion [55], via the construction technique given by Baykur and Korkmaz in [14], (see

[13] for more examples of this technique), and we obtain T2 × S2#6CP2
admitting

genus-3 Lefschetz fibration over S2. We apply lantern substitutions to the twisted

fiber sums of genus-3 Lefschetz fibrations over S2 with monodromy W = 1, to get

minimal genus-3 Lefschetz fibrations whose total spaces are homeomorphic but not

diffeomorphic to 3CP2#pCP2
for p = 13, 14, 15. We also construct simply con-

nected genus-3 Lefchetz fibrations via fiber sums of the genus-3 Lefschetz fibrations

corresponding to W = 1 and Korkmaz’s fibration for g = 3 [43], which is also

constructed independently by Cadavid [19] and later with a different proof [20], and

use lantern substitution to the twisted fiber sums to get exotic minimal symplectic 4-

manifolds in the homeomorphism classes of 3CP2#qCP2
for q = 16, . . . , 19. More-

over, we generalize our relationW = 1 in Mod3 to the relationWk = 1 in Mod3k, the

corresponding total space of which is diffeomorphic to Σk × S2#6CP2
. Using this

Lefschetz fibration structure, we produce exotic copies of (4k−1)CP2#(4k+5)CP2

for any positive integer k via Luttinger surgery and finally we construct minimal ex-

otic copies of (4k2 − 2k + 1)CP2#(4k2 + 4k + 7)CP2
admitting Lefschetz fibration

structure for any integer k > 0 via twisted fiber sum.

In Chapter 2, we give a review of background information about Lefschetz fibrations,

symplectic 4-manifolds, classification of simply connected 4-manifolds, Luttinger

surgery and Seiberg-Witten invariants.

In Chapter 3, we construct a factorization W of tδ in the mapping class group of
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genus-3 surface with one boundary component denoted by Mod1
3. Let X denote the

genus-3 Lefschetz fibration with the monodromy W . We prove

Theorem 1.0.1. The 4-manifold X is diffeomorphic to T2 × S2#6CP2
.

By twisted fiber summing and applying Lantern relation to the twisted fiber sum of

X , we construct Lefschetz fibrations (X1, f1), (X2, f2) and (X3, f3) and we prove

Theorem 1.0.2. For i = 1, 2, 3, the genus-3 Lefschetz fibration fi : Xi → S2 is

minimal and has

(i) e(Xi) = 21− i,

(ii) c21(Xi) = 3 + i,

(iii) π1(Xi) = 1.

In Chapter 4, using simply connected genus-3 Lefschetz fibrations constructed in

Chapter 3, and Matsumoto’s genus-3 Lefchetz fibration, we derive exotic copies of

3CP2#kCP2
, for k = 13, . . . , 19. Moreover, we generalize the factorization W = tδ

in Mod1
3 to the factorization Wk = tδ in Mod1

3k. Let X(k) denote the genus-3k

Lefschetz fibration with the monodromy Wk. We prove

Theorem 1.0.3. The 4-manifold X(k) is diffeomorphic to Σk × S2#6CP2
for k any

non-negative integer.

Using twisted fiber sum of the genus-3k Lefcshetz fibration X(k), we prove

Theorem 1.0.4. There exist new minimal symplectic exotic copies of (4k2 − 2k +

1)CP2#(4k2 + 4k+ 7)CP2
admitting genus-3k Lefschetz fibration structure for each

integer k ≥ 1.

Moreover, using Luttinger surgery we contruct smaller exotic manifolds. We prove

Theorem 1.0.5. There exist new smooth exotic copies of (4k− 1)CP2#(4k+ 5)CP2
.

In Chapter 5, after giving some background information about hyperelliptic Lefschetz

fibrations, the number of singular fibers in Lefschetz fibrations and classification of

complex surfaces, we prove

3



Theorem 1.0.6. Let Nh
g be the minimal number of singular fibers in a genus-g hyper-

elliptic Lefschetz fibration over S2. Then

1. Nh
4 = 12,

2. Nh
5 ≥ 15,

3. Nh
6 = 16,

4. Nh
7 ≥ 17,

5. Nh
8 ∈ {19, 20},

6. Nh
9 ≥ 24,

7. Nh
10 ∈ {23, 24}.

For hyperelliptic holomorphic Lefschetz fibrations, let Mh
g be the minimal number of

singular fibers. We prove

Theorem 1.0.7. Let g be grater than 3 and even. Then Mh
g = 2g + 4.

Theorem 1.0.8. Let g be grater than 6 and odd. Then Mh
g ≥ 2g + 6.

.
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CHAPTER 2

LEFSCHETZ FIBRATIONS

2.1 Preliminaries

In this section, we first state some preliminary definitions and recall some useful

results concerning mapping class groups, lantern relations, Lefschetz fibrations [31,

38, 53]. Then we give some details on Matsumoto’s well known fibration [55] and

generalized Matsumoto’s fibration to higher genus orientable surfaces [43]. Also, we

give the Endo and Nagami’s method to compute signatures Lefschetz fibrations [30].

2.1.1 Mapping class groups

Let Σn
g denote a compact connected oriented surface of genus g with n boundary

components, Diff+(Σn
g ) denote the group of all orientation preserving self-diffeomorphisms

of Σn
g that fixes all points on the boundary and let Diff+

0 (Σn
g ) denote the subgroup of

Diff+(Σn
g ) consisting of orientation preserving self-diffeomorphisms of Σn

g which are

isotopic to the identity. The mapping class group Modng is defined to be the group of

isotopy classes of orientation preserving self-diffeomorphisms of Σn
g fixing all points

on the boundary, i.e.,

Modng = Diff+(Σn
g )/Diff+

0 (Σn
g )

We denote Mod0
g and Σ0

g by Modg and Σg, respectively.

Definition 2.1.1. Let a be a simple closed curve on an oriented surface Σn
g . A right

(or positive) Dehn twist about a is the diffeomorphism ta obtained by cutting Σn
g along

a and gluing it back after rotating one of the sides by 360 degrees to the right.
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Throughout this thesis, for any two mapping classes, the multiplication fg means that

g is applied first and then f .

Lemma 2.1.2. [31] Let f be an orientation preserving self-diffeomorphism of Σn
g and

a and b be two simple closed curves on Σn
g . Then

1. ftaf = tf(a),

2. if a and b are disjoint, then ta and tb commute,

3. if a intersects b transversely at a single point, then the corresponding Dehn

twists ta and tb satisfy the braid relation tatbta = tbtatb.

2.1.2 Some relations in the mapping class group

In the following we review some relations in the mapping class group.

2.1.2.1 Even chain relation

A chain of length 2h is an ordered 2h-tuple (e1, e2, . . . , e2h) of simple closed curves

on a genus-g surface Σg if

(i) for each i = 1, 2, . . . , 2h − 1, the simple closed curves ei and ei+1 intersect

tranversely at one point,

(ii) ei ∩ ej = ∅ when |i− j| > 1.

Now, consider the even chain (c1, c2, . . . , c2h). A tubular neighborhood of

(c1 ∪ c2 ∪ · · · ∪ c2h)

is a genus-h surface with one boundary component d. Then the relation

(tc1tc2 · · · tc2h)4h+2 = td (2.1)

is called even chain relation in Modg (cf. Figure 2.1). A curve bounding a subsurface

of genus h (such as d) is called a separating curve of type h.

6



Figure 2.1: The curves in the even chain relation and the hyperelliptic relation

2.1.2.2 Hyperelliptic relation

Definition 2.1.3. A hyperelliptic involution on a closed orientable surface Σg is (the

isotopy class of ) a self diffeomorphism of order two which has exactly 2g + 2 fixed

points.

Figure 2.2: Hyperelliptic involution ι

Let us embed the surface Σg in R3 as in Figure 2.2, so that it is invariant under the

rotation ι by π about the y-axis, which we take as the hyperelliptic involution.

The hyperelliptic involution ι can be written as

ι = tc1 · · · tc2gt2c2g+1
tc2g · · · tc1

so that

(tc1 · · · tc2gt2c2g+1
tc2g · · · tc1)2 = 1, (2.2)

which is called hyperelliptic relation in Modg. It is easy to see that the simple closed

curves (c1, c2, . . . , c2g+1) form the longest chain on Σg as in Figure 2.1.

7



2.1.2.3 Lantern relation

Let us record the lantern relation which was proved by Dehn and reproved by Johnson.

Lemma 2.1.4. [31, 41] Let δ1, δ2, δ3 and δ4 be the boundary curves of Σ4
0 and x1, x2

and x3 be the simple closed curves as shown in Figure2.3. Then the following relation

holds in Mod4
0.

tδ1tδ2tδ3tδ4 = tx1tx2tx3 .

Figure 2.3: Lantern relation

2.1.3 Lefschetz fibrations and monodromy representations

We start with a review of some basic definitions and properties of Lefschetz fibra-

tions.

Let M be a compact oriented smooth 4-manifold. A smooth surjective map f : M →
S2 is a Lefschetz fibration of genus g if it has finitely many critical points and can be

written as f(z1, z2) = z21 + z22 with respect to some local complex coordinates around

each critical point. The genus of a regular fiber F is called the genus of the fibration.

We assume that all the critical points lie in the distinct fibers, called singular fibers,

which can be achieved after a small perturbation. Each singular fiber is obtained by

shrinking a simple closed curve, called vanishing cycle, to a point in the regular fiber.

If the vanishing cycle is nonseparating (resp. separating), then the singular fiber is

called irreducible (resp. reducible). In this work, we also assume that all Lefschetz

fibrations are nontrivial, i.e. there exists at least one singular fiber and fibrations are

8



relatively minimal, i.e. no fiber contains a (−1)-sphere, otherwise one can blow it

down without changing the rest of fibration.

Lefschetz fibrations can be described combinatorially via their monodromies. The

monodromy of a Lefschetz fibration f : M → S2 is given by a positive factorization

tα1tα2 · · · tαn = 1 in Modg where αi’s are the vanishing cycles of the singular fibers.

Conversely, for given a positive factorization ta1ta2 · · · tak = 1 in Modg, one can con-

struct a genus-g Lefschetz fibration over S2 by attaching 2-handles along vanishing

cycles ai in a Σg fiber in Σg × D2 with −1 framing, and then close it up by a fiber

preserving map to get a fibration over S2. Such a fibration is uniquely determined

up to isomorphisms, which are orientation preserving self-diffeomorphisms of the to-

tal spaces and S2 making the fibrations commute. The relation ta1ta2 · · · tak = 1 in

Modg is uniquely determined up to Hurwitz moves (exchanging subwords taitai+1
=

tai+1
ttai+1 (ai)

and global conjugations (changing each tai with tϕ(ai) for some ϕ ∈
Modg) if g ≥ 2. A map σ : S2 → M is called a section of a Lefschetz fibration

f : M → S2 if f◦σ = idS2 . If there exists a lift of a positive relation tα1tα2 · · · tαn = 1

in Modg to Modkg such that tα̃1tα̃2 · · · tα̃n = tm1
δ1
tm2
δ2
· · · tmk

δk
where mi’s are integers

and δi’s are boundary curves then the Lefschetz fibration f : M → S2 admits k

disjoint sections S1, . . . , Sk, where Sj is of self-intersection−mj and vice versa [16].

For i = 1, 2, let fi : Mi → S2 be a genus-g Lefschetz fibration with a regular

fiber Fi and monodromy factorization Wi = 1. Let r be an orientation-reversing self-

diffeomorphism of S1 and φ : F2 → F1 be an orientation-preserving diffeomorphism.

We remove a fibred neighborhood of Fi from Mi and glue the resulting manifolds

along their boundaries using the orientation reversing diffeomorphism r × φ. Then

the resulting 4-manifold is a genus-g Lefschetz fibration over S2 with monodromy

factorization W1W
φ
2 , which is called a twisted fiber sum of Lefschetz fibrations f1

and f2. Moreover if , for i = 1, 2, the Lefschetz fibration fi : Mi → S2 admits a

section with self-intersection mi, then the twisted fiber sum of f1 and f2 admits a

section with self-intersection m1 +m2. Here the notation W φ denotes the conjugated

word of W , i.e., W φ = tφ(α1)tφ(α2) · · · tφ(αn), if W = tα1tα2 · · · tαn .
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2.1.4 Generalized Matsumoto’s relation

Let B0, B1, . . . , Bg, a, b and C be simple closed curves on Σg as shown in Figure 2.4

and Wg be the following word:

Wg =

 (tB0tB1 . . . tBgtC)2 if g = 2k,

(tB0tB1 . . . tBgt
2
at

2
b)

2 if g = 2k + 1.

The word Wg represents the identity in the mapping class group Modg, which was

shown by Matsumoto in [55] for g = 2, and by Korkmaz [43] and Cadavid indepen-

dently [19] for g ≥ 3. Stipsicz and Ozbagci showed that Wg is equal to the Dehn

twist tδ when there is one boundary component [56], where δ is the boundary of the

genus-g surface. When there are two boundary components δ1 and δ2, there is also a

lifting of Wg that equals to the product of tδ1tδ2 obtained by Korkmaz [45]. Recently,

Hamada gave a maximal set of disjoint (−1) sections of Wg. One of the liftings that

he constructed is Wg = tδ1tδ2 , where the curves δ1 and δ1 are as depicted in Figure

2.5 [39]. Let Mg be the total space of the Lefschetz fibration over S2 with the mon-

odromy factorization Wg. It is known that Mg is diffeomorphic to Σk × S2#4CP2

(resp. Σk × S2#8CP2
) when g = 2k (resp. g = 2k + 1) [43, 19].

Figure 2.4: The curves Bi’ s, B′0, a, b and C on Σg
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Figure 2.5: The curves Bi’ s, B′0, a, b and C on Σ2
g

2.1.5 Signature of a relation

In [30], Endo and Nagami discovered a useful method to calculate the signature of a

Lefschetz fibration over S2 by introducing the notion of the signature of a relation in

a mapping class group. This method allows one to determine the signature of a Lef-

schetz fibration over S2 as the sum of signatures of basic relations in its monodromy.

They also explicitly compute the signature of some known relations. Let us recall the

definition of the signature of a relation and some results that we will need later.

Let F be the free group generated by all isotopy classes of simple closed curves on

Σg. There is a natural homomorphism % : F → Modg mapping a simple closed curve

a on Σg to the right-handed Dehn twist ta. Since Modg is generated by Dehn twists

[21, 50], the homomorphism % is surjective. We call an element of Ker% a relator. A

relator ρ is of the form ρ = cε11 c
ε2
2 · · · cεnn where ci’ s are simple closed curves on Σg

and εi = ±1 for i = 1, . . . , n. The word ρ is said to be a positive relator if εi = +1

for i = 1, . . . , n. For instance,

L = x1x2x3δ
−1
1 δ−12 δ−13 δ−14

is a relator of Mod4
0 coming from the Lantern relation (2.1.2.3), which we call the

lantern relator. The words

(B0B1 · · ·BgC)2 if g is even,
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and

(B0B1 · · ·Bga
2b2)2 if g is odd

are also relators in Modg. There is an explicit homomorphism cg : Ker% → Z

inducing the evaluation map H2(Modg) → Z for the cohomology class of τg, where

τg : Modg ×Modg → Z is the Meyer’s signature cocycle. For a relator ρ ∈ Ker%,

the signature of ρ is given by

Ig(ρ) := −cg(ρ)− s(ρ),

where s(ρ) is the sum of the exponents of Dehn twists about separating simple closed

curves appearing in the word ρ. Endo and Nagami also extend this definition for any

element of the free group F .

Definition 2.1.5. Let ρ = W−1
1 W2 and ξ = UW1V be relators such that U, V,W1

and W2 are positive words in F . Then we can obtain a new positive relator ξ′ =

ξV −1ρV = UW2V . This operation is called ρ-substitution to ξ. When ρ is a lantern

relator then we say that ξ′ is obtained by applying the lantern substitution to ξ.

For the proofs of the following lemma and theorem, we refer the reader to [30].

Lemma 2.1.6. The signature Ig satisfies the following:

(i) Ig(a) = −1, where a is the isotopy class of a separating curve .

(ii) Ig(L) = +1, where L is a lantern relator.

(iii) Ig((B0B1 · · ·BgC)2) = −4 if g is even,

Ig((B0B1 · · ·Bga
2b2)2) = −8 if g is odd.

Theorem 2.1.7. Let f : X → S2 be a genus-g Lefschetz fibration with the monodromy

tc1tc2 · · · tcn , so that c1c2 · · · cn ∈ Ker(%) a positive relator. Then the signature σ(X)

of the 4-manifold X is equal to the signature of c1c2 · · · cn, i.e.,

σ(X) = Ig(c1c2 · · · cn).

12



2.1.6 Minimality of symplectic fiber sums

In this subsection, we give the definition of symplectic fiber sum operation and some

useful theorems to determine minimality of fiber sums.

Definition 2.1.8. A symplectic 4-manifold is called minimal if it does not contain any

symplectically embedded 2-sphere with self-intersection −1.

Definition 2.1.9. Let Xi be a closed, oriented, smooth manifold of dimension 4 con-

taining a smoothly embedded surface Σ of genus g ≥ 1 such that the surface Σ has

zero self-intersection in Xi and represents a homology class of infinite order for each

i = 1, 2. The generalized fiber sum X1#ϕX2 along closed embedded genus-g sur-

faces Σ is defined as (X1 \ υΣ) ∪ϕ (X2 \ υΣ), where υΣ ∼= Σ×D2 in both X1 and

X2 denotes a tubular neighbourhood of the surface Σ and the gluing map ϕ is an

orientation-reversing and fiber preserving self-diffeomorphism of S1 × Σ.

For a symplectic manifold Xi and embedded symplectic submanifold in Xi for each

i = 1, 2, Gompf showed that the resulting manifold X1#ϕX2 admits a symplectic

structure [37].

Let e(X) be the Euler characteristic of a manifold X . Some topological invariants of

X1#ϕX2 can be computed using the following lemma.

Lemma 2.1.10. Let X1#ϕX2 be the fiber sum of X1 and X2 along closed embedded

surface Σ of genus g (g ≥ 1) determined by ϕ. Then

(i) e(X1#ϕX2) = e(X1) + e(X2)− 2e(Σ),

(ii) σ(X1#ϕX2) = σ(X1) + σ(X2).

One can describe the minimality of a symplectic fiber sum using the following theo-

rem:

Theorem 2.1.11. [68, 24] Let (X,ωX) and (Y, ωY ) be two symplectic 4-manifolds

containing an embedded symplectic surface S of genus g ≥ 0 and M be the symplec-

tic fiber sum X#SY .

1. The 4-manifold M is not minimal if
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(a) X \ SX or Y \ SY contains an embedded symplectic (−1)-sphere, where

SX ⊂ X and SY ⊂ Y are copies of the surface S,

or

(b) X#SY = Z#SCP2
CP2 with SCP2 an embedded +4-sphere in class [SCP2 ] =

2[H] ∈ H2(CP2;Z) andZ has at least two disjoint exceptional spheresEi

so that eachEi meets the submanifold SZ ⊂ Z transversely and positively

in a single point with [Ei] · [SX ] = 1.

2. If X#SY = Z#SB
B where B is a S2-bundle over a surface of genus-g and SB

is a section of this bundle then M is minimal if and only if Z is minimal.

3. M is minimal in all other cases.

We will use the following proposition which is a simple corollary of Theorem 2.1.11

on symplectic sums to verify that our Lefschetz fibrations are minimal symplectic

4-manifolds, (see also [15]).

Proposition 2.1.12. Let (X, f) be a Lefschetz fibration associated to a factorization

W = W φ
1 W2 in Modg, where φ is any mapping class and W1, W2 are positive fac-

torizations in Modg. Then the 4-manifold X is minimal.

Definition 2.1.13. For a 4-manifold X , the topological blow-up of X at one point is

diffeomorphic to the 4-manifold X#CP2. Here CP2 is CP2 with the reversed orien-

tation.

The reverse process of the topological blow-up operation is called topological blow-

down.

Note that every symplectic 4-manifold can be made minimal by blowing down a

maximal collection of symplectically embedded (−1)-spheres.

Definition 2.1.14. Symplectic manifolds that blow-down to an S2-bundle over a Rie-

mann surface of genus-g ≥ 0 are called ruled surfaces.

Definition 2.1.15. Symplectic manifolds that blow-down to CP2 or S2×S2 are called

rational surfaces.
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The minimal model of a ruled surface is not unique. It is known that there are exactly

two minimal models of ruled surfaces of genus g, the trivial bundle Σg × S2 and the

nontrivial bundle Σg n S2 [12]. Li and Liu proved the following two theorems about

symplectic structures of ruled surfaces.

Theorem 2.1.16. [48] The symplectic structure of an S2-bundle over a genus-g Rie-

mann surface is unique up to symplectic deformation and diffeomorphism.

Theorem 2.1.17. [48] The symplectic structures of blow ups of geometrically ruled

surfaces are unique.

Therefore, for k > 0, Σg × S2#kCP 2 and Σg n S2#kCP 2 are symplectomorphic.

Theorem 2.1.18. ([67], [51]) LetX be a minimal symplectic 4-manifold which is not

a ruled surface. Then c21(X) ≥ 0, where c21(X) = 3σ(X) + 2e(X).

Let (X,ω) be a symplectic 4-manifold. Then the set εX is defined to be the set of

all E ∈ H2(X;Z) such that E is the Poincaré dual of the homology classes which

can be represented by a smoothly embedded (−1)-sphere in (X,ω) and E · [ω] > 0.

When the 4-manifold X is neither rational nor ruled, we may assume that E · [ω] > 0,

because one can change the orientation of the smoothly embedded (−1)-sphere that

represents the class E if necessary to get E · [ω] > 0. Then we have the following

theorem.

Theorem 2.1.19. [62] Let (X, f) be a relatively minimal Lefschetz fibration of genus-

g over S2 where g ≥ 2. Suppose that the set εX is non-empty and εX = {E1, E2, . . . , En}.
If X is neither rational nor ruled, then

(i) n ≤ 2g − 2.

(ii)

(
n∑
i=1

Ei

)
· F ≤ 2g − 2.

(iii) 1 ≤ Ei · F ≤ 2g − 2, for any i with 1 < i < n.

Theorem 2.1.20. [64] Let g ≥ 2 and (X, f) be a genus-g Lefschetz fibration over a

sphere with b+2 (X) = 1. Then either e(X) ≥ 0 orX is the blow-up of a ruled surface.
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2.1.7 Classification of simply connected 4-Manifolds

In this subsection, we will state Freedman’s remarkable theorem which determines

the homeomorphism type of a simply-connected closed 4-manifold. His theorem is

based on the intersection form of 4-manifolds.

For a closed oriented 4-manifold X , let a, b ∈ H2(X;Z) be homology classes and

let the cohomology classes α, β ∈ H2(X;Z) be their Poincaré duals. The intersec-

tion form QX of X is defined by QX(a, b) = 〈a ∪ b, [X]〉 where ∪ : H2(X;Z) ×
H2(X;Z) → H4(X;Z) the cup product of cohomology groups. It is known that

the intersection form QX is symmetric and unimodular. The rank of the form QX

is defined to be the dimension of H2(X;Z)
/

Torsion, which is the group obtained by

dividing out the torsion part of H2(X;Z). The form is called even if QX(α, α) ≡ 0

mod2 for all α ∈ H2(X;Z). Otherwise the form QX is called odd. The signature

σ(X) of X is defined to be the signature of the diagonalizable (extended) form QR,

which is given by b+2 − b−2 , where b+2 and b−2 denote the number of positive and nega-

tive eigenvalues associated to the form QR, respectively.

Theorem 2.1.21. [35] Given a unimodular bilinear symmetric form Q, there exists a

simply-connected, closed topolological 4-manifold X such that the intersection form

QX of X is isomorphic to Q. If Q is even, there exists unique homeomorphism class

with this property. If Q is odd, there exist two different homeomorphism classes of

4-manifolds with this property. At most one of these classes can be represented by a

4-manifold with a smooth structure.

2.1.8 Luttinger surgery

Luttinger surgery is a technique used to produce symplectic 4-manifolds using known

symplectic 4-manifolds. We will use this technique in Chapter 4 to construct some

exotic 4-manifolds.

Let (X,ω) be a symplectic 4-manifold. Given any Lagrangian torus T in X , a neigh-

bourhood ν(T ) of T can be identified (symplectomorphically) with a neighbourhood
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of the zero section of the cotangent bundle of T with its standard symplectic structure.

This identification is called Lagrangian push off or Lagrangian framing.

Let γ be a co-oriented simple closed loop in T . One can identify T with R2
/
Z2 so

that γ and its co-orientation agrees with the first coordinate x1 and the second coordi-

nate axis x2 with the standard orientation, respectively. The symplectic form is given

by ω = dx1∧ dy1+ dx2∧ dy2, where (x1, x2) denotes the corresponding coordinates

on T and (y1, y2) denotes the dual coordinates on the cotangent bundle. Let r be a

positive real number in such a way that the neighbourhood ν(T ) of T contains the

set Ur = R2
/
Z2 × [−r, r]× [−r, r] under the identification. Take a smooth function

χ : [−r, r]→ [0, 1] satisfying

• χ(t) = 0 if t ≤ − r
3
,

• χ(t) = 1 if t ≥ r
3
,

•
∫ r
−r tχ

′(t) dt = 0.

Then for any k, define φk : Ur − Ur/2 → Ur − Ur/2 by

• φk(x1, x2, y1, y2) = x1 + kχ(y1), x2, y1, y2), if y2 ≥
r

2
,

• φk = id, otherwise.

Then define the manifoldX(T, γ, k) is to be obtained by removing the neighbourhood

Ur/2 and gluing Ur using the self-diffeomorphism φk of Ur − Ur/2 to identify their

boundaries.

The surgery described above is equivalent to the surgery operation introduced by

Luttinger [52] (see also [25]).

Disregarding the symplectic structure, in the topological set up one can describe this

construction as a certain type of Dehn surgery along a Lagrangian torus as follows:

Cut out a neighbourhood T ×D2 of T and glue back it by identifying the boundaries

T × S1 with a diffeomorphism so that it acts trivially on H1(T ;Z) and maps [µ] to

[µ] + k[γ] where [µ] is the homology class of the meridian.

Under a natural framing of the normal bundle to T along γ, one can push away the

loop γ in a canonical way. This provides us to define homotopy class of γ in π1(X −
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T ). After performing this surgery, the fundamental group π1(X(T, γ, k)) of the 4-

manifold X(T, γ, k) is computed as follows and also some topological invariants of

the resulting manifolds satisfies the following:

Lemma 2.1.22.

(1) π1(X(T, γ, k)) = π1(X − T )
/
N(µγk), where N(µγk) is the normal closure of

the group generated by µγk,

(2) e(X(T, γ, k)) = e(X),

(3) σ(X(T, γ, k)) = σ(X).

It is known that this surgery operation is symplectically well-defined [10, 52]. The

above construction is obtained by 1/k-Dehn surgery along a Lagrangian torus T in

a symplectic 4-manifold X . One can also perform p/q-Dehn surgery along a La-

grangian torus T . In this case, after cutting out a neighbourhood T × D2 of T , a

diffeomophism φ satisfying φ([µ]) = p[µ] + q[γ] is used when gluing it back to iden-

tify the boundaries. The fundamental group of the resulting manifold is isomorphic

to

π1(X(T, γ, p/q)) = π1(X − T )
/
N(µpγq)

whereN(µpγq) is the normal closure of µpγq in the group π1(X−T ). When p 6= ±1,

the 4-manifold X(T, γ, p/q) generally does not admit a symplectic structure.

2.1.9 Seiberg-Witten invariants

In this subsection we review the basics of Seiberg-Witten invariants which are a dif-

feomorphism type invariant for compact smooth 4-manifolds.

For a smooth closed 4-manifold M with b+2 > 1, the Seiberg-Witten invariant of the

manifold M is an integer valued function from the set of spinc structures on M [69].

If H1(M ;Z) has no 2-torsion ( in particular if M is a simply-connected 4-manifold)

then there is a one to one correspondence between the spinc structures on M and

characteristic classes of elements ofH2(M ;Z) (i.e. their Poincare duals reduce mod2

to the second Stiefel-Whitney class ω2 of M ). Under this identification, each spinc
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structure s on M corresponds to a bundle of positive spinors W+
s on M . Hence one

can view the Seiberg-Witten invariant as a function

SWM : {k ∈ H2(M ;Z)|k ≡ ω2(mod2)} → Z

If SWM(β) 6= 0 for β ∈ H2(M ;Z) then β is said to be basic class of M . It is

known that the set of basic classes of a 4-manifold is finite. If β is a basic class, the

Seiberg-Witten invariant of −β is given as follows:

SWM(−β) = (−1)(e(M)+σ(M))/4SWM(β).

Hence, one can conclude that −β is also a basic class of M . Now, we will state some

useful theorems about Seiberg-Witten invariants.

Theorem 2.1.23. [66] Let (M,ω) be a compact, oriented, closed, symplectic 4-

manifold with b+2 ≥ 2. Then SWM(c1(X)) = ±1 where c1(X) is the canonical

class of the symplectic structure of M .

Theorem 2.1.24. (Connected Sum)(cf.[61]) Let Mi be a compact oriented smooth

4-manifold with b+2 (Mi) ≥ 1 for i = 1, 2. Then all Seiberg-Witten invariants of

M1#M2 are zero.
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CHAPTER 3

CONSTRUCTIONS OF GENUS-3 LEFSCHETZ FIBRATIONS

3.1 Construction of a genus-3 Lefschetz fibration from Matsumoto’s genus-2

Lefschetz fibration

In this section, we explicitly construct a positive factorization for a genus-3 Lefschetz

fibration whose total space is diffeomophic to T2 × S2#6CP2
. The technique we

used to produce the genus-3 Lefchetz fibration over S2 comes from the idea of the

construction of the smallest hyperelliptic genus-3 Lefchetz fibration produced by Ko-

rkmaz and Baykur [14]. This technique is also used in [13] and [40].

Consider the genus-3 surface Σ1
3 represented in Figure 3.1. The lifting of W2 con-

structed by Hamada given in Section 2.1.4 and the embeddings of the genus-2 sur-

faces Σ1
2 and Σ1

2 in Σ1
3 give rise to the following identities in Mod1

3:

(tB0tB1tB2tC)2 = (tCtB0tB1tB2)
2 = tC′ , (3.1)

(tB′0tB′1tB′2tC′)
2 = tCtδ, (3.2)

where the curves Bi, B′i, C and C ′ are as shown in Figure 3.1 and δ is a curve parallel

to the boundary component of Σ1
3. The first identity (3.1) comes from the commuta-

tivity of the Dehn twists along disjoint curves C and C ′ and the second identity (3.2)

is obtained by capping off one boundary component in Hamada’s lifting given in Sec-

tion 2.1.4. Using the fact that tC and tC′ commute, we get the following relation in

Mod1
3:

tB0tB1tB2tCtB0tB1tB2tB′0tB′1tB′2tC′tB′0tB′1tB′2tC′tCt
−1
C t−1C′ = tδ.

Finally, we get the following identity in Mod1
3 consisting of the product of positive

21



Figure 3.1: The curves Bi, B′i, C, C ′.

Dehn twists along 12 nonseparating curves Bi, B′i and 2 separating simple closed

curves C and C ′:

tB0tB1tB2tCtB0tB1tB2tB′0tB′1tB′2tC′tB′0tB′1tB′2 = tδ. (3.3)

Let W be the positive factorization of tδ in the equation 3.3 and let X denote the

smooth 4-manifold admitting the genus-3 Lefschetz fibration over S2, with a section

of self-intersection −1, whose global monodromy is W .

Theorem 3.1.1. The 4−manifold X is diffeomorphic to T2 × S2#6CP2
.

Proof. We first compute the fundamental group π1(X). Since the Lefschetz fibration

(X, f) with monodromy W has a section, by the theory of Lefschetz fibrations [38],

π1(X) is isomorphic to the quotient of π1(Σ3) by the normal subgroup generated by

vanishing cycles of (X, f).

Using the generators ai, bi of π1(Σ3) shown in the Figure 3.2, we get the following

relations coming from the vanishing cycles:

B0 = b1b2 = 1, (3.4)

B1 = a−12 [a3, b3]b
−1
2 b−11 a−11 = 1, (3.5)

B2 = a−12 [a1, b
−1
1 ]a−11 = 1, (3.6)

B′0 = b2b3 = 1, (3.7)

B′1 = a−13 b−13 b−12 a−12 = 1, (3.8)
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B′2 = b3a
−1
3 b−13 a−12 = 1, (3.9)

C = [a1, b1] = 1, (3.10)

C ′ = [a3, b3] = 1. (3.11)

In addition, π1(X) has the relation

b−13 b−12 b−11 (a1b1a
−1
1 )(a2b2a

−1
2 )(a3b3a

−1
3 ) = 1. (3.12)

Thus, π1(X) admits a presentation with generators a1, a2, a3, b1, b2, b3 and the rela-

tions (3.4)− (3.12).

The relations (3.4) and (3.7) give b1 = b−12 = b3. From the relations (3.6), (3.7), (3.8)

and (3.10), we obtain a1 = a−12 = a3. We conclude that π1(X) is a free abelian group

of rank 2 generated by a1 and b1.

We next show that the signature σ(X) of X is −6 using Endo and Nagami’s method

given in Section 2.1.5. (Alternatively, the signature of X can be calculated using

Ozbagci’s algorithm [57]).

Consider the relator (B0B1B2C)2(B′0B
′
1B
′
2C
′)2C−1C ′−1 associated to the relation

W = tB0tB1tB2tCtB0tB1tB2tB′0tB′1tB′2tC′tB′0tB′1tB′2 = 1

in Mod3 obtained by the factorization of tδ in Mod1
3 by capping off the boundary

component. It follows from Theorem 2.1.7, the additivity of the signature Ig and

Lemma 2.1.6 that we have,

σ(X) = Ig
(
(B0B1B2C)2(B′0B

′
1B
′
2C
′)2C−1(C ′)−1

)
,

= Ig
(
(B0B1B2C)2

)
+ Ig

(
(B′0B

′
1B
′
2C
′)2
)
− Ig(C)− Ig(C ′),

= −4− 4− (−1)− (−1) = −6.

Other topological invariants of X we need are computed as follows:

e(X) = e(S2)e(Σ3) + #singular fibers = 2(−4) + 14 = 6,

c21(X) = 2e(X) + 3σ(X) = −6.

We will now prove that X is a ruled surface. Suppose that X is neither rational nor

ruled. Let X̃ be the minimal model of X , so X ∼= X̃#kCP2
for some non-negative
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Figure 3.2: The curves ci’s, γ(a2), γ(b1) and γ(b2) and the generators of π1(Σ3).

integer k. It is easy to see that

c21(X̃) = c21(X) + k = −6 + k.

Since X̃ is a minimal symplectic 4-manifold that is neither rational nor ruled, c21(X̃) ≥
0 by Theorem 2.1.18, so that we have k ≥ 6. Moreover, since X has k ≥ 6 disjoint

exceptional spheres, it follows from Theorem 2.1.19 that k ≤ 2g − 2 = 4, which is a

contradiction.

Therefore, X is either a rational or a ruled surface. Since b1(X) = 2, we conclude

thatX is diffeomorphic to (a blow up of) a ruled surface with invariants (b+2 , b
−
2 , b1) =

(1, 7, 2). So, X is diffeomorphic to T2 × S2#6CP2
.

3.2 Construction the genus-3 Lefschetz fibrations X1, X2 and X3

Recall the factorization

W = tB0tB1tB2tCtB0tB1tB2tB′0tB′1tB′2tC′tB′0tB′1tB′2

of tδ in the mapping class group of Σ1
3. We may rewrite W as

W = V t2B′2t
2
B2
,
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where

V = tt−2
B2

(B0)
tt−2

B2
(B1)

tt−1
B2

(C)tt−1
B2

(B0)
tt−1

B2
(B1)

tB′0tB′1tt′B2
(C′)tt

B′2
(B′0)

tt
B′2

(B′1)
.

Let

α = tc4tatB′2tc4tc2tc1tB2tc2 ,

and

β = t7b1tc4tbtB2tc4tc6tc7tB′2tc6 ,

where the curves ci are as in Figure 3.2, and the curves a and b are as in Figure 2.5

for g = 3. It is easy to see that α(B′2) = a, α(B′2) = c1, β(B′2) = b and β(B2) = c7.

The conjugations of W with α and β give the factorizations

tδ = Wα = V αt2α(B′2)t
2
α(B2)

= V αt2at
2
c1

and

tδ = W β = V βt2β(B′2)t
2
β(B2)

= V βt2bt
2
c7

= t2bt
2
c7
V β.

It follows that

t2δ = WαW β = V αt2at
2
c1
t2bt

2
c7
V β = V βV αt2at

2
bt

2
c1
t2c7 . (3.13)

We see that the curves {c1, c1, a, b} bound a sphere with four boundary components,

which allows us to use the lantern substitution explained in Section 2.1.2.3. Using the

lantern relation tatbt2c1 = tc3tCtB2 we get the identity

V βV αtc3tCtB2tatbt
2
c7

= t2δ (3.14)

in Mod1
3. Moreover, the curves {c7, c7, a, b} bound a sphere with four boundary com-

ponents. By applying the lantern substitution tatbt2c7 = tc5tC′tB′2 , we get

V βV α(tc3tCtB2)(tc7tC′tB′2) = t2δ . (3.15)

For later use, up to conjugation and the inversion, we write the vanishing cycles of

X1, X2 andX3 in the fundamental group of π1(Σ3) in the generating set {a1, a2, a3, b1, b2, b3}.
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Let

U1 = α(t−2B2
(B0)) U′1 = β(t−2B2

(B0))

U2 = α(t−2B2
(B1)) U′2 = β(t−2B2

(B1))

U3 = α(t−1B2
(C)) U′3 = β(t−1B2

(C))

U4 = α(t−1B2
(B0)) U′4 = β(t−1B2

(B0))

U5 = α(t−1B2
(B1)) U′5 = β(t−1B2

(B1))

U6 = α(B′0) U′6 = β(B′0)

U7 = α(B′1) U′7 = β(B′1)

U8 = α(tB′2(C
′)) U′8 = β(tB′2(C

′))

U9 = α(tB′2(B
′
0)) U′9 = β(tB′2(B

′
0))

U10 = α(tB′2(B
′
1)) U′10 = β(tB′2(B

′
1))

so that (3.13), (3.14) and (3.15) are given, respectively, as

t2δ = tU′1tU′2 · · · tU′10tU1tU2 · · · tU10t
2
at

2
bt

2
c1
t2c7 . (3.16)

t2δ = tU′1tU′2 · · · tU′10tU1tU2 · · · tU10(tc3tCtB2)tatbt
2
c7
. (3.17)

t2δ = tU′1tU′2 · · · tU′10tU1tU2 · · · tU10(tc3tCtB2)(tc5tC′tB′2). (3.18)

Let (X1, f1), (X2, f2) and (X3, f3) be the genus-3 Lefschetz fibrations with the mon-

odromies (3.16), (3.17) and (3.18) respectively.

The vanishing cycles Ui are shown in Figure 3.3. One may find that

U1 = [b−11 , a1]b2a
−1
2 b3a

−1
3 b−13 b−12 a1b

−1
1 a21b2b3a3b

−1
3 (a2b

−1
2 )2a1b

−1
1 a1

2

[b−11 , a1]b2a
−1
2 b3a

−1
3 b−13 b−12 a1, (3.19)

U2 = [b−11 , a1]b2a
−1
2 b3a

−1
3 b−13 b−12 a1b

−1
1 a21[b

−1
1 , a1]a2b

−1
2 a1b

−1
1 a21, (3.20)

U3 = [b−11 , a1]b2a
−1
2 b3a

−1
3 b−13 b−12 a−11 b1a

−1
1 b2b3a3b

−1
3 a2b

−1
2 a1b

−1
1 a1, (3.21)

U4 = [b−11 , a1]b2a
−1
2 b3a

−1
3 b−13 b−12 a1b

−1
1 a1b2b3a3b

−1
3 (a2b

−1
2 )2a1b

−1
1 a1

[b−11 , a1]b2a
−1
2 b3a

−1
3 b−13 b−12 a1, (3.22)

U5 = [b−11 , a1]a2b
−1
2 a1b

−1
1 a1[b

−1
1 , a1]b2a

−1
2 b3a

−1
3 b−13 b−12 a1b

−1
1 a1, (3.23)
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U6 = b2a
−1
2 b3a

−1
3 b−13 b2a

−1
2 b−13 [a1, b

−1
1 ]b1a

−1
1 , (3.24)

U7 = b22a
−1
2 a−13 b−13 [a1, b

−1
1 ]b1a

−1
1 , (3.25)

U8 = b3a3b
−1
3 a2b2a

−1
2 a−13 a2b

−1
2 a−12 , (3.26)

U9 = b2a
−1
2 b3a

−1
3 b−13 a2b2a

−1
2 b−13 a2[a1, b

−1
1 ]b1a

−1
1 , (3.27)

U10 = [b−11 , a1]a
−1
2 b3a3a2b

−1
2 a−12 b−12 a1b

−1
1 . (3.28)

Figure 3.3: The curves Ui’s,

We now prove that for each i = 1, 2, 3, the fundamental group π1(Xi) of the 4-

manifolds Xi is trivial.

Lemma 3.2.1. The 4 manifold X1 is simply connected.
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Proof. The monodromy of (X1, f1) is given in (3.16). Since this Lefschetz fibration

has a section, π1(X1) has a presentation with generators a1, a2, a3, b1, b2, b3 and with

the defining relations

b−13 b−12 b−11 (a1b1a
−1
1 )(a2b2a

−1
2 )(a3b3a

−1
3 ) = 1,

U ′i = Ui = a = b = c1 = c7 = 1, (i = 1, 2, . . . , 10).

Note that a = a2, c1 = a1 and c7 = a3.

The relations U1 = U2 = U4 = U5 = 1, then gives

b−11 b−12 b−11 = 1. (3.29)

Similarly, the relations U6 = U7 = 1 and U9 = U10 = 1 yield

b3 = b1b2b2. (3.30)

By the relation (3.29), we get

b2 = b−21 ,

also, using the identity (3.30), we obtain

b3 = b1b
2
2 = b1(b

−2
1 )2.

Therefore b2 and b3 can be written in terms of b1. It follows that π1(X1) is abelian and

is isomorphic to a quotient of the free abelian group Z, generated by b1. Therefore

π1(X1) is isomorphic to H1(X1;Z).

Let us now determine the homology class of the vanishing cycle U′1 = β(t−2B2
(B0)).

One can easily determine the effect of the Dehn twist ta on the homology class of the

curve b as to be:

[tna(b)] = [b] + ni(a, b)[a] ∈ H1(Σ3,Z); (3.31)

where i(a, b) is the algebraic intersection number of the oriented simple closed curves

a and b.

In order to find the homology class of tB−2
2

(B0), use B0 = b1 + b2 and B2 = a1 + a2
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in H1(Σ3;Z) and the formula (3.31). Hence, applying the Dehn twist t−2B2
to the curve

B0, we get

tB−2
2

(B0) = B0 − 2
(
i(B2, B0)B2

)
= B0 − 4B2

= −4a1 − 4a2 + b1 + b2. (3.32)

It is enough to determine the effect of the diffeomorphism β on the homology gener-

ators a1, a2, b1 and b2 of H1(Σ3;Z) in order to find the homology class of U ′1.

Let β = t7b1γ where γ = tc4tbtB2tc4tc6tc7tB′2tc6 . Using γ(a1) = a1 and the curves

γ(a2), γ(b1) and γ(b2) in Figure 3.2, we obtain

γ(a1) = a1, (3.33)

γ(a2) = −a1 − a2, (3.34)

γ(b1) = a1 + a2 + b1 − b2, (3.35)

γ(b2) = a2 + a3 − b2 − b3. (3.36)

It follows from formula (3.31) that

β(a1) = a1 − 7b1, (3.37)

β(a2) = −a1 − a2 + 7b1, (3.38)

β(b1) = a1 + a2 − 6b1 − b2, (3.39)

β(b2) = a2 + a3 − b2 − b3. (3.40)

Therefore the identity (3.32) gives rise to

U′1 = β(tB−2
2

(B0)) = β(−4a1 − 4a2 + b1 + b2)

and using the identities (3.37)-(3.40)

U′1 = a1 + 6a2 + a3 − 6b1 − 2b2 − b3. (3.41)

Combining the identities a1 = a2 = a3 = 0, (3.41), (3.29) and (3.30), we have the

following relations in H1(X1;Z):

−6b1 − 2b2 − b3 = 0 (3.42)

2b1 + b2 = 0 (3.43)

b1 + 2b2 − b3 = 0 (3.44)
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This completes our claim that H1(X1;Z) = 0 since the above relations (3.42)-(3.44)

in H1(X1;Z) imply that b1 = b2 = b3 = 0.

Lemma 3.2.2. The 4-manifold X2 is simply connected.

Proof. The monodromy of (X2, f2) is (3.17). Since this Lefschetz fibration has a sec-

tion, π1(X2) has a presentation with generators a1, a2, a3, b1, b2, b3 and with defining

relations

b−13 b−12 b−11 (a1b1a
−1
1 )(a2b2a

−1
2 )(a3b3a

−1
3 ) = 1,

U ′i = Ui = c3 = C = B2 = a = b = c7 = 1, i = 1, 2, . . . , 10.

Note that a = a2, c7 = a3 and

c3 = a1a
−1
2 , (3.45)

C = [a1, b1], (3.46)

B2 = [b−11 , a1]a2a1. (3.47)

It follows from identity (3.45) and the relation a = a2 = 1 in π1(X2) that a1 = 1.

Therefore, π1(X2) has the same relations as π1(X1). We conclude that π1(X2) = 1

by the proof of Lemma 3.2.1.

Lemma 3.2.3. The 4-manifold X3 is simply connected.

Proof. The monodromy of (X3, f3) is (3.18). Since this Lefschetz fibration has a

section, π1(X3) has a presentation with generators a1, a2, a3, b1, b2, b3 and with the

defining relations

b−13 b−12 b−11 (a1b1a
−1
1 )(a2b2a

−1
2 )(a3b3a

−1
3 ) = 1,

U ′i = Ui = c3 = C = B2 = c5 = C ′ = B′2 = 1, i = 1, 2, . . . , 10.

In addition to the identities (3.45), (3.46) and (3.47), we have

c5 = a2a
−1
3 , (3.48)

C ′ = [a3, b3], (3.49)

B′2 = [b3, a3]a3a2. (3.50)
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Using the relations

b−13 b−12 b−11 (a1b1a
−1
1 )(a2b2a

−1
2 )(a3b3a

−1
3 ) = 1,

C = [a1, b1] = 1, C ′ = [a3, b3] = 1,

then [a2, b2] = 1 holds in π1(X3). By the identities (3.45) and (3.48), we have

a1 = a2 = a3. (3.51)

Also, by the relations (3.47) and (3.50) we get the equations

a2a1 = a3a2 = 1, (3.52)

It follows from (3.51), (3.52), [a1, b1] = [a2, b2] = [a3, b3] = 1 and the presentations

(3.27) and (3.28) of U9 and U10, respectively that U9 = U10 = 1 in π1(X3) give

U9 = b22b
−1
3 b1 = 1 (3.53)

U10 = a−12 b3b
−2
2 b−11 = 1. (3.54)

The equations (3.53) and (3.54) yield a2 = 1. Hence a1 = a2 = a3 = 1 and π1(X3)

has the same relations as π1(X1). This implies that π1(X3) = 1 by the proof of

Lemma 3.2.1.

Theorem 3.2.4. For i = 1, 2, 3 the genus-3 Lefschetz fibration fi : Xi → S2 is

minimal and has

(i) e(Xi) = 21− i,

(ii) c21(Xi) = 3 + i,

(iii) π1(Xi) = 1.

Proof. For each i = 1, 2, 3 the Euler characteristic e(Xi) of Xi is given by

e(Xi) = e(S2)e(Σ3) + #singular fibers

= 2(−4) + 29− i = 21− i,

and the signature σ(Xi) is

σ(Xi) = σ(X1) + σ(X1) + i− 1 = −13 + i,
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by using Novikov additivity and the fact that Lantern substitution increases the sig-

nature by 1 (Lemma2.1.6 ii). The topological invariant c21(Xi) is as follows:

c21(Xi) = 2e(Xi) + 3σ(Xi) = 3 + i.

By Proposition 2.1.12, each Xi is minimal. Also, one can explain the minimality of

Xi by considering a lantern substitution as a rational blowdown surgery along a −4

sphere [32]. The rational blowdown surgery along a−4 sphere can be obtained by the

symplectic sum operation. So,X2 = X1#S,VCP2
CP2 where S is symplectic−4 sphere

in X1 and VCP2 which is an embedded +4 sphere in CP2 in class of [VCP2 ] = 2[H] ∈
H2(CP2,Z). Since X1 is minimal by Theorem 2.1.11 (iii) then again it follows from

the Theorem 2.1.11X2 is minimal. Similarly, sinceX3 can be viewed as a symplectic

sum of minimal X2 and CP2, we get X3 is minimal using the same argument.

Finally, for i = 1, 2, 3, the fundamental group π1(Xi) of each Xi is trivial by Lemma

3.2.1, Lemma 3.2.2 and Lemma 3.2.3.
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CHAPTER 4

CONSTRUCTION OF EXOTIC 4-MANIFOLDS

4.1 Exotic fibered 4-manifolds with b+2 = 3

In this section, we will construct minimal symplectic 4-manifolds admitting Lef-

schetz fibration of genus 3 over S2 which are homeomorphic but not diffeomorphic

to 3CP2#kCP2
for k = 13, . . . , 19 using the Lefschetz fibration prescribed by the

factorization W and generalized the Matsumoto Lefschetz fibration for genus 3.

Consider the generalized Matsumoto’s Lefschetz fibration for genus 3, the total space

M3 corresponding to the word W3 = (tβ0tβ1tβ2tβ3t
2
at

2
b)

2 is diffeomorphic to T2 ×
S2#8CP2

. Here we denote the vanishing cycles of M3 by βi’s instead of Bi’s as

shown in Figure 2.5 to distinguish them from the vanishing cycles of X . To deter-

mine the relations in π1(M3), consider the following identification of the fundamental

group of M3 using the existence of sections of Matsumoto’s fibrations :

π1(M3) = π1(Σ3)/〈β0, β1, β2, β3, a, b〉,

β0 = b1b2b3 = 1, (4.1)

β1 = b1b2b3a3a1 = 1, (4.2)

β2 = b2b3a3b
−1
3 a1 = 1, (4.3)

β3 = a2b2[b3, a3]a2 = 1, (4.4)

a = a2 = 1, (4.5)

b = [a1, b
−1
1 ]a−12 = 1. (4.6)
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The equations (4.1) and (4.2) yield the relation a3a1 = 1 . Since

b−13 b−12 b−11 (a1b1a
−1
1 )(a2b2a

−1
2 )(a3b3a

−1
3 ) = 1,

a2 = 1 and the relation (4.6) give [b3, a3] = 1. Using these relations and the relation

(4.4) , we get b2 = 1. We have the relations

a3a1 = 1 and b1b3 = 1

in π1(M3). Therefore π1(M3) is the free abelian group of rank 2.

We first present the minimal symplectic genus-3 Lefschetz fibrations with (b+2 , b
−
2 ) =

(3, 19) and (3, 18). To obtain such Lefschetz fibrations, consider the following posi-

tive factorization:

W3W
φ
3 = (tβ0tβ1tβ2tβ3t

2
at

2
b)

2(tφ(β0)tφ(β1)tφ(β2)tφ(β3)t
2
φ(a)t

2
φ(b))

2 = t2δ , (4.7)

where the diffeomorphism φ = tb−1
3
tβ0ta1 .

Let us rewrite the positive factorization W3. In [43], it is shown that the product of

positive Dehn twists tβ0tβ1tβ2tβ3t
2
at

2
b is the vertical involution ι of the genus-3 surface

with two fixed points. Hence, it preserves the curve β0, then we have

tβ0tβ1tβ2tβ3t
2
at

2
b(β0) = β0.

By applying Lemma 2.1.2, we get the following identity of the factorization W3:

W3 = tβ0tβ1tβ2tβ3t
2
at

2
btβ0tβ1tβ2tβ3t

2
at

2
b

= tβ0tβ0tβ1tβ2tβ3t
2
at

2
btβ1tβ2tβ3t

2
at

2
b

= t2β0(tβ1tβ2tβ3t
2
at

2
b)

2 = tδ.

It is easy to see that φ(β0) = a1. It follows that

W3W
φ
3 = T1tatbt

2
a1
T2 = t2δ , (4.8)

where

T1 = tβ0tβ1tβ2tβ3t
2
at

2
btβ0tβ1tβ2tβ3tatb

and

T2 = (tφ(β1)tφ(β2)tφ(β3)t
2
φ(a)t

2
φ(b))

2.
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Since the curves {a, b, c1, c1} bound a sphere with four holes, we can use the lantern

relation tatbt2c1 = tc3tCtB2 to get the identity

W3W
φ
3 = T1tc3tCtB2T2 = t2δ . (4.9)

Let M19 and M18 be the genus-3 Lefschetz fibrations with the monodromies (4.7) and

(4.9), respectively. We now prove that π1(M19) = π1(M18) = 1.

Lemma 4.1.1. The fundamental group π1(M19) of M19 is trivial.

Proof. Since the Lefschetz fibration M19 has a section, π1(M19) has a presentation

with the generators aj and bj , (j = 1, 2, 3) and with the relations

b−13 b−12 b−11 (a1b1a
−1
1 )(a2b2a

−1
2 )(a3b3a

−1
3 ) = 1,

βi = a = b = φ(βi) = φ(a) = φ(b) = 1, (i = 0, 1, 2, 3).

Since the monodromy of (M19, f19) contains the factorization W3, the relations com-

ing from the factorization W3 make π1(M19) a quotient of the free abelian group of

rank 2. So, we can find additional relations coming from the conjugated W φ
3 using

the action of φ on the generators of first homology group H1(Σ3;Z). Using the rela-

tions (4.1)-(4.6) in π1(M3) , in addition to the relations a2 = b2 = 0, the following

abelianized relations hold in H1(M19;Z):

a1 + a3 = 0, (4.10)

b1 + b3 = 0. (4.11)

as can be seen in Figure 4.1 the effect of the diffeomorphism φ on the generators a1

and a3 of H1(Σ3;Z) are as follows :

φ(a1) = a1 − b1 − b2 − b3, (4.12)

φ(a3) = a3 − b1 − b2 − 2b3, (4.13)

From the fact that φ(β1) and φ(β0) = a1 are the vanishing cycles in the Lefschetz

fibration, and using the identities (4.2) and (4.3), we get the relation

φ(β1) = φ(β0 + a1 + a3) = φ(a1 + a3) = 0.
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Figure 4.1: The curves φ(a1), φ(a2), x and z .

Hence, by the identities (4.12) and (4.13), the relation

φ(a1) + φ(a3) = a1 + a3 − 2b1 − 2b2 − 3b3 = 0

holds in H1(Σ3;Z), which implies that b3 = 0 by the relations (4.10) and (4.11).

Also, using φ(β0) = a1 = 0 and the relations (4.10) and (4.11), we conclude that

H1(Σ3;Z) = 0. This proves that the 4-manifold M19 is simply connected.

Lemma 4.1.2. The fundamental group π1(M18) of M18 is trivial.

Proof. The monodromy of the Lefschetz fibration M18 is given as (4.9). Hence

π1(M18) has a presentation with generators aj and bj , (j = 1, 2, 3) and, for each

i = 0, 1, 2, 3 and k = 1, 2, 3, the relations

b−13 b−12 b−11 (a1b1a
−1
1 )(a2b2a

−1
2 )(a3b3a

−1
3 ) = 1,

βi = a = b = c3 = C = B2 = φ(βk) = φ(a) = φ(b) = 1.

The relations coming from the factorizationW3 hold in π1(M18). Since c3 is a vanish-

ing cycle of M18 , the relation c3 = a1a
−1
2 = 1 is satisfied in π1(M18). It follows from

the relation a = a2 = 1 that a1 = 1. Moreover the relation φ(β1) = 1, π1(M18) has

the same presentation as π1(M19). By the proof of Lemma 4.1.1, π1(M18) = 1.

Theorem 4.1.3. The 4-manifolds M18 and M19 are exotic copies of the manifolds

3CP2#18CP2
and 3CP2#19CP2

, respectively.

Proof. The 4-manifolds M18 and M19 have the following topological invariants:
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The Euler characteristics of M19 and M18 are given by

e(M19) = e(S2)e(Σ3) + #singular fibers

= 2(−4) + 32 = 24,

e(M18) = e(S2)e(Σ3) + #singular fibers

= 2(−4) + 31 = 23,

and the signatures of M19 and M18 are given by

σ(M19) = σ(M3) + σ(M3) = −16,

σ(M18) = σ(M19) + 1 = −15,

using Novikov additivity and the fact that lantern substitution increases the signature

by 1 (Lemma2.1.6 ii).

By Lemma 4.1.1 and 4.1.2, M19 and M18 are simply connected. Hence the identities

e(M19) = 24 = 2− 2b1(M19) + b2(M19)

= 2 + b+2 (M19) + b−2 (M19),

and

σ(M19) = −16 = b+2 (M19)− b−2 (M19)

imply that (b+2 (M19), b
−
2 (M19)) = (3, 19). Using Theorem 2.1.21 , we conclude that

M19 and M18 are homeomorphic to 3CP2#19CP2
and 3CP2#18CP2

, respectively.

It follows from Theorem 2.1.11 that M18 and M19 are minimal by similar arguments

in the proof of Theorem 3.2.4 i.e., it cannot contain a smoothly embedded -1 sphere.

But the manifolds 3CP2#19CP2
and 3CP2#18CP2

contain smoothly embedded -1

spheres, the exceptional spheres. Hence M19 and M18 cannot be diffeomorphic to

3CP2#19CP2
and 3CP2#18CP2

, respectively.

We now present the minimal symplectic genus-3 Lefschetz fibrations with (b+2 , b
−
2 ) =

(3, 17) and (3, 16). To obtain such Lefschetz fibrations, consider the following iden-

tity of the factorization W in (3.3):

W = T3tCtC′ = tδ,

where T3 = tt−1
C (B0)

tt−1
C (B1)

tt−1
C (B2)

tB0tB1tB2tB′0tB′1tB′2ttC′ (B′0)ttC′ (B′1)tt′C(B′2)
.
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Recall that the factorization

W3 = T1tatb = tδ,

where T1 = tβ0tβ1tβ2tβ3t
2
at

2
btβ0tβ1tβ2tβ3tatb.

Thus we have

W3W = T1tatbtCtC′T3 = t2δ . (4.14)

Since the curves {a, b, C, C ′} bound a sphere with four holes, we have the identity

t2atCtC′ = txtbtz. Therefore we get the following factorization

T1txtbtzT3 = t2δ , (4.15)

where the Dehn twist curves x and z are depicted in Figure 4.1. Let M17 and M16 be

the genus-3 Lefschetz fibration with the monodromy (4.14) and (4.15), respectively.

Lemma 4.1.4. The fundamental group of M17 is trivial.

Proof. The monodromy of the Lefschetz fibration M17 is (4.14). Hence, π1(M17) has

a presentation with the generators aj and bj , (j = 1, 2, 3) and for each i = 0, 1, 2, 3

and k = 0, 1, 2 with the relations

b−13 b−12 b−11 (a1b1a
−1
1 )(a2b2a

−1
2 )(a3b3a

−1
3 ) = 1,

βi = a = b = Bk = B′k = C = C ′ = 1.

Therefore the relations (4.1)-(4.6) and (3.4)-(3.11) hold in π1(M17). These relations

immediately imply that all generators are trivial in π1(M17).

Lemma 4.1.5. The fundamental group π1(M16) of M16 is trivial.

Proof. The monodromy of the Lefschetz fibration (M16, f16) is (4.15). Hence, π1(M16)

has a presentation with the generators aj and bj , (j = 1, 2, 3) and for each i =

0, 1, 2, 3 and k = 0, 1, 2 with the relations

b−13 b−12 b−11 (a1b1a
−1
1 )(a2b2a

−1
2 )(a3b3a

−1
3 ) = 1,

βi = a = b = Bk = B′k = C = C ′ = 1.

Thus, the relations (4.1)-(4.6) and (3.4)-(3.9) hold in π1(M16) which gives rise to

π1(M16) = 1.
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Theorem 4.1.6. The 4-manifolds M17 and M16 are exotic copies of the manifolds

3CP2#17CP2
and 3CP2#16CP2

, respectively.

Proof. The manifolds M17 and M16 have the following topological invariants:

The Euler characteristic e(M17) of M17 and e(M16) of M16 are

e(M17) = e(S2)e(Σ3) + #singular fibers

= 2(−4) + 30 = 22,

e(M16) = e(S2)e(Σ3) + #singular fibers

= 2(−4) + 29 = 21

and the signature σ(M19) of M19 and σ(M18) of M18 are

σ(M17) = σ(M3) + σ(X) = −14,

σ(M16) = σ(M17) + 1 = −13,

using the Novikov additivity and Lemma 2.1.6 ii.

It follows from Lemma 4.1.4 and Lemma 4.1.5 that M17 and M16 are simply con-

nected. Thus, the identities

e(M17) = 22 = 2− 2b1(M17) + b2(M17)

= 2 + b+2 (M17) + b−2 (M17),

and

σ(M17) = −14 = b+2 (M17)− b−2 (M17)

imply that (b+2 (M17), b
−
2 (M17)) = (3, 17). Similarly, we obtain that (b+2 (M16), b

−
2 (M16)) =

(3, 16). Using Theorem 2.1.21 , we see that M17 and M16 are homeomorphic to

3CP2#17CP2
and 3CP2#16CP2

, respectively. It is shown that the manifolds M17

and M16 are minimal in a similar way in the proof of Theorem 4.1.3. Therefore,

M17 and M16 cannot be diffeomorphic to 3CP2#17CP2
and 3CP2#16CP2

, respec-

tively.

Now, let us consider the minimal genus-3 Lefschetz fibrations (Xi, fi) (i = 1, 2, 3)

constructed in Subsection 3.2.
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Theorem 4.1.7. The 4-manifolds X1, X2, and X3 are exotic copies of 3CP2#15CP2
,

3CP2#14CP2
and 3CP2#13CP2

, respectively.

Proof. For each i = 1, 2, 3, the manifold Xi is minimal, simply connected and has

the following invariants:

e(Xi) = = 21− i = 2− 2b1(Xi) + b2(Xi)

= 2 + b+2 (Xi) + b−2 (Xi),

and the signature σ(Xi) is

σ(Xi) = −13 + i = b+2 (Xi) + b−2 (Xi).

Therefore, (b+2 (Xi), b
−
2 (Xi)) = (3, 16 − i). It follows from Theorem 2.1.21 , we see

that Xi is homeomorphic to 3CP2#(16 − i)CP2
. Since each Xi is minimal, Xi can

not be diffeomorphic to 3CP2#(16− i)CP2
. This finishes our proof.

4.2 Constructions of genus-3k Lefschetz fibrations and some exotic 4-manifolds

In this section, we generalize our construction of genus-3 Lefschetz fibration over

S2 to the construction of genus-3k Lefschetz fibration over S2 with total space is

diffeomorphic to Σk × S2#6CP2
using generalized Matsumoto’s genus-2k fibration.

Moreover, we give some fibered and nonfibered examples of exotic structures using

our generalized construction via twisted fiber sum or Luttinger surgery.

4.2.0.1 Construction genus-3k Lefschetz fibrations from generalized Matso-

moto’s genus-2k fibrations

We have the following two identities in Mod2
2k using the liftings of generalized Mat-

sumoto’s fibration for even g given by Hamada as explained in 2.1.4:

(tB0tB1tB2 . . . tB2k
tC)2 = (tCtB0tB1tB2 · · · tB2k

)2 = tC′

(tB′0tB′1tB′2 · · · tB′2ktC′)
2 = tCtδ,
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Figure 4.2: The curves for the monodromy Wk

Here the curves Bi, B′i, C and C ′ are as shown in Figure 4.2 and the curve δ is the

curve that is parallel to the boundary component of Σ1
3k. The first identity holds by

the commutativity of the separating curves C and C ′ and the lifting of the factoriza-

tion to Mod1
2k, which is easily obtained by capping off the boundary component δ1.

Embedding these curves into Σ1
3k, and again using the fact that tC and tC′ commute,

we obtain the following relation in Mod1
3k.

tB0tB1 · · · tB2k
tCtB0tB1 · · · tB2k

tB′0tB′1 · · · tB′2ktC′tB′0tB′1 · · · tB′2ktC′tCt
−1
C t−1C′

= tB0tB1 · · · tB2k
tCtB0tB1 · · · tB2k

tB′0tB′1 · · · tB′2ktC′tB′0tB′1 · · · tB′2k = tδ.

Let us denote the above relation in Mod1
3k by Wk . Note that Wk is a product of

8k + 6 positive Dehn twists, two of which are about separating simple closed curves.

Let X(k) → S2 be the genus-3k Lefschetz fibration corresponding to the word Wk.

By applying the technique of Endo and Nagami explained in Subsection (2.1.5) to

compute the signature σ(X(k)) of X(k) and the Euler characteristic formula for the

Lefshetz fibrations, we get the topological invariants of X(k) as follows:

e(X(k)) = e(S2)e(Σ3k) + #singular fibers

= 2(2− 6k) + 8k + 6 = −4k + 10,

σ(X(k)) = I3k((B0B1 · · ·B2kC)2(B′0B
′
1 · · ·B′2kC ′)2C−1C ′

−1

)

= I3k((B0B1 · · ·B2kC)2) + I3k((B
′
0B
′
1 · · ·B′2kC ′)2)− I3k(C)− I3k(C ′)

= −4− 4− (−1)− (−1) = −6,

c21(X(k)) = 3σ(X(k)) + 2e(X(k)) = −8k + 2,

χh(X(k)) = (e(X(k)) + σ(X(k)))/4 = −k + 1.
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Figure 4.3: The generators of π1(Σ3k)

Lemma 4.2.1. For each 1 ≤ i ≤ k and 1 ≤ j ≤ k − 1 , the fundamental group

π1(X(k)) of X(k) has the following relations:

aia2k−i+1 = 1, ak+ia3k−i+1 = 1, (4.16)

bj+1bj+2 · · · b2k−j = [a2k+1−j, b2k+1−j][a2k+2−j, b2k+2−j] · · · [a2k, b2k], (4.17)

bk+j+1bk+j+2 · · · b3k−j = [a3k+1−j, b3k+1−j][a3k+2−j, b3k+2−j] · · · [a3k, b3k]. (4.18)

Proof. Let ai and bi be the generators of π1(Σ3k) for i = 1, . . . , 3k as in Figure 4.3.

Since the genus-k Lefschetz fibration X(k) → S2 admits a section, π1(X(k)) is

isomorphic to the quotient of π1(Σ3k) by the normal closure of vanishing cycles.

The fundamental group π1(X(k)) has the following relations up to conjugation:

B0 = b1b2 · · · b2k = 1,

B2i−1 = aibibi+1 · · · b2k+1−ic2k+1−ia2k+1−i = 1, 1 ≤ i ≤ k,

B2i = aibi+1bi+2 · · · b2k−ic2k−ia2k+1−i = 1, 1 ≤ i ≤ k − 1,

B2k = akckak+1 = 1,

B′0 = bk+1bk+2 · · · b3k = 1,

B′2i−1 = ak+ibk+ibk+i+1 · · · b3k+1−ic3k+1−ia3k+1−i = 1, 1 ≤ i ≤ k,

B′2i = ak+ibk+i+1bk+i+2 · · · b3k−ic3k−ia3k+1−i = 1, 1 ≤ i ≤ k − 1,

B′2k = a2kc2ka2k+1 = 1,

C = ck = 1,

D = c2k = 1,

c3k = [a1, b1][a2, b2] · · · [a3k, b3k] = 1,

where cj = [a1, b1][a2, b2] · · · [aj, bj] for 1 ≤ j ≤ k . First consider the relations

B1 = a1b1b2 · · · b2kc2ka2k = 1,

B0 = b1b2 · · · b2k = 1,
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and the relation c2k = D = 1 then one can easily get a1a2k = 1. Now consider

B2 = a1b2b3 · · · b2k−1c2k−1a2k = 1.

Using the equation a1a2k = 1, we get

b2b3 · · · b2k−1c2k−1 = 1.

Using the relation

B3 = a2b2 · · · b2k−1c2k−1a2k−1 = 1

we have a2a2k−1 = 1. Inductively, one can obtain the relations aia2k−i+1 = 1 for

1 ≤ i ≤ k.

To get the relations ak+ia3k−i+1 = 1 for 1 ≤ i ≤ k, combine the equations

B′1 = ak+1bk+1bk+2 · · · b3kc3ka3k = 1,

B′0 = bk+1bk+2 · · · b3k = 1,

and c3k = 1, we have ak+1a3k = 1. Then, consider the relation

B′2 = ak+1bk+2bk+3 · · · b3k−1c3k−1a3k = 1

together with the equation ak+1a3k = 1, we obtain

bk+2bk+3 · · · b3k−1c3k−1 = 1.

Then, by inserting it into

B′3 = ak+2bk+2bk+2 · · · b3kc3k−1a3k−1 = 1

we have ak+2a3k−1 = 1. Continuing in this way, we conclude that ak+ia3k−i+1 = 1

for 1 ≤ i ≤ k.

We next show that bi+1bi+2 · · · b2k−i = [a2k+1−i, b2k+1−i][a2k+2−i, b2k+2−i] · · · [a2k, b2k]
for 1 ≤ i ≤ k − 1. Since we have the equations

B2i = aibi+1bi+2 · · · b2k−ic2k−ia2k+1−i = 1

and aia2k−i+1 = 1 then it follows that

bi+1bi+2 · · · b2k−i = c−12k−i.
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This actually gives the required relation by the definition of c2k−i.

The last equation (4.18) comes from the relations

ak+ia3k−i+1 = 1

and

B′2i = ak+ibk+i+1bk+i+2 · · · b3k−ic3k−ia3k+1−i = 1

for 1 ≤ i ≤ k − 1 in a similar way.

Corollary 4.2.2. The first homology group H1(X(k);Z) of X(k), is isomorphic to

Z2k.

Proof. Observe that ak+i for all i = 1, . . . , 2k can be written in terms of aj for

j = 1, . . . , k by the relation (4.16) in the Lemma 4.2.1. The abelianization of the rela-

tion (4.17) gives rise to the equation bj+1 = −b2k−j for each j = 1, . . . , k−1. Further-

more, it follows from the abelianization of the relation (4.18) that bk+j+1 = −b3k−j
for each j = 1, . . . , k − 1. One can easily observe that bk+i for all i = 1, . . . , 2k can

be written also in terms of bj for j = 1, . . . , k. This finishes the proof.

Theorem 4.2.3. Let X(k) → S2 be the genus-3k Lefschetz fibration constructed

above. The 4-manifoldX(k) is diffeomorphic to Σk×S2#6CP2
for all k non-negative

integers.

Proof. Using H1(X(k);Z) ∼= Z2k and some other topological invariants that we ob-

tained above, one can easily compute that b1(X(k)) = 2k and b+2 (X(k)) = 1 . When

k = 1, we showed that the total space X of the Lefschetz fibration with the factoriza-

tion W = W1 is diffeomorphic to T2 × S2#6CP2
in Theorem 3.1.1.

When k = 2, we will show thatX(2) is diffeomorphic to a blow-up of a ruled surface.

Assuming that X(2) is not diffeomorphic to (a blow-up of) a ruled surface, then

X(2) ∼= X̃(2)#mCP2
where X̃(2) is the minimal model ofX(2) andm is some non-

negative integer. It is easily computed that c21(X̃(2)) = c21(X(2)) + m = −14 + m.

By Theorem 2.1.18, since the minimal 4-manifold X(2) is neither rational nor ruled

then c21(X̃(2)) = −14 + m ≥ 0, which implies that m ≥ 14. On the other hand,

it follows from Theorem 2.1.19 that m ≤ 2g − 2 = 10, where g is the genus of the
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Lefschetz fibration X(2) → S2, which is 6. since X(2) is not rational nor ruled then

it admits m disjoint exceptional spheres. This yields a contradiction.

Lastly, when k > 2 since e(X(k)) < 0, X(k) is diffeomorphic to a blow-up of a

ruled surface by Theorem 2.1.20. Thus using the signature and Euler characteristic of

X(k), we can deduce that X(k) is diffeomorphic to Σk × S2#6CP2
. Therefore, the

fundamental group π1(X(k)) of X(k) that has the representation in Lemma(4.2.1) is

isomophic to the surface group π1(Σk).

4.2.0.2 Construction of fibered exotic (4k2 − 2k + 1)CP2#(4k2 + 4k + 7)CP2,

using genus-3k fibration on Σk × S2#6CP2

To produce exotic 4-manifolds (4k2−2k+1)CP2#(4k2+4k+7)CP2
which carry the

Lefschetz fibration structure, we will perform sufficiently many twisted fiber sums of

the genus-3k Lefschetz fibration X(k) to get a simply-connected 4-manifold.

Theorem 4.2.4. There exist new minimal symplectic exotic copies of (4k2 − 2k +

1)CP2#(4k2 + 4k+ 7)CP2
admitting genus-3k Lefschetz fibration structure for each

integer k ≥ 1.

Proof. We start with the Lefschetz fibration X(k) = Σk × S2#6CP2
, we can choose

a diffeomorphism in such a way that when we perform twisted fiber sum of Wk,

the word induced by conjugating Wk with this diffeomorphism kills some genera-

tors of the fundamental group π1(Xk). Consider the disjoint vanishing cycles B2k

and B′2k, one can find the diffeomorphisms fi(B2k) = ai, fi(B′2k) = bi+1 for each

i = 1, . . . , k − 1 and fk(B2k) = ak and fi(B′2k) = b1 by the classification of sur-

faces where ai, bi’ s are the generators of π1(Xk) as in Figure 4.3 and the curves

B2k and B′2k are depicted in Figure 4.2. We obtain the monodromy factorization

WkW
f1
k . . .W fk

k by conjugating such diffeomorphisms. Let Xk+1
k be the correspond-

ing total space of the Lefschetz fibration to the monodromy factoricationWkW
f1
k · · ·W

fk
k .

Using the theory of Lefschetz fibrations and the existence of a section, the fundamen-

tal group π1(Xk+1
k ) of Xk+1

k is a quotient of π1(Xk) that is the surface group with

generators ai, bi for i = 1, . . . , k. The conjugated words W fi
i induce the additional

relations containing fi(B2k) = ai = 1, fi(B′2k) = bi+1 = 1 for each i = 1, . . . , k− 1,
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fk(B2k) = ak = 1 and fi(B′2k) = b1 = 1. So, the additional relations induced by

conjugated monodromy factorizations kill all generators ai, bi for i = 1, . . . , k, which

makes π1(Xk+1
k ) is trivial. The other topological invariants can be computed using

the fiber sum computations as follows:

e(Xk+1
k ) = e(S2)e(Σ3k) + #singular fibers

= 2(2− 6k) + (k + 1)(8k + 6) = 8k2 + 2k + 10,

σ(Xk+1
k ) = (k + 1)σ(X(k)) = (k + 1)(−6) = −6k − 6,

c21(X
k+1
k ) = 3σ(Xk+1

k ) + 2e(Xk+1
k ) = 16k2 − 14k − 16,

χh(X
k+1
k ) = (σ(Xk+1

k ) + e(Xk+1
k ))/4 = 2k2 − k + 1.

Using Theorem 2.1.21, Xk+1
k is homeomorphic to (4k2 − 2k + 1)CP2#(4k2 + 4k +

7)CP2
for any integer k > 0. Theorem (2.1.11) (or Proposition 2.1.12) implies the

minimality of Xk+1
k , so they are not diffeomorphic to (4k2 − 2k + 1)CP2#(4k2 +

4k + 7)CP2
for any integer k > 0.

Remark 4.2.5. Further fibered minimal exotic examples can be constructed using

other genus-3k Lefschetz fibrations over S2 and performing lantern substitutions.

4.2.0.3 Construction of exotic, not fibered, (4k − 1)CP2#(4k + 5)CP2 using

genus-3k fibration on Σk × S2#6CP2

To construct exotic copies of (4k−1)CP2#(4k+5)CP2
for any positive integer k, we

will use the following family of symplectic building block. It is obtained from Σ3k ×
T2 by performing a sequence of torus surgeries. Also, our computations are similar

to the some computations in [8]. Let us denote this construction by Yk(1/p,m/q)

which is smooth 4-manifold obtained by performing the following 6k-torus surgeries

on Σ3k × T2 for fixed integers m, k ≥ 1 and p, q ≥ 0:

(β′1 × c′′, β2k,−1), (α′′3k × d′, d′,m/q),

(β′2 × c′′, β2k+1,−1), (α′1 × c′, α′1,−1),

(β′3 × c′′, β2k+2,−1), (α′2 × c′, α′2,−1),

. . . , . . .
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(β′k × c′′, β3k−1,−1), (α′k−1 × c′, α′k−1,−1),

(β′k+1 × c′′, β1,−1), (α′k × c′, α′k,−1),

(β′k+2 × c′′, β2,−1), (α′k+1 × c′, α′k+1,−1),

. . . , . . .

(β′2k × c′′, βk,−1), (α′2k−1 × c′, α′2k−1,−1),

(β′2k+1 × c′′, βk+1,−1), (α′2k × c′, α′2k,−1),

(β′2k+2 × c′′, βk+2,−1), (α′2k+1 × c′, α′2k+1,−1),

. . . , . . .

(β′3k−1 × c′′, β2k−1,−1), (α′3k−2 × c′, α′3k−2,−1),

(α′3k × c′, c′, 1/p), (α′3k−1 × c′, α′3k−1,−1),

where αi, βi, i = 1, 2 . . . 3k and c, d are the generators of π1(Σ3k) and π1(T2), re-

spectively. When we set m = 1, the above torus surgeries are Luttinger surgeries

and in this case the Luttinger surgery preserves the minimality and can be performed

symplectically as explained in Subsection 2.1.22.

Figure 4.4: Lagrangian tori β′i × c′′ and α′i × c′

The fundamental group of the resulting manifold Yk(1/p,m/q) is generated by αi, βi,

i = 1, 2 . . . 3k and c, d and it has the following relations:

[α−11 , d] = β2k, [α
−1
2 , d] = β2k+1, · · · , [α−1k , d] = β3k−1,

[α−1k+1, d] = β1, [α
−1
k+2, d] = β2, · · · , [α−13k−1, d] = β2k−1,

[c−1, β3k]
−m = dq, [β−11 , d−1] = a1, [β

−1
2 , d−1] = α2,
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· · · , · · ·

[β−13k−1, d
−1] = α3k−1, [d

−1, β−13k ] = cp, [βj, c] = 1,

[α3k, d] = 1, [αj, c] = 1, [α3k, c] = 1,

[α1, β1][α1, β1] · · · [α3k, β3k] = 1, [c, d] = 1. (4.19)

where 1 ≤ j ≤ 3k − 1.

Theorem 4.2.6. There exist new smooth exotic copies of (4k− 1)CP2#(4k+ 5)CP2
.

Proof. Consider the symplectic manifoldX(k) constructed above (Subsection 4.2.0.1)

with a genus-3k symplectic submanifold Σ3k, a regular fiber coming from its genus-

3k Lefschetz fibration structure (Theorem 4.2.3) and the symplectic 4-manifold Yk(1, 1)

which we obtained by performing torus surgeries from Σ3k×T2 where p = q = m =

1 above with the symplectic submanifold Σ′3k that is a copy of Σ3k×{pt} in Yk(1, 1).

Let Z(k) be the 4-manifold obtained by symplectic fiber sum of X(k) and Yk(1, 1)

along the surfaces Σ3k and Σ′3k. We need to find an orientation-reversing gluing dif-

feomorphism to perform symplectic fiber sum such that Z(k) is simply-connected.

Recall from the Lemma 4.2.1 ai, bi (i = 1, . . . , 3k) are the generators of π1(X(k)) ∼=
π1(Σk × S2#6CP2

) ∼= π1(Σk) but the generators ai, bi (k + 1 ≤ i ≤ 3k) are nullho-

motopic. π1(X(k) \ υΣ3k) is isomorphic to the fundamental group π1(X(k)) since

the genus-3k Lefschetz fibration X(k) → S2 admits a section and hence the normal

circle to Σ3k, denote it by λ is nullhomotopic in π1(X(k) \ υΣ3k). The generators

of π1(Yk(1, 1)) are αi, βi, c and d for i = 1, . . . , 3k and π1(Yk(1, 1)) has the relations

(4.19). Choose a base point p of π1(Yk(1, 1)) on ∂υΣ′3k
∼= Σ′3k×S1 in such a way that

π1(Yk(1, 1) \ Σ′3k, p) is normally generated by αi, βi, c and d for i = 1, . . . , 3k. One

can perform above tori surgeries such that Σ′3k ⊂ Yk(1, 1) is disjoint from all tori surg-

eries performed. Hence the relations in (4.19) still hold in π1(Yk(1, 1)\Σ′3k, p) except

for [c, d] = 1, which represents a meridian, denote it by λ′, in π1(Yk(1, 1) \ Σ′3k, p).

Now, choose the gluing diffeomorphism ϕ : ∂(Σ3k) → ∂(Σ′3k) mapping the genera-

tors of π1 as follows:

ai 7→ αi
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bi 7→ βi

λ 7→ λ′

By Van Kampen’s theorem, the fundamental group π1(Z(k)) of the resulting 4-manifold

Z(k) = (X(k) \ υΣ3k ∪ϕ Yk(1, 1) \ υΣ′3k) is isomorphic to

π1(Z(k)) ∼=
π1(X(k) \ υΣ3k ∗ π1(Yk(1, 1) \ Σ′3k)

〈ai = αi, bi = βi, λ = λ′〉
.

One can conclude that π1(Z(k)) admits a presentation with generators ai, bi (i =

1, . . . , 3k), c and d and the relations (4.16), (4.17), (4.18) and relations (4.19) hold

in π1(Z(k)). Keep in mind ai = αi, bi = βi, λ = λ′ and [c, d] = λ′, it is enough to

prove that c = d = 1 in π1(Z(k)) to show that π1(X(k)) is trivial using the relations

in (4.19). To do this, first consider the relations in (4.19)

[a3k, d] = 1, [a−1k+1, d] = b1

and the relation in (4.16)

a3k = a−1k+1,

which yields b1 = 1. Next, since [b−11 , d−1] = a1 in (4.19) then a1 = 1. Also, using

the relations

a1a2k = a2ka2k+1 = 1,

we have a2k = a2k+1 = 1 by relations (4.19). Using these equations, it can be

obtained that

bk = bk+1 = 1

since [a−12k , d] = bk and [a−12k+1, d] = bk+1. Using the relation in (4.19) [b−1k , d−1] = ak

and bk = 1, we get

ak = 1.

Also, since [a−1k , d] = b3k−1 in (4.19) and ak = 1 then

b3k−1 = 1.

Similarly, the relations [b−13k−1, d
−1] = a3k−1 and b3k−1 = 1 give the equation

a3k−1 = 1.
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Recall that we found ak = 1, using equations [ak, ak+1] = [ak+1, a3k] = 1, we get

a3k = 1.

Now, the relation (4.18) gives the relation

bk+2bk+3 · · · b3k−1 = [a3k−1, b3k−1][a3k, b3k]

and we have the relation

bk+1bk+2 · · · b3k = 1

coming from vanishing cycle B′0 in Figure 4.2. So, they result in the relations

bk+2bk+3 · · · b3k−1 = bk+1bk+2 · · · b3k = 1

using a3k−1 = a3k = 1. Then we get

bk+1b3k = 1,

which impiles that b3k = 1 using bk+1 = 1. Finally, we can obtain that

c = d = 1

by using the relations [c−1, b3k] = d and [d−1, b−13k ] = c. Therefore, the following

relations

[b−1i , d−1] = ai, i = 1, . . . , 3k − 1

[a−1i , d] = b2k−1+i, i = 1, . . . , k

[a−1i , d] = bi−k, i = k + 1, . . . , 3k − 1

coming from the equations (4.19) prove that π1(Z(k)) = 1 .

Using the fact that Luttinger surgery preserves the Euler characteristic and the signa-

ture by Lemma 2.1.22, the topological invariants of Z(k) are computed as follows:

e(Z(k)) = e(X(k)) + e(Yk(1, 1))− 2e(Σ3k) = 6 + 8k,

σ(Z(k)) = σ(Z(k)) + σ(Yk(1, 1)) = −6,

c21 = 3σ(Z(k)) + 2e(Z(k)) = 6 + 16k,

χh(Z(k)) = (σ(Z(k)) + e(Z(k)))/4 = 2k.

Using Theorem 2.1.21, Z(k) is homeomorphic to (4k−1)CP2#(4k+5)CP2
for pos-

itive integer k. Since Z(k) is symplectic and b+2 (Z(k)) ≥ 2 then the Seiberg-Witten
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invariant of the canonical class of Z(k) is ±1 by Theorem 2.1.23 . However, the

Seiberg-Witten invariant of the canonical class of (4k− 1)CP2#(4k + 5)CP2
is triv-

ial by Theorem 2.1.24. Hence, we distinguish Z(k) with (4k− 1)CP2#(4k+ 5)CP2

up to diffeomorphism, since Seiberg-Witten invariant is a diffeomorphism invariant.

Also, we replace 4-manifold Yk(1, 1) with Yk(1,m) in our construction above, where

the integerm 6= 1 to construct an infinitely many exotic copies of (4k−1)CP2#(4k+

5)CP2
.
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CHAPTER 5

THE NUMBER OF SINGULAR FIBERS IN HYPERELLIPTIC

LEFSCHETZ FIBRATIONS

This chapter is devoted to hyperelliptic Lefschetz fibrations over a sphere, which are a

special kind of Lefschetz fibration. More precisely, we examine the minimal number

of singular fibers in genus-g hyperelliptic Lefschetz fibrations over a sphere. We

obtain some results about them when g = 4, 5, 6, 7, 8, 9 and 10. We next focus on the

minimal number of singular fibers in genus-g holomorphic hyperelliptic Lefschetz

fibrations over a sphere. In this case, we obtain the exact values of the minimal

number of singular fibers in such Lefschetz fibrations for even genus g ≥ 4 and

improve a lower bound for them for odd genus g ≥ 5. Since the total spaces of

homolorphic Lefschetz fibrations carry complex structures, then we give a summary

of the Enrique-Kodaira classification of complex surfaces, which is crucial in proving

our results in holomorphic cases.

5.1 Preliminaries

In this chapter we focus on a special kind of Lefschetz fibrations called hyperelliptic

Lefschetz fibrations. First, we present some definitons and properties related to them.

Definition 5.1.1. The hyperelliptic mapping class group of a genus-g surface Σg,

denoted by HModg, is the group of mapping classes of Σg that commute with the

hyperelliptic involution ι (as defined in Subsection 2.1.2.2).

Definition 5.1.2. A genus-g Lefschetz fibration is said to be hyperelliptic if its van-

ishing cycles are invariant under some hyperelliptic involution.
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It follows that for a genus-g hyperelliptic Lefschetz fibration over S2 with global mon-

odromy

ta1ta2 · · · tan = 1,

there exists a mapping class φ ∈ Modg such that φtaiφ
−1 ∈ HModg for all i =

1, 2, . . . , n.

5.1.1 First homology group of the hyperelliptic mapping class group

We collect some useful facts about the first homology group of the hyperelliptic map-

ping class group.

Recall that for any group G, the first homology group with integral coefficients,

H1(G;Z) = G/[G,G],

is the abelianization of the group G, where [G,G] is the commutator subgroup of

G, which is the subgroup generated by all commutators [a, b] = aba−1b−1 for all

a, b ∈ G. It is known that H1(Modg;Z) is generated by the class of a Dehn twist

about a nonseparating simple closed curve and also we have the following lemma:

Lemma 5.1.3. For a closed orientable surface of genus g ≥ 1, the first homology

group H1(Modg;Z) of the mapping class group Modg

H1(Modg;Z) =


Z/12, if g = 1,

Z/10, if g = 2,

0, if g ≥ 3.

For further details about the homology groups of the mapping class group and the

proof of the Lemma 5.1.3, see [44].

The following lemma can be proven from the presentation of hyperellipitic mapping

class group [17].

Lemma 5.1.4. For a closed orientable genus-g surface, the first homology group

H1(HModg;Z) of the hyperelliptic mapping class group HModg is

H1(HModg;Z) =

Z/4(2g + 1), if g is odd,

Z/2(2g + 1), if g is even.
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All right Dehn twists about nonseparating hyperelliptic simple closed curves on Σg

are nontrivial in the hyperelliptic mapping class group HModg of Σg and each of

them maps to the same generator in H1(HModg) under the quotient map HModg →
H1(HModg). Note that, by the even chain relation, a right handed Dehn twist about

the separating simple closed curve of type h in HModg can be written as a product

of 2h(4h + 2) right Dehn twists about the nonseparating simple closed curves. The

following lemma is from this observation.

Lemma 5.1.5. Let n be the number of nonseparating and sh be the number of sepa-

rating vanishing cycles of type h in a factorization of the identity in HModg. Then

n+

[g/2]∑
h=1

2h(4h+ 2)sh ≡

0 (mod 4(2g + 1)) if g is odd,

0 (mod 2(2g + 1)) if g is even.
(5.1)

5.1.2 Signatures of hyperelliptic Lefschetz fibrations

Here we review the signatures of hyperelliptic Lefschetz fibrations.

Lemma 5.1.6. [26, 54, 55] Let (X, f) be a genus-g hyperelliptic Lefschetz fibration

over S2. Let n and s =
∑[g/2]

h=1 sh be the numbers of nonseparating and separat-

ing vanishing cycles of this fibration, respectively, where sh denotes the number of

separating vanishing cycles of type h. Then the signature of X is

σ(X) = − g + 1

2g + 1
n+

[g/2]∑
h=1

(
4h(g − h)

2g + 1
− 1)sh. (5.2)

Lemma 5.1.7. [57] For any 4-manifold X admitting a genus-g Lefschetz fibration

over S2 or D2, σ(X) ≤ n− s.

Lemma 5.1.8. [57] For any 4-manifoldX admitting a genus-g hyperelliptic Lefschetz

fibration over S2, σ(X) ≤ n− s− 4.

Lemma 5.1.9. [19] For any 4-manifold X admitting a genus-g Lefschetz fibration

over S2,

σ(X) ≤ n− s− 2(2g − b1(X)).

It can be easily obtained that σ(X) ≤ n − s − 2 using b1(X) ≤ 2g − 1 by the

handlebody decomposition of Lefcshetz fibrations.

55



Recall that the topological invariant c21(X) = 3σ(X) + 2e(X) of a symplectic 4-

manifold satisfies the following inequalities.

Theorem 5.1.10. [63] Any relatively minimal nontrivial Lefschetz fibration X over

S2 satisfies c21(X) ≥ 4− 4g.

Theorem 5.1.11. [49] Let X be a relatively minimal Lefschetz fibration of genus g

over a surface of genus-h. If X is not rational nor ruled then

c21(X) ≥ 2(g − 1)(h− 1),

and it is sharp if h = 0.

Theorem 5.1.12. [42] Let Σg and Σh be closed, oriented surfaces with h ≥ 1 and let

Σh be connected. If f : Σg → Σh be a continuous map of degree d, then

d |e(Σh)| ≤ |e(Σg)|.

Theorem 5.1.13. [63] If (X, f) be a relatively genus-g Lefschetz fibration over S2

then the fiber sum X#X is minimal.

Theorem 5.1.14. [64] For any genus-g Lefschetz fibration X → S2 with homologi-

cally essential fiber F , the homology class [F ] is primitive.

5.1.3 The number of singular fibers in Lefschetz fibrations

In this section, we collect some results about the number singular fibers in Lefschetz

fibrations.

Recall that for any genus-g Lefschetz fibration, n and s denote the number of nonsep-

arating and separating vanishing cycles, respectively.

Lemma 5.1.15. [49] If any Lefschetz fibration of genus g has σ ≥ −(n + s) + 4, it

has

(i) b1 ≤ 2g − 2,

(ii) b1 ≤ (n+ s)− 2,

(iii) b+2 ≤ n− 3,
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(iv) σ ≤ n− s− 4.

Theorem 5.1.16. [64] LetX → S2 be a nontrivial Lefschetz fibration of genus g with

b+2 = 1.

(1) If g ≥ 6 is even, then it admits at least 2g+4 singular fibers. (This lower bound

is sharp.)

(2) If g ≥ 15 is odd, then it admits at least 2g + 10 singular fibers. (This lower

bound is sharp.)

(3) If g ≥ 9 is odd, then it contains at least 2g + 6 singular fibers.

Theorem 5.1.17. [18] LetX → S2 be a nontrivial Lefschetz fibration of genus g ≥ 1.

Then X → S2 has at least 1
5
(8g − 3) nonseparating vanishing cycles.

Let Ng be the minimal number of singular fibers in a genus-g Lefschetz fibration over

S2. Combining the results about Ng, we have the following theorem:

Theorem 5.1.18. [46, 15, 70, 18, 19, 43] For the number Ng the following holds.

(i) N1 = 12.

(ii) N2 = 7.

(iii) (a) 1
5
(8g − 3) ≤ Ng ≤ 2g + 4 if g ≥ 4 is even.

(b) 1
5
(8g − 3) ≤ Ng ≤ 2g + 10 if g ≥ 3 is odd.

Therefore, if g ≥ 3 then the exact value of Ng has not been known yet.

If we restrict ourselves to hyperelliptic Lefschetz fibrations over a sphere then we

have the following estimates for the minimal number of singular fibers, denote it by

Nh
g :

Theorem 5.1.19. [46, 15, 70, 14, 18, 19, 43] For the number Nh
g the following holds.

(i) Nh
1 = 12.

(ii) Nh
2 = 7.
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(iii) Nh
3 = 12.

(iv) (a) 1
5
(8g − 3) ≤ Nh

g ≤ 2g + 4 if g ≥ 4 is even.

(b) 1
5
(8g − 3) ≤ Nh

g ≤ 5g − 3 if g ≥ 5 is odd.

Since all genus-g Lefschetz fibrations are hyperelliptic for g = 1, 2, Nh
1 = N1 = 12

and Nh
2 = N2 = 7. For even g ≥ 4, the upper bound comes from the generalized

Matsumoto’s fibration explained in Subsection 2.1.4. However, the generalized Mat-

sumoto’s fibration is not hyperelliptic for odd g ≥ 3. Recently, Korkmaz constructed

a genus-g hyperelliptic Lefschetz fibration over a sphere with 5g − 3 singular fibers.

Therefore, the upper bound for the number Nh
g is 5g − 3 for odd g ≥ 5.

5.1.4 Classification of complex surfaces

In section 5.3, we examine the minimal number of singular fibers in a genus-g hyper-

elliptic holomorphic Lefschetz fibrations over S2. The classification of complex sur-

faces helps us to determine the total spaces of hyperelliptic holomorphic Lefschetz fi-

brations. For further information about the classification of complex surfaces see [12].

The Kodaira dimension κ takes four values −∞, 0, 1 and 2 and so it divides com-

plex surfaces into four classes. Starting from the coarse classification using Kodaira

dimension, complex surfaces are divided into ten classes by Enriques-Kodaira classi-

fication.

Theorem 5.1.20. Every minimal complex surface is in exactly one of the classes

(1) − (10) in the following table. The minimal model of the complex surfaces is

unique, up to isomorphism, except for the complex surfaces with minimal models in

the classes (1) and (3).
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The class of X κ(X) b1(X) c21(X) e(X)

(1) minimal rational surfaces −∞ 0 8 or 9 4 or 3

(2) minimal surfaces of class VII −∞ 1 ≤ 0 ≥ 0

(3) ruled surfaces of genus g ≥ 1 −∞ 2g 8(1− g) 4(1− g)

(4) Enriques surfaces 0 0 0 12

(5) hyperelliptic surfaces 0 2 0 0

(6) Kodaira surfaces-g ≥ 1 0 1 or 3 0 0

(7) K3-surfaces 0 0 0 24

(8) tori 0 4 0 0

(9) minimal properly elliptic surfaces 1 0 ≥ 0

(10) minimal surfaces of general type 2 ≡ 0 mod 2 > 0 > 0

Recall that the holomorphic Euler characteristic χh of a manifold X is given by

χh =
σ(X) + e(X)

4
=
c21(X) + e(X)

12
.

In the above table the minimal model of a complex surface with χh < 0 is a minimal

surface of class V II (the class (2) in the Table) or a ruled surface of genus g ≥ 1 (the

class (3) in the Table). It is known that closed symplectic 4-manifolds have b+2 > 0

([38], p.390). Therefore, it follows from surfaces of class V II have b2 = 0 that

they do not carry a symplectic structure. One can conclude that the minimal model

of a complex surface with χh < 0 is a ruled surface of genus g ≥ 1 if it admits a

symplectic structure.

The minimal model of a ruled surface is an S2 bundle over a Riemann surface of genus

g ≥ 0. By Theorem 5.1.20, this minimal model is not unique. It is known that there

are exactly two minimal models of ruled surfaces of genus g, the trivial bundle Σg×S2

and the nontrivial bundle Σg n S2. It follows from Theorem 2.1.16 and Theorem

2.1.17 that for k > 0, Σg × S2#kCP 2 and Σg n S2#kCP 2 are symplectomorphic.

In a nutshell, it follows from the fact that the holomorphic Euler characteristic χh is

invariant under blow ups that a non minimal symplectic complex surface with χh < 0

is Σg × S2#kCP 2 for some positive integers g and k.
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5.2 The minimal number of singular fibers in hyperelliptic Lefschetz fibrations

over a sphere

In this section, we determine the minimal number of singular fibers in some hyperel-

liptic Lefschetz fibrations over S2. Let Nh
g be denote the minimal number of singular

fibers in a hyperelliptic Lefschetz fibration over S2.

Lemma 5.2.1. The 4-manifold Σ2×S2#3CP 2 does not admit any Lefschetz fibration

of genus 4 over S2.

Proof. Suppose that Σ2 × S2#3CP 2 admits a genus-4 Lefschetz fibration and con-

sider the homology class of a regular fiber F . We may write

[F ] = a[U ] + b[V ] +
3∑
i=1

ci[Ei] ∈ H2(Σ2 × S2#3CP 2;Z),

where [U ], [V ] and [Ei] denote the homology classes of the section and fiber of the

ruling Σ2 × S2 → Σ2 and Ei is the exceptional class of the ith blow-up such that

[U ]2 = [V ]2 = 0, [U ] · [V ] = 1, a,b and ci are some integers.

The composition of the blowing down and the projection map Σ2 × S2 → Σ2 leads a

degree-d map F → Σ2. The degree must be a. Moreover, since the fiber of S2-bundle

Σ2 × S2 → Σ2 has pseudo-holomorphic representative [48] then the degree of the

map F → Σ2 is positive by the positivity of intersection.

Consider a singular fiber F . Since the normalization of F has genus ≤ 3, by Theo-

rem 5.1.12, for such a degree-d map yields to inequality

3− 1 ≥ g(F )− 1 ≥ d(h− 1) = a(2− 1),

where g(F ) is the genus of the fibers F . Therefore, 0 < d = a ≤ 2.

Since [F ]2 = 0, we have

2ab =
3∑
i=1

c2i . (5.3)

Since the symplectic structure on Σ2 × S2#3CP 2 is unique up to deformations and

diffeomorphism we can apply the adjunction formula

2g(F )− 2 = [F ]2 + [K] · [F ]
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where [K] = −2[U ] + (2h−2)[V ] + [E1] + [E2] + [E3] is the canonical bundle where

h = g(Σ2) = 2. In this case the adjunction formula is

2g(F )− 2 = 2ah− 2a− 2b−
3∑
i=1

ci. (5.4)

Thus, for g(F ) = 4, h = 2 , we have

6 = 2a− 2b−
3∑
i=1

ci. (5.5)

If a = 0, then ci = 0 by the identity (5.3) , which implies that [F ] = b[V ]. Also,

by Theorem 5.1.14, b = ±1. However, [F ] cannot be represented by a smoothly

embedded sphere [58].

For a = 1, by the identities (5.3) and (5.5) we have

3∑
i=1

c2i = 2b and
3∑
i=1

ci = −4− 2b,

which leads to
3∑
i=1

c2i +
3∑
i=1

ci = −4.

Hence
3∑
i=1

(ci +
1

2
)2 = −13

4
, which is not possible.

In the case a = 2, using the identities (5.3) and (5.5), we have the following equalities:

4b =
3∑
i=1

c2i and 2 = −2−
3∑
i=1

ci,

which gives
3∑
i=1

c2i + 2
3∑
i=1

ci = −4.

Thus, the resulting equality is
3∑
i=1

(ci+1)2 = −1, which is a contradiction. Therefore,

this shows that Σ2 × S2#3CP 2 does not admit a genus-4 Lefschetz fibrations over

S2.

Lemma 5.2.2. The 4-manifold Σ3×S2#3CP 2 does not admit any Lefschetz fibration

of genus 7 over S2.
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Proof. Suppose that Σ3 × S2#3CP 2 admits such a Lefschetz fibration and consider

the homology class of a regular fiber F . We may write

[F ] = a[U ] + b[V ] +
3∑
i=1

ci[Ei] ∈ H2(Σ3 × S2#3CP 2;Z),

where [U ], [V ] and [Ei] denote the homology classes of the section and fiber of the

ruling Σ3 × S2 → Σ3 and ei is the exceptional class of the ith blow-up such that

[U ]2 = [V ]2 = 0, [U ] · [V ] = 1, a,b and ci are some integers.

The composition of blowing down and the projection map Σ3 × S2 → Σ3 give rise

to a degree-d map F → Σ3. The degree d must be a. Also, since the fiber of any

S2-bundle has pseudo-holomorphic representative [48] then the degree of the map

F → Σ2 is positive by the positivity of intersection.

Let F be a singular fiber. Since the normalization of F has genus≤ 6, Theorem 5.1.12

yields to the inequality

6− 1 ≥ g(F )− 1 ≥ a(3− 1).

This implies that a ≤ 2.

Since [F ]2 = 0, we have

2ab =
3∑
i=1

c2i (5.6)

Also, applying the adjunction formula (5.4) for g(F ) = 7 and h = g(Σ3) = 3, we get

12 = 4a− 2b−
3∑
i=1

ci. (5.7)

If a = 0, then ci = 0. In this case [F ] = b[V ]. It follows from Theorem 5.1.14 that

b = ±1. But the homology class [F ] can not be represented by a smoothly embedded

sphere [58].

For a = 1, the identities (5.6) and (5.7) imply that

3∑
i=1

c2i = 2b and
3∑
i=1

ci = −8− 2b.
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Therefore, we get
3∑
i=1

c2i +
3∑
i=1

ci = −8.

This yields to
3∑
i=1

(ci +
1

2
)2 = −29

4
, which is a contradiction.

In the case a = 2, the identities (5.6) and (5.7) result in

3∑
i=1

c2i = 4b and
3∑
i=1

ci = −4− 2b

implying that
3∑
i=1

(ci + 1)2 = −5, which is a contradiction. This proves that the

manifold Σ3 × S2#3CP 2 does not admit a genus-7 Lefschetz fibrations over S2.

Since the number Nh
g is known for g ≤ 3 (Theorem 5.1.19), we will examine Nh

g for

g ≥ 4.

Theorem 5.2.3. Let Nh
g be the minimal number of singular fibers in a hyperelliptic

Lefschetz fibration over S2. Then

1. Nh
4 = 12,

2. Nh
5 ≥ 15,

3. Nh
6 = 16,

4. Nh
7 ≥ 17,

5. Nh
8 ∈ {19, 20},

6. Nh
9 ≥ 24,

7. Nh
10 ∈ {23, 24}.

Proof. The proof is divided into a series of lemmas, Lemma 5.2.4-Lemma 5.2.10.

Lemma 5.2.4. Nh
4 = 12.
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Proof. Assume that Nh
4 < 12, so that we have a hyperelliptic genus-4 Lefschetz

fibrationX . Let n and s = s1+s2 denote the number of nonseparating and separating

vanishing cycles. Hence n+ s < 12.

The equation (5.1) leads to n+12s1+4s2 ≡ 0 (mod 18), so that n is even. Moreover,

we have n ≥ 6 using Theorem 5.1.17. The signature and the Euler characteristic are

given as

σ(X) =
−5n+ 3s1 + 7s2

9

and

e(X) = 4− 4g + n+ s = −12 + n+ s1 + s2.

The possible values of (n, s1, s2) and e(X), σ(X), c21(X) are as follows:

(n, s1, s2) e(X) σ(X) c21(X)

(1) (6,1,0) -5 -3 -19

(2) (6,4,0) -2 -2 -10

(3) (6,0,3) -3 -1 -9

(4) (8,2,1) -1 -3 -11

We now rule out all cases:

Case (1). In this case, c21(X) = −19 < 4 − 4g = −12. This contradicts to Theo-

rem 5.1.10.

Cases (2)-(4). In these cases, c21(X) < 2− 2g = −6. Theorem 5.1.11 implies that X

is a blow up of a rational or ruled surface. Moreover, using the inequality in Lemma

5.1.9, one can conclude that X can not be simply-connected and so it is a blow up of

a ruled surface. Thus we have b+2 (X) = 1. The equalities

e(X) = 2− 2b1(X) + b+2 (X) + b−2 (X) = 3− 2b1(X) + b−2 (X)

σ(X) = b+2 (X)− b−2 (X) = 1− b−2 (X)

imply that b1(X) = 4. But, then in the cases (2) and (3), the inequality in Lemma

5.1.9

σ(X) ≤ n− s− 2(2g − b1(X)) = n− s− 8
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does not hold. In the case (n, s1, s2) = (8, 2, 1), since (b1(X), b+2 , b
−
2 ) = (4, 1, 4), X

is diffeomorphic to Σ2 × S2#3CP 2, which is impossible by Lemma 5.2.1.

Since there is a hyperelliptic genus-4 Lefschetz fibration with 12 singular fibers by

Theorem 5.1.19, Nh
4 = 12.

Lemma 5.2.5. Nh
5 ≥ 15.

Proof. Suppose that Nh
5 < 15 so that we have a hyperelliptic genus-5 Lefschetz

fibration X . Let n and s = s1 + s2 be the number of nonseparating and separating

vanishing cycles. Hence n+ s < 15.

The equation (5.1) turns out

n+ 12s1 − 4s2 ≡ 0 (mod 44)

so that n is divided by 4. It follows from the Theorem 5.1.17 that n ≥ 8. The

signature and the Euler characteristic are computed as

σ(X) =
−6n+ 5s1 + 13s2

11

and

e(X) = 4− 4g + n+ s = −16 + n+ s1 + s2.

Hence the possible values of (n, s1, s2) are as follows:

(n, s1, s2) e(X) σ(X) c21(X) χh(X)

(1) (8,2,0) -6 -2 -18 -2

(2) (8,3,0) -5 -3 -19 -2

(3) (8,1,5) -2 2 2 0

(4) (8,4,3) -1 1 1 0

We now eliminate all cases:

Case (1), (2). In these cases, c21(X) < 4 − 4g = −16. This is impossible by Theo-

rem 5.1.10.

Case (3), (4). In these cases, σ(X) > n − s − 4. This contradicts to Lemma 5.1.8.

Therefore, Nh
5 can not be less than 15.
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Lemma 5.2.6. Nh
6 = 16.

Proof. Suppose that Nh
6 < 16 so that we have a hyperelliptic genus-6 Lefschetz

fibration X . Let n and s = s1 + s2 + s3 denote the number of nonseparating and

separating vanishing cycles, respectively. Thus, n+ s < 16. The equation (5.1) turns

out to be

n+ 12s1 + 14s2 + 6s3 ≡ 0 (mod 26),

so that n is even. The signature formula and the Euler characteristic computation give

rise to

σ(X) =
−7n+ 7s1 + 19s2 + 23s3

13
(5.8)

and

e(X) = 4− 4g + n+ s = −20 + n+ s1 + s2 + s3. (5.9)

Therefore, the possible values of (n, s1, s2, s3) and e(X), σ(X), c21(X) are as follows:

(n, s1, s2, s3) e(X) σ(X) c21(X)

(1) (10,0,3,0) -7 -1 -17

(2) (10,3,0,1) -6 -2 -18

(3) (10,2,0,3) -5 1 -7

(4) (10,1,4,0) -5 1 -7

(5) (12,0,1,0) -7 -5 -29

(6) (12,1,2,0) -5 -3 -19

(7) (14,1,0,0) -5 -7 -31

We now eliminate all cases:

Cases (5) and (7). In these cases,

c21(X) < 4− 4g = −22.

This contradicts to Theorem 5.1.10.
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Cases (1), (2) and (6). In these cases, c21 < 2 − 2g = −10. Hence, X is a blow up

of rational or ruled surface by Theorem 5.1.11. Also, the inequality in Lemma 5.1.9

implies that X is not simply connected and so it is a blow up of a ruled surface. Thus,

b+2 (X) = 1. However, this contradicts to Theorem 5.1.16.

Cases (3) and (4). In these cases, we have the following identities:

σ(X) = b+2 (X)− b−2 (X) = 1, (5.10)

e(M) = 2− 2b1(X) + b+2 (X) + b−2 (X) = −5. (5.11)

So, the equations (5.10) and (5.11) yield to

b+2 (X) = b1(X)− 3, (5.12)

b−2 (X) = b1(X)− 4. (5.13)

Observe that M cannot be a rational surface because b1(M) > 0 by the inequality

in Lemma 5.1.9. Also, X is not a blow up of a ruled surface since ruled surfaces

have σ ≤ 0. Let X̃ be the minimal model of X so that X ∼= X̃#kCP2
for some

non-negative integer k. It follows from Theorem 2.1.18 that c21(X̃) ≥ 0. Also, using

the equation

c21(X̃) = c21(X) + k = −7 + k,

we have k ≥ 7. It is known that b−2 (X) ≥ k ≥ 7. The identity (5.13) gives rise

to b1(X) ≥ 11. Since b1(X) ≤ 2g − 1 = 11 by the theory of Lefcshetz fibrations,

b1(X) = 11. However, this contradicts with Lemma 5.1.15.

HenceNh
6 cannot be less than 16. Since there exists a genus-6 hyperelliptic Lefschetz

fibration with 16 singular fiber by Theorem 5.1.19, Nh
6 = 16.

Lemma 5.2.7. Nh
7 ≥ 17.

Proof. Suppose that Nh
7 < 17, so that we have a hyperelliptic Lefschetz fibration

X . Let n and s = s1 + s2 + s3 denote the number of nonseparating and separating

vanishing cycles. Thus, n+ s < 17.

The equation (5.1) yields to

n+ 12s1 − 20s2 + 24s3 ≡ 0 (mod 60),
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so that n is divided by 4. We get n ≥ 12 by Theorem 5.1.17. The signature formula

and the Euler characteristic are

σ(X) =
−8n+ 19s1 + 25s2 + 33s3

15

and

e(X) = 4− 4g + n+ s = −24 + n+ s1 + s2 + s3.

The possible values of (n, s1, s2, s3) and e(X), σ(X), c21(X) are as follows:

(n, s1, s2, s3) e(X) σ(X) c21(X)

(1) (12,0,0,2) -10 -2 -26

(2) (12,2,0,1) -9 -3 -27

(3) (12,4,0,0) -8 -4 -28

In all cases, the manifold X has c21(X) < 4 − 4g = −24 . This contradicts to

Theorem 5.1.10. Therefore, Nh
7 ≤ 17.

Lemma 5.2.8. Nh
8 ∈ {19, 20}.

Suppose that Nh
8 < 19. so that there exists a hyperelliptic genus-4 Lefschetz fibration

X . Let n and s = s1 + s2 + s3 + s4 be the number of nonseparating and separating

vanishing cycles. Hence n+ s < 19. For g = 8, the equation (5.1) turns out to be

n+ 12s1 + 6s2 + 16s3 + 8s4 ≡ 0 (mod 34),

so that n is even. Using Theorem 5.1.17, we have n ≥ 14. The signature and the

Euler characteristic of X are given as

σ(X) =
−9n+ 11s1 + 31s2 + 43s3 + 47s4

17
(5.14)

and

e(X) = 4− 4g + n+ s = −28 + n+ s1 + s2 + s3 + s4. (5.15)

Therefore, the possible values of (n, s1, s2, s3, s4) and e(X), σ(X) and c21(X) are as

follows:
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(n, s1, s2, s3, s4) e(X) σ(X) c21(X)

(1) (14,1,0,0,1) -12 -4 -36

(2) (14,0,2,0,1) -11 -1 -25

(3) (14,0,1,3,0) -10 2 -14

(4) (14,4,1,0,0) -9 -3 -27

(5) (14,2,1,1,1) -9 1 -15

(6) (16,1,1,0,0) -10 -6 -38

(7) (16,0,3,0,0) -9 -3 -27

(8) (18,0,0,0,1) -9 -7 -39

Now, we eliminate all cases:

Cases (1), (6), (8). In these cases, c21 < 4 − 4g = −28. This contradicts to Theo-

rem 5.1.10.

Cases (2), (4), (5), (7). In these cases c21 < 2− 2g = −14. Hence, the manifold X is

a blow up of rational or ruled surface by Theorem 5.1.11. Also, since b1(X) > 0 by

Lemma 5.1.9, it can not be a rational surface. Hence, we have b+2 (X) = 1. But this

contradicts to Theorem 5.1.16.

Case (3). In this case, X is not rational nor ruled by Theorem 5.1.11. Let X̃ be the

minimal model of X . Then X ∼= X̃#kCP2
for some integer k ≥ 0. The 4-manifold

X has

σ(X) = b+2 (X)− b−2 (X) = 2 (5.16)

and

e(X) = 2− 2b1(X) + b+2 (X) + b−2 (X) = −10. (5.17)

So, the identities (5.16) and (5.17) result in

b+2 (X) = b1(X)− 5 (5.18)

b−2 (X) = b1(X)− 7. (5.19)

The minimal 4-manifold X̃ must satisfy c21(X̃) ≥ 0 by Theorem 2.1.18. We have the

following identity:

c21(X̃) = c21(X) + k = −14 + k ≥ 0.
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Then we get k ≥ 14. It follows from

b−2 (X) = b1(X)− 7 ≥ k ≥ 14

that b1(X) ≥ 21. However, any genus-g Lefschetz fibration must satisfy b1 < 2g.

Therefore, there exist no such a Lefschetz fibration.

Since there exists a genus-8 hyperelliptic Lefschetz fibration with 20 singular fibers

by Theorem 5.1.19, one can conclude that Nh
8 = 19 or 20.

Lemma 5.2.9. Nh
9 ≥ 24.

Proof. Suppose that Nh
9 < 24, so that we have a hyperelliptic Lefschetz fibration X .

Let n and s = s1 + s2 + s3 + s4 denote the number of nonseparating and separating

vanishing cycles. Hence, n+ s < 24.

The equation (5.1) gives rlse to

n+ 12s1 + 40s2 + 84s3 + 144s4 ≡ 0 (mod 76),

so that n is divided by 4. We have n ≥ 16 by Theorem 5.1.17. The signature formula

and the Euler characteristic are

σ(X) =
−10n+ 13s1 + 37s2 + 53s3 + 61s4

19

and

e(X) = 4− 4g + n+ s = −32 + n+ s1 + s2 + s3 + s4.

(n, s1, s2, s3, s4) e(X) σ(X) c21(X)

(1) (16,0,0,0,2) -14 -2 -34

(2) (16,1,1,1,0) -13 -3 -35

(3) (16,0,0,1,3) -12 4 -12

(4) (16,5,0,0,0) -11 -5 -37

(5) (16,1,1,2,1) -11 3 -13

(6) (16,0,3,2,0) -11 3 -13

(7) (16,3,1,0,2) -10 2 -14

(8) (16,3,0,3,0) -10 2 -14

(9) (16,2,3,0,1) -10 2 -14
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(n, s1, s2, s3, s4) e(X) σ(X) c21(X)

(10) (16,1,5,0,0) -10 2 -14

(11) (16,0,0,2,4) -10 10 10

(12) (16,5,0,1,1) -9 1 -15

(13) (16,4,2,1,0) -9 1 -15

(14) (16,2,0,0,5) -9 9 9

(15) (16,1,2,0,4) -9 9 9

(16) (16,1,1,3,2) -9 9 9

(17) (16,1,0,6,0) -9 9 9

(18) (16,0,4,0,3) -9 9 9

(19) (16,0,3,3,1) -9 9 9

(20) (20,0,1,2,0) -9 -3 -27

Now, we eliminate all cases:

Cases (1), (2), (4). In these cases, c21 < 4 − 4g = −32. This contradicts to Theo-

rem 5.1.10.

Case (20). In this case c21 < 2 − 2g = −16. Hence, the manifold X is a blow up of

rational or ruled surface by Theorem 5.1.11. Also, since b1(X) > 0 by Lemma 5.1.9,

it is a ruled surface. Hence, we have b+2 (X) = 1. But this contradicts to Theorem

5.1.16.

Cases (11), (14)-(19). In these cases, σ(X) > n − s − 4. However, this is a contra-

diction with Lemma 5.1.8.

Case (3). In this case, X is not rational nor ruled by Theorem 5.1.11. Let X̃ be the

minimal model of X . Then X ∼= X̃#kCP2
for some integer k ≥ 0. The 4-manifold

X has

σ(X) = b+2 (X)− b−2 (X) = 4 (5.20)

and

e(X) = 2− 2b1(X) + b+2 (X) + b−2 (X) = −12. (5.21)
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So, the identities (5.20) and (5.21) result in

b+2 (X) = b1(X)− 5 (5.22)

b−2 (X) = b1(X)− 9. (5.23)

The minimal 4-manifold X̃ must satisfy c21(X̃) ≥ 0 by Theorem 2.1.18. We have the

following identity:

c21(X̃) = c21(X) + k = −12 + k ≥ 0.

Then we get k ≥ 12. It follows from

b−2 (X) = b1(X)− 9 ≥ k ≥ 12

that b1(X) ≥ 21. However, any genus-g Lefschetz fibration must satisfy b1 < 2g.

Cases (5), (6). In these cases, X is not rational nor ruled by Theorem 5.1.11. Let

X̃ be the minimal model of X . Then X ∼= X̃#kCP2
for some integer k ≥ 0. The

4-manifold X has

σ(X) = b+2 (X)− b−2 (X) = 3 (5.24)

and

e(X) = 2− 2b1(X) + b+2 (X) + b−2 (X) = −11. (5.25)

So, the identities (5.24) and (5.25) result in

b+2 (X) = b1(X)− 5 (5.26)

b−2 (X) = b1(X)− 8. (5.27)

The minimal 4-manifold X̃ must satisfy c21(X̃) ≥ 0 by Theorem 2.1.18. We have the

following identity:

c21(X̃) = c21(X) + k = −13 + k ≥ 0.

Then we get k ≥ 13. It follows from

b−2 (X) = b1(X)− 8 ≥ k ≥ 13

that b1(X) ≥ 21. However, any genus-g Lefschetz fibration must satisfy b1 < 2g.
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Cases (7)-(10). In these cases, X is not rational nor ruled by Theorem 5.1.11. Let

X̃ be the minimal model of X . Then X ∼= X̃#kCP2
for some integer k ≥ 0. The

4-manifold X has

σ(X) = b+2 (X)− b−2 (X) = 2 (5.28)

and

e(X) = 2− 2b1(X) + b+2 (X) + b−2 (X) = −10. (5.29)

So, the identities (5.28) and (5.29) result in

b+2 (X) = b1(X)− 5 (5.30)

b−2 (X) = b1(X)− 7. (5.31)

The minimal 4-manifold X̃ must satisfy c21(X̃) ≥ 0 by Theorem 2.1.18. We have the

following identity:

c21(X̃) = c21(X) + k = −14 + k ≥ 0.

Then we get k ≥ 14. It follows from

b−2 (X) = b1(X)− 7 ≥ k ≥ 14

that b1(X) ≥ 21. This contradicts with the fact that any genus-g Lefschetz fibration

has b1 < 2g.

Cases (12), (13). In these cases, X is not rational nor ruled by Theorem 5.1.11. Let

X̃ be the minimal model of X . Then X ∼= X̃#kCP2
for some integer k ≥ 0. The

4-manifold X has

σ(X) = b+2 (X)− b−2 (X) = 1 (5.32)

and

e(X) = 2− 2b1(X) + b+2 (X) + b−2 (X) = −9. (5.33)

So, the identities (5.32) and (5.33) result in

b+2 (X) = b1(X)− 5 (5.34)

b−2 (X) = b1(X)− 6. (5.35)
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The minimal 4-manifold X̃ must satisfy c21(X̃) ≥ 0 by Theorem 2.1.18. We have the

following identity:

c21(X̃) = c21(X) + k = −15 + k ≥ 0.

Then we get k ≥ 15. It follows from

b−2 (X) = b1(X)− 6 ≥ k ≥ 15

that b1(X) ≥ 21. This contradicts with the fact that any genus-g Lefschetz fibration

has b1 < 2g. Thus, there exist no such a Lefschetz fibration. Therefore Nh
9 ≥ 24.

Lemma 5.2.10. Nh
10 ∈ {23, 24}.

Proof. Assume that Nh
10 < 23, so that we have a hyperelliptic genus-10 Lefschetz

fibration X . Let n and s = s1 + s2 + s3 + s4 + s5 be the number of nonseparating

and separating vanishing cycles. Thus, n+ s < 23.

The equation (5.1) gives rise to

n+ 12s1 − 2s2 + 18s4 + 10s5 ≡ 0 (mod 42)

so that n is even. Also, using Theorem 5.1.17, we have n ≥ 16. The signature and

the Euler characteristic are given as

σ(X) =
−11n+ 15s1 + 43s2 + 63s3 + 75s4 + 79s5

21

and

e(X) = 4− 4g + n+ s = −36 + n+ s1 + s2 + s3 + s4 + s5.

Thus, the possible values of (n, s1, s2, s3, s4, s5) and e(X), σ(X), c21(X) are as fol-

lows:
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(n, s1, s2, s3, s4, s5) e(X) σ(X) c21(X)

(1) (16,0,1,0,1,1) -17 1 -31

(2) (16,1,2,0,1,0) -16 0 -32

(3) (16,0,1,1,1,1) -16 4 -20

(4) (16,1,2,1,1,0) -15 3 -21

(5) (16,1,0,0,2,2) -15 7 -9

(6) (16,0,2,0,0,3) -15 7 -9

(7) (16,0,1,2,1,1) -15 7 -9

(8) (16,4,0,0,0,2) -14 2 -22

(9) (16,2,1,0,2,1) -14 6 -10

(10) (16,1,3,0,0,2) -14 6 -10

(11) (16,1,2,2,1,0) -14 6 -10

(12) (16,1,0,1,2,2) -14 10 2

(13) (16,0,2,1,0,3) -14 10 2

(14) (16,0,2,0,4,0) -14 10 2

(15) (16,0,0,0,1,5) -14 14 14

(16) (16,5,1,0,0,1) -13 1 -23

(17) (16,4,0,1,0,2) -13 5 -11

(18) (16,3,2,0,2,0) -13 5 -11

(19) (16,2,4,0,0,1) -13 5 -11

(20) (16,2,1,1,2,1) -13 9 1

(21) (16,1,3,1,0,2) -13 9 1

(22) (16,1,2,3,1,0) -13 9 1

(23) (16,1,1,0,1,4) -13 13 13

(24) (16,1,0,2,2,2) -13 13 13

(25) (16,0,5,0,2,0) -13 9 1

(26) (16,0,2,2,0,3) -13 13 13

(27) (16,0,2,1,4,0) -13 13 13

(28) (16,0,1,4,1,1) -13 13 13

(29) (16,0,0,1,1,5) -13 17 25

(30) (16,0,0,0,5,2) -13 17 25

(31) (18,2,0,0,0,0) -16 -8 -56

(32) (18,2,0,1,0,0) -15 -5 -45
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(n, s1, s2, s3, s4, s5) e(X) σ(X) c21(X)

(33) (18,2,0,2,0,0) -14 -2 -34

(34) (18,1,0,0,3,0) -14 2 -22

(35) (18,0,2,0,0,1) -14 2 -22

(36) (18,4,0,0,1,0) -13 -3 -35

(37) (18,2,0,3,0,0) -13 1 -23

(38) (18,1,3,0,1,0) -13 1 -23

(39) (18,1,0,1,3,0) -13 5 -11

(40) (18,0,2,1,1,1) -13 5 -11

(41) (20,1,0,0,0,1) -14 -6 -46

(42) (20,2,1,0,0,0) -13 -7 -47

(43) (20,1,0,1,0,1) -13 -3 -35

We now rule out all cases:

Cases (31), (32), (41), (42). In these cases, c21(X) < 4− 4g = −36. This contradicts

to Theorem 5.1.10.

Cases (1)-(4), (8), (16), (33)-(38), (43). In these cases, c21(X) < 2−2g = −18. Thus,

X is a blow up of rational or ruled surface by Theorem 5.1.11. Also, since b1(X) > 0

by Lemma 5.1.9, it can not be a rational surface. Hence, we have b+2 (X) = 1. But

this contradicts to Theorem 5.1.16.

Cases (12)-(15), (20)-(30). In these cases, σ(X) > n − s − 4. However, this is a

contradiction with Lemma 5.1.8.

Cases (17)-(19), (39), (40). In these cases, X is not rational nor ruled by Theo-

rem 5.1.11. Let X̃ be the minimal model of X . Then X ∼= X̃#kCP2
for some

integer k ≥ 0. The manifold X has

σ(X) = b+2 (X)− b−2 (X) = 5 (5.36)

and

e(X) = 2− 2b1(X) + b+2 (X) + b−2 (X) = −13. (5.37)
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Thus, we have

b+2 (X) = b1(X)− 5 (5.38)

b−2 (X) = b1(X)− 10. (5.39)

Since the minimal 4-manifold X̃ must satisfy c21(X̃) ≥ 0 by Theorem 2.1.18. We

have

c21(X̃) = c21(X) + k = −11 + k ≥ 0.

Then we conclude that k ≥ 11. It follows from

b−2 (X) = b1(X)− 10 ≥ k ≥ 11

that b1(X) ≥ 21. However, any genus-g Lefschetz fibration must satisfy b1 < 2g.

Therefore, there exists no such a Lefschetz fibration.

Cases (5)-(7). In these cases, since X is not rational nor ruled by Theorem 5.1.11,

then for some integer k ≥ 0, X ∼= X̃#kCP2
where X̃ is the minimal model of X .

We have

σ(X) = b+2 (X)− b−2 (X) = 7 (5.40)

e(X) = 2− 2b1(X) + b+2 (X) + b−2 (X) = −15. (5.41)

So, we get the identities

b+2 (X) = b1(X)− 5 (5.42)

b−2 (X) = b1(X)− 12. (5.43)

The minimal 4-manifold X̃ must satisfy c21(X̃) ≥ 0 by Theorem 2.1.18. We have the

following identity:

c21(X̃) = c21(X) + k = −9 + k ≥ 0.

Then we get k ≥ 9. It follows from

b−2 (X) = b1(X)− 12 ≥ k ≥ 9

that b1(X) ≥ 21. However, this contradicts with the fact that any genus-g Lefschetz

fibration must satisfy b1 < 2g.
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Cases (9)-(11). In these cases, it follows from Theorem 5.1.11 that X is not rational

nor ruled. Thus, X ∼= X̃#kCP2
for some integer k ≥ 0 where X̃ is the minimal

model of X . We get

σ(X) = b+2 (X)− b−2 (X) = 6, (5.44)

e(X) = 2− 2b1(X) + b+2 (X) + b−2 (X) = −14. (5.45)

Consequently, we obtain the equations

b+2 (X) = b1(X)− 5, (5.46)

b−2 (X) = b1(X)− 11. (5.47)

The minimal X̃ has c21(X̃) ≥ 0 by Theorem 2.1.18. We have the following identity:

c21(X̃) = c21(X) + k = −10 + k ≥ 0.

This implies that k ≥ 10. It follows from

b−2 (X) = b1(X)− 11 ≥ k ≥ 10

that b1(X) ≥ 21. And so again we get a contradiction since b1 can not be grater than

20 for any genus-10 Lefschetz fibration.

Therefore, the number Nh
10 can not be less than 23. Since we have a genus-10 hyper-

elliptic Lefschetz fibration with 24 singular fibers by Theorem 5.1.19, Nh
10 is either

23 or 24.

As long as genus-g increases, the number of possibilities of n and s increases, the

number of irreducible and reducible fibers, respectively. Hence, it is hard to find the

exact value of Nh
g . The odd case is more harder because of the upper bound of Nh

g

which is 5g − 3. However, one can improve the lower bound of Nh
g for small odd g

as in the case of g = 5 and g = 7 in the Theorem 5.2.3. For general case we have the

following:

Proposition 5.2.11. Let f : X → S2 be a genus-g hyperelliptic Lefschetz fibration

with n+ s < 2g + 4 and g > 6. Then the signature of X , σ(X) is positive.

Proof. Suppose that X admits a genus-g hyperelliptic Lefschetz fibration X with

n + s < 2g + 4. Consider the 4-manifold Y = X#fX obtained by fiber sum of X
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with itself. The manifold Y admits a genus-g Lefschetz fibration over S2. It follows

from Theorem 5.1.13 that Y is minimal. By Theorem 2.1.18 we have c21(Y ) ≥ 0 .

Hence, we have the following inequality using Lemma 2.1.10:

0 ≤ c21(Y ) = 3σ(Y ) + 2e(Y )

= 3(2σ(X)) + 2(4− 4g + 2(n+ s))

≤ 6σ(X) + 8− 8g + 4(2g + 3)

= 6σ(X) + 20.

This implies that σ(X) ≥ −3. The manifold X is not a blow up of ruled surface by

Theorem 5.1.16. Also, it cannot be a blow up of a rational surface since b1(X) > 0

by the inequality in Lemma 5.1.9. So, it follows from Theorem 5.1.11 that c21(X) ≥
2− 2g. Therefore we get:

2− 2g ≤ c21(X) = 3σ(X) + 2e(X)

= 3σ(X) + 2(4− 4g + n+ s)

≤ 3σ(X) + 2(4− 4g + 2g + 3)

= 3σ(X) + 14− 4g.

The above inequality results in σ(X) ≥ 2g − 12

3
, which implies that σ(X) > 0 when

g > 6.

Remark 5.2.12. The above proposition implies that every hyperelliptic genus-g Lef-

schetz fibration with n + s < 2g + 4 has b1(X) >
4g − 19

3
using the equation

σ(X) ≤ n − s − 2(2g − b1(X)) by Lemma 5.1.9. However, there exists no known

such a Lefschetz fibration.

5.3 The number of singular fibers in a holomorphic hyperelliptic Lefschetz fi-

bration over S2

In this section, we will focus on holomorphic Lefschetz fibrations and we will ex-

amine their minimal number of singular fibers using the classification of complex

surfaces. Let Mh
g denote the minimal number of singular fibers in a holomorphic

hyperelliptic Lefschetz fibration of genus g over S2.
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Recall that n and s denote the number of nonsepataing and separating vanishing cy-

cles, respectively.

Lemma 5.3.1. Let f : X → S2 be a genus-g holomorphic hyperelliptic Lefschetz

fibration with g ≥ 6 and even or g ≥ 9 and odd. If n+ s < 2g + 4 then n ≥ 2g + 2.

Proof. Suppose that there exist a holomorphic hyperelliptic Lefschetz fibration with

n < 2g + 2.

Let us first consider n < 2g. Using the inequality σ(X) ≤ n− s− 4 by Lemma 5.1.8

, we have

χh(X) =
e(X) + σ(X)

4

≤ (4− 4g + n+ s) + (n− s− 4)

4

=
2n− 4g

4
< 0.

Now, assume that n = 2g, which gives rise to s ≤ 3. By the signature formula (5.2),

we get

σ(X) = − g + 1

2g + 1
n+

[g/2]∑
h=1

(
4h(g − h)

2g + 1
− 1)sh

≤ − g + 1

2g + 1
(2g) + 3(

4(g/2)(g/2)

2g + 1
− 1)

=
g2 − 8g − 3

2g + 1

<
g

2
− 3

and also, using n+ s ≤ 2g + 3 we have

χh(X) =
e(X) + σ(X)

4

<
4− 4g + 2g + 3 + (g/2)− 3

4

≤ −3(g/2) + 4

4
< 0.

Hence, we conclude that χh(X) < 0 if n ≤ 2g. By classification of complex sur-

faces X is diffeomorphic to a blow up of a ruled surface which implies that b+2 = 1.

However, this is a contradiction with Theorem 5.1.16. Therefore, n > 2g. Since the

number n is even by equality (5.1), we get the required inequality.
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Now, we are ready to prove one of the main theorems.

Theorem 5.3.2. Let g ≥ 4 and even. Then Mh
g = 2g + 4.

Proof. Suppose that we have a holomorphic hyperelliptic Lefschetz fibration X with

n + s < 2g + 4, g ≥ 6 and even. Hence, n ≥ 2g + 2 by Lemma 5.3.1. The equality

(5.1) implies that n is even and also s =
∑[g/2]

h=1 sh > 0 . Thus, s = 1.

The signature σ(X) of X is computed using the signature formula (5.2) as follows:

σ(X) = − g + 1

2g + 1
n+

[g/2]∑
h=1

(
4h(g − h)

2g + 1
− 1)sh

≤ − g + 1

2g + 1
(2g + 2) + (

4(g/2)(g/2)

2g + 1
− 1)

= −g
2 + 6g + 3

2g + 1

< −g
2
.

Using σ(X) < −g
2

, n = 2g + 2 and s = 1, we get:

χh(X) =
e(X) + σ(X)

4

<
4− 4g + 2g + 3− (g/2)

4

≤ −5(g/2) + 7

4
< 0.

In this case, the classification of complex surfaces implies that X is a blow up of

a ruled surface and hence b+2 = 1. However, this is impossible if g ≥ 6 by Theo-

rem 5.1.16.

Now, consider the remaining case, g = 4. It follows from Theorem 5.2.3 that minimal

number of singular fibers in a genus-4 hyperelliptic Lefschetz fibration is 12. This

completes the proof.

In the case of g odd and g ≥ 5, we improve the lower bound of Mh
g . We prove the

following theorem.
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Theorem 5.3.3. Let g ≥ 7 and odd. Then Mh
g ≥ 2g + 6.

Proof. Suppose that there exist a holomorphic hyperelliptic Lefschetz fibration X

with g ≥ 5, odd and n+ s < 2g + 6.

First consider the case g ≥ 9. If n < 2g then it can be shown that χh(X) < 0 using

the inequality σ(X) ≤ n − s − 4 as in the proof of Lemma 5.3.1. This implies that

b+2 = 1 by the classification of complex surfaces. But, this gives a contradiction with

Theorem 5.1.16. The odd case of the equation (5.1) leads to n ≡ 0 (mod 4). We can

conclude that n ≥ 2g + 2. The assumption n + s < 2g + 6 gives rise to n = 2g + 2

and s ≤ 3. Therefore, the signature formula (5.2) implies the following inequality:

σ(X) = − g + 1

2g + 1
n+

[g/2]∑
h=1

(
4h(g − h)

2g + 1
− 1)sh

≤ − g + 1

2g + 1
(2g + 2) + 3(

4(g/2)(g/2)

2g + 1
− 1)

=
g2 − 10g − 5

2g + 1

<
g

2
− 5.

Then, using the inequality σ(X) <
g

2
−5, the holomorphic Euler characteristic χh(X)

of X ,

χh(X) =
e(X) + σ(X)

4
=

4− 4g + n+ s+ σ(X)

4

<
4− 4g + 2g + 5 + (g/2)− 5

4

≤ −3g

8
+ 1 < 0.

Hence the classification of complex surfaces implies that X is a blow up of a ruled

surface. In this case, b+2 (X) = 1. However, this contradicts to Theorem 5.1.16.

Now consider the g = 7 case. By Lemma 5.2.7, the number of singular fibers must

be grater than 16. Also , we know by the proof of Lemma 5.2.7 that

n ≥ 12,

n ≡ 0 (mod 4)

and the equation

n+ 12s1 − 20s2 + 24s3 ≡ 0 (mod 60)
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must be satisfied where s = s1 + s2 + s3. Hence the possible values of (n, s1, s2, s3)

are as follows:

(n, s1, s2, s3) e(X) σ(X) c21(X) χh(X)

(1) (12,1,0,4) -7 3 -5 -1

(2) (12,0,3,2) -7 3 -5 -1

(3) (12,3,0,3) -6 2 -12 -1

(4) (12,2,3,1) -5 1 -7 -1

(5) (12,0,0,7) -5 9 -5 1

(6) (12,5,0,2) -5 1 -7 -1

(7) (12,4,3,0) -5 1 -7 -1

(8) (16,0,2,1) -5 -3 -19 -2

Cases (1)-(4),(6)-(7). In these cases, χh(X) < 0. Thus, X is a blow up of a ruled

surface. However, σ(X) must be nonnegative for such a manifold. Hence, we exclude

these cases.

Case (5). In this case, the manifoldX does not satisfy the inequality σ(X) ≤ n−s−4

by Lemma 5.1.8.

Case (8). In this case, since χh(X) < 0, X is diffeomorphic to a blow up of a ruled

surface. Hence b+2 = 1. We have

e(X) = −5 = 2− 2b1(X) + b+2 (X) + b−2 (X) = 3− 2b1(X) + b−2 (X)

and

σ(X) = −3 = b+2 (X)− b−2 (X) = 1 + b−2 (X).

Hence (b1(X), b+2 (X), b−2 (X)) = (6, 1, 4). Therefore, X = Σ3 × S2#3CP 2. But

Σ3×S2#3CP 2 does not admit a genus-7 Lefschetz fibration over S2 by Lemma 5.2.2.

This finishes the proof.
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[15] R.İ. Baykur and M. Korkmaz. Small Lefschetz fibrations and exotic 4-
manifolds. Math. Ann., 367(3-4):1333–1361, 2017.
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