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ABSTRACT

AEROELASTIC ANALYSIS OF COMPOSITE WINGS AND WIND
TURBINE BLADES INCLUDING GEOMETRICAL NONLINEARITY AND
COMPRESSIBILTY

Farsadi, Touraj
Ph.D., Department of Aerospace Engineering
Supervisor  : Prof. Dr. Altan Kayran

April 2018, 333 pages

Aeroelastic behaviour of composite wings and wind turbine blades in the
incompressible and compressible flow regimes is investigated utilizing a geometrically
nonlinear Thin Wall Beam (TWB) theory incorporating non uniform geometric
features such as sweep, taper, pretwist, warping inhibition and transverse shear strain.
The structural equations of motion are obtained in the most general form based on the
kinematic relations governing thin walled beams, including the nonlinear strain
displacement relations, and utilizing the principles of analytical dynamics. Unsteady
aerodynamic loads in the incompressible and compressible flow regime are expressed
using indicial functions in the time-domain. The aeroelastic system of equations is
augmented by the differential equations governing the aerodynamics lag states to come
up with the final coupled fluid-structure equations of motion. Time response of the
nonlinear aeroelastic system is obtained via the Runge-Kutta direct integration

algorithm.

The effect of the compressibility on the flutter characteristics of aeroelastically tailored
bend-twist coupled (BTC) composite blades designed for the MW sized wind turbine

is investigated. Flutter analyses are performed for the baseline blade and the BTC



blades designed for the MW sized wind turbine. Beam model of the blade is developed
by making analogy with the structural model of the prewisted rotating TWB and
utilizing the Variational Asymptotic Beam Section (VABS) method for the calculation
of sectional properties of the blades designed. To investigate the effect of
compressibility on the flutter characteristics of the wind turbine blades, aeroelastic
analyses are performed in frequency and time domain utilizing both incompressible

and compressible unsteady aerodynamics via indicial function approach.

Keywords: Composite wing; Composite wind turbine blade; Aeroelastic instability;

Flutter; Compressibility; Bending-twisting coupling; Limit cycle oscillation (LCO)
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(074

GEOMETRIK DOGRUSALSIZLIK VE SIKISTIRILABILIiRLiK iCEREN
KOMPOZIT KANAT VE RUZGAR TURBIN KANATLARININ
AEROELASTIK ANALIZI

Farsadi, Touraj
Doktora, Havacilik ve Uzay Miihendisligi Boliimii
Tez Yoneticisi  : Prof. Dr. Altan Kayran

Nisan 2018, 333 sayfa

Kompozit kanatlar ve riizgar tlirbin kanatlarinin sikistirilabilir ve sikistirllamaz akis
rejimlerindeki aeroelastik davranislari, ok acisi, sivrilme, 6n burulma, egrilme
engelleme ve enine kesme gerinimi gibi geometrik 6zellikleri biinyesinde barindiran
geometrik olarak dogrusal olmayan ince cidarli kiris (TWB) teorisi kullanilarak
incelenmstir. Yapisal hareket denklemleri, ince cidarl kirigler igin gegerli, dogrusal
olmayan gerinim — yer degistirme etkilesimlerini igeren ve analitik dinamigin
ilkelerini kullanan kinematik iligkilerin iizerine kurulu en genel bigcimde elde
edilmistir. Sikistirillamaz ve sikistirilabilir akis rejimindeki kararsiz aerodinamik
yiikler, zaman bolgesinde indisiyel fonksiyonlar kullanilarak ifade edilmistir.
Aeroelastik denklemler sistemi, akiskan — yapisal baglasik hareket denklemlerine
ulagsmak i¢in, aerodinamik gecikme durumlarini yoneten diferansiyel denklemlerle
genisletilmistir. Dogrusal olmayan aeroelastik sistemin zamana bagli cevabi, Runge-

Kutta dogrudan integrasyon algoritmasi ile elde edilmistir.

Sikistirlabilirligin, MW kapasiteli riizgar tiirbini icin tasarlanmis, aeroelastik olarak
uyarlanmig egilme-burulma etkilesimine sahip (BTC) kompozit kanatlarmn ¢irpma
karakteristikleri tizerindeki etkisi incelenmigtir. MW tiirbin i¢in tasarlanan referans

kanat ve BTC kanatlarin ¢irpma analizleri gergeklestirilmistir. Kanadin kiris modeli,

vii



on burulmali doner ince cidarli kirisin yapisal modeli ile benzesim yapilarak ve
tasarlanmig kanatlarin kesitsel 6zelliklerinin hesaplanmasi i¢in varyasyonel asimtotik
kiris kesiti (VABS) metodu kullamlarak gelistirilmistir. Sikistirilabilirligin riizgar
tiirbin kanatlarinin ¢irpma karakteristikleri {izerindeki etkisini incelemek i¢in, indisiyel
fonksiyon yaklasimi yoluyla hem sikistirilamaz hem de sikistirilabilir kararsiz
aerodinamik kullanilarak, frekans ve zaman bolgelerinde aeroelastik analizler

gergeklestirilmigtir.

Anahtar kelimeler: Kompozit kanat, Kompozit riizgar tlirbin kanadi; Aeroelastik
kararsizlik; Cirpma; Sikistinlabilirlik; Egilme-burulma baglasimi; Limit g¢evrim

salinimi
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CHAPTER 1

INTRODUCTION

1.1 Wind Turbines

Wind turbines are machines that convert wind’s kinetic energy to rotary mechanical
energy, resulting in the production of electricity. The first wind turbines were
windmills that were used for the purpose of grinding in ancient Persia around 900 A.D.
At the end of the 19" century, people started to generate electricity from the wind
turbines and today, 4% [1] of the total electricity in the world is generated from wind
turbines. Small wind turbines are used to recharge batteries and illuminate lamps

where the larger ones in the industry are used to supply electricity.

In the wind turbine industry, the energy required from wind turbines has risen due to
the increased demand for renewable energy. Blades are one of the main components
responsible for the power produced. In order to obtain higher power from the turbines,
the necessity of optimum control of the pitch angle and the increase in the length of
the blades have boosted. The newly designed wind turbine blades have already reached
the 100 meter border as shown in Figure 1-1. Due to the increase in the length, the
weight of the blades increase. Moreover, active control mechanism for the pitch angle
requires feedback system and mechanical parts to be installed on the blades which
result in additional cost and weight. Longer blades necessitate better optimized blade
structures which bring about challenges to the design process to develop innovative

design solutions.



Higher energy extraction from wind turbine systems requires larger turbines, with
blades in the border of 100 m, and associated optimized structural and mechanical
components to accomplish improved stiffness, increased fatigue life, and reliability.
To attain these goals, loads that occur due to the aeroelastic effects on the wind turbine
blades must be reduced. This can also be achieved passively by utilizing anisotropy of
composite materials. Due to the anisotropic behavior of composite materials,
aeroelastic tailoring of the rotor blades as a passive control mechanism can be
succeeded. Induced twist due to bending on the blades which occurs as a result of
anisotropic behavior of composite materials as a passive control mechanism may

reduce the loads in the whole wind turbine system [2-7].
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Figure 1-1 Wind turbine size increase 1980-2015, showing relative size of the

swept area, as turbine size increased from 75 kW to 8 MW [§]

Aeroelasticity of Wind Turbine Blade Aeoroelasticity is the interaction of elasticity,
inertia and aerodynamic loads. Elastic structures can be deformed by the external
aerodynamic loads. On the other hand, the structural deformations change the
aerodynamic loads. This interplay between the structural deformation and the
aerodynamic loads leads to sophisticated physical problems. Several types of
structures are exposed to aeroelastic phenomena due to the elasticity of the structure
and airflow passing around the body. Bridges, tall buildings, aircraft wings, turbo-
machinery and wind turbines all encounter aeroelastic instability. The nature of the

aeroelasticity is either steady (static) aeroelasticity or dynamic aeroelasticity. The



static aeroelasticity studies only the steady interaction between elasticity and
aerodynamic loads whereas dynamic aeroelasticity considers time dependent response
of elastic structures and includes the inertia forces as well. Instabilities investigated
under the static aeroelasticity mainly involve divergence and control surface reversal.
Aerodynamic loads acting on lifting surface cause deflection in the structure. With the
increase in applied loads, the twist increases. The increased loads deform the structure

further, finally taking it to its critical load and complete failure.

The phase difference between the deformations of the structure and the aerodynamic
loads causes energy absorption by the structure from the air. The energy transmission
from aerodynamic loads to the structure may result in oscillations with growing
amplitude. The worst case scenario is the failure of the structure. Flutter instability is
a kind of dynamic aeroelasticity which involves flapwise and torsional modes of

structure. For wind turbine blades these modes are shown in Figure 1-2,

/ |  “cosouse e

Flapwise Torsion

(a) Flapwise (b) Edgewise (¢) Torsion

Figure 1-2 Degrees of freedom of a blade [9]

Classical flutter is a dynamic aeroelastic instability generated by coupling of torsion
and flapwise deformations. When classical flutter arises, time response grows
exponentially till the failure. Classical flutter is well known in aerospace and civil
engineering. Occurrence of the classical flutter event has not been reported for
commercial wind turbine so far. With an increase in length of wind turbine’s blade in

the future wind turbines, it is more likely to happen [9].

For large wind turbine’s blade in low angle of attacks and attached flow, the classical

flutter becomes a serious danger. It is recommended by [10] to include classical flutter



calculations in the preliminary design for 50 m blades and above due to decrease in

the flapwise and the torsional stiffness.

Obtaining accurate and efficient aerodynamic models has been an important goal of
research efforts in wind turbine industry over the past years. Aerodynamic models are
necessary to design the wind turbine blade, to evaluate aeroelastic stability and the
response. The unsteady aerodynamics provides a good level of accuracy in prediction
of the flutter rotational speeds of the wind turbine blade when the correct models with
both circulatory and non-circulatory components are employed [11]. Among the wide
range of unsteady aerodynamic models in the literature the classical models of
Theodorsen in frequency domain and its time domain counterpart, indicial
aerodynamics remain widely used and provide a benchmark for the linear models both
in fixed and rotary blades. Several studies have been conducted with the use of these
approaches to investigate the aeroelastic characteristics of the wind turbine blades [ 12-

20].

Janetzke [21] at the NASA Lewis Research Centre published the first paper directly
related to the aeroelasticity of the wind turbine. Kooijman [22] indicated that the
aeroelastic tailoring technique is promissory in the wind turbines rotor blade designs.
Lobitz [23] utilized aeroelastic tailoring of the blades to shape the power curve and
reduce load. Chaviaropoulos et al. [24] addressed flapping-edgewise coupling effects

on the aeroelasticity of the wind turbine blade using viscous CFD techniques.

Lobitz [12] conducted one of the pioneer works to address the classical flutter
instability phenomenon in a small size wind turbine blade system. Later, Lobitz [13]
investigated the flutter limit of a MW sized wind turbine blade based on isolated blade.
In this study, it is shown that the predicted flutter rotational speed of the blade using
quasi-steady aerodynamics is lower than the flutter rotational speed obtained using
unsteady Theodorsen aerodynamics. Owens et al. [14] performed an examination on
the very large wind turbine blade’s flutter problem. In this work, BLAST tool, which
is a program based on FE model and Theodorsen’s unsteady theory in MATLAB, is
used to investigate the aeroelastic stability of a turbine blade. The p-k iteration method

is employed to estimate instability boundaries of the aeroelastic system. Owens and

4



Griffith [15] employed Theodorsen unsteady airfoil aerodynamic theory to predict the
aeroelastic instability boundaries of a large sized vertical axis wind turbine blade. The
aeroelastic characteristics of the bend-twist coupled blade model in a linear state space
formulation using frequency response diagrams are investigated by Stablein et al. [16].
The 2D linear blade section structural mode with 3 degree of freedom (flapwise,
torsion and edgewise) is derived by means of Lagrange’s theory while the
Theodorsen’s unsteady aerodynamic model in time domain is coupled with the
structure model. Pourazarm et al. [17,18] predicted the dynamic instability onset of
three different MW sized wind turbine blade WindPACT 1.5 MW, NREL 5 MW and
SNL 100-00. The coupled bending-torsion simple continuous beam formulations
subjected to Theodorsen’s unsteady aerodynamic model are derived and solved using
the Galerkin method. It is found out that the torsional natural frequency has the highest
impact on the instability speed. The ratio of the torsional natural frequency to the
flapwise natural frequency is brought up as a major blade design parameter to deal

with the occurrence of the risk of the structural dynamic instability.

Jeong et al. [19] investigated the effect of torsional stiffness on aeroelastic instability
of a large horizontal axis wind turbine. A finite element method based on the large
deflection beam theory and Greenberg’s extension of Theodorsen’s aerodynamic strip
theories are integrated in an aeroelastic system. For the stability analysis, a proposed
aerodynamic approach was employed in conjunction with a structural model. They
claimed that a low torsional stiffness of the wind turbine blade considerably affects the
possibility of classical flutter instability. Buhl et al. [20] studied the passive
suppression of the wind turbine blade’s aeroelastic instability. They showed that the
critical relative wind speed can be significantly improved with the increase of the blade
torsional frequency. Hayat et al. [25,26] studied the flutter performance of large bend-
twist coupled wind turbine blade in time domain. Aerodyn/ADAMS commercial code
is used to verify the flutter results. It is shown that reduction in torsional stiffness

results in a decrease in the flutter rotational speed.

Vatne [27] studied the aeroelastic instabilities of a 10 MW wind turbine blade using

aeroelastic stability tool HAWCStab2 in time domain. Analysis has been performed in



two cases; isolated blade and entire wind turbine analysis. Results showed that the
flutter rotational speed is slightly higher in the isolated blade analysis compared with
the entire turbine analysis, but the results are close enough to avoid total turbine

investigation due to the complexity.

In order to enhance the performance and aeroelastic characteristics of the rotary blades
of wind turbine systems, pretwist is applied to the blades during the manufacturing.
Pretwist which varies from the root of the blade to the tip of the blade is also called as
geometric twist. An experimental aeroelastic analysis including geometric nonlinearity
and pretwist effects are performed by Ladge et al. [28] on a small-scale wind turbine.
It is seen that with the increase in twist angle by 35%, flutter rotational speed increased
by 23%. Li et al. [29] studied the aeroelastic stability of the wind turbine blade
considering bending-twist coupling and composite thin walled beam with pretwist in
the structural model. The governing system of equations have been solved by the

Galerkin method and time —marching approach. The time response analysis is
performed for the wind speed of 20 m/s, ply angle of 30" for three pretwist angles;

0°,5 and 10°. Results showed that by increasing the pretwist angle, response amplitude

decreases and aeroelastic stability improves significantly.

In the case of computational aeroelasticity instability analysis of wind turbine blades,
Yu and Kwon [30] numerically examined the aeroelastic response of a turbine blade
using combined CFD-CSD method. Due to the aeroelastic torsional deformation, the
aerodynamic loads on the blade are considerably increased. Baxevanou et al. [31]
studied the classical flutter of the wind turbine airfoil using incompressible Navier—

Stokes CFD solver.

Formerly, wind turbines were often analysed using incompressible aerodynamic
models. But nowadays, compressibility effect becomes a significant factor in
investigating the aeroelastic instability of wind turbine blades due to the increase in
the size of the blade and higher tip speed ratio [32]. For the 5 MW and higher MW
wind turbines, the tip speed at flutter point could exceed Mach number of 0.3 and

compressibility effects cannot be ignored. So far, many CFD based analysis have been



performed to study the aeroelastic analysis of wind turbine using Navier Stokes
subsonic compressible equations [33-35]. Almost all of them emphasized that in order
to increase the accuracy of the aerodynamic model of the MW sized wind turbines,
considering compressibility effects is inevitable. The nature of the method is not well-
matched for wind turbine applications, due to the low Mach numbers around the blade
root where the flow is usually incompressible. Some remedies such as preconditioned
and artificial compressibility methods have been reported to deal with this problem

which may increase the cost of computations and complexity of the simulation [36].

For a fixed wing, compressibility has a significant influence on the classical flutter
speed such that at high subsonic speeds (M=0.7), compressibility can yield a drop of
the flutter speed by about 45%. [37]. Sina and Farsadi [38], Farsadi [39] developed
novel exponential approximation of indicial aerodynamic functions in the subsonic

compressible flow regime.

1.1.1 Composite Thin Walled Beam

For the preliminary investigation of the aeroelasticity of the wind turbine blade, the
simplified structure can be useful. Box structure of wind turbine blades and aircraft
wings shown in Figure 1-3, is the load carrying part and in a conservative way it can
be assumed that almost all the aerodynamic loads are resisted by the box beam. Thus,
the structural design of box beam is very crucial in designing aircraft wings and wind
turbine blades. Box beam structure can be considered as a TWB. TWB structures have
found their extensive applications in a variety of engineering products such as aircraft
wings, helicopter blades, wind turbine blades, tilt rotor aircrafts, space deployable
antennas and turbo machinery/jet engine components. In fact, the design of flight
vehicle structures is mainly based on the principles of thin walled beams [40]. The
cross section of TWBs is made up from thin panels connected among themselves to
create closed or open cross sections of a beam. From the strength of materials

perspective, TWBs have a higher gyration radius and hence provide higher bending



stiffness to weight ratios compared with the traditional solid beams. Their structural

efficiency may be even further improved by proper composite laminations.

(a)

Aerodynamic surface

Blade load box
(structure part)

(b)

Figure 1-3 (a) Wind turbine blade and (b) aircraft wing cross section [41]

Composites provide the best specific stiffness (stiffness to weight) and specific
strength (strength to weight), compared with nearly all modern materials. They also
provide the possibility to perform aeroelastic tailoring to get the exact mechanical
properties. Consequently, by using TWB structures wisely, the structural efficiency
can be maximized. A most spectacular product of this technology is the possibility to

eliminate, without weight penalties, the occurrence of the chronic aeroelastic



divergence instability that has prevented for a long time the use of swept-forward
wings in aircraft such as the Grumman X-29 swept-forward wing experimental aircraft

[42].

Having maximized the structural efficiency, the overall weight is minimized. This fact
has led to extensive research studies to determine the critical loading/working
conditions and bottlenecks of a design. The literature in this field is too vast to review
hence only a few major studies are mentioned in this section. Both isotropic and
composite material models are sufficiently studied. The key point in the studies of
composite TWBs is that they exhibit significant non-classical effects, which include
transverse shear, warping restraint, three-dimensional strain effect and contour-wise

shear stiffness variations.

A comprehensive theory to deal with TWB was first developed in the late thirties by
Vlasov [43]. Timoshenko [44,45] and later Gjelsvik [46] has extended the theory to
include other complicating effects. Specifically speaking, Vlasov [43] introduced the
concept of cross sectional primary warping by using a new variable, being the rate of
twist along the beam; Timoshenko [44] obtained a general theory of TWB with open
cross-section and then introduced the effect of shear transverse strain as a new
kinematic variable [45]; and Gjelsvik [46] extended the theory to take into account
both open and closed cross-section cases and incorporated the secondary warping
effect for the first time. Several scientists have then contributed to evolving the theory
of TWBs [47-52] to include single/multicellular configurations, composite lamination
tailoring, transverse shear effects, open/closed cross sections and other complicating
effects. A higher-order shear deformation theory for the static and dynamic analysis of
thin-walled composite beams of arbitrary lay-up and cross section was also presented
by J.K. Suresh et al. [53] . Z. Qin and L. Librescu [54] then proposed a refined model
to account for the three-dimensional strain effect and non-uniformity effect of the
contour-wise shear stiffness which are significantly effective in laminated composite
beams. The model was later validated by the same authors for three distinct layup

configurations [55]. The comprehensive book by L. Librescu and O. Song [56] gives



a full description of the governing equations of motion and their solution
methodologies.

Nonlinear formulations to the problems of TWBs have also been reported in the
literature both for isotropic [57-59] and laminated structures [60]. K. Bhaskar and L.
Librescu [60] followed a systematic approach based on the Lagrangian description and
Hamilton’s principle to formulate the geometrically nonlinear theory. Their theory
accounts for anisotropy, transverse shear deformation, constrained warping and
bending stiffness of the beam-wall. Wang and Qin [61], performed nonlinear analysis
of composite thin walled beams in the presence of simultaneous 1:2 internal and 1:1
external resonance. Their solution method is based on the extended Galerkin method
and the method of multiple scales. The saturation and jump phenomena are well

discussed and verified with the commercial code ABAQUS.

1.1.2  Aeroelasticity of Composite Thin Walled Beam

Due to the applicability of TWBs in aerospace vehicles and the importance of
aeroelastic stability in the design of long wind turbine blades and modern flexible
aircraft, a great deal of studies is devoted to the acroelastic investigation of wings and
blades structurally modeled as beams or TWBs. The first studies regarding this issue
were published by L. Librescu et al. [62-66], Hong et al. [67] and Cesnik et al. [68].
In the latter study by Cesnik et al. [68], acroelastic stability of high aspect ratio
composite wings is performed. The structural model is based on an asymptotically
correct cross-sectional formulation and a nonlinear geometric exact beam analysis. For
the aerodynamic model, the 2-D unsteady inflow finite-state theory as well as the
Theodorsen’s theory are implemented. Z. Qin and L. Libresccu [69] incorporated the
effects of transverse shear, material anisotropy, warping inhibition, and rotatory inertia
in the structural modeling of an aircraft wing and utilized the unsteady incompressible
aerodynamic model in the time domain according to the concept of indicial functions.
Aeroelastic instability of aircraft wings by a composite TWB model is further studied
by Z. Qin and L. Librescu [70]. They employed the incompressible unsteady

aerodynamics using an indicial formulation. Haddadpour et al. [71] have also
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performed aeroelastic analysis of anisotropic TWBs which represent aircraft wings.
Unsteady incompressible aerodynamics is modeled in the time domain by the
Wagner’s function approximation. Na et al. [72] have provided a more comprehensive
model, including active aeroelastic control of TWBs under specific loading conditions.
They used an indicial formulation, being typical in compressible flow problems, to
approximate the unsteady compressible aerodynamic loading in the time domain. The
extensive research papers in the field of rotating composite beams have been reviewed
in depth by Li [73] and Chakravarty [74,75]. Li et al. [73] proposed an innovative
methodology for design of composite rotor blade cross sections. The concept of using
adaptive, bend-twist coupled, composite blades in order to improve energy capture as

well as decrease design complexity are considered in [75].

1.1.3 Nonlinear Aeroelasticity

1.1.3.1 Limit cycle oscillations

Flutter speed is normally calculated using linear governing equations of motion. Flutter
speed is the borderline and the small disturbances in the flow results in exponential
growth of the oscillations of the structure. In the vicinity of the flutter speed, the so-
called limit cycle oscillations (LCO) occur if nonlinearities exist in the structure of
fluid flow. LCOs have been observed in wind turbine blades and aircraft wings [76].
Figure 1-4 shows the time response of a typical LCO. As seen in Figure 1-4, amplitude
increases up to a certain level beyond which the nonlinearities in the system do not
permit the amplitude of the oscillations to increase any further. In this respect,

nonlinearities in the system may prevent diverging oscillations.
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Figure 1-4 Time response of a typical LCO

Nonlinearities which result in LCOs, have either structural nature or aerodynamic
origin. Structural nonlinearities which are the subject of present study, involve the
geometrical nonlinearity, nonlinear stiffness (e.g. free play and contact) and nonlinear
damping (e.g. friction). In case of aerodynamic nonlinearities, flow separation and
shock phenomena can be mentioned. LCOs due to structural nonlinearity have been
vastly studied both experimentally and theoretically [77-79]. Comprehensive research
on the subject of LCOs due to aerodynamic nonlinearities has been performed [80,81].
Flutter speed is normally calculated using linear governing equations of motion. But
the post flutter behavior and LCO caused by structural nonlinearities are investigated
using nonlinear aeroelasticity. There exist two kinds of LCOs when considering
structural nonlinearities. LCOs which occur beyond the flutter point and have a stable
nature are called as benign LCOs. These LCOs are normally due to geometrical
nonlinearities such as strain nonlinearity. Detrimental LCOs occur below the flutter
point. Stiffness nonlinearities (such as free play and contact) and damping
nonlinearities (such as friction) are the common source of detrimental LCOs. Figure
1-5 shows the difference of these two type of LCOs. Figure 1-5 is called as the
bifurcation diagram which is very beneficial in interpreting post flutter response and
the LCO behavior. Variation of the maximum LCO constant amplitude and the free

stream speed are the axes of the bifurcation diagram. Benign LCOs occur outside the
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flutter point. In benign LCO, maximum response amplitude increase with an increase
of the velocity. Benign nonlinearity itself is divided into two forms. In the weak form,
the LCO amplitude grows fast when the flow velocity is increased. On the other hand,
in the strong form, the LCO amplitude grows rather gradually and LCOs can be
observed in a wider post flutter region. For this kind of LCO, abrupt amplitude changes

due to a disturbance terminates with LCO.

(linear) weak
flutter non-linearity

=

subcritical
(detrimental)

LCO amplitude

strong
non-linearity

supercritical
(benign)

i -
flutter Velocity

speed

Figure 1-5 Types of LCOs described by Dowell [82]

LCOs come into existence due to the nonlinear modeling in aeroelastic problems of
the wings [83-85]. Nonlinearities in wing structures usually arise from the structural
stiffness, contacts and free plays of the control surfaces and nonlinear unsteady
aerodynamics. A comprehensive review of the structural and aerodynamic
nonlinearity effects on the aeroelastic response is given in by Dowell et al. [82]. As a
pioneer, Woolston et al. [86] investigated the effect of structural nonlinearity on the
classical flutter of aircraft wings. In this study three relatively simple characteristic
types of structural nonlinearities were studied—namely, free play, hysteresis, and a
cubic spring. As a result, it was shown that nonlinearity has a significant effect on the
flutter speed. The results are highly dependent on the amplitude of the initial

disturbance. In many cases the flutter speed was lowered as the initial disturbance was
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increased. Lee et al. [87] presented a method for nonlinear aeroelastic analysis of a
two-dimensional airfoil, subjected to incompressible aerodynamic loading using a
time-marching finite-difference scheme. In a later study, Price et al. [88] investigated
the airfoil response and the possibility of chaotic behavior by using a variety of plots
including power spectral density, phase space, Poincare map and Lyapunov exponent.
It is commented that LCO due to acrodynamic nonlinearity occurs beyond the flutter
speed while the structural nonlinearity may lead to LCO at an air speed smaller than
the flutter speed [89]. Tang and Dowell [90] investigated the effect of geometric
nonlinearity on the flutter and post flutter behavior of high aspect ratio 3-D wings.
They used slender body assumptions and utilized quasi steady aerodynamic theory.
Patil and Hodges [91] considered aerodynamic and geometric nonlinearities in a
unified aeroelastic model for high-aspect ratio wings. They employed doublet-lattice

aerodynamic theory and nonlinear finite element solution methodology.

1.2 Objective of the thesis

The main objective of the present thesis is to develop theoretical models capable of
predicting the aeroelastic instability boundaries and the post flutter LCO response of
aircraft wings as well as wind turbine blades modelled as geometrically nonlinear
TWB. The theoretical outline of the structural part of the present work consists of two
main parts. Firstly, the load carrying box of composite wings is modelled as TWB with
3D displacement domain including all non-classical effects such as warping and
transverse shear in presence of geometrical nonlinear terms due to large twist angle
and moderately large transverse deformations and second order strain nonlinearity.
The effects of stiffness coupling terms induced by various layup configuration on the
static and dynamic aeroelastic characteristics and LCO behavior of composite wings
are investigated. New quadratic and cubic nonlinear stiffness terms are formulated and
integrated into an aeroelastic governing equations of motion capable of calculating the
dynamic characteristics of composite wings in the subcritical, critical and the
supercritical inflow speeds. The next part of the thesis study deals with the aeroelastic

response of a more realistic MW sized wind turbine blade made of glass fiber
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reinforced plastic (GFRP) including bend-twist coupling. The inertia and stiffness
properties of the inversely designed blade are calculated using the VABS. The
aerodynamic loads acting on the blade structure is assumed to be attached unsteady
aerodynamic flow and calculated by the indicial function method. Unsteady
incompressible aerodynamics based on Wagner’s aerodynamic function and unsteady
subsonic compressible acrodynamics based on compressible indicial aerodynamic
functions are used to simulate the aerodynamic loads which are incorporated into
coupled aeroelastic governing equation of motions to predict more realistic dynamic

performance of wind turbine blade under various rotational and inflow speeds.

The main result to be reached is to achieve highest critical aeroelastic boundaries by
alleviating internal loads by exploiting bend-twist coupling and validate the bend-twist
coupling effect in box-beam structures, which simulate the flange region between the
spars in a wind turbine blade, through a) theoretical composite thin walled beam model
based on Librescu nonlinear theory and b) finite element analysis using VABS
software. Off-axis unidirectional lamina applied in the blade load carrying box tends
to decrease angle of attack yields to load alleviation in blade and increase instability
boundaries of the system. On the other hand, stiffness coupling originated by off-axis
fiber layups in conjunction with strain-displacement nonlinear terms directly affect the

response of post flutter behavior.

1.3 Scope of the thesis

Due to the fact that turbine blades and aircraft wings are critical aerospace structures,
aeroelastic optimization and stability of these structures is very crucial. Box beam in
wings and wind turbine blades must have low weight as much as possible, and loads
incurred due to the flexing of the blades must be controlled in order to enhance
aeroelastic instability. In the literature part, most of the work is dedicated to the
aeroelastic analysis of linear structure in incompressible flow regime. Different from
most of the work in the literature, in the present thesis, the aeroelastic dynamic

response and instability of the wings and blades modeled as TWBs is studied by
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including geometrical nonlinearity, structural non-uniformity (such as; pretwist, taper
ratio and weep angle), non-classical effects (such as; material anisotropy, transverse
shear, warping and rotary moment of inertia) as well as compressibility effects.
Throughout the thesis, it is intended to establish the bend-twist coupling in composite
structure by choosing proper layup configuration and to apply stiffness coupling term
into aeroelastic governing equation of motion results to evaluate dynamic

characteristics of wind turbine blade’s system.

In Chapter 2, theory of the rotating TWB incorporating the non-uniform geometric
features such as pretwist, warping inhibition and transverse shear effects is developed
and free vibration analysis is performed to obtain natural frequencies and mode shapes
of the thin walled beams. The beam is made of anisotropic materials in two different
layup configurations known as circumferentially asymmetric stiffness (CAS) and
circumferentially uniform stiffness (CUS). These layup configurations possess diverse
elastic coupling such as, flapwise bending- torsion, extension-chordwise bending in
CAS configuration and extension- torsion, flapwise bending-chordwise bending in

CUS configuration.

In Chapter 3, the unsteady indicial aerodynamics is introduced in detail. Derivation
methodology of the unsteady incompressible aerodynamic based on Theoderson’s
theory and Wagner function is described in the first section. Then, compressible
unsteady aerodynamics based on indicial function is comprehensively explained. The
novel aspect of this formulation is the Mach dependent exponential approximation of
the indicial functions which makes it possible to perform direct stability analysis at

any subsonic Mach number.

In Chapter 4, aeroelastic response characteristics of composite wings are investigated
via a geometrically nonlinear TWB theory for the structural part incorporating warping
inhibition and transverse shear strain effect. Using the aerodynamics lag states and
indicial incompressible and compressible acrodynamics theory, explicit expressions
for the aerodynamics loading are obtained in the time domain. The coupled field
equations of motion are obtained by utilizing the Hamilton’s principle. Nonlinear

aeroelastic responses are then obtained for composite wings and blades with CAS
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configuration TWB structural model by means of a Ritz based solution methodology
utilizing the mode shapes of the linear structural system. In Section 4-1, the general
aeroelastic governing equation of motion of composite TWB including the effect of
angular velocity and up to third order nonlinearity are derived. In Section 4.2, By
excluding angular velocity effect, nonlinear aeroelastic behavior of composite fix
wings with pretwist and taper ratio ( Figure 1-6a) are comprehensively studied. The
nonlinear aeroelastic analysis are performed in incompressible flow regime using
aerodynamic states and Wagner aerodynamics theory for various fiber angles. In
Section 4.3, By including the angular velocity effect both in structural and
aerodynamic models, the nonlinear aeroelastic analysis is accomplished for a geometry
similar to realistic 5 MW NREL wind turbine box beam-blade ( Figure 1-6b) in order
to obtain flutter rotational speed at constant wind inflow. Linear flutter analysis is done
for fiber angle while post flutter analysis is studied for fiber angle -75°. The indicial
function in unsteady incompressible flow is used to simulate incompressible unsteady
aerodynamic effects. Section 4.4 is devoted to investigate the effect of compressibility
on the linear and nonlinear aeroelastic characteristics of the composite fix wings. The
nonlinear aeroelasticity of composite wing is studied in compressible flow regime
using aerodynamic lag terms and indicial aerodynamics theory for various fiber and

sweep angles ( Figure 1-6¢).

This chapter in general gives the detailed derivation and the solution procedure of the
nonlinear aeroelastic system of equations. Effects of pretwist, taper ratio, wing sweep
angle and the fiber angle of the CAS configuration TWB on the post-flutter response
of the composite fix wing and rotating blade are studied in depth by providing
bifurcation diagrams, phase portraits, Poincare maps and one sided Power Spectral
Density (PSD) plots. To the best of author’s knowledge, integration of the nonlinear
structural thin walled beam model and compressible unsteady aerodynamics via
indicial functions in an aeroelastic system for the investigation of the post-critical
aeroelastic response of composite wings and rotating blades, as presented in this thesis

study has not been studied before.
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Figure 1-6 Schematic description of (a) pretwisted, tapered composite fix wing (b)

rotating composite blade (c) swept composite fix wing

In Chapter 5, the effect of the compressibility on the flutter characteristics of BTC
composite blades is investigated. Flutter analyses have been performed for the baseline
blade and the BTC blades designed for the SMW wind turbine of NREL (National
Renewable Energy Laboratory). Beam model of the blade has been developed by
making analogy with the structural model of the prewisted rotating TWB and utilizing
the VABS method for the calculation of sectional properties of the blades designed.
To investigate the effect of compressibility on the flutter characteristics of the blades,
aeroelastic analyses have been performed both in frequency and time domain utilizing

unsteady aerodynamics via indicial function approach.
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CHAPTER 2

GENERAL NONLINEAR STRUCTURAL MODEL OF THE COMPOSITE
ROTATING TWB

2.1 Preliminaries

TWB considered in the present study is composed of a single cell with straight edges
as shown in Figure 2-1. However, the formulation can be extended to a general cross-
section which is representative of a rotating blade. TWB model has a length L , width

[, height d , wall thickness h and pretwist angle 5(z).

Figure 2-1 Schematic description of the rotating non-uniform TWB
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For the derivation of the governing equations, four structural reference coordinates are
considered. Inertial coordinate system (X,Y,Z) is attached to the hub center. The

rotation vector is perpendicular to the (X,Z) plane and the TWB has angular velocity
of Q(Q = (1j) . Rotating coordinate system (JE’, Y, Z) is placed at the root of the TWB

blade and £, is the offset between the hub center and the root of the blade. Curvilinear

coordinate system (z”,y”,2”) is used to define the complex contour of the cross
section for the calculation of the cross-sectional properties. Local coordinate system
(n,s,2) is defined at the mid plane of the cross section of the TWB such that the

parameter s is the local coordinate axis tangent to the middle surface and » is the
coordinate axis perpendicular to the tangential coordinate axis s and the origin is at the

mid-plane of the wall thickness of the TWB ( Figure 2-1).

The following assumptions are considered to model the composite rotating

geometrically nonlinear TWB structural model [56,60];

a) The transverse displacements v and v inthe  and y directions are finite but,
the twist angle ¢ is considered to be moderately large.

b) The displacement W in the z direction is assumed to be much smaller than
its counterparts in other directions (wv).

¢) The normal stress 7,,, can be ignored in developing the constitutive relations.

d) The form and geometry of the cross section remain invariant in its plane (i.e.
€ = €y = €, = 0), on the other hand, the cross section is permitted to
warp out of its plane.

e) The transverse shear strains (’xm,vyz) are considered in the equation of motion,

but, they remain uniform over the cross section of the TWB.

f) The torsional shear strain (7,,) is constant along the cell wall.

g) Shell force and moment resultants due to o and 7, are assumed to be small

enough and omitted.
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In the equations, dot ( ' ) and prime ( ’ ) denote the derivatives with respect to time ¢

and z axis, respectively.

2.2 Kinematics

For the large rotation of the cross section, based on assumption (a), the 3-D
displacements U (,3%,2,1),v (7,3 21),w (7,%21) are described in terms of the

displacements u(z,t),v,(2,t) and w,(z,t) and the twist angle ¢(Z, t) as [56],

dr | . dy
U= u, —[y—ng]smgb —[az+nE](l—cos¢>

- dy | . dx
V=10, + 1:+nd8 sin ¢ [y nds (1 cosgb) @-1)
w=w, + a:+nﬁ 0 + y—nd—z 0 —[F (s)+na(s)]¢'
0 dS Y dS z w

Where, u,v,,w, are the translations of the shear center of the thin walled beam in
the 2,y and 2 directions , respectively. 0, (z,t),0,(z,t) and ¢(z,?) are the rotations

about the %,y and 2z axes. F,(s) and na(s) are the primary and secondary warping

functions. Figure 2-2 shows the displacements and the rotations of the TWB with

respect to the Z, ¥y, 2 coordinate system established at the root of the TWB.

Y1
0, n
i ! --Lw-‘uﬁ—ll’i
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| W/ % a(s) 0,.
/ '
c-}é
2

Figure 2-2 Cross-section of the TWB showing the displacements and rotations
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The primary (contour) warping function ¥, (s) can be written as [17],

s

F = f[rn (s) — \I/}ds (2-2)

0

where the torsional function U and the parameter 7, (s) are given by,

r.(s)
§ dS uniform thickness
h(s) 24

v v =2
g P 23
¢ Ws)
dx dy
r(s)=y——x— (2-4)
(8= ds ds

Where, A and P are the sectional area and perimeter, respectively. In the definition

of the secondary (thickness) warping function referred to as na(s), a(s) is given by,

dx dy
a(s) =r—+y 2-5
() ds ds (&3)

As shown in Figure 2-2, 0(5) and 7, (s) are the tangential and perpendicular distances
from the shear center of cross-section of the TWB to a generic point in the mid-plane

of the wall of the TWB.

In the present study, to be general, the approximation of the Green-Lagrange strain
tensor is adopted to derive the strain-displacement relations. The nonzero components

of the Lagrange’ strain are defined by Equations (2-6)-(2-8) [17].

2
o

ow 3u (2-6)
+ +
= T 0z EX 0z
_ dx d?/ ! /

Vo =Vt Y+ U(s)67 + 200 (2-7)

dy dx
= - 2-8
7772 ’77'2 d ’}/yz ds ( )
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For thicker walled composite structures, higher order shear deformation theories
(HSDT) may be employed. For instance, for thick walled beam with quadratic
variation of transverse shear strains through the wall thickness, Equations (2-7) and

(2-8) should be modified as,

Yo = (140?02 )7, Z—f +(1-4n?/n?)7,, % +U(s)p' + 200" (29)

dy dx (2-10)
(1 _an2/n2 QY (1 422 ax

Yy = (1 4dn /h )fym s (1 4dn /h )fyzy 7

By substituting displacement components in Equation (2-1) into the axial strain
expression given by Equation (2-6), the nonzero axial strain can be rewritten as given
in,

zz

e, =c¢€, +ne, +n’e’ (2-11)

. 0 A . . . -
where the strain components €., €., Efz include non-linear terms and their explicit

expressions are given as follows.

e = 93515 + 0y +w, — F (s)p" —u¢'y cos(¢) —u ¢z sin(¢) +

(2-12)
1 1 1 1
”yY ISV 2 2 12,2 12 2
U xcos(¢) 4 ysm<¢) Tt T5% +§¢ z +§¢ y
e = —%u(ggb’ sin (gb) + %uéqb’ cos(qb) + %véqb' cos(gb) + (2-13)
dx I 2 dy / dz ’ ”
Evogb 81n(¢) +7(5)¢ +E6y —EQI —¢"a(s)
2 1 12
€, = §¢ (2-14)

It should be noted that in the normal strain €,,, second order nonlinearity with arbitrary

large twist deformation is taken into account.

In order to determine the expressions for the shear strains 7,, and 7, , local shear

strains in the yz plane 7,, and 2z plane 7,, given by Equations (2-15) and (2-16)
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are substituted into Equations (2-7) and (2-8). If a non-shear deformable theory were

intended to be used, in the expressions the shear components 7,7, had to be

nullified, consequently the number of dependent variables would reduce to four

(u072}0’w0a¢)-

v, =0 + v[/) cos (¢5> — ué sin (qﬁ) (2-15)

vz
v,. = Hy + ué cos (gb) + vé sin ((b) (2-16)

Following the substitution, the transverse shear strains 7,, and 7,,, can be expressed

as,
V. = @17)

=~ 2-18

Fy’n,z _ Fy’n,z ( B )

where the explicit expressions of the shear strain components ’}&;’Y;z”)& including the

nonlinear terms are given as,

7 = [Qy + u cos(gb) + v sin(gb)}fl—j + (2-19)

8z

[QI + v, cos(gb) —u, sin(gb)]% + U(s)¢’
v, = 2¢' (2-20)

+ ué cos(d)) + vé sin(gb)}@ — (2-21)

722 - [9 ds

Y
dx

[995 + Ué Cos(¢) - u(; sin(qb)]d—

S
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2.3 Constitutive Relations

The relationship between the stresses and strains in a layer in contracted form can be

expressed in terms of the reduced stiffness coefficients C_Q,L-j of the k" layer of the

composite TWB by Equation (2-22).

'O-SS 685
e I (2-22)
Unz [ = [Qij ](k) ] ’ynz [
O-S/n/ 7871/
O—SZ ﬂ}/sz
() (k)
Qm Qm 0 0 Qw
C721 _22 0 0 QQG (&23)
[Q } =|0 0 Qu Qﬁ 0
o 0 0 _54 _55 0
Qm QGZ 0 0 QGG (x)

The Q; ; components are used to transform the stiffness coefficients from the problem

axes to the material axes and all components are defined explicitly in Appendix A. The
2D first order stress resultants (sz) and couple resultants (L;) as well as higher order

stress couple resultant (sz) of the cross-section of the TWB are defined in Equations

(2-24)- (2-27) in terms of the 3D stresses by integrating the 3D stresses along the wall

thickness of the cross section of the TWB and then summed up to form the total

resultants. In Equations (2-24)- (2-27), it is assumed that the bounds of the kh ply

varies between (%, —h.)and m, is the total number of plies in the laminate of the

TWB.
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a) the membrane stress resultants

NSS m, hk O’SS
N =3 [{o.t dn (2-24)
Nez - hk% O-ez

g

N I o)
N — f o (2-25)
sn b, sn (k)
c) the stress couples
LSS m, hL O-SS
L = ot ndn (2-26)
k=1,
Sz b O-SZ
(x)
d) the higher order stress couple
m, n(}‘_)
I = azzn2dn (2-27)

(2) (b) Lsz

Figure 2-3 (a) Stress resultants and (b) Stress couples [92]

A simplifying assumption is sometimes applied at this stage by lettinge,, = 7,, = 0
, but this has proved to overestimate the stiffness [46]. So, a more realistic assumption

is usually applied by omitting the in-plane force and moment resultants

(N, =L, =N, =0). Using this assumption, the strain components €7, are
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eliminated from the stress-strain relation. Accordingly, with no loss of generality one

may assume the unknowns £ to be linearly varying with the thickness coordinate n
and 7, a constant with respect to the thickness coordinate . This assumption is

required for our proceeding simplifications, so one may express EgV,sas given in
Equations (2-28) and (2-29),

_ 0 1
€, =€, TN, (2-28)

/}/’H,S = ’y::s (2-29)

Substituting the strain definitions from Equations (2-11), (2-17) and (2-18) in the
stress-strain definition in Equation (2-22) and employing Equations (2-24)-(2-27) and
(2-28), (2-29) the constitutive relations are obtained,

N, A, B, D, A, B, Sz A, B,
L, B, D, I, B, Dy iz B, D, 0
For=|Dy F, Hy, Dy F, 522;: +\D, E, LT] 730
N, 4, B, Dy, 4y By Vi A, By |t (-30)
L, By, Dy, I, By Dy 'sz By, Dy
M, M,
€.
gl
{Nss]}: 4, B, D, A Bwl 8;Z L A, B, 529} 2-31)
L, B, B, By Dy ,yzbz B, D, 5;
v M,
Vs
{Nsn] _ A, A Iry?n] (2-32)
N, A, Ay 73n

where the stiffness coefficients including both first and higher order coupling

coefficients are defined as (Aj,Blj,Dij, F;j,Hij) in Equation (2-33) [18].
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v
(4,.B,.D,.F, H,) ;IQU (Ln,n%, 0" ) dn, (2-33)

The 5x5 and 5%2 matrices in Equation (2-30), are named as, M, M,, respectively.

Also, the 2x2 matrix in Equation (2-31) is named as M,. As mentioned earlier,
omitting the in-plane force and moment resultants (N, = L, = N, = 0) one can

S8

eliminate a%,aﬁﬁgﬁ and constitutive relation given by Equation (2-34) is obtained,

r :[Kﬁ.] el N =|4,-2mly (2-34)

where the square and symmetric matrix K is defined as,

1, = o] = [or Jar ] o, (-39

ij

All the elements of K, are explicitly given in Appendix A.

2.4 Governing Dynamic System of Equations

For a rotating TWB, the governing equations of motion can be analytically derived
using the Hamilton's principle in the absence surface shear forces, and thermal

loadings as,

t2

J6r —8(vV 4V, )+ 6wyt =0 (2-36)
tl

at t=t,t,,

Suy = buy = wy = 89, = 60, = 6¢ = 0
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where, 1.V, ch and W are the kinetic energy, strain energy, strain energy due to the

centrifugal force and the work done by external loads, respectively. For the free

vibration problem, work done by the external forces is omitted.

2.4.1 Strain Energy

The strain energy in terms of the 3-D stress and nonzero strain field can be expressed

as,

L

= %ff f 0, t0o,E, + amsm} )dndsdz = (2-37)
0 Ck 1Iz(L)
lj”§ U' +n€ +n2€2)+ e
D) ndsdz
2 0 C k=1nk) %Z + n%z) + afﬁ)ym w

Taking integral along the wall thickness and utilizing the shell stress resultants and

stress couples, one gets,

L
zlffNe +L e +T ¢ —i—N'y +Lfy +N’y sdz (2-38)

ZZzz2 2z RZ ZZzz

Utilizing the constitutive relation given by Equations (2-30), (2-31) and (2-32) and the
strain displacement relations Equation (2-38), integrating Equation (2-38) along the

contour of the cross-section of the TWB, strain energy can be obtained as,

(2-39)

N | =
°S“ ||

[wo+ uo + UU +Q (0 +vocos(¢>fu{]sin(d)))+

L

y T U cos(¢) + Y Sln(¢>) + My (9; — u(')qﬁ'sin(qﬁ) + Uéd)'cos(d))) +
M — 0" cos(6) = of¢'sn(6)) + M. (&') ~ B, (") + 726"z

S

where the 1-D stress resultants (1,@,,Q),)and the stress couples (M,, M,M,B, A)

are defined in Equations (2-40)-(2-47) .
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T = 55 N ds (2-40)

o
o= [Nfl—+ N, Ll (2-41)
Q, = gf[N Z—‘Z - N_ Z—i]ds (2-42)
w, = f [N YL fl—y]d (2-43)
M =loN - & (2-44)
c
M, = 9§ (N, W +2L_)is (2-45)
c
B, = Sf (NLE(9) +a(s)L, Jds (2-46)
A = fﬁ (NZZ (2 +9*)+2L.n, + T )ds 247
¢

In Equations (2-40)-(2-47), T, is the axial force, @, and @, correspond to the
chordwise and flapwise shear forces, M,,M, are associated with the flapwise bending
moment (moment about the x direction) and chordwise bending moment (moment

about the ¥ direction), M, corresponds to the Saint —Venant twist moment, B, is the
bimoment (warping torque) and ', (I', = 9€ I'_ds) is the torque due to the higher order
stress couple.

To obtain the equations of motion and the associated natural boundary conditions via
the Hamilton’s principle, variation of the strain energy is taken. In the application of
the Hamilton’s principle, integration by parts is applied to get rid of the derivatives on
the variations of the displacements, rotations and the twist angle and the variation of

the strain energy is obtained as given in Equation (2-48).
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oV =

(—TZ’) ow, +
—Tu) — Tu + M/¢'sing + M ¢"sin ¢ + M ¢ cos ¢ +
M!¢' cos¢ + M ¢"cosp — M ¢” sing — Q' cos ¢ + bu, +

Q.¢'sing + Q; sin¢ + quﬁ’ cos ¢
_Tzlvé — Tzvé’— M;gb’cosgzﬁ — Mygzﬁ” cos ¢ + Myqb'2 sin ¢ +
f M;¢’ sin ¢ + Ml¢” sin¢ + MI¢/2 cos ¢ — Q; sin ¢ — ov, + dz +
" |Q,¢" cosd — Q! cos$ +Q ¢ sing
M;ué sin¢ + Myué’singzﬁ — M;vé cos o — Myvé’cosgzﬁ +
M;ué cos ¢ + Mjué’cos ¢+ M;vé sin ¢ + vaé’sinqb 56+ (2-48)
! " ! ! " ! !/
M) —B —A¢ — A ¢" —Qusing + Qv cosp —
vaé sin ¢ — Qyué cos ¢
! !
(=M +Q,)80, +(-M! +Q,) 0,
Tué — M1/¢’sin¢ — M1:¢/ cos ¢ + @), cosd — 5

Q, sin¢
(Tzv(’] + My¢/ cos ¢ — Mng)’Sinqb +@Q, sing + Qy coS ng) bv, +

/ /s / 3
—i—MyvO cos ¢ — Myuo sing — M u, cos ¢
—va(’) sing +M_+ B:} + Azng’

(Tz)éwo + U +

0

M 80, + M 60, +

—B 6¢'

2.4.2 Kinetic Energy

Variation of the kinetic energy is expressed as,

T = %fff pR? dndsdz (2-49)

0T = ff pR6R dndsdz = ff pR6R dndsdz

where, the position vector (]_?:) shown in Figure 2-1 of an arbitrary point in the

deformed rotating pretwisted TWB, calculated with respect to the centroid located at

the middle of the hub, is given by,
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R=(z+u)i+(y+v))+E+wt+R)k (2-50)
Considering that the angular velocity €2 about the global or the rotating y axis

(QJ = ), the acceleration of the arbitrary point (R) in the deformed rotating TWB

can be written as,

R’ — (ZT'Z + auj + az];’ (2-51)
where,
o 2 o 2-52
o |i+ g -@raer| o= o
Coriolis Centrifugal

e e )

a, =i — 200 —(z+w+ R )Q

Coriolis _
Centrifugal

where, the effects of the Coriolis and centrifugal terms induced by angular velocity are

clearly identified.

The variation of the kinetic energy can then be expressed after carrying out an

integration by parts whenever necessary.

6T = — [(1,)6u, +(1,)8v, + (1,)8w, +(1,)60, +(,)60, + (I, )}z —

} " (2-53)
b7 <_w0 + 2?09) + (bS o b14)<_9z) + <b9 + b15)(_9y) T (5¢
<b10 + blﬁ)(¢, B Qz(b/) 0
where, the inertia terms (/;) are defined as,
1, = b, (ii, + 20,2 — u Q) = b,A(¢) - b,B(s) (2-54)
I, =b(i,)+0,B(¢) - b,A(0) (2-55)
13 = bl (ﬂ}o - 21},‘)9 - (Z + w, + R()>Q2) + bzé.m + bzigy - b7¢./ (2'56)
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I, = (b, +5,)(0, - 9%, +2cos¢26) +

=, | (2-57)
(ba bls)(eu +2sin ¢ — 920?4) +
b (wo —2u,0) — (Z +w, + RO)QZ) o <b8 o 614)((5/)
I (b +0,)(8) — 2%, + 25in ¢06) + (2-58)
). -2emod 00
b (w — 24,0 — (z +w, + RO)QZ)) - (bg + b15)((}5/>

b= i e =

(1)6 ( QQQ sin ¢ — 299 Cosgb—i—Q2 (COS ¢ —sin gb))

(b —|—b (A smng—i—B Cosng 2991 cos ¢ — O Cosngsmng)—l—

(b +b, )( ( )smgb + B(qb)cosgb - QQéy sing + O cosgbsingb) +

b, (i — 20/2) + (b, — b, )(6) + (b, +b,, ) () + (b, + b, ) (—6" + ")

14
In Equations (2-54)-(2-59), b, terms represent the reduced masses and are expressed

as,

{b,b,b,b,b,b,b,b,b,b}

27737747 757767 777787797 710

[ my {Ly. @y 2% 2y, F, (), yF, (), 0F, (5), F(s) Jds

(2-60)
{bll’bIQ’bl3’bl-l’b15’b16
Y 2
2] [T oo
where the mass terms (m,,,m,) are defined in Equation (2-61).
ZN: | (2-61)
m ,m, m p.iLn,n -
o

Moreover, A(¢), B(¢) in Equations (2-54)-(2-59) is defined in Equation (2-62),

A<¢) = ¢sing + ¢* cos
B(¢) = pcos¢ — ¢’ sin¢ (2-62)
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It should be noted that for a symmetrically laminated TWB, the mass terms which

include the coefficient m, are all zero.

2.4.3 Strain Energy Due to the Centrifugal Force

Rotary blades are subjected to centrifugal forces and in the present study the effect of
centrifugal forces are also taken into account. The centrifugal force acting on the

rotating beam at a spanwise location » can be expressed as,
L
£ = [ PR, + =) = 2Rz @)
where, R(z) is defined as,

(2-64)

The contribution of the centrifugal force to the strain energy in the TWB can be

expressed as,

> [ 2]

ck (k

oteu

1 -

- +( )2 }dndsdz (2-65)
9

where, u,v are the 3-D displacements in the edgewise and flapwise directions (Figure

2-1), respectively and F, is the centrifugal force. By substituting the displacements

defined by Equation (2-1) and the centrifugal force defined by Equation (2-63) into

Equation (2-65), strain energy due to centrifugal force can be determined.

b (u” + 1/2) + (b4 + bm)(qb"z cospsing + qb/) + (2-66)
—fQZ b +b )(¢'2cos¢sin¢+¢’)— 2
2b qb ( cos ¢ + ’US sin ¢) — 2b3¢' (ué sing — ’US cos (;5)
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By taking the variation of Equation (2-66) and applying integration by parts to get rid
of the derivatives on the variations of the displacements, rotations and the twist angle,

variation of the strain energy due to the centrifugal force can be expressed as,

5V, :—f[ £)6u, + (1) 6v, +(£,) 80}z +

) (2-67)
(1,) 8, +(5,)00, +(,)86]
where, [, and f, are defined in Equations (2-68)-(2-70) and (2-71)-(2-73).
£ =00 (R(2p + R'(2)u)) + 2-68)
bﬁg (R(z) (—(j)” cos ¢ + ¢'* sin <f>) — R'(2)¢' cos <f>) -
113(22 (R(z) (QS” sin ¢ + ¢* cos ¢) + R'(2)¢' cos <j>)
L=b5 (’U:R(Z) + R/(z)v(')) + (2-69)
b, (R(z) <gb” cos ¢ + ¢ sin qb) + R'(2)¢’ cos qb) —
X904 (R(z) (gb” sin ¢ + ¢ cos QS) + R'(2)¢ sin gb)
f, =05 (R(z) (u(’]’cos ¢ + v!'sin gb) + R'(2) (ué cos ¢ + v, sin gb)) - (2-70)
b, 02 (R( )(u”singb _ v”cos ¢) + R'(2) (ué sin ¢ — v(/] cos ¢>) +
(b +b, )9 (R(2)0" + R'(2)¢') + (b, + b, ) AQ* (R(2)0" + R'(2)¢)
[, =0 (uéR(z)) - b,0° (R(z)qﬁ’cos gb) -b,0° (R(z)qﬁ’sin <z§) (2-71)
£, = b (v)R(2)) + 0,0 (R(2)¢’ cos ¢) — b, (R(2)¢ sin ¢ (2-72)
f, =05 (R(z)u(’) cos ¢ + R(z)v, sin gb) — 2-73)

b3§22 (R(z)ué sin¢g — R(z)vé cos qb) +
(b, + )2 (R@0') + (b, +5,)2 (RE))
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2.4.4 Governing Equation of Motion and the Boundary Conditions

To obtain the equations of motion and the associated natural boundary conditions via
the Hamilton’s principle, variations of the strain energy due to deformation, strain
energy due to centrifugal force and kinetic energy are taken. In the application of the
Hamilton’s principle, integration by parts is applied to get rid of the derivatives on the
variations of the displacements, rotations and the twist angle and the nonlinear
equations of the rotating TWB are derived. Euler-Lagrange equations of the TWB
given by Equations (2-74)-(2-79).

buy T'u! +Tu!— M;aﬁ’sinqﬁ -M (d)” sin ¢ 4+ ¢'* cos d)) -

‘ (2-74)
M'¢p' cosp — M, ((b” cos ¢ — ¢'* sin <b) + Q! cosp —Q ¢'sing — Q; sin ¢ —
Qy(i)’cosgb—i—f1 -1, =0
§v, : Tl + T+ M'¢ cosp + M, (qs” cosé — ¢ sin ¢) ~ 275)
M,,’,¢/ sing — M (qb” sin ¢ + ¢’ cos (;5) + Q: sin ¢ + Qw(;ﬁ' cos ¢ + Q; cos ¢ —
Q' sing + f, — I, =0
bw,:T'—1,=0 (2-76)
5996:]\4;—@1/—]4:0 (2-77)
8,: M —Q 1, =0 (2-78)
o0¢ : M; <v[; cos ¢ — ué sin qb) + My (v(;'cos¢ — u[;'sin ¢) — (2-79)

M; <vé sin ¢ + ué cos qb) - M <v(;'sin o+ ué’cos ¢) +

M'+B'+ A"+ A o"+Q (ué sin ¢ — v, cos qb) +

Qy (v[; sin ¢ + u[; cosqb) +f,—1,=0
Boundary conditions at the root and the tip (¢ = 0, L) section of the rotating TWB can
be obtained by setting the coefficients of variation of the displacements and rotations

ouy, Ov,, 6w, 00, 60

,»00,60" in the non-integral terms to zero individually.
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bu, = 0,0r T;ué — Myqﬁ’ sing — MTQS’ cos¢ + Q) cosp — Qy sing+f =0 (2-80)

by, =00r  Tu +Md cosgp—M¢'sing+Q sing+@Q cosp+f, =0 (2-81)

obw,=0, or T =0 (2-82)
60 =0, or M =0 (2-83)
6«9y =0, or My =0 (2-84)

6¢ = 0,0r Myv(; cos ¢ — Myué sin ¢ — M(tué cos¢p — Mz”(; sing + M, +
Bl + A6+ f, + B, (=i, +2i,Q)+ B, (~0,) + B, (-8 ) + B, (¢' - 9%') = 0 (2-85)

T

8¢’ =0, or B =0 (2-86)

2.4.5 Strain Energy Expression in Matrix Form

By considering the relationships between the shell stress resultants and couples (i.e.
Equations (2-40)-(2-47)) and their generalized strain counterparts shown in Equation
(2-39) in the matrix form, the generalized shell stresses are related to the generalized

displacements by Equation (2-87).

{F}=4){p} (2-87)

Where, the F, A, D are the generalized shell stresses, the 8 X 8 stiffness matrix of the
cross-section of the TWB and the generalized displacements, respectively. For the
composite TWB, by incorporating the geometrical nonlinearities, F,A,D are

expressed as,
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Fr={r Q @ M M M B A} (2-88)

all a12 a13 a1"1 al{') al()' a17 alS
a22 23 a’Qr’l a25 a26 (1/27 (LQS
33 a'3"1 a&) a3(5 a'37 a38 2 8 9
A — a11 a’r’15 ar’l(i a’"17 a"18 ( ) )
a55 a56 ll57 a58
aGG aG? aGB
sym a. a.
aSS
1 1,
w + = u i Ry
2 2 0
91/ +u, cos( )—I— v sm(¢>>
0, + v, cos ¢>> —u sm( ) (2-90)

D= 6’: — ul’]gb’ sin ((¢> + 1}0¢ cos(qﬁ)
6’; — u(/)qﬁl cos ((;5) vl']qS' sin (gb)
¢/

—"
¢/2/2

Substituting the terms of the constitutive law written in terms of the reduced stiffness

coefficients K ;; given by Equation (2-35), into the 1D stress and moment resultants
given by Equations (2-40)-(2-47) and expressing the resulting equations in the matrix
form Equation (2-87), the 8 X 8 stiffness matrix of the cross section of the TWB is
extracted. The coefficients of the stiffness matrix A are given in APPENDIX B. The
strain energy of the anisotropic rotating TWB in terms of cross section stiffness is then

obtained as,

v = [Viz (2-91)

Where V is the strain energy per unit beam span, and it is written in matrix form in
terms of the generalized displacements D and the stiffness matrix A as given in

Equation (2-92) .
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Vo= ;—DTAD (2-92)

2.5 Composite Layup Configurations Studied

In the present study, two composite layup configurations are considered to establish
proper structural couplings. These configurations are known as CAS and CUS and
they are first discussed by Rehfield [93]. These two configurations are shown in Figure

2-4aandb.

(a) A

P

root 4 !

Figure 2-4a Layup configurations for the present structural model

Circumferentially asymmetric stiffness (CAS)
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Figure 2-4b Layup configurations for the present structural model

Circumferentially uniform stiffness CUS

2.5.1 Circumferentially Asymmetric Stiffness Configuration (CAS)

In the CAS configuration, fiber angles in the top and bottom flanges of the TWB have

opposite sign 0(y) = —6(—y), as shown in Figure a. Similarly, fiber angles in the side

walls have opposite sign 6(z) = —0(—z). CAS layup configuration induces strong

bending-torsion coupling which may be exploited in load alleviation in wind turbine

blades. In the CAS configuration, the non-vanishing stiffness terms are

(@yy0g9, 53,0y, Gere , s, 0 0 )  and  non-vanishing coupling  stiffness terms are
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(@195 0,5, 0,055, 05-) . The definition of the non-vanishing stiffness terms are made in

Table 2-1 and Table 2-2. In addition to the stiffness terms, a number of mass terms

also vanish in the CAS configuration. The non- vanishing mass/inertia terms are

(bl’b47b5’bl()’bll’b12) .

2.5.2 Circumferentially Uniform Stiffness Configuration (CUS)

In the CUS configuration, fiber angles in the top and bottom flanges of the TWB have
same sign 6(y) = 6(—y) , as shown in Figure 4b. Similarly, fiber angles in the side

walls have same sign 6(z) = 6(—z). CUS layup configuration induces strong

extension-torsion coupling which may be exploited in the design of moderate size wind

turbine blades as well as helicopter blades. In the CUS configuration, the non-
vanishing stiffness terms include (a;;,0yy,043,0,,,05:, 04,0, 05s) and non-vanishing
coupling stiffness terms are (a,4,0,4,05,0s5,,04). The definition of the stiffness terms
are made in Table 2-1 and Table 2-3. The non-vanishing mass/inertia terms for the

CUS configuration are (b;,0,,b5,b,0,b;;,b,9,b5) -

Table 2-1 Description of the common non-vanishing stiftness terms for both CUS

and CAS configurations

a Extensional yy Chordwise shear

Qg Flapwise shear Qyy Chordwise bending

i Flapwise bending ge Torsion

ay Warping ags | Higher order stress coupling
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Table 2-2 Description of the non-vanishing coupling stiffness terms for the CAS

configuration

ayy Extension / chordwise shear g Extension / higher order

(yg Chordwise shear / higher order stress a Flapwise bending / torsion

Flapwise shear / warping

Table 2-3 Description of the non-vanishing coupling stiffness terms for the CUS

configuration
ay Extension / torsion g Extension / higher order
ay Chordwise shear / flapwise bending ay, Flapwise shear / chordwise
g Torsion / higher order stress

The effect of fiber orientation on cross sectional stiffness properties for the composite
TWB with geometric and material properties given in Table 2-4 for CAS and CUS
configurations are investigated in Figure 2-5-Figure 2-8. Figure 2-5 shows the
common non-vanishing stiffness terms for both CUS and CAS configurations. Figure
2-6 indicates the non-vanishing coupling stiffness terms for the CAS configuration.
Figure 2-7 depicts the non-vanishing coupling stiffness terms for the CUS configuration

and Figure 2-8 gives the stiffness coefficients of the nonlinear terms.

Table 2-4 Geometric and material properties of the graphite/epoxy composite

rotating TWB!

Material properties Geometric! properties
E; (GPa) 206.8¢9 L (m) 2.03
E, (GPa) 5.17¢9 [ (m) 0.254
E; (GPa) 5.17¢9 d (m) 0.0681
Gy, (GPa) 2.55e9 h (m) 0.0102
G,3 (GPa) 2.55¢9 B (deg.) 0
G,3 (GPa) 1.38e9 0 (deg.) 0-180
U1 = U3, 0.25 p (kg/m?) 1528

U341 0.25 Ry (M) 0

"For the geometric parameters refer to Figure 2-1.
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the warping (a,-) stiffness coefficients versus the ply angle for the uniform TWB
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times magnified or reduced stiffness coefficients)
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In the following, in order to investigate the linear dynamic characteristics of rotating
composite TWB, by ignoring the nonlinear terms, the governing equations for the CAS

and CUS layup configurations are derived in terms of the non-vanishing 8 X 8 cross

section stiffness coefficients (a;;) .

For the CAS configuration, the governing system of equations including the flapwise
bending / torsion and extension / chordwise transverse shear coupling, are obtained
and given by Equations (2-93)-(2-98). It should be noted that in deriving Equations
(2-93)-(2-98), beam constitutive equation Equation (2-87) is utilized to obtain the
equations in terms of displacement and rotations of the TWB and also non-linear terms
in Equations (2-74)-(2-79) and Equation (2-87) are omitted.

/

bu, - a,, (wé’) + ay, (ué + t‘)y) —b (2-93)

1

Ui, + 2w 2 — u0§22 — B
02 [R(2)ur+ R ()] TP T

Y

50, ay, (o] +0.) —ay (¢") =1, (fvo ~ QR (2) + R'(2) v(;D +p,=0 (294

dw, : auwé'—l— a, (ué + 9!/), -0, (12)0 — 24,8 — (z +w, + RO)QQ) +p, =0 (2-95)
80, : —ay, (vé + 9x> T ay <¢I)/ +a (erl )l + ag <¢/>/ - (2-96)
(b, +b,,)(6, — 20, +206) +m, =0

60, : ~a,, (w)) — a, (u) +6 ) +a, (¢) — (b + b)(8 —2%6,) +m =0 (297)

¢ : ay; (v(://+ 0:) + Oy (0; )/ + g (QS/), — Al (QS”)” +
(b, +8,)9 (R(2)" + R (2)6) + (b, +8,)2* (R (2)" + R'(=)0') - (2-98)
(b, + bw)(di —200 — Q2¢) — (b, + bu)(a; + Q2¢) —, (—és'” + Q2¢”) +m =0

For the rotating TWB clamped at the root (2 = 0) and free at the tip (z = L) the

corresponding boundary conditions are obtained from Equations (2-80)-(2-86) and

presented by Equations (2-99)-(2-105).
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at z=20 ou, = 0,0r

at z=L  a,(u])+a, (v +6,)+bQuR(z) =0 (2-99)
at z=0 ov, = 0,0r
2-100
at z=1 s (91 + v(,)) — Ay, <¢,)/ + leQU(/)R (z) =0 ( )
vl =T 2-101
at z=1 all(w(l))+a12(u(;+9y):0 (2-101)
at z=0 60 = 0,0r
at z=1 a., (97/) +a, (¢/) —0 (2-102)
at z=20 0 =0
’ (2-103)

at z=1 a, (9;—0—véq§/)20

at z=0 o0¢p = 0,0r

!/ /

at z=1 a,. (6’1 + v[') )I +ay, (0;) + ay, <¢) —a. (¢//) + (2-104)
(b, + by, + b, + b, )R(2)¢" =0

at z=0 6¢’ = 0,0r

at z=1L a,. (0. +v))—a.. (¢,)’ —0 (2-105)

Similarly, linear equations of motion and the related boundary conditions of composite
TWB for the CUS configuration including extension / torsion and chordwise shear /

flapwise bending coupling are derived and presented in Equations (2-106)-(2-111).

i+ 21 Q2 —u QF —
Su, (0, + ué)' +a, (0) ;02 [R(Z))Ou” +u;,<z)ul} +p =0  (2-106)
0 0

— ) i

60, 2,y (6, +0)) +a,,(67) — b, (i, ~ 2 [qfR(z) + B ()]} + 5, =0 (2107)

Y

6w, : a,, (w)) +a, (') ~ (5, ~ 20,0~ (= +w, + R )2) +p, =0 (2-108)
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/

60 :a, (u(; + Hy)/ — (v(; + 91) —a,, (9;) +a, (9') —

2-109
(b, +b,)(0, — 0, +206) +m_ =0 10

/

59y D —a,, (ué + Gy) +a,, (—9;) +a,, (vé —H‘)m), +a,, (9;) —

2-110
(b, +b,)(6, 9%, ) +m, =0 e

56 (07) 0 () — (57 + (b, b, )02 (R(:)o + (1)) +
(b, +0,)0 ( ( Jo" + R'(2)¢') = (b, +b,)(6 — 200, — %) - (2-111)
(b, + by, )(¢+QQ¢) (b, + bw)( ¢”+qu§”) m =0

The associated boundary conditions for the clamped (z = 0) free (¢ = L) rotating

TWB with the CUS configuration are given by Equations (2-112)-(2-118).

at z=0 ou, = 0,0r

at z=L  a,(u)+0)+a,(0))+bQuR(z)=0 (2-112)
. e (2-113)
oL a0 e (1) () =0
at z=0 bw, = 0,0r
/ (2-114)
at z=1 a11<wé>+a16<¢) =0
at z=0 00 =0,0r
T 2115
at z=1 (125 (Ué _|_9y) (0/) — ( )
at z2=0 60y =0,0r 116
at z=1 a34(115+9z)+a44(0;):0
v N (2-117)

at z=1 2&16 (wé) —+ Qo <¢/) —a,. (QS//)I +
(b4 T, +b + bn)QZR(z)gb' =0
at z=0 5¢, =0,or

, (2-118)
at z=1 a77(¢’) =0
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2.6 Non-Uniform Geometric Features

In the preceding section, effects of taper ratio and pretwist angle were ignored and the
governing equations of motion are obtained for an untwisted and untapered thin walled
beam. Now, in this section two geometric nonuniformities (linear taper and pretwist)
are mathematically described to help better understanding of the effect of these

nonuniformity in structural dynamics of composite TWB.

2.6.1 Tapered Rotating TWB

In order to model the tapered TWB, width and height of the TWB are assumed to vary
as given in Equation (2-119),

I(n) lmot, -
{d@)j _ {d] @-119)

Where (1) and d(n) are the width and the height of local cross section, respectively,

1-n(l-o) 0
0 1-nl-0o,)

7n is the non-dimensional spanwise coordinate (0 <n < 1) shown in Figure 2-4.

Parameters 0,(0; =1, / Loot) and 0,4(0, = dy, / d,...;) represent the ratio of the tip

width and the tip height of the TWB to the root tip and root height of the TWB,

respectively.

2.6.2 Pretwisted Rotating TWB

In order to enhance the performance and aeroelastic characteristics of the rotary blades
of turbomachinery, helicopter and wind turbine systems, pretwist is applied to the
blades during the manufacturing. Pretwist which varies from the root of the blade to
the tip of the blade is also called as geometric twist. In the present study, the pretwist
model of Song et al. [94] and Librescu [92] is adopted, and the pretwist is applied

before any deformation takes place. In the pretwisted TWB, the inertia and stiffness
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quantities of the cross section are determined in the rotated coordinate system
(z?,y?,2") shown in Figure 2-1. At a section of the TWB, the coordinate system
(z?,y?,2") is obtained by rotating the coordinate system (z,y,z) about the beam axis

z by the local twist angle 3(z). The transformation relations between the coordinate

systems (z,y,z) and (z”,y”,2") are given by Equation (2-120).

(2-120)

In the pretwisted model of the TWB, cross section form is preserved, and primary and

secondary warping as well as transverse shear and rotary inertia are included in the

structural model. Due to the pretwist, stiffness (%) and the inertia (b;) terms of the

TWB become a function of the twist angle §(z) (3(2) = 3, z/ L), with 3, being the

pretwist angle at tip section of the TWB, and in the present study pretwist is assumed
to vary linearly along of the span of the TWB. In this respect, stiffness coefficients

a;j and inertia terms b; are expressed with respect to the twisted coordinate system

(z?,y?,2") instead of the original coordinate system (z,y,z) by applying the
transformation given by Equation (2-120). Resulting relations between the stiffness

coefficients and reduced mass/inertia terms defined with respect to the coordinate

system at the root of the TWB (z,y,2) and the local pretwisted coordinate system

(z?,y",2") are explicitly given in APPENDIX C.
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2.7 Free Vibration Analysis of the Geometrically Linear TWB

2.7.1 Extended Galerkin Method

Due to the complex boundary conditions and complex couplings involved in the above
equations, it is difficult to generate proper comparison functions that fulfil all the
geometric and natural boundary conditions. The difficulty can be bypassed utilizing
the modified Galerkin method, where the discretization process is performed directly
in the extended Hamilton’s principle in Equation (2-36) [95]. Therefore, in order to
solve the governing partial differential equation of motion for the natural frequencies
and the associated mode shapes, the Extended Galerkin Method (EGM) in conjunction
with the separation of variation method are applied. The main feature of this method
is to choose appropriate trial functions that only satisfy the essential boundary
conditions, while the effect of the natural boundary conditions is kept in the governing

system.

The linear combination of the shape functions is used and the number of terms in the
series is incremented gradually until convergence is achieved. Application of the EGM
results symmetric structural mass and stiffness matrices. In the EGM, the unknown

deformation variables are approximated in series form by,

w(2t) = Sa e, o (at) = Srewe)
= (2-121)

i=1

CU R CHC A IR SCHE
(0= Rn @6, o(et) = Snou e

i=1

where, the trial functions ¥",¢",1", ", 4Y,1° have to be reasonably chosen to
satisfy the essential boundary conditions, and N is the number of terms in the series

which is chosen suitably to achieve converge. Admissible functions are assumed in the

form of N degree polynomial (v, = 2',i=12,...,N) and the coefficients of the
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polynomial are taken as one for the solution of the free vibration problem. The state

vector of the time dependent variables is defined by Equation (2-122).

v} Y Y Y YY) e

Inserting Equation (2-121) into Equation (2-49), one can write the kinetic energy in

the linear and discrete form,

T = % )" M 7 (2-123)

Similarly, by inserting Equation (2-121) into Equations (2-39) and (2-66) in linear

form, the total strain energy can be written as,

Where M, and K, are the structural mass and stiffness matrices defined in Appendix
D for the CAS and CUS configurations.

Introducing Equations (2-123) and (2-124) in Hamilton principle given in Equation
(2-36), integrating with respect to time, and knowing én = 0 at ¢ = ¢,t,, we can obtain

the discrete governing equations of motion as,

[M]{”} T [KH”} =0 (2-125)

If the state vector is redefined as,

a={{n} {il} (2-126)

Equation (2-125) can be expressed in state space form as given in Equation (2-127).

G=RG, 2-127
0 I (2-127)

-MK, 0

For the eigenvalue analysis, state vector can be expressed as,
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G = Ge
(2-128)
Where G is a constant vector of amplitudes and X is the eigenvalue. Substituting
Equation (2-128) into Equation (2-127), the eigenvalue problem given by Equation
(2-129) is obtained.

(R - IA)@ =0
(2-129)

Equation (2-129) can be solved for the eigenvalues A and the corresponding
eigenvectors G, . For the free vibration problem, eigenvalues are obtained as complex

conjugate roots without the real part (A = +iw,).

2.7.2 Results and Discussion

In this section results are presented for the free vibration characteristics of CAS and
CUS configuration pretwisted rotating TWBs. Using 3D plots, the effects of fiber
angle, pretwist, angular velocity on the first five natural frequencies, and mode shapes
for both CAS and CUS configuration TWBs are displayed. It should be noted that the
TWB model developed in the present study forms the structural model of the
aeroelastic system which is used for the aeroelastic stability analysis of composite

wings and rotor blades.

In order to validate the structural model, natural frequencies and mode shapes are
compared with the results obtained by finite element (FE) analysis software MSC.
Nastran. For this purpose, the first four natural frequencies of the non-rotating TWB
are compared with Nastran results for the untwisted and pretwisted cases. In the FE
model, 2D shell elements with drilling degrees of freedom are utilized with 3D
orthotropic material definition. The structures are clamped at the root and let free at
the tip. For modal analysis in MSC. Nastran solution sequence SOL 103 is used. For

pretwisted model, twist distribution varies linearly with respect to z while at the tip is

40"(50 :40").
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2.7.2.1 Case 1: CAS Configuration

For the material and geometric properties of the TWB given in Table 2-4, Table 2-5
and Table 2-6 compare the first four natural frequencies and dominant modes with the
ones calculated by MSC Nastran for the untwisted and the pretwisted, nonrotating
TWRB, respectively. It is seen that the results obtained with the TWB model are in
reasonable agreement with the results of the FE model for the untwisted and the twisted

models.

Table 2-5 First four natural frequencies for the fiber angle 8 = 45°,Q = 0°, 3, = 0°
for the CAS configuration untwisted TWB

Present study MSC NASTRAN
Frequency (Hz) Dominant mode Frequency (Hz) Dominant mode
1 9.15 1* flapwise bending 9.24 1* flapwise bending
2 27.7 1** chordwise bending 25.58 1** chordwise bending
3 56.7 2" flapwise bending 56.17 2" flapwise bending
4 151 Torsion 148.14 Torsion

Table 2-6 First four natural frequencies for the fiber angle 8 = 45°,Q = 0° for the
CAS configuration TWB with pretwist f, = 40°

Present study MSC NASTRAN
Frequency (Hz) Dominant mode Frequency (Hz) Dominant mode
1 10.05 1* flapwise bending 9.37 1* flapwise bending
2 27.2 1* chordwise bending 24.32 1* chordwise bending
3 62.68 2" flapwise bending 59.77 2" flapwise bending
4 148 Torsion 146.12 Torsion

In order to compare the mode shapes, 2™ flapwise — torsion mode shape of untwisted

TWB with CAS configuration and ¢ = 45° are obtained using present code and Nastran

are compared in Figure 2-9.
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2.7.2.1.1 Effects of the Fiber Angle on the Natural Frequencies and the Mode
Shapes

Figure 2-10a-d show the variation of first four natural frequencies of the TWB with no
pretwist with the fiber angle and the rotational speed in 3D plots. Since the natural
frequencies are symmetric with respect to fiber angle in the range 0° - -90° in Figure
2-10a-d, the results are just shown for fiber angles between 0° and -90°. Generally, all
natural frequencies increase by increasing the angular velocity. It is seen that the
dominant mode varies with the angular velocity for each natural frequency, and
in Figure 2-10a-d they are indicated by the capitals C for chordwise bending, F for

flapwise bending and T for torsion.

Figure 2-10a-d also show that, natural frequencies of the modes which are dominant
in flapwise bending increase with angular velocity at a higher rate compared to the
torsion or chordwise bending dominant modes. This observation shows that the
centrifugal stiffening effect plays more important role in the flapwise dominant modes.
On the other hand, centrifugal stiffening has slightly greater effect on the torsion

dominant modes than the chordwise bending mode.

In Figure 2-10a, it is seen that for the fiber angles in the range [0° - -60°], fundamental
natural frequency related to the flapwise bending mode grows with the increase in the
angular velocity until a certain angular velocity at which dominant mode changes
from flapwise bending to chordwise bending. After the switching of the modes, the
effect of centrifugal stiffening on the chordwise bending mode is seen to lessen than
the effect of centrifugal stiffening on the flapwise bending mode. For the fibers angle
of -75° and -90°, the fundamental mode remains flapwise bending also in the higher
angular velocities. In general, all natural frequencies of the flapwise bending mode
increase with the increase in the ply angle. This trend can be seen as well in the torsion
and chordwise bending modes in the fiber angle range of 0° < ¢ < —75°. However, in
274 and 3" natural frequencies, the opposite trend is seen at higher fiber angles. This
phenomenon may be explained by referring to Figure 2-5 and Figure 2-6 which give

the stiffness variation versus the fiber angle.
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2.7.2.1.2 Effect of the PreTwist on the Natural Frequencies and Mode Shapes

For the CAS configuration TWB, Figure 2-11a-d display the variation of the first four
natural frequencies of the rotating beam as a function of the fiber angle and the angular
velocity for TWBs with and without pretwist. In Figure 2-11a-d, the blue symbols
show the data for the TWB without pretwist and the red symbols show the data for the

TWB with the tip pretwist angle of 40’ (/30 =40 ) To aid the discussion the natural

frequency results, the variation of the flapwise bending (a.;), chordwise bending (a,,)

, torsion (a4 ), and flapwise bending-torsion coupling (a), stiffness coefficients with

the fiber angle for the uniform and the pretwisted beam are plotted in Figure 2-12.
Figure 2-11a and Figure 2-11b show that for the first and the second modes which are

flapwise bending and chordwise bending, the effect of pretwist is not considerable on

the natural frequencies except for higher fiber angles (6 = —75,-90). In general, it is
seen that stiffening effect of the pretwist is higher at low angular velocities and for
higher fiber angles. Figure 2-12 clearly shows that at higher fiber angles, the effect of
pretwist on the flapwise bending stiffness of the TWB is more pronounced. With the
increase in the angular velocity, the effect of pretwist on the first natural frequency
becomes insignificant. The effect of pretwist on the 3™ natural frequency appears to
be more pronounced for the whole range of the fiber angle but for a limited fiber angle
ranges (-75° - -90°) for the 4" natural frequency. For the 3" natural frequency, for the
range of angular velocity in which the dominant mode is the flapwise bending mode,
pretwist has a stiffening effect and pretwisted TWB has higher natural frequencies than
the TWB without pretwist. As Figure 2-11c shows, for the fiber angle of -75° the effect
of pretwist on the natural frequencies of the TWB is significant. When the modes
switches from flapwise bending to torsional at high angular velocities (Figure 2-11c),
it is seen that the pretwist has softening effect on the natural frequency. For the fiber
angle of -90°, vibration mode is chordwise bending at lower angular velocities and
pretwist has insignificant effect on the natural frequency. However, at higher angular

velocities, mode switches to torsion and for the torsional mode pretwist has softening
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effect and natural frequencies decrease for the pretwisted TWB. For the 4™ lowest
mode, and for the fiber angles of —75° and —90° flapwise bending mode is dominant

and the stiffening effect of pretwist is clear. In general, it can be concluded that at

higher angular velocities, the effect of pretwist on the natural frequencies decreases.
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Figure 2-11 Comparison of the natural frequencies of CAS configuration
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the fiber angle and angular velocity (/ Dominant modes; C: Chordwise

bending, F: Flapwise bending, T:Torsion

61



=10

5% & 1
* O 10X agfy=0
* 10 X agg, By = 40

4r 0 o =10 1
i * * Aga, fo = 40
E O 10X ag =0
;d% 3 * 10 X age, o = 40 =
o © 10 X @ge, fo = 0
5] L ad 10 X agg, Bo = 40
.
2 27 1
E=
= .

q (o] o
10 o o © ® —
[o]
o]
SR T . O i .
e @
o o ® ® 0 2 @ A a e nss o8 b
& s 8
-1 I | 1 I I 1 I |
-90 -80 -70 -60 -50 -40 -30 -20 -10 0

fiber angle (deg)

Figure 2-12 Variation of flapwise bending(ass), chordwise bending(a,,), torsion
(age), and flapwise bending -torsion(asg) stiffness coefficients versus the fiber
for uniform and tapered TWB with CAS configuration at zero angular velocity

((x 10) indicates 10 times magnified stiffness coefficients)

2.7.2.2 Case 2: CUS Configuration

For the material and geometric properties of the TWB given in Table 2-4, Table 2-7
and Table 2-8 compare the first four natural frequencies and dominant modes with the
ones calculated by MSC Nastran for the untwisted and the pretwisted, nonrotating
TWRB, respectively. It is seen that the results obtained with the TWB model are in
reasonable agreement with the results of the FE model for the untwisted and TWB

with pretwist.
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Table 2-7 First four natural frequencies for the fiber angle 8 = 45°,Q = 0°, 5, = 0°
for the CUS configuration untwisted TWB

Present study MSC NASTRAN
Frequency (Hz) Dominant mode Frequency (Hz) Dominant mode
1 9.39 1* flapwise bending 9.22 1* flapwise bending
2 27.63 1* chordwise bending 25.32 1* chordwise bending
3 59.19 2" flapwise bending 56.74 2" flapwise bending
4 125.56 Torsion 125.32 Torsion

Table 2-8 natural frequencies for the fiber angle 8 = 45°,Q = 0° for the CAS
configuration TWB with pretwist 5, = 40°

Present study MSC NASTRAN
Frequency(Hz) Dominant mode Frequency (Hz) Dominant mode
1 10.02 1* flapwise bending 9.24 1** flapwise bending
2 26.12 1* chordwise bending 23.94 1* chordwise bending
3 64.26 2" flapwise bending 61.82 2" flapwise bending
4 122.01 Torsion 120.4 Torsion

2.7.2.2.1 Effect of the Fiber Angle on the Natural Frequencies and Mode Shapes
Figure 2-13a-d illustrate the variation of the first four natural frequencies of rotating
TWB without pretwist as a function of the fiber angle and angular velocity. For the
first natural frequency, for fiber angles 0° < ¢ < —60°, with the increase in the angular
velocity mode switching occurs from flapwise bending to chordwise bending beyond
a certain angular velocity. This pattern of mode switching has also been detected in
2nd 3 and 4™ modes. In the second mode, mode switching occurs from chordwise
bending to flapwise bending, and in the third mode switching occurs from flapwise
bending to torsion. The nature of the fundamental vibration mode (mode 1) for the
CUS and the CAS configurations is the same throughout the range of the angular
velocity. As in the CAS configuration, natural frequency of the flapwise bending mode
is affected the most from the increase of the angular velocity. For a wide range of fiber
angles, second vibration modes at low angular velocities are mostly chordwise bending
except for the fiber angles —75° and —90°. By increasing the angular velocity, the
second mode switches from highly chordwise bending to highly flapwise bending, and

the rate of frequency increase with the angular velocity becomes greater compared to
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the rate of increase of the natural frequency of the dominant chordwise bending mode
(a) 1" mode

with the angular velocity.
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Figure 2-13 First four coupled natural frequencies versus the fiber angle for

different angular velocities for the CUS configuration TWB / Dominant modes: C:

Chordwise bending, F: Flapwise bending, T:Torsion, E: Extension

In general, all natural frequencies of the flapwise bending mode increase with the

increase in the ply angle. This trend can be seen as well in the torsion and chordwise

bending modes in the fiber angle range of 0° < # < —75". Figure 2-5 shows the

variation of the flapwise (ay;), chordwise (a,,), and torsion (), stiffnesses.
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Flapwise and chordwise stiffness coefficients gradually increasing while torsion

stiffness has a maximum value at # = —75° and then it decreases. It is deemed that
the decrease in torsion natural frequencies at high fiber angles is mainly caused by

the decrease in torsion stiffness, as shown in Figure 2-5.

2.7.2.2.2 Effect of the Pretwist on the Natural Frequencies and Mode Shapes

Figure 2-14a-d present the variation of the first four natural frequencies of the rotating
TWB as a function of the fiber angle and the angular velocity for CUS configuration
TWB with and without pretwist. The blue symbols show the data for the TWB without
pretwist and the red symbols show the data for the TWB with pretwist with the tip

pretwist angle of 400<ﬁ0 2400). The variation of the flapwise bending (as;),

chordwise bending (ay), torsion (ay), and extension-torsion coupling (a),

chordwise shear - flapwise bending (ay;), stiffness coefficients with the fiber angle

for the uniform and the pretwisted beam are plotted in Figure 2-15. Figure 2-14a and
b indicate that for the first and the second modes which are the flapwise bending and

the chordwise bending, the effect of pretwist is not significant on the natural
frequencies except for higher fiber angles (f =—75,-90"). In general, it is seen that
stiffening effect of the pretwist is higher at low angular velocities and for higher fiber
angles, the same trend seen in CAS model. Figure 2-15 clearly shows the major effects
of the pretwist on the flapwise bending stiffness. At higher fiber angles (§ = —75,—90')

, Figure 2-15 shows that the flapwise bending stiffness of TWB with pretwist increases
significantly compare to lower fiber angle which leads increasing the flapwise
dominant natural frequency in higher fiber angles. In general, with the increase in the
angular velocity, the effect of pretwist becomes negligible. The effect of pretwist on

the 3™ natural frequency appears to be more pronounced for the whole range of the

fiber angle. For fiber angle # = —60°, with the increase in the pretwist mode switching
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occurs from flapwise bending to torsion. For the 3™ natural frequency, for the range of
angular velocity in which the dominant mode is the flapwise bending mode, pretwist
has a stiffening effect whereas for the torsion dominant mode, pretwist has a softening
effect. For ¢ = —75°,—90°, pretwist has minor effect on the natural frequencies at low
angular velocities. For the 4™ natural frequency (Figure 2-14d), the effect of pretwist
looks to be more distinct for —60° < § < —90", where For fiber angle § = —60,

mode switching occurs from torsion to flapwise bending.
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(c) 3™ mode o: with pre-twist

o: without pre-twist

angular velocity (rad/sec)
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Figure 2-14 Comparison of the natural frequencies of CUS configuration TWBs
with pretwist (red circle) and without pretwist (blue circle) versus the fiber angle
and angular velocity (/ Dominant modes; C: Chordwise bending, F: Flapwise

bending, T:Torsion
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Figure 2-15 Variation of flapwise bending(ass), chordwise bending(a,,),
twist(agg), extension-torsion(a;¢), and chordwise shear-flapwise bending(a,s)
stiffness coefficients versus the fiber angle for uniform and tapered TWB with
CUS configuration at zero angular velocity( (X 10) indicates 10 times magnified
stiffness coefficients)

Figure 2-16-Figure 2-18 show the variation of the natural frequencies of the dominant
modes of the CAS configuration TWB with respect to the angular velocity. For the
TWB with the CAS layup configuration and the fiber angle of 90°, with an increase in
the rotational speed, the natural frequencies of the 1% flapwise bending, 1 torsion and
27 flapwise bending modes increase, but natural frequencies of the 1% chordwise
bending mode remain more or less constant as the angular speed increases. However,
in general natural frequencies of TWBs increase with the rotational speed irrespective
of the fiber angle of the CAS configuration. Torsional frequencies are very influential
on the aeroelastic stability of wings and blades. Among the TWBs with the fiber angles
of 90°, 60° and 45°, TWB with the fiber angle of 60° has the highest torsional
frequency. Figure 2-17 shows that torsional stiffness of the CAS configuration TWB
with the fiber angle of 60° is higher than the torsional stiffness of the TWBs with the

fiber angles of 90° and 45°. In this respect, torsional frequencies and torsional
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frequencies have the same trend for the TWBs with the fiber angles of 90°, 60° and
45°.
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Figure 2-16 Variation of natural frequencies of four principle modes angle versus
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In this chapter, the dynamic characteristics of the pretwisted composite rotating TWB

is investigated. To this end, a computer code has been developed to simulate the free

vibration of the composite rotating TWB. The structural models are developed for the

CAS and the CUS layup configurations. The extended Galerkin’s method has been

utilized to construct the proper state space form of the governing equations of motion.

The effect of the fiber angle, the pretwist, and the angular velocity on the free vibration

characteristics of the TWB have been comprehensively analyzed. A careful analysis

of the numerical results obtained from this study revealed the following conclusions:

Major improvement in eigenfrequencies are obtainable for studied ply angles.

At zero angular velocity, by changing the fiber angle from 0° to -70°, natural

frequencies increase both for the CAS and the CUS model. For the 2nd, 3rd

and 5th modes and for fiber angles —70° < # < —90", reductions in natural

frequencies are observed.

Centrifugal stiffening causes mode switching at high angular velocities.
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Angular velocity has stiffening effect particularly on flapwise dominant mode.
In general, increase in angular velocity results in increases in the natural
frequencies of TWBs with CAS and CUS configurations.

From the results, it is obvious that the effect of pretwist on enhancement in
natural frequencies, particularly for the higher modes, is significant at low
angular velocities as well as high fiber angles.

Structural model of the TWB developed in the present study is a suitable model
for the aeroelastic system which can be used for the aeroelastic stability
analysis of composite rotor blades and composite wings.

The main difference in between two configurations is the torsion and
chordwise bending mode’s contribution in the nature of modes. The presence
of torsion mode in CAS model and chordwise bending mode in CUS model are

impressive
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CHAPTER 3

UNSTEADY SUBSONIC AERODYNAMICS BASED ON INDICIAL
FUNCTION APPROACH

The key point in an effective aeroelastic analysis is to apply an accurate and efficient
unsteady aerodynamics model. Aerodynamic loads can be modeled in various ways
such as: strip theory, UVLM: unsteady Vortex-Lattice method, indicial response
theory or in more modern aerodynamic techniques like CFD: computational fluid
dynamics through Euler and Navier Stokes fluid theories. Aerodynamic loads can be
introduced into the analysis in either frequency or time domain. Instability boundaries
of an aeroelastic system are easily determined by using an aerodynamic model in
frequency domain and performing eigenvalue analysis. However, in order to
investigate the response of nonlinear aeroelastic systems and apply closed loop control
systems aerodynamic loads are usually expressed in time domain. The classical
solutions for 2-D aerodynamic lift and pitching moment in time and frequency

domains are given by Theoderson [96], Loewy [97], Greenberg [98] and Wagner [99].

Considering simple harmonic motion, Theoderson’s and Greenberg’s theories are
valid just in flutter speeds and limited to frequency domain approach. On the other
hand, indicial response approach proposed by Wagner in the time domain is inefficient
in the compressible flow regime. Although, Unsteady Vortex-Lattice Method and CFD
methods are very precise and accurate in calculating aeroelastic response of lifting
surfaces, but these methods are normally avoided in aeroelasticity due to the intrinsic
complexity and high computational power requirement. Therefore, unsteady

aerodynamic models in time domain which includes compressibility effects and
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arbitrary change in pitch rate and which are not CFD based are preferred in aeroelastic

analysis.

Generally, there are three viewpoints in modeling the aerodynamic loads in aeroelastic
systems; steady flow, quasi steady flow and unsteady flow. Deriving comprehensive
flow model needs a vast knowledge of fluid dynamics which is not the scope of the
present study. Among the steady, quasi steady and unsteady flows, it is proved that
steady and quasi steady flows are accompanied with errors in predicting the flutter
speeds of aecroelastic systems. Consequently, the unsteady aerodynamic model is opted
as the aerodynamic model which has higher accuracy and complexity. In this chapter,
the unsteady incompressible and compressible acrodynamic models are studied. Strip
theory is applied to extend the present model to a 3D wing and wind turbine blade

models.

In indicial aerodynamics theory response of the system is obtained to a step function
disturbance. In the present study, the disturbance is the pitching and plunging motion
of the airfoil. If the indicial response is known, then the unsteady loads to arbitrary
changes in angle of attack can be obtained through the superposition of indicial
responses using Duhamel’s integral in an incompressible or compressible flow.

The indicial aerodynamics theory results are an effective, comprehensive and
appropriate approach to characterize subsonic unsteady flow. However, the indicial
aerodynamic theory is valid for the simulation of attached flow over the airfoil since
it is based on small disturbance theory. For both incompressible and compressible
flows, appropriate indicial functions are available. In the compressible flow regime,
indicial functions are Mach dependent and obtained for certain Mach numbers in the
literature. In the present study, an approach is also presented to determine the indicial

function for any Mach number utilizing the available data for certain Mach numbers.
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3.1 Unsteady Incompressible Aerodynamics Model

Based on the strip theory and incompressible unsteady aerodynamics model, the
aerodynamic lift and pitching moment about the reference axis which is positioned at

the mid chord shown in Figure 3-1 are expressed as,

Y, (5 2,t)

SN

L (zt)=p UL (%y) — p, — f70 z, z,t)xdr + poon dz -1

b

M, (zt) = poon’yO Tz, t)xdr + = ,00<J f% T, 2,t) (2% — —bQ)d (3-2)
-b -b
Ubgf 7w x,2,t)

\/m 762

Figure 3-1 Cross section of a thin airfoil in xy plane [100]

where, 7,(7,7,2)is the quasi vortex on the wing surface (see Figure 3-2), 7, (% 2)is

the vortex on the wake and I'y(2?) is the quasi circulation. Y,(z,2,t) and 7, (7,21) are

obtained based on no-penetration and Kutta conditions. Continuation is devoted to

explain derivation process of mentioned vortices.

Camber line

?ﬂ’?u“'}’L

Figure 3-2 Two stages in the replacement of a thin airfoil by vortex sheets on the

wing surface [100]
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The vertical position of any points on the surface of the blade cross section is expressed

as,

a (27, s t) =W (Z7 t) T ¢(Z7 t) (xac T ab) (3-3)
Where, the x axis of the aerodynamic coordinates is in the opposite side of the x axis

of the structural coordinate (Jiae =), Y.coincident with 2z axis and 2, coincident

with ¥ axis. 4(%%) and ¢(zt) are the flapwise transverse and torsion deformations

and ab indicates the offset between the shear center of wing box beam and mid chord.

Let’s define F(z,y,21) as,

F(.Q?, Y, %, t) = % (377 2y t) - UO(Za t) - (b(zv t) (‘IE - ba’) (3-4)

The flow no-penetration condition can be stated as,

DF t
DRwyl) _OF  yop_y, (3-5)
Dt ot

OF OF OF OF

—+U+y tu,)—+v + (w, + w,)— =20

T dy,, (w, +w,) dz,,
oD, ey D, 0P,

Where, v, =—u, =—>w, =—u, =—=. P and P, are the bound vortex

oz oz 0z, 0z,

function and the wake. Based on the thin airfoil theory and small disturbance theory

[100], we have,

b
0P, L7, (69, 1)dE )
wb(x’y(w’zac’t) ‘zm—>0: g |Z,,(;—>0: _gfx—_é' (3 6)
ac )
8¢w 1 > ,Yw(é" ya('7t)d§ 3_7
ww(x’yawzac’ ) ‘ZMHO: 37 2, =07 _Efx—_g C
ac b

The downwash is calculated as follows,
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0z 0z
U a

a

t) = o
(@ zt) = s US (3-8)

b o0
o s o Loy §at)ds 1y, (62 t)dE
- (T ba)¢ Ud) B 27T‘!; r — 5 271'“{‘ €T —

§

The airfoil may move in vertical translation %,(f) and rotate about an axis at = = ba

through an angle ¢(¢). The directions of these variables are depicted in Figure 3-3.

Z(LB

ba

Figure 3-3 Mean line of chordwise-rigid airfoil. v, is the downward displacement

of the axis (x = ba) of rotation ¢

In Equations (3-6)-(3-8), it is assumed that the wake is on the flat plate. The downwash
at the middle of airfoil (mid chord) and a quarter of airfoil is calculated from Equation

(3-8) as given in Equation (3-9).

wy 5, (2,t) = vy + bagp — U¢

W 75, (2,1) = Uy — (% — )k —U¢

(3-9)

Methodology brought in the next part follows researches performed by Theodorsen
[96], Von Karman [101] and bisplinghoff [100]. For quasi steady part of the solution

we have,
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b
w, (7,2,1) = v, — (v — ba)p —Up = —%IM (3-10)

3

b
21) = [ (&2 t)de (3-11)

-b

While, for the effect of wake, one can be stated as
b 00
if’)’l(fa z,t)ds if Voo (&5 25 8)dE (3-12)
—£ 27 x—&

f (6,2 1€ f T S

The total circulation on the airfoil is written in this form,

Fb(z’t) = FO(zat) + Fl(zat) (3_14)

The Kutta condition on the trailing edge of the airfoil is satisfied in Equation (3-15).

Po(zat)Jrf,/% (&2 8)dE =0 (3-15)
b

The Sohngen inversion formula [102] is used to solve the Equation (3-10) in order to
obtain 7,(z,2t) and I;(7,%t) given in Equations (3-10) and (3-11). Substituting

[y(z,21) into Equation (3-15) and solving it, v, (=, 1) is calculated. After using spatial

Laplace transform and some manipulations, eventually, we get,

(1) —Qbf/H L — U — béd) (3-16)

= —27by, — Ug — —b¢] —2mbw, - . (2,1)
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3.1.1 Arbitrary Motion of Thin Airfoil in Incompressible Flow (Wagner

Function)

The function ¢W(Ut/ b) is the indicial function for incompressible flow which is usually

referred to as Wagner’s function. Wagner’s function is evaluated via inverse Laplace
transform of the generalized Theodorsen function which is defined in frequency
domain. Based on Theodorsen frequency domain aerodynamics, for the general
motion of thin airfoil of chord length 20 undergoing a combination of pitching and
plunging motion in a flow of steady velocity U, unsteady lift and pitching moment
about the reference axis are given by Equations (3-17) and (3-18), respectively [100].
Le:wm%—%44m$+0¢y+%mmﬂ0@xU¢+ml

. 5—a)¢3+@0} (3-17)

noncirculatory - eulat
circulatory

T = ﬂ'pbs(—ai)'o — U(% —a)p + b(é +a*)p) + (3-18)

noncirculatory

2 pUb? (% +a)O(k)(6, + U + b(% —a)p)

circulatory

The first term in Equations (3-17) and (3-18) is the non-circulatory or apparent mass
part, which results from the flow acceleration effect. The second group of terms is the
circulatory components arising from the generation of circulation about the airfoil.

Theodorsen’s function, also named as lift deficiency function, C(k) is a complex-
valued function which depends on the reduced frequency k£ (k = wb/ U). Theodorsen’s

function has a complex value as,

C(k) = F(k) — iG(k) (3-19)

By using inverse Laplace transform, the time domain counterpart of Theoderson

Function can be calculated as given in Equation (3-20) [100].

6,0l == [ %"’““/“dk (3-20)

—00
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Separating eik(Ut/ " and C(k) into their real and imaginary parts, the Wagner’s function

for (Ui/b) > 0 can be rewritten as,

oo

¢, (Ut/b) = %j PO i ks =14+ 2 f %005 ksdk (3-21)

k T
In many aeroelastic applications it is convenient to use ¢W(Ut/b) when writing the

circulatory lift and moment due to arbitrary motion. The ¢>W(Ut/b) has a relatively

simple form which it is often referred to certain convenient approximation, such as,

Oy (Utfb) = 1~ 0.165¢ “PUY _ g 335,V (3-22)
A plot of ng(Ut/ b)is shown in Figure 3-4.
1.0 ] — |
I o
08 /j/ ——
2 06 7 ‘ : ’ I
& I i ! [
~ 04 H T
| |
02 ‘[ I
[ !
%2 3% & & 10 12 14 16 18 2

Non-dimensional time (%)

Figure 3-4 Wagner’s function ¢>W(Ut/ b) for indicial lift [99]

The general form of the aerodynamic lift L, and pitching moment M, given in
Equations (3-23) and (3-24) are calculated by substituting the expression of T';,~,,v,,

given in Equations (3-9), (3-10), (3-11) and (3-15) into Equations (3-1) and (3-2).
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L, (zt) = —7rpb2u'1050(z7 t) —

. (3-23)
U | dwy os.(2,7) U
Crsp UbY wy 15.(2,0)ey, (; t) + { MT% [E(t - T)] dT]
M_(z,t) = —mpb® ggﬁ—Ua(b—Faii —&—bl—&—az(;/S—
ae\7? 2 0 ] (3-24)

t
dw 75, (2,7)

1 U (
Cp,p U [5 + a][wo_%(z,())gbw(;t) + {

o |t 7

dT}

In Equations (3-23) and (3-24), p_ ,U,b are the mean flow density, the air speed, semi-
chord length of the blade, respectively. Also, w, ., w, .5, are the downwash at the mid-

chord and three-quarter chord of the wing, respectively.

The terms in curly brackets in Equations (3-23) and (3-24) are circulatory part of the
aerodynamic lift and moment [100]. The circulatory part depends on the motion
history and wake influences, and is the most influential term in an unsteady analysis

[103].

In order to avoid complex numerical computations regarding the inverse Laplace

transform, Wagner proposed the following quasi-polynomial approximation [69],

Yy (3-25)
b

24U,
QSW(%t): 11— ae ' H(
i—1

where H(%t) represents the step function and o, = 0.165 «, = 0.335 3, = 0.0455
B, = 0.3 [104].

In order to handle the integral appearing in Equations (3-23) and (3-24), Wagner’s
function is replaced by the quasi polynomial approximation of the Wagner’s function,

Equation (3-25), and the resulting integral is defined as a new variable D(z,¢).

jdwo rse(2:7) [Q@ _ T)]dr (3-26)
b
0
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The first term of the integral in Equation (3-26) yields the downwash at the three-
quarter chord provided that the wing is at rest at time zero. If the second and the third

terms of the integral in Equation (3-26) are defined as B,(z,t), B, (z,t) , which are in fact

the aerodynamic lag terms, then Equation (3-26) can be rewritten as,

D(z,1) = wo75.(2,t) — Z a;B;(2,1) (3-27)
i=1

where, by making use of the Leibniz integral rule, it can be shown that the B, terms

have to satisfy Equation (3-28).

B, + (B, %)Bi = g 75, (2,1); i=12 (3-28)

The present model can incorporate as many aerodynamic lag terms as required for an
accurate solution. It is also worth to mention that this model is similar to the Roger’s
approximation method [105] in terms of the number of augmented states introduced in

the solution.

The preceding expressions are valid only for 2-D airfoils. For 3-D blades with finite
span, some modifications have to be implemented according to the modified strip
theory [106]. To reflect the 3-D effects, lift curve slope and the position of the three-
quarter chord position, where the downwash is calculated, have to be modified
according to Equation (3-29) only in the circulatory lift and moment expressions in

Equations (3-23) and (3-24) [70].

dc, AR

2r — C’L(/) = = 27
do 9 2
AR 1+[} + 2
AR (3-29)
C,,
lbﬁé Lo 1
2 2| w

where, AR is the aspect ratio of the blade.
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Thus, downwash at 3/4th chord is modified by replacing 2r by C,, and b/2 by

b/2

position into Equation (3-27), and Equation (3-27) into Equations (3-23) and (3-24),

C, .
L% - 1]. By substituting the modified downwash, at the three-quarter chord

the final form of the unsteady aerodynamic lift and pitching moment expressions can

be obtained, as shown in the following relations,

L, (2t) = —mp b2[i, — U + bag] —

(3-30)
C P Ubl0, —U¢+ba¢3—— (—= - 1)¢ — ZaB (z,1)]
51 Crs : . . 1 .
M, (2,t) = —mp b [5(7 —D)U¢ — Uag + aijy + b(g a”)o] (3-31)
OLQ'Om;Ub?[%+a][%Uflﬁeraqz.ﬁ—ﬂ 1) — ZozB (z,1)]

where B;'s should satisfy Equation (3-28).

3.2 Unsteady Compressible Aerodynamics Based on Indicial Model

Due to necessity of having explicit expressions for unsteady aerodynamic lift and
moment in time domain including the effects of compressibility, indicial aerodynamics
has been introduced and is now well accepted by the scientific community [100,107-
109]. Indicial response is a mathematical concept which cannot be obtained directly
from experiments. For incompressible and inviscid flows, closed form solutions are
available for indicial responses [100] while for compressible subsonic flows, there is
no such analytical solutions, even though approximate solutions may be obtained from
inversions of periodic acrodynamic responses in the frequency domain [110]. For the
compressible flow case, there does not exist a unique solution in entire time domain
[110]. In the unsteady incompressible theory, the acrodynamic loadings originate from
the two main sources which are circulatory and non-circulatory. Non-circulatory lift
and moment depend on the instantaneous accelerations and velocities of the wing.

However, in a compressible medium where the speed of sound is finite, the non-
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circulatory flow does not adapt itself to the changes of the boundaries instantly, hence
noncirculatory lift and moment do not only depend on the instantaneous values of
acceleration and velocity but also on the history of motion. For compressible flows, it
is not customary to make distinction between circulatory and non-circulatory flow
since the history of the motion becomes important and apparent mass is no longer a
meaningful concept [38,100,110]. Mazelsky [111,112] and mazelsky and Drischler
[113] determined approximated indicial response function in exponential form for

three Mach numbers, 0.5, 0.6 and 0.7.

In aeroelastic problems the pitching axis usually coincides the elastic axis but in the
development of the compressible indicial functions the pitch axis is temporarily placed

at the leading edge as shown in Figure 3-5 [113].

Figure 3-5 Wing performing vertical translation and pitching about an axis through

the leading edge

In the present study, compressible indicial functions are employed to express the
unsteady aerodynamic loading in the compressible flow regime. For arbitrary small
motions of the thin airfoil in subsonic flow, with respect to the reference axis placed
at the leading edge of the airfoil, downwash velocity at a distance z from the leading
edge corresponding to pitching and plunging motions can be expressed as in Equation

(3-32) [100]

20) = [t = Vole.)] - 621 -

w, (2,t) wy(2,t)
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The downwash velocity is divided into two parts; w, = (9, — U¢) indicates the

v

plunging motion and w, = ¢ yields a linear variation of w, with z.

The indicial lift function ¢, () and indicial moment function about the reference axis
located in the leading edge ¢,,,(¢) are defined as the responses to the unit step change
of the plunging motion w, at the leading edge. Consequently, the lift and moment

distributions due to this unit step excitation are defined by Equations (3-33) and (3-34),
[100]

Lr(=t) = (3-33)
' d(wy(z,T)) U
—CypUb|w,(2,0)8,(t) + [ — (= 7)) dr,
0
Vi (1) = (3-34)
Ld(w, 2,7
200U, 5 | w, (2,006, (£) + [ %@M(%(t —7))dr|,
0

In a similar fashion, ¢,(1),¢,,,(t) are introduced as the indicial lift and moment

functions about the leading edge due to unit step change of the pitching rate (¢) at the

leading edge. As a result, the lift and moment distributions are defined by Equations
(3-35) and (3-36),

Lq’(z,t) = 2(§'L©pUb2 w,(2,0)8,,(t) + IWQ@(%@ —7))dT |, (3-35)
0
And
Ld(w 2,7
M;(z,t> = 4CL¢pUb3 w, (2,008, (1) + f%‘ﬁcm(%(t —71))dr|. (3-36)
0

Considering the four indicial functions defined in Equations (3-33)-(3-36) the total
aerodynamics lift (positive upward) and pitching moment (positive nose-up) about the
leading edge are obtained by summing Equations (3-33)-(3-36) as stated in Equation
(3-37),
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U(at) = Li(=t) + I (1) (3-37)

M’(z,t) = M} (z,t) + Mé(z,t)
In Equation (3-37), the prime symbol indicates that the aerodynamic loads are
evaluated in the reference coordinate located at the leading edge of the wing.
Aerodynamic loads in the so called Theodorsen’s coordinate, which is located at a
distance b(a + 1) behind the leading edge, are then defined by Equations (3-38)-

(3-41) which are obtained by employing the general law for transferring the axis of a
moment. [100]

— 7/ —

L, (z,t) =L, (z,t) = (3-38)

_ Ldlw (z,7)) —
~C,0Ub|w,(2,0),() + [ (v 1) ‘(%(t—f))df

)=l
-2C LOPUTbQ w, (2,0) _cM (t) T ]
0

Lq (z,t) -

L (z,t) - C,,pUb’ (a + 1)

(3-39)

(3-40)
w, (,00,(1) +

_ tdlw (z,71)) _
o o0, 0+ A5 0

0

QCLOpUer

Mq (z, t) = Mq’ (z, t)

d(wé(z, 7')) U

—2C,, pUb" (a + 1) = ;

wQ(z, 0)¢,, (7’) + f
+L (2t)b(a+1) =

_ Ld\w,(2,7)
I A

4C, U |w, (2,0)8,,, () + y Gy (- (t = 7)) dT
T

v
b
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In Equations (3-38)-(3-41) a new set of aerodynamic indicial functions for
compressible flow are defined in the Theodorsen’s coordinate as given by Equation

(3-42), [100]

. (1) =@, (1),

Far (8) = 60y (1) + [5 + %]cb 0), (3-42)
5. ()=, () — [5 + %] 6. (1),
G () = oy (8) + [g + %] (6, (1) — s (1)) — [g 4 %] 6, (1),

In the literature, compressible indicial functions are available only in limited Mach

numbers (M = 0.5,0.6,0.7,0.8) [100,112,113]. For instance, Figure 3-6-Figure 3-9 gives

the indicial lift and moment functions ¢,,¢,

a1 Geygs S, TOT both incompressible (M = 0)
and three subsonic compressible Mach numbers (M = 0.5,0.6,0.7). By considering

Figure 3-6-Figure 3-9, it is concluded that the magnitude of lift and moment at any
non-dimensional time increases with the Mach number. The results shown in Figure

3-6-Figure 3-9 are obtained by Mazelsky and Drischler [112,113].

(@)

0 10 20 30 40 50 60

. . \ U
Non-dimensional time (f)

Figure 3-6 Indicial lift functions for plunging airfoil about the leading edge in

compressible flow
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Figure 3-7 Indicial moment functions for plunging airfoil about the quarter-chord

axis in compressible flow
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Figure 3-8 Indicial lift functions for pitching airfoil about the leading edge in

compressible flow
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Figure 3-9 Indicial moment functions for pitching airfoil about the quarter-chord

axis in compressible flow

Figure 3-7 and Figure 3-9 give the indicial moment functions for plunging and pitching
motions about the quarter-chord axis. In order to obtain the indicial moment functions
for plunging and pitching about the leading edge, the axis is transferred from quarter

chord to leading edge and new equations are derived as,

o = (Yo )0/4 - %cbc (3-43)

Sy = (Brr)., — 700 (3-44)

In order to handle the integrals appearing in Equations (3-38)-(3-41), compressible
indicial functions are represented by their exponential approximations just like the
Wagner’s function. For the compressible flow case, in the literature he indicial
functions, which are defined with respect to the leading edge of the airfoil, are assumed

to be in the form of four term Mach dependent exponentially growing functions given

by,
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ngC(Ut/b) =

s Ut Ut Ut (3-43)
bOU + blce o + bQLie B + b3(i6 v
¢, Ut/b) =
: / _5 Ut _p UL g UL (3-46)
bO(:M + bl(:M e + b2(t]l/16 T + bJ(:]W T
0., (U1/b) = (3-47)
-8 ur =B, ve - 8. vt
bOcq + blﬁqe ' + bQqu ' + bSqu !
¢, (UL/0) = (3-48)
- vt - B, vt - f. vt
bOch + bl(:Mq6 4 ' + bQCqu 4 ' + bSCqu 4 '

The coefficients associated with the indicial functions for plunging motion are listed

in the Table 3-1 [112] [100].

Table 3-1 Exponential representations of compressible indicial functions for the

plunging airfoil different Mach numbers

M ¢ (¢CM )(1/4)13
0.5 1.155 0
bo c.om 0.6 1.25 0
0.7 1.4 0
0.8 1.667 -
0.5 -0.406 0.0557
by cem 0.6 -0.452 -0.1
0.7 -0.5096 -0.2425
0.8 -6.322 -
0.5 -0.249 -1
by c.em 0.6 -0.63 -1.502
0.7 -0.567 0.084
0.8 6.538 -
0.5 0.773 0.6263
bs cem 0.6 0.893 1.336
0.7 0.5866 -0.069
0.8 -1.095 -
0.5 0.0754 2.555
Bicem 0.6 0.0646 1.035
0.7 0.0536 0.974
0.8 2111 -
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Table 3-1 continued ...

0.5 0.372 3.308

Bz cem 0.6 0.481 4.04
0.7 0.357 0.668
0.8 2.049 -
0.5 1.89 6.09

B3 cem 0.6 0.958 5.022
0.7 0.902 0.438
0.8 0.082 -

As shown in Table 3-1, approximate representations of the compressible indicial
functions are only available for certain Mach numbers [100,113]. However, in an
aeroelastic analysis usually iterative methods are used and for an airspeed damping of
the system is traced. To take the compressibility effects into account properly,
compressible indicial functions have to be evaluated for the Mach number which
corresponds to the input airspeed. However, since the compressible indicial functions
are known for discrete Mach numbers in the literature, an appropriate interpolation
method is required to evaluate the compressible indicial functions for any Mach

number.

In the present study, a novel exponential approximation is presented which represent
the coefficients of approximations as functions of Mach number less than 0.85. This
technique in conjunction with the state-space representation of the aerodynamic loads
[37,114] enables one to perform direct stability analysis of aircraft wings for different
subsonic Mach numbers. For this purpose, with respect to the axis passing from the
leading edge of the airfoil, exponential representations of the Mach dependent

compressible indicial functions are re-defined as,

6, (M.Utfb) = 0 (M) — S, (M) 1 1 (Utfb) (3-49)
Guar (MUYD) = %(;M(M—iaﬁ;M(M)e‘ﬂ‘Ut/b H(U1fb) (3-50)
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b, (M. UYb) = aocq(M)—iaicq(M)eglUt/b H(Ut/b) (3-51)
i=1

Gty | M Utfb) = aOCMq(M)—ZSjaqu<M)eW/b H(Utb) (3-52)
i=1

where H(Ut/b) is the unit step function. «, coefficients are Mach dependent

coefficients but g, coefficients are Mach independent power coefficients.

It is further assumed that for all exponential representations of the indicial functions,

Mach-independent power coefficients 3, are equal to their counterparts in the

exponential approximation of the plunging indicial function for the lift for M = 0.5

and they are given by g, = 0.0754,8, = 0.372,3, = 1.89 [100]. Thus, for each indicial

function in Equations (3-49)-(3-52), there are only four Mach-dependent base

coefficients (« (M),i = 0,1,2,3) to be determined. To obtain the unknown

ic,icM icq,icMg
Mach dependent base coefficients the following procedure is pursued.

The asymptotic values of the indicial functions are computed by multiplying their
counterparts in incompressible flow by the Prandtl-Glauert factor 1/ J1— M2 It should
be noted that these asymptotic values are equal to the sectional lift and moments

coefficients in steady flow. Hence,

1 -1

(bc(OO): 7¢c 00> = 5 _
NI N2 (3-53)

B (00 = ——S b ooy =

« A1 — MM N

Utilizing Equation (3-53), the first base coefficients of the lift and moment indicial
functions for the plunging and the pitching motion (..o, 07001, (M) ) are found. As a

matter of fact, first base coefficients are identically equal to the asymptotic values of
the indicial functions given by Equation (3-53). It should be noted that asymptotic

values of the indicial functions, which are equal to the first base coefficients, are

independent of the power coefficients (3;,i = 1,2,3).
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With the assumption that for all exponential representations of the indicial functions,
Mach-independent power coefficients 3, are equal to their counterparts in the
exponential approximation of the plunging indicial function for the lift for M = 0.5,
and with the already determined first base coefficients of the lift and moment indicial
functions for the plunging and the pitching motion, the compressible indicial functions

are expressed by Equations

Ut Ut Ut

¢c (Ut/b) _ ﬁ n a10670.07547 n %6670.3727‘ n 0[30871.897 (3-54)
. (Ut/b) _ ﬁ N almemmm% N OéQCMf;Oﬁnlj’t . acheillgg% (3-55)
Py (Ut/b) — 7 i — + alcqe—0~0754% N %qu—o.ﬁan% . 0438,16_1'89% (3-56)
Perq (Ut/b> = 4 11M2 + 0‘1(:Mq670'0754% + %6qu70~372% + O‘chqeiLSQ% (3-57)

At this step, for each compressible indicial function, there are three base Mach

dependent base coefficients («,, . ;.0 i1,(M);7 = 0,1,2,3), to be determined.

For the determination of the remaining three base coefficients for each indicial
function three equations are needed. Lomax et al. [ 108] have solved the wave equation

in the 2-D unsteady compressible flow to obtain the chordwise pressure loading on the

airfoil in the time range of the non-dimensional time 0 < Ut/ b < 2M/ (M + 1) are given

by Equation,
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6. (Utfb) = % 1-%(1-1\4)],
dur (U1f0) = 1 Zt_z\/;(l )+([Z\;) (4 -2)). (3-58)
el = S-S+ 0T -]

Two of the equations required for the solution of the three base coefficients come from

the evaluation of the indicial functions at the non-dimensional times Ut/ b=0 and

Ut/b = 2M/M +1.

The following procedure is implemented to obtain the third equation required for the

solution of the three base coefficients for each indicial function

(aic,icM,i(:q,icﬁ[q (M) ’ i = 07 17 27 3) .

The remaining third equation is obtained by fitting polynomials to the already known

exponential representations of the indicial functions at Mach numbers 0.5,0.6,0.7 and

0.8. It should be noted that for the lift indicial function for the plunging motion (¢C)

, exponential representation of the indicial function is known at Mach numbers

0.5,0.6,0.7 and 0.8 whereas for the remaining indicial functions (P.y Peq Persy)

exponential representations are known at Mach numbers 0.5,0.6 and 0.7. The aim is to
obtain polynomial form of indicial functions (¢c7¢c becquc Mq) in terms of non-

dimensional time (Ut/ b) using the data given for the compressible indicial functions.
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In this respect, indicial lift function for lift for the plunging motion of the airfoil is

approximated by a third order polynomial given by,
6. (ULfb) = a, (Ut/b)2 +a, (Ut/b)2 +a, (Utfb) +a,  G-59)

where, M is the Mach number, t is time, and b is the half chord. a,y,a,,0.,0.5 are

the unknown coefficients which are obtained using the available data for the lift

indicial function for the plunging motion (ch ) The known exponential representations

of the lift indicial function for the plunging motion for Mach numbers 0.5,0.6,0.7 and

0.8 are evaluated at four different non-dimensional times and the four unknown
coefficients of the polynomial approximation of the indicial function ¢, are

determined. For this purpose, four non-dimensional times are considered
(Utl/b =4, Utg/b = 4.8, Utg/b = 9.6, Ut4/b = 6.4) as a target values, and Equation

(3-45) is set equal to Equation (3-59) at the indicated non-dimensional times as shown

in Equation (3-60). From the four equations given by Equation (3-60), four

undetermined coefficients a,y,a,,0.,0.5 are determined.
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¢C:g5(i_>

for M =0.5
b()c + blce_Blg(Utl/b) + che_ﬁ%(Utl/b) + bSCe_ﬂZ‘L‘(Utl/b) _

acS (thl/b)3 + acQ(Utl/b)Q + acl(Utl/b) + acO

for M =10.6
by, + b U/ g oD /D)
ac3 (UtQ/b)s + ac? (UtQ/b)2 + acl(UtQ/b) + aco
(3-60)
for M =07
by, + b, Pt/ b, GO b, oAUt o) _

ac3(Ut3/b)3 + acz(Uts/b)2 + ac1(Ut3/b) +a

for M = 0.8

b, + blceaala(m/b) i bQCef@(,wQ/b) " bgcefﬁh(UM/b) _

ac3(Ut4/b)3 + acQ(Ut4/b)2 + ac1(Ut4/b) +a

The same process is repeated for the other moment indicial function ¢,, for the
plunging motion of the airfoil, but second order polynomials are fitted since the
exponential representations for the indicial functions ¢, are available for Mach
number 0.5, 0.6 and 0.7. For this purpose, second order polynomial for the moment

indicial function in plunging motion (qgc M ) is introduced as,

Gorr (Ub) = @y, (Ut/b>2 t oy (UH/0) + aprg (3-61)

where unknown coefficients @.y4,a,./1,4,0 are determined using the available data

for the moment indicial function for the plunging motion (quM ) using Figure 3-7,

Table 3-1 and Equation (3-7) at certain values of the non-dimensional time (U t/ b) for

96



Mach numbers 0.5, 0.6 and 0.7 respectively . Three values of the non-dimensional time
(Ut1 / b = 4,Ut, / b =4.8,Ut, / b= 5-6) are considered as target values and Equation

(3-46) is set equal to Equation (3-61) at the indicated non-dimensional times, as shown

in Equation (3-62). From the three equations given by Equation (3-62), three

undetermined coefficients a,;;y,@.37,%.0 are determined.

for M = 0.5

100crs + b1cMeiﬁhM(Utl/b) + by € + byear
acM2(Ut1/b)2 + ach(Utl/b) + aepro

*ﬁsz (Ut1/b) efﬁ:scM (Utl/b) —

3-62
for M = 0.6 ( )
_Bchf(Ut’_)/b)

_Ssz(Utz/b) _ﬂiicM(UtQ/b) —_

] bOcM + bche + b2cMe + b3cM6
“cMz(Ut2/b)2 + ach(Ut2/b) + a0

for M = 0.7

_Bch(Utfs/b) _Hsz(Ut:;/b) _anM(Ut:;/b)

] bOcM + bche + b2cMe + bSCMe =
“cMz(Ut3/b)2 + ach(UtS/b) + o

Similarly, second order polynomial for the lift indicial function in pitching motion

(Qgcq )is introduced as,
Gy (VD) = 0, (U6) + a,y (U1f6) + ayg (3-63)

The unknown coefficients a,,,a,,,a,, are calculated using data given in Table 3-2

extracted from Figure 3-8 at certain values of the non-dimensional time
(Utl/b =4, Utg/b = 4.8, Ut3/b = 5.6) . By setting the values given in Table 3-2 equal

to Equation (3-63) at the indicated non-dimensional times and solving the three
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equations given in Equation (3-64), the unknown coefficients a,,.a.,,a,., are

obtained. It should be noted that the values of the indicial functions in Table 3-2 are

obtained.

Table 3-2 Lift indicial function in pitching motion at three non-dimensional times for

Mach numbers 0.5, 0.6 and 0.7

Mach number Indicial function Valuefiig;eo?di‘:ial
0.5 6,,(4) 0.598
0.6 6,,(4.8) 0.629
0.7 6,,(5.6) 0.709

Gog = Gy =

cq cq2 cql

(Ut /b = a5 (Ut [6)° + a,, (Ut [b) + a,,

(3-64)
Gog (Ut [b) = am(w2 JOF + . (Ut [5) + a,

or = 0.7
(Ut /b = a

g
g

B, ( w02 (Ut /b)2 + a,, (Ut /b) + a,,

Lastly, second order polynomial for moment indicial function in pitching motion

(qﬁc Mq ) is introduced as in Equation (3-65).

Gorty (U/b) = gy (Ut/b)2 + Gopgg (UH5) + @prgg (3-65)

The unknown coefficients @y, @115 %.01p0 are calculated using data given in Table

3-3 extracted from Figure 3-9 at certain values of the non-dimensional time
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(Utl/b =4, UtQ/b = 4.8, Utg/b = 5.6) . By setting the values given in Table 3-3 equal

to Equation (3-65) at the indicated non-dimensional times and solving the three
equations given in Equation (3-66), the unknown coefficients are obtained. The values

of the indicial function in Table 3-3 are obtained

Table 3-3 Moment indicial function in pitching motion at three non-dimensional

times for Mach numbers 0.5, 0.6 and 0.7

Mach number Indicial function values
0.5 b1y (4) -0.322
cMq
0.6 qiﬂ1q(4'8) -0.31
0.7 ¢ch(5-6) -0.286

¢ch = ¢ch -

for M = 0.5

Perry (Ut1/b) = achQ(Utl/b)Q + ach1(Ut1/b) + Qg0
(3-66)
for M = 0.6

Bontg Uty [0) = @u1yo Uty [0) + @1 (Uty [5) + a1

for M = 0.7
¢0Mq(Ut3/b) — achQ(Utg/b)2 + achl(UtS/b) + a100

In the end, the polynomial approximations of the compressible indicial functions with
known coefficients are obtained and presented in Equations (3-67)-(3-70). For each
compressible indicial function, Equations (3-67)-(3-70) give the third equation needed

to solve for the Mach dependent base coefficients (a,, .y i ieny (M), i = 0,1,2,3).

o (Utfb) = —0.01093(Ut/b)3 + 0.1719(Ut/b)2 —0.794(Ut/b ) +1.9233 (3-67)
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Gy (Ut/6) = ~0.00149(Ut/5) + 0.01366(Ut/b) — 0.2430 (3-68)
by (Utf1) = 0.03742(Ut/b)2 — 0.29024(Ut/b) + 1.16058 (3-69)

Goary (UH/6) = 0.00841(Ut/b )" — 0.0586 (Ut/b) — 0.2225 (3-70)

In the following, the process of obtaining the Mach dependent base coefficients is
explained for the lift indicial function for the plunging motion (qbc ) . The first two

equations come from the evaluation of the compressible indicial functions, which are

determined by Lomax in the range of the non-dimensional time 0 < Ut/ b <2M / (M +1)
, given by Equation (3-58). Compressible lift indicial function is evaluated at non-
dimensional times Ut/ b=0 and Ut/ b=2M / (M +1) and they are given by

Equations (3-71) and (3-72).

$.(0) = — (3-71)

2M 4
it " (1 + M) (3-72)

The third equation is obtained by equating the proposed approximation of the lift
indicial function given by Equation (3-54) to the polynomial approximation Equation
(3-67) at a later time. As seen in Figure 3-6, compressible indicial functions are shown
for non-dimensional times up to 60. As the non-dimensional time increases, all indicial
functions level out. Therefore, for all indicial functions proposed approximation of the
lift indicial function given by Equation (3-54) is equated to the polynomial
approximation Equation (3-67) at the non-dimensional time 40, as shown in Equations

(3-73) and (3-74).
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¢, (40) = ¢(40) (3-73)

1

1— M?
—0.01093 x 40% + 0.1719 x 40% — 0.794 x 40 + 1.9233

—0.0754x40 —0.372x40 —1.89%x40 __
+ o€ + ay.e€ + ag.e = (3-74)

For the proposed approximation of the lift indicial function for the plunging motion,

Equations (3-71), (3-72) and (3-74) are solved for the three unknown Mach dependent

base coefficients (¢;.,7 = 1,2,3) .

For the moment indicial function in plunging motion ¢, , the three equations for the

solution of the Mach dependent base coefficients (cv;.;,¢ = 1,2,3) are given by

Equations (2-69)-(2-71).

-1
2M -1 1— M M(M - 2)
' BETi * 3-76
@b,M(M + 1) M 1+ M 2(1 + M)2 ( )
¢,y (40) = B, (40
M(_ ) ,M( ) .
+ aldwe—o.(]754><40 + agcﬂ,[6_0-372><40 + agdwe—l.89><40 —

4N1 — M?
—0.00149 x 40% + 0.01366 x 40 — 0.2439

For the lift indicial function in pitching motion ¢,,, the three equations for the solution

of the Mach dependent base coefficients (c,,.i = 1,2,3) are given by Equations

(3-78)-(3-80).

0oy (0) = — (3-78)
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M M- M2
oMy L 1M (1-M/2)

3-79
M +1 M 1+ M 2(1+M)2 ( )

40) = 40
¢,,(40) = ¢,,(40) (3-80)
3 ¢~ 0.0754x40

N1 — M2 T ey

0.0372 x 40% — 0.29024 x 40 + 1.16058

—0.372x40 T a 6—1.89><40 _

+ Oé?cq6 3cq

For the lift indicial function in pitching motion @, , the three equations for the

solution of the Mach dependent base coefficients (e, = 1,2,3) are given by

Equations (3-81)-(3-83).

-2
Goary (0) = — (3-81)
2M —2 31— M) 31— M)y Mo
= 1_ _
¢(:Mq(M + 1) 3mM 21+ M) + 28 21+ M) — M)? (3-82)
¢0Mq£40) - ¢Cﬂ4q (40) (3-83)
m + achqe—o.o7o4x4o + %Cqu—o.mxm + QSCqu—1.89x4O _

0.00841 x 40> — 0.0586 x 40 — 0.2225

For any Mach number, after solution of the three Mach dependent coefficients

(e ientieqiortg(M),i = 0,1,2,3) for each compressible indicial function for the plunging

and pitching motions of the airfoil, compressible indicial functions can be calculated
for any Mach number through Equations (3-54)-(3-57). With the proposed approach
for the frequency domain solution of the aeroelastic instability problem one evaluate
the compressible indicial functions at any Mach number in the Mach number range
0.5 < M < 0.8. It should be noted that for Mach numbers less than 0.3, incompressible

flow assumption is reasonable.

The variations of the Mach dependent coefficients of lift and moment indicial
functions in plunging and pitching motions, which are calculated using the proposed

method, with respect to Mach number are presented in Figure 3-10-Figure 3-13
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Figure 3-10 a coefficients for approximating the indicial lift and moment

at0.5<M <08
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Figure 3-11 a, coefficients for approximating the indicial lift and moment

at0.5<M <08
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Figure 3-12 a, coefficients for approximating the indicial lift and moment

at0.5 <M <08
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Figure 3-13 a5 coefficients for approximating the indicial lift and moment

at0.5<M < 0.8
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In Figure 3-14 and Figure 3-15, lift (qﬁc ) and moment (¢C Mq ) indicial functions for

the plunging motion are calculated by the proposed approach are compared with the

available solutions of the lift and moment indicial functions in subsonic flow [115].

(a) 1.4

1.3} .

1 1 1 1 1
0 5 10 15 20 25 30 35 40
Nondimensional time

-0.15

(b)

-0.2}

-0.25}

-0.3}

¢ -0.35
M 54 M=0.5
-0.45

-0.5

-0.55

-0.6

5 10 15 20 25 30 35 40
Nondimensional time

-0.65
0

Figure 3-14 Comparison of indicial (a) lift and (b) moment functions for the

plunging motion M = 0.5, dashed line: present study, solid line : Ref [115]
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At the Mach numbers of 0.5 and 0.7. From Figure 3-14 and Figure 3-15, it is seen
that in the range of the non-dimensional time 0 < U t/ b < 40, the variations of the

indicial functions calculated by the proposed approach are in reasonably good
agreement with the available solution. It should be again stressed that with the
proposed approach, the compressible indicial functions can be calculated at any
Mach number in range 0.5 < M < 0.8 which covers most of the subsonic

compressible flow problems.

(a) -0.15

-0.2}F

-0.25F

¢ -0.3H
C

10 20 30 40 50 60
Nondimensional time

(b)

1
10 20 30 40 50 60

0.7 ! !
0

Nondimensional time

Figure 3-15 Comparison of indicial (a) lift and (b) moment functions for the
plunging motion M = 0.7, dashed line: present study, solid line : Ref [115]
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3.2.1 Explicit form of the subsonic compressible aerodynamics model

Once the Mach dependent base coefficients (e, ;. opien, (M), i = 0,1,2,3) of the lift and

the moment compressible indicial functions for the plunging and pitching motion with
respect to the coordinate system established at the leading edge of the airfoil are
determined for any Mach number, base coefficients with respect to the axis located at

b(a + 1) aft of the leading edge can be determined utilizing the relations given by

Equation (3-84),

a, (M) =a, (M)

(M) = 0, (M) + |5 + 2, (1)

o o 1 (3-84)
uq( ) aicq< )_ §+5 1’C<M)

_ a 1 a 1 i

Olich<M) = Olich<M) + 5 + 5 (Olioq (M) - ajcM(M)) - 5 + 5 ¢C<M)

where i = 1,2,3. It should be noted that these relations are the same as those given by
Equation (3-42) for the indicial functions themselves owing to the fact that, the
approximate exponential representation of the four indicial functions are defined with

the same Mach-independent power coefficients (3,,i = 1,2,3).

The integrals in the lift and moment expressions in Equations (4-79) and (4-80) are re-
expressed by substituting the exponential representations of the indicial functions,

defined with respect to the axis located at (e + 1)aft of the leading edge, in the

integrals as shown in,

L, (z, t) = —C’L@pUb dr|+ (3-85)

(% —l—:[d [ (t—7)

- U Ldw, (Z,T)
w,(2,0)8, (1) { [ t—T]dT

20, pUb* |w
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_ d _
M (21t) = =20, 00 | (2,008, (- 0) + [ e o\ la |+ (3-86)
@ b ! dr ‘
; U rdw, (Z,T —_ (U
40, UV’ [, (2,06, (1) + [ G| =,
1 dw 2,T) — rdw 2T 3 5%
nen= [*4205 [*(H)]dkf - )[m(mZ%(M) 0 )]dT
0 0 i=1
o dw, (2,7) _ [ ] dw, (z,7)( 5. g/va,)]
D,(zt) = Gy | =t —7)|dr = ooy (M) = @, (M)e 't dr
‘[ dr ‘[ dr 0 = (3-87)

T~ dw (z,7) - (U y dw (z,7)| _ 3.0 5%
Dy(z,t) = f b [;(t—f)]dT: f e ,[](,ﬂ,,(M)—;aicM(M)e b dr

dw,(2,7) _ U / dwo(z,r) _ CE 5%
Dy(zt) = f Gy |- (E=7) |dT = f oy (M) — Zai(iqA[(M)e b dr
i=1

dr b

By defining the integrals involving the exponential terms in Equation (3-87) as the

aerodynamic lag terms B, (z, t), assuming that the wing is initially at rest (

ic,icq,icM icMq
w,(2,0) = w,(2,0) = 0) and making use of the Leibniz integral rule, Equation (3-87) is

transformed into Equation (3-88).

i=1
3
D2 <Z,t) = &ocq w(j)(Za t) - Zaichicq (Z’t> (3'88)
i=1
3
D3 (Z,t) Olo(M wq)(z7 t) - Z &icMBicM (Z’t)

3
D, (z,t) = w,(2,t) — Z_“M‘IB“MQ (z,t)

When the Leibniz integral rule is applied to the integrals involving the exponential

terms in Equation (3-87) it can be shown that the aerodynamic lag terms

(z, t) are defined by,

Bvﬁc,vﬁcq,icM,ich
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dw, (2t) (3-89)

It should be noted that three aerodynamic lag terms are used for each indicial function
so a total number of twelve aerodynamic lag terms would exist in the description of
the 3D unsteady aerodynamic loads in the subsonic compressible flow. Finally,

unsteady compressible aerodynamic lift L (z,¢) and pitching moment M¢ (z,t) about

the Theodorsen’s coordinate in terms of indicial functions are expressed as,

&, (Mw, (2,t) - f:&m(M)Bm (2t) + (3-90)

=1

&, (Mw, (zt) - i&icq(M)Bicq (21)

L (2,t) =—C, pUb

ae

20,,pU b’

M; (z1) = =20, pUb &, (M)w, (2,t) = Y&, (M)B,,, (1) + (3-91)

40, pUb"

i=1

To incorporate the 3-D effects of the finite span wing, lift curve slope C,¢ is obtained

from Diederich’s general formula as [116],

ARcy,
C,, = ’ (3-92)

Lo 5
C
ARN1— M2 14— 2
\/ TARN1 — M?

+
where M is the Mach number and ¢ is the 2D lift curve slope.

G
v
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CHAPTER 4

NONLINEAR DYNAMIC AEROELASTIC RESPONSE OF COMPOSITE
WINGS STRUCTURALLY MODELED AS TWB

Geometrically nonlinear aeroelastic behavior of pretwisted, tapered composite wings,
structurally modeled as TWB is studied. The structural equations of motion are
obtained in the most general form based on the kinematic relations governing thin
walled beams, including the nonlinear strain displacement relations, and utilizing the
principles of analytical dynamics. Unsteady aerodynamic loads in the incompressible
flow regime are expressed using Wagner’s function in the time domain (Section 4.2)
and unsteady aerodynamic loads in the subsonic compressible flow regime are
expressed using indicial’s function (Section 4.4). The aeroelastic system of equations
is augmented by the differential equations governing the aerodynamics lag states to
come up with the final coupled fluid-structure equations of motion. The governing
system of equations of the aeroelastic system is solved, for the TWB with CAS
composite layup, by means of a Ritz based solution methodology utilizing the mode
shapes of the linear structural system to approximate the spatial variation of the
degrees of freedom of the thin walled beam. Time response of the nonlinear aeroelastic
system is obtained via the Runge-Kutta direct integration algorithm. Effects of the
fiber angle, pretwist angle, taper ratio and sweep angle of the CAS layup configuration

on the nonlinear aeroelastic stability margins and LCO behavior are studied in depth.

The aim of the present study is to investigate the effect of geometrical nonlinearity on
the post flutter behavior of composite high aspect ratio wings in subsonic flight regime,

with both incompressible and compressible aerodynamics. In this flow regime, the
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medium fidelity aerodynamic model of the unsteady strip theory with indicial
functions provide acceptable accuracy compared to high fidelity CFD models. In the
literature, several studies have been performed using non-linear beam dynamic
equations coupled with 2D unsteady aecrodynamics models with or without modelling

stall phenomenon [117-121].

In the present work, it is assumed that the torsional deformation is finite and
moderately large while the flow still remains attached to the surface. The assumption
of considering nonlinearity in torsion degree of freedom is due to establishing stiffness
coupling among the degrees of freedom which affects the post flutter behavior
significantly. On the other hand, for large torsional deformations, dynamic stall could
be a major problem. For many types of airfoils, the critical value of angle of attack is
usually between 15-20 degrees [122]. In our analyses, twist angle is nowhere near the

stall region.

In summary, in this study, small disturbance theory, which is valid for attached flow,
is used. For impending aeroelastic instability, using small disturbance theory suffices
since in the initial phase of the flutter phenomenon deformations are small. In the
current study, post-flutter response has been investigated for very small values for the
initial conditions which makes the small disturbance theory still acceptable for the
investigation of nonlinear aeroelasticity of wings and blades. Intrinsic character of the
nonlinear aeroelastic system has been investigated by exciting the wing by a very small
initial disturbance and utilizing linear unsteady aerodynamics. The current model can
be improved by including stall aerodynamics using models such as ONERA stall

aerodynamics as a future work.

4.1 Aeroelastic Governing Equation of Motion

Due to complicate boundary conditions derived in Chapter 2, it is challenging to find
appropriate comparison functions that satisfy both geometric and natural boundary
conditions. Therefore, in order to avoid dealing with complexity of boundary

conditions effects, they are not extracted from the governing equations of motion by
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applying integration by parts. Symbolic composite wing with structural and

aerodynamic coordinates and parameters is shown in Figure 4-1.

the nonlinear structural model based on Librescu and Song [56] is representative for
advanced rotating wings with general cross section, for the sake of convenience a
single-cell, fiber-reinforced composite thin walled box beam with a length L, width [
, height d, thickness h, wing chord 2b (see Figure 4-2a) . The 3-D displacement

parameters, u, v, and w, are mid-surface displacements in z, y and z directions,
respectively. Also, 0, Hy and ¢ are section normal vector rotations about z, y and

z directions, respectively (Figure 4-2b).

A

Figure 4-1 Schematic description of the rotating wing structure and it’s cross
section

n

; p— 2
<« h -
— .
« Ll s
2

Figure 4-2 (a) Composite TWB (b) Cross section coordinate to define complex

cross sections of CAS configuration
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Energy Expression

Having introduced all the preliminary concepts and energy definitions in Chapter 2 for

composite nonlinear TWB, it is now time to use the Hamilton’s principle to obtain

integral equations of motion. According to the Hamilton dynamics, variations of the

Lagrangian of the system in stationary over any interval of motion [t;

tZ
f(éT — 8V — 8V, + 6W)dt = 0

4

at t=t,t,,
Suy = bvy = wy = 60, = 60, = 66 = 0

tz]lm

(4-1)

where, 7,v,v, are the kinetic energy, potential energy due to large strains and

centrifugal force, respectively and w stands for the work done by external loads.

Theses energies are comprehensively studied in Chapter 2. The variational form of

strain energy, kinetic energy and the work done by the external force are utilized to

establish the integral form of general governing system of equations.

Variation of the strain potential energy due to large strain is obtained be used in

Equation (4-1). The variation of the strain potential energy of TWB shown in Figure

4-2 is given by,

T, ) 6w} + Q,80, + Q,00, + (M, )80, + (M, )80, +

L —Myuéd)'cos(qﬁ) — Myvéd)'sin(qﬁ) + qu6¢/8in(¢) —
oV = f sz(;d)'cos(d)) - Q,u sin(qzﬁ) + Q,v) cos(qzﬁ) - o +

fe=l

vaé sin(d)) —Qyu('] cos(¢)

Myv[') cos(¢) — Myu(') sin(¢) — qué cos(qzﬁ)
M, vysin(¢) + M, + A,¢’

(_Bw)6¢/l

|86 +

(Tzu(/] — Myd)/sin(qﬁ) — Mr(;s/COS((ﬁ) +Q, COS(¢) — Qy sin((b))éu(/] +
(Tzvé + My¢/cos(¢) — Mz¢/sin(qb) +Q, sin(d)) + Qy cos(d)))évé +
(

(4-2)

On the other hand the variation of the kinetic energy in terms of the position vector R

is given by,
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77",Z

f pRSR  dndsdz (4-3)

n,

-

5 k=1
k—1

Since the position vector of any generic point on the TWB with respect to the root

coordinate system is given in Equation (4-4),

R=(z+u)i+(y+v)j+(+w+R)k (4-4)

Noting that the displacement field (u,v,w) is defined in Equation (2-1), considering
angular velocity Q(QJ = Qj) (Figure 2-1), one can determine the acceleration vector

as shown in Equation (4-5).

i (4-5)

i+ i — 200 — (2 +w + R))Q |k

Coriolis

i+ 209 — (¢ 4 u)’
—

Coriolis

Centrifugal

Centrifugal

Substituting the acceleration components from Equation (2-1) into Equation (4-5) and
using the result in Equation (4-3) one eventually obtains the variation of the kinetic

energy as,

oT = _f [Iléuo + Lo, + Low, +1,00, + 1,60 41,69+ [75gb']dz (4-6)

where,
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1, = b, (i, + 20,2 — Q) — b, ($sin g + ¢ cos ¢ ) -

b, ((;5 cos ¢ — ¢’ sin ¢)
I, =b1, +0b, ((;5 cos ¢ — ¢’ sin ¢) —b, ((b'sincﬁ + ¢’ cos (;5)
1, = b (i, = 20,0 = (2 +w, + B )2 )+ b0, +b,0 b’
I, = (b, +b,)(0, — 26, +2c0s600) +

(b, = b,) (0, — 920, + 25in 6026 +

b, (i, — 20,2 = (= + w, + B )9) — (b, b, )(#)
I, = (b, +b,)(6 — 9%, +2sin¢09) +

(b, b, ) (6, =20, + 2cos 926 +

b, (i, — 20,2~ (2 + w, + B )2*) = (b, +1,,) ¢’ (4-7)
I, =0, <i)'0 cos ¢ — i, Sin¢) +0, <—1'1'0 sin ¢ — 4, COS(b) +
(b6 — b]3)(—2QQT sing — 2(29‘!/ cos ¢ + (cos2 ¢ — sin® (;5))
—|—<b ) )[((%%Sincﬁ—f—cﬁ.Qcosqb)sincﬁ—F . ]+
e ((;5 cos ¢ — ¢ sin ¢) cos ¢ — 2020 cos ¢ — O cos ¢ sin ¢
((b'sincﬁ + ¢* cos (;5) sin ¢ +

(8, +,)]; - . . ) o+
(¢COS¢—¢ smqﬁ)cosqﬁ—299ysm¢+9 coSs ¢ sin ¢
I, = b, (i, — 20,2) + (b, = b, )(0,) + (5, +5,)(0,) = (b, + b, ) (6 = 2¢')

where all inertia terms b, are defined in Equation (2-60).

Rotary blades are subjected to centrifugal force whose influence is more significant at
high speeds. The centrifugal force acting on the rotating beam at a spanwise location

z can be expressed as,

L

F = [02 (R, +2)d: = #FR(2) o

z

where, R(z) is defined as,

(4-9)

R(z):\RU(L—z)—i-%(L?_zQ)

The variation of strain energy due to the centrifugal force is given by Equation (4-10),
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L

6V = [1(4)0u5 +(5) 605 +(f) 60" +(f, )60}z (4-10)

0

where f, are defined in Equation (4-11)- (4-14).
f = le2R(z) uo/ — b2QQR (z) @' cosp — bSQQR(z) ¢'sin ¢ 4-11)

L =bQR(z2)v, — bR (2)¢ sin g + b QR (2)¢ cos ¢ (4-12)

fy = (b + 0y )PR(2)¢" + (by + by JPR(2)0" —
bQQQR(z)<u6 cos<¢) + vé sin(¢>) + ng2R<z>(v6 cos(qS) — ué sin(¢)>
L= bQQQR(z) (uéd)' Sin(¢) — Uéd)' cos (d))) — (4-14)
bS(ZzR(z) (ué¢' cos (d)) + v sin(d)))

(4-13)

The last portion of the Hamiltonian in Equation (4-1) is the variation of work done by
the external loading. The only loading considered in this study is the one due to the
unsteady aerodynamics. Hence, one can obtain 6i¥ as,

L

SW = f (L, (2,£)60,(2) + M, (2, )66(2)) dz (4-15)

0

where the explicit forms of the unsteady aerodynamic lift L, and the pitching moment

about the reference axis 1/, are derived in Chapter 3.

The integral representation of the general governing system of equations is obtained
by inserting the expressions of the variation of the potential energy (Equation (4-2)),
the kinetic energy (Equation (4-6)) the strain energy due to centrifugal force (Equation
(4-10)) and the work done by the unsteady aerodynamic forces (Equation (4-15)) into
the Hamiltonian given by Equation (4-1).

In the rest of the article, the integral representation of the general governing system of

equations is presented for the circumferentially asymmetric stiffness (CAS) layup
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configuration to demonstrate the solution methodology for the study of the nonlinear

aeroelastic behavior composite wing modelled as TWBs.

For the CAS layup, fiber angles in the top and bottom flanges as well as the side walls
of the TWB have opposite sign 0(y) = —0(—y);6(z) = —6(—z), as shown in Figure a. It
should be noted that CAS layup configuration accounts for flapwise bending-torsion
and extension-chordwise bending couplings which are utilized in load alleviation in
fixed and rotary wing structures. For the TWB with CAS layup, some of the stiffness
coefficients in Equation (2-89) vanish and consequently some simplifications occur in
the nonlinear system of equations. The non-zero stiffness coefficients in Equation
(2-89) include the diagonal terms and off-diagonal coupling stiffness terms

19+ Qg+ Qog, Gsg- 05, - Among the non-zero stiffness coefficients . is the flapwise

bending-torsion coupling stiffness which is exploited for load alleviation in flexible
fixed and rotary wing structures. Moreover, for the TWB with CAS layup non-
vanishing mass/inertia terms in Equation (2-60) include b,b,,b.b,,b,,.b,. After
expanding sing and cos¢ in Taylor series about ¢ = 0 in the Equations (4-2), (4-6)
and (4-10) which define the variations of the strain energy (Equation (4-2)) and the
kinetic energy (Equation (4-6)), in the resulting expressions only the terms with square
and cubic nonlinearity are retained. The integral equation of motion for the CAS
configuration with square and cubic nonlinearities is obtained using Equations (4-1),
(4-2), (4-6), (4-10) and (4-15). By inserting energy expressions into Hamilton principle
and simplifying the equation, the integral form of governing equation of motion

derived as in the form given in Equation (4-16).

(A)6uy + £, (A)buy +
(A)6v, + f, (D)) +

i (A)bwy + f; (A)swg +

J L (A)
(&)

Sk oSw

B (4-16)
50, + f, (A)s0! + iz =0
f 80, + fm(A)é% +

L (D)6¢ + iy (D)6 + fi3(A)60"
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where A is defined as A € {ug, vy, 10,,0,,0,,¢} ; Moreover, the function f;i = 1...13 are

given by Equations (4-17)-(4-29).

5 () = by + 22— by (P (4-17)
f2(A) = “22(911 +u6)+a12w6 +b1QQR(Z)u(/) + (4-18)
N2 + N?

13 (A) = biy = Ly, (4-19)

Iy (A) = Qg4 (91, + 1)6) — a37¢” + leQR<z>v6 + (4-20)
NZ + N?

£ A) =biy —2BigQ—b (2 +uy + R )F 4-21)

(A) = ayw) +a, (0, +ug )+ No + N (4-22)

f7 (A) = Oy (U(/' + ev’f/) o a37¢// + (b4 + b12)<9r o 9201 + QQ¢) + (4'23)

NI+ N
KA =agf] +agd +1N2| +7N| (4-24)

A (A) =a. w + a,, (ué + Qy) + (b5 + bH)(éy - Q29y> + (4-25)

1270
Nj + N?

1 Yl

fo(A) =ayl) + N (4-26)

+ N3
2 Ylg

£(8)=(b + b12)(<}5 — 200 — Q%p) + (b, + bu)((b' + Q?¢) + w2
+Nf;1 —|—le - M
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fiQ (A) :a%¢/ +a560; _bloég +

[+, ER(2)

fla <A> = Oy, (’Ué + 91-) o a77¢” + Ni

Hb 0, FRE) +N], 4

2

N,

where the square nonlinear terms N2 are defined as,

Ni = Qg (”6¢) — Qg3 ("}(/)¢ + Hz¢)) — U5 (9;¢/> + 5%8 <¢/)2 T <¢/)

3 1
oy [§(u5)2 L)+

1

Hyué] +ay, (u(’)'wé) + ag; (¢”¢)

N? = ay, (uévé + v('ﬂy + w(')gb) + ay, (uégzﬁ + ngzﬁ) —
a33(u6¢)+ ay, ((;5’0?;)—%@11(11611}6)

Ni = ap é(u[’) )2 + %(”6 >2] + a12<vé¢> + %als (¢/)2
Nj . 0 (u(/)gb)
N;?‘ = 055 (“6¢/)
;1 =a, %<ué>2 —|—%<v[’))2 + a,, (véq§)+%a28 <¢/) I

2(b, +b,,)(Q04)

NZ‘
U]

N =, (o] +0(6) — a (o] +u0,) +a (ofu) +a, () -

2(b, +bu)(§2éy¢)

N, = (l8) o 160 +0,0) 2 (1) =, [48]) +a [0

N2

= Oy (“6¢/>

P _ /
blg Gy <uo¢)
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(4-28)
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(4-30)

(4-31)

(4-32)

(4-33)

(4-34)

(4-35)

(4-36)

(4-37)

(4-38)
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and the cubic nonlinear terms N3 are expressed as,
Ny = —ay [ué¢2 + %W] — ay [%wé(czﬁ)g + u5v5¢] + (4-40)
%((ué)?’ + ué(vé)Q) + as; (ué(gb')Q ) + ay, <u6¢2> -
0 (60'0) + S (g0 )
Ny = oy (w6" ) - agg[%w + Ué¢2]— (g + 30 )+ (@)

(o) + (05)° ) + (060 ) + 0y (0507 ) -
a55 ( TQZ) ¢) - a56 <¢(¢/)2)

Ny = =2 (4-42)
N === (o] (oY (4-43)
NP, = —ags (vi0's) (4-44)
3 a22 ! 2
)| =2 {u#) (4-43)
N3], = 0w (u50'0) (4-46)
N ==, (1f0') —a, (o)@)) — () + @) +uilg) - @4

0, (W00!) — a, (0,6 + B} = HW)P )+, (1)0.6 + S — 8(e) )
N, =a [0l ~io] o, [y~ -2 i+ o

() +o6l) +(¢)
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4.2 Nonlinear Aeroelastic Analysis of the Composite TWB-Wing Using

Incompressible Unsteady Aerodynamic

By neglecting rotating speed (2 = 0) in Equations (4-16)-(4-48), Nonlinear aeroelastic
behavior of tapered and pretwisted composite fix wings shown in Figure 4-3 modeled
as thin walled beams (TWB) and CAS configuration in the incompressible flow regime
is studied in this section.

¥ Wing box A
5 (Load carrying part) a)

>

Figure 4-3 Schematic description of an aircraft wing modeled as a doubly tapered
TWB with geometric pretwist and the associated CAS layup configuration.

The structural equations of motion are obtained in the most general form based on the
kinematic relations governing thin walled beams, including the nonlinear strain
displacement relations, and utilizing the principles of analytical dynamics. Unsteady
aerodynamic loads in the incompressible flow regime are expressed using Wagner’s
function in the time-domain. The aerodynamic strip method based on Wagner’s
function in the unsteady incompressible flow has been used to calculate
incompressible unsteady aerodynamic lift and pitching moment. The Wagner function
based aerodynamic models provide an efficient, general, and convenient approach to

describe the incompressible unsteady flows. The explicit form of incompressible
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unsteady aerodynamic lift £, and pitching moment about the reference axis M,, are

obtained in Chapter 3, and they are given by (4-49) and (4-50),

B (5:8) = =t (i, — U9 + bad) -

O _ ng; ILACY

™

(4-49)
C,pUb

. . b
vo—Uqﬁ—l-baqﬁ—E

M,, (zgt) = —mpb?

C,,
l Lo _1
A

U¢3—Ua¢é+aﬁ0+b[é+a2]4— (4-50)

Crs . 2
i (e Z%‘Bz(z’t>
™

i=1

CL@pUb2 [% + a]

. . b
”O*U¢+ba¢*§

As explained in Chapter 3, in the Equations (4-49) and (4-51), the quantities B's are
defined such that, they should satisty the following expression in Equation (4-51),

B, + (B, %)B; = Wy s, (z,t);i =12 (4-51)

2 7

Expressing the unsteady aerodynamic lift and moment by Equations (4-49) and (4-50)
and using the quasi-polynomial approximation for the Wagner’s function, the final
nonlinear system of equations used in the time domain solution is obtained by
augmenting the system of equations which come out of the integral expression
(Equation(4-1)), by Equation(4-51) which has to be satisfied by the aerodynamic lag

states B,(zt);i = 1,2. In what follows, the integral equation is given for CAS layup

configuration, including nonlinear terms of the second and third order in the variational

representation of the Hamiltonian definition.

The aeroelastic system of equations is augmented by the differential equations
governing the aerodynamics lag states to come up with the final coupled fluid-structure
equations of motion. The governing system of equations of the aeroelastic system is
solved, for the TWB with circumferentially asymmetric stiffness (CAS) composite
layup, by means of a Ritz based solution methodology utilizing the mode shapes of the
linear structural system to approximate the spatial variation of the degrees of freedom

of the thin walled beam. Time response of the nonlinear aeroelastic system is obtained
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via the fourth order Runge-Kutta direct integration algorithm. Effects of taper ratio,
pretwist angle and the fiber angle of the CAS layup configuration on the nonlinear

aeroelastic stability margins and LCO behavior are studied in depth.

4.2.1 Method of Solution

Many algorithms exist that deal with the solution of nonlinear problems [123]. One
common characteristic of most solution algorithms is that the mode shapes of the
geometrically linear unloaded TWB are obtained and then used for the nonlinear
aeroelastic analysis of the composite wing with the CAS layup configuration analysis.
In the present study, the same solution procedure is adopted. In this respect, first a
solution of the structural equations of motion is obtained for the mode shapes of the
TWRB utilizing the geometrically linear system of equations by following a Ritz based
solution methodology. Then, the mode shapes of the TWB are employed in the

nonlinear acroelastic analysis of the composite wing.

4.2.1.1 Solution for the Mode Shapes of the TWB

In the present study, a Ritz based solution method is used for the solution of the
eigenfunctions of the composite TWB with CAS layup. For the clamped-free wing
structure, trial functions which satisfy the essential boundary conditions are picked and

spatial semi-discretization is done as given in Equation (4-52) and [124],

w(mt)= S u@ro, (a0 = e Eno
wy(5t) = 20O, 0. (5t) = e (4-52)
0,(t)= S wEm@,  6(at) =S

where N is the number of terms in the series which is chosen suitably to achieve
convergence, and the spatial functions for all degrees of freedom satisfy the clamped

boundary condition at the wing root (» = 0). Spatial functions for all degrees of

freedom are taken as identical as shown in Equation (4-53).
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U@ =1() =9 (2) =9 (2) = ¢/ (2) = ¢ () = 25i = L.N (4-53)

To solve for the mode shapes of the TWB utilizing the geometrically linear system of
equations, aerodynamic and nonlinear terms in Equation (4-16) are omitted, and the
semi-discretized expansions of the degrees of freedom of the TWB, given by Equation
(4-52), are substituted into the modified integral form of the governing equations of
motion along with the test functions, which are the variations of the degrees of freedom

(8uy, vy, 6w,,60,,60,,66,) . Here, the test functions are again taken as the spatial functions

given by Equation (4-53) such that they vanish at the root of the wing at > = 0, and
their spatial derivatives are taken accordingly and substituted into Equation (4-16).
Integrating Equation (4-16) over the axial coordinate, one obtains the following system

of equations,

[, |{ii} +[ K.} {n} = 0 (4-54)

where K, M are the structural stiffness and mass matrices, described in Appendix D,

and the vector of state variables is defined as,

T

T T T T T
n" 0t n¢} (4-55)

Where, 77 = {5/(t) ni(t) ... n'@®)}, etc.

Toa = {77“ n

The system of equations given by Equation (4-54) can be transformed into the state
space form defining a vector of the state variables themselves and their time

derivatives as shown in Equation (4-56).

Gy = {nT ﬁT}T (4-56)

Utilizing Equation (4-56), the state space form of the system of equations of motion

for the TWB is obtained as shown in Equation (4-57).
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0 I

(4-57)
—M'K 0

G=VG, V=

Equation (4-57) can be recast to the standard form of an eigenvalue problem by

introducing G = Ge, yielding,

(V-ING=0 (4-58)

where the eigenvalues (\) and the corresponding eigenvectors G may be readily

obtained.

4.2.1.2 Nonlinear Aeroelastic Analysis of the Composite Wing

Nonlinear aeroelastic analysis is conducted by means of a Ritz based solution
methodology utilizing the mode shapes of the linear structural system to approximate
the spatial variation of the degrees of freedom of the thin walled beam. Equation (4-59)
gives the reduced modal matrix R, which is extracted from the solution of Equation
(4-58), for the dominant m right eigenvectors corresponding to the translational and

rotational degrees of freedom of the linear system.

T T T T T

=R R R R R R (4-59)

6Nxm mxN mxN mxN mxN mxN mxN

One can then construct a reduced order model by expressing any of the six degrees

freedom A e {ug,v5,w,,0,,60,,6} in terms of the relevant trial function ¥, relevant

reduced modal matrix R® which is composed of dominant = right eigenvectors and

the modal coordinates as,

A(z,t) = > R*9(t) (4-60)

Where 9(t) is the generalized modal coordinate vector of dimension of m x 1, R® is
the reduced modal matrix of dimension N xm composed of dominant m right

eigenvectors corresponding to any of the degrees of freedom A , and ¢ is the vector
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of trial functions, of dimension N x 1, corresponding to any of the degrees of freedom

A

For the nonlinear system, the test functions for any of the degrees of freedom, which
are the variations of the degrees of freedom, are defined by the premultiplication of
the the vector of the trial functions »* by the reduced modal matrix L*” which is
composed of dominant = left eigenvectors corresponding to the translational and

rotational degrees of freedom.
SA(z) = [P * (4-61)

Modal expansions of the degrees of freedom of the TWB (Equation (4-60)) and the
variations of the degrees of freedom (Equation (4-61)) are substituted into the integral
form of the governing equations of motion Equation (4-16) resulting in the reduced

order system of nonlinear equations,

MA(t)+ CO(t) + K9(t) — Z(t) + H™ (1) = 0 (4-62)

Where M,,C,, K, are the reduced order mass, aerodynamic damping and stiffness
matrices of dimension m xm, and z and H,, are the reduced order vectors of

dimension m x 1 and they include the aerodynamic lag states and the nonlinear terms,

respectively.

In the resulting reduced order system of equations, if the modal matrices composed of
the left () and the right eigenvectors (R) are factored out, reduced order mass,

damping and stiffness matrices in Equation (4-62) are defined by,

Mt = LT(MG + MaE)R
C = LTCWR
K =I'(K +K, )R

(4-63)
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where the structural mass (M) and stiffness (K ), and the aerodynamic mass (M,,),

stiffness (K, ) and damping (C, ) matrices of dimension 6N x 6N are defined in

Appendix D.

It should be noted that the aerodynamic damping matrix C,, in Equation (4-63) does
not include the aerodynamic lag terms defined in Equations (4-49) and (4-50), and
these terms are collected in the aerodynamic lag vector Z . Aerodynamic lag vector 7

is derived from the virtual work done by the aerodynamic lag states (B,) in the

unsteady lift and moment expressions in Equations (4-49) and (4-50) .

In the integral equation of motion Equation (4-16), virtual work done by the unsteady

lift and moment due to aerodynamic lag states is given by,

L

f {(Lae)Lagévo + (Mae)Lag6¢}dz (4-64)

0
where the unsteady lift and moment due to aerodynamic lag states are given by

Equations (4-65) and (4-66) .
(L,),,,(2:t) = C,,pUb (alBl(z,t) + a2B2(z,t)) (4-65)

1
(Mae,)[,ag(z7t) - CLopUb{b §+ a

(alBl(z, t) + a,B,(z, t))} (4-66)

Following the substitution of the unsteady lift and moment due to aerodynamic lag

states in Equation (4-64), and expressing the variations év, and 6¢ by Equation (4-61),

after manipulations aerodynamic lag vector 7 is defined as,

B (t) )
Z(t) = [all aQI} |B’2(t)} (4-67)

Where 1 is the identity matrix of order m x m and B, and B, are vectors of order

m x 1 defined by,
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L'y +b Ly

B(t)= {j C, pUb

where the term inside the curly bracket is a vector of dimension m x 1 and so are the

1
—+a
2

B (z, t)dz] i=12 (4-68)

transformed aerodynamic lag state vectors B(t).

In Equation (4-62), vector of nonlinear terms H,, originates from the integral equation

of motion of the CAS configuration composite wing given by Equation (4-16). After
the substitution of Equation (4-17)-(4-29) into Equation (4-16), the nonlinear terms

can be grouped as shown in Equation (4-69).

HNL()
P NP Jou) + (N? + N?)ov) + (N2 + N* ) 6w +
+ N2| Jo0, + (2| + 2| Joor + (N2 + 2 oo, +| 469
+ N )59' (le+Nj‘1)6¢+(sz+Nj‘2)5¢’+

//

0

I
fﬂ
(v,

To obtain the reduced order vector of nonlinear terms A" in Equation (4-62),
nonlinear terms N2, ~N3 defined by Equations (4-30)-(4-39) and Equations (4-40)-
(4-48), modal expansions of the degrees of freedom given by Equation (4-60), and the

variations of the degrees of freedom given by Equation (4-61) are substituted into

Equation (4-70), resulting in,

H_rNL(t) —
B (T T (R )
LwT lw NQ NS L.LI .L(]VQ NS )
[z ¢’“(N32 +N;‘2)+L” w(le +N;1)+ dz
oy (JW ) 4 Iy (N?

Yo 2 2l

o 1o [ AT2 oL e [ A2

Ly (N2, + | )+ e (W)

+ N3

1)+
|

AT 3
+ N

+N?
Y

AT3
+ N
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where the algebraic expressions for the nonlinear coefficients ~N3,N3, which are
expressed in terms of the trial functions and derivatives of the trial functions (427),

reduced modal matrices (R*) and the modal coordinates v,() are given in Appendix

E.

With the introduction of the aerodynamic lag states, there are 2,m» number of additional
unknowns in Equation (4-62), and to perform the nonlinear aeroelastic analysis of the
composite wing, additional 2:» number of additional equations are needed. To this
end, the system of nonlinear equations Equation (4-62) is augmented by the differential

equations that the aerodynamic lag states B,(z,t),i = 1,2 must satisfy (Equation (4-51)).

Since in the system of nonlinear equations, given by Equation (4-62), aerodynamic lag
states are defined by the transformed aerodynamic lag state vectors B;(zt),i = 1,2,
Equation (4-51) is manipulated such that it is also expressed in terms of the the
transformed vectors B, (z,¢),i = 1,2. For this purpose, both sides of Equation (4-51) are
multiplied by the expression given in Equation (4-71),

C. pUb

Lo

(51;0 +b

% + a] 5¢] (4-71)

the variations év, and é¢ are expressed by Equation (4-61), modal expansions of the

degrees of freedom (Equation (4-60)) which appear in the right hand side of Equation
(4-51) are substituted, and both sides of Equation (4-51) are integrated along the span
of the wing as shown in Equation (4-72).

(4-72)

LHTZDH + b Lq’)T wq’)

1
“4a
2

[By(z,t) +8 %Bi(z,t) dz = RHS

jC’LOpUb
0

i=12

After manipulations the right hand side RHS in Equation (4-72) can be simplified as,

RHS = D(t) + D,i(t) (4-73)

Where D, and D, are the m x m coefficient matrices defined by,
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L
1 -
2l... :f G, pUD| L " R +bla +§] D'y R (4-74)
0

. EJTw’I}w?JTR’U + b l + a L&qubw'nTRﬂ + (4_75)
2
= [¢,pth
0

2], :

b [a2 - i] Ly " R + bla — %] L7 " R?

Comparing Equation (4-68) and Equation (4-72), it is evident that since the terms

multipying the time derivative of the aerodynamic lag state B;(z,t) in Equation (4-68)

do not depend on time, Equation (4-72) can be written as,

B®)+8 7 B)=Dit)+Die) =12 (4-76)

Where B,(t) is the transformed aerodynamic lag state vector of dimension m x 1

defined by Equation (4-68). It should be noted that in passing from Equation (4-72) to

Equation (4-76), it is assumed that the semi-chord length » in the U/ b term is constant

along the span of the wing, which is so for rectangular wings. For tapered wings, it

suffices to use the mean semi-chord length only in the U/ b term in Equation (4-76).

By augmenting Equation (4-62) with Equation (4-76) , the final form of the nonlinear
aeroelastic system of equations of the CAS configuration composite wing modeled as

TWB can be obtained in state space representation as shown in Equation (4-77).

¢ M 0 o] [v @7
10 0 0lald|,
D, D, -I 0ldt|B
D, D, 0 -I| |B

K, 0 al a,l 9 ETNL

0 —I 0 0 gl 1o

b -0
0 0 (-BU/)I o ||B[ o
0 0 0 (—@ U/b)[ 3 0

Equation (4-77) is in the form,
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A§+ Bqg+ FN =0 (4-78)

FN is the vector of nonlinear terms

Where ¢ is the state vector of dimension 4m x 1,
of dimension 4m x1, and A and B are 4m x 4m coefficient matrices defined in
Equation (4-77). Nonlinear aeroelastic respose of the composite wing modeled as
TWRB is performed in time domain by the direct integration of Equation (4-78) by the

Runge-Kutta method for the prescribed initial conditions.

4.2.2 Numerical Results and Discussions

In this section, unsteady incompressible acrodynamics and the linear structural TWB
models are first verified by comparing the results with the available test and analysis
results in the literature. Then, numerical results are presented for the aeroelastic
stability response of the CAS configuration composite wing utilizing both the linear

and nonlinear structural models of the TWB.

In this section, unsteady aerodynamics and the linear structural TWB models are first
verified by comparing the results with the available test and analysis results in the
literature. Then, numerical results are presented for the aeroelastic stability response
of the CAS configuration composite wing utilizing both the linear and nonlinear

structural models of the TWB.

4.2.2.1 Verification Studies

Unsteady aerodynamics model based on the approximation of the Wagner’s function
with two aerodynamic lag states is verified by the well-known experimental study of
Barmby et al. [125]. The experimental flutter speed and flutter frequency results
obtained for the unswept aluminum alloy wing of NACA 16-1010 profile in the
subsonic flow regime are compared with the classical flutter predictions involving only
the flapwise bending displacement and the torsional rotation degrees of freedom of the
present study. In the model of the present study used for the verification, structural

model is based on geometrically linear equations, but exactly the same Ritz-based
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methodology described for the nonlinear aeroelastic analysis of the composite wing is

used. In this respect, seven trial functions (N = 7) are used in the series given in
Equation (4-52) for the flapwise deformation v, and torsional ¢ degrees of freedom
and first seven (m = 7) eigenfunctions are used for the modal reduction. Flutter speed

and frequency comparisons are made for the unswept wing models 40A and 40B [125]
which have the stiffness and mass/inertia properties given in Table 4-1. In order to
adapt the present TWB structural model to the wing models of Barmby et al. [125],
degrees of freedom are restricted to the flapwise bending deflection v, and the elastic
twist ¢ and the assignments given by Equation (4-79) are made for the stiffness and
mass properties. It should be noted that the a parameter in Table 4-1 specifies the
nondimensional offset between the shear center and the mid-chord, as shown in Figure
4-3. A negative value of the a parameter indicates that the shear center is forward of

the mid chord.

U = G (4-79)
a,, = EI

b4 + b5 = Ia

b =m

Table 4-1 Stiffness and mass/inertia properties of the wing models used in the

verification study

EIl GJ L b m I
Model a 0 e =0
P (Nm?*) (Nm?) (m) (m) p mb?

40A 1.144 15 10.15  0.6299 0.1016 -0.2 36.5 0.277
40B 1.174 144 10.64 0.6299 0.1016 -0.2 355 0.297
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Table 4-2 compares the experimentally determined flutter Mach numbers and the
flutter frequencies of the wing models 40A and 40B with the linear aeroelastic analysis

solutions of the present study.

Table 4-2 Comparison of the present linear aeroelastic analysis results with the

experimental results of Barmby et al. [125]

Instability Mach No. Frequency at the
Model Air density instability
(Kg/m®) Experiment Present Experiment Present
[125] [125]
40A 1.144 0.24 0.25 62 64
40B 1.174 0.23 0.24 61 59

Results given in Table 4-2 shows that present linear aeroelastic analysis results are in
good agreement with the experimental results of Barmby et al. [125]. It is also noted
that the effect of slight differences in the stiffness and mass terms between the wing
models 40A and 40B on the flutter speed and the flutter frequency can be captured
adequately with present solution methodology. As a second verification, flutter speed
and frequency of a CAS configuration composite box beam studied by Haddadpour et
al. [71] are calculated and compared with the results of Haddadpour [71] and MSC
Nastran subsonic aeroelastic analysis results which are also reported in the study of
Haddadpour et al. [71]. Table 4-3 gives the geometric and material properties of the
box beam composed of graphite/epoxy.

Table 4-4 compares the flutter speeds and frequencies of the CAS configuration TWB
with a fiber angle of —20 degree. It is seen that results of the present study are in good
agreement with the results of Haddadpour et al. [71] and Msc Nastran results which
are obtained by the finite element method involving Doublet-Lattice oscillatory

aerodynamics.
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Table 4-3 Geometric and material properties of the graphite/epoxy composite wing.

Material properties

Geometric! properties

E, (GPa) 206.8¢9 L (m) 14
E, (GPa) 5.17¢9 [ (m) 0.757
E; (GPa) 5.17¢9 d (m) 0.1
Gy, (GPa) 3.1e9 h (m) 0.03
G135 (GPa) 3.1e9 B (deg.) 0,5
Gy3 (GPa) 2.55€9 6 (deg.) -75,-60,-45
15 = Uy 0.25 p (kg/m?) 1528
Y3 0.25 Ry (m) 0

Table 4-4 Comparison of the flutter speeds and frequencies

a Flutter speed (m/s) Flutter Frequency (Hz)
Haddadpour Msc Present | Haddadpour Msc Present
[71] NASTRAN [71] NASTRAN
0 101 100 100 3.35 3.59 3.39
-0.2 127 124 128 3.53 3.62 3.57

As a final verification study, geometrically nonlinear TWB model is verified against
the finite element solution. For this purpose, nonlinear transient analysis of a thin
walled beam with the geometrical and mechanical properties given in Table 4-5 is
performed by the present solution method and MSC Nastran using CBEAM beam
elements which allow warping. Nonlinear transient analyses of the TWB and the beam

models are performed for an initial flapwise tip displacement of v,(0) = —0.3m . From

the resulting time response plots shown in Figure 4-4, the first two dominant
frequencies are determined via Fast-Fourier-Transform (FFT) and comparisons are
made with the linear modal analysis results in Table 4-6. From Table 4-6, it is seen
that the lowest two frequencies extracted from the nonlinear transient analysis results
obtained by the present method and by MSC Nastran agree very well. Table 4-6 also
gives the linear modal analysis results obtained by the present model and by MSC
Nastran. It is seen that although the first lowest frequencies of the linear and the

nonlinear models are very close to each other, the second lowest frequencies are
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separate, and the present nonlinear TWB model captures this separation quite

accurately.

Table 4-5 Geometric and material properties of the TWB in nonlinear validation

0.3
0.25
0.2
0.15
0.1
0.05
0
-0.05
-0.1

Flapwise deformation

-0.15
-0.2
-0.25

Parameter Value
L (m) 5

[ (m) 0.5

d (m) 0.2

h (m) 0.01

E (GPa) 70

9 03

p (kg/m?) 2700

initial deformation=0.3 m
FEM model

Present Model

b UL 6 A
| M’ | ’! | _” | M | “l ‘ I

-0.3

o

Figure 4-4 Comparison of the flapwise time response of nonlinear TWBs of MSC

Nastran and current time history
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Table 4-6 Comparison of the first two frequencies of nonlinear TWBs via FFT

analysis of MSC Nastran and current time history results

Linear frequency (Hz) Nonlinear frequency (Hz)
(Eigenvalue Analysis) (Transient Analysis)
Frequency MSC MSC
NASTRAN ~ TTeseit | \ASTRAN Present
1 9.63 9.7 10.056 10.07
2nd 19.82 20.01 55.9 56.8

4.2.2.2 Linear Aeroelastic Analysis of Composite Wings

Before the nonlinear aeroelastic analysis of composite wings, linear aeroelastic
analyses have been performed to predict the flutter and divergence instability
conditions in order to better evaluate the results of nonlinear aeroelastic analysis. As
discussed before, Ritz-based methodology described for the nonlinear aeroelastic
analysis is also followed in the linear aeroelastic analysis of the CAS configuration

composite wings, and seven trial functions (N = 7) are used in the series for the six

degrees of freedom of the TWB and first seven (m = 7) eigenfunctions are used for
the modal reduction. Setting F** = 0 in Equation (4-78) and considering ¢ = ¢,¢"' one

obtains the standard form of a generalized eigenvalue problem where the eigenvalues
and eigenvectors correspond to the natural frequencies and mode shapes, respectively.
It should be noted that with seven trial functions and seven eigenfunctions of the linear
structural system, convergence has been achieved in every case and the frequency
domain linear aeroelastic analyses are performed. For the composite TWB structure,
geometric and material properties given in Table 4-3 are used and the nondimensional
offset between the shear center and the mid chord is taken as « = 0.3, implying that
the shear center is aft of the mid chord. Moreover, the spanwise and chordwise taper
ratios are assumed to be identical and equal to 1 hereafter for simplification purposes

(0, = 0, = 1). Figure 4-5 a and b give the variation of the aeroelastic instability speed

and associated frequency of the rectangular composite wing with the fiber angle of the

CAS configuration. Results are presented for an untwisted wing and for a wing with
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linearly varying twist along the wing span with a tip twist of 5 degrees. It is noted that
for positive fiber angles, flutter frequency is zero and the instability mode is
divergence. In the CAS configuration TWB, for the positive fiber angles, fibers are
oriented towards the leading edge, as seen in Figure 4-3. Hence, twist due to bending
causes angle of attack to increase further resulting in an increase of the lift and moment
and eventually causes divergence instability before the flutter occurrence. Negative
fiber angles have just the opposite effect and since the fibers are oriented towards the
leading edge, bending-twisting coupling works toward decreasing the angle of attack
and divergence instability is deferred to higher speeds and flutter instability occurs
earlier. As depicted, the maximum flutter speed corresponds to a fiber angle of —45°
while the minimum flutter speed occurs at a positive fiber angle of 45°. This is in
agreement with the physical interpretation provided in the previous paragraph which
states that negative lamination angles act toward stabilizing the wing. For a better
comprehension of the differences between stability margins of the two twist angles

B, = 0,5, numerical results are tabulated in Table 4-7.
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Figure 4-5a Variations of the flutter speed versus the fiber angle
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Figure 4-5b Variations of the flutter frequency versus the fiber angle

Table 4-7 Summary of flutter speed and frequency for different fiber and twist

angles.
Flutter speed (m/s) Flutter Frequency (rad/sec)

0 50:0 60:5 50:0 60:5
-90 66 66 0 0
-75 97 101 27.7 29.8
-60 107 112 18.5 19.26
-45 114 115 42 42.4
-30 90 91 33.7 33.7
-15 78 78 28 28.1

Figure 4-6 and Figure 4-7 present the flutter speed and frequency results for doubly
tapered wing (o = 0.8,0.6) . for the positive fiber angles, fibers are oriented towards the
leading edge. Hence, twist due to bending causes angle of attack to increase further
and eventually causes divergence instability before the flutter occurrence. the tapered

wing has lower aerodynamic loading than the rectangular wing. It is deemed that the
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combined effect of lower aerodynamic loading, lower mass and lower stiffness of the
tapered wing compared to the rectangular wing is such that the tapered wing is prone
to aeroelastic instability at higher air speed than the rectangular wing flutter speed is
increased for all ply angles, while the corresponding frequencies experience a small
increase at negative ply angles and remain intact at positive angles as shown in Figure

4-6 and Figure 4-7.
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Figure 4-6 Variations of the flutter speed versus the fiber angle for taper ratios
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4.2.2.3 Nonlinear Aeroelastic Analysis of Composite Wings

For the CAS configuration composite wings which are structurally modeled as TWBs,
nonlinear aeroelastic analyses have been performed in time domain through the fourth
order Runge-Kutta direct integration of the state representation of the governing
nonlinear aeroelastic system of equations given by Equation (4-78). In the numerical
simulations performed, it is assumed that the composite wing is initially at rest and the
wing is given an initial disturbance by assigning an initial value of 1.0e-06 to all modal
coordinates. With the very low initial conditions given to the modal coordinates, it is
aimed to start self-excited oscillations, and depending on the intrinsic character of the
aeroelastic system, the response of the system may attenuate or increase. In the
following, time history plots and the associated phase plots, Poincare and Power

Spectrum Density (PSD) diagrams are given for the response of the wing tip (z = I).
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Parameter @ which defines the offset between the center of twist and the mid chord is
taken as 0.3 in the time domain nonlinear aeroelastic simulations performed. Material

and geometric properties for the following analysis are given in Table 4-3.

Initially, the nonlinear aeroelastic system of equations is verified by comparing the
time domain solution obtained with the linear aeroelastic solution for a rectangular,
untwisted wing which has a —75° fiber angle in the CAS configuration. For this
configuration, from Table 4-7, it is seen that the flutter speed is 97 m/s which is
predicted by the linear aeroelastic analysis. Figure 4-7 shows the time history plots of
the flapwise displacement of the wing tip obtained by the solution of the nonlinear
system of Equation (4-78) for the subcritical speed of 94 m/s, for the critical speed of
96.7 m/s and for the supercritical speed of 98 m/s. The critical speed is obtained by
gradually increasing the wind speed and ploting the time response until the appearance
of constant amplitude response (flutter). It is seen that at the critical speed, LCO is
observed in the nonlinear aeroelastic solution. For airspeeds less than the critical speed,
disturbance generated by the initial conditions imposed, attenuate due to the
aerodynamic damping (Figure 4-8a). With the increase in the airspeed, an exchange of
energy between the wing structure and the aerodynamic flow commences at the
bifurcation speed which corresponds to the flutter speed obtained by the linear
aeroelastic analysis, and LCO starts . In the supercritical region, amplitude of the LCO
increases substantially, and as Figure 4-8c shows the magnitude of oscillation of the
flapwise deflection is much higher than the magnitude of the oscillations at the critical

speed.
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Figure 4-8 Nonlinear time history plots of the flapwise wing tip displacement for
three air speeds (a) Subcritical (U = 94 m/s) (b) Critical (U = 96.72 m/s) and
(c) Supercritical (U =98 m/s) .

It should be noted that the closeness of the flutter speeds determined by linear and
nonlinear aeroelastic analysis has also been reported by Tang and Dowell [126]. In the
current study, the intrinsic character of the nonlinear aeroelastic system has been
investigated by exciting the wing by a very small initial disturbance and utilizing linear
unsteady aerodynamics. Tang and Dowell [126] Coupled nonlinear beam model with
strip theory with ONERA stall aerodynamic model and slender body theory for the
wing tip slender body. It is observed that even with nonlinear aerodynamics associated
with the stall model, flutter speeds determined by the nonlinear aeroelastic model are

very close to those determined by the linear aeroelastic model.

143



Due to the geometric nonlinearity, the nonlinear aeroelastic equations should be solved
by direct integration using a method such as Runge-Kutta for prescribed initial
conditions to determine the dynamic response in time domain. In the present study, the
static deformation of the blade and the mean steady aerodynamic loads are not
considered, and the flutter occurrence is investigated with respect to the undeformed
blade. It is assumed that the attached flow assumption holds since the aerodynamic
models are based on small disturbance theory. Thus, intrinsic flutter characteristic of
the wind turbine blade has been investigated for small deformation of the blade about
a static deformation state utilizing linear or nonlinear unsteady aerodynamics. Hence,
the magnitude of the initial conditions chosen in the present study is small and taken

as le-6 for the for all modal coordinates.

It should be noted that structural vibrations occur about a static state condition. This
means that the whole structure oscillates about a deformed state which can be large
according to the flight scenario and the structural flexibility of the whole aircraft. The
aim of the present study is to determine the dynamic (oscillatory) response about a

static state which is taken as zero.

Self-excited vibrations require an initial condition. Even a very small deformation or
velocity input is sufficient to trigger self-excited vibrations in an aeroelastic system.
Solution of the nonlinear aeroelastic system of equations is performed in time domain
by integrating the nonlinear system of equations. Therefore, an initial condition as an
initial disturbance is needed to start the self-excited vibrations. This is achieved by a
very small initial condition because the aim is to investigate the intrinsic character of
the nonlinear aeroelastic system corresponding to a very small initial condition. It
should be noted that behavior of nonlinear systems is sensitive to initial conditions and
a small change in the initial condition may cause substantial changes in the response,
especially in case of chaos dynamics where topological changes occur even for a small

change in the initial conditions.

If the aeroelastic system characteristics fall within the subcritical region, response will
attenuate after a certain time interval. In the subcritical region, larger values of initial

conditions increase the time required for a complete attenuation of the response. On
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the other hand, for an aeroelastic system in the supercritical region with a small initial
condition, time to reach complete LCOs will take longer compared to the case for
which larger initial conditions are specified. This is shown by the two plots given in
Figure 4-9. For the plot shown in Figure 4-9b, initial condition is 100 times higher than
for the case given in Figure 4-9a. It is clearly seen that LCO is reached faster when the

initial condition is high.
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Figure 4-9 Transient time histories of supercritical Hopf-bifurcation (a) U =

110m/sandd =1le—6 (b)U =110m/sand 9 = 1le — 4

4.2.2.3.1 Effect of Fiber Angle of the CAS Configuration TWB on the Nonlinear

Aeroelastic Response

The effect of fiber angle of the CAS configuration TWB on the nonlinear aeroelastic
response of the composite wing has been investigated for the rectangular wing with no
pretwist and no taper, and for the fiber angles of 6 =—75,-60,—45 . Bifurcation
diagram of the torsional deformation (¢) and the flapwise deflection (y,) degrees of
freedom at the wing tip is presented in Figure 4-10a and b. Bifurcation diagrams shows
that the bifurcation points for both degrees of freedom are nearly identical, and as the

absolute value of the fiber angle is decreased, speed at which the bifurcation occurs

increases. In this respect, flutter speeds determined by the nonlinear aeroelastic
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solution confirm well to the flutter speeds obtained by the linear aeroelastic solution.
Figure 4-10b reveals that for the fiber angle of # = —45", the center line of the

bifurcation diagram for flapwise displacement moves upward. For 6 = —45",
bifurcation angle is wide and amplitude of the LCO increases abruptly with slight
increase in the airspeed compared to ¢ = —75",—60" shown in Figure 4-10a. At this
fiber angle nonlinearity is relatively weak and amplitude curves are nearly vertical
compared to § = —75°,—60". On the other hand, for the fiber angle of § = —60° shown
in Figure 4-10a, bifurcation angle is narrow and before chaotic oscillations start,
amplitude of the LCO is contained in a band as the airspeed increases. Such a post-
flutter behavior is a desirable nonlinear aeroelastic response and it is a sign of strong
nonlinearity. It should be noted that in Figure 4-10a and b, the average of the absolute
values of the maximum and minimum amplitude of the deformations with respect to
the center line is taken in drawing the bifurcation diagram. It should be noted that due
to the nonlinear stiffness coupling for certain cases there is asymmetry in the amplitude
response which is also observed in the literature such as in the work of Tang and
Dowell [126]. In order to investigate the effect of fiber angle on the post-flutter
response of composite wings, time response, time phase portraits, Poincare maps and
one-sided power spectrum density (PSD) plots are obtained at three different post-
flutter speeds. In the plots presented, Poincare maps are constructed for the flapwise
bending displacement degree of freedom when the torsional deformation is zero at the
wing tip by plotting crossings in both directions and PSD plots are generated for the

flapwise wing tip deflection.
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For the fiber angle of 8 = —75°, Figure 4-11, Figure 4-12 and Figure 4-13 gives the
time history plots and associated phase portraits, Poincare maps and one-sided power
spectrum density (PSD) plots at the post-flutter speeds of 98 m/s, 108 m/s and
112 m/s, respectively. For the TWB with the fiber angle of ¢ = —75°, flutter speed is
97 m/s and for the slightly higher post-flutter speed of 98 m/s. Figure 4-11 depicts
that time history plots of the flapwise displacement and the torsional deformation at
the wing tip are smooth and phase portraits have closed narrow circuits representing
periodic response. Poincare map given in Figure 4-11e has two dots indicating that the
flapwise bending response is indeed periodic and the PSD plot shows the distinct

frequency content clearly.
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At the higher post-flutter speed of 108 m/s, as seen in Figure 4-12, amplitude of the
oscillations increase and time history plots of flapwise bending and torsional
deformation are no longer smooth and higher frequency content of the response is
evident in the time plots and also in the PSD of flapwise bending displacement. At this
speed, phase plane plots have thicker intermittent circuits, as shown in Figure 4-12c-
d, and Poincare map has more than one dot. These are indications of the quasi-periodic
nonlinear aeroelastic response. Figure 4-13 shows the nonlinear aeroelastic flapwise
bending and torsion response of the wing tip at the post flutter speed of 112 m/s. Time
response plots Figure 4-13a-b and Phase portraits in Figure 4-13c-d clearly show that
the response is chaotic, and broadband range of dominant frequencies exist as shown
in the Poincare map given in Figure 4-13e. It should be noted that each separate dot on
the Poincare map represents a distinct frequency content in the time response which is

also evident in the PSD plot in Figure 4-13f.
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For the fiber angle of ¢ = —60", Figure 4-14, Figure 4-15 and Figure 4-16 give the
phase portraits, Poincare maps and one-sided power spectrum density (PSD) plots at
the post-flutter speeds of 106 m/s, 126 m/s and 138 m/s, respectively. For the TWB
with the fiber angle of ¢ = —60°, flutter speed is 104 m/s. It is to be noted that since
the post-flutter range for the -60° fiber angle case is wide as shown in Figure 4-10, the
selected post-flutter speed increments are taken large on purpose. Phase portraits and
the Poincare map given in Figure 4-14a-b-c clearly show that the response is purely
periodic at 106 m/s. As the speed increases, the thickness of the phase plane circuits
and the frequency content of the response increase and the periodic response
degenerates. Phase portraits and the Poincare map clearly show the for the -60° fiber
angle case, post-flutter response is more well behaved compared to the -75° fiber angle

case and chaotic response is not encountered until 136 m/s.

It should be noted that the source of non-periodic/chaotic response is due to the
nonlinear stiffness effect which originates from including geometric nonlinearity
which is introduced through the nonlinear strain displacement relations and through
the definition of the displacement degrees of freedom. There does not have to be
aerodynamic nonlinearity to obtain nonperiodic/chaotic response. Mathematically
speaking, a nonlinear system of PDEs with at least three degrees of freedom, may
become chaotic for a specific set of parameter definitions. For the present problem, as
the flow velocity increases, the rate of energy transfer from the fluid into the structure
and vice versa increases up to a point where LCO appears. If geometric nonlinearities
are neglected, analysis would fail just after the point of instability and the model
predicts at most the threshold of instability. Nonlinearities on the other hand can
control the post flutter response and make the system tolerant in the post flutter region.
Beyond certain flow velocities, the transferred energy becomes sufficient to

commence chaotic response.
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Figure 4-17, Figure 4-18 and Figure 4-19 present the phase portraits, Poincare maps
and one-sided power spectrum density (PSD) plots for the -45° fiber angle case. For
this fiber angle, as Figure 4-10 shows the bifurcation angle is very wide and the
amplitude of oscillations increase abruptly with the slight increase in the airspeed.
Therefore, post-flutter speeds at which the nonlinear aeroelastic response is studied are
selected as 114 m/s, 116 m/s and 118 m/s with small speed increments. For the -45°

fiber angle case, flutter speed is 113.7 m/s.

Figure 4-17, Figure 4-18 and Figure 4-19 show that with 4 m/s increment in the
airspeed, nonlinear aeroelastic responses of the flapwise displacement and the
torsional deformation of the wing tip transform from almost periodic motion to chaotic
motion. Phase portraits get thicker and thicker as the speed is increased and the
Poincare maps get more crowded, indicating the broadband range of dominant
frequencies existing in the response. Nonlinear aeroelastic responses of the composite
wing with the CAS configuration TWB structural model at three different fiber angles
showed that the fiber angle of the CAS configuration greatly affects post-flutter
behavior of the composite wing. Although the flutter speed of the composite wing with
-75° fiber angle is lower than the flutter speed of the -60° fiber angle case, from post-
flutter response point of view, -60° fiber angle is preferable, since the well behaved
post-flutter range is wide and the amplitudes of LCOs are low compared to the -75°

and -45° fiber angle cases.
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4.2.2.3.2 Effect of Pretwist Angle on the Nonlinear Aeroelastic Response

The effect of pretwist angle of the wing on the nonlinear aeroelastic response of the

composite wing is studied for a rectangular wing with the CAS configuration TWB
structural model having —75° fiber angle. For a wing with zero pretwist angle (3, = 0")
and for a wing with linearly varying twist along the wing span with a tip twist of

(8, = 5 ). Figure 4-20 shows the bifurcation diagram of the torsional deformation ()
and the flapwise bending deflection (y,) degrees of freedom at the wing tip.

Bifurcation diagram given in Figure 4-20 confirms the results of the linear aeroelastic
analyses given in Figure 4-5 and Table 2-7. The delay of the onset of flutter with the
introduction of pretwist is clear in Figure 4-20. It is seen that the bifurcation angle of
the wing with 5° pretwist is slightly larger than the bifurcation angle of the wing with
no pretwist, hence for the wing with pretwist, the LCO is almost close to the wing
without pretwist. The effect of pretwist causes the flutter speed to increase but at the

same time nonlinearity remains almost identical.

chaotic response
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Figure 4-20 Bifurcation diagram of the flapwise bending (solid symbols) and
torsional deformation (empty symbols) degrees of freedom for different taper

ratios; circle: §, = 0, triangle: §, = 5 deg.
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For the wing with 5° pretwist angle, Figure 4-21, Figure 4-22 and Figure 4-23 give the
phase portraits, Poincare maps and one-sided power spectrum density (PSD) plots at
the post-flutter speeds of 101 m/s, 109 m/s and 113 m/s, respectively. For the wing
with 5° pretwist angle, flutter speed is 100.5 m/s. To see the effect of pretwist on the
post-flutter response of the composite wing, these plots can be compared with the
corresponding plots for the wing with no pretwist for the —75° fiber angle case given
in Figure 4-11, Figure 4-12 and Figure 4-13. For the slightly higher post-flutter speed
of 101 m/s, Figure 4-21a-b show that the phase trajectories are narrow closed orbits
and Poincare map (Figure 4-21c) shows two distinct points representing entrance and
exit from the corresponding Poincare section. At this air speed, the nonlinear
aeroelastic response is clearly periodic which is also evident in the PSD plot given in
Figure 4-21d. At the higher post-flutter speed of 109 m/s, Figure 4-22a-b show that
amplitude of the oscillations increase, phase portraits thicken and the two sided
Poincare map has more two dots, all of which are typical indications of quasi-periodic
response. At the higher post-flutter speed of 113 m/s, as phase portraits and the

Poincare map given in Figure 4-23 depict, the nonlinear aeroelastic response is chaotic.
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4.2.2.3.3 Effect of Taper Ratio on the Nonlinear Aeroelastic Response

Having assessed the effects of twist and fiber angle on the nonlinear dynamic
aeroelastic response of composite wings structurally modeled as TWBs, the effect of

wing taper on the nonlinear dynamic aeroelastic response is studied with an example.
To this aim, an untwisted (3, = 0°) TWB with the fiber angle of § = —75" is taken into

account. In a first analysis, the bifurcation diagram is obtained in Figure 4-24, which
shows the maximum values of torsional deformation and flapwise displacement
degrees of freedom. As deduced from the bifurcation diagram, untapered wing
structures have smaller critical speeds. It should be noted that in the present study, the
steady aerodynamic load for a trimmed flight condition is not considered and only the
dynamic motion about the zero deformed state is taken into account. Therefore, the
tapered wing has lower aerodynamic loading than the rectangular wing. It is deemed
that the combined effect of lower acrodynamic loading, lower mass and lower stiffness
of the tapered wing compared to the rectangular wing is such that the tapered wing is

prone to aeroelastic instability at higher air speed than the rectangular wing.
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Figure 4-24 Bifurcation diagram of the flapwise bending (solid symbols) and
torsional deformation (empty symbols) degrees of freedom for different taper
ratios; circle: ¢ = 1, triangle: ¢ = 0.6.
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The first sets of results are then reported for the taper ratio ¢ = 0.6 in Figure 4-25,
Figure 4-26 and Figure 4-27 for airspeeds U = 102,108,111 m/s, respectively. The
flutter speed for the taper ratio ¢ = 0.6 is 101 m/s. At the airspeed of 102 m/s, which
is almost the initiation of the supercritical region, a purely periodic motion is detected
(Figure 4-25). Time history plots are smooth, phase planes depict a narrow and closed
orbit, PSD plot shows one dominant frequency and the Poincare map gives a single
dot in the Poincare section of ¢ = 0°. As the airspeed increases to 108 m/s, time history
plots, phase planes, PSD and Poincare map indicate a quasi-periodic motion. The
character of motion remains the same at the extreme supercritical value airspeed of
111 m/s. In Figure 4-27, time history plots depict regularly varying amplitudes with
several frequency content and several dominant frequencies are seen in the PSD plot.
Phase plots show thick and closed orbits and the Poincare map depicts a finite number
of points intersecting with the Poincare section of ¢ = 0. It is clear that as the airspeed

is increased, nonlinear response degenerates and approaches chaotic motion.

For a larger taper ratio of & = 0.8 the same sets of results are obtained and reported in
Figure 4-28, Figure 4-29 and Figure 4-30. The flutter speed for wing with taper ratio
o = 0.8 15 99 m/s. In this case, a periodic motion is observed at 100 m/s in Figure 4-28
followed by quasi-periodic response in 110 m/s in Figure 4-29 and a chaotic motion at
the airspeed of 115 m/s in Figure 4-30. It is observed that for smaller taper ratios (larger
o values), chaotic motion may be encountered at lower airspeeds,and for higher taper
ratios (smaller o values), chaotic motion is encountered at higher airspeeds and for a

wide range of airspeeds nonlinear aeroelastic response is quasi-periodic.
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0°,0 = 0.6, (a)Flapwise displacement time response, (b)Torsional deformation
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phase portrait, (e)Poincare map, (f)PSD.
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A comprehensive study of the geometrically nonlinear aeroelastic behavior of

pretwisted composite wings structurally modeled as TWB is performed. The structural

equations of motion are obtained for the CAS configuration TWB in the most general

form by including second order nonlinear strain displacement relations, nonuniform

geometric features such as wing taper, pretwist, and warping restraint and transverse

shear effects are taken into account.

For nonrotating composite wings structurally modeled as TWBs, the following items

stand out as major conclusions of the study on the linear and nonlinear aeroelastic

response under incompressible unsteady aerodynamics.

Flutter speeds determined by the linear aeroelastic analysis of the composite
wings via the frequency domain solution agree very well with the bifurcation
speeds obtained by the time domain solutions of the nonlinear aeroelastic
system of equations of the composite wing structurally modeled as TWB.
Fiber angle of the CAS configuration TWB is a very influential parameter on
the instability speed of the composite wing. For positive fiber angles, fibers are
oriented towards the trailing edge of the wing resulting in additional increase
in the effective angle of attack due to the elastic twist of the wing caused by
bending-twisting coupling. Therefore, instability occurs in the form of
divergence. For negative fiber angles, the form of instability is flutter because
fibers are oriented towards the leading edge and divergence instability is
deferred.

Besides the flutter speed, the fiber angle of the CAS configuration TWB has a
significant effect on the post-flutter LCO behavior of the composite wing. Post-
flutter responses of composite wings with three different off-axis fiber angles
(=75°, —60°, —45°) showed that although the flutter speed of the composite wing
with —45° off-axis fiber angle is higher than the flutter speed of the —60° fiber
angle case, from post-flutter response point of view, —60° fiber angle is
preferable, since the well behaved post-flutter range is wide and the amplitudes
of the LCOs are low compared to the —75° fiber angle case. For the —45° fiber

angle case, bifurcation speed is highest but flapwise bending displacement and
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torsional deformation amplitude curves are nearly vertical. Such a post-flutter
behavior is a sign of weak nonlinearity and undesirable nonlinear aeroelastic
response. From a design perspective, —60° fiber angle would be more preferable
since the nonlinearity is very strong and the amplitude of the post-flutter LCO
is contained in a band for air speeds, way beyond the bifurcation speed of the
—45° fiber angle case. When both the flutter speed and the post-flutter response
is considered, —60° fiber angle would be preferable since for the —45° fiber
angle case, LCO amplitude curves are nearly vertical.
The effect of pretwist causes the flutter speed to increase, but at the same time
nonlinearity becomes slightly weaker. Comparison of the bifurcation diagrams,
phase planes and Poincare maps at three post-flutter speeds for the composite
wing with no pretwist and 5° pretwist at the wing tip, reveals that for small
pretwist angles post-flutter responses are similar, hence bifurcation speed can
be taken as the main design driver.
For composite wings with different fiber angles and pretwist, post-flutter
response of the tip of the composite wing is studied in more detail by preparing
phase portraits, Poincare maps and PSD plots at three post-flutter speeds.
Results reveal that while the response is periodic at speeds slightly over the
flutter speed, as the air speed is increased, periodic responses get distorted and
quasi-periodic and eventually chaotic responses are encountered.
Wing taper ratio has a stabilizing effect on the stability margins of the wing. For
untapered wings the flutter speed decreases and the wing is more prone to flutter
instability at smaller speeds compared to a tapered wing. It should be noted that
tapered wing analysis has been performed for the same span wings. Normally,
for an aircraft structure an untapered wing and tapered wing must have different
spans to have similar aircraft performances. Such a case has not been
investigated in this study. For the same wing span, tapered wings have slightly

higher flutter speeds and more well behaved post-flutter response.
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4.3 Nonlinear Aeroelastic Analysis of the Composite rotating TWB-Blade

Using Incompressible Unsteady Aerodynamic

This section focuses on rotating blade by considering the effect of angular velocity
(Q = 0) in Equations (4-16)-(4-48). In this part, nonlinear aeroelasticity of the rotating
large scale wind turbine made up from composite rotating TWB with CAS
configuration in the incompressible flow regime is investigated. Figure 4-31 shows the
schematic description of rotating wind turbine blade with load carrying thin wall box
beam and aerodynamic surface. The structural and aerodynamic coordinates are shown

by (z,y,2) and (Tyer 240 ) -

U = \/{{f’ + (RO

Figure 4-31 Aerodynamic and Structural Coordinates of the Symbolic Rotor blade
with the "Thin-Walled Composite Box Beam" Configuration

Where, the relative velocity U, is normal to the leading edge given in Equation (4-80).

U = U+ (R0, tanzb:% (4-80)
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Where, U; and R )are inflow velocity and angular velocity while, R are a spanwise

position and % is the relative wind angle, respectively.

Table 4-8 gives the geometric and material properties of the 5 MW NREL wind turbine

blade modelled as rotating box beam composed of glass/epoxy.

Table 4-8 Geometric and material properties of the glass/epoxy composite blade.

Material properties Geometric properties

E; (GPa) 39.14¢9 L (m) 60
E, (GPa) 13.219¢9 Lroor (M), 0y 0.591,0.95
E; (GPa) 13.219¢9 dyoor (M), 04 1.412,0.25
Gy, (GPa) 3.937¢9 h (m) 0.056
G153 (GPa) 3.937¢9 B (deg.), 0
G,3 (GPa) 3.937¢9 0 (deg.) -90,-85,-80,-75
915 = Up3 0.3 p (kg/m?®) 2001

913 0.8 Ry (M) 0.1L

Before the nonlinear aeroelastic analysis of composite wings, linear aeroelastic
analyses have been performed to predict the flutter and divergence speeds in order to
better evaluate the results of nonlinear aeroelastic analysis. As discussed before, Ritz-
based methodology described for the nonlinear aeroelastic analysis is also followed in
the linear aeroelastic analysis of the CAS configuration composite wings, and nine
trial functions (N = 9) are used in the series given in Equation (4-52) for the six
degrees of freedom of the TWB and first nine (m = 9) eigenfunctions are used for the
modal reduction. For the composite TWB structure, geometric and material properties
given in Table 4-8 are used and the nondimensional offset between the shear center
and the mid chord is taken as a = —0.1, implying that the shear center is in front of
the mid chord. Moreover, the spanwise and chordwise taper ratios are assumed to be
o, = 0.95,0, = 0.25. Table 4-9 gives the variation of the aeroelastic instability rotation
speed and associated frequency of the tapered composite blade with the fiber angle of

the CAS configuration for an inflow speed of 10 m/s. Results are presented for an
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untwisted blade. It is noted that for fiber angle -90°, flutter frequency is zero and the

instability mode is divergence.

Table 4-9 flutter rotational speed and frequency at a vriety of lamination angles.

Fiber Flutter rotational speed Q Flutter Frequency
angle 6 (rad/sec) (rad/sec)
(Degree)
-90 2.85 0
-85 3 13.8
-80 3.15 9.87
-75 3.26 9.25

As given in Table 4-9, the maximum flutter rotational speed corresponds to a fiber
angle of —75° while the minimum flutter rotational speed occurs at a lamination angle
of -90°. The nonlinear aeroelastic system of equations is verified by comparing the
time domain solution obtained with the linear aeroelastic solution for the untwisted
wing which has a —75° fiber angle in the CAS configuration given in Table 4-9. For
this configuration, from Table 4-9, it is seen that the flutter rotational speed is 3.26
rad/sec. Figure 4-32 shows the time history plots of the flapwise displacement of the
rotating blade tip obtained by the time domain solution of the nonlinear system of
Equation (4-78) for the subcritical rotation speed of 3.255 rad/sec, for the critical
rotational speed of 3.26 rad/sec and for the supercritical rotational speed of 3.265
rad/sec. It is seen that at the critical speed, LCO is observed in the nonlinear aeroelastic
solution. For rotational speed less than the critical speed, disturbance generated by the
initial conditions imposed, attenuate due to the aerodynamic damping (Figure 4-32a).
With the increase in the rotating speed, an exchange of energy between the blade
structure and the aerodynamic flow commences at the bifurcation rotating speed which
corresponds to the flutter rotational speed obtained by the linear aeroelastic analysis,
and LCO starts (Figure 4-32b). In the supercritical region, amplitude of the LCO
increases substantially and as Figure 4-32¢ shows the magnitude of oscillation of the
flapwise deflection is much higher than the magnitude of the oscillations at the critical

rotational speed.
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Figure 4-32 Nonlinear time history plots for three rotational speeds (a) Subcritical
(2 = 3.255 rad/sec) (b) Critical (2 = 3.26 rad/sec) and (¢) Supercritical (2 =
3.265 rad/sec)
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For the fiber angle of§ = —75°, Figure 4-33 gives the time history plots and associated
phase portraits, at the post-flutter rotational speed of 3.265 rad/sec.

Figure 4-33 depicts that time history plots of the flapwise displacement and the
torsional deformation at the blade tip are well smooth and phase portraits have closed

narrow circuits representing periodic response.

At the higher post-flutter rotational speed of 3.28 rad/sec, as seen in Figure 4-34,
amplitude of the oscillations increase and higher frequency content of the response is
evident in the FFT plots of the flapwise bending displacement and torsional
deformation. At this speed, it is clear that the response shows signs of degeneration

and phase plane plots do not have narrow circuits, as shown in Figure 4-34,
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displacement time response, b)Torsional deformation time response, c)Flapwise

displacement phase portrait, d)Torsional deformation phase portrait, ) FFT
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4.4 Nonlinear Aeroelastic Analysis of the Composite TWB-Wing Using

Compressible Unsteady Indicial Aerodynamics

By neglecting rotating speed (2 = 0) in Equations (4-16)-(4-48), Nonlinear aeroelastic
behavior of swept composite fix wing shown in Figure 4-35 modeled as TWB and CAS

configuration in the compressible flow regime is studied in this section.

= >
Section A-A  Zud T3
e |

o

A T T u

Figure 4-35 Schematic description of a swept wing modeled as a TWB with
associated CAS layup configuration.

4.4.1 Nonlinear Integral Equation of Motion of the Composite Wing

For the compressible unsteady aerodynamics, only the work done by the external
forces change. The last expression in the Hamilton’s principle is the variation of work
done by the external aerodynamic loading. For the compressible unsteady

aerodynamics, variation of the external aerodynamic loading can be written as,

L

W = f (L, (50080,(2)+ M, (21)60(2) iz (4-81)

ae_
0
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where, 1, (z,t)and M,, (2 1) are the unsteady aerodynamic lift and pitching moment

about the reference axis, respectively. The extended derivation of the unsteady
compressible aerodynamic lift and pitching moment was explained in Chapter 3. Here,

the summary of the procedure is described for swept wing model.

In the present study, explicit expressions for the unsteady aerodynamic loading

L (zt) and M (zt) in the subsonic compressible flow regime in time domain, are

ae_c( ae_c(

obtained using indicial aerodynamics.

For arbitrary small motions of the thin airfoil in subsonic flow, with respect to the
reference axis placed at the leading edge of the airfoil, downwash velocity

corresponding to pitching and plunging motions can be expressed as,

~

w,(z,2,t) = w,(2,1) — z¢,(2,t) (4-82)

where plunging and pitching motions 4, and ¢, are given by,

w,(2,t) = v, — Ucos Ag + —%% Usin A (4-83)
VA
o, (2,t) = ¢ + %U sin A (4-84)
VA

It should be noted that Equations (4-83) and (4-84) are written for a swept wing
configuration with the wing sweep angle A . Also, for the sake of brevity the free

stream fluid velocity v_ is represented by U hereinafter.

The unsteady aerodynamic lift 7, (z,¢) and pitching moment A, ,(z,¢) in the so

c

called Theodorsen's coordinate, which is located at a distance b(a + 1) behind the

leading edge, are then defined by Equations (4-85) and (4-86) which are obtained by
employing the general law for transferring the axis of a moment of leading edge to the

so called Theodorsen's axis.
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L, (zt) = 2C,,pU cos AV |, (2,0)8,,(t) + Dy(z1)] (4-85)
- L¢pUcosAb[wa(z,0)g$C(t) D, (z, )]

M

ae_c(

z,t) = 4Cp,pU cos A9, (2, 0)¢ch( )+ D, (2 t)] (4-86)
— 20L¢pUcosAb2 [ﬁ)a (2,0)¢,,, () + Dg(z,t)]

where, D ;i — 1..4 are defined as,
D (at) = [L2T5 (4~ ryir (4-87)
D,(zt)= [ dd)“—gbcq(t — 7)dr (4-88)
Dy(zt) = [=2220,,(t — r)dr (4-89)

IM%M P (4-90)

where, the aerodynamic indicial functions given in Equation (4-91) are defined in the

reference coordinate in terms of indicial functions obtained in the leading edge.

¢, (1) = ¢, (1),

Gt (1) = oy (1) + [g + %] 6. (1),

B, (1) = 6, (1) —[ ]¢ ), (4-91)

G (= 0, (4[24 2 (6, (61— 6 D)~ [ 2+ %] 6. (1),

where, the coefficients of the exponential representations of the indicial functions

defined in leading edge are obtained as,

(bc., cq,cM,cMq (M’ 0 ) =

3
aO(:,ch,Uc]V[,Uch (M) - Z aic,icq,i(zﬂl,ich ( )exp< ﬁ T)
i=1
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where, i = 1,2,3

Once the Mach dependent base coefficients (a (M),i = 0,1,2,3) of the

Qieprs aicq ’ az'ch

lift and the moment compressible indicial functions for the plunging and pitching
motion with respect to the coordinate system established at the leading edge of the
airfoil are determined using method introduced in Chapter 3 for any Mach number,
base coefficients with respect to the axis located at »(a 4 1) behind the leading edge

can be determined utilizing the relations given by Equation (4-93) .

_ n a n 1
icM icM 9 2 ic? (4_93)
_ L 1
icq icq 2 2 ic?
_ a 1 a 1 ’
icMq = Oév',ch + 5 + 5 ( icq B avrM) - E + E ic”

The integral expressions Equations (4-87)-(4-90) which appear in the lift and moment
expressions, are expressed again by substituting the coefficients of the indicial

functions Equation (4-93) into Equations (4-87)-(4-90),

Dy (nt) = iy (1) - 3, (M), (2.8) (4.94)

D, (2t) = G0, (2t) — ;&icq(M)Bicq (2t) (4-95)
D, (2:8) = Gyayy (t) - g%(mgm (1) (4.96)
Dy (2t) = Qyyd, (1) — Zf;&ich(M)Bqu (21) (4-97)

When the Leibniz integral rule is applied to the integrals involving the exponential

terms, it can be shown that the aerodynamic lag terms B, . ..\, (2:1) are defined by

K

Equations .
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dw t
Bl(, (Z,t) + (ﬂl UCZ?S A)Bw <z,t) _ wad<tza ),Z — 1,2,3 (4_98)
UcosA dgga(z,t) ‘
BH‘Q<Z’t)+(/Bz b )Bicq<z’t):T;Z: 172;3 (4-99)
B/(M (Z?t> + (ﬁ/ UCzSA)BicM (Z7t) = dwad(t27t>3l = 17273 (4-100)
B () + (8, UCTOSA)BMM,J (2t) = %j’t);i =123 (4-101)

Finally, assuming that the wing is at rest initially, the explicit expressions of the
unsteady lift and moment in compressible flow regime are given by Equations (4-102)

and (4-103).

L. (2t)= QC’WOUCOSAZ)2

ae_

8,0, (2:t) - 23: a, B, (2 tﬂ —~ (4-102)

3., (1)~ 3@ B, (1)

C,pU cos Ab

M (z,t) =4C, pU cos Ab® — (4-103)
ae_c Lo

@OCquASu (z,t) — Z &ichBuMq (z,t)

20, ,pU cos Ab*|&, i), (=,t) i 8,0, B, (1)
i=1

The integral equation of motion for the CAS configuration with square and cubic
nonlinearity is obtained after a rather cumbersome manipulation as in the given in
Equation (4-16). To include 3D effects of the finite span swept wing, lift curve slope

is obtained from the Diederich general formula as [38],

B ¢, cos ARN1 — M?

N

ARN1— M [1+

Lo 9

¢, COS AF
: - +

TARN1— M?

¢, cos A, (4-104)
T
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where,

_ 2
COSAE = - M cos A (4-105)

\/I—M2 cos” A

4.4.2 Nonlinear Aeroelastic Analysis of the Composite Wing Using

Compressible Indicial Function

Nonlinear aeroelastic analysis is conducted by means of a Ritz based solution
methodology utilizing the mode shapes of the linear structural system to approximate
the spatial variation of the degrees of freedom of the thin walled beam. It should be
noted that, determination of the mode shapes of the linear system is exactly same as
defined in the incompressible case explained in Section 4.2.1.1. Equation (4-106) gives
the reduced modal matrix R, which is extracted from the eigenvalue analysis
performed in 4.2.1.1, for the dominant = right eigenvectors corresponding to the

translational and rotational degrees of freedom of the linear system.

T

r T T T 57
R6N><m = R“ R;XN RIme quxN Rryan RW@”LXN (4'106)

mxN

One can then construct a reduced order model by expressing any of the six degrees
freedom A e {uy,vy,w,,6,,0,,¢} In terms of the relevant trial function ¥® , relevant

reduced modal matrix R® which is composed of dominant m right eigenvectors and

the modal coordinates as,

Az t) = > R*(t) (4-107)

Where 9(t) is the generalized modal coordinate vector of dimension of m x 1, R® is
the reduced modal matrix of dimension N xm composed of dominant m right
eigenvectors corresponding to any of the degrees of freedom A , and ¥* is the vector

of trial functions, of dimension N x 1, corresponding to any of the degrees of freedom

A.
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For the nonlinear system, the test functions for any of the degrees of freedom, which

are the variations of the degrees of freedom, are defined by the premultiplication of

the the vector of the trial functions »* by the reduced modal matrix I*” which is
composed of dominant m left eigenvectors corresponding to the translational and

rotational degrees of freedom.
SA(2) = [P p® (4-108)

Modal expansions of the degrees of freedom of the TWB (Equation (4-107)) and the
variations of the degrees of freedom (Equation (4-108)) are substituted into the integral
form of the governing equations of motion Equation (4-16) , resulting in the reduced

order system of nonlinear equations,

M J(t)+ C,9(t)+ K, 9(t)— Z (t)+ H"(t) = 0 (4-109)

Where M

te?

C,.K, are the reduced order mass, acrodynamic damping and stiffness

o
matrices of dimension m xm, and 7, and H,, are the reduced order vectors of
dimension m x 1 and they include the aerodynamic lag states and the nonlinear terms,
respectively. In the resulting reduced order system of equations, if the modal matrices
composed of the left (I') and the right eigenvectors (R) are factored out, reduced

order mass, damping and stiffness matrices in Equation (4-109) are defined by,

Mtc = LT (Ma + Mae (’>R
C,. = LTCM_CR

t

KC:LT(KS—i—K )R

t ae_c

(4-110)

where the structural mass (M) and stiffness (K ) and the aerodynamic mass (M

s s ae_c)

, stiffness (k,, ,) and damping (C matrices of dimension 6N x 6N are defined in

ae_c)

Appendix D. It should be noted that the aerodynamic damping matrix ¢, , in

Equation (4-110) does not include the aerodynamic lag terms defined in Equations
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(4-102) and (4-103), and these terms are collected in the aerodynamic lag vector Z, .
Aerodynamic lag vector Z, is derived from the virtual work done by the aerodynamic

lag states (B, ,B,, B,

e Biegs Bioar» Bioyr,) 10 the unsteady lift and moment expressions in Equations

(4-102) and (4-103). In the integral equation of motion Equation (2-16), virtual work

done by the unsteady lift and moment due to aecrodynamic lag states is given by,
L
f {[(anic)ciLa‘z] + (Lneic)cqiLa‘z] ] é\'U(] + [(Mncic)(’ﬂfil,ag + (Ma(‘ic)c]llqil/ag] 6¢}d2 (4'1 1 1)
0

where the unsteady lift and moment due to aerodynamic lag states are given by

Equations (4-112)-(4-115).

(Lo e og(2) = (4-112)
—C,,pU cos Ab(&, B, (1) + @, B, (1) + &, B, (21))
(Lae,c)cq,La!J (Z’ t) - (4-113)
2C,,pU cos AY? (&lchlcq (2.t) + &, B, (zt)+a, B, (z t))
(Mae_a )L‘M_Lag (Z7 t) = (4_1 14)
2CL¢pU cos A’ (achBch (z1)+ &QCJWBQC]W(Z’ t)+ a3cMB3cM (2 t))
(Mw_(t )r:]Wq_erg (Z’ t) = (4- 1 1 5)

4C,,pU cos AV (&, B, (5:1) + 8, B, (21) + @, B (21))

leMq™ 1cMgq 2c¢M ™ 2cMq 3cMq™ 3cMq
Following the substitution of the unsteady lift and moment due to aerodynamic lag

states in Equation (4-111), and expressing the variations ¢v, and 6¢ by Equation

(4-108), after manipulations aerodynamic lag vector Z, is obtained as,
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2c 3c al(:q aQ(:qI &3(:(1]- (4' 1 1 6)
a1

>

leM anAI 3CMI leMq anA[qI chMq
1eMgq

(1)
eatg (1)
(1)

3cMq

>

>

Where 1 is the identity matrix of order m x m and B, ,B. ,B.,,B

o Bioar i=1,2,3 are

icMq>

vectors of order m x 1 defined by,

L
E’ic(t) = {f C,,pU COSAb(L“TW)BiC(Z, t)dzl, i=12,3 (4-117)
0

icq

L

B (t):1f2C'L¢pUcosAb2(LUlev)Bicq(z,t)dz}, i=123  (4118)
0

A L T

BM(t):{f 20,,pU cos AV’ W)Bicw,zf)dz’, i—123 (@119
0

L
lA?ich(t) = {f 4C, pU cos Ab? (L@Tw‘c’ )Bich(z, t)dz}, i=123 (4-120)
0

where the terms inside the curly brackets are vectors of dimension m x 1, so they are

the transformed aerodynamic lag state vectors B, ,B, B, B

icq? TicM >

i(:ﬂfq’i = 172’3 °

The reduced order vector of nonlinear terms A" in Equation (4-109) are defined by
Equation Equation (4-70). With the introduction of the aerodynamic lag states, there
are 12m number of additional unknowns in Equation (4-109), and to perform the
nonlinear aeroelastic analysis of the composite wing, additional 12m number of
additional equations are needed. To this end, the system of nonlinear equations
Equation (4-109) is augmented by the differential equations that the aerodynamic lag

states B (2,t), B, (2:t), Bioys (2,1), By, (2,1),i = 1,2,3 must satisfy (Equation (4-98)-
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(4-101)). Since in the system of nonlinear equations, given by Equation (4-109),

aerodynamic lag states are defined by the transformed aerodynamic lag state vectors

B, (t),B,,,(t), B,y (t), B0y, ()i = 1,2,3, Equations (4-98)-(4-101) are manipulated such

icq

that it is also expressed in terms of the the transformed vectors

B, (t),B,,,(t), B, (t), B, (1),i = 1,2,3 . For this purpose, both sides of Equation (4-98)-

icq

(4-101) are multiplied by the expressions given in Equation (4-121)-(4-124),

C,,pU cos Ab(6v, ) (4-121)
20, pU cos AD? (51}0) (4-122)
ZCLQpU cos Ab° (6¢>> (4-123)
4C,, pU cos Ab? (6¢) (4-124)

the variations v, and 6¢ are expressed by Equation (4-108), modal expansions of the

degrees of freedom (Equation (4-107)) which appear in the right hand side of
Equations (4-98)-(4-101) are substituted, and both sides of Equations (4-98)-(4-101)
are integrated along the span of the wing as shown in Equations (4-125)-(4-128).

L
f@m%mmﬁﬁWﬂﬁyﬁ+@U“mﬂyzﬂszHi (4-125)
0
i=123
[ 2 ol . UCOSA
[ 20,00 cos Ab (L " ) B, (2t)+ 5, B, (z0)|d> = RHS, ~ (4-126)
0
i=12,3
[ 276" 1 6\| 7 U cos A
J 20, cosni (170 By e+ 8, TSR s = i, @120
0

i=123
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UCOSA

t)|dz = RHS,, ~ (4-128)

sz (

]4CL¢pU cos Ab? (LO”W)[B () +6,
' 1 =123

After manipulations the right hand side R HS in Equations (4-125)-(4-128) can be
brought into the form given by,

RHS = D 9(t)+ D, (t) (4-129)
RHS, =D, d(t)+ D, ¥(t) (4-130)
RHS , = D,_,J(t)+ D,,,3(t) (4-131)

RHS, =D,  0(t)+ D, ¥(t) (4-132)

Where D, .D,.,D,, .D,. DDy Dypys Doy, are the m xm  coefficient

matrices defined by,

]— f p U cosA b[L” W R — (A)L“Tw”w’ R ]dz

D, |=~ f C, U cos N[ R e (4-133)
0
1cq f2 p UCOSA 2p? [tan LU wvwlo Ro]d
[chq] = f20L¢pU cos Ab° [LUT¢U¢/¢TR¢]dZ (4-134)
0
D] = j 20, p(Ucos A 0|1y R — tan(W)I 0" R iz
0
[Dch IQC pU cos Ab° [L‘*" Y Rv}d (4-135)
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1ch f4 P UCOSA) b [tan< )L¢T¢¢¢,¢TR¢PZ
(4-136)
D, ., ] = f4 ¢pUCOSAb3 [L¢ e Rd’]d

Comparing Equations (4-117)-(4-120) and Equations (4-125)-(4-128), it is evident that
since the terms multipying the time derivative of the aerodynamic lag state
B, (2,t),B;.,(2,1), B, .3y (2,), By, (2,1),4 = 1,2,3 in Equations (4-117)-(4-120) do not

depend on time, Equations (4-125)-(4-128) can be written as,

UcosA

B.(t)+8 ZSB()=DJ0+D,0 =123 @137
B_(1)+8 UCZS Y5 =D dw+D, 00 i=123 @)
B.(1+8 UCTOSA B (=D 00 +D, 00 =123 @139
B, (0)+8 UCZS A B, (0)=D,,0t)+D,, () i=123 (@-140)

where B, (t),B,,(t), B, (), By, (t),i = 1,2,3 are the transformed aerodynamic lag state

icMq

vector of dimension m x 1 defined by Equations (4-117)-(4-120). It should be noted
that in passing from Equations (4-125)-(4-128) to Equations (4-137)-(4-140), it is

assumed that the semi-chord length b in the U / b term is constant along the span of

the wing, which is so for rectangular wings. For tapered wings, it suffices to use the

mean semi-chord length only in the U/ b term in Equations (4-137)-(4-140).

By augmenting Equation (4-109) with Equations (4-137)-(4-140), the final form of the
nonlinear aeroelastic system of equations of the CAS configuration composite wing
modeled as TWB, compressible aerodynamics is obtained in state space representation

as shown in Equation (4-141),
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mx12m

2.

In more compact form, Equation (4-141) is in the form,

2mx12m [ ]
mx12m

Ajg+ Bg+ F¥ =0 (4-147)

Where ¢ is the state vector of dimension 14m x 1, F¥" is the vector of nonlinear terms

of dimension 14m x1, and A and B are 14m x 14m coefficient matrices defined in

Equation (4-141).

Nonlinear aeroelastic respose of the composite wing modeled as TWB is performed in
time domain by the direct integration of Equation (4-147) by the Runge-Kutta method
for the prescribed initial conditions. Time history plots are then processed for nonlinear

aeroelastic stability analysis.

4.4.3 Numerical Results and Discussions

In this section, structural and unsteady aerodynamics models described are utilized
along with the Ritz based solution methodology to obtain various results. As the first
case, numerical verification studies are conducted to show the validity of the whole
model and then linear and nonlinear results are presented for different TWB

configurations.

4.4.3.1 Validation Studies

The structural TWB linear model has already been verified in Chapter 2 by comparing
the natural frequencies of the stationary CAS configuration TWB with those

determined by the finite element solution performed by MSC Nastran.
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Unsteady aerodynamics model based on the representation of the lift and the moment
by the compressible indicial functions approximated by the aerodynamic lag states is
verified by the well-known experimental study of Barmby et al. [125]. The
experimental flutter speed and flutter frequency results obtained for the aluminum
alloy wing of NACA 16-1010 profile in the subsonic compressible flow regime are
compared with the predictions of the present study. In the model used in the
verification study, structural model is based on geometrically linear equations and
exactly the same Ritz based methodology described for the nonlinear aeroelastic

analysis of the composite wing is used. In this respect, seven trial functions (N = 7)
are used in the series given in Equation (4-52) for the bending (v,) and torsional (¢)
degrees of freedom and first seven (m = 7) eigenfunctions are used for the modal

reduction of the nonlinear system. Flutter speed and frequency comparisons are made
for the wing models given in Table 4-10. In order to adapt the present TWB structural
model to the wing models of Barmby et al. [125], degrees of freedom are restricted to

the flapwise bending deflection (v,) and the elastic twist (¢) and the assignments given

by Equation (4-79) are made for the stiffness and mass properties. It should be noted
that the “a” parameter in Table 4-10 specifies the nondimensional offset between the
shear center and the mid-chord, as shown in Figure 4-35. A negative value of the “a”
parameter indicates that the shear center is forward of the mid chord. Table 4-11
compares the wind tunnel results of flutter Mach numbers and flutter frequencies with
the proposed compressible indicial aerodynamics formulation. Results given in Table
4-11 show that present linear aeroelastic analysis results are in good agreement with
the experimental results of Barmby et al. [125] for all variants of the TWB models
including the effect of the wing sweep angle A.
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Table 4-10 Geometric and material properties of the wings used for the validation

study [125]

Model EI(Nm?) GJ(Nm?) L(m) b(m) a Ia(Kng) my(Kg / m) A(deg)
40A 15 10.15 0.63 0.0509 -0.2 0.00024 0.339 0
40A 15 10.15 0.63 0.0509 -0.2 0.00024 0.338 0
40D 14.5 9.55 0.63 0.0509 -0.21 0.00023 0.322 15

- 94.6 26.5 0.574 0.0713 -0.08 0.00054 0.464 45
73 16.8 15.6 0.66 0.0509 -0.12 0.00022 0.476 30
72 224 11.7 0.66 0.0509 -0.12 0.00024 0.524 15

25A 18.5 5.6 0.813 0.0509 -0.2 0.00013 0.138 60
15 54.7 13 0.813  0.0509 -0.08 0.00017 0.289 60
12 156.8 41.3 0.422 0.0978 -0.07 0.00014 0.637 15
15 54.7 13 0.813  0.0509 -0.08 0.00017 0.289 60
13 152.4 31.82 0.462 0.0713 -0.08 0.00051 0.439 30
14 94.62 26.49 0.574 0.0713 -0.08 0.00054 0.461 45
24 30.96 8.06 0.553 0.0719 -0.02 0.00038 0.238 45

Table 4-11 Critical Mach numbers and frequencies of different wing models.

Flutter Mach Number Flutter Frequency
Model  Experimental ~ Present Experimental  Present

40A 0.5 0.526 61 63
40A 0.45 0.475 56 59
40D 0.51 0.482 62 59
- 0.81 0.788 37 41
73 0.69 0.708 24 27
72 0.59 0.61 30 34
25A 0.79 0.766 29 26
15 0.51 0.537 37 41
12 0.79 0.812 55 59
15 0.62 0.637 36 40
13 0.68 0.704 61 63
14 0.56 0.577 54 57
24 0.54 0.556 49 53
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4.4.3.2 Linear Aeroelastic Analysis of Composite Wings

Prior to the nonlinear aeroelastic simulations of composite wings, linear aeroelastic
analyses are performed to predict the stability margins for a better evaluation of
nonlinear aeroelastic simulation results. The Ritz-based methodology is followed in
the linear aeroelastic analysis of CAS TWBs configuration. Nine trial functions
(N = 9) are used in the expansions given in Equation (4-52) for the all six degrees of
freedom. For the modal reduction, the number of mode shapes to be included is found
tobe 7 (m = 7) for a reasonable convergence. Setting the nonlinear vector F¥ = 0 in
Equation (4-147), linear aeroelastic system of equations is obtained. Considering

q = g, where ) is the complex valued eigenvalue of the aeroelastic system, one

obtains the standard form of the generalized eigenvalue problem. Geometric and

material properties of thin walled beams studied, are given in Table 4-12.

Table 4-12 Geometric and material properties of composite wings used in aeroelastic

numerical studies.

Material properties Geometric properties
E, (GPa) 206.8e9 L (m) 10
E, (GPa) 5.17¢9 [ (m) 0.757
E; (GPa) 5.17e9 d (m) 0.12
Gy, (GPa) 3.1e9 h (m) 0.03
Gy3 (GPa) 3.1e9 A (deg.) 15,30,45
G,3 (GPa) 2.55¢e9 0 (deg.) -75, - 45
U1, = U,z 0.25 p (kg/m?) 1528
13 0.25 a -0.3

To see the effect of compressibility on the aeroelastic instability margins, linear
aeroelastic analysis of the composite wings has also been performed by incompressible
indicial unsteady aerodynamics utilizing approximation of the Wagner’s function by
two aerodynamic lag terms and also by compressible indicial unsteady aerodynamics
utilizing approximation of the indicial functions by a total of twelve aerodynamic lag
terms. Table 4-13 presents the critical Mach numbers and corresponding critical

frequencies for unswept wings (A = 0) for four different fiber angles of the CAS
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configuration TWB. From the results given in Table 4-13, it is evident that
compressibility accounts for reduction in aeroelastic instability speeds. Actually,
instability speeds obtained by incompressible unsteady aerodynamics are not
conservative. From Table 4-13, it is also seen that fiber angle of the CAS configuration
TWRB has a significant effect on the aeroelastic instability speed. For fiber angles other
than —90°, the aeroelastic instability type is flutter and as the absolute value of the fiber
angle increases, flutter Mach number decreases and for the —90° fiber angle case,
critical frequency becomes zero indicating divergence instability. For the wing with
no sweep, fiber angle of —45° results in the highest critical Mach number. It is to be
noted that as Figure 4-35 shows, fiber angle is measured from the chordwise axis and
when the fiber angle is £90°, fibers are aligned along the wing axis. Moreover, for
negative fiber angles, fibers are aligned towards the leading edge, hence leading edge
side of the wing is stiffer than the trailing edge side. Therefore, for TWBs with negative
fiber angles other than —90°, flutter instability occurs at higher airspeeds compared to
the TWBs with positive fiber angles. As a matter of fact, for positive fiber angles,
critical Mach numbers are less than 0.3, consequently incompressible unsteady
aerodynamics model is sufficient to study the aeroelastic instability characteristics. In
the present study, results of composite wings with positive fiber angles are not
presented since the main scope of the article is to investigate the aeroelastic stability

of wings in the subsonic compressible flow regime.

Table 4-13 Critical Mach number and frequencies of composite CAS configuration

wings obtained by compressible and incompressible indicial unsteady aerodynamics.

Fiber Critical Mach number Critical Frequency (rad/sec)
angle ; -

& compressible  incompressible ]?01/f§ compressible  incompressible ]z)l/fi
-45 0.73 0.87 16.3 34.56 38.5 10.2
-60 0.67 0.8 16.5 41.82 46.5 10.1
=75 0.67 0.75 10.2 66.31 69.3 431
-90 0.57 0.65 11.8 0 0 0
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Figure 4-36 and Figure 4-37 show the effect of sweep angle on the critical Mach
number and critical aeroelastic instability frequency for four different fiber angles of
the CAS configuration TWB and for the range of the sweep angle —45° < A <45°. In
Figure 4-36 and Figure 4-37, positive sweep angle implies backward-swept wing and
negative sweep angle implies forward-swept wing. Critical Mach number results are
presented in the range 0.3 < M < 0.85 since the unsteady aerodynamic model based on
compressible indicial functions is valid in this range. For the fiber angle of —90°, fibers
are aligned along the wing axis and bending-twisting coupling effect due to the
material anisotropy is non-existent. For this configuration, Figure 4-36 and Figure 4-37
show that for forward-swept wings with negative sweep angle, divergence instability
occurs and as the sweep angle is increased such that it becomes positive and the wing
becomes backward-swept, critical Mach number increases and aeroelastic instability
switches to flutter type. This is the typical effect of the wing sweep on the aeroelastic
stability characteristics of wings which have no material coupling. It is seen that for
fiber angles other than —90°, extreme forward-swept wings also have low critical Mach
numbers with divergence instability. However, for moderate forward sweep angles,
critical Mach number can be increased significantly with the use of fiber angles other
than —90° with the —45° fiber angle being the most effective in increasing the critical
Mach number. For the wing with zero sweep angle, the highest critical Mach number
occurs for the fiber angle of —45°. For moderate backward-swept wings, off-axis fiber

angles cause reduction of the critical Mach number.
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4.4.3.3 Nonlinear Aeroelastic Analysis of Composite Wings

For the CAS configuration composite wings which are structurally modeled as TWBs,
nonlinear aeroelastic analyses have been performed in time domain through the fourth
order Runge-Kutta direct integration of the governing nonlinear aeroelastic system of
equations given by Equation (4-147). In the numerical simulations performed, it is
assumed that the composite wing is initially at rest and the wing is given an initial
disturbance by assigning an initial value of 1.0e—06 to all modal coordinates. As it was
discussed before, with the very low initial conditions given to the modal coordinates,
it is aimed to start self-excited oscillations and depending on the intrinsic character of
the aeroelastic system, the response of the system may attenuate or increase. In the
following, time history plots and the associated phase plots, Poincare and Power
Spectrum Density (PSD) diagrams are given for the response of the wing tip (» = I).
Material and geometric properties of the composite wing used in the simulations are
given in Table 4-12. Initially, the nonlinear aeroelastic system of equations is verified
by comparing the time domain solution obtained with the linear aeroelastic solution
for a rectangular wing with no seep and for the fiber angle of —75° in the CAS
configuration. Referring to Table 4-13, it is seen that the predicted flutter Mach
number is 0.67 according to the linear structural analysis. Figure 4-38 gives the time
history plots of the flapwise wing tip deflection at the subcritical, critical and
supercritical Mach numbers. As it is shown in Figure 4-38a, in a nonlinear analysis for
Mach values less than 0.67, disturbance generated by the initial conditions imposed,
attenuate due to the aerodynamic damping. With the increase in the Mach values, an
exchange of energy between the wing structure and the aerodynamic flow commences
at the bifurcation speed which corresponds to the flutter Mach number obtained by the
linear aeroelastic analysis and LCO starts, as shown in Figure 4-38b, beyond the
critical Mach number, in the supercritical region, amplitude of LCO increases
substantially and as seen in Figure 4-38c, the magnitude of oscillations of the flapwise
deflection is much higher than the magnitude of the oscillations at the critical

condition.
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Bifurcation diagram of the unswept composite wing with the CAS configuration TWB
structural model is presented in Figure 4-39 for fiber angles of —75° and —45°.
Bifurcation points in Figure 4-39 refer to the Mach number above which LCOs of the
wing tip deflection and wing tip twist occur and below the bifurcation point
oscillations die out. For the CAS configuration TWB with fiber angles of —75° and
—45°, bifurcation points are at Mach numbers 0.67 and 0.73, respectively. Bifurcation
points identified by the nonlinear aeroelastic analysis coincide with the flutter Mach
numbers determined by the linear aeroelastic analysis given in Table 4-13. Figure 4-39
shows that for the —45° fiber angle case, not only the instability occurs at a higher Mach
number, but post-flutter LCO amplitudes of the flapwise and torsional deformation of
the wing tip are also lower than the —75° fiber angle case. This observation clearly
shows that post-flutter response of the composite wing with fiber angle of —45° is also
more well behaved compared to the —75° fiber angle case. It should be noted at Mach
numbers sufficiently higher than the critical Mach number, nonlinear aeroelastic
response becomes either quasi-periodic or chaotic, and for these responses, maximum
amplitude of flapwise wing tip deflection and maximum wing twist angle are plotted

in the bifurcation diagram shown in Figure 4-39.
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Figure 4-39 The effect of fiber angle on the bifurcation diagram of the composite

wing with zero sweep angle

For the unswept wing with the CAS configuration fiber angle of —75°, Figure 4-40,
Figure 4-41 and Figure 4-42 give the time histories of the flapwise wing tip
displacement and wing tip twist and their respective power spectral density functions
(PSDs) at post-flutter Mach numbers, M/Mcitca = 1.01, 1.05, 1.09. From Figure 4-40,
it is seen that for the low post-critical Mach number (M/Mcisicat = 1.01), aeroelastic
response is purely periodic. At the post-flutter Mach ratio of 1.05, Figure 4-41 shows
that oscillation amplitudes increase and response is quasi-periodic and responses are
composed of more than one dominant frequency. Finally, as seen in Figure 4-42, at the
post-flutter Mach ratio of 1.09, nonlinear aeroelastic response becomes chaotic and

PSD plots show that broadband range of dominant frequencies exist in the responses.
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For the composite wing with the CAS configuration fiber angle of —75°, Figure 4-43
gives the bifurcation diagram which shows the effect of the sweep angle on the
nonlinear aeroelastic response of the wing. Figure 4-43 compares the oscillation
amplitudes of the flapwise tip deflection and tip twist of the unswept (A = 0°) and
backward-swept wing (A = 30°). For the backward-swept wing, critical Mach number
determined by the nonlinear aeroelastic analysis is 0.692 and this result agrees with
the linear aeroelastic analysis results depicted in Figure 4-36. As seen in Figure 4-43,

for the —75° fiber angle configuration, with the introduction of the wing sweep, critical
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Mach number increases and amplitudes of oscillations reduce compared to the unswept

wing at the same post-critical Mach number.
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Figure 4-43 The effect of sweep angle on the bifurcation diagram of the composite

wing with fiber angle 6 =—75°

To aid the interpretation of the nonlinear aeroelastic response of the composite wing
with the —75° fiber angle configuration, phase plots, and Poincare maps at the plane

¢ = 0 are prepared for the unswept wing and backward-swept wings with the sweep

angles A = 15°, 30°, 45°. Figure 4-44, Figure 4-45 and Figure 4-46 present the phase
portraits for the flapwise bending motion of the wing tip for the Mach ratios of 1.01,
1.05 and 1.09, respectively. As Figure 4-44 shows, at the low post-critical Mach ratio
(M/Mciiticat = 1.01), nonlinear aeroelastic response of the wing is purely periodic with
narrow closed orbits in the phase plot for all sweep angles. For the post-critical Mach
ratio of 1.05, Figure 4-45 shows that nonlinear aeroelastic responses of wings with low
sweep angles show quasi-periodic behavior which appears as closed thicker circuits in
the phase plane. For the unswept wing, in the phase plane, there are two main thicker
loops and as the sweep angle is increased, response of the wing becomes periodic

again. Finally, for the higher post-critical Mach ratio of 1.09, phase plots given in
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Figure 4-46 shows that nonlinear aeroelastic responses of the unswept wing and the
wing with the sweep angle of 15° are chaotic which is evident from the numerous
intermittent circuits. However, as the sweep angle is increased, nonlinear aeroelastic
response of the wing tip becomes quasi-periodic again. Phase plots given in Figure
4-44, Figure 4-45 and Figure 4-46 all show that for the —75° fiber angle configuration,
by increasing the backward sweep angle, nonlinear response of the wing becomes
more well-behaved and the amplitude of oscillations of the flapwise bending motion

of the wing tip reduces.

@), ®)
04 e o ] & o T— "
- s - ety
5, o3l | ::_‘ N // \\\.
= o — / ™,
A=t S y 1
o 2 /
=] ’T‘O 01} o \\._
S o \ B \
i @
g o | RE- Nl |
: \ / - | !
ol % 11 \\ /
a| \ = ”
E3 \“a____% - B~ 0.2 \"\____ _/.//
b 2 0 2 ' P 3 ] o i 2 3 i
Flapwise displacement <0 Flapwise displacement 1
(c),
~ =t 5 = ~
- i . 01 2o .,
= _// N 3 / ™,
= \ 2 it ,
S uf / \ | & " / \
] / N\ | 8 st/ \
|4 I { i
gl | | © [
@ \ - \
. ! =0 %
Z \ / o N /
AN LETEAN &
B oS - 1 5 -

-2 -1 } 1 F4
Flapwise displacement

1 ¥ | 2
Flapwise displacement
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Figure 4-47, Figure 4-48 and Figure 4-49 show the Poincare plots which are

constructed for the flapwise bending degree of freedom of the wing tip (y,) at the

section ¢ =0 by plotting crossings in both directions. At the low post-critical Mach

ratio (M/M.riiical = 1.01), Figure 4-47 shows that for all sweep angles, there are single
dots which are indicative of the periodic response. For the post-critical Mach ratio of
1.05, Figure 4-48 shows that for the unswept wing, there are finite number of dots
indicating quasi-periodic response. As the sweep angle is increased, number of dots in
the Poincare maps decreases, and for the sweep angle of 45°, there is again single dot
which indicates purely periodic response which agrees with the last phase plot given
in Figure 4-44. For the post-critical Mach ratio of 1.09, Poincare maps, given by the

first two plots in Figure 4-49, for the unswept wing and the wing with the sweep angle
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of 15° have numerous dots indicating chaotic response. It is seen that for the thicker

orbits in the phase plane, the number of dots emerging in the Poincare plots is also

high.
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Figure 4-47 Poincare plots for different sweep angles at the plane of ¢p = 0°,

M/Mritical = 1.01 and 6 =—=75°, (a) A =

0°(b) A=15"(c) A =30 (d) A =45°

213



~
N

~
(e)
~—

=
~
o
~

5, 04 o . =
= =
8 ™ oo
2 8
- D o2
g =
-: % ]
B. i =
Q r; H2+
.-E -4 % 02
e -~ =
Ty -
B
-
-»
. ;
i o ) 2 ; A . = _
Flapwise displacement a0 ¢ e ! T N ! 33
Flapwise displacement
] o
. )
s e n4t
‘4: 04} ?:
3] =]
S 02 % 0
]
= =
5] [ o
B oz g
=R 0,02
= 54 =
A . =
L]
AL
It .5 1 15 3 25 3 . i 1 i 0
Flapwise displacement <1 0 05 1 15

Flapwise displacement

Figure 4-48 Poincare plots for different sweep angles at the plane of ¢ = 0°,
M/Mciiticat = 1.05 and 0 = =75°, (a) A=0"(b) A=15"(c) A=30"(d) A=45".

214



~
[}
=
~
o
N

= ey
= z >, "
g il - s
S ot ] TJ L
1] 1] 5 o>
w o -
- oo rl' - © L
. 3
- . L' 04 |
\'.* oy # s M
3 : . : ' . . 08 . .
a 2 a & 8 2 A 0 1 2 ] 4
Flapwise displacement 10 Flapwise displacement
©) (d)
s
- * ®
)
E . : -
2 . .; na
T S
= T
@ -
2 o
= o
o 2 1
= &
B~ — 4
. = L]
. - a6 L -
1 v 1 2 3 + 7 ' 05 o 05 1 15 2 25 3 15 4
Flapwise displacement <10 Flapwise displacement w0

Figure 4-49 Poincare plots for different sweep angles at the plane of ¢ = 0,
M/Mcritican = 1.09 and 0 = —=75°, (a) A=0"(b) A=15"(c) A=30"(d) A=45".

A comprehensive study of the geometrically nonlinear aeroelastic behavior of swept
composite wings structurally modeled as thin walled beams (TWB) is performed. The
structural equations of motion are obtained for the CAS configuration TWB by
including up to third order nonlinear terms. The unsteady compressible aerodynamics
model is constructed in the time domain by using a novel indicial approximation,
which allows the calculation of compressible indicial functions at any Mach number
up to 0.85, by incorporating twelve acrodynamic lag states. To construct the nonlinear
coupled-field system of equations, twelve auxiliary equations governing the
aerodynamic lag states are included in the formulation. The nonlinear aeroelastic
system of equations of the composite wing is solved by means of a Ritz based solution
methodology utilizing the mode shapes of the geometrically linear TWB model to

approximate the spatial variation of the degrees of freedom of the TWB. Time response
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of the nonlinear aeroelastic system is obtained via the Runge-Kutta direct integration

algorithm. The effects of lamination angle and sweep angle of the CAS configuration

TWB on the post-critical response of the composite wing are studied in depth by

providing bifurcation diagrams, phase portraits, Poincare maps and one side Power

Spectral Density (PSD) plots.

For composite wings structurally modeled as TWBs, the following items stand out as

major conclusions of the study on the linear and nonlinear aeroelastic response under

compressible unsteady aerodynamics.

Results show that critical speeds determined by the linear aeroelastic analysis
of the composite wings via the frequency domain solution agree very well with
the bifurcation speeds obtained by the time domain solutions of the nonlinear
aeroelastic system of equations of the composite wing structurally modeled as
TWB.

Compressibility accounts for reduction in aeroelastic instability speeds and
instability speeds obtained by incompressible unsteady aerodynamics are not
conservative.

For the composite wing with the CAS configuration TWB structural model,
fiber angle is seen to be a very influential parameter on the instability speed of
the composite wing. For negative fiber angles, the form of instability is of
flutter type because fibers are oriented towards the leading edge and divergence
instability is deferred and flutter instability occurs at higher airspeeds where
the compressibility effect is not negligible compared to the TWBs with positive
fiber angles.

Furthermore, it is shown that combination of the fiber angle of the CAS
configuration and the sweep angle of the wing has significant effect on the
critical speeds as well as the post-critical nonlinear aeroelastic response of the
composite wing. For the low off-axis fiber angle of —75°, it seen that aeroelastic
response of forward swept wings can be improved significantly. Moreover, it

is also shown in the article that as the backward sweep angle of wing is
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increased, post-critical aeroelastic response of the wing becomes more well
behaved compared to wings with low backward sweep angles.

It is evident that compressibility accounts for reduction in aeroelastic
instability speeds especially at higher Mach numbers. Actually, instability
speeds obtained by incompressible unsteady aerodynamics are not

conservative.
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CHAPTER 5

FLUTTER CHARACTERISTICS OF COMPOSITE WIND TURBINE
BLADES WITH BENDING TWISTING COUPLING

Bending-twisting coupling is used in composite wind turbine blades to alleviate loads
in the high power output wind turbine systems with long blades. Increased bending
and torsional flexibility of long wind turbine blades may cause flutter instability at
lower wind speeds. For long blades, at the flutter condition, relative velocities at blade
sections away from the hub centre are usually in the subsonic compressible range. In
this chapter, the effect of the compressibility on the flutter characteristics of bend-twist
coupled (BTC) composite blades has been investigated. Flutter analyses have been
performed for the baseline blade and the BTC blades designed for the SMW wind
turbine of NREL. Beam model of the blade has been developed by making analogy
with the structural model of the prewisted rotating TWB and utilizing the variational
asymptotic beam section (VABS) method for the calculation of sectional properties of
the wind turbine blades. To investigate the effect of compressibility on the flutter
characteristics of the blades, aeroelastic analyses have been performed both in
frequency and time domain utilizing unsteady aerodynamics via incompressible and
compressible indicial functions and comparisons are made with the results of a

multibody wind turbine simulation program.

In this chapter, for the purpose of studying the effect of compressibility on the flutter
characteristics, classical flutter analyses of composite wind turbine blades have been
performed both in frequency and time domain utilizing unsteady aerodynamics via

incompressible and compressible indicial functions. It is to be noted that, as explained
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in detail in Chapter 3, in the literature exponential representations of compressible
indicial functions are available only for certain Mach numbers. For the sections of the
blade, which are in the compressible flow regime, to perform continuous calculation
of the compressible indicial functions in the course of frequency domain solution of
aeroelastic instability, approximation methodology which is presented for the
calculation of compressible indicial functions at any Mach number in Chapter 3 has
also been used in this chapter. Structural model of wind turbine blades is based on
beam models which have been developed by making analogy with the rotating TWB
and utilizing the VABS method for the calculation of sectional properties of the wind
turbine blades. For the inboard blade sections, which are in the incompressible flow
regime, structural blade model is integrated with the incompressible unsteady
aerodynamics model utilizing Wagner’s function, and for the outboard blade sections,
which are in the compressible flow regime, structural blade model is integrated with
the compressible unsteady aerodynamics model based on compressible indicial
functions. Aeroelastic system of equations are solved by the extended Galerkin method
both for blades with no pretwist and with the prescribed pretwist of the NREL blade.
The proposed approach allows for frequency domain solution of aeroelastic instability
of wind turbine blades whose sections are both in incompressible and compressible

flow regime.

5.1 Wind Turbine Blade Model

NREL’s 5 MW wind turbine blade is inversely designed with 17 sections along the
spanwise direction [127]. Inverse design process of the blade is described in the

flowchart given in Figure 5-1.
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Figure 5-1 Inverse design loop of a wind turbine blade with known cross-sectional

beam properties

The geometric properties of the inversely designed blade are taken from NREL’s
report [128]. However, the transition region near the blade root is undefined in the
NREL’s report. Therefore, the transition region of the blade is generated so that a
smooth transition is achieved through the axis of the blade. The 3D reference blade

design is shown in Figure 5-2.

i 2z
Spars  Blade section Flange region between spars I

Leading edgi /
rl | m Il ! 11 ”( T

l —TH i —i
| |- | 1 e 1 o 1

Trailing edge

Figure 5-2 Three dimensional inversely designed reference blade [1]

The chord lengths of the sections and the name of the airfoils are presented in Table
5-1. Front and rear spars are placed such that the thickest section of the airfoils is
bounded by the shear webs. The blade pitch axis passes through the center of the
circular cross-section of the root and the middle of the spars, and the sections of the
blades are arranged accordingly to pitch axis. The inversely designed blade is fully
composed of GFRP material. The skins between the leading edge and front spar, and

rear spar and trailing edge portions as well as two spars are made of +45° biaxial
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lamina. Furthermore, circular root blade section is composed of 0° and 90° UD GFRP
plies placed with respect to the blade axis. Flange regions between the two shear webs
on the pressure and suction side are shaded in dark brown in Figure 5-3 and are

composed of 0° UD GFRP plies.

Table 5-1 Geometrical properties of NREL’s 5 MW turbine blade

Section Starting  Chord Length of

Point (m) Section (m) Airfoil Name
0 3.542 Circular
3.644 3.711 Transition
5.467 4.050 Transition
8.200 4.557 DU40_A17
12.300 4.652 DU35 Al17
16.400 4.458 DU35 Al17
20.500 4.249 DU30_A17
24.600 4.007 DU25 Al17
28.700 3.748 DU25 Al17
32.800 3.502 DU21_A19
36.900 3.256 DU21_A20
41.000 3.010 NACA643-618
45.100 2.764 NACA643-618
49.200 2.518 NACA643-618
53.300 2.313 NACA643-618
56.033 2.086 NACA643-618
58.767 1.419 NACA643-618
61.500 0.500 NACA643-618

Figure 5-3 Flange region between the spars on pressure and suction sides [1]
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For the design process, sectional edgewise, flapwise and torsional stiffness properties
of inversely designed blade are closely matched to that of NREL’s 5 MW turbine blade
by modifying the number of plies in each section by utilizing VABS through which
the sectional properties of the beam-blade are calculated [129]. Utmost importance is
given in the inverse design phase of the blade since the turbine blade ought to have
comparable properties with the NREL’s blade in order to represent the loads on the

turbine and power production correctly.

Blade is divided into 17 sections, for each section of blade, appropriate laminate
definitions are made for the upper and lower surfaces of the blade box blade between
the already designed spar caps. The finite element models of the cross section profile
are set up in PreVABS commercial code [130]. VABS code is used to process of the
output of PreVABS model. The VABS code is capable of calculating the airfoil shape
cross sectional beam properties of the blade which are highly comparable with the
beam section properties of the known NREL’s 5 MW blade structure. The schematic
description of the sections of the blade with distinct airfoil profiles is shown in Figure

5-4.
In Figure 5-4, (z,y,2) coordinate system is the rotating structural coordinate system

established at the blade root and the conventional Theodorsen’s aerodynamic

coordinate system (z,,z,,) for a blade section is also shown together with the

ae’ " ze
structural coordinate system (z,9, 2) . In a blade section, u,,v,,w, are the translations

of the shear center of the TWB wind turbine blade model in the (z,y,2) directions,

respectively and 0, (2,1), Qy(Z, t),¢(z,t) are the rotations about the (z,7,2) axes.
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Figure 5-4 schematic description of the blade sections with distinct airfoil profiles

Following design of the baseline blade, the number of composite layers in certain
sections of the blade have been modified to have gradual thickness drops along the
span of the blade. Figure 5-5 and Figure 5-6 compare the sectional flatwise bending
stiffness and torsional stiffness of the inversely designed baseline blade and the NREL
five-megawatt turbine blade. It is seen that the baseline turbine blade represents the
sectional flatwise and torsional stiffness of the SMW wind turbine blade of NREL
reasonably well. It should be noted that the baseline blade design is not a detailed
design and not a production blade. With the inverse design method, it is aimed to define
a baseline blade that has a similar mass and stiffness distribution along the blade span

as the blade of the NREL five-megawatt wind turbine.
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Figure 5-6 Sectional torsional bending stiffness of the reference and NREL’s
SMW wind turbine blade

Blades with bending-twisting coupling are created by modifying the spar cap plies at
the outboard section of the blade. Note that the reference blade is an uncoupled blade
that consists of on-axis GFRP plies in the flange region between the front and the rear

webs. GFRP material are used in the spar cap plies in the design process of the blades.

225



The baseline blade, which is the inversely designed wind turbine blade having
sectional stiffness properties matched to that of NREL’s 5 MW wind turbine blade,
has full-GFRP material with 0° fiber angle configuration in the spar caps. Based on the
outcome of the study by Sener [1] in the bend-twist coupled wind turbine blades off-
axis fiber angle range is decided to be 10° and 20°. Bend-twist coupling effect is
exploited by utilizing GFRP material in spar cap plies oriented at 10° and 20° with
respect to the blade axis. For all blade configurations, inboard 31.5 meter portion
comprise of 0° GFRP plies. The outboard 30 meter portion of the blade is where the
modifications take place by retaining GFRP plies with 10° and 20° fiber angles in the
spar caps as depicted in Figure 5-7.

Circular root:
(0"and 90'plies Main flange area between the shear webs Main flange area between the shear webs
g9 with on-axis UD plies : ~27.86 m with off-axis UD plies : ~30 m from the tip
A

v
4

y ¥ i I

V
)
Leading and trailing edge flanges with

' !
* ols s .
Skins and shear webs: £45 biaxial layers i f
on-axis UD plies along the whole span

Figure 5-7 Spar cap region with fiber angles of the spar cap plies oriented with
respect to the blade axis

In the present study, full GFRP bend-twist coupled blades are designed by modifying
the baseline blade. Off-axis ply angle in the BTC sections of the BTC blades is taken
as 10° and 20° and off-axis pressure and suction side spar cap plies are placed in the
outboard 30 m of the blade. BTC blades are designed by rotating the unidirectional
plies in the pressure and the suction side spar caps of the outboard 30 m of the baseline
blade towards the leading edge by the fiber angle 8. Table 5-2 describes the baseline
and the BTC blade designs made. Since the same number of plies in the outboard 30
m of the BTC blades (BTC 10 and BTC 20) is used as in the baseline blade, BTC
blades have lower flatwise bending stiffness compared to the baseline blade in the

bend-twist sections.
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Table 5-2 Blade configurations studied

Blades Description

Baseline GFRP blade with pressure/suction side GFRP spar cap plies
along the blade axis (0 deg.) in the bend-twist sections of the blade.

BTC 10 | 0deg. plies in the bend-twist sections of GFRP_1 blade are made 10°.
BTC 20 | 0deg. plies in the bend-twist sections of GFRP_1 blade are made 20°.

baseline

5.2 Governing Aeroelastic Equations of the Rotating Beam-Blade Model

In this section aeroelastic equations of the beam-blade are derived. In this respect, to
generate the parametric expressions of the stiffness, mass and inertia terms associated
with the sections of the blade, governing equations are derived assuming that the blade
is structurally composed of a single cell box beam. Once the governing equations are
obtained in parametric form, stiffness, mass and inertia terms which appear in the
governing equations are replaced by the stiffness, mass and inertia properties of the
blade sections determined by VABS for the real blade structure. In this respect, single
cell box beam serves as a tool to come up with the constitutive equation relating the
general beam stress-resultants and the generalized strain counterparts and also the
mass and the inertia terms. The resulting beam-blade model is coupled with both
incompressible and compressible unsteady aerodynamic models based on the
incompressible and compressible indicial functions to come up with the aeroelastic

system of equations.

5.2.1 Basic Assumptions and Kinematic Relations Employed in the TWB
Structural Model

Figure 5-8 shows the wind turbine blade cross section in undeformed and deformed
planes and the structural rotating coordinate system. Rotating coordinate system

(z,y,2) is placed at the root of the TWB blade and the local coordinate system (n,s, z)
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is defined at the mid plane of the cross section of the TWB such that s is the axis
tangent to the middle surface and » is the axis perpendicular to the s axis. The
displacements « and » of any point on the beam cross section in the = and y directions
can be defined in terms of the displacements of shear center P and the rotation ¢(z,t)
of the cross section about the shear center P, as shown in Figure 5-8. In the following,
thin walled beam kinematics is based on the geometrically linear theory and cross-

sectional warping is neglected.

y !
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o
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P
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P 7 >
—_— » > Ll

Figure 5-8 Blade cross-section before and after deformation

For the geometrically linear thin walled beam kinematics, neglecting the cross-

sectional warping, the 3-D displacements (u(z,y,zt),v(z,y,2,t),w(z,y,2t)) are described
in terms of the displacements u (z,t),v,(2,t),w,(2,¢) of the shear center and the twist

angle ¢(z,t) as [92],

u=u —n—a7
s
v=y +|z+n dy g (5-1)
s
w:w+x+n@0+y—nﬁ9
P ds| "’ ds| *
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where, u,,v,,w, are the translations of the shear center of the thin walled wind turbine
blade in the z,y,> directions, respectively and 0, (z,t),0,(z,1),6(z 1) are the rotations

about the z,y,- axes. It should be noted that displacements given by Equation (5-1)
are explicitly valid for a single cell box beam. In the following, governing equations
are derived assuming that the blade is structurally composed of a single cell box beam.
The approximation of the linear strain tensor is adopted to derive the strain-

displacement relations. The nonzero components of the strain are defined by,

ow
E =— (5-2)
Rz 82
dx dy /
=~ — 4~ 219 5-3
Yo = Ve gy TV, T2 (5-3)
dy dx
=y 2Ly = (5-4)
’}/HZ rylZ ds ’yyz ds

where ()’ corresponds to differentiation with respect to the » coordinate.

By substituting displacement components in Equation (5-1) into the axial strain
expression given by Equation (5-2), the nonzero axial strain can be rewritten as given

in Equation (5-5),

e =c¢€' + ns; (5-5)

zZz zZZ

where the strain components ° ! all include linear terms and their explicit

220 "2z

expressions are given as,

el = 19;56 + 0"y + wl’) (5-6)

51 :@01 _@9/

5-7
= o ds? ds * S
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In order to determine the expressions for the shear strains 7,, and 7,,, local shear

strains in the yz plane 7,, and zz plane 7;, given by Equations (5-8) and (5-9) are

substituted into Equations (5-3) and (5-4).

V. = 0, + v (5-8)
/Y:L'z = Hy + UO (5'9)

Following the substitution, the transverse shear strains ", and 7,,, can be expressed

as,

V. =L+ oyl (5-10)

v =+ (5-11)

where the explicit expressions of the shear strain components ~? 7! ,~?  are given

as,

W =g g W (5-12)
* Y ds “ds

vl = 2¢’ (5-13)

o _pgB_,dz (5-14)
" Yds " ds
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5.2.2 Constitutive relations

The relationship between the stresses and strains in a layer in contracted form can be

expressed in terms of the reduced stiffness coefficients @, of the composite blade by

Equation (5-15).

I T T O (5-15)
O-zz Q21 Q?? 0 0 QZG EZZ

9.1 =0 0 Q—M Q—LB 01 17%.

Usn 0 O @54 6755 O ’st

Usz E Qﬁl QG? 0 0 QGG E fysz k

The explicit expressions of the reduced stiffness coefficients @, are given in

APPENDIX A.

5.2.3 Energy Expressions

The governing equation of motion can be analytically derived using the Hamilton's

principle in the absence surface shear forces, and thermal loadings as,

t2
f(éT —§(V +V, )+ W)dt =0
tl

at t=t,t,, (5-16)
Suy = vy = bw, = 60, = 60, = 6¢ = 0

Y

where, 7,v,v,, and w are the kinetic energy, strain energy due to large strains, strain

energy due to the centrifugal force and the work done by external loads, respectively.

In the thin walled beam theory employed, it is assumed that the cross section of the

TWB does not distort and geometrical dimensions stay invariant in its plane, implying

thate,, = ¢, =7, = 0. In addition, shell force and moment resultants due to the

tangential normal stress o and the in-plane shear stress 7, are assumed to be small
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and omitted [92]. Under these assumptions, the strain energy in terms of the nonzero

3D stress and strain components can be expressed as,

V = %jff[azzazz +o,.¢, +0,.¢,. ]dndsdz =

0 s n

Iy

0 s n

(5-17)

o, (agz + naiz ) + o, (’ygz + n’yiz ) + am'ygz ndsdz

where the integral is taken over the whole cross-section of the blade and it is assumed
that the blade has a length of L. Utilizing the strain displacement relations defined by
Equations (5-6), (5-7) and Equations (5-12)-(5-14) and taking the integral along the
wall thickness and along the contour of the cross-section of the thin walled blade, the
strain energy due to the deformation of the blade caused by the external forces

excluding the centrifugal force can be expressed as,

L
V=L [T+ 00, )+ @0, + )+ Mg M0+ Mg 1D
0

where, 7, is the axial force, @,,@, correspond to the chord-wise and flap-wise shear
forces, m,, M, are associated with the flap-wise bending moment (moment about z
direction) and chord-wise bending moment (moment about y direction), M,

corresponds to the Saint —Venant twist moment.

As described in Chapter 2, one dimensional beam stress and moment resultants and
their generalized strain counterparts given in Equation (5-18) are related to each other

through Equation (5-19).

{F}=14]{p} (5-19)

where the F,A, D are the one dimensional beam stresses and moment results For the
geometrically linear TWB and neglecting warping, the resulting stiffness matrix A

becomes 6 X 6 Explicitly, one dimensional beam stress and moment resultants and
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their generalized strain counterparts given in Equation (5-18) are related to each other

through Equation (5-19). Explicitly, Equation (5-19) can be expressed as,

/
fZ—'z all CL12 a13 a14 al!’) alﬁ wO
QI a22 a23 a24 a25 a26 91/
Q, _ Qgz Gy Gy Gy 01,, (5-20)
M , a, a. a, Hy
M a. a.||0
z 55 56 z
/
M, sym a| | @

For a single cell thin walled beam, stiffness coefficients a;; are given by the contour

integral of the stiffness coefficients A, B, D, as shown in Chapter 2.3. For a wind

turbine blade with airfoil shape, and multi-cell configuration, calculation of the
stiffness coefficients through integration over the cross-section of the blade is a tedious
work. The 6 X 6 stiffness matrix of the cross-section (A) of the thin walled blade can
also be calculated using a separate, two-dimensional linear FEM analysis of an
arbitrarily shaped composite cross section which is decoupled from the one-
dimensional global analysis for the beam. In this study, an improved finite element
cross-sectional analysis code (VABS) is used to extract the beam sectional properties
of the blade sections using the Timoshenko model for the stiffness matrix, as shown
in Equation (5-20). In classical flutter, the critical flutter mode is the flapwise bending-
torsion coupling. For this reason, in the present study a further simplification is made

in the degrees of freedom included in the governing equations and only the flapwise

bending displacement (v, ), flapwise bending rotation (6, ) and torsional rotation (¢)

are retained in the governing equations. Moreover, to study the effect of bending-

twisting coupling on the flutter characteristics of wind turbine blades, only the

bending-twisting coupling coefficient a is retained in the constitutive equation. With

these simplifications, Equation (5-20) reduces to Equation (5-21).
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/
Q1 |ay, 0 0}, J: Y (5-21)
M = Qg Ay ez
M, sym » ¢

For the baseline and the bend-twist coupled blade configurations given in Table 5-2,
Figure 5-9, Figure 5-10, Figure 5-11 and Figure 5-12 show the sectional flapwise

bending (a55), flapwise transverse shear (a33), torsional stiffness (066) and flapwise

bending-torsion coupling stiffness (a;) of the inversely designed baseline blade and

bend-twist coupled blades BTC 10 and BTC 20 described in Table 5-2. Sectional

stiffnesses are presented only for the bend-twist coupled sections of the blade in the

outboard 30 m of the blade.
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Figure 5-9 Sectional flapwise bending stiffness (ass ) of the blades
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Utilizing the simplified constitutive equation given by Equation (5-21), Equation
(5-18) can be expressed as in Equation (5-22).

L

1
V=3 [ 0530, + 00 + a5s07% + 205 (016') + age0” iz

(5-22)

In the process of the derivation of the equations of motion of the blade, one needs to
express the variation of the kinetic energy. Equation (5-23) gives the variation of the

kinetic energy of the blade,

T = % f f f pR?  dndsdz (5-23)

§T = f f pRSE  dndsdz = f f pRSR  dndsdz
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where Q is the average mass density of the composite laminate of the walls of the blade

and the position vector /2 of an arbitrary point in the deformed rotating blade with

respect to the center of the hub is given by,

R=(z+u)i+(y+v)j+(z+w+R)k (5-24)

where the displacements components w,v,w are given by Equation and R is the

distance from the hub center to the blade root. For a blade rotating at an angular

velocity 2 about the y axis shown in Figure 5-4, the acceleration of an arbitrary point

(R) in the deformed rotating TWB can be expressed as,

R=ai+aj+ak
a,i a,j+ a, (525)

where,

a, = S (5-26)

iH—2&2}(@—(354—14)92

Coriolis

Centrifugal

a, =i — 200 — (z +w+ R )’

Coriolis

Centrifugal

In Equation (5-26), the effects of the Coriolis and centrifugal terms induced by angular
velocity are clearly identified. The variation of the kinetic energy can then be

expressed as,

6T = — [ b v, +b, (0. = 9%0,) 60, + (b, =b,)(6 + 0)sppz 27
where, the distribution of non-vanishing inertia terms, mass per unit length (b,) and

mass moment of inertia about the z,y axes (b,,b;) along the blade span are defined

in Chapter 2, and in log scale variation of the mass and inertia terms are presented in

Figure 5-13.
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Figure 5-13 variation of the mass per unit span (b;) and mass moment of inertia

(b4, bs) along the blade span

Rotary blades are subjected to centrifugal forces and in the present study the effect of
centrifugal forces is also taken into account. The centrifugal force acting on the

rotating beam at a spanwise location z can be expressed as,

F = fpff(RO +z)dz = ,OQZR<Z) (5-28)

where, , is the density of the TWB and R(z) is defined as,

(5-29)

The contribution of the centrifugal force to the strain energy in the TWB can be

expressed as,

(u’)2 + (v’ )2 ]dndsdz (5-30)

ch:%jff}z

0 s n
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where, w,» are the 3-D displacements in the edgewise and flapwise directions,
respectively and £ is the centrifugal force. By substituting the displacements defined

by Equation (5-1) and the centrifugal force defined by Equation (5-28) into Equation
(5-30), the variation of the strain energy due to centrifugal force is obtained in explicit

form as in Equation (5-31).

oV

——f b (R(2)v) + R'(2)] ) 6v, + Ly

(b, +b,)9* (R(2)¢" + R'(2)¢') 8¢

[blsz? (R(2)v))6v, + (b, +b,)9 (R(2)¢") 69 ] C=3b

5.2.4 Unsteady aerodynamics models

The last portion of the Hamiltonian in Equation (5-16) is the variation of work done
by the external loadings. The only loading considered in this study is the one due to

the unsteady aerodynamics. Hence, one can write §w as,

W = ](Lae(z, 1)6v,(2) + M, (2, )06(2)) dz (5-32)

0

Where £, and M, are the unsteady aerodynamic lift and pitching moment.

For a large wind turbine blade, the aerodynamics for a single blade is similar to that of
a fixed wing but with a free stream velocity that varies linearly from the root to the tip.
It is also assumed that the shed wake of the preceding blade dies out sufficiently fast
so that the oncoming blade essentially encounters still air. In the following, both the
incompressible and compressible unsteady aerodynamics models based on indicial
functions are introduced by referencing Chapter 3. In the present study, the static
deformation of the blade and the mean steady aerodynamic loads are not considered,
and the flutter occurrence is investigated with respect to the undeformed blade. One
common assumption in both models is the attached flow assumption since the

aerodynamic models are based on small disturbance theory. Thus, intrinsic flutter
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characteristics of the wind turbine blade has been investigated for small deformation
of the blade about a static deformation state utilizing linear unsteady aerodynamics.
However, the current model can be improved by including stall aerodynamics using

models such as ONERA stall aerodynamics as a future study.

5.2.4.1 Incompressible unsteady aerodynamics based on Wagner’s function

By referencing Chapter 3, the general form of the unsteady incompressible
aerodynamic lift L and pitching moment M expressed in terms of Wagner’s

function are given by Equations (5-33) and (5-34).

L (z,t) = —mpb*i, 5, (2,t) —

U ol dw (2,7) U
Cchprrb w0.75c(z,0)¢w(7’”t)—l—j0‘ %(ﬁw[f(t—ﬂ] dr (5-33)
_ LU A 1 ).
M (2,t) = —mpb ?Tqb—Uraqb—i—cwo +0b g—i—a ol —
1 UT ! dw C(Z,T) UT 5_34
CL¢pUrb2[§—i—a}!wolm(z,O)qﬁw(?t)-|—j(;%qﬁw[?(t T)] dT] (5-34)

where p, 0U,,Cy,

Ho

a are the air density, semi-chord length of the blade, relative wind
speed, lift curve slope and the nondimensional offset between the shear center and the
mid-chord, respectively. ¢ is the incompressible indicial function, Wagner’s

function, and w;.(2,1), U7 (%t) are the downwash terms at the mid-chord and three-

quarter chord of the blade and the are given by Equations (3-9). A negative value of

the a parameter indicates that the shear center is forward of the mid chord. For a wind

turbine blade rotating at an angular velocity of €2 , the relative velocity U at blade

section z measured from the hub center is given by Equation (5-35).
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U = U2+ (Q2) (5-35)

As discussed in Chapter 3, the integrals appearing in Equations (5-33) and (5-34) are

handled by using the approximate representation of the Wagner’s function given by,

U 2 7/igt
b (ED = 1= ae (5-36)
i=1

where H(t) represents the step function and o =0.165, o, =0.335, 3 =0.335, 3 =

0.3. Substituting the approximation of the Wagner’s function into the integral

expressions in Equations (5-33) and (5-34), one can express the integrals in terms of

aerodynamic lag terms B;(z,t) as,

t

dwy 75, (2,7)
f 0.7d, by
-

%(t - T)]dv' = Woz50(%1) — ;%Bi (1) (5-37)

where, by making use of the Leibniz integral rule, it can be shown that the aerodynamic

lag terms B,(2,1) have to satisfy Equation (5-38).

. U
By + (8,258, =ty (50); =12 (5-38)

For 3-D blades with finite span, to reflect the 3-D effects, lift curve slope and the
position of the three-quarter chord position, where the downwash is calculated, are
modified according to Equation (5-39) only in the circulatory lift and moment

expressions in Equations (5-33) and (5-34).
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Crs = " (5-39)

where, AR is the aspect ratio.

Substituting the approximation of the integral in Equation (5-37) and the downwash at
the mid-chord and three-quarter chord into the unsteady lift and moment expressions,
Equations (5-33) and (5-34), the final form of the unsteady lift and moment are
obtained as given by Equation (5-40) and (4-41).

L9 (2,t) = —mp b [iy — U 6 + bad] -

(5-40)
. b Oy &
CpLopU,b| 0y — U.é + bag — 5( — 1) — > a;B(2,1)
@ i=1
inc 3 1 CLG) ; . . 1 9\ 7
M (z,t) = —mp b3 | = (—= = VU, ¢ — U,ad + aij, + b(= + a*)p (5-41)
2w 8

. . b Oy L2
Vo — U,,,(Zﬁ + bag — 5(7 - 1)¢ - ZaiBi(za t)

cunisfbed]
2 i=1

5.2.4.2 Compressible Unsteady Aerodynamics Based on Compressible Indicial

Functions

In the present study, to study the effect of compressibility on the flutter characteristics
of wind turbine blades, explicit expressions for the unsteady aecrodynamic loading in
the subsonic compressible flow regime in time domain are obtained using indicial
aerodynamics. For arbitrary small motions of the thin airfoil in the subsonic flow, with
respect to the baseline axis placed at the leading edge of the airfoil, downwash velocity
corresponding to pitching and plunging motions can be expressed as,

w,(z,2,t) = [z}o(z,t) - UTqb(z,t)] - xw (5-42)

w, (2,t) w, (2,t)
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where the downwash velocity is divided into two parts; w, = 9, — U,¢ indicates the

plunging motion and w, = ¢ is the pitching motion of the airfoil.

Compressible aerodynamic loads in the Theodorsen’s coordinate which is located at a

distance b(a + 1) behind the leading edge are defined in terms of the indicial functions

as;
¢ — U7‘ t dU)U(Z”T)f Ur
L, (1) = =C,,pU bl (.0)6,( b ’5)*[ dr <Z>c[ y(t=7)|dT |+ (5-43)
S - U t dw‘(z,q-)f U
2 , 5 ;
R T
- U dw (2,7)— (U
M (2t) = =20, pU ¥ |u, (200, (-0 + [ I;T >¢c[ St + (5-44)
0

) - U dw, (2,1 U
4CL¢pU,_b3 w@(z, 0)¢ch (7’ t)+ f Od(T ) » [b’ (t— 7')] dt,
0

where the set of aerodynamic indicial functions in the Theodorsen’s coordinate

(60> Brr > Geqr Bury,) @re related to the indicial functions defined with respect to the axis

located at the leading edge of the airfoil as,

o LT A I Pyl
¢ ’ b R ’ b

U U a 1 U

M.t YA B LR P Yty 5-45
é MUTt—qs MUrt a+1¢ MUrt
T ] ) 2 2] b
~ () U, ) (o 1), [, U U
Qsch 7Tt (bch MaTt + 5"’_5 (bcq a?t _QSCM M>Tt -
U

where, ¢, and ¢,, are the indicial lift and pitching moment functions due to the unit

step change of the plunging motion (w,) and ¢

cq

and ¢, are the indicial lift and

pitching moment functions due to the unit step change of the pitching motion (w,)

9]
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about the coordinate located at the leading edge of the airfoil. It should be noted that
to simplify the writing, Mach dependency of the indicial functions is not shown in the

lift and pitching moment expressions given by Equations (5-43) and (5-44).

Similar to the incompressible case, approximate representations of the Mach number
dependent compressible indicial functions, defined with respect to the leading edge of
the airfoil, may be utilized to handle the integrals appearing given in the unsteady lift

and moment expressions in Equations (5-43) and (5-44). Equation

(5-46) gives the approximate representations of the compressible indicial functions
which are used in the present study. It should be noted that in the literature, coefficients
of the exponential representations of the indicial functions are obtained numerically
for a limited number of Mach numbers (M = 0.5,0.6,0.7,0.8) . For the frequency
domain solution of the flutter in the compressible flow regime, compressible indicial
functions have to be calculated for any Mach number. For this purpose, as described
in detail in Chapter 3 a methodology is used to extract the coefficients of the
approximate representations of the compressible indicial functions for any Mach

number less than 0.8.

3 5%
¢C[M,—f ] ap.(M) = > o (M)e "0
1=1
U, > 5.0
¢CM M,Tt] = O[OCM (M) — z;aZCM(M)e b (5_46)
UT 3 fﬁf?'t
(b(:q M’Tt Xpeq (M) = ;a’icq (M)e
U, & AL
¢(:Mq [M’Tt] = aO(Mq(M) Za/ﬁ(Mq<M)e b
1=1

Based on method comprehensively explained in Chapter 2, once the Mach dependent

base coefficients (a (M),i = 1,2,3) of the lift and the moment compressible

ic,icM icq,icMq

indicial functions for the plunging and pitching motion with respect to the coordinate
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system established at the leading edge of the airfoil are determined for any Mach
number, base coefficients with respect to the axis located at b(a + 1) aft of the leading

edge can be determined utilizing the relations given by Equation (5-47),

_ a 1

i(»M(M) = icM( )+ 5"’_5 ,((M)

s an—a an-|2 11 (5-47)
SO =, 00|24 o, ()

_ a 1 a 1 ’

ich( ) ich( )+ 2+2](aicq( ) icM( )>_ 5_‘_5 zc(M)

Where i = 1,2,3. It should be noted that these relations are the same as those given by
Equations (5-45) for the indicial functions themselves owing to the fact that, the
approximate exponential representation of the four indicial functions are defined with

the same Mach-independent power coefficients (3,7 = 1,2,3).

The integrals in the lift and moment expressions in Equations (5-43) and (5-44) are re-
expressed by substituting the exponential representations of the indicial functions,

defined with respect to the axis located at b(a + 1) aft of the leading edge, in the

integrals as shown in Equation (5-48).

t s ( L B
D= [ d( ¥} [UT@ - T>]d7 -/ e {aoﬂ(m ~Sa,one )ldT
0

0
t t ‘
dw, (2,7) _ (U dw, (z,7) ) —3. =L (t-7)
G\ r _ [ — — i
Dy(2,t) = [ . b, T(f —7)|dT = [ = @, (M) = ;am](M)e dr
(5-48)
t ¢ \ :
dw (z,7) - |U, dw, (2,7)| _ 3 G, (=)
D (a.t) = f prantl [ba—r) dr = f | o M) = 2 (00
t ;
dw (z2,7) — (U dw (z,7) 5. —B,=(t—T)
D,(z1t) = f Q{]T Bogrt [l;(t —7)|dr = ‘j} et (M) = ZamM(M)e b dr
0 ) 0 =1

By defining the integrals involving the exponential terms in Equation (5-48) as the

aerodynamic lag terms B, (z, t) , assuming that the wing is initially at rest (

icicq,icMicMq
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w,(2,0) = wy(2,0) = 0) and making use of the Leibniz integral rule, Equation (5-48) is

transformed into Equation (5-49).

3
D2 (Z,t) = aocq wd) (Z7 t) - Zaichicq (Z’t> (5-49)
3
D, (z,t) = CTOWMU(ZJ) - Z Xepr Bienr (Z’t)
i=1

3
D, (z,t) = &O(ch‘)(z’t) - Z ienrg Bicnr, (z,t)
i—1

When the Leibniz integral rule is applied to the integrals involving the exponential

terms in Equation (5-49), it can be shown that the aerodynamic lag terms

B,y iegicrtientg ( %:t) are defined by Equation (5-50),

B, (zt) + (8, UbT)BM (2t) = W
B, (=) + (8, %)B“q(z’t) _ W
(5-50)
B,y (2t)+ (8, %)BuM (21) = dw“d(:’t)
By (2:t) + (B, %)BMM (2t) = d%d(:vt)

It should be noted that three aerodynamic lag terms are used for each indicial function
so a total number of twelve aerodynamic lag terms would exist in the description of

the 3D unsteady aerodynamic loads in the subsonic compressible flow. Finally,
unsteady compressible aerodynamic lift L¢ (z,t) and pitching moment ¢ (z,t) about

the Theodorsen’s coordinate in terms of indicial functions are expressed as,
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w

L (21) = —CLOpUrbl&OC(M)wU (z.t) =Y a,(M)B, (1) +
| i= (5-51)

0y (24) =3, )8, (21

QC’L(z),oUrb2 @,

3

- ZaicM (M)B,,, (z, tﬂ + (5-52)

i=1

o090, (1)~ 358, 008, )

M (z,t) = _QCL@’OUer a,,,, (M)w, <z,t

~——

4C . pU rbg

Lo

To include 3-D effects of the finite span wing, lift curve slope ¢, is obtained from

Diederich general formula as [100],

AR, "

CL@ =
%' (5-53)

ARN1— M \/1—1— WAR\/?]

Where M is the Mach number and € is the 2D lift curve slope.

5.2.5 Governing Equation of Motion of the Beam-Blade Model

The geometrically linear form of aeroelastic governing equations of motion have been
derived through the Hamilton’s principle, by including the expressions for the
variations of the strain energy due to deformation, strain energy due to centrifugal
force and the kinetic energy in Equation (5-16). As it is mentioned previously, to study

the classical flutter phenomenon in a simplified way, in the governing equations, and
only the flapwise bending displacement (v, ), flapwise bending rotation (¢, ) and the

torsional rotation (¢) are retained in the governing equations. Moreover, to study the

effect of bending-twisting coupling on the flutter characteristics of wind turbine
blades, only the bending-twisting coupling is retained in the constitutive equation

given by Equation (5-21).
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Application of the Hamilton’s principle yields Equations (5-54)-(5-56) as the
governing aeroelastic equations of motion for the beam-blade. In Equations (5-54)-

(5-56), if the compressibility effect is neglected, then unsteady aerodynamic lift and
moment expressions L, (2,t) and M e (2,t)are equal to their incompressible

counterparts given by Equations (5-40) and (5-41). On the other hand, if the

compressibility effect is included, then for the sections of the blade which are in the
incompressible flow regime, L, (2,t) and M e (2,t)are again equal to their
incompressible counterparts given by Equations (5-40) and (5-41), and for the sections
of the blade which are in the compressible flow regime, L, (z,t)and M ae (2,t)are

equal to their compressible counterparts given by Equations (5-51) and (5-52).

8uy + agg(vy + 01) = by (1§, — Q2 [ufR(z) + B2} ]) + L, (5,) = 0 (5-54)

60 . : —Q35 ('U[l) + 9_7;> + 01559;/ + a56¢” - b4 (97 - Q29T ) =0

x

(5-55)

8¢ ¢ asgh + aged” + (by + by )Q* (R(2)6" + R'(2)¢) —
(b, —b;)(6 + Q%) + M, (28) = 0 (5-56)

5.2.6 Solution methodology

5.2.6.1 Solution of the Aeroelastic System of Equations of the Beam-Blade
Neglecting Compressibility Effects

When the compressibility effects are neglected, unsteady lift and moment expressions
given by Equations (5-40) and (5-41) are used in the aeroelastic system of Equations
(5-54)-(5-56), and the Extended Galerkin's Method (EGM) is employed for the
solution of aeroelastic instability speed and frequency. For the incompressible

unsteady aerodynamics, structural degree of freedom vector, which is composed of the
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flapwise bending deflection (v, ), flapwise bending rotation (0, ) and the torsional

deformation (¢), is augmented with the aerodynamic variables which are the

aerodynamic lag states B, and B,. The variables of the aeroelastic system are denoted

by the symbol A as shown in Equation (5-57).

A €(v,,9,.6,B,,B,) (5-57)

For the incompressible aerodynamics, governing aeroelastic system of equations

comprise of Equations (5-54)-(5-56), and Equation (5-38) for the two aecrodynamic lag

states By, B, .

In order to employ the EGM, structural and aerodynamic variables are separated

spatially and temporally as,

A(st) = {¥, ()} {aa(0)} (5-58)

where,

{\IJA<Z)} = {\IJA;(Z) \IJA,2(Z)"'\IJA,N(Z)}T

T (5-59)
{QA(t)} = {%,1(75) qA,Q(t)"' qA,N(t)}

where, W, ; is the polynomial shape function of degree i which satisfies the essential

boundary conditions and N is the highest degree of the polynomial that is retained in
the shape function vector {\IIA(z)} . In the present study, to achieve convergence for

flutter solutions, polynomials up to 9" degree (N =9) are taken as the shape functions

({\IJA(z)} = 2';i=1..9). The state vector of the generalized time dependent

variables of the aeroelastic system is defined by Equation (5-60).
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{a)} = {{a,00} {qew(t)}T {q¢(t)}T {qu(t)}T {qu(t)}T (5-60)

sty

In the governing aeroelastic system of equations given by Equations (5-54)-(5-56) and
Equation (5-38), the structural variables (,0,,¢) and incompressible aerodynamic
variables (B, B,) are substituted by their spatially and temporally separated forms
given by Equation (5-58). Then, in the implementation of the EGM, Equation (5-54)
is multiplied by ¥ , Equation (5-55) is multiplied by \I/f),,, , Equation (5-56) is
multiplied by ¥ 6 for i=1 Equation (5-38) is multiplied by\I/Bl and for /=2 Equation
(5-38) is multiplied by \I/B2 and the resulting equations are integrated along the blade

span with respect to z. As a result of implementing EGM, the general aeroelastic

system of equations are obtained as,

R T R (78 B LT I SR

Ko+ K] {ad = {0}
where, M and Mé”c are the structural and the incompressible aerodynamic mass

matrices, Cg””is the incompressible aerodynamic damping matrix, and K, and K ('i”“'
are the structural and the incompressible aerodynamic stiffness matrices. Explicit
definitions of the matrices are given in Appendix G.

Equation (5-61) is expressed in state space form by augmenting the state vector of the
generalized time dependent variables { q(t) } by the time derivatives of the generalized

time dependent structural variables, as shown in Equation (5-62).

T (5-62)

(X0}, = {0} {a,0}" {60} {a,0)")}

With the definition of the augmented the state vector of the generalized time dependent

variables, Equation (5-61) is transformed into Equation (5-63).
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cre (M, + M)
I 0

{X}+I(Ks tK) o

{X} = {0} (5-63)

8N x8N 8N x8N

where I is the identity matrix of order 3Nx5N and O is the zero matrix of order 3Nx3N

Equation (5-63) can then be re-written in a more compact state space form as,

(i} = [a]{x) 60

where the coefficient matrix A is given by Equation (5-65).

inc ine \T71 inc
4] - cre (M, + M) l(K + K)o (5-65)
I 0 0 I
The solution to Equation (5-64) is assumed to be in the form of,
(30} = {5} 559

where {Xo}is an amplitude vector and A is the eigenvalue, both of which can be
complex quantities, in general. After inserting Equation (5-66) into Equation (5-64),
the eigenvalue problem is obtained as in Equation (5-67).

{AHX} = {X,} (5-67)

Solution of (5-67) yields the eigenvalues A and the corresponding eigenvectors

{X,} (r=12..8N). The real part of the eigenvalue, is the measure of the

damping of the rth mode and the imaginary part of the eigenvalue A is the rth
frequency of the damped oscillation of the beam-blade. To predict the onset of
aeroelasic instability, for varying relative wind speeds, eigenvalue solutions are
performed until the aerodynamic damping, which is the real part of the eigenvalue A,
, becomes zero. Relative wind speed corresponding to the zero aerodynamic damping
is the aeroelastic instability speed. At this speed, the imaginary part of the eigenvalue
gives the frequency associated with the aeroelastic instability. If the frequency comes

out as zero, then aeroelastic instability is divergence instability and if the frequency is
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non-zero, aeroelastic instability is flutter instability. With this approach, frequency
domain solution of the aeroelastic instability speed and frequency of the beam-blade
can be obtained very fast. It should be noted that for a rotating wind turbine blade,
relative wind velocity depends on both the inflow wind speed and the rotational speed
of the blade. Hence, one needs to perform aeroelastic instability analysis either at a
fixed wind speed and determine the flutter rotational speed, or determine the flutter

wind speed corresponding to a specified rotational speed of the rotor.

Moreover, time domain solution of Equation (5-64) gives the time response of the
acroelastic system for a prescribed initial condition. With the time domain solution

approach, aeroelastic instability speed and frequency can also be identified by

performing solutions at different relative wind speeds (Ur) until diverging oscillations

are obtained.

5.2.6.2 Solution of the Aeroelastic System of Equations of the Beam-Blade
Including Compressibility Effects

In the present study, the compressibility effects are included into the solution process
by switching from incompressible unsteady aerodynamics to compressible unsteady
aerodynamics for blade sections away from the blade root. Compressibility effects are
included starting from the blade section at which the relative velocity becomes higher
than Mach 0.3. Figure G1 in Appendix G2 gives the schematic of the wind turbine

blade whose sections are both in the incompressible and compressible flow regime.

In the compressible flow regime, the solution process for the aeroelastic instability
speed and frequency by the EGM is essentially the same as the process described for
the incompressible unsteady aerodynamics case. For the blade sections which are in
the compressible flow regime, structural degree of freedom vector, which is composed
of the flapwise bending deflection (v, ), flapwise bending rotation (0,) and the
torsional deformation (¢), is augmented with the twelve the aerodynamic lag states

defined for the compressible lift and pitching moment indicial functions corresponding
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to the plunging and pitching motions, respectively. Hence, for the compressible
unsteady aerodynamics case, variables of the aeroelastic system are given by Equation

(5-68).

v,,0.,6, By, By, By, B0, Byuys Byoos B

A 0 x 1e? 2¢7 3¢ Tleq? T 2¢q’ T 3eq? (5-68)
B2CM’ BSCM’ Bchq’ B2ch’ B3ch

Similar to the incompressible case, in the governing aeroelastic system of equations
given by Equations (5-54)-(5-56) and Equation (5-50), the structural variables ( v, 0,,¢

) and compressible aerodynamic variables (B, ., B, B, By, © = 1,2,3) are substituted

i’ ieq?
by their spatially and temporally separated forms given by Equation (5-58) where
{qA(t)}is now defined using the variables of the aeroelastic system involving

compressible aerodynamics given by Equation (5-68). Extended Galerkin Method is

applied in the same way as in the incompressible case by multiplying each equation
by the polynomial shape function W A (z) corresponding to the relevant structural and
aerodynamic variable and integrating over the span of the beam-blade with respect to
z. As in the incompressible case, to achieve convergence for flutter solutions,
polynomials up to 9" degree (N =9) are taken as the shape functions

({W5(2)} = 2" i = 1...9) . As described in Appendix G2, at relative wind speeds near

the onset of flutter, it is assumed that for a length of /, from the blade root, the blade is
in the incompressible flow regime, and the outboard portion of the blade is in the
compressible flow regime. In the inboard sections of the blade where the
incompressible aerodynamics is applicable, governing system of equations comprise

of 5 equations (Equations (5-54)-(5-56) and Equation (5-38), i=1, 2) with SN number
of generalized time dependent variables qA(t) in discretized form. Whereas, in the

outboard sections of the blade where the compressible aerodynamics is applicable, the
governing system of equations comprise of 15 equations (Equations (5-54)-(5-56) and

Equation (5-50), i=1,2,3) with 15N number of generalized time dependent variables
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q A(lf) in discretized form. To apply the EGM in a unified way, same size aerodynamic

mass, aerodynamic damping and aerodynamic stiffness matrices are needed in the
incompressible and the compressible regions. To achieve this, incompressible
aerodynamic mass, aecrodynamic damping and aerodynamic stiffness matrices are
augmented by adding zero elements to equate the sizes of the matrices with the
compressible counterparts. In the compressible flow regime, the generalized time

dependent variable vector is defined by Equation (5-69).

T

(00} =100} {00 (0} {mo)] o) - (w0
{0, ®)}

In the incompressible range, the same generalized time dependent variable vector is
kept, but zero elements are placed in the relevant positions of the aerodynamic mass,
damping and stiffness matrices, and the expressions for the incompressible unsteady
lift and pitching moment given by Equations (5-40) and (5-41) along with the auxiliary
equations defining aerodynamic lag states, Equation (5-38), are utilized when applying

the EGM. In this respect, {qBI" (t)} is replaced by {qB] (t)} and {qu, (t)}is replaced by
{qBZ (t)}. In the compressible range, unsteady compressible lift and pitching moment

given by Equations (5-51) and (5-52) along with the auxiliary equations defining
aerodynamic lag states, Equation (5-50) , are utilized when applying EGM. Finally,

with application of the EGM, unified aeroelastic system of equations is obtained as,

M, +mpt| o i pjoet) o {af+ (5-70)

15N x15N {q} - {0}

where Ml C'and K are the overall aerodynamic mass, damping and

a

[Ks + Ktotal

stiffness matrices obtained by merging the corresponding incompressible and

compressible aerodynamic mass, damping and stiffness matrices. Explicit expressions
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for the overall aerodynamic mass, damping and stiffness matrices for the blade whose
inboard sections are in the incompressible flow regime and outboard sections are in
the compressible flow regime are given in Appendix G2. Similar to the incompressible
case, Equation (5-70) is expressed in state space form by augmenting the state vector
of the generalized time dependent variables (Equation (5-69)) by the time derivatives

of the generalized time dependent structural variables, as shown in Equation (5-71).

(XO)or, = {La0) {o,0) {0} {a0)] &

With the definition of the augmented the state vector of the generalized time dependent
variables given by Equation (5-71), Equation (5-70) is transformed into Equation
(5-72).

total total
C(} (M"” +0Ma ) {X}ISle + (5-72)
18N 18N
K, +K"™) 0
l( 0 ) I {X}ISNXI = {0}
18N x18N

where I is the identity matrix of order 3NxI5N and O is the zero matrix of order

3Nx3N. Equation (5-72) can be re-written in more compact form as,

{x}=[a]{x} (5-73)

where the coefficient matrix A is given by Equation (5-74) and the solution for the
eigenvalues and the eigenvectors is performed similarly as described for the
incompressible case.

(5-74)

[A] _ C;oml (Ms + M;otalwl l(Ks " Ksml) 0

I 0 0 I
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5.3 Time Domain Flutter Analysis of Wind Turbine Blades by the Multibody

Simulation of the Wind Turbine

To compare the aeroelastic instability results obtained by the present methodology, for
the incompressible unsteady aerodynamics case, aeroelastic instability of the wind
turbine blade is also studied by performing time domain analysis of the multibody
model of the wind turbine system. For this purpose, time domain flutter analysis has
been performed by the wind turbine multibody simulation program PHATAS [131]
for validation purposes. Table 5-3 gives main wind turbine properties used in the
multibody simulation of the wind turbine system in PHATAS. For the baseline wind
turbine system, certain properties of NREL’s wind turbine are modified, but in essence

both turbine definitions are similar.

Table 5-3 Main properties of the reference the wind turbine system established in

PHATAS

. . . Baseline wind turbine
Wind turbine properties definition in PHATAS
Nominal power 5 MW
Number of blades 3
Number of blade elements used 17
Blade prebent at the tip 0m
Demanded rated generator torque 37880 Nm
Gearbox ratio 105
Blade length 61.5m
Rotor conicity 0°
Rotor tilt angle 0°
Hub height 100 m
Hub mass 50,000 kg
Hub inertia 100000 kgm?

To study the effectiveness of bending twisting coupling induced in composite blades
on the aeroelastic stability characteristics of wind turbine blades, a realistic reference

wind turbine model is needed to perform aeroelastic time marching multibody
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simulations. In the present study, the reference wind turbine and blade designs are

established utilizing some of the known properties of NREL’s 5 MW turbine [128].

Figure 5-14 Drive train model in PHATAS shows the components of the drive train of
the multibody model of the 5 MW turbine generated in PHATAS.
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Figure 5-14 Drive train model in PHATAS

In PHATAS, blade is modeled as a coupled non-linear beam. Geometric non-linearity
is taken into account during the calculation of the displacements when the curvature is
integrated twice along the deformed blade axis. In the beam formulation, warping is
neglected and the same form of the constitutive equation relating the flapwise shear
force, flapwise bending moment and the torsional moment to the respective
deformation measures given in Equation (5-21) is used in the simulation performed by
PHATAS. In the beam-blade model generated in PHATAS, blade is again defined by
the sectional beam properties calculated by VABS.

5.4 Free Vibration Analysis of the Blades

Before performing time domain flutter simulation by the wind turbine multibody
simulation tool PHATAS, free vibration analysis results of a single rotor blade

obtained by the present methodology are compared with the results obtained by the
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BLADEMODE [132] which is a companion code of PHATAS. The same beam-blade
model used in the wind turbine system set up in PHATAS is used in the
BLADEMODE. BLADEMODE considers small vibrations about an equilibrium state
and with the linearized equations of motion, frequency domain based analysis can be
performed making it possible to find the natural frequencies for increasing wind or
rotor speeds. In the present study, natural frequencies are compared for the stationary
blade under no load to ensure that the structural dynamic models of the blades used in

the present study and the beam-blade models used by PHATAS are similar.

In the current methodology, by excluding the aerodynamic mass, damping and

stiffness matrices from Equation (5-63) and assuming harmonic motion

({X }= {Xoe”"’”"‘}), one obtains the standard form of a generalized free vibration

eigenvalue problem and the eigenvalues w can be calculated.

For the baseline blade and bend-twist coupled blades defined in Table 5-2, Table 5-4
gives the comparison of the first six natural frequencies of the baseline blade and the
bend-twist coupled blades calculated by the present model and the BLADEMODE.
For the three blades and the six modes, the natural frequencies determined by the
present solution method and BLADEMODE agree with each other within 5% on the
average. More importantly, both solution methods predict the same trend for the
variation of the natural frequency with the off axis fiber angle. Table 5-4 shows that
lowest four modes are flapwise bending modes and with an increase in the fiber angle,

flapwise bending frequencies of the first four modes decrease.
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Table 5-4 Comparison of first six natural frequencies of the baseline blade and bend-

twist coupled blades calculated by the present model and the BLADEMODE

Mode i}’i‘;ﬁgg Base line (Hz) | BTC 10 (Hz) | BTC 20 (Hz)
| Present 0.8 (I F)) 0.78 (I'F) 0.7 (I'F)
FOCUS 0.76 (1% F) 0.73 (13 F) 0.66 (1% F)
) Present 211 (2" F) 1.96 (2" F) 1.77 (2"F)
FOCUS 1.99 (21 F) 1.86 (2" F) 1.67 (2" F)
; Present 431 (39F) 4.07 (39F) 3.68 (39 F)
FOCUS 4.07 (3 F) 3.86 (31 F) 3.46 (39 F)
A Present 749 (4% F) 6.85 (4" F) 6.22 (4% F)
FOCUS 7.05 (4% F) 6.54 (4" F) 5.95 (4% F)
5 Present 9.54 (I T) 9.76 (1 T) 9.21 (5" F)
FOCUS 9.22 (1 T) 9.3 (1 T) 8.7 (5" F)
6 Present 11 (53" F) 10.26 (5" F) 9.89 (15 T)
FOCUS 10.33 (5" F) 9.73 (5" F) 9.5 (1 T)

1“F > and “ T ” indicate flapwise bending and torsion modes

5.5 Time Domain Flutter Analysis by PHATAS

In order to investigate the aeroelastic stability of wind turbine blades presented in
Table 5-2, overspeed analyses are performed with PHATAS utilizing the 5 MW
reference wind turbine system defined in Table 5-3. Overspeed analysis simulates the
idling rotor with a fixed blade pitch angle in response to a gradually increasing wind
speed. Overspeed analysis is performed without using any blade control and applying
slowly increasing wind velocity. In the overspeed analysis, rotor blades are given an
initial rotational speed, rotor is disconnected from the generator, blade pitch angles are
set to a fixed angle and pitch controller is not turned on. Far field wind speed is slowly
increased, resulting in an increase of the rotational speed without any bound since the
pitch controller is not turned on. Using this loadcase, the required output signals for
investigating the onset of flutter are obtained for increasing wind and rotor speed. The
time domain analysis results are monitored for output parameters relevant to the flutter
analysis. Flapwise and torsional blade tip displacements and rotational speed of the

rotor are the main monitored parameters.
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In order to make the PHATAS model as similar as possible to the present aeroelastic
model used for the classical flutter analysis, lagging flag is turned off and only the
flapping flag and blade torsion flags are turned on. Moreover, tower and yaw dynamics
are turned off and the blade pitch angle is set to a very small value since the present
model assumes that the blade does not have an initial pitch angle. Likewise, geometric
twist is also taken as zero for all blade sections. In the aerodynamic model, sectional
incompressible aerodynamic coefficients are taken as specified for the NREL blade
[128] and dynamic stall model is turned off since the present numerical model does
not also have stall aerodynamics. Initial rotor speed is taken as 4 RPM and vertical
wind shear is not considered. Detailed procedure of obtaining the flutter wind and
rotational speeds from the time responses of the rotational speed of the rotor, flapwise
and torsional deformation of the blade tip and angle of attack and lift coefficient of the
blade sections using overspeed analysis of the PHATAS code is comprehensively
studied previously by authors [133] [134]. The presence of the aeroelastic instability
is identified by plotting the time responses obtained by the overspeed analysis for
increasing wind speed. For the bend-twist coupled blade BTC 20 defined in Table 5-2,
Figure 5-15 presents the gradually increasing wind speed at the hub height and the

corresponding rotational speed of the rotor.
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Figure 5-15 Gradually increasing wind speed at the hub height and the
corresponding rotational speed of the rotor / Bend-twist coupled blade BTC 20
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In Figure 5-15, it is seen that the oscillation of the rotor speed starts at about 72 seconds
followed by the slight drop in the rotational speed. After the slight drop, rotational
speed continues to increase gradually while the amplitude of the oscillation of the

rotational speed grows, as shown in the zoomed figure.

Figure 5-16 shows the time responses of the flapwise bending displacement and the
torsional rotation of the blade tip for the bend-twist coupled blade BTC 20. Diverging
oscillations of the flapwise blade tip displacement and the torsional rotation occur
more or less at about the same time as the expansion seen in the response of the rotor
speed. Diverging oscillations indicate the occurrence of classical flutter. From the
flapwise bending displacement and torsional rotation responses of the blade tip shown
in Figure 5-16, it can be deduced that the onset of flutter occurs at about 73 seconds.
At this time, from Figure 5-15, the wind speed is about 10.7 m/s and the corresponding
rotational speed is about 23.8 RPM.
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Figure 5-16 Time responses of the flapwise deflection and torsional rotation of the

blade tip / Bend-twist coupled blade BTC 20

In Figure 5-17 and Figure 5-18, it is seen that expansion of the rotor speed occurs at

about 80 and 66.26 seconds for the baseline and the BTC 10, respectively. Diverging
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oscillations of the flapwise blade tip displacement and the torsional deformation occur
a little earlier than the expansion seen in the response of the rotor speed. From the rotor
speed responses, it can be deduced that the suspected flutter rotational speed is about
23.54 RPM. Figure 5-17 and Figure 5-18 also show that expansion in the torsional

deformation takes place before the kink in the flapwise deformation.
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Figure 5-17 Torsional deformation (Deg.), flapwise displacement (m) of the blade tip,
rotor speed (RPM) and wind speed (m/s) for the baseline blade obtained by the overspeed

analysis
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Figure 5-18 Torsional deformation (Deg.), flapwise displacement (m) of the blade tip,
rotor speed (RPM) and wind speed (m/s) for the BTC 10 blade obtained by the overspeed

analysis

Figure 5-19, Figure 5-20 and Figure 5-21 show the FFT (Logarithmic scale) of the
flapwise displacement and torsional deformation time responses of the baseline,
BTC 10and BTC 20 at the tip section of the blades, respectively. Frequency response
plots show that the flutter frequencies of the flapwise displacement and the torsional
deformation are close to each other. The flutter frequencies for baseline, BTC 10 and

BTC 20 are 6.51, 7.6 and 7.31, respectively.
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Figure 5-19 Frequency response plots of the time history of the flapwise (green

line) and the torsional deformations (blue line) of the blade tip of the baseline
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Figure 5-20 Frequency response plots of the time history of the flapwise (green

line) and the torsional deformations (blue line) of the blade tip of the BTC 10

blade
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Figure 5-21 Frequency response plots of the time history of the flapwise (green
line) and the torsional deformations (blue line) of the blade tip of the BTC 20
blade

5.6 Comparison of Time Domain Flutter Analysis Results of PHATAS and the
Present Frequency Domain Flutter Results for Incompressible

Aerodynamics and Blades with no Pretwist

In the overspeed analysis performed by PHATAS, both the rotational speed and the
wind speed vary. Wind speed is increased gradually and given as input. The flutter
instability is decided by monitoring the oscillations in the rotational speed and the
flapwise bending displacement and the torsional rotation of the blade tip. In the present
numerical model developed, one can specify the inflow wind speed as input, and the
related flutter rotational speed is then calculated for different blade configurations. Or,
alternatively the rotor speed can be specified as input and the flutter wind speed can
be determined. In the comparison study performed with the numerical model
developed and PHATAS, flutter rotational speeds are compared. In order to compare
the flutter rotational speeds obtained from the time domain responses predicted by
PHATAS and the present frequency domain solution method, the wind speed at the

time when the blade first starts to have diverging oscillations in PHATAS is given as
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the input wind speed to the present model. Thus, the flutter rotational speeds calculated
by the present model and PHATAS can be directly compared with each other. For
instance, for the bend-twist coupled blade BTC 20, as explained in Section 5.5, the
flutter rotational speed obtained by PHATAS is about 23.8 RPM and the
corresponding wind speed is about 10.7 m/s. Hence, in the present model input wind
speed is specified as 10.7 m/s and the flutter rotational speed is calculated as 25.7
RPM. Table 5-5 compares the flutter rotational speeds and frequencies of the untwisted
blades calculated with the present model and PHATAS for the baseline blade and for
the bend-twist coupled blades BTC 10 and BTC 20. It should be noted that in the
present frequency domain solution, flutter frequency is directly obtained. For the
PHATAS simulation, flutter frequencies are determined through the fast Fourier
transform analysis of the time response of the deformation mode that enters into the
flutter first. It is noted that for the three blades, flutter rotational speeds determined by
the present solution method and the PHATAS agree with each other within 6.5% on
the average. Moreover, similar to the natural frequency results, both solution methods
predict the same trend for the variation of the flutter rotational speed with the off axis

fiber angle of the bend-twist coupled blades.

Table 5-5 Comparison of flutter rotational speeds and frequencies of without pretwist

calculated by present model and PHATAS

Baseline | BTC 10 | BTC 20

Aeodynamic model

Wind speed (m/sec) 11 10.2 10.7
Present model Flutter rotag/onal speed 2.63 2.55 2.69
Incompressible Indicial (rad/s)

aerodynamics Flutter frequency (Hz) 6.4 6.65 6.7

Flutter rotational speed 2 465 24 2492

PHATAS (rad/s) ' ' ‘
Incompressible unsteady BEM

aerodynamics Flutter frequency (Hz) 6.51 7.6 7.31
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Bend-twist coupled blades BTC 10 and BTC 20 have lower flapwise bending
stiffness than the baseline blade but they also have higher torsional stiffness compared
to the baseline blade. On the other hand, bend-twist flexibility of the bend-twist
sections of the BTC blades is substantially higher than the baseline blade. Higher bend-
twist flexibility has a lowering effect on the flutter rotational speed. In the BTC blades,
as seen in Figure 5-7, fibers are oriented towards the leading edge in the main spar
caps. Hence, bending-twisting coupling works toward decreasing the effective angle
of attack of the blade sections and has positive effect on lowering the loads. All these
effects should be considered together in comparing the flutter characteristics of the
baseline and the BTC blades. From Table 5-5, it is seen that for the BTC blade with
10° off-axis fiber angle (BTC 10), flutter rotational speed decreases compared to the
flutter rotational speed of the baseline blade, and for the BTC blade with 20° off-axis
fiber angle (BTC_20) flutter rotational speed slightly increases compared to the flutter
rotational speed of the baseline blade. It is deduced that the combined effect of the
reduction in the flapwise bending stiffness and increase in the bending-twisting
flexibility are the main reasons for the drop in the flutter rotational speed of the
BTC 10 blade compared to the flutter rotational speed of the baseline blade. The
increase of the torsional stiffness and the load reduction due to the off-axis fiber angle
of the BTC 10 blade do not compensate the effects of the lower flapwise bending
stiffness and increased bending-twisting flexibility of the BTC 10 blade, and
consequently the flutter rotational speed of the BTC 10 blade decreases slightly
compared to the flutter rotational speed of the baseline blade. On the other hand, for
the BTC 20 blade, increase in the off-axis fiber angle accounts for increased torsional
stiffness as well as higher load reduction and these effects dominate such that the
flutter rotational speed of the BTC 20 blade increases compared to the flutter

rotational speed of the baseline blade.
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5.7 Comparison of Time Domain Flutter Analysis Results of PHATAS and the
Present Frequency Domain Flutter Results for Incompressible

Aerodynamics and Blades with Pretwist

The next comparison is performed for the blades with pretwist. In the present study,
as discussed previously in Chapter 2, the pretwist model of Librescu [92] is adopted,
and the pretwist is applied before any deformation takes place. In this model, the inertia

and stiffness quantities are determined in the rotated coordinate system (z;,%,,2,). The

transformation between the fixed coordinate system (z,y,2) and the rotated coordinate

system (2;,%,,2,) is given by,

T = T, Cos (ﬁ(z)) —y, sin (ﬁ(z))
y = 7,sin (5(2)) +y,(s) cos (6(2) (5-75)

Z:Zt

where, §(z) is the pretwist angle and in Figure 5-8 pretwist 3(z) could replace the
elastic twist ¢. Due to the pretwist, stiffness and the inertia terms of the thin walled
beam-blade become a function of the pretwist angle 3(z). Following the application
of the transformation given by Equation (5-75), stiffness (s,;) and inertia terms (b,)
become a function of the pretwist angle 3(z). Appendix C gives the transformed
stiffness (a,) and inertia terms (b,) obtained after applying the transformation given
by Equation (5-75). It should be noted that in the present model which is based on the
small disturbance theory, since the static deformation of the blade and the mean steady
aerodynamic loads are not considered for the unsteady aeroelastic instability analysis,
pretwist does not affect the steady aerodynamic loads. However, in the unsteady blade
element momentum aerodynamics model used in PHATAS, pretwist affects the steady

loads.
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Figure 5-22 shows the variation of the pretwist in wind turbine blade sections. Pretwist
distribution in Figure 5-22 is same as the pretwist of the NREL SMW wind turbine
blade.
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Figure 5-22 Pretwist distribution along blade span

Table 5-6 compares the flutter rotational speeds and frequencies of the blades with
pretwist calculated with the present model and PHATAS for the baseline blade and for
the bend-twist coupled blades BTC 10 and BTC_20. It is noted that for the three
blades, flutter rotational speeds determined by the present solution method and
PHATAS again agree with each other within 6% on the average. Both solution
methods predict the same trend for the variation of the flutter rotational speed with the
off axis fiber angle of the bend-twist coupled blades. Moreover, comparison of Table
5-5 and Table 5-6 reveal that for the baseline blade and the BTC 10 blade, flutter
rotational speeds slightly decrease when pretwist is included, and for the BTC 20
blade, flutter rotational speed slightly increases for the blade with pretwist. Both the
present model and PHATAS predict the same trend for the variation of the flutter
rotational speeds with the pretwist for the three blades.
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The comparison study showed that the present method captures variations of the flutter
rotational speed with the off-axis fiber angle and the pretwist reasonably well when

compared to the results of the wind turbine multibody simulation program PHATAS.

Table 5-6 Comparison of flutter rotational speeds and frequencies of blades with

pretwist calculated by the present model and PHATAS

Blades Baseline | BTC 10 | BTC 20
Aerodynamic model
Wind speed (m/sec) 10.6 9.9 10.8
Present model Flutter r(();[:g/(;r)lal speed )55 7535 273
Incompressible indicial
aerodynamics Flutter frequency (Hz) 6 6.6 6.8
Flutter rotational speed
PHATAS (rad’s) 2.42 2.38 2.533
Incompressible unsteady
BEM aerodynamics Flutter frequency (Hz) 6.38 7.44 7.34

5.8 Effect of compressibility on the flutter rotational speed of composite blades

The effect of compressibility on the rotational speed of the composite blades has been
investigated by performing aeroelastic analysis using incompressible and
compressible aerodynamics based on incompressible and compressible indicial
functions. Utilizing the results of the flutter solutions performed using incompressible
aerodynamics, incompressible range from the blade root is decided based on the
relative velocity information at the flutter condition for the baseline and BTC blades.
It is assumed that the blade is in the incompressible flow regime for Mach numbers
less than or equal to 0.3 which is calculated using the relative velocity. As defined in
Appendix G, it is assumed that for a length of /; from the blade root, the blade is in
the incompressible flow regime, and in the outboard portion of the blade, blade is in
the compressible flow regime. It should be noted that the overspeed analysis performed

with PHATAS showed that the flutter wind speeds are between 10-11 m/s. In the
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present approach, for studying the effect of compressibility on the flutter
characteristics of composite blades, the wind speed is taken as 10 m/s for the three
blades and flutter rotational speeds are calculated for the same wind speed condition.
For the constant wind speed of 10 m/s, at the flutter condition the incompressible range
from the blade root ( [;) for the baseline and BTC (BTC 10 and BTC 20) blades are
calculated as 38 m, 39.5 m and 37.5 m, respectively. Based on these lengths, the
number of sections which are in the incompressible flow regime for the baseline,
BTC 10 and BTC 20 blades is taken as 10 (NJ* = 10) and the rest of the blade

sections are assumed to be in the compressible flow regime.

Table 5-7 compares the flutter rotational speeds and frequencies of the untwisted
baseline blade and BTC blades calculated by implementing the incompressible and the
combined incompressible-compressible unsteady aerodynamic models based on
indicial functions. It is evident from the results that compressibility has a decreasing
effect on the flutter rotational speed. Flutter rotational speeds calculated by using the
combined incompressible-compressible unsteady aerodynamic model are 6.44%,
6.64% and 7.8% lower than the flutter rotational speeds obtained by neglecting
compressibility for the baseline, BTC 10 and BTC 20 blades, respectively. Lowering
of the flutter rotational speed due to the compressibility is in accordance with the
findings in the [135] [136]. Table 5-8 compares the flutter rotational speeds and
frequencies of the baseline blade and BTC blades with pretwist. As in the untwisted
blade case, flutter rotational speeds calculated by using the combined incompressible-
compressible unsteady aerodynamic model based on indicial functions are lower than
the flutter rotational speeds obtained by neglecting compressibility. It is noted that the
incompressible flutter results are not conservative, hence in the aeroelastic stability
study of long wind turbine blades, compressibility effects must be taken into

consideration.
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Table 5-7 Comparison of flutter rotational speeds and frequencies of blades without
pretwist calculated by the present model using incompressible and combined
incompressible-compressible aerodynamics / Wind speed=10m/s

Aerodynamic model Blades Baseline | BTC 10 | BTC 20
Flutter rotational speed
Incompressible (rad/sec) 2.64 2.56 2.7
indicial aerodynamics Flutter frequency (Hz) 6.4 6.65 6.7
Comblngd Flutter rotational speed 2 468 72393 7 489
Incompressible- (rad/sec)
Compressible
indicial aerodynamics Flutter frequency (Hz) 6.02 6.29 6.34

Table 5-8 Comparison of flutter rotational speeds and frequencies of blades with
pretwist calculated by the present model using incompressible and combined

incompressible-compressible aerodynamics / Wind speed=10m/s

Aerodynamic model Blades Baseline | BTC 10 | BTC 20
Flutter rotational speed

Incompressible (rad/sec) 2.555 2.535 2.74

indicial aerodynamics Flutter frequency (Hz) 6 6.6 6.8
Combmgd Flutter rotational speed 2416 7383 7554
Incompressible- (rad/sec)
Compressible

indicial acrodynamics Flutter frequency (Hz) 5.64 6.27 6.4

For the untwisted baseline blade, Figure 5-23 shows the time responses of the flapwise
displacement of the blade tip obtained by the time domain solution of the linear
aeroelastic system of equations (Equation (5-73)) utilizing the combined
incompressible-compressible unsteady aerodynamics based on indicial functions for
three different rotational speeds. Runge-Kutta integration method has been used for
the time domain solution. Specifically, time responses are presented for the subcritical
rotational speed of 2.46 rad/sec, for the flutter rotational speed of 2.468 rad/sec and for

the supercritical rotational speed of 2.48 rad/sec at the constant wind speed of 10 m/s.
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For rotational speeds less than the critical speed, disturbance, generated by the initial
conditions imposed, attenuate due to the aerodynamic damping, as seen in Figure
5-23a. With the increase in the rotational speed, amplitude of the oscillations grows
and the response becomes undamped at the instability speed which corresponds to the
flutter rotational speed (Figure 5-23b). For the rotational speed higher than the flutter
rotational speed, in the supercritical region, amplitude of the oscillations increases
exponentially as shown in Figure 5-23c. It should be noted that for the impending blade
flutter, linear aeroelastic analysis suffices, since the flapwise bending displacement
and the torsional rotation of the blade tip are small in the initial phase of the blade

flutter.

For the subcritical rotational speed of 2.3 rad/s, time domain solution of Equation
(5-73) corresponding to a disturbance of 0.01 velocity initial conditions for flapwise
bending displacement and zero displacement initial conditions has been performed for
the untwisted blades utilizing the combined incompressible-compressible unsteady
aerodynamics based on indicial functions. It is to be noted that the subcritical rotational
speed of 2.3 rad/s is closest to the flutter rotational speed of the BTC 10 blade without
pretwist, and it is expected that the response of the BTC 10 blade takes the longest
time to damp out. Figure 5-24 gives the flapwise bending displacement and the
torsional rotation responses of the blade tip for the baseline, BTC 10 and the BTC 20
blades. Time responses given in Figure 5-24 show that for the BTC 10 blade, the
flapwise bending displacement and the torsional rotation responses of the blade tip
damp out in a longer time compared to the corresponding responses of the baseline
and the BTC 20 blades. This observation is in accordance with the frequency domain
flutter results given in Table 5-7 since the rotational speed of 2.3 rad/s is closest to the

flutter rotational speed of the BTC 10 blade.
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Figure 5-23 Time responses of the flapwise blade tip displacement for the baseline
blade and for three rotational speeds (a) Subcritical (0 = 2.46 rad/s) (b) Flutter

(2 = 2.468 rad/s) and (c) Supercritical (2 = 2.48 rad/s)
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Figure 5-24 Flapwise bending displacement and torsional rotation responses of the
blade tip for the baseline, BTC 10 and the BTC 20 blades at the subcritical
rotational speed Q = 2.3 rad/s

In this chapter, a frequency domain solution methodology of the classical flutter
phenomenon of composite wind turbine blades has been presented by including the
effect of the compressibility. Flutter analyses have been performed for the baseline
blade and the BTC blades designed for the SMW wind turbine of NREL. Beam model
of the blade has been developed by making analogy with the structural model of the
prewisted rotating thin walled beam introduced in Chapter 2 and utilizing the VABS
method for the calculation of the sectional properties of the wind turbine blades. The
effect of compressibility has been incorporated into the unsteady aerodynamics model
using the compressible indicial functions. The linear aeroelastic system of equations
of the composite wind turbine blade has been solved by implementing the extended

Galerkin method.

Compressibility has been included into the unsteady aerodynamic model only for the
outboard blade sections which are in the compressible flow regime exceeding Mach
0.3. For the sections of the blade, which are in the compressible flow regime, to
perform continuous calculation of the compressible indicial functions in the course of
frequency domain solution of aeroelastic instability, an approximation methodology is

presented for the calculation of compressible indicial functions at any Mach number.
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Inboard sections of the blade which are exposed to relative velocities less than Mach
0.3 are assumed to be in the incompressible flow regime. Incompressible and
compressible regions of the blade are seamlessly integrated utilizing the Extended
Galerkin Method of solution to come up with the eigenvalue problem for the

determination of the flutter rotational speed and flutter frequency.

For the incompressible unsteady aerodynamics case, the present solution methodology
has been compared with the time domain aeroelastic instability analysis of the wind
turbine blades by the multibody simulation program PHATAS. The comparison study
showed that the present method captures variations of the flutter rotational speed with
the off-axis fiber angle and the pretwist reasonably well when compared to the results

of the wind turbine multibody simulation program PHATAS.

Aeroelastic instability analysis results of the untwisted blades and the blades with
pretwist showed that compressibility has a decreasing effect on the flutter rotational
speed, and that the incompressible flutter results are not conservative. The present
frequency domain approach for the aeroelastic stability analysis of long wind turbine
blades is deemed to be very advantageous compared to other approaches which usually
require time domain solutions, such as coupled CFD and structural FE methods.
Especially, in the initial design phase of wind turbine blades, the effect of frequent
design changes on the aeroelastic stability characteristics of composite wind turbine
blades can be assessed very effectively in terms of model preparation and solution time
with the approach presented in this study. This study shows that with use of
compressible indicial functions, the effect of compressibility can also be taken into
account in the frequency domain aeroelastic stability analysis of long wind turbine
blades whose outboard sections are inevitably in the compressible flow regime at the

onset of flutter.
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CONCLUSION

In the present study, an efficient aeroelastic model based on an analytical composite
thin walled beam model including geometrical nonlinearity and the indicial functions
approach for modeling the unsteady aerodynamics has been studied and formulated.
To the best of author’s knowledge, the comprehensive treatment of nonlinear
aeroelasticity of aircraft wings and wind turbine blades structurally modeled as
nonlinear anisotropic thin walled beams incorporating the effect of the compressibility
in the unsteady aerodynamic model is addressed for the first time in literature. The
methodology developed in this work enables the systematic examination of divergence
(static instability), flutter (dynamic instability), and qualification of post-flutter

dynamic response utilizing the aeroelastic tailoring concept.
Specifically, the major conclusions of this thesis study include:

e In the structure part, a composite rotating thin walled beam model including
geometrical nonlinearity based on an existing linear thin walled beam model
has been developed. The linear model has been validated against the FE
software. Improved structural models are specifically developed for the CAS
and the CUS layup TWBs to exploit the flapwise bending-torsion, extension-
chordwise bending coupling in the CAS-TWB and extension-torsion, flapwise
bending-chordwise bending coupling in the CUS-TWB. It is shown that for
both CAS and CUS TWBs, in general, natural frequencies increase with
rotational speed which is a sign of centrifugal stiffening effect. Results showed
that as the rotational speed increases, mode switching from flapwise to
chordwise bending and vice versa, and from torsional mode to flapwise
bending mode. Pretwist causes stiffening effect at higher fiber angles and at
low angular velocities for both CAS and CUS configurations, and it is mostly
effective on the torsional mode. In the frequency range studied, the main

difference between the CAS and the CUS configurations is the higher torsional
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frequency of the CAS configuration for higher fiber angles (—30° < 8 <
—90°) compared to the CUS configuration. CAS configuration TWB offers a
more separate bending-torsion frequency range and might have a higher flutter
speed than the CUS configuration.

In the aerodynamic part, the unsteady Mach dependent compressible
aerodynamics model is constructed in the time domain by using a novel indicial
approximation, which allows to perform direct stability analysis of
compressible indicial functions at any Mach number up to 0.85, by
incorporating twelve aerodynamic lag states.

In the aeroelastic part, a comprehensive study of the geometrically nonlinear
aeroelastic behavior of pretwisted, tapered and swept composite wings
structurally modeled as thin walled beams (TWB) subjected to incompressible
and compressible unsteady aerodynamics is performed. The aeroelastic
equations of motion are obtained for the CAS configuration TWB in the most
general form by including second order nonlinear strain displacement relations,
nonuniform geometric features such as wing taper, pretwist, and warping
restraint and transverse shear effects are taken into account. Flutter speeds
determined by the linear aeroelastic analysis of composite structures via
frequency domain solution. Nonlinear aeroelastic respose of the composite
wing modeled as TWB is performed in time domain by the direct integration
of aeroelastic governing equation of motion by the Runge-Kutta method for
the prescribed initial conditions. Post flutter bahavior of the composite
structures has been studied using bifurcation diagram, phase portrait, PSD, FFT
and Poincaro map. Itis shown that, Fiber angle of the CAS configuration TWB
is a very influential parameter on the flutter speed of the composite wing. For
the positive fiber angles the instability is in the form of divergence and for
negative fiber angle is in the form of flutter. Besides the flutter speed, the fiber
angle of the CAS configuration TWB has a significant effect on the post-flutter
LCO behavior of the composite wing. Besides the flutter speed, the fiber angle
of the CAS configuration TWB has a significant effect on the post-flutter LCO

behavior of the composite wing. Post-flutter responses of composite wings
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with three different off-axis fiber angles (—75°, —60°, —45°) showed that
although the flutter speed of the composite wing with —45° off-axis fiber angle
is higher than the flutter speed of the —60° fiber angle case, from post-flutter
response point of view, —60° fiber angle is preferable, since the well behaved
post-flutter range is wide and the amplitudes of the LCOs are low compared to
the —75° fiber angle case. For the —45° fiber angle case, bifurcation speed is
highest but flapwise bending displacement and torsional deformation
amplitude curves are nearly vertical. The effect of pretwist causes the flutter
speed to increase, but at the same time nonlinearity becomes slightly weaker.
Wing taper ratio has a stabilizing effect on the stability margins of the wing.
For untapered wings the flutter speed decreases and the wing is more prone to
flutter instability at smaller speeds compared to a tapered wing. For the low
off-axis fiber angle of —75°, it seen that aeroelastic response of forward swept
wings can be improved significantly. Moreover, it is also shown in the study
that as the backward sweep angle of wing is increased, post-critical aeroelastic
response of the wing becomes more well behaved compared to wings with low
backward sweep angles. It is evident that compressibility accounts for
reduction in aeroelastic instability speeds especially at higher Mach numbers.
Actually, instability speeds obtained by incompressible unsteady
aerodynamics are not conservative.

In the last chapter, a frequency domain solution methodology of the classical
flutter phenomenon of composite wind turbine blades has been presented by
including the effect of the compressibility. Flutter analyses have been
performed for the baseline blade and the BTC blades designed for the SMW
wind turbine of NREL. Aeroelastic instability analysis results of the untwisted
blades and the blades with pretwist showed that compressibility has a
decreasing effect on the flutter rotational speed, and that the incompressible

flutter results are not conservative
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FUTURE WORK

The emergence of new structural geometries and materials generates major challenges
to the aeroelastic discipline. Aeroelastic analysis of high aspect ratio aircraft wing and
wind turbine blade made of from composite materials subjected to unsteady
aerodynamics including geometrical non-uniformity and nonlinearity was the main
scope of the present study. The following are some of the studies that which are

recommended as future work.

e Coupling of nonlinear acrodynamic models with current nonlinear structure
model to investigate flutter speeds and post-flutter behaviors. The proposed
aerodynamic models are;

v Dynamic stall acrodynamics for modeling separated flow at high torsion angles
like ONERA or Beddoes-Leishman type dynamic stall aerodynamics

v Higher order nonlinear piston theory for extending current aeroelastic model
to cover supersonic flight regime.

e Utilizing variable stiffness concept for the improvement of structural dynamic
and aeroelastic characteristics of thin walled composite beams.

e Development of geometrically exact beam model for fixed and rotary wings
and coupling with the proposed incompressible and compressible unsteady
aerodynamics models based on indicial functions.

e Multicell TWB configuration as structural model to investigate more realistic
airfoil shape of cross section with wing double or more boxes.

e Extension of the six degree of freedom beam-blade model to cover all of
normal, shear and coupling stiffnesses in the most general form of governing
equations.

e Modeling of structural damping in the composite aircraft wings and turbine

blades and its influence on the aeroelastic instability and response.
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APPENDICES

A. CONSTITUTIVE EQUATIONS AND STIFFNESS COMPONENTS

The Constitutive Equations;

Where,

C,=C, cos'§+2(C, +2C, )cos’ §sin’ 0 + C,, sin' 0

512 =0, cos' 0 + (C,+C,—4C,) cos’ fsin” 6 + C, sin* 0
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The components of the reduced stiffness matrix in Equation (2-1) are as follows,
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B. ELEMENTS OF THE STIFFNESS MATRIX

The following relations are explicit definitions of the 8 x 8 symmetric stiffness matrix,

presented in Equation (4-108).

stiffness Definition
a, J K ds
C

% fﬁ K @ds

14 dS
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14 ds
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R dz
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C. AXES AND STIFFNESS QUANTITIES AND TRANSFORMATIONS

a) Transformation of axes and their derivatives with pre-twist angle 8 = ,/L

r=2x"cosB—y' sinf (C.D
y=a"sinB+1vy" cos B (C.2)
2 _ 02 2 39,0, D ; p2 2 (C.3)
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ds ds & [ ds Y ds ] Fsinf+y ds &
C.13)
A _[dr L dy Jdy o de
' — =9 cos Fsin x’ ——sin” B + y” —cos
ds [ ds Y ds ] Psinf ds bty ds b
» " ) (C.14)
y@:xpdisirfﬁ%— :Epdi+y d” cos Bsin 3 + ¥ dy —Z_cos’ 3
ds ds ds ds ds
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p p p » (C.15)
4y xpdi—y”di cosﬂsinﬂ—l—x”dicoszﬂ—y”disirfﬁ
ds ds ds

ds
als) = a’(s) (C16)
AORTA0 €17
E ()= FX(9) C.13)

b) Stiffness quantities in terms of principal axes (x?, yP)

’ Definition
@, @,
a, al, cos 3 —af, sin 3
a, al, sin 3 + a, cos 3
a, a;, cos B —aj, sin
a, al, sin 3 + a/, cos 3
g t
G a
LN s
Gy a;, cos’ 3 — 2ay, cos Bsin B + ay, sin® 3
Gy, al cos’ f—al sin® 3+ al cos Bsin B — al, cos Bsin 3
Qy, ay, cos’ 3 — a;, cos Bsin 3 — a), cos Bsin 3 + aj, sin® 8
Gy a,, cos 3sin 3 — aj, sin® B + a,, cos’ 3 — a,, cos 3sin 3
Qs ay, cos 3 — ay, sin 3
a, a,. cos 3 — ay sin 3
(8 aj cos 3 — aj sin 3
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S

&9

=)

44

a,, sin® 5 + a,, cos Bsin 8 + ay, cos’ 3
a,, cos” 3 + a,, cos Bsin 3 — ay sin® 3 — a,, cos Bsin 3
ay, sin® 3 + a,, cos Bsin 3 + a,, cos Bsin 5 + a cos’ 3
ay, sin 3 + ag cos 3
a, sin 3 + a; cos 3
aj sin 3 + al cos 3
a;, cos’ 3 — ay, cos 3sin 3 —a!, cos Bsin 8 + al, sin® 3
a?cos® B+ al, cos Bsin B — a!, sin’ B — a’. cos Bsin 3
ay, cos 3 —al sin 3
a, cos 3 —al sin 3
a,, cos B —al sin 8
ay, sin® B + 2a} sin Bcos 8+ al, cos’ 3
al cos 3+ a} sin 3
al cos 3+ ay. sin 3

P P a3
al, cos 3 + ay, sin 3
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D. STRUCTURAL AND AERODYNAMIC MATRICES

The stiffness and mass matrices of the structure models are given explicitly for i, j =

1,2,3,---, N as the following.

CAS Configuration

My, 0 0 0 0 0
0 M, 0 0 0 0
] o0 My 0 0 0 (D.1)
SBNAGN g 0 0 M, 0 0
0O 0 0 0 M, 0
o 0 0 0 0 M
Where,
(D.2)
M (i f by de
(D.3)
M3, (i f bl dz
(D.4)
]\4'3'3 Z ] fblwﬂlwﬂJ
L (D.5)
Mj, (i, 7) f b + b12>¢1 1/)“dz
0
L (D.6)
f (b, +b, vz
0
(D.7)

L
M (i §) = fb +b, 1/)1/)dz+fb + by, )Ytz +
0

[oalor ()
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Ky 0 Ky 0 Ky 0
0 K52 0 K§4 0 K‘;G
Ky =| 0 0 Fl 0 K O

0 K42 0 K44 0 K46
K§1 0 K;s 0 K§5 0
0 KgQ 0 Kg4 0 K‘g6

Where
r L !/ /
~ ot [+ oot (o) e+
0 0
L
A [ R(2)by () (vr) de
0
L / !/
K4, 5) = fam(l/%‘w) (1/1;) dz
0
L !
K3i(0,) = [ (0F) wde
0
L !/
K3, (9) = [ agy (v ) ¢)dz
0
r / / y / /
K35,(1,9) = f%?.(%“) (1#})) dz +AQQIR(z)b1(1/J;’) (1/1}’) dz
0
L
26 7’ ] = f _a37 77Z)¢ W’
0

L
i) = - [ + o (vr) () o
0 0

L
Kt = [ (02 (07 o
0
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(D.8)

(D.9)

(D.10)

(D.11)

(D.12)

(D.13)

(D.14)

(D.15)

(D.16)



(D.17)

L
K56, 9) = fam (7/){1/ )/ %"dz
0
r / (D.18)
K ) = [ aguy (v7) dz
0
[ y (D.19)
Ki(@.9) = fa33wf¢;dz B QQf(sz + by, )¢f¢;dz +
0 0
L
fa55<¢f) (%) dz
0
[ " y b (D.20)
Kiglid) = [=agv? (07 ) de+ [ (07 ) (05 ) @2
0 0
[ D21
= Jnlir] P2
1 (D.22)
o) = [at(4) de
K (i,9) ]%QWWdz sz(b +b11)¢J¢JdZ+ (D.23)
J e (1) (v1) @
Rt = [ b i [ v g
]aee (w )/ (wj) dZ+A92fR b +b12)(w;é)/ (wjo)/ ds & (D.24)
AQ?fR 2)(b +bn)(¢j)/(¢j)' g
Qijm (W) (¢J‘?’)l dz—j% (W)” (w] )” i
[ Y y " (D.25)

313



. (D.26)

CUS Configuration
Ksll 0 0 K314 KSIS 0
0 Ks?? 0 K524 K325 0
[K ] _ 0 0 K33 0 0 K36 (D.27)
*IBN 6N Ky Koy 0 K, Ky 0
KsSl Ks52 0 K354 K855 0
0 0 Kg 0 0 Ky
Where.
L L , , (D.28)
K3y Gid) = =97 [oiusds + [ay (01) (07 ) do +
0 0
L
402 [ R ()b, () (1) dz
0
I . , (D.29)
K0, ) = f%s(l/’;'L) (W) dz
0
. (D.30)
K150, J) f gy (¥ WLdZ
0
. (D.31)
K340, 9) f ags | ¥ w”dz
0
; o o (D.32)
K3, (i,7) = fa33(¢iv) (%1')) dz +AQQIR(z)b1(¢;)) (1/1;}) dz
0 0
B o (D.33)
K3,6.5) = [ay (w)) (97 d=
0
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K, (i, j) = —° f bl + f ay () () d

L
Kioiod) = [ag (v ) (7 ) dz

0
L
Ky (irg) = [aggur (¢7) dz
0
L L
Kiyig) = [agurvtds — 92 [ (b, + by, Juretdz +
0 0
L
Joass (0] (07) ¢z
0
L / /
K3y(i,) = [as vy ) (0] d2
0
L , L ,
K, (i) = fa%z/;g(z/;;) dz +fa34¢;(¢,g/) dz
0 0
K, (i, ) = faWﬂWﬁ
0
L ’ L /
K69) = [ (5] wras+ [a,(97) iz
0 0

L

K i) = [0 (v dz

0

(i,4) = jamw Wz — 2 f (b, +0,, ) wrrdz +
0

J%w) Jo o
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(D.34)

(D.35)

(D.36)

(D.37)

(D.38)

(D.39)

(D.40)

(D.41)

(D.42)

(D.43)



L L

Ky (i) = = [ (b, +b, ) v00idz +9° [ (b, +b, )urvide +
0 0

Fralif o) e o oo frf e O

0

AQ2zR(z)(bs + bn)(w;"

L R (D.45)

The mass, damping and stiffness matrices of the aerodynamic models are given

explicitly for i,j = 1,2, 3, -, N as the following.

Incompressible unsteady aerodynamic (based on Wagner’s Function)

Aerodynamic Mass Matrix

0O 0 000 O
0O M~ 0 0 0 M"
22 26 (D.46)
0 0 000 O
M =
“« 100 00 0 O
0O 0 000 O
0 M 00 0 M
Where,
. (D.47)
M3, ) = [ mpUbyry!dz
0
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L (D.43)
M- (i, 7) = f mpUab™) )" dz

0
L ,, (D.49)
My, (i) = [ mpabyv dz

0

Loy (D.50)
Mg = [mp|5+a* phufey de
0
Aerodynamic damping Matrix
000 000 O]
o c:, 0 0 0 Cf
22 26 (D.51)
O 0 00 0 O
C =
“@ 10 0 0 0 0 0
O 0 00 0 O
0 C, 00 0 C
Where,
)’ ) (D.52)
Coy(ivg) = [ €, pUbY; da
0
L e (D.53)
a (: - 2 ) v
026(z,j):jo’pUb Cppla+s =S| = U vlv) dz
L . ) (D.54)
C (i j) = LO[CLQ pUb [a + E] Yl dz
L (D.55)
a 1 C@ T
066(2,]):prb3 C’L(/)[a—l—— — +§i]¢b¢¢f dz
0
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Aerodynamic Stiffness Matrix

00000 O]
00000 K-
(D.56)
0O 00 00 O
K =
“@ 10 000 0 O
0O 00 0 O0 O
00000 K"
Where,
L (D.57)
K (i,j) = — [ C, pUbu ! dz
0
L 1 (D.58)
K. (i,7) = —fC’L(prQb2 [a +§ zbf’zbj) dz
0
Compressible unsteady aerodynamic (based on Indicial Function)
Aerodynamic Damping Matrix
0 0 000 O
0 Cc, 000 C 059
0O 0 0 0 0 0
C =
“ec 10 0 0 0 0 0
0O 0 0 0 0 0
0C. 000 C

Where,
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ce (i f C,,pU ba, ! dz
C, (i, 5) = —IQCLOpU bQOéOCq?/J 1/1 "dz
e (i, j) f 20, pU bay,, 0" dz

Ce (i, j) = — f 4C, pU by, 000" dz

Aerodynamic Stiffness Matrix

0 0 000 0

0 KX 0 0 0 K.

0 0 000 0
K =

we 100 00 0 O

0 0 000 0

0 K 00 0 K

Where,
L
K= €yt A
0

K (i,5) f C,,pU%bay, 400! dz —

IQC’L@pUZanOC(I tan(A)zZwa;@sz
0
L T
i, j) = f2CL¢pU§b2aocM tan(A)wfl/J;” dz
0
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(D.60)

(D.61)

(D.62)

(D.63)

(D.64)

(D.65)

(D.66)

(D.67)



L

Ky (i) = = [ 20, oUW ey, 350 dz — (D.68)
0

L

f 4CL¢pU:b3O‘0ch tan (A)ij; " dz
0
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E. SIMPLIFIED NONLINEAR EXPRESSIONS

The following are the algebraic expressions obtained by substitution of Equation
(4-60) into the nonlinear expressions defined in Equations (4-30)-(4-39) and (4-40)-
(4-48).

Quadratic nonlinear terms

m m

= am;;(w“w ) (v7R) 9,9, -
[ZZ(wR ) (67 ) 09, + (7R (0578 9, |-
a55§§(w@m) (vTR?) 0,0, + E1)
[ ion
ngiw%@) () 0,0, _%iiwwm) (4#78) 0,0, +
%éé(wm) (@R ) 9,9, +a37§§(w”w (07R?) 9,9,
¥ =35 Ezjjﬁ )> ((iijf;:)) e (o78) (w7 0. +

S5l ] 0 () (07 00 -

r=1s=1 (E.2)

) (071) 00 oS () 00+
r y r=1s=1 " s

“uii(w TR ) ( YR )S 0,9,

:_a'll[ii(w /T pu ) ( WIT pou )S 9.9, +(wq;/TRv)r(ql}y/TRy>s 99, |+ (E.3)
S () 0, S [0 0

r=1s=1 o, :
(E.4)

2

_ _a33§:§:(¢UITRU)T (wsTRo)s 90

r=1 s=1
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(E.5)

= _%55:5:(1/’”@]%” )T (@/)d)/TRd) )5 0,9,

r=1s=1

(E.6)

1 m_m ’ ’ ’ ’ , , , ,
i 25(112 [ZZ(wu/TRu) (wu/TRu) 29/[95 +(wI/TRI) (wI/TRI) 19T19q]+
r=1 s=1 r s r s

0,0 (0 R (67R) 9.9, 42, YD (o R (TR 00,
r r=1 s=1 r s

r=1 s=1

(E.7)
NQ‘ —aMZZ(W'TR”) (¢¢’TR¢) 9.0,

r=1s=1

[ZZ( R (0TR) o0+ R (0 R) 79,@%] )

1 s=1

- [zz< ) 7] 01
ZZ( 'TRl) ( ’TRw) 99, +a37ZZ( ’TR”) [w""TR"l 99,

r=1 s=1 r=1 s=1

N (E.8)

wu’TRu) (waRz) 197195

a5 g
0, [ZZ( "R (W'TR‘]’) 09, +(v" ’TR) (w“’/TR‘]’) 1919] (E.9)
20,33 JuR) (07) 99, -a,3 Yo ) [077re) 00,+

WL ][R 02

m m (E 10)

N =—a, 3> ("R (67R) 09

r=1 s=l

322



Cubic nonlinear terms

N? = (ay, — am)iii(WMTR" ) (" R? ) (v" R? )p 9,00, —

2 ifjlfjl(w”; ), 1(:;TR¢’ ), (wTR?) 9,99, -

fie ii%}l(w’%w ) (¢°7R?) (0T R )p 99,0, —

%;2;( TR (TR (7R 000, + (E.11)
a“fjlij:l( IR (@R (0TR ) 9,00, +

S5 ) (v () 90, -

a44§;];(wJ’TRJ) (07R?) (47 R?) ) 0.9,0, +

o +% iii( PR (0TR ) (W’Tm) 9,00,

N =SS o) (R (R 0,0, -
eSS ) (o) (67a), 00, +

(o =) S () (7R (7R 0,09, -

a“iﬁ;;(m 7 (@ TR) (TR 6,99, + (E.12)
8 4, iipﬁ%(lp”m ) (w7 R?) (07 R?) 9,9,9, -

%iii(w TRY) (TR (6TR?) 9,09, +

WSS ) (47w (70 000, -

Y 2253w (9T (TR, 9,09, -

%ZISZ;;(WTR ) (v RY) (vTR?) 00,9
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m - m m (E. 1 3)

N = GIQZZZ( /TRU)T(quTRqs)s(quTRqs)pﬁrﬂsﬂp

o (E.14)
N =D Jum (v () 0,
=1 s=1 p=1
womom (E.15)
N? = _%5222(1/)@@]%1; )7- (QWITR@ )5, (Q/,@TRcb )p 9,09,
r=1s=1p=1 :
(E.17)
N, _a44zzz(¢”’TR“) (TR ) (vTR?) 6,90,
r=1s=1p=1 ‘
a%ﬁlj;m;zlj(w ’TR ) (¢°’TR‘°)S (¢°'TR°)]) 909 —
TSN R o) (v R 0,00, -
LRSS ] (v [0 009, -
LSS o) (o) (07 ) 00, - ®15)
aZZZ vR) (07 R) (R 0,09, -
LSS (97) (1) 000, -
ZZZ VTR (6R) (6TR) 9,09, +

|
) (o) () .00,
|
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NZL = %i;i;;:(?’bwm) (¢®’TR¢)S (¢o/TR¢)p 999

IS

ST ) )

a; ZZZ(WTR“) (W’TR”)S ("R) 099, +
BN (o) (o) 909, -
2 |55 ,

18
a44 +
r s

WSES | ) () 20,

s
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G. MASS, DAMPING AND STIFFNESS MATRICES

G1. Mass, Damping and Stiffness Matrices of the Beam-Blade Considering Only

Incompressible Unsteady Aerodynamics

Al. The non-zero sub-matrices (my,) of the structural mass matrix (M) of dimension

5N X 3N

17 by 17 Ly '

=3 () wlde my, =37 [ (b + )@,
=l =1,
17 Lip

mi, = (b;’ | @, ®d

s

i=1

where i is the number of blade sections, L; is the length of the i section by, by, bs are
the mass and inertia terms defined by Eqn.(25) and ¥, = {\IJA(Z)} is the shape

function vector given by Eqn.(60).

A2. The non-zero sub-matrices (k;,) of the structural stiffness matrix (K,) of

dimension 5N X 5N

L1+ 17 Lf+1

o o R W e, Ky =Ky =Y [l
LJ
.

—_
-
s

IX
R

i =1
7

L

i

—_
-3
st

[ (e @@ + (6 — )R T+ (b + 0P R iz
Lp

i

i

17 Lin 17 Lin
S 1.5 i 'y’ T S ) T i T 1102 T
By =k = > [ oW de, k=3 [ (aSS\IIQI\IlQI +al B, T — bW, B )dz
i=1 ], ’ i=1 T, ’ ’

A3. The non-zero sub-matrices (mg, ncy of the incompressible aerodynamic mass

matrix (M) of dimension 5N X 3N
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a—inc

11

17 Lip _ 17 Lip
J (e e, i =3 [ (e i
=1, ! =1, 0
17 Lip 17 Lip 1
3 T a—inc __ 4 2 T
f (wpbi ai‘IJé‘IJ7,rU )dz, my, " = Z f [pri [g + a; ]\IIO‘IJo ]dz
i=1 Lz i=1 Lz
17 Lin 17 Lin
T —ine T
[ (el e mye =30 [ 405 - 0) 9, 9] &z
i=1 Lz i=1 L[
17 Lz,+1 17 Lz,+1
T —i T
(\IJUO\IJB2 )dz, mi; e = Z f —b,(0.5 — ai)\IJO\I’BZdZ
=1 7 i=1 Lz

Ad. The non-zero sub-matrices (¢7, incy of the incompressible aerodynamic damping

matrix (C7*¢) of dimension 5N x 5N

17 L
i T
=3[, pULE, B d
i=1 Li
17 L
a—inc _ . bQU N} ‘I’T + C U bQ . CL¢7,, +05 o ‘I’T
€12 TP Ee Lo PYr0 | & o . oLy, ¥
=1
) 17 Lz‘,+1
e =37 [ €y pU B (0.5 +a,) @, Bldz
i=1 Lz
C
3 Lo, T
17 Lz‘,+1 7prl UT ? —0.5— G,i ‘I’¢‘IJ¢ +
cafinc — g
22 o
=1 Lg,
T O pU B (0.5 + a,) g — - T05 LA
‘ 17 L ‘ 17 L
ol ST TR oy A
. 17 L , 17 Lin
ety e = U, e = [ U
=1 i=1 Lz
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where, U, is the relative velocity (Ur = /Ulz + (Z.Q)2>, U; is the inflow velocity, ()

is the rotating speed, p is the air density, b is the half chord and a is the offset

coefficient.

AS. The non-zero sub-matrices (k?lginc) of the incompressible aerodynamic stiffness

matrix (K¥*¢) of dimension 5N X 5N

| 7 L . 17 L
e f ~C, pUPL W W 4z, e = 3 f ~Cy,, pU, by ¥, T d
i o i1y, o
17 LHI
a—inc _ -C.. oU bW \IleZ
5 L‘97pr7’232 v
i=1 L
17 Lisa
= ~Cy, PUIB (0.5 + 0,)®, ¥ dz
i=1 L
17 L1+1
kg4—inc — f 7CL(:‘>ipUT b?(05 + ai)al\IlBl\IlgdZ
i=1 L
17 L1+1
e =3 [ <Oy pU, 05 + 0,)o, 0, e
i=1 p,
. 17 Lig U ) 17 Li U
kzﬁ;mc _ _61 br ‘I’BI‘I’gle» kggm(‘ — Z f _ﬁ2 bT ‘I’BQ‘II;;dZ
i=1 7, i = '
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G2. Mass, Damping and Stiffness Matrices of the Beam-Blade Considering both

Incompressible and Compressible Unsteady Aerodynamics

Figure G1 shows the schematic of the wind turbine blade studied including all the
aerodynamic and structural parameters used in the formulation to calculate the flutter
characteristics of wind turbine blades. It is assumed that for a length of /, from the
blade root, the blade is in the incompressible flow regime, and in the outboard portion
of the blade, blade is in the compressible flow regime. In Figure G1, N is the

number of blade sections over which incompressible aerodynamics acts.

Blade span (1) =61.5m i :
Stiffness terms= al;, als, alg, aly " Section @=1
Mass and inertia terms = b, bl bi Fré 1, =2.73m y ‘R‘/'
Half chord = b, - //\
Offset coefficient = q; 2 q=3
2 5 x

Lift curve = C,4; 5 ;=273

Figure G1. Wind turbine blade sections in the incompressible and compressible

flow regime
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B1. The non-zero sub-matrices (mj3,) of the structural mass matrix (M) of dimension

15N X 3N and the non-zero sub-matrices (k7,) of the structural stiffness matrix (K)

of dimension 15N X 5N are same as the incompressible case and they are given in

items Al and A2 in APPENDIX GI1.

B2. The non-zero sub-matrices (m¢,*) of the total acrodynamic mass matrix (M5**")

of dimension 15N X 3N

inc

N 1+1
e
a—t _ 2 T 3 T
my| = Z f(wpbi v v )dz, Zf(wpbi ai\Il(z)\Il% )dz
i=1 L i=1 I
Nim: L1-l sz i1
a—t _ \ 3 T 4 T
myt =37 [ mobla,w, @ i =3/ [wpb “td ]\II\IJ]J
i=1 L i=1 L
N Ly 17 Ly N Ly
a—t __ T a— _ o T
mirt =y [ @i+ Y [0 & Zfb05a W d
=1, i=N" 41 L =1l
Niru: L L, Nine Ly
a—t __ T a—t __ T
et = f dz + Z [ e i om; _Zf —5,(0.5 — )%, ¥ dz
=1 =N 41 [, =1
17 L
a—t __ T
mit= Y [ww 7 de
i=N"+1 [,
l+1 L+1 H»l
miy! = Z f\If\Il dz, miyt = Z [ @ myt = Z IRAAKE
i=N"+1 [, i=N"+1 [, “ i=N"+1 , “
17 Lia L, L.,
a—t __ T a—t __ T a— T
Moy = Z f‘I’v U, dzomyy, = Z f Yy 4%, My = Z f v, v, dz
0 TeM 0 2eM o Byewr
i=N"+1 [, =N" 41 L, =N"41
Ly Ly 17 L
a—t __ a—t __ a—t __ T
7n1372 B Z f Bl Mg dZ7 7n14’2 o Z f ZqudZ’ 7)7'1572 o Z f ‘II\II SFquZ
i=N"+1 I, i=N"+1 [, i=N"+1 ],

B3. The non-zero sub-matrices (c7,

(Ctotay of dimension 15N X 15N

-8 of the total aerodynamic damping matrix
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Nine L%i1 17 L

i+1

.
a—t _ T ~ T
et =3 [a, pUbLE, Wiz 4 Y [ CuopU b3, ®, ¥z,
=1, =N
Ve Ly Cy,
a—t _ 32 T 2| Le T
eyt =30 [ |-mobtU, T + Oy pU B2 + 0.5\, Jz +
: ( i 27 o
i=1 L
17 Ly
2~ T
> [ 20,0,
=N+,
N Ligy 17 L
a—t _ 2 T 2~ T
ot =30 [ CLpU B (054 0)®, BTz Y [ 20, pU, bGP, BTz,
i=1 L i=N" 41 I,
C,,
3 Lo, T
N L, wpb. U, - 0.5 —aq, \Ila\Il@ +
{]’7, € 7'['
C22 = Z f CL¢ 2+
i=l 3 i T
i CL@l,oUTbi (0.5 +a,)|a — o + 0.5 | ¥, ¥
17 L:+1
—4C,, pU b3&,,,, ®, ! dz
Z f Ld)lp % “0cMq ¥ T ¢
i=N" 41 T,
Nine Ly 17 L
a—t __ _ T _ T
' => [ U de Y i U, e,
i=1 L i=N"+1 L, )
Nine Ly 17 Lin
a—t __ _ T o T
TR Z f \IIBI\I!Bldz + Z f \I!BM‘IJBMdz,
=l =Nl
N Ly 17 Ly
a—t __ _ T _ T
' =3 [Uewd+ Y [ -UwE] d
i=1 [, =N 41, s
Nie Ly 17 Ly
.
a—t __ _ T _ T
' = [t Y [ v, ¥ d
i=1 [, =Nl ],
17 L 17 Lin
a—t __ _ T a—t __ _ T
Co2 = Z f U7.\Il®\Ile dz, cg = Z f ‘I’Bg(.‘I’Bg(,dZ
=N, =N,
17 L 17 L 17 L
a—t __ _ T a—t __ _ T a—t __ _ T
= ) 5, Y dn et = 5, Yy dn eyt = Y i v, ¥ d:
i=N" 41 T, i=N" 41 T, =N 41,
17 L 17 L 17 L
a—t __ _ T a—t __ _ T a—t __ _ T
010’2 Z f U7"I’@‘I’Bx(»;\1d’27 Cl(l,lO - Z f ‘IIBUM ‘IIBMM dZ, CH"Q o Z f UT‘I";/)‘IJBzm\,I dz
=N, i=NTC4L T, =N+l ],
17 Lin 17 Lin 17 Lin
a—t __ _ T a—1t __ _ T a—t __ _ T
Cin = Z f ‘I’BZ,M‘I’EZ(MdZ’ Cr22 = Z f UT-\I’gé‘I’BWdZ» Ci212 = Z f ‘IJB:;,,M\IJQWdZ
i=N""+1 L, ) i=N"+1 L, i=N"+1 L, }
17 Lin 17 L 17 Lin
a—t T a—t T a—t T
il = - dz, el = [ —w, W e e = —v, W' 4
13,13 Z Bl’«”‘l Bl:,Mq ’ 14,14 Z BZUW BZ(:M/] ’ 15,15 Z B3’M‘l BB:.MI]

i=N"C41 T,

i=N" 41 I, i=N"e 41 I,
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B4. The non-zero sub-matrices (ki YY) of the total aerodynamic stiffness matrix

(Ketaly of dimension 15N X 15N

Nine L, 17 Ly
ot = 3 f ~Cpy UL Edz Y [ -cu, pUh, T 2, W dz,
i=1 L i=N.""+1 L,
N”"L 17 Liyy
—t T — T
kit = 3 f ~Cp U b By Wz 4 30 [ =0y pUbE, T, W de
=1 i=N"+1
Nmr L Lz+1
ket =30 f —Cy, U, b0y ¥, T dz—i— Z [ —Cuy 0V b, 0, W,
i=1 L N”“+1 L
Ly 17 L,
t — T —t 2= T
=2 f ~Cpo pU b0, W W, 2z, ki7" = > f 2014, pU. ;01 ¥, ¥, dz,
Z':Nérlﬁ +1 LL Z:Nel71(+1 LL
17 Ll+l 17 Ll+l
-t _ 2— T —t __ 2 T
k= Y [ 20,000 0, Oy, Wz Kyl = Y [ 20, 00, &y, ¥y ¥ dz
i=N" 41 [, i=N"+1 [,
Nine L, 17 ;
' = 3 [ L 05 o) m e Y [ 20, 0, e
=17, i=N"+1 [,
Nine L, Nine L,
(L4—t _ Z f pU b2(0 5 4 a. )Oﬁ \I’Td (L t Z f pU’bIZ(O5 + a,’-)OéZ‘I’B?‘I’(ZdZ
i=1 I i=1 L
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17 Lipg i ,
ot = — lIl d
kglof = Z f 20L¢> pUrbz Y, By ‘I'sz ,11f = Z f 2CL@IPU za2cM‘IIB 2

N1 T
=N 11 I, i=N""+ L;
17 Ly 17 g
- 3 2a Tds kg = Y2 [ 4C,, pU NG Y, Tz,
ki = f =20, pU.b; %cM‘I’B&,M‘I’qs dz, kyyy L, Y% Yerq ¥ B,
-, ' ’ ' =N +1 L,
i=N"+1 [, i ;
17 L 17 L
i - . .
- > 5, i = >[40, pU G, Y, W,
kgul = f AC 1, pUb; ooy P M,[I‘I" dz, k3 e 16, P 0 Y3eMg = By, F0
i=N"+1 [, i=N""+1 [,
L
N‘”‘ Ly 17 41 U
T T
ot _ f ;31 e+ > [ -5 SEWy, U e,
=1, b; : i=N"+1 [, i
L,
Nine Ly U 17 U
—t - _r T _r ‘I’T dZ
ksaa[:Zf By~ ‘I’B‘I’de+2f 52 vy,
1 b, i=1 L z
i=1 L i
L
L 17 i1
17 i1 U U T
— T T a—t __ _r ‘I’ \I’ dZ
6 = Z f*53 b ‘IIBgﬂ‘IIB,g‘dA (A Z f —b b B B,
. i ; o i=Nie 4] L ;
i=N""+1 . 2 i=N,
e ; L,
L 17 i+1
17 i1 U U T
- _r T a—t __ _r ‘I’ \I’ dz
§8 [ = Z f ﬁ b ‘I’ 2“1 ‘I’B‘z dZ 99 B Z f ﬁ b 3441 irq
. i i=Ne 4 L i
i=N""4+1 [ [ i=N]
e i ;
L 17 i+1
17 i+1 U r
T T a—t . U dz
01{0 - Z f 7[31 ‘I}BuM ‘IIB ] dz’ L1 Z f ﬁQ ) Byom Byonr
b. 1eM N T z
i=N"+1 T, i =N
L 17 i
17 i+1 U U r
o= -6, —LW¥ A dz
ol = B, W dz KL = [ -9,
22 Z f 53 b. B " By 3,13 ) ]\;+1 i bi Mg By,
i=N"+1 i i=N! .
e ; ;
L 17 i1
17 i+1 U U T
- o B LW, W 4
a—t __ _ T ‘I’ \IIT dZ a — f ﬁ3 ~ .
414 = E f By b By By, kisis WZ 1 b. st By,
i=N"+1 L [ 1=N""+1 L,
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