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Farsadi, Touraj
Ph.D., Department of Aerospace Engineering
Supervisor       : Prof. Dr. Altan Kayran

April 2018, 333 pages

Aeroelastic  behaviour  of  composite  wings  and  wind  turbine  blades  in  the 

incompressible and compressible flow regimes is investigated utilizing a geometrically 

nonlinear Thin  Wall  Beam  (TWB) theory  incorporating  non  uniform  geometric 

features such as sweep, taper, pretwist, warping inhibition and transverse shear strain. 

The structural equations of motion are obtained in the most general form based on the 

kinematic  relations  governing  thin  walled  beams,  including  the  nonlinear  strain 

displacement relations, and utilizing the principles of analytical dynamics. Unsteady 

aerodynamic loads in the incompressible and compressible flow regime are expressed 

using  indicial  functions  in  the  time-domain.  The  aeroelastic  system  of  equations  is 

augmented by the differential equations governing the aerodynamics lag states to come 

up  with  the  final coupled  fluid-structure equations  of  motion.  Time  response  of  the 

nonlinear  aeroelastic  system  is  obtained  via  the  Runge-Kutta  direct  integration 

algorithm.

The effect of the compressibility on the flutter characteristics of aeroelastically tailored 

bend-twist coupled (BTC) composite blades designed for the MW sized wind turbine

is  investigated.  Flutter  analyses  are  performed  for  the  baseline  blade  and  the  BTC
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blades designed for the MW sized wind turbine. Beam model of the blade is developed 

by making analogy with the structural model of the prewisted rotating TWB and 

utilizing the Variational Asymptotic Beam Section (VABS) method for the calculation 

of sectional properties of the blades designed. To investigate the effect of 

compressibility on the flutter characteristics of the wind turbine blades, aeroelastic 

analyses are performed in frequency and time domain utilizing both incompressible 

and compressible unsteady aerodynamics via indicial function approach. 

 

Keywords: Composite wing; Composite wind turbine blade; Aeroelastic instability; 

Flutter; Compressibility; Bending-twisting coupling; Limit cycle oscillation (LCO) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

ÖZ 
 

 

GEOMETRİK DOĞRUSALSIZLIK VE SIKIŞTIRILABİLİRLİK İÇEREN 

KOMPOZİT KANAT VE RÜZGAR TÜRBİN KANATLARININ 

AEROELASTİK ANALİZİ 

 

 

 
 

                        
 

   

 

 

  

 

 

   

    

   

Farsadi, Touraj 
Doktora, Havacılık ve Uzay Mühendisliği Bölümü

     Tez Yöneticisi     : Prof. Dr. Altan Kayran

Nisan 2018, 333 sayfa

Kompozit  kanatlar  ve  rüzgar  türbin  kanatlarının  sıkıştırılabilir  ve  sıkıştırılamaz  akış 

rejimlerindeki  aeroelastik  davranışları,  ok  açısı,  sivrilme,  ön  burulma,  eğrilme 

engelleme ve enine kesme gerinimi gibi geometrik özellikleri bünyesinde barındıran 

geometrik olarak  doğrusal  olmayan  ince  cidarlı  kiriş  (TWB)  teorisi  kullanılarak 

incelenmştir.  Yapısal  hareket  denklemleri,  ince  cidarlı  kirişler  için  geçerli,  doğrusal 

olmayan  gerinim – yer  değiştirme  etkileşimlerini  içeren  ve  analitik  dinamiğin 

ilkelerini  kullanan kinematik  ilişkilerin  üzerine  kurulu  en  genel  biçimde  elde 

edilmiştir.  Sıkıştırılamaz  ve  sıkıştırılabilir  akış  rejimindeki  kararsız  aerodinamik 

yükler, zaman  bölgesinde  indisiyel  fonksiyonlar kullanılarak ifade  edilmiştir. 

Aeroelastik  denklemler  sistemi,  akışkan – yapısal  bağlaşık  hareket  denklemlerine 

ulaşmak  için,  aerodinamik  gecikme  durumlarını  yöneten  diferansiyel  denklemlerle 

genişletilmiştir. Doğrusal olmayan aeroelastik sistemin zamana bağlı cevabı, Runge- 

Kutta doğrudan integrasyon algoritması ile elde edilmiştir.

Sıkıştırılabilirliğin, MW kapasiteli rüzgar türbini için tasarlanmış, aeroelastik  olarak 

uyarlanmış eğilme-burulma  etkileşimine sahip (BTC) kompozit kanatların çırpma 

karakteristikleri  üzerindeki etkisi  incelenmiştir.  MW  türbin  için  tasarlanan  referans

kanat ve BTC kanatların çırpma analizleri gerçekleştirilmiştir. Kanadın kiriş modeli,
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ön burulmalı döner ince cidarlı kirişin yapısal modeli ile benzeşim yapılarak ve 

tasarlanmış kanatların kesitsel özelliklerinin hesaplanması için varyasyonel asimtotik 

kiriş kesiti (VABS) metodu kullanılarak geliştirilmiştir. Sıkıştırılabilirliğin rüzgar 

türbin kanatlarının çırpma karakteristikleri üzerindeki etkisini incelemek için, indisiyel 

fonksiyon yaklaşımı yoluyla hem sıkıştırılamaz hem de sıkıştırılabilir kararsız 

aerodinamik kullanılarak, frekans ve zaman bölgelerinde aeroelastik analizler 

gerçekleştirilmiştir. 

 

Anahtar kelimeler: Kompozit kanat; Kompozit rüzgar türbin kanadı; Aeroelastik 

kararsızlık; Çırpma; Sıkıştırılabilirlik; Eğilme-burulma bağlaşımı; Limit çevrim 

salınımı 
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 CHAPTER 1  

 

 

INTRODUCTION 
 

 

 

 Wind Turbines 

Wind turbines are machines that convert wind’s kinetic energy to rotary mechanical 

energy, resulting in the production of electricity. The first wind turbines were 

windmills that were used for the purpose of grinding in ancient Persia around 900 A.D. 

At the end of the 19th century, people started to generate electricity from the wind 

turbines and today, 4% [1] of the total electricity in the world is generated from wind 

turbines. Small wind turbines are used to recharge batteries and illuminate lamps 

where the larger ones in the industry are used to supply electricity.  

In the wind turbine industry, the energy required from wind turbines has risen due to 

the increased demand for renewable energy. Blades are one of the main components 

responsible for the power produced. In order to obtain higher power from the turbines, 

the necessity of optimum control of the pitch angle and the increase in the length of 

the blades have boosted. The newly designed wind turbine blades have already reached 

the 100 meter border as shown in Figure 1-1. Due to the increase in the length, the 

weight of the blades increase. Moreover, active control mechanism for the pitch angle 

requires feedback system and mechanical parts to be installed on the blades which 

result in additional cost and weight. Longer blades necessitate better optimized blade 

structures which bring about challenges to the design process to develop innovative 

design solutions.  
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Higher energy extraction from wind turbine systems requires larger turbines, with 

blades in the border of 100 m, and associated optimized structural and mechanical 

components to accomplish improved stiffness, increased fatigue life, and reliability. 

To attain these goals, loads that occur due to the aeroelastic effects on the wind turbine 

blades must be reduced. This can also be achieved passively by utilizing anisotropy of 

composite materials. Due to the anisotropic behavior of composite materials, 

aeroelastic tailoring of the rotor blades as a passive control mechanism can be 

succeeded. Induced twist due to bending on the blades which occurs as a result of 

anisotropic behavior of composite materials as a passive control mechanism may 

reduce the loads in the whole wind turbine system [2-7].  

 

Figure 1-1 Wind turbine size increase 1980-2015, showing relative size of the 

swept area, as turbine size increased from 75 kW to 8 MW [8] 

Aeroelasticity of Wind Turbine Blade Aeoroelasticity is the interaction of elasticity, 

inertia and aerodynamic loads. Elastic structures can be deformed by the external 

aerodynamic loads. On the other hand, the structural deformations change the 

aerodynamic loads. This interplay between the structural deformation and the 

aerodynamic loads leads to sophisticated physical problems. Several types of 

structures are exposed to aeroelastic phenomena due to the elasticity of the structure 

and airflow passing around the body. Bridges, tall buildings, aircraft wings, turbo-

machinery and wind turbines all encounter aeroelastic instability. The nature of the 

aeroelasticity is either steady (static) aeroelasticity or dynamic aeroelasticity. The 
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static aeroelasticity studies only the steady interaction between elasticity and 

aerodynamic loads whereas dynamic aeroelasticity considers time dependent response 

of elastic structures and includes the inertia forces as well. Instabilities investigated 

under the static aeroelasticity mainly involve divergence and control surface reversal. 

Aerodynamic loads acting on lifting surface cause deflection in the structure. With the 

increase in applied loads, the twist increases. The increased loads deform the structure 

further, finally taking it to its critical load and complete failure.  

The phase difference between the deformations of the structure and the aerodynamic 

loads causes energy absorption by the structure from the air. The energy transmission 

from aerodynamic loads to the structure may result in oscillations with growing 

amplitude. The worst case scenario is the failure of the structure. Flutter instability is 

a kind of dynamic aeroelasticity which involves flapwise and torsional modes of 

structure. For wind turbine blades these modes are shown in Figure 1-2, 

 

Figure 1-2 Degrees of freedom of a blade [9] 

Classical flutter is a dynamic aeroelastic instability generated by coupling of torsion 

and flapwise deformations. When classical flutter arises, time response grows 

exponentially till the failure. Classical flutter is well known in aerospace and civil 

engineering. Occurrence of the classical flutter event has not been reported for 

commercial wind turbine so far. With an increase in length of wind turbine’s blade in 

the future wind turbines, it is more likely to happen [9].   

For large wind turbine’s blade in low angle of attacks and attached flow, the classical 

flutter becomes a serious danger. It is recommended by [10] to include classical flutter 
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calculations in the preliminary design for 50 m blades and above due to decrease in 

the flapwise and the torsional stiffness. 

Obtaining accurate and efficient aerodynamic models has been an important goal of 

research efforts in wind turbine industry over the past years. Aerodynamic models are 

necessary to design the wind turbine blade, to evaluate aeroelastic stability and the 

response. The unsteady aerodynamics provides a good level of accuracy in prediction 

of the flutter rotational speeds of the wind turbine blade when the correct models with 

both circulatory and non-circulatory components are employed [11]. Among the wide 

range of unsteady aerodynamic models in the literature the classical models of 

Theodorsen in frequency domain and its time domain counterpart, indicial 

aerodynamics remain widely used and provide a benchmark for the linear models both 

in fixed and rotary blades. Several studies have been conducted with the use of these 

approaches to investigate the aeroelastic characteristics of the wind turbine blades [12-

20].    

Janetzke [21] at the NASA Lewis Research Centre published the first paper directly 

related to the aeroelasticity of the wind turbine. Kooijman [22] indicated that the 

aeroelastic tailoring technique is promissory in the wind turbines rotor blade designs. 

Lobitz [23] utilized aeroelastic tailoring of the blades to shape the power curve and 

reduce load. Chaviaropoulos et al. [24] addressed flapping-edgewise coupling effects 

on the aeroelasticity of the wind turbine blade using viscous CFD techniques.  

Lobitz [12] conducted one of the pioneer works to address the classical flutter 

instability phenomenon in a small size wind turbine blade system. Later, Lobitz [13] 

investigated the flutter limit of a MW sized wind turbine blade based on isolated blade. 

In this study, it is shown that the predicted flutter rotational speed of the blade using 

quasi-steady aerodynamics is lower than the flutter rotational speed obtained using 

unsteady Theodorsen aerodynamics. Owens et al. [14] performed an examination on 

the very large wind turbine blade’s flutter problem. In this work, BLAST tool, which 

is a program based on FE model and Theodorsen’s unsteady theory in MATLAB, is 

used to investigate the aeroelastic stability of a turbine blade. The p-k iteration method 

is employed to estimate instability boundaries of the aeroelastic system. Owens and 
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Griffith [15] employed Theodorsen unsteady airfoil aerodynamic theory to predict the 

aeroelastic instability boundaries of a large sized vertical axis wind turbine blade. The 

aeroelastic characteristics of the bend-twist coupled blade model in a linear state space 

formulation using frequency response diagrams are investigated by Stablein et al. [16]. 

The 2D linear blade section structural mode with 3 degree of freedom (flapwise, 

torsion and edgewise) is derived by means of Lagrange’s theory while the 

Theodorsen’s unsteady aerodynamic model in time domain is coupled with the 

structure model.  Pourazarm et al. [17,18] predicted the dynamic instability onset of  

three different MW sized wind turbine blade WindPACT 1.5 MW, NREL 5 MW and 

SNL 100-00.  The coupled bending-torsion simple continuous beam formulations 

subjected to Theodorsen’s unsteady aerodynamic model are derived and solved using 

the Galerkin method. It is found out that the torsional natural frequency has the highest 

impact on the instability speed. The ratio of the torsional natural frequency to the 

flapwise natural frequency is brought up as a major blade design parameter to deal 

with the occurrence of the risk of the structural dynamic instability. 

Jeong et al. [19] investigated the effect of torsional stiffness on aeroelastic instability 

of a large horizontal axis wind turbine. A finite element method based on the large 

deflection beam theory and Greenberg’s extension of Theodorsen’s aerodynamic strip 

theories are integrated in an aeroelastic system. For the stability analysis, a proposed 

aerodynamic approach was employed in conjunction with a structural model. They 

claimed that a low torsional stiffness of the wind turbine blade considerably affects the 

possibility of classical flutter instability. Buhl et al. [20] studied the passive 

suppression of the wind turbine blade’s aeroelastic instability. They showed that the 

critical relative wind speed can be significantly improved with the increase of the blade 

torsional frequency. Hayat et al. [25,26] studied the flutter performance of large bend-

twist coupled wind turbine blade in time domain. Aerodyn/ADAMS commercial code 

is used to verify the flutter results. It is shown that reduction in torsional stiffness 

results in a decrease in the flutter rotational speed.  

Vatne [27] studied the aeroelastic instabilities of a 10 MW wind turbine blade using 

aeroelastic stability tool HAWCStab2 in time domain. Analysis has been performed in 
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two cases; isolated blade and entire wind turbine analysis.  Results showed that the 

flutter rotational speed is slightly higher in the isolated blade analysis compared with 

the entire turbine analysis, but the results are close enough to avoid total turbine 

investigation due to the complexity.  

In order to enhance the performance and aeroelastic characteristics of the rotary blades 

of wind turbine systems, pretwist is applied to the blades during the manufacturing. 

Pretwist which varies from the root of the blade to the tip of the blade is also called as 

geometric twist. An experimental aeroelastic analysis including geometric nonlinearity 

and pretwist effects are performed by Ladge et al. [28]  on a small-scale wind turbine. 

It is seen that with the increase in twist angle by 35%, flutter rotational speed increased 

by 23%. Li et al. [29]  studied the aeroelastic stability of the wind turbine blade 

considering bending-twist coupling and composite thin walled beam with pretwist in 

the structural model. The governing system of equations have been solved by the 

Galerkin method and time –marching approach. The time response analysis is 

performed for the wind speed of 20 m/s, ply angle of 30° for three pretwist angles; 

0°, 5° and 10°. Results showed that by increasing the pretwist angle, response amplitude 

decreases and aeroelastic stability improves significantly.  

In the case of computational aeroelasticity instability analysis of wind turbine blades, 

Yu and Kwon [30] numerically examined the aeroelastic response of a turbine blade 

using combined CFD-CSD method. Due to the aeroelastic torsional deformation, the 

aerodynamic loads on the blade are considerably increased. Baxevanou et al. [31]  

studied the classical flutter of the wind turbine airfoil using incompressible Navier–

Stokes CFD solver.         

Formerly, wind turbines were often analysed using incompressible aerodynamic 

models. But nowadays, compressibility effect becomes a significant factor in 

investigating the aeroelastic instability of wind turbine blades due to the increase in 

the size of the blade and higher tip speed ratio [32]. For the 5 MW and higher MW 

wind turbines, the tip speed at flutter point could exceed Mach number of 0.3 and 

compressibility effects cannot be ignored. So far, many CFD based analysis have been 
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performed to study the aeroelastic analysis of wind turbine using Navier Stokes 

subsonic compressible equations [33-35]. Almost all of them emphasized that in order 

to increase the accuracy of the aerodynamic model of the MW sized wind turbines, 

considering compressibility effects is inevitable. The nature of the method is not well-

matched for wind turbine applications, due to the low Mach numbers around the blade 

root where the flow is usually incompressible. Some remedies such as preconditioned 

and artificial compressibility methods have been reported to deal with this problem 

which may increase the cost of computations and complexity of the simulation [36]. 

For a fixed wing, compressibility has a significant influence on the classical flutter 

speed such that at high subsonic speeds (M=0.7), compressibility can yield a drop of 

the flutter speed by about 45%. [37]. Sina and Farsadi [38], Farsadi [39] developed  

novel exponential approximation of indicial aerodynamic functions in the subsonic 

compressible flow regime.   

1.1.1 Composite Thin Walled Beam  

For the preliminary investigation of the aeroelasticity of the wind turbine blade, the 

simplified structure can be useful. Box structure of wind turbine blades and aircraft 

wings shown in Figure 1-3, is the load carrying part and in a conservative way it can 

be assumed that almost all the aerodynamic loads are resisted by the box beam. Thus, 

the structural design of box beam is very crucial in designing aircraft wings and wind 

turbine blades. Box beam structure can be considered as a TWB. TWB structures have 

found their extensive applications in a variety of engineering products such as aircraft 

wings, helicopter blades, wind turbine blades, tilt rotor aircrafts, space deployable 

antennas and turbo machinery/jet engine components. In fact, the design of flight 

vehicle structures is mainly based on the principles of thin walled beams [40]. The 

cross section of TWBs is made up from thin panels connected among themselves to 

create closed or open cross sections of a beam. From the strength of materials 

perspective, TWBs have a higher gyration radius and hence provide higher bending 
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stiffness to weight ratios compared with the traditional solid beams. Their structural 

efficiency may be even further improved by proper composite laminations. 

 

   

 

Figure 1-3 (a) Wind turbine blade and (b) aircraft wing cross section [41] 

 

Composites provide the best specific stiffness (stiffness to weight) and specific 

strength (strength to weight), compared with nearly all modern materials. They also 

provide the possibility to perform aeroelastic tailoring to get the exact mechanical 

properties. Consequently, by using TWB structures wisely, the structural efficiency 

can be maximized. A most spectacular product of this technology is the possibility to 

eliminate, without weight penalties, the occurrence of the chronic aeroelastic 

Blade load box 

(structure part) 

Aerodynamic surface (a) 

(b) 
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divergence instability that has prevented for a long time the use of swept-forward 

wings in aircraft such as the Grumman X-29 swept-forward wing experimental aircraft 

[42].  

Having maximized the structural efficiency, the overall weight is minimized. This fact 

has led to extensive research studies to determine the critical loading/working 

conditions and bottlenecks of a design. The literature in this field is too vast to review 

hence only a few major studies are mentioned in this section. Both isotropic and 

composite material models are sufficiently studied. The key point in the studies of 

composite TWBs is that they exhibit significant non-classical effects, which include 

transverse shear, warping restraint, three-dimensional strain effect and contour-wise 

shear stiffness variations. 

A comprehensive theory to deal with TWB was first developed in the late thirties by 

Vlasov [43]. Timoshenko [44,45] and later Gjelsvik [46] has extended the theory to 

include other complicating effects. Specifically speaking, Vlasov [43] introduced the 

concept of cross sectional primary warping by using a new variable, being the rate of 

twist along the beam; Timoshenko [44] obtained a general theory of TWB with open 

cross-section and then introduced the effect of shear transverse strain as a new 

kinematic variable [45]; and Gjelsvik [46] extended the theory to take into account 

both open and closed cross-section cases and incorporated the secondary warping 

effect for the first time. Several scientists have then contributed to evolving the theory 

of TWBs [47-52] to include single/multicellular configurations, composite lamination 

tailoring, transverse shear effects, open/closed cross sections and other complicating 

effects. A higher-order shear deformation theory for the static and dynamic analysis of 

thin-walled composite beams of arbitrary lay-up and cross section was also presented 

by J.K. Suresh et al. [53] . Z. Qin and L. Librescu [54] then proposed a refined model 

to account for the three-dimensional strain effect and non-uniformity effect of the 

contour-wise shear stiffness which are significantly effective in laminated composite 

beams. The model was later validated by the same authors for three distinct layup 

configurations [55]. The comprehensive book by L. Librescu and O. Song [56] gives 



 
10 

 

a full description of the governing equations of motion and their solution 

methodologies. 

Nonlinear formulations to the problems of TWBs have also been reported in the 

literature both for isotropic [57-59] and laminated structures [60]. K. Bhaskar and L. 

Librescu [60] followed a systematic approach based on the Lagrangian description and 

Hamilton’s principle to formulate the geometrically nonlinear theory. Their theory 

accounts for anisotropy, transverse shear deformation, constrained warping and 

bending stiffness of the beam-wall. Wang and Qin [61], performed nonlinear analysis 

of composite thin walled beams in the presence of simultaneous 1:2 internal and 1:1 

external resonance. Their solution method is based on the extended Galerkin method 

and the method of multiple scales. The saturation and jump phenomena are well 

discussed and verified with the commercial code ABAQUS. 

1.1.2 Aeroelasticity of Composite Thin Walled Beam 

Due to the applicability of TWBs in aerospace vehicles and the importance of 

aeroelastic stability in the design of long wind turbine blades and modern flexible 

aircraft, a great deal of studies is devoted to the aeroelastic investigation of wings and 

blades structurally modeled as beams or TWBs. The first studies regarding this issue 

were published by L. Librescu et al. [62-66], Hong et al. [67] and Cesnik et al. [68]. 

In the latter study by Cesnik et al. [68], aeroelastic stability of high aspect ratio 

composite wings is performed. The structural model is based on an asymptotically 

correct cross-sectional formulation and a nonlinear geometric exact beam analysis. For 

the aerodynamic model, the 2-D unsteady inflow finite-state theory as well as the 

Theodorsen’s theory are implemented. Z. Qin and L. Libresccu [69] incorporated the 

effects of transverse shear, material anisotropy, warping inhibition, and rotatory inertia 

in the structural modeling of an aircraft wing and utilized the unsteady incompressible 

aerodynamic model in the time domain according to the concept of indicial functions. 

Aeroelastic instability of aircraft wings by a composite TWB model is further studied 

by Z. Qin and L. Librescu [70]. They employed the incompressible unsteady 

aerodynamics using an indicial formulation. Haddadpour et al. [71] have also 
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performed aeroelastic analysis of anisotropic TWBs which represent aircraft wings. 

Unsteady incompressible aerodynamics is modeled in the time domain by the 

Wagner’s function approximation. Na et al. [72] have provided a more comprehensive 

model, including active aeroelastic control of TWBs under specific loading conditions. 

They used an indicial formulation, being typical in compressible flow problems, to 

approximate the unsteady compressible aerodynamic loading in the time domain. The 

extensive research papers in the field of rotating composite beams have been reviewed 

in depth by Li [73] and Chakravarty [74,75]. Li et al. [73] proposed an innovative 

methodology for design of composite rotor blade cross sections. The concept of using 

adaptive, bend-twist coupled, composite blades in order to improve energy capture as 

well as decrease design complexity are considered in [75].  

1.1.3 Nonlinear Aeroelasticity 

1.1.3.1 Limit cycle oscillations  

Flutter speed is normally calculated using linear governing equations of motion. Flutter 

speed is the borderline and the small disturbances in the flow results in exponential 

growth of the oscillations of the structure. In the vicinity of the flutter speed, the so-

called limit cycle oscillations (LCO) occur if nonlinearities exist in the structure of 

fluid flow. LCOs have been observed in wind turbine blades and aircraft wings  [76]. 

Figure 1-4 shows the time response of a typical LCO. As seen in Figure 1-4, amplitude 

increases up to a certain level beyond which the nonlinearities in the system do not 

permit the amplitude of the oscillations to increase any further. In this respect, 

nonlinearities in the system may prevent diverging oscillations.   
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Figure 1-4 Time response of  a typical LCO 

Nonlinearities which result in LCOs, have either structural nature or aerodynamic 

origin. Structural nonlinearities which are the subject of present study, involve the 

geometrical nonlinearity, nonlinear stiffness (e.g. free play and contact) and nonlinear 

damping (e.g. friction). In case of aerodynamic nonlinearities, flow separation and 

shock phenomena can be mentioned. LCOs due to structural nonlinearity have been 

vastly studied both experimentally and theoretically [77-79]. Comprehensive research 

on the subject of LCOs due to aerodynamic nonlinearities has been performed [80,81]. 

Flutter speed is normally calculated using linear governing equations of motion. But 

the post flutter behavior and LCO caused by structural nonlinearities are investigated 

using nonlinear aeroelasticity. There exist two kinds of LCOs when considering 

structural nonlinearities. LCOs which occur beyond the flutter point and have a stable 

nature are called as benign LCOs. These LCOs are normally due to geometrical 

nonlinearities such as strain nonlinearity. Detrimental LCOs occur below the flutter 

point. Stiffness nonlinearities (such as free play and contact) and damping 

nonlinearities (such as friction) are the common source of detrimental LCOs. Figure 

1-5 shows the difference of these two type of LCOs. Figure 1-5 is called as the 

bifurcation diagram which is very beneficial in interpreting post flutter response and 

the LCO behavior.  Variation of the maximum LCO constant amplitude and the free 

stream speed are the axes of the bifurcation diagram. Benign LCOs occur outside the 
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flutter point. In benign LCO, maximum response amplitude increase with an increase 

of the velocity. Benign nonlinearity itself is divided into two forms. In the weak form, 

the LCO amplitude grows fast when the flow velocity is increased. On the other hand, 

in the strong form, the LCO amplitude grows rather gradually and LCOs can be 

observed in a wider post flutter region. For this kind of LCO, abrupt amplitude changes 

due to a disturbance terminates with LCO. 

 

 

Figure 1-5 Types of LCOs described by Dowell [82] 

LCOs come into existence due to the nonlinear modeling in aeroelastic problems of 

the wings [83-85]. Nonlinearities in wing structures usually arise from the structural 

stiffness, contacts and free plays of the control surfaces and nonlinear unsteady 

aerodynamics. A comprehensive review of the structural and aerodynamic 

nonlinearity effects on the aeroelastic response is given in by Dowell et al. [82]. As a 

pioneer, Woolston et al. [86] investigated the effect of structural nonlinearity on the 

classical flutter of aircraft wings. In this study three   relatively simple characteristic 

types of structural   nonlinearities were studied—namely, free play, hysteresis, and a 

cubic spring. As a result, it was shown that nonlinearity has a significant effect on the 

flutter speed. The results are highly dependent on the amplitude of the initial 

disturbance. In many cases the flutter speed was lowered as the initial disturbance was 
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increased. Lee et al. [87] presented a method for nonlinear aeroelastic analysis of a 

two-dimensional airfoil, subjected to incompressible aerodynamic loading using a 

time-marching finite-difference scheme. In a later study, Price et al. [88] investigated 

the airfoil response and the possibility of chaotic behavior by using a variety of plots 

including power spectral density, phase space, Poincare map and Lyapunov exponent. 

It is commented that LCO due to aerodynamic nonlinearity occurs beyond the flutter 

speed while the structural nonlinearity may lead to LCO at an air speed smaller than 

the flutter speed [89]. Tang and Dowell [90] investigated the effect of geometric 

nonlinearity on the flutter and post flutter behavior of high aspect ratio 3-D wings. 

They used slender body assumptions and utilized quasi steady aerodynamic theory. 

Patil and Hodges [91] considered aerodynamic and geometric nonlinearities in a 

unified aeroelastic model for high-aspect ratio wings. They employed doublet-lattice 

aerodynamic theory and nonlinear finite element solution methodology. 

 Objective of the thesis 

The main objective of the present thesis is to develop theoretical models capable of 

predicting the aeroelastic instability boundaries and the post flutter LCO response of 

aircraft wings as well as wind turbine blades modelled as geometrically nonlinear 

TWB. The theoretical outline of the structural part of the present work consists of two 

main parts. Firstly, the load carrying box of composite wings is modelled as TWB with 

3D displacement domain including all non-classical effects such as warping and 

transverse shear in presence of geometrical nonlinear terms due to large twist angle 

and moderately large transverse deformations and second order strain nonlinearity. 

The effects of stiffness coupling terms induced by various layup configuration on the 

static and dynamic aeroelastic characteristics and LCO behavior of composite wings 

are investigated. New quadratic and cubic nonlinear stiffness terms are formulated and 

integrated into an aeroelastic governing equations of motion capable of calculating the 

dynamic characteristics of composite wings in the subcritical, critical and the 

supercritical inflow speeds. The next part of the thesis study deals with the aeroelastic 

response of a more realistic MW sized wind turbine blade made of glass fiber 
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reinforced plastic (GFRP) including bend-twist coupling. The inertia and stiffness 

properties of the inversely designed blade are calculated using the VABS. The 

aerodynamic loads acting on the blade structure is assumed to be attached unsteady 

aerodynamic flow and calculated by the indicial function method. Unsteady 

incompressible aerodynamics based on Wagner’s aerodynamic function and unsteady 

subsonic compressible aerodynamics based on compressible indicial aerodynamic 

functions are used to simulate the aerodynamic loads which are incorporated into 

coupled aeroelastic governing equation of motions to predict more realistic dynamic 

performance of wind turbine blade under various rotational and inflow speeds.   

The main result to be reached is to achieve highest critical aeroelastic boundaries by 

alleviating internal loads by exploiting bend-twist coupling and validate the bend-twist 

coupling effect in box-beam structures, which simulate the flange region between the 

spars in a wind turbine blade, through a) theoretical composite thin walled beam model 

based on Librescu nonlinear theory and b) finite element analysis using VABS 

software. Off-axis unidirectional lamina applied in the blade load carrying box tends 

to decrease angle of attack yields to load alleviation in blade and increase instability 

boundaries of the system. On the other hand, stiffness coupling originated by off-axis 

fiber layups in conjunction with strain-displacement nonlinear terms directly affect the 

response of post flutter behavior.  

 Scope of the thesis 

Due to the fact that turbine blades and aircraft wings are critical aerospace structures, 

aeroelastic optimization and stability of these structures is very crucial. Box beam in 

wings and wind turbine blades must have low weight as much as possible, and loads 

incurred due to the flexing of the blades must be controlled in order to enhance 

aeroelastic instability. In the literature part, most of the work is dedicated to the 

aeroelastic analysis of linear structure in incompressible flow regime.  Different from 

most of the work in the literature, in the present thesis, the aeroelastic dynamic 

response and instability of the wings and blades modeled as TWBs is studied by 
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including geometrical nonlinearity, structural non-uniformity (such as; pretwist, taper 

ratio and weep angle), non-classical effects (such as; material anisotropy, transverse 

shear, warping and rotary moment of inertia) as well as compressibility effects. 

Throughout the thesis, it is intended to establish the bend-twist coupling in composite 

structure by choosing proper layup configuration and to apply stiffness coupling term 

into aeroelastic governing equation of motion results to evaluate dynamic 

characteristics of wind turbine blade’s system.    

In Chapter 2, theory of the rotating TWB incorporating the non-uniform geometric 

features such as pretwist, warping inhibition and transverse shear effects is developed 

and free vibration analysis is performed to obtain natural frequencies and mode shapes 

of the thin walled beams. The beam is made of anisotropic materials in two different 

layup configurations known as circumferentially asymmetric stiffness (CAS) and 

circumferentially uniform stiffness (CUS). These layup configurations possess diverse 

elastic coupling such as, flapwise bending- torsion, extension-chordwise bending in 

CAS configuration and extension- torsion, flapwise bending-chordwise bending in 

CUS configuration. 

In Chapter 3, the unsteady indicial aerodynamics is introduced in detail. Derivation 

methodology of the unsteady incompressible aerodynamic based on Theoderson’s 

theory and Wagner function is described in the first section. Then, compressible 

unsteady aerodynamics based on indicial function is comprehensively explained. The 

novel aspect of this formulation is the Mach dependent exponential approximation of 

the indicial functions which makes it possible to perform direct stability analysis at 

any subsonic Mach number. 

In Chapter 4, aeroelastic response characteristics of composite wings are investigated 

via a geometrically nonlinear TWB theory for the structural part incorporating warping 

inhibition and transverse shear strain effect. Using the aerodynamics lag states and 

indicial incompressible and compressible aerodynamics theory, explicit expressions 

for the aerodynamics loading are obtained in the time domain. The coupled field 

equations of motion are obtained by utilizing the Hamilton’s principle. Nonlinear 

aeroelastic responses are then obtained for composite wings and blades with CAS 
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configuration TWB structural model by means of a Ritz based solution methodology 

utilizing the mode shapes of the linear structural system. In Section 4-1, the general 

aeroelastic governing equation of motion of composite TWB including the effect of 

angular velocity and up to third order nonlinearity are derived. In Section 4.2, By 

excluding angular velocity effect, nonlinear aeroelastic behavior of composite fix 

wings with pretwist and taper ratio ( Figure 1-6a) are comprehensively studied. The 

nonlinear aeroelastic analysis are performed in incompressible flow regime using 

aerodynamic states and Wagner aerodynamics theory for various fiber angles. In 

Section 4.3, By including the angular velocity effect both in structural and 

aerodynamic models, the nonlinear aeroelastic analysis is accomplished for a geometry 

similar to realistic 5 MW NREL wind turbine box beam-blade ( Figure 1-6b) in order 

to obtain flutter rotational speed at constant wind inflow. Linear flutter analysis is done 

for fiber angle while post flutter analysis is studied for fiber angle -75°. The indicial 

function in unsteady incompressible flow is used to simulate incompressible unsteady 

aerodynamic effects. Section 4.4 is devoted to investigate the effect of compressibility 

on the linear and nonlinear aeroelastic characteristics of the composite fix wings. The 

nonlinear aeroelasticity of composite wing is studied in compressible flow regime 

using aerodynamic lag terms and indicial aerodynamics theory for various fiber and 

sweep angles ( Figure 1-6c). 

This chapter in general gives the detailed derivation and the solution procedure of the 

nonlinear aeroelastic system of equations. Effects of pretwist, taper ratio, wing sweep 

angle and the fiber angle of the CAS configuration TWB on the post-flutter response 

of the composite fix wing and rotating blade are studied in depth by providing 

bifurcation diagrams, phase portraits, Poincare maps and one sided Power Spectral 

Density (PSD) plots. To the best of author’s knowledge, integration of the nonlinear 

structural thin walled beam model and compressible unsteady aerodynamics via 

indicial functions in an aeroelastic system for the investigation of the post-critical 

aeroelastic response of composite wings and rotating blades, as presented in this thesis 

study has not been studied before. 
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Figure 1-6 Schematic description of (a) pretwisted, tapered composite fix wing (b) 

rotating composite blade (c) swept composite fix wing  

In Chapter 5, the effect of the compressibility on the flutter characteristics of BTC 

composite blades is investigated. Flutter analyses have been performed for the baseline 

blade and the BTC blades designed for the 5MW wind turbine of NREL (National 

Renewable Energy Laboratory). Beam model of the blade has been developed by 

making analogy with the structural model of the prewisted rotating TWB and utilizing 

the VABS method for the calculation of sectional properties of the blades designed. 

To investigate the effect of compressibility on the flutter characteristics of the blades, 

aeroelastic analyses have been performed both in frequency and time domain utilizing 

unsteady aerodynamics via indicial function approach. 

 

 

 

(a) (b) 
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CHAPTER 2 

 

 

 GENERAL NONLINEAR STRUCTURAL MODEL OF THE COMPOSITE 

ROTATING TWB 

 

 

 Preliminaries 

TWB considered in the present study is composed of a single cell with straight edges 

as shown in Figure 2-1. However, the formulation can be extended to a general cross-

section which is representative of a rotating blade. TWB model has a length L , width 

l , height d , wall thickness h  and pretwist angle ( )z . 

 

 

Figure 2-1 Schematic description of the rotating non-uniform TWB 
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For the derivation of the governing equations, four structural reference coordinates are 

considered. Inertial coordinate system ( , , )XY Z  is attached to the hub center. The 

rotation vector is perpendicular to the ( , )X Z  plane and the TWB has angular velocity 

of ( )j   


. Rotating coordinate system ( , , )x y z  is placed at the root of the TWB 

blade and 0R  is the offset between the hub center and the root of the blade. Curvilinear 

coordinate system ( , , )p p px y z  is used to define the complex contour of the cross 

section for the calculation of the cross-sectional properties. Local coordinate system 

( , , )n s z  is defined at the mid plane of the cross section of the TWB such that the 

parameter s is the local coordinate axis tangent to the middle surface and n is the 

coordinate axis perpendicular to the tangential coordinate axis s and the origin is at the 

mid-plane of the wall thickness of the TWB ( Figure 2-1).  

The following assumptions are considered to model the composite rotating 

geometrically nonlinear TWB structural model [56,60]; 

a) The transverse displacements u  and v in the x  and y directions are finite but, 

the twist angle  is considered to be moderately large. 

b) The displacement w  in the z  direction is assumed to be much smaller than 

its counterparts in other directions ( , )u v . 

c) The normal stress nn  can be ignored in developing the constitutive relations. 

d) The form and geometry of the cross section remain invariant in its plane (i.e. 

0xx yy xy     ), on the other hand, the cross section is permitted to 

warp out of its plane.  

e) The transverse shear strains ( , )xz yz   are considered in the equation of motion, 

but, they remain uniform over the cross section of the TWB.  

f) The torsional shear strain ( )sz  is constant along the cell wall. 

g) Shell force and moment resultants due to ss and ns  are assumed to be small 

enough and omitted. 
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In the equations, dot ( ̇ ) and prime ( � ) denote the derivatives with respect to time t 

and z axis, respectively. 

 Kinematics 

For the large rotation of the cross section, based on assumption (a), the 3-D 

displacements ( , , , ), ( , , , ), ( , , , )u x y z t v x y z t w x y z t  are described in terms of the 

displacements 0 0( , ), ( , )u z t v z t  and 0( , )w z t  and the twist angle ( , )z t  as [56], 
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(2-1) 

Where, 0 0 0, ,u v w  are the translations of the shear center of the thin walled beam in 

the ,x y  and z  directions , respectively. ( , ), ( , )x yz t z t  and ( , )z t  are the rotations 

about the ,x y  and z  axes. ( )wF s  and ( )nas  are the primary and secondary warping 

functions. Figure 2-2 shows the displacements and the rotations of the TWB with 

respect to the , ,x y z  coordinate system established at the root of the TWB. 

 

   Figure 2-2 Cross-section of the TWB showing the displacements and rotations 
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The primary (contour) warping function ( )wF s  can be written as [17], 

 

 

   (2-2) 

where the torsional function   and the parameter ( )nr s are given by, 
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(2-3) 

( )
n

dx dy
r s y x

ds ds
   (2-4) 

Where, A and P  are the sectional area and perimeter, respectively. In the definition 

of the secondary (thickness) warping function referred to  as ( )na s , ( )a s  is given by, 

( )
dx dy

a s x y
ds ds

   (2-5) 

As shown in Figure 2-2, ( )a s   and ( )nr s  are the tangential and perpendicular distances 

from the shear center of cross-section of the TWB to a generic point in the mid-plane 

of the wall of the TWB.  

In the present study, to be general, the approximation of the Green-Lagrange strain 

tensor is adopted to derive the strain-displacement relations. The nonzero components 

of the Lagrange’ strain are defined by Equations (2-6)-(2-8) [17]. 
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For thicker walled composite structures, higher order shear deformation theories 

(HSDT) may be employed. For instance, for thick walled beam with quadratic 

variation of transverse shear strains through the wall thickness, Equations (2-7) and 

(2-8) should be modified as, 

   2 2 2 21 4 1 4 ( ) 2sz xz zy

dx dy
n h n h s n

ds ds
             (2-9) 

   2 2 2 21 4 1 4nz xz zy

dy dx
n h n h

ds ds
       

(2-10) 

By substituting displacement components in Equation (2-1) into the axial strain 

expression given by Equation (2-6), the nonzero axial strain can be rewritten as given 

in, 

0 1 2 2

zz zz zz zz
n n       (2-11) 

where the strain components 
0 1 2, ,zz zz zz    include non-linear terms and their explicit 

expressions are given as follows.  
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(2-12) 
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(2-13) 

2 21

2zz
   (2-14) 

It should be noted that in the normal strain zz , second order nonlinearity with arbitrary 

large twist deformation is taken into account.  

In order to determine the expressions for the shear strains sz and nz , local shear 

strains in the yz  plane yz  and  xz plane xz  given by Equations (2-15) and (2-16) 
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are substituted into Equations (2-7) and (2-8). If a non-shear deformable theory were 

intended to be used, in the expressions the shear components ,yz xz   had to be 

nullified, consequently the number of dependent variables would reduce to four 

0 0 0( , , , )u v w  . 

   0 0
cos sin

yz x
v u        (2-15) 

   0 0
cos sin

xz y
u v        (2-16) 

Following the substitution, the transverse shear strains sz  and nz  can be expressed 

as, 

0 1

sz sz sz
n      (2-17) 

0

nz nz
   (2-18) 

where the explicit expressions of the shear strain components 
0 1 0, ,sz sz nz    including the 

nonlinear terms are given as, 
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(2-19) 
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 Constitutive Relations 

The relationship between the stresses and strains in a layer in contracted form can be 

expressed in terms of the reduced stiffness coefficients ijQ  of the thk  layer of the 

composite TWB by Equation (2-22). 
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(2-23) 

The ���� components are used to transform the stiffness coefficients from the problem 

axes to the material axes and all components are defined explicitly in Appendix A. The 

2D first order stress resultants ( )ijN  and couple resultants ( )ijL  as well as higher order 

stress couple resultant ( )ij  of the cross-section of the TWB are defined in Equations 

(2-24)- (2-27) in terms of the 3D stresses by integrating the 3D stresses along the wall 

thickness of the cross section of the TWB and then summed up to form the total 

resultants. In Equations (2-24)- (2-27), it is assumed that the bounds of the 
thk  ply 

varies between 1( )k kh h  and lm  is the total number of plies in the laminate of the 

TWB. 
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a) the membrane stress resultants 

 
1

1

kl

k

hmss ss

zz zz
k h

sz sz
k

N

N dn

N








                  
               

  

 

(2-24) 

b) the transverse shear resultants  
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c) the stress couples 
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d) the higher order stress couple 
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(2-27) 

The stress resultants and stress couples on shell elements are displayed in Figure 2-3. 

 

Figure 2-3 (a) Stress resultants and (b) Stress couples [92] 

A simplifying assumption is sometimes applied at this stage by letting 0ss ns  

, but this has proved to overestimate the stiffness [46]. So, a more realistic assumption 

is usually applied by omitting the in-plane force and moment resultants 

( 0)ss ss nsN L N   . Using this assumption, the strain components ,ss ns   are 

(a) (b) 
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eliminated from the stress-strain relation. Accordingly, with no loss of generality one 

may assume the unknowns ss  to be linearly varying with the thickness coordinate n 

and ns  a constant with respect to the thickness coordinaten . This assumption is 

required for our proceeding simplifications, so one may express ,ss ns  as given in 

Equations (2-28) and (2-29), 

0 1

ss ss ss
n     (2-28) 

0

ns ns
   (2-29) 

Substituting the strain definitions from Equations (2-11), (2-17) and (2-18) in the 

stress-strain definition in Equation (2-22) and employing Equations (2-24)-(2-27) and 

(2-28), (2-29) the constitutive relations are obtained, 
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 (2-32) 

where the stiffness coefficients including both first and higher order coupling 

coefficients are defined as ( , , , , )ij ij ij ij ijA B D F H  in Equation (2-33)  [18]. 
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The 5×5 and 5×2 matrices in Equation (2-30), are named as, 1 2,M M ,  respectively. 

Also, the 2×2 matrix in Equation (2-31) is named as 3M . As mentioned earlier, 

omitting the in-plane force and moment resultants ( 0)ss ss nsN L N    one can 

eliminate 0 1 0, ,ss ss ns    and constitutive relation given by Equation (2-34) is obtained, 
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(2-34) 

where the square and symmetric matrix  K  is defined as, 

1

1 2 3 2

T

ij
K M M M M

                             (2-35) 

All the elements of  ijK  are explicitly given in Appendix A. 

 Governing Dynamic System of Equations  

For a rotating TWB, the governing equations of motion can be analytically derived 

using the Hamilton's principle in the absence surface shear forces, and thermal 

loadings as,  
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where, , , cfT V V and W  are the kinetic energy, strain energy, strain energy due to the 

centrifugal force and the work done by external loads, respectively. For the free 

vibration problem, work done by the external forces is omitted. 

2.4.1 Strain Energy  

The strain energy in terms of the 3-D stress and nonzero strain field can be expressed 

as, 
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(2-37) 

Taking integral along the wall thickness and utilizing the shell stress resultants and 

stress couples, one gets, 
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Utilizing the constitutive relation given by Equations (2-30), (2-31) and (2-32) and the 

strain displacement relations Equation (2-38), integrating Equation (2-38) along the 

contour of the cross-section of the TWB,  strain energy can be obtained as, 
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(2-39) 

where the 1-D stress resultants ( , , )z x yT Q Q and the stress couples ( , , , , )x y z w zM M M B   

are defined in Equations (2-40)-(2-47) . 
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z zz zz n zz

C

N x y L r ds     
 

(2-47) 

In Equations (2-40)-(2-47), zT  is the axial force, xQ  and yQ  correspond to the 

chordwise and flapwise shear forces, ,x yM M  are associated with the flapwise bending 

moment (moment about the x  direction) and chordwise bending moment (moment 

about the y  direction),  zM corresponds to the Saint –Venant twist moment, wB  is the 

bimoment (warping torque) and ( )z z zzds     is the torque due to the higher order 

stress couple. 

To obtain the equations of motion and the associated natural boundary conditions via 

the Hamilton’s principle, variation of the strain energy is taken. In the application of 

the Hamilton’s principle, integration by parts is applied to get rid of the derivatives on 

the variations of the displacements, rotations and the twist angle and the variation of 

the strain energy is obtained as given in Equation (2-48). 
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(2-48) 

2.4.2 Kinetic Energy 

 Variation of the kinetic energy is expressed as, 

21
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
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
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(2-49) 

where, the position vector ( )R


 shown in Figure 2-1 of an arbitrary point in the 

deformed rotating pretwisted TWB, calculated with respect to the centroid located at 

the middle of the hub, is given by, 
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
 (2-50) 

Considering that the angular velocity  about the global or the rotating y  axis 

( )J j   , the acceleration of the arbitrary point ( )R


 in the deformed rotating TWB 

can be written as, 

ˆˆ ˆ
x y z
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 (2-51) 

where, 
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(2-52) 

where, the effects of the Coriolis and centrifugal terms induced by angular velocity are 

clearly identified.   

The variation of the kinetic energy can then be expressed after carrying out an 

integration by parts whenever necessary. 
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(2-53) 

where, the inertia terms ( )iI  are defined as, 
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I b v b B b A     (2-55) 
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(2-59) 

In Equations (2-54)-(2-59), ib  terms represent the reduced masses and are expressed 

as, 
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where the mass terms 0 2( , )m m  are defined in Equation (2-61). 
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Moreover, ( ), ( )A B   in Equations (2-54)-(2-59) is defined in Equation (2-62), 
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It should be noted that for a symmetrically laminated TWB, the mass terms which 

include the coefficient 1m  are all zero.  

2.4.3 Strain Energy Due to the Centrifugal Force 

Rotary blades are subjected to centrifugal forces and in the present study the effect of 

centrifugal forces are also taken into account. The centrifugal force acting on the 

rotating beam at a spanwise location z  can be expressed as,  
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F R z dz R z       (2-63) 

where, ( )R z  is defined as, 
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The contribution of the centrifugal force to the strain energy in the TWB can be 

expressed as, 
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(2-65) 

where, ,u v  are the 3-D displacements in the edgewise and flapwise directions (Figure 

2-1), respectively and cF  is the centrifugal force. By substituting the displacements 

defined by Equation (2-1) and the centrifugal force defined by Equation (2-63) into 

Equation (2-65), strain energy due to centrifugal force can be determined.  
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By taking the variation of Equation (2-66) and applying integration by parts to get rid 

of the derivatives on the variations of the displacements, rotations and the twist angle, 

variation of the strain energy due to the centrifugal force can be expressed as, 
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where, if  and bif  are defined in Equations (2-68)-(2-70) and (2-71)-(2-73). 
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2.4.4     Governing Equation of Motion and the Boundary Conditions 

To obtain the equations of motion and the associated natural boundary conditions via 

the Hamilton’s principle, variations of the strain energy due to deformation, strain 

energy due to centrifugal force and kinetic energy are taken. In the application of the 

Hamilton’s principle, integration by parts is applied to get rid of the derivatives on the 

variations of the displacements, rotations and the twist angle and the nonlinear 

equations of the rotating TWB are derived. Euler–Lagrange equations of the TWB 

given by Equations (2-74)-(2-79). 
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(2-75) 
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5
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(2-79) 

Boundary conditions at the root and the tip ( 0, )z L  section of the rotating TWB can 

be obtained by setting the coefficients of variation of the displacements and rotations 

0 0 0, , , , , ,x yu v w        in the non-integral terms to zero individually. 
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0, 0
w

or B     (2-86) 

2.4.5 Strain Energy Expression in Matrix Form 

By considering the relationships between the shell stress resultants and couples (i.e. 

Equations (2-40)-(2-47)) and their generalized strain counterparts shown in Equation 

(2-39) in the matrix form, the generalized shell stresses are related to the generalized 

displacements by Equation (2-87). 

   F A D    
 (2-87) 

Where, the , ,F A D  are the generalized shell stresses, the 8 × 8 stiffness matrix of the 

cross-section of the TWB and the generalized displacements, respectively. For the 

composite TWB, by incorporating the geometrical nonlinearities, , ,F A D  are 

expressed as, 
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(2-89) 
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(2-90) 

Substituting the terms of the constitutive law written in terms of the reduced stiffness 

coefficients ijK  given by Equation (2-35), into the 1D stress and moment resultants 

given by Equations (2-40)-(2-47) and expressing the resulting equations in the matrix 

form Equation (2-87), the 8 × 8 stiffness matrix of the cross section of the TWB is 

extracted. The coefficients of the stiffness matrix � are given in APPENDIX B. The 

strain energy of the anisotropic rotating TWB in terms of cross section stiffness is then 

obtained as, 

0

ˆ
L

V V d z   (2-91) 

Where V̂  is the strain energy per unit beam span, and it is written in matrix form in 

terms of the generalized displacements D  and the stiffness matrix A  as given in 

Equation (2-92) . 
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1ˆ
2

TV D A D  (2-92) 

 Composite Layup Configurations Studied 

In the present study, two composite layup configurations are considered to establish 

proper structural couplings. These configurations are known as CAS and CUS and 

they are first discussed by Rehfield [93]. These two configurations are shown in Figure 

2-4 a and b. 

 

  

Figure 2-4a Layup configurations for the present structural model  

Circumferentially asymmetric stiffness (CAS)  

(a) 
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Figure 2-4b Layup configurations for the present structural model 

Circumferentially uniform stiffness CUS 

2.5.1 Circumferentially Asymmetric Stiffness Configuration (CAS) 

In the CAS configuration, fiber angles in the top and bottom flanges of the TWB have 

opposite sign ( ) ( )y y    , as shown in Figure a. Similarly, fiber angles in the side 

walls have opposite sign ( ) ( )x x    . CAS layup configuration induces strong 

bending-torsion coupling which may be exploited in load alleviation in wind turbine 

blades. In the CAS configuration, the non-vanishing stiffness terms are 

11 22 33 44 55 66 77 88( , , , , , , , )a a a a a a a a  and non-vanishing coupling stiffness terms are 

(b) 
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12 18 28 56 37( , , , , )a a a a a . The definition of the non-vanishing stiffness terms are made in 

Table 2-1 and Table 2-2. In addition to the stiffness terms, a number of mass terms 

also vanish in the CAS configuration. The non- vanishing mass/inertia terms are 

1 4 5 10 11 12( , , , , , )b b b b b b .  

2.5.2 Circumferentially Uniform Stiffness Configuration (CUS) 

In the CUS configuration, fiber angles in the top and bottom flanges of the TWB have 

same sign ( ) ( )y y    , as shown in Figure 4b. Similarly, fiber angles in the side 

walls have same sign ( ) ( )x x   . CUS layup configuration induces strong 

extension-torsion coupling which may be exploited in the design of moderate size wind 

turbine blades as well as helicopter blades. In the CUS configuration, the non-

vanishing stiffness terms include 11 22 33 44 55 66 77 88( , , , , , , , )a a a a a a a a  and non-vanishing 

coupling stiffness terms are 16 18 25 34 68( , , , , )a a a a a . The definition of the stiffness terms 

are made in Table 2-1 and Table 2-3. The non-vanishing mass/inertia terms for the 

CUS configuration are 1 4 5 10 11 12 16( , , , , , , )b b b b b b b .  

 

Table 2-1 Description of the common non-vanishing stiffness terms for both CUS 

and CAS configurations   

11a  Extensional 22a  Chordwise shear 

33a  Flapwise shear 44a  Chordwise bending 

55a  Flapwise bending 66a  Torsion 

77a  Warping 88a  Higher order stress coupling 
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Table 2-2 Description of the non-vanishing coupling stiffness terms for the CAS 

configuration   

12a  Extension / chordwise shear  
18a  Extension / higher order 

stress  
28a  Chordwise shear / higher order stress  

56a  Flapwise bending / torsion  

37a Flapwise shear / warping    

 

Table 2-3 Description of the non-vanishing coupling stiffness terms for the CUS 

configuration   

16a  Extension / torsion  
18a  Extension / higher order 

stress  
25a  Chordwise shear / flapwise bending 

coupling  
34a  Flapwise shear / chordwise 

bending  
68a Torsion / higher order stress    

 

The effect of fiber orientation on cross sectional stiffness properties for the composite 

TWB with geometric and material properties given in Table 2-4 for CAS and CUS 

configurations are investigated in Figure 2-5-Figure 2-8. Figure 2-5 shows the 

common non-vanishing stiffness terms for both CUS and CAS configurations. Figure 

2-6 indicates the non-vanishing coupling stiffness terms for the CAS configuration. 

Figure 2-7 depicts the non-vanishing coupling stiffness terms for the CUS configuration 

and Figure 2-8 gives the stiffness coefficients of the nonlinear terms. 

Table 2-4 Geometric and material properties of the graphite/epoxy composite 

rotating TWB1 

Material properties Geometric1 properties 
�� (���) 206.8e9 � (�) 2.03 
�� (���) 5.17e9 � (�) 0.254 
�� (���) 5.17e9 � (�) 0.0681 
��� (���) 2.55e9 ℎ (�)  0.0102 
��� (���) 2.55e9 � (���. ) 0 
��� (���) 1.38e9 � (���. ) 0-180 
��� = ��� 0.25 � (�� ��⁄ ) 1528 

��� 0.25 �� (�) 0 
1 For the geometric parameters refer to Figure 2-1. 
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Figure 2-5 Variations of the extensional (���), chordwise shear (���), flapwise 

shear (���), chordwise bending (���), flapwise bending (���), torsion (���), and 

the warping (���) stiffness coefficients versus the ply angle  for the uniform TWB 

for CUS and CAS configurations at zero angular velocity( (× � �� /�) indicates n 

times magnified or reduced stiffness coefficients)     
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Figure 2-6 Variations of the extension / chordwise shear (���), flapwise bending / 

torsion (���), flapwise shear / warping (���) coupling stiffness coefficients versus 

the ply angle  for uniform TWB with CAS configuration at zero angular velocity( 

(× � �� /�) indicates n times magnified or reduced stiffness coefficients)     
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Figure 2-7 Variations of the extension / torsion (���), chordwise shear / flapwise 

bending (���), flapwise shear / chordwise bending (���) coupling stiffness 

coefficients versus the ply angle  for uniform TWB with CUS configuration at zero 

angular velocity 

 

 

Figure 2-8 Variations of the extension / higher order (���), chordwise shear / 

higher order stress (���) coupling and higher order stress coupling (���) stiffness 

coefficients versus the ply angle  for uniform TWB at zero angular velocity( 

(× � �� /�) indicates n times magnified or reduced stiffness coefficients) 
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In the following, in order to investigate the linear dynamic characteristics of rotating 

composite TWB, by ignoring the nonlinear terms, the governing equations for the CAS 

and CUS layup configurations are derived in terms of the non-vanishing  8 × 8 cross 

section stiffness coefficients ( )ija . 

For the CAS configuration, the governing system of equations  including the flapwise 

bending / torsion and extension / chordwise transverse shear coupling, are obtained 

and given by Equations (2-93)-(2-98). It should be noted that in deriving Equations 

(2-93)-(2-98), beam constitutive equation Equation (2-87) is utilized to obtain the 

equations in terms of displacement and rotations of the TWB and also non-linear terms 

in Equations (2-74)-(2-79) and Equation (2-87) are omitted. 
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For the rotating TWB clamped at the root ( 0)z  and free at the tip ( )z L  the 

corresponding boundary conditions are obtained from Equations (2-80)-(2-86) and 

presented by Equations (2-99)-(2-105). 
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Similarly, linear equations of motion and the related boundary conditions of composite 

TWB for the CUS configuration including extension / torsion and chordwise shear / 

flapwise bending coupling are derived and presented in Equations (2-106)-(2-111). 
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The associated boundary conditions for the clamped ( 0)z   free ( )z L rotating 

TWB with the CUS configuration are given by Equations (2-112)-(2-118). 
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2
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y x
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 Non-Uniform Geometric Features 

In the preceding section, effects of taper ratio and pretwist angle were ignored and the 

governing equations of motion are obtained for an untwisted and untapered thin walled 

beam. Now, in this section two geometric nonuniformities (linear taper and pretwist) 

are mathematically described to help better understanding of the effect of these 

nonuniformity in structural dynamics of composite TWB.    

2.6.1 Tapered Rotating TWB 

In order to model the tapered TWB, width and height of the TWB are assumed to vary 

as given in Equation (2-119), 

( ) 1 (1 ) 0

( ) 0 1 (1 )
l root

d root

l l

d d

  

  

                              

 (2-119) 

Where ( )l   and ( )d   are the width and the height of local cross section, respectively, 

� is the non-dimensional spanwise coordinate  0 1   shown in Figure 2-4. 

Parameters ( )l l tip rootl l    and ( )d d tip rootd d    represent the ratio of the tip 

width and the tip height of the TWB to the root tip and root height of the TWB, 

respectively.  

2.6.2 Pretwisted Rotating TWB 

In order to enhance the performance and aeroelastic characteristics of the rotary blades 

of turbomachinery, helicopter and wind turbine systems, pretwist is applied to the 

blades during the manufacturing. Pretwist which varies from the root of the blade to 

the tip of the blade is also called as geometric twist. In the present study, the pretwist 

model of Song et al. [94] and Librescu [92] is adopted, and the pretwist is applied 

before any deformation takes place. In the pretwisted TWB, the inertia and stiffness 



 
50 

 

quantities of the cross section are determined in the rotated coordinate system 

( , , )p p px y z  shown in Figure 2-1. At a section of the TWB, the coordinate system 

( , , )p p px y z  is obtained by rotating the coordinate system ( , , )x y z  about the beam axis 

z by the local twist angle ( )z . The transformation relations between the coordinate 

systems ( , , )x y z  and ( , , )p p px y z  are given by Equation (2-120). 

   
   

( )cos ( ) ( )sin ( )

( )sin ( ) ( )cos ( )

p p

p p

p

x x s z y s z

y x s z y s z

z z

 

 

 

 



 
(2-120) 

 

In the pretwisted model of the TWB, cross section form is preserved, and primary and 

secondary warping as well as transverse shear and rotary inertia are included in the 

structural model. Due to the pretwist, stiffness ( )ija  and the inertia ( )ib  terms of the 

TWB become a function of the twist angle ( )z  0( ( ) )z z L  , with 0  being the 

pretwist angle at tip section of the TWB, and in the present study pretwist is assumed 

to vary linearly along of the span of the TWB. In this respect, stiffness coefficients 

��� and inertia terms �� are expressed with respect to the twisted coordinate system 

( , , )p p px y z  instead of the original coordinate system ( , , )x y z   by applying the 

transformation given by Equation (2-120). Resulting relations between the stiffness 

coefficients and reduced mass/inertia terms defined with respect to the coordinate 

system at the root of the TWB ( , , )x y z  and the local pretwisted coordinate system 

( , , )p p px y z  are explicitly given in APPENDIX C. 
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 Free Vibration Analysis of the Geometrically Linear TWB 

2.7.1 Extended Galerkin Method  

Due to the complex boundary conditions and complex couplings involved in the above 

equations, it is difficult to generate proper comparison functions that fulfil all the 

geometric and natural boundary conditions. The difficulty can be bypassed utilizing 

the modified Galerkin method, where the discretization process is performed directly 

in the extended Hamilton’s principle in Equation (2-36) [95].  Therefore, in order to 

solve the governing partial differential equation of motion for the natural frequencies 

and the associated mode shapes, the Extended Galerkin Method (EGM) in conjunction 

with the separation of variation method are applied. The main feature of this method 

is to choose appropriate trial functions that only satisfy the essential boundary 

conditions, while the effect of the natural boundary conditions is kept in the governing 

system.  

The linear combination of the shape functions is used and the number of terms in the 

series is incremented gradually until convergence is achieved. Application of the EGM 

results symmetric structural mass and stiffness matrices. In the EGM, the unknown 

deformation variables are approximated in series form by, 
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(2-121) 

where, the trial functions , , , , ,u v w x y        have to be reasonably chosen to 

satisfy the essential boundary conditions, and � is the number of terms in the series 

which is chosen suitably to achieve converge. Admissible functions are assumed in the 

form of N  degree polynomial ( , 1,2,..., )i
i z i N    and the coefficients of the 
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polynomial are taken as one for the solution of the free vibration problem. The state 

vector of the time dependent variables is defined by Equation (2-122). 

            
T

T T T T T T
u v w x y         (2-122) 

Inserting Equation (2-121) into Equation (2-49), one can write the kinetic energy in 

the linear and discrete form, 

1

2
T

s
T M     (2-123) 

Similarly, by inserting Equation (2-121) into Equations (2-39) and (2-66) in linear 

form, the total strain energy can be written as, 

1

2
T

tota l cf s
V V V K     (2-124) 

Where sM  and sK  are the structural mass and stiffness matrices defined in Appendix 

D for the CAS and CUS configurations. 

Introducing Equations (2-123) and (2-124) in Hamilton principle given in Equation 

(2-36), integrating with respect to time, and knowing 0   at 1 2,t t t , we can obtain 

the discrete governing equations of motion as, 

    0
s s

M K           
  (2-125) 

If the state vector is redefined as, 

    G     (2-126) 

Equation (2-125) can be expressed in state space form as given in Equation (2-127). 

1

,
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0
s s

G G

I

M K



 
     

 


 

(2-127) 

For the eigenvalue analysis, state vector can be expressed as, 
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tG G e   
(2-128) 

Where G  is a constant vector of amplitudes and   is the eigenvalue. Substituting 

Equation (2-128) into Equation (2-127), the eigenvalue problem given by Equation 

(2-129) is obtained. 

  0I G   
(2-129) 

Equation (2-129) can be solved for the eigenvalues r  and the corresponding 

eigenvectors rG  . For the free vibration problem, eigenvalues are obtained as complex 

conjugate roots without the real part ( )r riw   . 

2.7.2 Results and Discussion 

In this section results are presented for the free vibration characteristics of CAS and 

CUS configuration pretwisted rotating TWBs. Using 3D plots, the effects of fiber 

angle, pretwist, angular velocity on the first five natural frequencies, and mode shapes 

for both CAS and CUS configuration TWBs are displayed. It should be noted that the 

TWB model developed in the present study forms the structural model of the 

aeroelastic system which is used for the aeroelastic stability analysis of composite 

wings and rotor blades. 

In order to validate the structural model, natural frequencies and mode shapes are 

compared with the results obtained by finite element (FE) analysis software MSC. 

Nastran. For this purpose, the first four natural frequencies of the non-rotating TWB 

are compared with Nastran results for the untwisted and pretwisted cases. In the FE 

model, 2D shell elements with drilling degrees of freedom are utilized with 3D 

orthotropic material definition. The structures are clamped at the root and let free at 

the tip. For modal analysis in MSC. Nastran solution sequence SOL 103 is used. For 

pretwisted model, twist distribution varies linearly with respect to z while at the tip is 

 040 40  . 
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2.7.2.1 Case 1: CAS Configuration 

For the material and geometric properties of the TWB given in Table 2-4, Table 2-5 

and Table 2-6 compare the first four natural frequencies and dominant modes with the 

ones calculated by MSC Nastran for the untwisted and the pretwisted, nonrotating 

TWB, respectively. It is seen that the results obtained with the TWB model are in 

reasonable agreement with the results of the FE model for the untwisted and the twisted 

models. 

Table 2-5 First four natural frequencies for the fiber angle � = 45°, Ω = 0°, �� = 0° 

for the CAS configuration untwisted TWB 

 Present study MSC NASTRAN 
Frequency (Hz) Dominant mode Frequency (Hz) Dominant mode 

1 9.15 1st flapwise bending 9.24 1st flapwise bending 
2 27.7 1st chordwise bending 25.58 1st chordwise bending 
3 56.7 2nd flapwise bending 56.17 2nd flapwise bending 
4 151 Torsion 148.14 Torsion 

 
 

Table 2-6 First four natural frequencies for the fiber  angle � = 45°, Ω = 0°  for the 

CAS configuration TWB with pretwist �� = 40° 

 Present study MSC NASTRAN 
Frequency (Hz) Dominant mode Frequency (Hz) Dominant mode 

1 10.05 1st flapwise bending 9.37 1st flapwise bending 
2 27.2 1st chordwise bending 24.32 1st chordwise bending 
3 62.68 2nd flapwise bending 59.77 2nd flapwise bending 
4 148 Torsion 146.12 Torsion 

 

In order to compare the mode shapes, 2nd flapwise – torsion mode shape of untwisted 

TWB with CAS configuration and 045   are obtained using present code and Nastran 

are compared in Figure 2-9. 
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Figure 2-9 second flapwise-torsion mode shape of TWB for CAS configuration 

with fiber angle 45 degree (a) present model (natural frequency =56.7 Hz) (b)MSC 

NASTRAN (natural frequency =56.17 Hz) 
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2.7.2.1.1 Effects of the Fiber Angle on the Natural Frequencies and the Mode 

Shapes  

 

Figure 2-10a-d show the variation of first four natural frequencies of the TWB with no 

pretwist with the fiber angle and the rotational speed in 3D plots. Since the natural 

frequencies are symmetric with respect to fiber angle in the range 0° - -90° in Figure 

2-10a-d, the results are just shown for fiber angles between 0° and -90°. Generally, all 

natural frequencies increase by increasing the angular velocity. It is seen that the 

dominant mode varies with the angular velocity for each natural frequency, and 

in Figure 2-10a-d they are indicated by the capitals C for chordwise bending, F for 

flapwise bending and T for torsion.  

Figure 2-10a-d also show that, natural frequencies of the modes which are dominant 

in flapwise bending increase with angular velocity at a higher rate compared to the 

torsion or chordwise bending dominant modes. This observation shows that the 

centrifugal stiffening effect plays more important role in the flapwise dominant modes. 

On the other hand, centrifugal stiffening has slightly greater effect on the torsion 

dominant modes than the chordwise bending mode.   

In Figure 2-10a, it is seen that for the fiber angles in the range [0° - -60°], fundamental 

natural frequency related to the flapwise bending mode grows with the increase in the 

angular velocity until a certain angular velocity at which dominant mode changes 

from flapwise bending to chordwise bending. After the switching of the modes, the 

effect of centrifugal stiffening on the chordwise bending mode is seen to lessen than 

the effect of centrifugal stiffening on the flapwise bending mode. For the fibers angle 

of -75° and -90°, the fundamental mode remains flapwise bending also in the higher 

angular velocities. In general, all natural frequencies of the flapwise bending mode 

increase with the increase in the ply angle. This trend can be seen as well in the torsion 

and chordwise bending modes in the fiber angle range of 0 75     . However, in 

2nd and 3rd natural frequencies, the opposite trend is seen at higher fiber angles. This 

phenomenon may be explained by referring to Figure 2-5 and Figure 2-6 which give 

the stiffness variation versus the fiber angle.  
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(a) 1st mode 

(b) 2nd mode 
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Figure 2-10 First four coupled natural frequencies versus the fiber 

angle for different angular velocities for the CAS configuration 

untwisted TWB / Dominant modes: C: Chordwise bending, F: 

Flapwise bending, T:Torsion 

 

(c) 3rd mode 

(d) 4th mode 
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2.7.2.1.2 Effect of the PreTwist on the Natural Frequencies and Mode Shapes  

 

For the CAS configuration TWB, Figure 2-11a-d display the variation of the first four 

natural frequencies of the rotating beam as a function of the fiber angle and the angular 

velocity for TWBs with and without pretwist. In Figure 2-11a-d, the blue symbols 

show the data for the TWB without pretwist and the red symbols show the data for the 

TWB with the tip pretwist angle of  040 40  . To aid the discussion the natural 

frequency results, the variation of the flapwise bending 55( )a , chordwise bending 44( )a

, torsion 66( )a , and flapwise bending-torsion coupling 56( )a , stiffness coefficients with 

the fiber angle for the uniform and the pretwisted beam are plotted in Figure 2-12. 

Figure 2-11a and Figure 2-11b show that for the first and the second modes which are 

flapwise bending and chordwise bending, the effect of pretwist is not considerable on 

the natural frequencies except for higher fiber angles ( 75 , 90 )    . In general, it is 

seen that stiffening effect of the pretwist is higher at low angular velocities and for 

higher fiber angles. Figure 2-12 clearly shows that at higher fiber angles, the effect of 

pretwist on the flapwise bending stiffness of the TWB is more pronounced. With the 

increase in the angular velocity, the effect of pretwist on the first natural frequency 

becomes insignificant. The effect of pretwist on the 3rd natural frequency appears to 

be more pronounced for the whole range of the fiber angle but for a limited fiber angle 

ranges (-75o - -90o) for the 4th natural frequency. For the 3rd natural frequency, for the 

range of angular velocity in which the dominant mode is the flapwise bending mode, 

pretwist has a stiffening effect and pretwisted TWB has higher natural frequencies than 

the TWB without pretwist. As Figure 2-11c shows, for the fiber angle of -75° the effect 

of pretwist on the natural frequencies of the TWB is significant. When the modes 

switches from flapwise bending to torsional at high angular velocities (Figure 2-11c), 

it is seen that the pretwist has softening effect on the natural frequency. For the fiber 

angle of -90°, vibration mode is chordwise bending at lower angular velocities and 

pretwist has insignificant effect on the natural frequency. However, at higher angular 

velocities, mode switches to torsion and for the torsional mode pretwist has softening 
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effect and natural frequencies decrease for the pretwisted TWB. For the 4th lowest 

mode, and for the fiber angles of −75°  and −90° flapwise bending mode is dominant 

and the stiffening effect of pretwist is clear. In general, it can be concluded that at 

higher angular velocities, the effect of pretwist on the natural frequencies decreases. 

 

 

(a) 1st mode 

(b) 2nd mode 
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Figure 2-11 Comparison of the natural frequencies of CAS configuration 

TWBs with pretwist (red circle) and without pretwist (blue circle) versus 

the fiber angle and angular velocity (/ Dominant modes; C: Chordwise 

bending, F: Flapwise bending, T:Torsion 

 

(c) 3rd mode 

(d) 4th mode 
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Figure 2-12 Variation of flapwise bending(���), chordwise bending(���), torsion 

(���), and flapwise bending -torsion(���)  stiffness coefficients versus the fiber 

for uniform and tapered TWB with CAS configuration at zero angular velocity 

((× 10) indicates 10 times magnified stiffness coefficients)     

 

2.7.2.2 Case 2: CUS Configuration 

For the material and geometric properties of the TWB given in Table 2-4,  Table 2-7 

and  Table 2-8 compare the first four natural frequencies and dominant modes with the 

ones calculated by MSC Nastran for the untwisted and the pretwisted, nonrotating 

TWB, respectively. It is seen that the results obtained with the TWB model are in 

reasonable agreement with the results of the FE model for the untwisted and TWB 

with pretwist. 
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Table 2-7 First four natural frequencies for the fiber angle � = 45°, Ω = 0°, �� = 0° 

for the CUS configuration untwisted TWB 

 Present study MSC NASTRAN 
Frequency (Hz) Dominant mode Frequency (Hz) Dominant mode 

1 9.39 1st flapwise bending 9.22 1st flapwise bending 
2 27.63 1st chordwise bending 25.32 1st chordwise bending 
3 59.19 2nd flapwise bending 56.74 2nd flapwise bending 
4 125.56 Torsion 125.32 Torsion 

 

Table 2-8 natural frequencies for the fiber angle � = 45°, Ω = 0°  for the CAS 

configuration TWB with pretwist �� = 40° 

 Present study MSC NASTRAN 
Frequency(Hz) Dominant mode Frequency (Hz) Dominant mode 

1 10.02 1st flapwise bending 9.24 1st flapwise bending 
2 26.12 1st chordwise bending 23.94 1st chordwise bending 
3 64.26 2nd flapwise bending 61.82 2nd flapwise bending 
4 122.01 Torsion 120.4 Torsion 

 

2.7.2.2.1 Effect of the Fiber Angle on the Natural Frequencies and Mode Shapes 

Figure 2-13a-d illustrate the variation of the first four natural frequencies of rotating 

TWB without pretwist as a function of the fiber angle and angular velocity. For the 

first natural frequency, for fiber angles 0 60     , with the increase in the angular 

velocity mode switching occurs from flapwise bending to chordwise bending beyond 

a certain angular velocity. This pattern of mode switching has also been detected in 

2nd, 3rd and 4th modes. In the second mode, mode switching occurs from chordwise 

bending to flapwise bending, and in the third mode switching occurs from flapwise 

bending to torsion. The nature of the fundamental vibration mode (mode 1) for the 

CUS and the CAS configurations is the same throughout the range of the angular 

velocity. As in the CAS configuration, natural frequency of the flapwise bending mode 

is affected the most from the increase of the angular velocity. For a wide range of fiber 

angles, second vibration modes at low angular velocities are mostly chordwise bending 

except for the fiber angles −75° and −90°. By increasing the angular velocity, the 

second mode switches from highly chordwise bending to highly flapwise bending, and 

the rate of frequency increase with the angular velocity becomes greater compared to 
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the rate of increase of the natural frequency of the dominant chordwise bending mode 

with the angular velocity.  

 

 

 

 
 

 

 

 

 

 

 

(a) 1st mode 

(b) 2nd mode 
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 Figure 2-13 First four coupled natural frequencies versus the fiber angle for 

different angular velocities for the CUS configuration TWB / Dominant modes: C: 

Chordwise bending, F: Flapwise bending, T:Torsion, E: Extension 

In general, all natural frequencies of the flapwise bending mode increase with the 

increase in the ply angle. This trend can be seen as well in the torsion and chordwise 

bending modes in the fiber angle range of 0 75     . Figure 2-5 shows the 

variation of the flapwise 55( )a , chordwise 44( )a , and torsion 66( )a , stiffnesses. 

(c) 3rd mode 

(d) 4th mode 
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Flapwise and chordwise stiffness coefficients gradually increasing while torsion 

stiffness has a maximum value at 75    and then it decreases. It is deemed that 

the decrease in torsion natural frequencies at high fiber angles is mainly caused by 

the decrease in torsion stiffness, as shown in Figure 2-5.     

 

2.7.2.2.2 Effect of the Pretwist on the Natural Frequencies and Mode Shapes 

 

Figure 2-14a-d present the variation of the first four natural frequencies of the rotating 

TWB as a function of the fiber angle and the angular velocity for CUS configuration 

TWB with and without pretwist. The blue symbols show the data for the TWB without 

pretwist and the red symbols show the data for the TWB with pretwist with the tip 

pretwist angle of  040 40  . The variation of the flapwise bending 55( )a , 

chordwise bending 44( )a , torsion 66( )a , and extension-torsion coupling 16( )a ,  

chordwise shear - flapwise bending 25( )a ,  stiffness coefficients with the fiber angle 

for the uniform and the pretwisted beam are plotted in Figure 2-15. Figure 2-14a and 

b indicate that for the first and the second modes which are the flapwise bending and 

the chordwise bending, the effect of pretwist is not significant on the natural 

frequencies except for higher fiber angles ( 75 , 90 )    . In general, it is seen that 

stiffening effect of the pretwist is higher at low angular velocities and for higher fiber 

angles, the same trend seen in CAS model. Figure 2-15 clearly shows the major effects 

of the pretwist on the flapwise bending stiffness. At higher fiber angles ( 75 , 90 )   

, Figure 2-15 shows that the flapwise bending stiffness of TWB with pretwist increases 

significantly compare to lower fiber angle which leads increasing the flapwise 

dominant natural frequency in higher fiber angles.  In general, with the increase in the 

angular velocity, the effect of pretwist becomes negligible. The effect of pretwist on 

the 3rd natural frequency appears to be more pronounced for the whole range of the 

fiber angle. For fiber angle 60   , with the increase in the pretwist mode switching 
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occurs from flapwise bending to torsion. For the 3rd natural frequency, for the range of 

angular velocity in which the dominant mode is the flapwise bending mode, pretwist 

has a stiffening effect whereas for the torsion dominant mode, pretwist has a softening 

effect. For 75 , 90     , pretwist has minor effect on the natural frequencies at low 

angular velocities. For the 4th natural frequency (Figure 2-14d), the effect of pretwist 

looks to be more distinct for 60 90      , where For fiber angle 60   , 

mode switching occurs from torsion to flapwise bending. 

 

 

 

 

(a) 1st mode 

(b) 2nd mode 
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Figure 2-14 Comparison of the natural frequencies of CUS configuration TWBs 

with pretwist (red circle) and without pretwist (blue circle) versus the fiber angle 

and angular velocity (/ Dominant modes; C: Chordwise bending, F: Flapwise 

bending, T:Torsion 

(c) 3rd mode 

(d) 4th mode 
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Figure 2-15 Variation of flapwise bending(���), chordwise bending(���), 

twist(���), extension-torsion(���), and chordwise shear-flapwise bending(���)  

stiffness coefficients versus the fiber angle  for uniform and tapered TWB with 

CUS configuration at zero angular velocity( (× 10) indicates 10 times magnified 

stiffness coefficients)     

Figure 2-16-Figure 2-18 show the variation of the natural frequencies of the dominant 

modes of the CAS configuration TWB with respect to the angular velocity. For the 

TWB with the CAS layup configuration and the fiber angle of 90°, with an increase in 

the rotational speed, the natural frequencies of the 1st flapwise bending, 1st torsion and 

2nd flapwise bending modes increase, but natural frequencies of the 1st chordwise 

bending mode remain more or less constant as the angular speed increases. However, 

in general natural frequencies of TWBs increase with the rotational speed irrespective 

of the fiber angle of the CAS configuration. Torsional frequencies are very influential 

on the aeroelastic stability of wings and blades. Among the TWBs with the fiber angles 

of 90o, 60o and 45o, TWB with the fiber angle of 60o has the highest torsional 

frequency. Figure 2-17 shows that torsional stiffness of the CAS configuration TWB 

with the fiber angle of 60o is higher than the torsional stiffness of the TWBs with the 

fiber angles of 90o and 45o. In this respect, torsional frequencies and torsional 
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frequencies have the same trend for the TWBs with the fiber angles of 90o, 60o and 

45o. 

 

Figure 2-16 Variation of natural frequencies of four principle modes angle versus 

the angular velocity for the CAS configuration TWB without pretwist / Fiber angle  

= 90° 

 

Figure 2-17 Variation of natural frequencies of four principle modes angle versus 

the angular velocity for the CAS configuration TWB without pretwist / Fiber angle  

= 60° 
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Figure 2-18 Variation of natural frequencies of four principle modes angle versus 

the angular velocity for the CAS configuration TWB without pretwist / Fiber angle  

= 45° 

In this chapter, the dynamic characteristics of the pretwisted composite rotating TWB 

is investigated. To this end, a computer code has been developed to simulate the free 

vibration of the composite rotating TWB. The structural models are developed for the 

CAS and the CUS layup configurations. The extended Galerkin’s method has been 

utilized to construct the proper state space form of the governing equations of motion. 

The effect of the fiber angle, the pretwist, and the angular velocity on the free vibration 

characteristics of the TWB have been comprehensively analyzed. A careful analysis 

of the numerical results obtained from this study revealed the following conclusions: 

 Major improvement in eigenfrequencies are obtainable for studied ply angles. 

At zero angular velocity, by changing the fiber angle from 0° to -70°, natural 

frequencies increase both for the CAS and the CUS model. For the 2nd, 3rd 

and 5th modes and for fiber angles 70 90      , reductions in natural 

frequencies are observed. 

 Centrifugal stiffening causes mode switching at high angular velocities.  
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 Angular velocity has stiffening effect particularly on flapwise dominant mode. 

In general, increase in angular velocity results in increases in the natural 

frequencies of TWBs with CAS and CUS configurations. 

 From the results, it is obvious that the effect of pretwist on enhancement in 

natural frequencies, particularly for the higher modes, is significant at low 

angular velocities as well as high fiber angles. 

 Structural model of the TWB developed in the present study is a suitable model 

for the aeroelastic system which can be used for the aeroelastic stability 

analysis of composite rotor blades and composite wings.  

 The main difference in between two configurations is the torsion and 

chordwise bending mode’s contribution in the nature of modes. The presence 

of torsion mode in CAS model and chordwise bending mode in CUS model are 

impressive 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
73 

 

CHAPTER 3 

 

 

  UNSTEADY SUBSONIC AERODYNAMICS BASED ON INDICIAL 
FUNCTION APPROACH  

 

 

 

The key point in an effective aeroelastic analysis is to apply an accurate and efficient 

unsteady aerodynamics model. Aerodynamic loads can be modeled in various ways 

such as: strip theory, UVLM: unsteady Vortex-Lattice method, indicial response 

theory or in more modern aerodynamic techniques like CFD: computational fluid 

dynamics through Euler and Navier Stokes fluid theories. Aerodynamic loads can be 

introduced into the analysis in either frequency or time domain. Instability boundaries 

of an aeroelastic system are easily determined by using an aerodynamic model in 

frequency domain and performing eigenvalue analysis. However, in order to 

investigate the response of nonlinear aeroelastic systems and apply closed loop control 

systems aerodynamic loads are usually expressed in time domain. The classical 

solutions for 2-D aerodynamic lift and pitching moment in time and frequency 

domains are given by Theoderson [96], Loewy [97], Greenberg [98] and Wagner [99].   

Considering simple harmonic motion, Theoderson’s and Greenberg’s theories are 

valid just in flutter speeds and limited to frequency domain approach. On the other 

hand, indicial response approach proposed by Wagner in the time domain is inefficient 

in the compressible flow regime. Although, Unsteady Vortex-Lattice Method and CFD 

methods are very precise and accurate in calculating aeroelastic response of lifting 

surfaces, but these methods are normally avoided in aeroelasticity due to the intrinsic 

complexity and high computational power requirement. Therefore, unsteady 

aerodynamic models in time domain which includes compressibility effects and 
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arbitrary change in pitch rate and which are not CFD based are preferred in aeroelastic 

analysis.  

Generally, there are three viewpoints in modeling the aerodynamic loads in aeroelastic 

systems; steady flow, quasi steady flow and unsteady flow. Deriving comprehensive 

flow model needs a vast knowledge of fluid dynamics which is not the scope of the 

present study. Among the steady, quasi steady and unsteady flows, it is proved that 

steady and quasi steady flows are accompanied with errors in predicting the flutter 

speeds of aeroelastic systems. Consequently, the unsteady aerodynamic model is opted 

as the aerodynamic model which has higher accuracy and complexity. In this chapter, 

the unsteady incompressible and compressible aerodynamic models are studied. Strip 

theory is applied to extend the present model to a 3D wing and wind turbine blade 

models. 

In indicial aerodynamics theory response of the system is obtained to a step function 

disturbance. In the present study, the disturbance is the pitching and plunging motion 

of the airfoil. If the indicial response is known, then the unsteady loads to arbitrary 

changes in angle of attack can be obtained through the superposition of indicial 

responses using Duhamel’s integral in an incompressible or compressible flow. 

The indicial aerodynamics theory results are an effective, comprehensive and 

appropriate approach to characterize subsonic unsteady flow. However, the indicial 

aerodynamic theory is valid for the simulation of attached flow over the airfoil since 

it is based on small disturbance theory. For both incompressible and compressible 

flows, appropriate indicial functions are available. In the compressible flow regime, 

indicial functions are Mach dependent and obtained for certain Mach numbers in the 

literature. In the present study, an approach is also presented to determine the indicial 

function for any Mach number utilizing the available data for certain Mach numbers. 
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 Unsteady Incompressible Aerodynamics Model 

Based on the strip theory and incompressible unsteady aerodynamics model, the 

aerodynamic lift and pitching moment about the reference axis which is positioned at 

the mid chord shown in Figure 3-1 are expressed as, 
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Figure 3-1 Cross section of a thin airfoil in xy plane [100] 

where, 0( , , )x y z is the quasi vortex on the wing surface (see Figure 3-2), ( , , )w x y z is 

the vortex on the wake and 0( , )z t  is the quasi circulation. 0( , , )x z t  and ( , , )w x z t  are 

obtained based on no-penetration and Kutta conditions. Continuation is devoted to 

explain derivation process of mentioned vortices. 

 

Figure 3-2 Two stages in the replacement of a thin airfoil by vortex sheets on the 

wing surface [100] 
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The vertical position of any points on the surface of the blade cross section is expressed 

as, 

0( , , ) ( , ) ( , )( )a acz x z t v z t z t x ab    (3-3) 

Where, the � axis of the aerodynamic coordinates is in the opposite side of the � axis 

of the structural coordinate ( )aex x , aey coincident with z  axis and aez  coincident 

with y  axis. 0( , )v z t   and ( , )z t  are the flapwise transverse and torsion deformations 

and ab  indicates the offset between the shear center of wing box beam and mid chord. 

Let’s define ( , , , )F x y z t  as, 

0( , , , ) ( , , ) ( , ) ( , )( )aF x y z t z x z t v z t z t x ba     (3-4) 

The flow no-penetration condition can be stated as,  
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Where, , , , .b w b w
b w b w

ae ae

u u w u
x x z z

   
   

    b  and w  are the bound vortex 

function and the wake. Based on the thin airfoil theory and small disturbance theory 

[100], we have, 
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The downwash is calculated as follows, 
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(3-8) 

The airfoil may move in vertical translation 0( )v t  and rotate about an axis at x ba  

through an angle ( )t . The directions of these variables are depicted in Figure 3-3. 

 

Figure 3-3 Mean line of chordwise-rigid airfoil. �� is the downward displacement 

of the axis (� = ��) of rotation � 

In Equations (3-6)-(3-8), it is assumed that the wake is on the flat plate. The downwash 

at the middle of airfoil (mid chord) and a quarter of airfoil is calculated from Equation 

(3-8) as given in Equation (3-9).  
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(3-9) 

Methodology brought in the next part follows researches performed by Theodorsen 

[96], Von Karman [101] and bisplinghoff [100]. For quasi steady part of the solution 

we have, 
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While, for the effect of wake, one can be stated as 
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The total circulation on the airfoil is written in this form,  

0 1( , ) ( , ) ( , )b z t z t z t      (3-14) 

The Kutta condition on the trailing edge of the airfoil is satisfied in Equation (3-15).  
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The Sohngen inversion formula [102] is used to solve the Equation (3-10) in order to 

obtain 0( , , )x z t  and 0( , , )x z t  given in Equations (3-10) and (3-11). Substituting 

0( , , )x z t  into Equation (3-15) and solving it, ( , , )w x z t  is calculated. After using spatial 

Laplace transform and some manipulations, eventually, we get,  
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3.1.1 Arbitrary Motion of Thin Airfoil in Incompressible Flow (Wagner 

Function) 

The function ( )W Ut b  is the indicial function for incompressible flow which is usually 

referred to as Wagner’s function. Wagner’s function is evaluated via inverse Laplace 

transform of the generalized Theodorsen function which is defined in frequency 

domain. Based on Theodorsen frequency domain aerodynamics, for the general 

motion of thin airfoil of chord length 2b  undergoing a combination of pitching and 

plunging motion in a flow of steady velocity U , unsteady lift and pitching moment 

about the reference axis are given by Equations (3-17) and (3-18), respectively [100]. 
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(3-18) 

The first term in Equations (3-17) and (3-18) is the non-circulatory or apparent mass 

part, which results from the flow acceleration effect. The second group of terms is the 

circulatory components arising from the generation of circulation about the airfoil. 

Theodorsen’s function, also named as lift deficiency function, ( )C k  is a complex-

valued function which depends on the reduced frequency k  ( )k wb U . Theodorsen’s 

function has a complex value as, 

( ) ( ) ( )C k F k iG k   (3-19) 

By using inverse Laplace transform, the time domain counterpart of Theoderson 

Function can be calculated as given in Equation (3-20)  [100]. 

( )1 ( )
( )

2

ik Ut b

W

C k
Ut b e dk

i k








   (3-20) 



 
80 

 

Separating 
( )ik Ut b

e and ( )C k into their real and imaginary parts, the Wagner’s function 

for ( ) 0Ut b  can be rewritten as, 
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In many aeroelastic applications it is convenient to use ( )W Ut b when writing the 

circulatory lift and moment due to arbitrary motion. The ( )W Ut b has a relatively 

simple form which it is often referred to certain convenient approximation, such as, 

 

0.0455( ) ( )
( ) 1 0.165 0.335

Ut b Ut b

W Ut b e e


    (3-22) 

A plot of ( )W Ut b is shown in Figure 3-4. 

 

Figure 3-4 Wagner’s function ( )W Ut b for indicial lift [99] 

The general form of the aerodynamic lift aeL  and pitching moment aeM  given in 

Equations (3-23) and (3-24) are calculated by substituting the expression of 0 0, , w    

given in Equations (3-9), (3-10), (3-11) and (3-15) into Equations (3-1) and (3-2). 
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In Equations (3-23) and (3-24), , ,U b  are the mean flow density, the air speed, semi-

chord length of the blade, respectively. Also, 0.5 0.75,c cw w  are the downwash at the mid-

chord and three-quarter chord of the wing, respectively. 

The terms in curly brackets in Equations (3-23) and (3-24) are circulatory part of the 

aerodynamic lift and moment [100]. The circulatory part depends on the motion 

history and wake influences, and is the most influential term in an unsteady analysis 

[103]. 

In order to avoid complex numerical computations regarding the inverse Laplace 

transform, Wagner proposed the following quasi-polynomial approximation [69], 
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where ( )
U

H t
b

 represents the step function and 1 0.165   2 0.335   1 0.0455 

2 0.3   [104].  

In order to handle the integral appearing in Equations (3-23) and (3-24), Wagner’s 

function is replaced by the quasi polynomial approximation of the Wagner’s function, 

Equation (3-25), and the resulting integral is defined as a new variable ( , )D z t . 
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The first term of the integral in Equation (3-26) yields the downwash at the three-

quarter chord provided that the wing is at rest at time zero. If the second and the third 

terms of the integral in Equation (3-26) are defined as 1 2( , ), ( , )B z t B z t , which are in fact 

the aerodynamic lag terms, then Equation (3-26) can be rewritten as, 

0.75
1

( , ) ( , ) ( , )
n

c i i
i

D z t w z t B z t


    (3-27) 

where, by making use of the Leibniz integral rule, it can be shown that the iB  terms 

have to satisfy Equation (3-28). 

0.75( ) ( , ); 1,2i i i c

U
B B w z t i

b
     (3-28) 

The present model can incorporate as many aerodynamic lag terms as required for an 

accurate solution. It is also worth to mention that this model is similar to the Roger’s 

approximation method [105] in terms of the number of augmented states introduced in 

the solution. 

The preceding expressions are valid only for 2-D airfoils. For 3-D blades with finite 

span, some modifications have to be implemented according to the modified strip 

theory [106]. To reflect the 3-D effects, lift curve slope and the position of the three-

quarter chord position, where the downwash is calculated, have to be modified 

according to Equation (3-29) only in the circulatory lift and moment expressions in 

Equations (3-23) and (3-24) [70]. 

2
2 2

2
1 2

1
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2 2

L
L

L
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d
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AR
Cb

b





 




  
     

 
   
  

 

 

(3-29) 

where, AR  is the aspect ratio of the blade.  
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Thus, downwash at 3 4
th

 chord is modified by replacing 2  by LC   and 2b  by 

2 1LC
b 



     
. By substituting the modified downwash, at the three-quarter chord 

position into Equation (3-27), and Equation (3-27) into Equations (3-23) and (3-24), 

the final form of the unsteady aerodynamic lift and pitching moment expressions can 

be obtained, as shown in the following relations, 

2
0

2

0
1

( , ) [ ]

[ ( 1) ( , )],
2

ae

L
L i i

i

L z t b v U ba

Cb
C Ub v U ba B z t




  

    







    

    

 

 
 

(3-30) 
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

      

           


  
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(3-31) 

where 'iB s  should satisfy Equation (3-28). 

 Unsteady Compressible Aerodynamics Based on Indicial Model  

Due to necessity of having explicit expressions for unsteady aerodynamic lift and 

moment in time domain including the effects of compressibility, indicial aerodynamics 

has been introduced and is now well accepted by the scientific community [100,107-

109]. Indicial response is a mathematical concept which cannot be obtained directly 

from experiments. For incompressible and inviscid flows, closed form solutions are 

available for indicial responses [100] while for compressible subsonic flows, there is 

no such analytical solutions, even though approximate solutions may be obtained from 

inversions of periodic aerodynamic responses in the frequency domain [110]. For the 

compressible flow case, there does not exist a unique solution in entire time domain 

[110]. In the unsteady incompressible theory, the aerodynamic loadings originate from 

the two main sources which are circulatory and non-circulatory. Non-circulatory lift 

and moment depend on the instantaneous accelerations and velocities of the wing. 

However, in a compressible medium where the speed of sound is finite, the non-
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circulatory flow does not adapt itself to the changes of the boundaries instantly, hence 

noncirculatory lift and moment do not only depend on the instantaneous values of 

acceleration and velocity but also on the history of motion. For compressible flows, it 

is not customary to make distinction between circulatory and non-circulatory flow 

since the history of the motion becomes important and apparent mass is no longer a 

meaningful concept [38,100,110]. Mazelsky [111,112] and mazelsky and Drischler 

[113] determined approximated indicial response function in exponential form for 

three Mach numbers, 0.5, 0.6 and 0.7. 

In aeroelastic problems the pitching axis usually coincides the elastic axis but in the 

development of the compressible indicial functions the pitch axis is temporarily placed 

at the leading edge as shown in Figure 3-5 [113].  

 

Figure 3-5 Wing performing vertical translation and pitching about an axis through 

the leading edge 

In the present study, compressible indicial functions are employed to express the 

unsteady aerodynamic loading in the compressible flow regime. For arbitrary small 

motions of the thin airfoil in subsonic flow, with respect to the reference axis placed 

at the leading edge of the airfoil, downwash velocity at a distance x  from the leading 

edge corresponding to pitching and plunging motions can be expressed as in Equation 

(3-32) [100] 

0

( , )( , )

( , , ) ( , ) ( , ) ( , )

v

a

w z tw z t

w x z t v z t U z t x z t



     



 

(3-32) 
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The downwash velocity is divided into two parts; 0( )vw v U   indicates the 

plunging motion and w    yields a linear variation of aw  with x .  

The indicial lift function ( )c t  and indicial moment function about the reference axis 

located in the leading edge ( )cM t  are defined as the responses to the unit step change 

of the plunging motion aw  at the leading edge. Consequently, the lift and moment 

distributions due to this unit step excitation are defined by Equations (3-33) and (3-34), 

[100] 
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(3-34) 

In a similar fashion, ( ), ( )cq cMqt t   are introduced as the indicial lift and moment 

functions about the leading edge due to unit step change of the pitching rate ( )   at the 

leading edge. As a result, the lift and moment distributions are defined by Equations 

(3-35) and (3-36), 

 
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

 
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 
 

  (3-35) 

And 

 
 

3

0
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, 4 ( , 0) ( ) ( ( )) .

t

q L cMq cMq
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d b


 


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

 
     
 
 

  (3-36) 

Considering the four indicial functions defined in Equations (3-33)-(3-36) the total 

aerodynamics lift (positive upward) and pitching moment (positive nose-up) about the 

leading edge are obtained by summing Equations (3-33)-(3-36) as stated in Equation 

(3-37), 
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     
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T q

T q

L z t L z t L z t

M z t M z t M z t

   

   
 

(3-37) 

In Equation (3-37), the prime symbol indicates that the aerodynamic loads are 

evaluated in the reference coordinate located at the leading edge of the wing. 

Aerodynamic loads in the so called Theodorsen’s coordinate, which is located at a 

distance ( 1)b a   behind the leading edge, are then defined by Equations (3-38)-

(3-41) which are obtained by employing the general law for transferring the axis of a 

moment. [100] 
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In Equations (3-38)-(3-41) a new set of aerodynamic indicial functions for 

compressible flow are defined in the Theodorsen’s coordinate as given by Equation 

(3-42), [100]                                                              

   
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(3-42) 

In the literature, compressible indicial functions are available only in limited Mach 

numbers ( 0.5,0.6,0.7,0.8)M  [100,112,113]. For instance, Figure 3-6-Figure 3-9 gives 

the indicial lift and moment functions ˆ ˆ ˆ ˆ, , ,c cM cq cMq     for both incompressible ( 0)M   

and three subsonic compressible Mach numbers ( 0.5, 0.6, 0.7)M  . By considering 

Figure 3-6-Figure 3-9, it is concluded that the magnitude of lift and moment at any 

non-dimensional time increases with the Mach number. The results shown in Figure 

3-6-Figure 3-9 are obtained by Mazelsky and Drischler [112,113]. 

 

Figure 3-6 Indicial lift functions for plunging airfoil about the leading edge in 

compressible flow 
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Figure 3-7 Indicial moment functions for plunging airfoil about the quarter-chord 

axis in compressible flow 

 

 

Figure 3-8 Indicial lift functions for pitching airfoil about the leading edge in 

compressible flow 
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Figure 3-9 Indicial moment functions for pitching airfoil about the quarter-chord 

axis in compressible flow 

 

Figure 3-7 and Figure 3-9 give the indicial moment functions for plunging and pitching 

motions about the quarter-chord axis. In order to obtain the indicial moment functions 

for plunging and pitching about the leading edge, the axis is transferred from quarter 

chord to leading edge and new equations are derived as, 

 
/4

1

4cM cM cc
     (3-43) 

 
/4

1

4cM q cM q cqc
     (3-44) 

In order to handle the integrals appearing in Equations (3-38)-(3-41), compressible 

indicial functions are represented by their exponential approximations just like the 

Wagner’s function. For the compressible flow case, in the literature he indicial 

functions, which are defined with respect to the leading edge of the airfoil, are assumed 

to be in the form of four term Mach dependent exponentially growing functions given 

by, 
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(3-48) 

 

The coefficients associated with the indicial functions for plunging motion are listed 

in the Table 3-1 [112] [100].  

Table 3-1 Exponential representations of compressible indicial functions for the 

plunging airfoil different Mach numbers 

 M  c    1 4cM c
  

 
�� �,�� 

0.5 1.155 0 
0.6 1.25 0 
0.7 1.4 0 
0.8 1.667 - 

 
�� �,�� 

0.5 -0.406 0.0557 
0.6 -0.452 -0.1 
0.7 -0.5096 -0.2425 
0.8 -6.322 - 

 
�� �,�� 

0.5 -0.249 -1 
0.6 -0.63 -1.502 
0.7 -0.567 0.084 
0.8 6.538 - 

 
�� �,�� 

0.5 0.773 0.6263 
0.6 0.893 1.336 
0.7 0.5866 -0.069 
0.8 -1.095 - 

 
�� �,�� 

0.5 0.0754 2.555 
0.6 0.0646 1.035 
0.7 0.0536 0.974 
0.8 2.111 - 
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Table 3-1 continued … 
 

 
�� �,�� 

0.5 0.372 3.308 
0.6 0.481 4.04 
0.7 0.357 0.668 
0.8 2.049 - 

 
�� �,�� 

0.5 1.89 6.09 
0.6 0.958 5.022 
0.7 0.902 0.438 
0.8 0.082 - 

 

As shown in Table 3-1, approximate representations of the compressible indicial 

functions are only available for certain Mach numbers [100,113]. However, in an 

aeroelastic analysis usually iterative methods are used and for an airspeed damping of 

the system is traced. To take the compressibility effects into account properly, 

compressible indicial functions have to be evaluated for the Mach number which 

corresponds to the input airspeed. However, since the compressible indicial functions 

are known for discrete Mach numbers in the literature, an appropriate interpolation 

method is required to evaluate the compressible indicial functions for any Mach 

number. 

In the present study, a novel exponential approximation is presented which represent 

the coefficients of approximations as functions of Mach number less than 0.85. This 

technique in conjunction with the state-space representation of the aerodynamic loads 

[37,114] enables one to perform direct stability analysis of aircraft wings for different 

subsonic Mach numbers. For this purpose, with respect to the axis passing from the 

leading edge of the airfoil, exponential representations of the Mach dependent 

compressible indicial functions are re-defined as, 
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where ( )H Ut b  is the unit step function. i  coefficients are Mach dependent 

coefficients but i   coefficients are Mach independent power coefficients.  

It is further assumed that for all exponential representations of the indicial functions, 

Mach-independent power coefficients i  are equal to their counterparts in the 

exponential approximation of the plunging indicial function for the lift for 0.5M   

and they are given by 1 2 30.0754, 0.372, 1.89      [100]. Thus, for each indicial 

function in Equations (3-49)-(3-52), there are only four Mach-dependent base 

coefficients , , ,( ( ), 0,1,2, 3)ic icM icq icMq M i   to be determined. To obtain the unknown 

Mach dependent base coefficients the following procedure is pursued. 

The asymptotic values of the indicial functions are computed by multiplying their 

counterparts in incompressible flow by the Prandtl-Glauert factor 21 1 M . It should 

be noted that these asymptotic values are equal to the sectional lift and moments 

coefficients in steady flow. Hence, 

 

(3-53) 

Utilizing Equation (3-53), the first base coefficients of the lift and moment indicial 

functions for the plunging and the pitching motion ( 0 ,0 ,0 ,0 ( )c cq cM cMq M ) are found. As a 

matter of fact, first base coefficients are identically equal to the asymptotic values of 

the indicial functions given by Equation (3-53).  It should be noted that asymptotic 

values of the indicial functions, which are equal to the first base coefficients, are 

independent of the power coefficients ( , 1,2, 3)i i  . 
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With the assumption that for all exponential representations of the indicial functions, 

Mach-independent power coefficients i  are equal to their counterparts in the 

exponential approximation of the plunging indicial function for the lift for 0.5M  , 

and with the already determined first base coefficients of the lift and moment indicial 

functions for the plunging and the pitching motion, the compressible indicial functions 

are expressed by Equations  

 
0.0754 0.372 1.89

1 2 3
2

1

1

Ut Ut Ut

b b b
c c c cUt b e e e

M
   

  
   


 (3-54) 

 
0.0754 0.372 1.89
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4 1

Ut Ut Ut

b b b
cM cM cM cMUt b e e e

M
   

  
   


 (3-55) 

 
0.0754 0.372 1.89
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4 1

Ut Ut Ut

b b b
cq cq cq cqUt b e e e

M
   

  
   


 (3-56) 

 
0.0754 0.372 1.89
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1

4 1

Ut Ut Ut

b b b
cMq cMq cMq cMqUt b e e e

M
   

  
   


  (3-57) 

 

At this step, for each compressible indicial function, there are three base Mach 

dependent base coefficients , , ,( ( ), 0,1,2, 3)ic icM icq icMq M i  , to be determined. 

For the determination of the remaining three base coefficients for each indicial 

function three equations are needed. Lomax et al. [108] have solved the wave equation 

in the 2-D unsteady compressible flow to obtain the chordwise pressure loading on the 

airfoil in the time range of the non-dimensional time  0 2 ( 1)Ut b M M    are given 

by Equation , 
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(3-58) 

 

Two of the equations required for the solution of the three base coefficients come from 

the evaluation of the indicial functions at the non-dimensional times 0Ut b   and 

2 1Ut b M M  .  

The following procedure is implemented to obtain the third equation required for the 

solution of the three base coefficients for each indicial function

, , ,( ( ), 0,1,2, 3)ic icM icq icMq M i  . 

The remaining third equation is obtained by fitting polynomials to the already known 

exponential representations of the indicial functions at Mach numbers 0.5,0.6,0.7 and 

0.8.  It should be noted that for the lift indicial function for the plunging motion ( )c


, exponential representation of the indicial function is known at Mach numbers 

0.5,0.6,0.7 and 0.8 whereas for the remaining indicial functions , ,( )cM cq cMq    
 

exponential representations are known at Mach numbers 0.5,0.6 and 0.7. The aim is to 

obtain polynomial form of indicial functions , , ,( )c cM cq cMq      
 in terms of non-

dimensional time ( )Ut b  using the data given for the compressible indicial functions. 
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In this respect, indicial lift function for lift for the plunging motion of the airfoil is 

approximated by a third order polynomial given by, 

       
2 2

3 2 1 0c c c c cUt b a Ut b a Ut b a Ut b a    
 (3-59) 

where,  � is the Mach number, � is time, and � is the half chord. 0 1 2 3, , ,c c c ca a a a  are 

the unknown coefficients which are obtained using the available data for the lift 

indicial function for the plunging motion ( )c


 The known exponential representations 

of the lift indicial function for the plunging motion for Mach numbers 0.5,0.6,0.7 and 

0.8 are evaluated at four different non-dimensional times and the four unknown 

coefficients of the polynomial approximation of the indicial function c  are 

determined. For this purpose, four non-dimensional times are considered 

 1 2 3 44, 4.8, 5.6, 6.4Ut b Ut b Ut b Ut b     as a target values, and Equation 

(3-45) is set equal to Equation (3-59) at the indicated non-dimensional times as shown 

in Equation (3-60). From the four equations given by Equation (3-60), four 

undetermined coefficients 0 1 2 3, , ,c c c ca a a a  are determined. 
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(3-60) 

 

The same process is repeated for the other moment indicial function cM  for the 

plunging motion of the airfoil, but second order polynomials are fitted since the 

exponential representations for the indicial functions cM  are available for Mach 

number 0.5, 0.6 and 0.7. For this purpose, second order polynomial for the moment 

indicial function in plunging motion  cM
  is introduced as, 

     
2

2 1 0cM cM cM cMUt b a Ut b a Ut b a   
 (3-61) 

where unknown coefficients 0 1 2, ,cM cM cMa a a  are determined using the available data 

for the moment  indicial function for the plunging motion  cM  using Figure 3-7, 

Table 3-1 and Equation (3-7) at certain values of the non-dimensional time  Ut b  for 
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Mach numbers 0.5, 0.6 and 0.7 respectively . Three values of the non-dimensional time 

 1 2 34, 4.8, 5.6Ut b Ut b Ut b    are considered as target values and Equation 

(3-46) is set equal to Equation (3-61) at the indicated non-dimensional times, as shown 

in Equation (3-62). From the three equations given by Equation (3-62), three 

undetermined coefficients 0 1 2, ,cM cM cMa a a  are determined. 
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(3-62) 

 

Similarly,  second order polynomial for the lift indicial function in pitching motion 

 cq
 is introduced as, 

     
2

2 1 0cq cq cq cqUt b a Ut b a Ut b a   
 (3-63) 

The unknown coefficients 0 1 2, ,cq cq cqa a a  are calculated using data given in Table 3-2 

extracted from Figure 3-8 at certain values of the non-dimensional time 

 1 2 34, 4.8, 5.6Ut b Ut b Ut b   . By setting the values given in Table 3-2 equal 

to Equation (3-63) at the indicated non-dimensional times and solving the three 
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equations given in Equation (3-64), the unknown coefficients 0 1 2, ,cq cq cqa a a  are 

obtained. It should be noted that the values of the indicial functions in Table 3-2 are 

obtained.  

Table 3-2 Lift indicial function in pitching motion at three non-dimensional times for 

Mach numbers 0.5, 0.6 and 0.7 

Mach number Indicial function 
Value of the indicial 

function 
0.5 (4)cq  0.598 

0.6 (4.8)cq  0.629 

0.7 (5.6)cq  0.709 

 

2
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2
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(3-64) 

 

Lastly, second order polynomial for moment indicial function in pitching motion 

 cMq is introduced as in Equation (3-65). 

     
2

2 1 0cMq cMq cMq cMqUt b a Ut b a Ut b a   
 (3-65) 

The unknown coefficients 0 1 2, ,cMq cMq cMqa a a  are calculated using data given in Table 

3-3 extracted from Figure 3-9 at certain values of the non-dimensional time 
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 1 2 34, 4.8, 5.6Ut b Ut b Ut b   . By setting the values given in Table 3-3 equal 

to Equation (3-65) at the indicated non-dimensional times and solving the three 

equations given in Equation (3-66), the unknown coefficients are obtained. The values 

of the indicial function in Table 3-3 are obtained 

Table 3-3 Moment indicial function in pitching motion at three non-dimensional 

times for Mach numbers 0.5, 0.6 and 0.7 

Mach number Indicial function values 
0.5 (4)cMq  -0.322 

0.6 (4.8)cMq  -0.31 

0.7 (5.6)cMq  -0.286 

 

2
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(3-66) 

 

In the end, the polynomial approximations of the compressible indicial functions  with 

known coefficients are obtained and presented in Equations (3-67)-(3-70). For each 

compressible indicial function, Equations (3-67)-(3-70) give the third equation needed 

to solve for the Mach dependent base coefficients , , ,( ( ), 0,1,2, 3)ic icM icq icMq M i  .  

       
3 2

0.01093 0.1719 0.794 1.9233c Ut b Ut b Ut b Ut b       (3-67) 
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     
2

0.00149 0.01366 0.2439cM Ut b Ut b Ut b      (3-68) 

     
2

0.03742 0.29024 1.16058cq Ut b Ut b Ut b     (3-69) 

     
2

0.00841 0.0586 0.2225cMq Ut b Ut b Ut b     (3-70) 

 

In the following, the process of obtaining the Mach dependent base coefficients is 

explained for the lift indicial function for the plunging motion  c . The first two 

equations come from the evaluation of the compressible indicial functions, which are 

determined by Lomax in the range of the non-dimensional time 0 2 ( 1)Ut b M M  

, given by Equation (3-58). Compressible lift indicial function is evaluated at non-

dimensional times 0Ut b   and 2 ( 1)Ut b M M   and they are given by 

Equations (3-71) and (3-72). 

2
(0)c

M



  (3-71) 

2 4
( )

1 (1 )
c

M

M M





 
 (3-72) 

The third equation is obtained by equating the proposed approximation of the lift 

indicial function given by Equation (3-54) to the polynomial approximation Equation 

(3-67) at a later time. As seen in Figure 3-6, compressible indicial functions are shown 

for non-dimensional times up to 60. As the non-dimensional time increases, all indicial 

functions level out. Therefore, for all indicial functions proposed approximation of the 

lift indicial function given by Equation (3-54) is equated to the polynomial 

approximation Equation (3-67) at the non-dimensional time 40, as shown in Equations 

(3-73) and (3-74).   
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(40) (40)c    (3-73) 

0.0754 40 0.372 40 1.89 40
1 2 3
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3 2
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1
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c c ce e e
M
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
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(3-74) 

 

For the proposed approximation of the lift indicial function for the plunging motion, 

Equations  (3-71), (3-72) and (3-74) are solved for the three unknown Mach dependent 

base coefficients ( , 1,2, 3)ic i  .  

For the moment indicial function in plunging motion cM , the three equations for the 

solution of the Mach dependent base coefficients ( , 1,2, 3)icM i   are given by 

Equations  (2-69)-(2-71). 
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(3-77) 

 

For the lift indicial function in pitching motion cq , the three equations for the solution 

of the Mach dependent base coefficients ( , 1,2, 3)icq i   are given by Equations 

(3-78)-(3-80). 

1
(0)cq

M



  (3-78) 
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(3-80) 

 

For the lift indicial function in pitching motion cMq , the three equations for the 

solution of the Mach dependent base coefficients ( , 1,2, 3)icMq i   are given by 

Equations (3-81)-(3-83). 

2
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3cMq M
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  (3-81) 
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(3-83) 

For any Mach number, after solution of the three Mach dependent coefficients 

, , ,( ( ), 0,1,2, 3)ic icM icq icMq M i   for each compressible indicial function for the plunging 

and pitching motions of the airfoil, compressible indicial functions can be calculated 

for any Mach number through Equations (3-54)-(3-57). With the proposed approach 

for the frequency domain solution of the aeroelastic instability problem one evaluate 

the compressible indicial functions at any Mach number in the Mach number range 

0.5 ≤ � ≤ 0.8. It should be noted that for Mach numbers less than 0.3, incompressible 

flow assumption is reasonable.  

The variations of the Mach dependent coefficients of lift and moment indicial 

functions in plunging and pitching motions, which are calculated using the proposed 

method, with respect to Mach number are presented in Figure 3-10-Figure 3-13 
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Figure 3-10 �� coefficients for approximating the indicial lift and moment  

at 0.5 ≤ � ≤ 0.8 

 

Figure 3-11 �� coefficients for approximating the indicial lift and moment  

at 0.5 ≤ � ≤ 0.8 
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Figure 3-12 �� coefficients for approximating the indicial lift and moment  

at 0.5 ≤ � ≤ 0.8 

 

Figure 3-13 �� coefficients for approximating the indicial lift and moment  

at 0.5 ≤ � ≤ 0.8 
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In Figure 3-14 and Figure 3-15, lift  c and moment  cMq  indicial functions for 

the plunging motion are calculated by the proposed approach are compared with the 

available solutions of the lift and moment indicial functions in subsonic flow [115].  

 

 

 

 

Figure 3-14 Comparison of indicial (a) lift and (b) moment functions for the 

plunging motion � = 0.5, dashed line: present study, solid line : Ref [115]   
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At the Mach numbers of 0.5 and 0.7. From Figure 3-14 and Figure 3-15, it is seen 

that in the range of the non-dimensional time 0 40Ut b  ,  the variations of the 

indicial functions calculated by the proposed approach are in reasonably good 

agreement with the available solution. It should be again stressed that with the 

proposed approach, the compressible indicial functions can be calculated at any 

Mach number in range 0.5 ≤ � ≤ 0.8  which covers most of the subsonic 

compressible flow problems.  

 

 

 

 

Figure 3-15 Comparison of indicial (a) lift and (b) moment functions for the 

plunging motion � = 0.7, dashed line: present study, solid line : Ref [115] 
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3.2.1 Explicit form of the subsonic compressible aerodynamics model 

Once the Mach dependent base coefficients , , ,( ( ), 0,1,2, 3)ic icM icq icMq M i   of the lift and 

the moment compressible indicial functions for the plunging and pitching motion with 

respect to the coordinate system established at the leading edge of the airfoil are 

determined for any Mach number, base coefficients with respect to the axis located at 

( 1)b a   aft of the leading edge can be determined utilizing the relations given by 

Equation (3-84),  
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(3-84) 

where 1,2,3i  . It should be noted that these relations are the same as those given by 

Equation (3-42) for the indicial functions themselves owing to the fact that, the 

approximate exponential representation of the four indicial functions are defined with 

the same Mach-independent power coefficients ( , 1,2, 3)i i  .  

The integrals in the lift and moment expressions in Equations (4-79) and (4-80) are re-

expressed by substituting the exponential representations of the indicial functions, 

defined with respect to the axis located at ( 1)b a  aft of the leading edge, in the 

integrals as shown in, 
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(3-87) 

 

By defining the integrals involving the exponential terms in Equation (3-87) as the 

aerodynamic lag terms  , , , ,ic icq icM icMqB z t , assuming that the wing is initially at rest (

( , 0) ( , 0) 0vw z w z  ) and making use of the Leibniz integral rule, Equation (3-87) is 

transformed into Equation (3-88). 
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(3-88) 

When the Leibniz integral rule is applied to the integrals involving the exponential 

terms in Equation (3-87) it can be shown that the aerodynamic lag terms 

 , , , ,ic icq icM icMqB z t  are defined by, 
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It should be noted that three aerodynamic lag terms are used for each indicial function 

so a total number of twelve aerodynamic lag terms would exist in the description of 

the 3D unsteady aerodynamic loads in the subsonic compressible flow. Finally, 

unsteady compressible aerodynamic lift ( , )c
aeL z t  and pitching moment ( , )c

aeM z t  about 

the Theodorsen’s coordinate in terms of indicial functions are expressed as, 
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To incorporate the 3-D effects of the finite span wing, lift curve slope ��� is obtained 

from Diederich’s general formula as [116],  
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 (3-92) 

where � is the Mach number and ��� is the 2D lift curve slope. 
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CHAPTER 4 

 

 

NONLINEAR DYNAMIC AEROELASTIC RESPONSE OF COMPOSITE 
WINGS STRUCTURALLY MODELED AS TWB 

 

 

 

Geometrically nonlinear aeroelastic behavior of pretwisted, tapered composite wings, 

structurally modeled as TWB is studied. The structural equations of motion are 

obtained in the most general form based on the kinematic relations governing thin 

walled beams, including the nonlinear strain displacement relations, and utilizing the 

principles of analytical dynamics. Unsteady aerodynamic loads in the incompressible 

flow regime are expressed using Wagner’s function in the time domain (Section 4.2) 

and unsteady aerodynamic loads in the subsonic compressible flow regime are 

expressed using indicial’s function (Section 4.4). The aeroelastic system of equations 

is augmented by the differential equations governing the aerodynamics lag states to 

come up with the final coupled fluid-structure equations of motion. The governing 

system of equations of the aeroelastic system is solved, for the TWB with CAS 

composite layup, by means of a Ritz based solution methodology utilizing the mode 

shapes of the linear structural system to approximate the spatial variation of the 

degrees of freedom of the thin walled beam. Time response of the nonlinear aeroelastic 

system is obtained via the Runge-Kutta direct integration algorithm. Effects of the 

fiber angle, pretwist angle, taper ratio and sweep angle of the CAS layup configuration 

on the nonlinear aeroelastic stability margins and LCO behavior are studied in depth.  

The aim of the present study is to investigate the effect of geometrical nonlinearity on 

the post flutter behavior of composite high aspect ratio wings in subsonic flight regime, 

with both incompressible and compressible aerodynamics. In this flow regime, the 
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medium fidelity aerodynamic model of the unsteady strip theory with indicial 

functions provide acceptable accuracy compared to high fidelity CFD models. In the 

literature, several studies have been performed using non-linear beam dynamic 

equations coupled with 2D unsteady aerodynamics models with or without modelling 

stall phenomenon [117-121]. 

In the present work, it is assumed that the torsional deformation is finite and 

moderately large while the flow still remains attached to the surface. The assumption 

of considering nonlinearity in torsion degree of freedom is due to establishing stiffness 

coupling among the degrees of freedom which affects the post flutter behavior 

significantly. On the other hand, for large torsional deformations, dynamic stall could 

be a major problem. For many types of airfoils, the critical value of angle of attack is 

usually between 15-20 degrees [122]. In our analyses, twist angle is nowhere near the 

stall region. 

In summary, in this study, small disturbance theory, which is valid for attached flow, 

is used. For impending aeroelastic instability, using small disturbance theory suffices 

since in the initial phase of the flutter phenomenon deformations are small. In the 

current study, post-flutter response has been investigated for very small values for the 

initial conditions which makes the small disturbance theory still acceptable for the 

investigation of nonlinear aeroelasticity of wings and blades. Intrinsic character of the 

nonlinear aeroelastic system has been investigated by exciting the wing by a very small 

initial disturbance and utilizing linear unsteady aerodynamics. The current model can 

be improved by including stall aerodynamics using models such as ONERA stall 

aerodynamics as a future work.  

 Aeroelastic Governing Equation of Motion 

Due to complicate boundary conditions derived in Chapter 2, it is challenging to find 

appropriate comparison functions that satisfy both geometric and natural boundary 

conditions. Therefore, in order to avoid dealing with complexity of boundary 

conditions effects, they are not extracted from the governing equations of motion by 
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applying integration by parts. Symbolic composite wing with structural and 

aerodynamic coordinates and parameters is shown in Figure 4-1. 

the nonlinear structural model based on Librescu and Song [56] is representative for 

advanced rotating wings with general cross section, for the sake of convenience a 

single-cell, fiber-reinforced composite thin walled box beam with a length L , width l  

, height d , thickness h , wing chord 2b  (see Figure 4-2a) . The 3-D displacement 

parameters, 
0

u ,  
0

v  and 
0

w  are mid-surface displacements in x , y  and z  directions, 

respectively. Also, 
x
  , 

y
  and   are section normal vector rotations about x , y  and 

z  directions, respectively (Figure 4-2b). 

 

Figure 4-1 Schematic description of the rotating wing structure and it’s cross 
section 

 

 

Figure 4-2 (a) Composite TWB (b) Cross section coordinate to define complex 

cross sections of CAS configuration 
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Energy Expression 

Having introduced all the preliminary concepts and energy definitions in Chapter 2 for 

composite nonlinear TWB, it is now time to use the Hamilton’s principle to obtain 

integral equations of motion. According to the Hamilton dynamics, variations of the 

Lagrangian of the system in stationary over any interval of motion [�� ��]m 
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(4-1) 

where, , , cfT V V  are the kinetic energy, potential energy due to large strains and 

centrifugal force, respectively and W  stands for the work done by external loads. 

Theses energies are comprehensively studied in Chapter 2. The variational form of 

strain energy, kinetic energy and the work done by the external force are utilized to 

establish the integral form of general governing system of equations. 

Variation of the strain potential energy due to large strain is obtained be used in 

Equation (4-1). The variation of the strain potential energy of TWB shown in Figure 

4-2 is given by, 
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(4-2) 

On the other hand the variation of the kinetic energy in terms of the position vector R

is given by, 
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Since the position vector of any generic point on the TWB with respect to the root 

coordinate system is given in Equation (4-4), 

0
ˆˆ ˆ( ) ( ) ( )R x u i y v j z w R k        (4-4) 

Noting that the displacement field ( , , )u v w  is defined in Equation (2-1), considering 

angular velocity ( )J j     (Figure 2-1), one can determine the acceleration vector 

as shown in Equation (4-5). 

   2 2

0
ˆˆ ˆ2 ( ) 2
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R u w x u i vj w u z w R k

                             

    
 

 (4-5) 

Substituting the acceleration components from Equation (2-1) into Equation (4-5) and 

using the result in Equation (4-3) one eventually obtains the variation of the kinetic 

energy as, 

1 0 2 0 3 0 4 5 6 7x y
T I u I v I w I I I I dz                  (4-6) 

where, 
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(4-7) 

where all inertia terms ib  are defined in Equation (2-60). 

Rotary blades are subjected to centrifugal force whose influence is more significant at 

high speeds. The centrifugal force acting on the rotating beam at a spanwise location 

z can be expressed as, 

   2 2
0

L

c

z

F R z dz R z       
(4-8) 

where, ( )R z  is defined as, 

     2 2
0

1

2
R z R L z L z

 
    
  

 (4-9) 

The variation of strain energy due to the centrifugal force is given by Equation (4-10), 
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cfV f u f v f f dz             (4-10) 

where if  are defined in Equation (4-11)- (4-14). 
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cos sinf b R z u b R z b R z            (4-11) 
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 (4-14) 

 

The last portion of the Hamiltonian in Equation (4-1) is the variation of work done by 

the external loading. The only loading considered in this study is the one due to the 

unsteady aerodynamics. Hence, one can obtain W as, 

 0

0

( , ) ( ) ( , ) ( )
L

ae ae
W L z t v z M z t z dz     (4-15) 

where the explicit forms of the unsteady aerodynamic lift aeL  and the pitching moment 

about the reference axis aeM  are derived in Chapter 3. 

The integral representation of the general governing system of equations is obtained 

by inserting the expressions of the variation of the potential energy (Equation (4-2)), 

the kinetic energy (Equation (4-6)) the strain energy due to centrifugal force (Equation 

(4-10)) and the work done by the unsteady aerodynamic forces (Equation (4-15)) into 

the Hamiltonian given by Equation (4-1).  

In the rest of the article, the integral representation of the general governing system of 

equations is presented for the circumferentially asymmetric stiffness (CAS) layup 
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configuration to demonstrate the solution methodology for the study of the nonlinear 

aeroelastic behavior composite wing modelled as TWBs. 

For the CAS layup, fiber angles in the top and bottom flanges as well as the side walls 

of the TWB have opposite sign ( ) ( ); ( ) ( )y y x x         , as shown in Figure a. It 

should be noted that CAS layup configuration accounts for flapwise bending-torsion 

and extension-chordwise bending couplings which are utilized in load alleviation in 

fixed and rotary wing structures. For the TWB with CAS layup, some of the stiffness 

coefficients in Equation (2-89) vanish and consequently some simplifications occur in 

the nonlinear system of equations. The non-zero stiffness coefficients in Equation 

(2-89) include the diagonal terms and off-diagonal coupling stiffness terms 

12 18 28 56 37, , , ,a a a a a . Among the non-zero stiffness coefficients 56a  is the flapwise 

bending-torsion coupling stiffness which is exploited for load alleviation in flexible 

fixed and rotary wing structures. Moreover, for the TWB with CAS layup non-

vanishing mass/inertia terms in Equation (2-60) include 1 4 5 10 11 12, , , , ,b b b b b b . After 

expanding sin  and cos  in Taylor series about 0   in the Equations (4-2), (4-6) 

and (4-10) which define the variations of the strain energy (Equation (4-2)) and the 

kinetic energy (Equation (4-6)), in the resulting expressions only the terms with square 

and cubic nonlinearity are retained. The integral equation of motion for the CAS 

configuration with square and cubic nonlinearities is obtained using Equations (4-1), 

(4-2), (4-6), (4-10) and (4-15). By inserting energy expressions into Hamilton principle 

and simplifying the equation, the integral form of governing equation of motion 

derived as in the form given in Equation (4-16). 
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(4-16) 
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where   is defined as 
0 0 0{ , , , , , }x yu v w     ;  moreover, the function ; 1...13if i   are 

given by Equations (4-17)-(4-29).  
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(4-25) 
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where the square nonlinear terms 2N
 are defined as, 
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and the cubic nonlinear terms 3N
 are expressed as, 
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 Nonlinear Aeroelastic Analysis of the Composite TWB-Wing Using 

Incompressible Unsteady Aerodynamic 

By neglecting rotating speed ( 0)   in Equations (4-16)-(4-48), Nonlinear aeroelastic 

behavior of tapered and pretwisted composite fix wings shown in Figure 4-3 modeled 

as thin walled beams (TWB) and CAS configuration in the incompressible flow regime 

is studied in this section. 

 

Figure 4-3 Schematic description of an aircraft wing modeled as a doubly tapered 

TWB with geometric pretwist and the associated CAS layup configuration. 

The structural equations of motion are obtained in the most general form based on the 

kinematic relations governing thin walled beams, including the nonlinear strain 

displacement relations, and utilizing the principles of analytical dynamics. Unsteady 

aerodynamic loads in the incompressible flow regime are expressed using Wagner’s 

function in the time-domain. The aerodynamic strip method based on Wagner’s 

function in the unsteady incompressible flow has been used to calculate 

incompressible unsteady aerodynamic lift and pitching moment. The Wagner function 

based aerodynamic models provide an efficient, general, and convenient approach to 

describe the incompressible unsteady flows. The explicit form of incompressible 
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unsteady aerodynamic lift aeL  and pitching moment about the reference axis aeM  are 

obtained in Chapter 3, and they are given by (4-49) and (4-50), 
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As explained in Chapter 3, in the Equations (4-49) and (4-51), the quantities 'B s  are 

defined such that, they should satisfy the following expression in Equation (4-51), 

 0.75( ) , ; 1,2i i i c

U
B B w z t i

b
     (4-51) 

Expressing the unsteady aerodynamic lift and moment by Equations (4-49) and (4-50) 

and using the quasi-polynomial approximation for the Wagner’s function, the final 

nonlinear system of equations used in the time domain solution is obtained by 

augmenting the system of equations which come out of the integral expression 

(Equation(4-1)), by Equation(4-51) which has to be satisfied by the aerodynamic lag 

states ( , ); 1,2iB z t i  . In what follows, the integral equation is given for CAS layup 

configuration, including nonlinear terms of the second and third order in the variational 

representation of the Hamiltonian definition. 

The aeroelastic system of equations is augmented by the differential equations 

governing the aerodynamics lag states to come up with the final coupled fluid-structure 

equations of motion. The governing system of equations of the aeroelastic system is 

solved, for the TWB with circumferentially asymmetric stiffness (CAS) composite 

layup, by means of a Ritz based solution methodology utilizing the mode shapes of the 

linear structural system to approximate the spatial variation of the degrees of freedom 

of the thin walled beam. Time response of the nonlinear aeroelastic system is obtained 
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via the fourth order Runge-Kutta direct integration algorithm. Effects of taper ratio, 

pretwist angle and the fiber angle of the CAS layup configuration on the nonlinear 

aeroelastic stability margins and LCO behavior are studied in depth. 

4.2.1 Method of Solution 

Many algorithms exist that deal with the solution of nonlinear problems [123]. One 

common characteristic of most solution algorithms is that the mode shapes of the 

geometrically linear unloaded TWB are obtained and then used for the nonlinear 

aeroelastic analysis of the composite wing with the CAS layup configuration analysis. 

In the present study, the same solution procedure is adopted. In this respect, first a 

solution of the structural equations of motion is obtained for the mode shapes of the 

TWB utilizing the geometrically linear system of equations by following a Ritz based 

solution methodology. Then, the mode shapes of the TWB are employed in the 

nonlinear aeroelastic analysis of the composite wing. 

4.2.1.1 Solution for the Mode Shapes of the TWB 

 

In the present study, a Ritz based solution method is used for the solution of the 

eigenfunctions of the composite TWB with CAS layup. For the clamped-free wing 

structure, trial functions which satisfy the essential boundary conditions are picked and 

spatial semi-discretization is done as given in Equation (4-52) and [124], 
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(4-52) 

where N is the number of terms in the series which is chosen suitably to achieve 

convergence, and the spatial functions for all degrees of freedom satisfy the clamped 

boundary condition at the wing root ( 0)z  . Spatial functions for all degrees of 

freedom are taken as identical as shown in Equation (4-53). 
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( ) ( ) ( ) ( ) ( ) ( ) ; 1..u v w x y i

i i i i i i
z z z z z z z i N             (4-53) 

To solve for the mode shapes of the TWB utilizing the geometrically linear system of 

equations, aerodynamic and nonlinear terms in Equation (4-16) are omitted, and the 

semi-discretized expansions of the degrees of freedom of the TWB, given by Equation 

(4-52), are substituted into the modified integral form of the governing equations of 

motion along with the test functions, which are the variations of the degrees of freedom 

0 0 0( , , , , , )x y yu v w      . Here, the test functions are again taken as the spatial functions 

given by Equation (4-53) such that they vanish at the root of the wing at 0z  , and 

their spatial derivatives are taken accordingly and substituted into Equation (4-16). 

Integrating Equation (4-16) over the axial coordinate, one obtains the following system 

of equations, 

    0
s s
           
M K  (4-54) 

where ,s sK M  are the structural stiffness and mass matrices, described in Appendix D, 

and the vector of state variables is defined as, 

 6 1

T T T T T T
T

u v w x y

N

      


  (4-55) 

Where,  1 1 1( ) ( ) ... ( )uT u u ut t t    , etc. 

The system of equations given by Equation (4-54) can be transformed into the state 

space form defining a vector of the state variables themselves and their time 

derivatives as shown in Equation (4-56). 

 12 1

T
T T

N
G  


   (4-56) 

Utilizing Equation (4-56), the state space form of the system of equations of motion 

for the TWB is obtained as shown in Equation (4-57). 
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G VG V

M K

 
      

  (4-57) 

Equation (4-57) can be recast to the standard form of an eigenvalue problem by 

introducing tG Ge , yielding, 

  0V I G   (4-58) 

where the eigenvalues ( )  and the corresponding eigenvectors G  may be readily 

obtained. 

4.2.1.2 Nonlinear Aeroelastic Analysis of the Composite Wing 

 

Nonlinear aeroelastic analysis is conducted by means of a Ritz based solution 

methodology utilizing the mode shapes of the linear structural system to approximate 

the spatial variation of the degrees of freedom of the thin walled beam. Equation (4-59)  

gives the reduced modal matrix R , which is extracted from the solution of Equation 

(4-58), for the dominant m  right eigenvectors corresponding to the translational and 

rotational degrees of freedom of the linear system.  

6

T T T T T Tu v w x y

N m m N m N m N m N m N m N
R R R R R R R

      

    
 (4-59) 

One can then construct a reduced order model by expressing any of the six degrees 

freedom  0 0 0, , , , ,x yu v w      in terms of the relevant trial function  , relevant 

reduced modal matrix R  which is composed of dominant m  right eigenvectors and 

the modal coordinates as, 

( , ) ( )
T

z t R t     (4-60) 

Where ( )t  is the generalized modal coordinate vector of dimension of 1m  , R  is 

the reduced modal matrix of dimension N m  composed of dominant m  right 

eigenvectors corresponding to any of the degrees of freedom   , and    is the vector 
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of trial functions, of dimension 1N  , corresponding to any of the degrees of freedom 

 . 

For the nonlinear system, the test functions for any of the degrees of freedom, which 

are the variations of the degrees of freedom, are defined by the premultiplication of 

the the vector of the trial functions   by the reduced modal matrix TL  which is 

composed of dominant m  left eigenvectors corresponding to the translational and 

rotational degrees of freedom. 

( )
T

z L     (4-61) 

Modal expansions of the degrees of freedom of the TWB (Equation (4-60)) and the 

variations of the degrees of freedom (Equation (4-61)) are substituted into the integral 

form of the governing equations of motion Equation (4-16) resulting in the reduced 

order system of nonlinear equations, 

( ) ( ) ( ) ( ) ( ) 0NL

t t t
M t C t K t Z t H t         (4-62) 

Where , ,t t tM C K  are the reduced order mass, aerodynamic damping and stiffness 

matrices of dimension m m , and Z  and NLH  are the reduced order vectors of 

dimension 1m   and they include the aerodynamic lag states and the nonlinear terms, 

respectively.  

In the resulting reduced order system of equations, if the modal matrices composed of 

the left ( )TL  and the right eigenvectors  ( )R  are factored out, reduced order mass, 

damping and stiffness matrices in Equation (4-62) are defined by, 

( )
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t s ae
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 


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C C
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(4-63) 



 
128 

 

where the structural mass ( )sM   and stiffness ( )sK , and the aerodynamic mass ( )aeM , 

stiffness ( )aeK  and damping ( )aeC  matrices of dimension 6 6N N  are defined in 

Appendix D.  

It should be noted that the aerodynamic damping matrix aeC  in Equation (4-63) does 

not include the aerodynamic lag terms defined in Equations (4-49) and (4-50), and 

these terms are collected in the aerodynamic lag vector Z . Aerodynamic lag vector Z  

is derived from the virtual work done by the aerodynamic lag states ( )iB  in the 

unsteady lift and moment expressions in Equations (4-49) and (4-50) . 

In the integral equation of motion Equation (4-16), virtual work done by the unsteady 

lift and moment due to aerodynamic lag states is given by, 

 0

0

( ) ( )
L

ae Lag ae Lag
L v M dz   (4-64) 

where the unsteady lift and moment due to aerodynamic lag states are given by 

Equations (4-65) and (4-66) . 

 1 1 2 2
( ) ( , ) ( , ) ( , )

ae Lag L
L z t C Ub B z t B z t


     (4-65) 
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              

 (4-66) 

Following the substitution of the unsteady lift and moment due to aerodynamic lag 

states in Equation (4-64), and expressing the variations 0v  and   by Equation (4-61), 

after manipulations aerodynamic lag vector Z  is defined as,  

1

1 2

2

ˆ ( )
( ) ˆ ( )

B t
Z t I I

B t
 

              

 (4-67) 

Where I  is the identity matrix of order m m  and 1B̂   and 2B̂  are vectors of order 

1m   defined by, 
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where the term inside the curly bracket is a vector of dimension 1m   and so are the 

transformed aerodynamic lag state vectors ˆ ( )iB t . 

In Equation (4-62), vector of nonlinear terms NLH  originates from the integral equation 

of motion of the CAS configuration composite wing given by Equation (4-16). After 

the substitution of Equation (4-17)-(4-29) into Equation (4-16), the nonlinear terms 

can be grouped as shown in Equation (4-69). 
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(4-69) 

To obtain the reduced order vector of nonlinear terms NLH  in Equation (4-62),  

nonlinear terms 2 3,N N 
 defined by Equations (4-30)-(4-39) and Equations (4-40)-

(4-48), modal expansions of the degrees of freedom given by Equation (4-60), and the 

variations of the degrees of freedom given by Equation (4-61) are substituted into 

Equation (4-70), resulting in, 
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where the algebraic expressions for the nonlinear coefficients 2 3,N N 
, which are 

expressed in terms of the trial functions and derivatives of the trial functions ( )T , 

reduced modal matrices ( )R  and the modal coordinates ( )i t   are given in Appendix 

E. 

With the introduction of the aerodynamic lag states, there are 2m   number of additional 

unknowns in Equation (4-62), and to perform the nonlinear aeroelastic analysis of the 

composite wing, additional 2m  number of additional equations are needed. To this 

end, the system of nonlinear equations Equation (4-62) is augmented by the differential 

equations that the aerodynamic lag states ( , ), 1,2iB z t i   must satisfy (Equation (4-51)).  

Since in the system of nonlinear equations, given by Equation (4-62), aerodynamic lag 

states are defined by the transformed aerodynamic lag state vectors ˆ ( , ), 1,2iB z t i  , 

Equation (4-51) is manipulated such that it is also expressed in terms of the the 

transformed vectors ˆ ( , ), 1,2iB z t i  . For this purpose, both sides of Equation (4-51) are 

multiplied by the expression given in Equation (4-71), 
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C Ub v b a
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 (4-71) 

the variations 0v  and   are expressed by Equation (4-61), modal expansions of the 

degrees of freedom (Equation (4-60)) which appear in the right hand side of Equation 

(4-51) are substituted, and both sides of Equation (4-51) are integrated along the span 

of the wing as shown in Equation (4-72).  
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(4-72) 

After manipulations the right hand side RHS  in Equation (4-72) can be simplified as, 

1 2
( ) ( )RHS D t D t     (4-73) 

Where 1D  and 2D  are the m m  coefficient matrices defined by, 
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Comparing Equation (4-68) and Equation (4-72), it is evident that since the terms 

multipying the time derivative of the aerodynamic lag state ( , )iB z t  in Equation (4-68) 

do not depend on time, Equation (4-72) can be written as, 

1 2
ˆ ˆ( ) ( ) ( ) ( ) 1,2
i i i

U
B t B t D t D t i

b
     

    (4-76) 

Where ˆ ( )iB t  is the transformed aerodynamic lag state vector of dimension 1m   

defined by Equation (4-68). It should be noted that in passing from Equation (4-72)  to 

Equation (4-76), it is assumed that the semi-chord length b  in the U b   term is constant 

along the span of the wing, which is so for rectangular wings. For tapered wings, it 

suffices to use the mean semi-chord length only in the U b  term in Equation (4-76). 

By augmenting Equation (4-62) with Equation (4-76) , the final form of the nonlinear 

aeroelastic system of equations of the CAS configuration composite wing modeled as 

TWB can be obtained in state space representation as shown in Equation (4-77). 
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(4-77) 

Equation (4-77) is in the form, 
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0NLAq Bq F    (4-78) 

Where q  is the state vector of dimension 4 1, NLm F  is the vector of nonlinear terms 

of dimension 4 1m  , and A  and B  are 4 4m m  coefficient matrices defined in 

Equation (4-77). Nonlinear aeroelastic respose of the composite wing modeled as 

TWB is performed in time domain by the direct integration of Equation (4-78) by the 

Runge-Kutta method for the prescribed initial conditions. 

4.2.2 Numerical Results and Discussions 

In this section, unsteady incompressible aerodynamics and the linear structural TWB 

models are first verified by comparing the results with the available test and analysis 

results in the literature. Then, numerical results are presented for the aeroelastic 

stability response of the CAS configuration composite wing utilizing both the linear 

and nonlinear structural models of the TWB.  

In this section, unsteady aerodynamics and the linear structural TWB models are first 

verified by comparing the results with the available test and analysis results in the 

literature. Then, numerical results are presented for the aeroelastic stability response 

of the CAS configuration composite wing utilizing both the linear and nonlinear 

structural models of the TWB. 

4.2.2.1 Verification Studies 

Unsteady aerodynamics model based on the approximation of the Wagner’s function 

with two aerodynamic lag states is verified by the well-known experimental study of 

Barmby et al. [125]. The experimental flutter speed and flutter frequency results 

obtained for the unswept aluminum alloy wing of NACA 16-1010 profile in the 

subsonic flow regime are compared with the classical flutter predictions involving only 

the flapwise bending displacement and the torsional rotation degrees of freedom of the 

present study. In the model of the present study used for the verification, structural 

model is based on geometrically linear equations, but exactly the same Ritz-based 
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methodology described for the nonlinear aeroelastic analysis of the composite wing is 

used. In this respect, seven trial functions ( 7)N   are used in the series given in 

Equation (4-52) for the flapwise deformation 0v   and torsional   degrees of freedom 

and first seven ( 7)m   eigenfunctions are used for the modal reduction. Flutter speed 

and frequency comparisons are made for the unswept wing models 40A and 40B [125] 

which have the stiffness and mass/inertia properties given in Table 4-1. In order to 

adapt the present TWB structural model to the wing models of Barmby et al. [125], 

degrees of freedom are restricted to the flapwise bending deflection 0v   and the elastic 

twist   and the assignments given by Equation (4-79) are made for the stiffness and 

mass properties. It should be noted that the a parameter in Table 4-1 specifies the 

nondimensional offset between the shear center and the mid-chord, as shown in Figure 

4-3. A negative value of the a parameter indicates that the shear center is forward of 

the mid chord. 

66
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4 5
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(4-79) 

 

Table 4-1 Stiffness and mass/inertia properties of the wing models used in the 

verification study 

Model 
 

� 

�� 

(���) 

�� 

(���) 

� 

(�) 

� 

(�) 
� 

�

����
 ��

� =
��

���
 

40A 1.144 15 10.15 0.6299 0.1016 -0.2 36.5 0.277 

40B 1.174 14.4 10.64 0.6299 0.1016 -0.2 35.5 0.297 
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Table 4-2 compares the experimentally determined flutter Mach numbers and the 

flutter frequencies of the wing models 40A and 40B with the linear aeroelastic analysis 

solutions of the present study. 

Table 4-2 Comparison of the present linear aeroelastic analysis results with the 

experimental results of Barmby et al. [125] 

 

Model 

  

 

Air density 

(Kg/m3) 

Instability Mach No. Frequency at the 

instability 

Experiment 

[125] 

Present Experiment 

[125] 

Present 

40A 1.144 0.24 0.25 62 64 

40B 1.174 0.23 0.24 61 59 

 

Results given in Table 4-2 shows that present linear aeroelastic analysis results are in 

good agreement with the experimental results of Barmby et al. [125]. It is also noted 

that the effect of slight differences in the stiffness and mass terms between the wing 

models 40A and 40B on the flutter speed and the flutter frequency can be captured 

adequately with present solution methodology. As a second verification, flutter speed 

and frequency of a CAS configuration composite box beam studied by Haddadpour et 

al. [71] are calculated and compared with the results of Haddadpour [71] and MSC 

Nastran subsonic aeroelastic analysis results which are also reported in the study of 

Haddadpour et al. [71]. Table 4-3 gives the geometric and material properties of the 

box beam composed of graphite/epoxy.  

Table 4-4 compares the flutter speeds and frequencies of the CAS configuration TWB 

with a fiber angle of −20 degree. It is seen that results of the present study are in good 

agreement with the results of Haddadpour et al. [71] and Msc Nastran results which 

are obtained by the finite element method involving Doublet-Lattice oscillatory 

aerodynamics. 
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Table 4-3 Geometric and material properties of the graphite/epoxy composite wing. 

Material properties Geometric1 properties 
�� (��� ) 206.8e9 � (�) 14 
�� (��� ) 5.17e9 � (�) 0.757 
�� (��� ) 5.17e9 � (�) 0.1 
��� (��� ) 3.1e9 ℎ (�)  0.03 
��� (��� ) 3.1e9 � (���. ) 0, 5 
��� (��� ) 2.55e9 � (���. ) -75,-60,-45 
��� = ��� 0.25 � (�� ��⁄ ) 1528 

��� 0.25 �� (�) 0 

 

Table 4-4 Comparison of the flutter speeds and frequencies 

� Flutter speed (m/s) Flutter Frequency (Hz) 
Haddadpour 

[71] 
Msc 

NASTRAN 
Present Haddadpour 

[71] 
Msc 

NASTRAN 
Present 

0 101 100 100 3.35 3.59 3.39 

-0.2 127 124 128 3.53 3.62 3.57 

 

As a final verification study, geometrically nonlinear TWB model is verified against 

the finite element solution. For this purpose, nonlinear transient analysis of a thin 

walled beam with the geometrical and mechanical properties given in Table 4-5 is 

performed by the present solution method and MSC Nastran using CBEAM beam 

elements which allow warping. Nonlinear transient analyses of the TWB and the beam 

models are performed for an initial flapwise tip displacement of 0(0) 0.3v m  . From 

the resulting time response plots shown in Figure 4-4, the first two dominant 

frequencies are determined via Fast-Fourier-Transform (FFT) and comparisons are 

made with the linear modal analysis results in Table 4-6. From Table 4-6, it is seen 

that the lowest two frequencies extracted from the nonlinear transient analysis results 

obtained by the present method and by MSC Nastran agree very well. Table 4-6 also 

gives the linear modal analysis results obtained by the present model and by MSC 

Nastran. It is seen that although the first lowest frequencies of the linear and the 

nonlinear models are very close to each other, the second lowest frequencies are 
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separate, and the present nonlinear TWB model captures this separation quite 

accurately. 

Table 4-5 Geometric and material properties of the TWB in nonlinear validation 

Parameter Value 
� (�) 5 
� (�) 0.5 
� (�) 0.2 
ℎ (�) 0.01 

� (��� ) 70 
� 0.3 

� (�� ��⁄ ) 2700 
 

 

Figure 4-4 Comparison of the flapwise time response of nonlinear TWBs of MSC 

Nastran and current time history 
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Table 4-6 Comparison of the first two frequencies of nonlinear TWBs via FFT 

analysis of MSC Nastran and current time history results 

 
Frequency 

Linear frequency (Hz) 
(Eigenvalue Analysis) 

Nonlinear frequency (Hz) 
(Transient Analysis) 

MSC 
NASTRAN 

 
Present 

 

MSC 
NASTRAN 

Present 

1st  9.63 9.7 10.056 10.07 
2nd  19.82 20.01 55.9 56.8 

 

4.2.2.2 Linear Aeroelastic Analysis of Composite Wings 

Before the nonlinear aeroelastic analysis of composite wings, linear aeroelastic 

analyses have been performed to predict the flutter and divergence instability 

conditions in order to better evaluate the results of nonlinear aeroelastic analysis. As 

discussed before, Ritz-based methodology described for the nonlinear aeroelastic 

analysis is also followed in the linear aeroelastic analysis of the CAS configuration 

composite wings, and seven trial functions ( 7)N   are used in the series for the six 

degrees of freedom of the TWB and first seven  ( 7)m   eigenfunctions are used for 

the modal reduction. Setting 0NLF   in Equation (4-78) and considering 
0

tq q e  one 

obtains the standard form of a generalized eigenvalue problem where the eigenvalues 

and eigenvectors correspond to the natural frequencies and mode shapes, respectively. 

It should be noted that with seven trial functions and seven eigenfunctions of the linear 

structural system, convergence has been achieved in every case and the frequency 

domain linear aeroelastic analyses are performed. For the composite TWB structure, 

geometric and material properties given in Table 4-3 are used and the nondimensional 

offset between the shear center and the mid chord is taken as 0.3a  , implying that 

the shear center is aft of the mid chord. Moreover, the spanwise and chordwise taper 

ratios are assumed to be identical and equal to 1 hereafter for simplification purposes 

( 1)l d   . Figure 4-5 a and b give the variation of the aeroelastic instability speed 

and associated frequency of the rectangular composite wing with the fiber angle of the 

CAS configuration. Results are presented for an untwisted wing and for a wing with 
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linearly varying twist along the wing span with a tip twist of 5 degrees. It is noted that 

for positive fiber angles, flutter frequency is zero and the instability mode is 

divergence. In the CAS configuration TWB, for the positive fiber angles, fibers are 

oriented towards the leading edge, as seen in Figure 4-3. Hence, twist due to bending 

causes angle of attack to increase further resulting in an increase of the lift and moment 

and eventually causes divergence instability before the flutter occurrence. Negative 

fiber angles have just the opposite effect and since the fibers are oriented towards the 

leading edge, bending-twisting coupling works toward decreasing the angle of attack 

and divergence instability is deferred to higher speeds and flutter instability occurs 

earlier. As depicted, the maximum flutter speed corresponds to a fiber angle of −45° 

while the minimum flutter speed occurs at a positive fiber angle of 45°. This is in 

agreement with the physical interpretation provided in the previous paragraph which 

states that negative lamination angles act toward stabilizing the wing. For a better 

comprehension of the differences between stability margins of the two twist angles 

0 0, 5  , numerical results are tabulated in Table 4-7. 

 

Figure 4-5a Variations of the flutter speed versus the fiber angle 
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Figure 4-5b Variations of the flutter frequency versus the fiber angle 

Table 4-7 Summary of flutter speed and frequency for different fiber and twist 

angles. 

 
� 

Flutter speed (m/s) Flutter Frequency (rad/sec) 

0 0   0 5   0 0   0 5   

-90 66 66 0 0 
-75 97 101 27.7 29.8 
-60 107 112 18.5 19.26 
-45 114 115 42 42.4 
-30 90 91 33.7 33.7 
-15 78 78 28 28.1 

 

Figure 4-6 and Figure 4-7 present the flutter speed and frequency results for doubly 

tapered wing ( 0.8, 0.6)  . for the positive fiber angles, fibers are oriented towards the 

leading edge. Hence, twist due to bending causes angle of attack to increase further 

and eventually causes divergence instability before the flutter occurrence. the tapered 

wing has lower aerodynamic loading than the rectangular wing. It is deemed that the 
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combined effect of lower aerodynamic loading, lower mass and lower stiffness of the 

tapered wing compared to the rectangular wing is such that the tapered wing is prone 

to aeroelastic instability at higher air speed than the rectangular wing flutter speed is 

increased for all ply angles, while the corresponding frequencies experience a small 

increase at negative ply angles and remain intact at positive angles as shown in Figure 

4-6 and Figure 4-7. 

 

Figure 4-6 Variations of the flutter speed versus the fiber angle for taper ratios 

�� = �� = � = 1, 0.8, 0.6 
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Figure 4-7 Variations of the flutter frequency versus the fiber angle for taper ratios 

�� = �� = � = 1, 0.8, 0.6 

 

 

4.2.2.3 Nonlinear Aeroelastic Analysis of Composite Wings 

 

For the CAS configuration composite wings which are structurally modeled as TWBs,  

nonlinear aeroelastic analyses have been performed in time domain through the fourth 

order Runge-Kutta direct integration of the state representation of the governing 

nonlinear aeroelastic system of equations given by Equation (4-78). In the numerical 

simulations performed, it is assumed that the composite wing is initially at rest and the 

wing is given an initial disturbance by assigning an initial value of 1.0e-06 to all modal 

coordinates. With the very low initial conditions given to the modal coordinates, it is 

aimed to start self-excited oscillations, and depending on the intrinsic character of the 

aeroelastic system, the response of the system may attenuate or increase. In the 

following, time history plots and the associated phase plots, Poincare and Power 

Spectrum Density (PSD) diagrams are given for the response of the wing tip ( )z L .  



 
142 

 

Parameter a which defines the offset between the center of twist and the mid chord is 

taken as 0.3 in the time domain nonlinear aeroelastic simulations performed. Material 

and geometric properties for the following analysis are given in Table 4-3.  

Initially, the nonlinear aeroelastic system of equations is verified by comparing the 

time domain solution obtained with the linear aeroelastic solution for a rectangular, 

untwisted wing which has a −75° fiber angle in the CAS configuration. For this 

configuration, from Table 4-7, it is seen that the flutter speed is 97 m/s which is 

predicted by the linear aeroelastic analysis. Figure 4-7 shows the time history plots of 

the flapwise displacement of the wing tip obtained by the solution of the nonlinear 

system of Equation (4-78) for the subcritical speed of 94 m/s, for the critical speed of 

96.7 m/s and for the supercritical speed of 98 m/s. The critical speed is obtained by 

gradually increasing the wind speed and ploting the time response until the appearance 

of constant amplitude response (flutter). It is seen that at the critical speed, LCO is 

observed in the nonlinear aeroelastic solution. For airspeeds less than the critical speed, 

disturbance generated by the initial conditions imposed, attenuate due to the 

aerodynamic damping (Figure 4-8a). With the increase in the airspeed, an exchange of 

energy between the wing structure and the aerodynamic flow commences at the 

bifurcation speed which corresponds to the flutter speed obtained by the linear 

aeroelastic analysis, and LCO starts . In the supercritical region, amplitude of the LCO  

increases substantially, and as Figure 4-8c shows the magnitude of oscillation of the 

flapwise deflection is much higher than the magnitude of the oscillations at the critical 

speed.  
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Figure 4-8 Nonlinear time history plots of the flapwise wing tip displacement for 

three air speeds (a) Subcritical (� = 94 �/�) (b) Critical (� = 96.72 �/�) and 

(c) Supercritical (� = 98 �/�) .  

 

It should be noted that the closeness of the flutter speeds determined by linear and 

nonlinear aeroelastic analysis has also been reported by Tang and Dowell [126]. In the 

current study, the intrinsic character of the nonlinear aeroelastic system has been 

investigated by exciting the wing by a very small initial disturbance and utilizing linear 

unsteady aerodynamics. Tang and Dowell [126] Coupled nonlinear beam model with 

strip theory with ONERA stall aerodynamic model and slender body theory for the 

wing tip slender body. It is observed that even with nonlinear aerodynamics associated 

with the stall model, flutter speeds determined by the nonlinear aeroelastic model are 

very close to those determined by the linear aeroelastic model. 

(a) 

(c) 

(b) 
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Due to the geometric nonlinearity, the nonlinear aeroelastic equations should be solved 

by direct integration using a method such as Runge-Kutta for prescribed initial 

conditions to determine the dynamic response in time domain. In the present study, the 

static deformation of the blade and the mean steady aerodynamic loads are not 

considered, and the flutter occurrence is investigated with respect to the undeformed 

blade. It is assumed that the attached flow assumption holds since the aerodynamic 

models are based on small disturbance theory. Thus, intrinsic flutter characteristic of 

the wind turbine blade has been investigated for small deformation of the blade about 

a static deformation state utilizing linear or nonlinear unsteady aerodynamics. Hence, 

the magnitude of the initial conditions chosen in the present study is small and taken 

as 1e-6 for the for all modal coordinates.  

It should be noted that structural vibrations occur about a static state condition. This 

means that the whole structure oscillates about a deformed state which can be large 

according to the flight scenario and the structural flexibility of the whole aircraft. The 

aim of the present study is to determine the dynamic (oscillatory) response about a 

static state which is taken as zero.  

Self-excited vibrations require an initial condition. Even a very small deformation or 

velocity input is sufficient to trigger self-excited vibrations in an aeroelastic system.  

Solution of the nonlinear aeroelastic system of equations is performed in time domain 

by integrating the nonlinear system of equations. Therefore, an initial condition as an 

initial disturbance is needed to start the self-excited vibrations. This is achieved by a 

very small initial condition because the aim is to investigate the intrinsic character of 

the nonlinear aeroelastic system corresponding to a very small initial condition. It 

should be noted that behavior of nonlinear systems is sensitive to initial conditions and 

a small change in the initial condition may cause substantial changes in the response, 

especially in case of chaos dynamics where topological changes occur even for a small 

change in the initial conditions. 

If the aeroelastic system characteristics fall within the subcritical region, response will 

attenuate after a certain time interval. In the subcritical region, larger values of initial 

conditions increase the time required for a complete attenuation of the response. On 
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the other hand, for an aeroelastic system in the supercritical region with a small initial 

condition, time to reach complete LCOs will take longer compared to the case for 

which larger initial conditions are specified. This is shown by the two plots given in 

Figure 4-9. For the plot shown in Figure 4-9b, initial condition is 100 times higher than 

for the case given in Figure 4-9a. It is clearly seen that LCO is reached faster when the 

initial condition is high.  

 

  

 

Figure 4-9 Transient time histories of supercritical Hopf-bifurcation (a) � =

110 �/� and � = 1� − 6  (b) � = 110 �/� and � = 1� − 4   

 

4.2.2.3.1 Effect of Fiber Angle of the CAS Configuration TWB on the Nonlinear 

Aeroelastic Response 

 

The effect of fiber angle of the CAS configuration TWB on the nonlinear aeroelastic 

response of the composite wing has been investigated for the rectangular wing with no 

pretwist and no taper, and for the fiber angles of  75 , 60 , 45       . Bifurcation 

diagram of the torsional deformation ( )  and the flapwise deflection 0( )v  degrees of 

freedom at the wing tip is presented in Figure 4-10a and b. Bifurcation diagrams shows 

that the bifurcation points for both degrees of freedom are nearly identical, and as the 

absolute value of the fiber angle is decreased, speed at which the bifurcation occurs 

increases. In this respect, flutter speeds determined by the nonlinear aeroelastic 
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solution confirm well to the flutter speeds obtained by the linear aeroelastic solution. 

Figure 4-10b reveals that for the fiber angle of 45   , the center line of the 

bifurcation diagram for flapwise displacement moves upward. For 45   , 

bifurcation angle is wide and amplitude of the LCO increases abruptly with slight 

increase in the airspeed compared to 75 , 60      shown in Figure 4-10a. At this 

fiber angle nonlinearity is relatively weak and amplitude curves are nearly vertical 

compared to 75 , 60     . On the other hand, for the fiber angle of 60    shown 

in Figure 4-10a, bifurcation angle is narrow and before chaotic oscillations start, 

amplitude of the LCO is contained in a band as the airspeed increases. Such a post-

flutter behavior is a desirable nonlinear aeroelastic response and it is a sign of strong 

nonlinearity. It should be noted that in Figure 4-10a and b, the average of the absolute 

values of the maximum and minimum amplitude of the deformations with respect to 

the center line is taken in drawing the bifurcation diagram.  It should be noted that due 

to the nonlinear stiffness coupling for certain cases there is asymmetry in the amplitude 

response which is also observed in the literature such as in the work of Tang and 

Dowell [126]. In order to investigate the effect of fiber angle on the post-flutter 

response of composite wings, time response, time phase portraits, Poincare maps and 

one-sided power spectrum density (PSD) plots are obtained at three different post-

flutter speeds. In the plots presented, Poincare maps are constructed for the flapwise 

bending displacement degree of freedom when the torsional deformation is zero at the 

wing tip by plotting crossings in both directions and PSD plots are generated for the 

flapwise wing tip deflection. 
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Figure 4-10a Bifurcation diagram of the flapwise bending (solid symbols) and 

torsional rotation (empty symbols) at fiber angles; circle: θ = -75°, triangle: θ = - 60° 

 

Figure 4-10b Bifurcation diagram of the flapwise bending (solid symbols) and 

torsional rotation (empty symbols) at fiber angle; rectangular: θ = - 45° 
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For the fiber angle of � = −75°, Figure 4-11, Figure 4-12 and Figure 4-13 gives the 

time history plots and associated phase portraits, Poincare maps and one-sided power 

spectrum density (PSD) plots at the post-flutter speeds of 98 �/�, 108 �/� and 

112 �/�, respectively. For the TWB with the fiber angle of 75   , flutter speed is 

97 �/� and for the slightly higher post-flutter speed of  98 �/�. Figure 4-11 depicts 

that time history plots of the flapwise displacement and the torsional deformation at 

the wing tip are smooth and phase portraits have closed narrow circuits representing 

periodic response. Poincare map given in Figure 4-11e has two dots indicating that the 

flapwise bending response is indeed periodic and the PSD plot shows the distinct 

frequency content clearly.  
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Figure 4-11 Response qualification at � = −75°, � = 98
�

�
, � = 0.3, �� = 0°, � =

1 (a) Flapwise displacement time response, (b) Torsional deformation time 

response, (c) Flapwise displacement phase portrait, (d) Torsional deformation 

phase portrait, (e) Poincare map, (f) PSD.  

 

(a) 

(c) 

(b) 

(d) 

(f) (e) 
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At the higher post-flutter speed of 108 �/�, as seen in Figure 4-12, amplitude of the 

oscillations increase and time history plots of flapwise bending and torsional 

deformation are no longer smooth and higher frequency content of the response is 

evident in the time plots and also in the PSD of flapwise bending displacement. At this 

speed, phase plane plots have thicker intermittent circuits, as shown in Figure 4-12c-

d, and Poincare map has more than one dot. These are indications of the quasi-periodic 

nonlinear aeroelastic response. Figure 4-13 shows the nonlinear aeroelastic flapwise 

bending and torsion response of the wing tip at the post flutter speed of 112 m/s. Time 

response plots Figure 4-13a-b and Phase portraits in Figure 4-13c-d clearly show that 

the response is chaotic, and broadband range of dominant frequencies exist as shown 

in the Poincare map given in Figure 4-13e. It should be noted that each separate dot on 

the Poincare map represents a distinct frequency content in the time response which is 

also evident in the PSD plot in Figure 4-13f. 
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Figure 4-12 Response qualification at � = −75°, � = 108
�

�
, � = 0.3, �� =

0°, � = 1 a) Flapwise displacement time response, b) Torsional deformation time 

response, c) Flapwise displacement phase portrait, d) Torsional deformation phase 

portrait, e) Poincare map, f) PSD.    

 

(a) 

(c) 

(b) 

(d) 

(f) (e) 
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Figure 4-13 Response qualification at � = −75°, � = 112
�

�
, � = 0.3, �� =

0°, � = 1 a) Flapwise displacement time response, b) Torsional deformation time 

response, c) Flapwise displacement phase portrait, d) Torsional deformation phase 

portrait, e) Poincare map, f) PSD.   

 

(a) 

(c) 

(b) 

(d) 

(f) (e) 
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For the fiber angle of 60   ,  Figure 4-14, Figure 4-15 and Figure 4-16 give the 

phase portraits, Poincare maps and one-sided power spectrum density (PSD) plots at 

the post-flutter speeds of 106 m/s, 126 m/s and 138 m/s, respectively. For the TWB 

with the fiber angle of 60   , flutter speed is 104 m/s. It is to be noted that since 

the post-flutter range for the -60◦ fiber angle case is wide as shown in Figure 4-10, the 

selected post-flutter speed increments are taken large on purpose. Phase portraits and 

the Poincare map given in Figure 4-14a-b-c clearly show that the response is purely 

periodic at 106 m/s. As the speed increases, the thickness of the phase plane circuits 

and the frequency content of the response increase and the periodic response 

degenerates. Phase portraits and the Poincare map clearly show the for the -60◦ fiber 

angle case, post-flutter response is more well behaved compared to the -75◦ fiber angle 

case and chaotic response is not encountered until 136 m/s.  

It should be noted that the source of non-periodic/chaotic response is due to the 

nonlinear stiffness effect which originates from including geometric nonlinearity 

which is introduced through the nonlinear strain displacement relations and through 

the definition of the displacement degrees of freedom. There does not have to be 

aerodynamic nonlinearity to obtain nonperiodic/chaotic response. Mathematically 

speaking, a nonlinear system of PDEs with at least three degrees of freedom, may 

become chaotic for a specific set of parameter definitions. For the present problem, as 

the flow velocity increases, the rate of energy transfer from the fluid into the structure 

and vice versa increases up to a point where LCO appears. If geometric nonlinearities 

are neglected, analysis would fail just after the point of instability and the model 

predicts at most the threshold of instability. Nonlinearities on the other hand can 

control the post flutter response and make the system tolerant in the post flutter region. 

Beyond certain flow velocities, the transferred energy becomes sufficient to 

commence chaotic response. 
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Figure 4-14 Response qualification at � = −60°, � = 106
�

�
, � = 0.3, �� =

0°, � = 1 a) Flapwise displacement time response, b) Torsional deformation time 

response, c) Flapwise displacement phase portrait, d) Torsional deformation phase 

portrait, e) Poincare map, f) PSD.   

 

(a) 

(c) 

(b) 

(d) 

(f) (e) 
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Figure 4-15 Response qualification at � = −60°, � = 126
�

�
, � = 0.3, �� =

0°, � = 1 a) Flapwise time response, b) Torsion time response, c) Flapwise phase 

portrait, d) Torsion phase portrait, e) Poincare map, f) PSD.   

 

 

(a) 

(c) 

(b) 

(d) 

(f) (e) 
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Figure 4-16 Response qualification at � = −60°, � = 136
�

�
, � = 0.3, �� =

0°, � = 1 a) Flapwise time response, b) Torsion time response, c) Flapwise phase 

portrait, d) Torsion phase portrait, e) Poincare map, f) PSD.  

 

(a) 

(c) 

(b) 

(d) 

(f) (e) 
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Figure 4-17, Figure 4-18 and Figure 4-19 present the phase portraits, Poincare maps 

and one-sided power spectrum density (PSD) plots for the -45◦ fiber angle case. For 

this fiber angle, as Figure 4-10 shows the bifurcation angle is very wide and the 

amplitude of oscillations increase abruptly with the slight increase in the airspeed. 

Therefore, post-flutter speeds at which the nonlinear aeroelastic response is studied are 

selected as 114 m/s, 116 m/s and 118 m/s with small speed increments. For the -45◦ 

fiber angle case, flutter speed is 113.7 m/s. 

Figure 4-17, Figure 4-18 and Figure 4-19 show that with 4 m/s increment in the 

airspeed, nonlinear aeroelastic responses of the flapwise displacement and the 

torsional deformation of the wing tip transform from almost periodic motion to chaotic 

motion. Phase portraits get thicker and thicker as the speed is increased and the 

Poincare maps get more crowded, indicating the broadband range of dominant 

frequencies existing in the response. Nonlinear aeroelastic responses of the composite 

wing with the CAS configuration TWB structural model at three different fiber angles 

showed that the fiber angle of the CAS configuration greatly affects post-flutter 

behavior of the composite wing. Although the flutter speed of the composite wing with 

-75◦ fiber angle is lower than the flutter speed of the -60◦ fiber angle case, from post-

flutter response point of view, -60◦ fiber angle is preferable, since the well behaved 

post-flutter range is wide and the amplitudes of LCOs are low compared to the -75◦ 

and -45◦ fiber angle cases.  
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Figure 4-17 Response qualification at � = −45°, � = 114
�

�
, � = 0.3, �� =

0°, � = 1 a) Flapwise displacement time response, b) Torsional deformation time 

response, c) Flapwise displacement phase portrait, d) Torsional deformation phase 

portrait, e) Poincare map, f) PSD.  

 

(a) 
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(f) (e) 
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Figure 4-18 Response qualification at � = −45°, � = 116
�

�
, � = 0.3, �� =

0°, � = 1 a) Flapwise displacement time response, b) Torsional deformation time 

response, c) Flapwise displacement phase portrait, d) Torsional deformation phase 

portrait, e) Poincare map, f) PSD.   

 

(a) 

(c) 

(b) 

(d) 

(f) (e) 
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Figure 4-19 Response qualification at � = −45°, � = 118
�

�
, � = 0.3, �� =

0°, � = 1 a) Flapwise displacement time response, b) Torsional deformation time 

response, c) Flapwise displacement phase portrait, d) Torsional deformation phase 

portrait, e) Poincare map, f) PSD.  

 

(a) 

(c) 

(b) 

(d) 

(f) (e) 
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4.2.2.3.2 Effect of Pretwist Angle on the Nonlinear Aeroelastic Response 

The effect of pretwist angle of the wing on the nonlinear aeroelastic response of the 

composite wing is studied for a rectangular wing with the CAS configuration TWB 

structural model having −75◦ fiber angle. For a wing with zero pretwist angle 0( 0 )   

and for a wing with linearly varying twist along the wing span with a tip twist of 

0( 5 )  . Figure 4-20 shows the bifurcation diagram of the torsional deformation ( )

 and the flapwise bending deflection 0( )v  degrees of freedom at the wing tip. 

Bifurcation diagram given in Figure 4-20 confirms the results of the linear aeroelastic 

analyses given in Figure 4-5 and Table 2-7. The delay of the onset of flutter with the 

introduction of pretwist is clear in Figure 4-20. It is seen that the bifurcation angle of 

the wing with 5◦ pretwist is slightly larger than the bifurcation angle of the wing with 

no pretwist, hence for the wing with pretwist, the LCO is almost close to the wing 

without pretwist. The effect of pretwist causes the flutter speed to increase but at the 

same time nonlinearity remains almost identical.  

 

Figure 4-20 Bifurcation diagram of the flapwise bending (solid symbols) and 

torsional deformation (empty symbols) degrees of freedom for different taper 

ratios; circle: �� = 0, triangle: �� = 5 deg. 
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For the wing with 5◦ pretwist angle, Figure 4-21, Figure 4-22 and Figure 4-23 give the 

phase portraits, Poincare maps and one-sided power spectrum density (PSD) plots at 

the post-flutter speeds of 101 m/s, 109 m/s and 113 m/s, respectively. For the wing 

with 5◦ pretwist angle, flutter speed is 100.5 m/s. To see the effect of pretwist on the 

post-flutter response of the composite wing, these plots can be compared with the 

corresponding plots for the wing with no pretwist for the −75◦ fiber angle case given 

in Figure 4-11, Figure 4-12 and Figure 4-13. For the slightly higher post-flutter speed 

of 101 m/s, Figure 4-21a-b show that the phase trajectories are narrow closed orbits 

and Poincare map (Figure 4-21c) shows two distinct points representing entrance and 

exit from the corresponding Poincare section. At this air speed, the nonlinear 

aeroelastic response is clearly periodic which is also evident in the PSD plot given in 

Figure 4-21d. At the higher post-flutter speed of 109 m/s, Figure 4-22a-b show that 

amplitude of the oscillations increase, phase portraits thicken and the two sided 

Poincare map has more two dots, all of which are typical indications of quasi-periodic 

response. At the higher post-flutter speed of 113 m/s, as phase portraits and the 

Poincare map given in Figure 4-23 depict, the nonlinear aeroelastic response is chaotic. 
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Figure 4-21 Response qualification at � = −75°, � = 101
�

�
, � = 0.3, �� =

5°, � = 1 a) Flapwise displacement time response, b) Torsional deformation time 

response, c) Flapwise displacement phase portrait, d) Torsional deformation phase 

portrait, e) Poincare map, f) PSD.  

 

(a) 

(c) 

(b) 

(d) 

(f) (e) 
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Figure 4-22 Response qualification at � = −75°, � = 107
�

�
, � = 0.3, �� =

5°, � = 1 a) Flapwise displacement time response, b) Torsional deformation time 

response, c) Flapwise phase portrait, d) Torsional deformation phase portrait, e) 

Poincare map, f) PSD.  

 

(a) 

(c) 

(b) 

(d) 

(f) (e) 
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Figure 4-23 Response qualification at � = −75°, � = 113
�

�
, � = 0.3, �� =

5°, � = 1 a) Flapwise displacement time response, b) Torsional deformation time 

response, c) Flapwise displacement phase portrait, d) Torsional deformation phase 

portrait, e) Poincare map, f) PSD.   

 

(a) 

(c) 

(b) 

(d) 

(f) (e) 
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4.2.2.3.3 Effect of Taper Ratio on the Nonlinear Aeroelastic Response 

 

Having assessed the effects of twist and fiber angle on the nonlinear dynamic 

aeroelastic response of composite wings structurally modeled as TWBs, the effect of 

wing taper on the nonlinear dynamic aeroelastic response is studied with an example. 

To this aim, an untwisted 0( 0 )   TWB with the fiber angle of 75    is taken into 

account. In a first analysis, the bifurcation diagram is obtained in Figure 4-24, which 

shows the maximum values of torsional deformation and flapwise displacement 

degrees of freedom. As deduced from the bifurcation diagram, untapered wing 

structures have smaller critical speeds. It should be noted that in the present study, the 

steady aerodynamic load for a trimmed flight condition is not considered and only the 

dynamic motion about the zero deformed state is taken into account. Therefore, the 

tapered wing has lower aerodynamic loading than the rectangular wing. It is deemed 

that the combined effect of lower aerodynamic loading, lower mass and lower stiffness 

of the tapered wing compared to the rectangular wing is such that the tapered wing is 

prone to aeroelastic instability at higher air speed than the rectangular wing. 

 

Figure 4-24 Bifurcation diagram of the flapwise bending (solid symbols) and 

torsional deformation (empty symbols) degrees of freedom for different taper 

ratios; circle: � = 1, triangle: � = 0.6. 
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The first sets of results are then reported for the taper ratio 0.6   in Figure 4-25, 

Figure 4-26 and Figure 4-27 for airspeeds 102,108,111U   m/s, respectively. The 

flutter speed for the taper ratio 0.6   is 101 m/s.  At the airspeed of 102 m/s, which 

is almost the initiation of the supercritical region, a purely periodic motion is detected 

(Figure 4-25). Time history plots are smooth, phase planes depict a narrow and closed 

orbit, PSD plot shows one dominant frequency and the Poincare map gives a single 

dot in the Poincare section of 0  . As the airspeed increases to 108 m/s, time history 

plots, phase planes, PSD and Poincare map indicate a quasi-periodic motion. The 

character of motion remains the same at the extreme supercritical value airspeed of 

111 m/s. In Figure 4-27, time history plots depict regularly varying amplitudes with 

several frequency content and several dominant frequencies are seen in the PSD plot. 

Phase plots show thick and closed orbits and the Poincare map depicts a finite number 

of points intersecting with the Poincare section of 0  . It is clear that as the airspeed 

is increased, nonlinear response degenerates and approaches chaotic motion. 

For a larger taper ratio of 0.8   the same sets of results are obtained and reported in 

Figure 4-28, Figure 4-29 and Figure 4-30. The flutter speed for wing with taper ratio 

0.8   is 99 m/s. In this case, a periodic motion is observed at 100 m/s in Figure 4-28 

followed by quasi-periodic response in 110 m/s in Figure 4-29 and a chaotic motion at 

the airspeed of 115 m/s in Figure 4-30. It is observed that for smaller taper ratios (larger 

� values), chaotic motion may be encountered at lower airspeeds,and for higher taper 

ratios (smaller � values), chaotic motion is encountered at higher airspeeds and for a 

wide range of airspeeds nonlinear aeroelastic response is quasi-periodic. 
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Figure 4-25 Response qualification at � = −75°, � = 102
�

�
, � = 0.3, �� =

0°, � = 0.6, (a)Flapwise displacement time response, (b)Torsional deformation 

time response, (c)Flapwise displacement phase portrait, (d)Torsional deformation 

phase portrait, (e)Poincare map, (f)PSD.  

 

(a) 

(c) 
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(f) (e) 
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Figure 4-26 Response qualification at � = −75°, � = 108
�

�
, � = 0.3, �� =

0°, � = 0.6, (a)Flapwise displacement time response, (b)Torsional deformation 

time response, (c) Flapwise displacement phase portrait, (d) Torsional deformation 

phase portrait, (e)Poincare map, (f)PSD.  

 

(a) 

(c) 

(b) 

(d) 

(f) (e) 
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Figure 4-27 Response qualification at � = −75°, � = 111
�

�
, � = 0.3, �� =

0°, � = 0.6, (a)Flapwise displacement time response, (b)Torsional deformation 

time response, (c)Flapwise displacement phase portrait, (d)Torsional deformation 

phase portrait, (e)Poincare map, (f)PSD.   
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(b) 

(d) 

(f) (e) 
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Figure 4-28 Response qualification at � = −75°, � = 100
�

�
, � = 0.3, �� =

0°, � = 0.8, a)Flapwise displacement time response, b)Torsional deformation time 

response, c)Flapwise displacement phase portrait, d)Torsional deformation phase 

portrait, e)Poincare map, f)PSD.  

 

 

(a) 
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(f) (e) 
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Figure 4-29 Response qualification at � = −75°, � = 110
�

�
, � = 0.3, �� =

0°, � = 0.8, a)Flapwise displacement time response, b)Torsional deformation time 

response, c)Flapwise displacement phase portrait, d)Torsional deformation phase 

portrait, e)Poincare map, f)PSD.  

 

(a) 

(c) 
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(d) 

(f) (e) 
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Figure 4-30 Response qualification at � = −75°, � = 115
�

�
, � = 0.3, �� =

0°, � = 0.8, a)Flapwise displacement time response, b)Torsional deformation time 

response, c)Flapwise displacement phase portrait, d)Torsional deformation phase 

portrait, e)Poincare map, f)PSD.      

 

 

(a) 
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(f) (e) 
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A comprehensive study of the geometrically nonlinear aeroelastic behavior of 

pretwisted composite wings structurally modeled as TWB is performed. The structural 

equations of motion are obtained for the CAS configuration TWB in the most general 

form by including second order nonlinear strain displacement relations, nonuniform 

geometric features such as wing taper, pretwist, and warping restraint and transverse 

shear effects are taken into account.  

For nonrotating composite wings structurally modeled as TWBs, the following items 

stand out as major conclusions of the study on the linear and nonlinear aeroelastic 

response under incompressible unsteady aerodynamics.  

 Flutter speeds determined by the linear aeroelastic analysis of the composite 

wings via the frequency domain solution agree very well with the bifurcation 

speeds obtained by the time domain solutions of the nonlinear aeroelastic 

system of equations of the composite wing structurally modeled as TWB. 

 Fiber angle of the CAS configuration TWB is a very influential parameter on 

the instability speed of the composite wing. For positive fiber angles, fibers are 

oriented towards the trailing edge of the wing resulting in additional increase 

in the effective angle of attack due to the elastic twist of the wing caused by 

bending-twisting coupling. Therefore, instability occurs in the form of 

divergence. For negative fiber angles, the form of instability is flutter because 

fibers are oriented towards the leading edge and divergence instability is 

deferred. 

 Besides the flutter speed, the fiber angle of the CAS configuration TWB has a 

significant effect on the post-flutter LCO behavior of the composite wing. Post-

flutter responses of composite wings with three different off-axis fiber angles 

(−75◦, −60◦, −45◦) showed that although the flutter speed of the composite wing 

with −45◦ off-axis fiber angle is higher than the flutter speed of the −60◦ fiber 

angle case, from post-flutter response point of view, −60◦ fiber angle is 

preferable, since the well behaved post-flutter range is wide and the amplitudes 

of the LCOs are low compared to the −75◦ fiber angle case. For the −45◦ fiber 

angle case, bifurcation speed is highest but flapwise bending displacement and 
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torsional deformation amplitude curves are nearly vertical. Such a post-flutter 

behavior is a sign of weak nonlinearity and undesirable nonlinear aeroelastic 

response. From a design perspective, −60◦ fiber angle would be more preferable 

since the nonlinearity is very strong and the amplitude of the post-flutter LCO 

is contained in a band for air speeds, way beyond the bifurcation speed of the 

−45◦ fiber angle case. When both the flutter speed and the post-flutter response 

is considered, −60◦ fiber angle would be preferable since for the −45◦ fiber 

angle case, LCO amplitude curves are nearly vertical. 

 The effect of pretwist causes the flutter speed to increase, but at the same time 

nonlinearity becomes slightly weaker. Comparison of the bifurcation diagrams, 

phase planes and Poincare maps at three post-flutter speeds for the composite 

wing with no pretwist and 5◦ pretwist at the wing tip, reveals that for small 

pretwist angles post-flutter responses are similar, hence bifurcation speed can 

be taken as the main design driver. 

 For composite wings with different fiber angles and pretwist, post-flutter 

response of the tip of the composite wing is studied in more detail by preparing 

phase portraits, Poincare maps and PSD plots at three post-flutter speeds. 

Results reveal that while the response is periodic at speeds slightly over the 

flutter speed, as the air speed is increased, periodic responses get distorted and 

quasi-periodic and eventually chaotic responses are encountered. 

 Wing taper ratio has a stabilizing effect on the stability margins of the wing. For 

untapered wings the flutter speed decreases and the wing is more prone to flutter 

instability at smaller speeds compared to a tapered wing. It should be noted that 

tapered wing analysis has been performed for the same span wings. Normally, 

for an aircraft structure an untapered wing and tapered wing must have different 

spans to have similar aircraft performances. Such a case has not been 

investigated in this study. For the same wing span, tapered wings have slightly 

higher flutter speeds and more well behaved post-flutter response.  



 
176 

 

 Nonlinear Aeroelastic Analysis of the Composite rotating TWB-Blade 

Using Incompressible Unsteady Aerodynamic 

This section focuses on rotating blade by considering the effect of angular velocity 

( 0)   in Equations (4-16)-(4-48). In this part, nonlinear aeroelasticity of the rotating 

large scale wind turbine made up from composite rotating TWB with CAS 

configuration in the incompressible flow regime is investigated. Figure 4-31 shows the 

schematic description of rotating wind turbine blade with load carrying thin wall box 

beam and aerodynamic surface. The structural and aerodynamic coordinates are shown 

by ( , , )x y z  and ( , )ae aex z . 

 

 

Figure 4-31 Aerodynamic and Structural Coordinates of the Symbolic Rotor blade 

with the "Thin-Walled Composite Box Beam" Configuration 

 

Where, the relative velocity rU  is normal to the leading edge given in Equation (4-80). 

 
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2 , tan i
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   


 (4-80) 



 
177 

 

Where, iU   and R  are inflow velocity and angular velocity while, R  are a spanwise 

position and   is the relative wind angle, respectively. 

Table 4-8 gives the geometric and material properties of the 5 MW NREL wind turbine 

blade modelled as rotating box beam composed of glass/epoxy.  

Table 4-8 Geometric and material properties of the glass/epoxy composite blade. 

Material properties Geometric properties 
�� (��� ) 39.14e9 � (�) 60 
�� (��� ) 13.219e9 �����(�), �� 0.591, 0.95 
�� (��� ) 13.219e9 �����(�), �� 1.412, 0.25 
��� (��� ) 3.937e9 ℎ (�) 0.056 
��� (��� ) 3.937e9 � (���. ), 0 
��� (���) 3.937e9 � (���. ) -90,-85,-80,-75 
��� = ��� 0.3 � (�� ��⁄ ) 2001 

��� 0.8 �� (�) 0.1L 

 

Before the nonlinear aeroelastic analysis of composite wings, linear aeroelastic 

analyses have been performed to predict the flutter and divergence speeds in order to 

better evaluate the results of nonlinear aeroelastic analysis. As discussed before, Ritz-

based methodology described for the nonlinear aeroelastic analysis is also followed in 

the linear aeroelastic analysis of the CAS configuration composite wings, and nine 

trial functions ( 9)N   are used in the series given in Equation (4-52) for the six 

degrees of freedom of the TWB and first nine ( 9)m    eigenfunctions are used for the 

modal reduction. For the composite TWB structure, geometric and material properties 

given in Table 4-8 are used and the nondimensional offset between the shear center 

and the mid chord is taken as � = −0.1, implying that the shear center is in front of 

the mid chord. Moreover, the spanwise and chordwise taper ratios are assumed to be 

0.95, 0.25l d   . Table 4-9 gives the variation of the aeroelastic instability rotation 

speed and associated frequency of the tapered composite blade with the fiber angle of 

the CAS configuration for an inflow speed of 10 m/s. Results are presented for an 
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untwisted blade. It is noted that for fiber angle -90°, flutter frequency is zero and the 

instability mode is divergence. 

Table 4-9 flutter rotational speed and frequency at a vriety of lamination angles. 

 

 

 

 

As given in Table 4-9, the maximum flutter rotational speed corresponds to a fiber 

angle of −75° while the minimum flutter rotational speed occurs at a lamination angle 

of -90°. The nonlinear aeroelastic system of equations is verified by comparing the 

time domain solution obtained with the linear aeroelastic solution for the untwisted 

wing which has a −75° fiber angle in the CAS configuration given in Table 4-9. For 

this configuration, from Table 4-9, it is seen that the flutter rotational speed is 3.26 

rad/sec. Figure 4-32 shows the time history plots of the flapwise displacement of the 

rotating blade tip obtained by the time domain solution of the nonlinear system of 

Equation (4-78) for the subcritical rotation speed of 3.255 rad/sec, for the critical 

rotational speed of 3.26 rad/sec and for the supercritical rotational speed of 3.265 

rad/sec. It is seen that at the critical speed, LCO is observed in the nonlinear aeroelastic 

solution. For rotational speed less than the critical speed, disturbance generated by the 

initial conditions imposed, attenuate due to the aerodynamic damping (Figure 4-32a). 

With the increase in the rotating speed, an exchange of energy between the blade 

structure and the aerodynamic flow commences at the bifurcation rotating speed which 

corresponds to the flutter rotational speed obtained by the linear aeroelastic analysis, 

and LCO starts (Figure 4-32b). In the supercritical region, amplitude of the LCO 

increases substantially and as Figure 4-32c shows the magnitude of oscillation of the 

flapwise deflection is much higher than the magnitude of the oscillations at the critical 

rotational speed.  

Fiber 
angle � 

(Degree) 

Flutter rotational speed Ω 
(rad/sec) 

 

Flutter Frequency 
(rad/sec) 

-90 2.85 0 
-85 3 13.8 
-80 3.15 9.87 
-75 3.26 9.25 
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Figure 4-32 Nonlinear time history plots for three rotational speeds (a) Subcritical 

(� = 3.255 ���/���) (b) Critical (� = 3.26 ���/���) and (c) Supercritical (� =

3.265 ���/���)  
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For the fiber angle of� = −75°, Figure 4-33 gives the time history plots and associated 

phase portraits, at the post-flutter rotational speed of 3.265 ���/���. 

Figure 4-33 depicts that time history plots of the flapwise displacement and the 

torsional deformation at the blade tip are well smooth and phase portraits have closed 

narrow circuits representing periodic response. 

At the higher post-flutter rotational speed of 3.28 ���/���, as seen in Figure 4-34, 

amplitude of the oscillations increase and higher frequency content of the response is 

evident in the FFT plots of the flapwise bending displacement and torsional 

deformation. At this speed, it is clear that the response shows signs of degeneration 

and phase plane plots do not have narrow circuits, as shown in Figure 4-34, 
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Figure 4-33 Response qualification at � = −75°, � = 3.265 ���/���, a)Flapwise 

displacement time response, b)Torsional deformation time response, c)Flapwise 

displacement phase portrait, d)Torsional deformation phase portrait, e) FFT 

flapwise deformation, f) FFT torsion deformation 
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Figure 4-34 Response qualification at � = −75°, � = 3.28
���

���
  a) Flapwise 

displacement time response, b) Torsional deformation time response, c) Flapwise 

displacement phase portrait, d) Torsional deformation phase portrait, e) FFT 

flapwise displacement, f) FFT torsional deformation 
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 Nonlinear Aeroelastic Analysis of the Composite TWB-Wing Using 

Compressible Unsteady Indicial Aerodynamics 

By neglecting rotating speed ( 0)   in Equations (4-16)-(4-48), Nonlinear aeroelastic 

behavior of swept composite fix wing shown in Figure 4-35 modeled as TWB and CAS 

configuration in the compressible flow regime is studied in this section. 

 

Figure 4-35 Schematic description of a swept wing modeled as a TWB with 

associated CAS layup configuration. 

4.4.1 Nonlinear Integral Equation of Motion of the Composite Wing 

For the compressible unsteady aerodynamics, only the work done by the external 

forces change. The last expression in the Hamilton’s principle is the variation of work 

done by the external aerodynamic loading. For the compressible unsteady 

aerodynamics, variation of the external aerodynamic loading can be written as, 

 _ 0 _

0

( , ) ( ) ( , ) ( )
L

ae c ae c
W L z t v z M z t z dz     (4-81) 
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where, 
_ ( , )ae cL z t and 

_ ( , )ae cM z t  are the unsteady aerodynamic lift and pitching moment 

about the reference axis, respectively. The extended derivation of the unsteady 

compressible aerodynamic lift and pitching moment was explained in Chapter 3. Here, 

the summary of the procedure is described for swept wing model.  

In the present study, explicit expressions for the unsteady aerodynamic loading 

_ ( , )ae cL z t  and 
_ ( , )ae cM z t  in the subsonic compressible flow regime in time domain, are 

obtained using indicial aerodynamics. 

For arbitrary small motions of the thin airfoil in subsonic flow, with respect to the 

reference axis placed at the leading edge of the airfoil, downwash velocity 

corresponding to pitching and plunging motions can be expressed as,  

ˆˆ( , , ) ( , ) ( , )a a aw x z t w z t x z t   (4-82) 

where plunging and pitching motions ˆaw  and ˆ
a  are given by, 

0
0ˆ ( , ) cos sina

v
w z t v U U

z



    


  (4-83) 

ˆ ( , ) sina z t U
z


 


  


  (4-84) 

It should be noted that Equations (4-83) and (4-84) are written for a swept wing 

configuration with the wing sweep angle  . Also, for the sake of brevity the free 

stream  fluid velocity U
 is represented by U  hereinafter.  

The unsteady aerodynamic lift 
_ ( , )ae cL z t  and pitching moment 

_ ( , )ae cM z t  in the so 

called Theodorsen's coordinate, which is located at a distance ( 1)b a   behind the 

leading edge, are then defined by Equations (4-85) and (4-86) which are obtained by 

employing the general law for transferring the axis of a moment of leading edge to the 

so called Theodorsen's axis. 
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2
_ 2

1

ˆ( , ) 2 cos ( , 0) ( ) ( , )

ˆcos ( , 0) ( ) ( , )
ae c L a cq

L a c

L z t C U b z t D z t

C U b w z t D z t




  

 

    
    

 (4-85) 

3
_ 4

2
3

ˆ( , ) 4 cos ( , 0) ( ) ( , )

ˆ2 cos ( , 0) ( ) ( , )

ae c L a cMq

L a cM

M z t C U b z t D z t

C U b w z t D z t





  

 

    
    

 (4-86) 

where, ; 1..4iD i  are defined as, 

 1

0

ˆ ( , )
, ( )

t

a
c

dw z
D z t t d

d


  


   (4-87) 

 2

0

ˆ ( , )
, ( )

t

a
cq

d z
D z t t d

d

 
  


   (4-88) 

 3

0

ˆ ( , )
, ( )

t

a
cM

dw z
D z t t d

d


  


   (4-89) 

 4

0

ˆ ( , )
, ( )

t

a
cMq

d z
D z t t d

d

 
  


   (4-90) 

where, the aerodynamic indicial functions given in Equation (4-91) are defined in the 

reference coordinate in terms of indicial functions obtained in the leading edge.  

   

     

     

          
2

,

1
,

2 2

1
,

2 2

1 1
.

2 2 2 2

c c

cM cM c

cq cq c

cMq cMq cq cM c

t t

a
t t t

a
t t t

a a
t t t t t

 

  

  

    



      

      

                

 

 

 

(4-91) 

where, the coefficients of the exponential representations of the indicial functions 

defined in leading edge are obtained as, 

         
3

, , , 0 ,0 ,0 ,0 , , ,
1

, expc cq cM cMq c cq cM cMq ic icq icM icMq i
i

M M M H      


 
    
  

  (4-92) 
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where, 1,2, 3i   

Once the Mach dependent base coefficients ( , , , ( ), 0,1, 2, 3)ic icM icq icMq M i      of the 

lift and the moment compressible indicial functions for the plunging and pitching 

motion with respect to the coordinate system established at the leading edge of the 

airfoil are determined using method introduced in Chapter 3 for any Mach number, 

base coefficients with respect to the axis located at ( 1)b a   behind the leading edge 

can be determined utilizing the relations given by Equation (4-93) . 

 
2

,

1
,

2 2

1
,

2 2

1 1
.

2 2 2 2

ic ic

icM icM ic

icq icq ic

icMq icMq icq icM ic

a

a

a a

 

  

  

    



       
       

                   

 

 

(4-93) 

The integral expressions Equations (4-87)-(4-90) which appear in the lift and moment 

expressions, are expressed again by substituting the coefficients of the indicial 

functions Equation (4-93) into Equations (4-87)-(4-90),  

     
3

1 0
1

ˆ, , ( ) ,c a ic ic
i

D z t w z t M B z t 


   (4-94) 

     
3

2 0
1

ˆ, , ( ) ,cq a icq icq
i

D z t z t M B z t  


   (4-95) 

     
3

3 0
1

ˆ, , ( ) ,cM a icM icM
i

D z t w z t M B z t 


   (4-96) 

     
3

4 0
1

ˆ, , ( ) ,cMq a icMq icMq
i

D z t z t M B z t  


   (4-97) 

When the Leibniz integral rule is applied to the integrals involving the exponential 

terms, it can be shown that the aerodynamic lag terms , , , ( , )ic icq icM icMqB z t  are defined by 

Equations . 
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   
 ˆ ,cos

, ( ) , ; 1,2, 3a
ic i ic

dw z tU
B z t B z t i

b dt



    (4-98) 

   
 ˆ ,cos

, ( ) , ; 1,2, 3a
icq i icq

d z tU
B z t B z t i

b dt





    (4-99) 

   
 ˆ ,cos

, ( ) , ; 1,2, 3a
icM i icM

dw z tU
B z t B z t i

b dt



    (4-100) 

   
 ˆ ,cos

, ( ) , ; 1,2, 3a
icMq i icMq

d z tU
B z t B z t i

b dt





    (4-101) 

Finally, assuming that the wing is at rest initially, the explicit expressions of the 

unsteady lift and moment in compressible flow regime are given by Equations (4-102) 

and (4-103). 
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
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 
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 
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(4-102) 
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ˆ( , ) 4 cos , ,
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ae c L cMq a icMq icMq
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   
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 
    
 
 
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 
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
 

(4-103) 

The integral equation of motion for the CAS configuration with square and cubic 

nonlinearity is obtained after a rather cumbersome manipulation as in the given in 

Equation (4-16). To include 3D effects of the finite span swept wing, lift curve slope 

is obtained from the Diederich general formula as [38], 

2

2 2

2

2

cos 1

1 cos cos
1 1

1

l e

L

l e l e

c AR M
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M c c
AR M

AR M




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

 


          

 
 

(4-104) 
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where, 

2

2 2

1
cos cos

1 cos
e

M

M


  

 
 (4-105) 

4.4.2 Nonlinear Aeroelastic Analysis of the Composite Wing Using 

Compressible Indicial Function 

Nonlinear aeroelastic analysis is conducted by means of a Ritz based solution 

methodology utilizing the mode shapes of the linear structural system to approximate 

the spatial variation of the degrees of freedom of the thin walled beam. It should be 

noted that, determination of the mode shapes of the linear system is exactly same as 

defined in the incompressible case explained in Section 4.2.1.1. Equation (4-106) gives 

the reduced modal matrix R , which is extracted from the eigenvalue analysis 

performed in 4.2.1.1, for the dominant m  right eigenvectors corresponding to the 

translational and rotational degrees of freedom of the linear system. 

6

T T T T T Tu v w x y

N m m N m N m N m N m N m N
R R R R R R R

      

    
 (4-106) 

One can then construct a reduced order model by expressing any of the six degrees 

freedom  0 0 0, , , , ,x yu v w      in terms of the relevant trial function  , relevant 

reduced modal matrix R  which is composed of dominant � right eigenvectors and 

the modal coordinates as, 

( , ) ( )
T

z t R t     (4-107) 

Where ( )t  is the generalized modal coordinate vector of dimension of 1m  , R  is 

the reduced modal matrix of dimension N m  composed of dominant m  right 

eigenvectors corresponding to any of the degrees of freedom   , and   is the vector 

of trial functions, of dimension 1N  , corresponding to any of the degrees of freedom 

 . 
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For the nonlinear system, the test functions for any of the degrees of freedom, which 

are the variations of the degrees of freedom, are defined by the premultiplication of 

the the vector of the trial functions   by the reduced modal matrix TL  which is 

composed of dominant m  left eigenvectors corresponding to the translational and 

rotational degrees of freedom. 

( )
T

z L     (4-108) 

Modal expansions of the degrees of freedom of the TWB (Equation (4-107)) and the 

variations of the degrees of freedom (Equation (4-108)) are substituted into the integral 

form of the governing equations of motion Equation (4-16) , resulting in the reduced 

order system of nonlinear equations, 

( ) ( ) ( ) ( ) ( ) 0NL

tc tc tc c
t t t Z t H t       M C K  (4-109) 

Where , ,tc tc tcM C K  are the reduced order mass, aerodynamic damping and stiffness 

matrices of dimension m m , and cZ  and NLH  are the reduced order vectors of 

dimension 1m   and they include the aerodynamic lag states and the nonlinear terms, 

respectively. In the resulting reduced order system of equations, if the modal matrices 

composed of the left ( )TL  and the right eigenvectors ( )R  are factored out, reduced 

order mass, damping and stiffness matrices in Equation (4-109) are defined by, 

_

_

( )

( )

T

tc s ae c

T

tc ae c

T

tc s ae c

L R

L R

L R


 



 

M M M

C C

K K K

 

(4-110) 

where the structural mass ( )sM  and stiffness ( )sK  and the aerodynamic mass 
_( )ae cM

, stiffness 
_( )ae cK  and damping 

_( )ae cC  matrices of dimension 6 6N N  are defined in 

Appendix D. It should be noted that the aerodynamic damping matrix 
_ae cC  in 

Equation (4-110) does not include the aerodynamic lag terms defined in Equations 



 
190 

 

(4-102) and (4-103), and these terms are collected in the aerodynamic lag vector cZ . 

Aerodynamic lag vector cZ  is derived from the virtual work done by the aerodynamic 

lag states ( , , , )ic icq icM icMqB B B B  in the unsteady lift and moment expressions in Equations 

(4-102) and (4-103). In the integral equation of motion Equation (2-16), virtual work 

done by the unsteady lift and moment due to aerodynamic lag states is given by, 

 _ _ _ _ 0 _ _ _ _

0

( ) ( ) ( ) ( )
L

ae c c Lag ae c cq Lag ae c cM Lag ae c cMq Lag
L L v M M dz            

 

(4-111) 

where the unsteady lift and moment due to aerodynamic lag states are given by 

Equations (4-112)-(4-115). 
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   
 (4-112) 
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  
 (4-113) 
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  
 (4-114) 
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_ _

3

1 1 2 2 3 3

( ) ( , )

4 cos ( , ) ( , ) ( , )

ae c cMq Lag
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M z t

C U b B z t B z t B z t

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

  
 (4-115) 

Following the substitution of the unsteady lift and moment due to aerodynamic lag 

states in Equation (4-111), and expressing the variations 0v  and   by Equation 

(4-108), after manipulations aerodynamic lag vector cZ  is obtained as, 
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(4-116) 

Where I  is the identity matrix of order m m  and ˆ ˆ ˆ ˆ, , , , 1, 2, 3ic icq icM icMqB B B B i   are 

vectors of order 1m   defined by, 
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where the terms inside the curly brackets are vectors of dimension 1m  , so they are 

the transformed aerodynamic lag state vectors ˆ ˆ ˆ ˆ, , , , 1, 2, 3ic icq icM icMqB B B B i  .  

The reduced order vector of nonlinear terms NLH  in Equation (4-109) are defined by 

Equation Equation (4-70). With the introduction of the aerodynamic lag states, there 

are 12m  number of additional unknowns in Equation (4-109), and to perform the 

nonlinear aeroelastic analysis of the composite wing, additional 12m  number of 

additional equations are needed. To this end, the system of nonlinear equations 

Equation (4-109) is augmented by the differential equations that the aerodynamic lag 

states ( , ), ( , ), ( , ), ( , ), 1, 2, 3ic icq icM icMqB z t B z t B z t B z t i   must satisfy (Equation (4-98)-
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(4-101)).  Since in the system of nonlinear equations, given by Equation (4-109), 

aerodynamic lag states are defined by the transformed aerodynamic lag state vectors 

ˆ ˆ ˆ ˆ( ), ( ), ( ), ( ), 1, 2, 3ic icq icM icMqB t B t B t B t i  , Equations (4-98)-(4-101) are manipulated such 

that it is also expressed in terms of the the transformed vectors 

ˆ ˆ ˆ ˆ( ), ( ), ( ), ( ), 1, 2, 3ic icq icM icMqB t B t B t B t i  . For this purpose, both sides of Equation (4-98)-

(4-101) are multiplied by the expressions given in Equation (4-121)-(4-124), 

 0
cos

L
C U b v


   (4-121) 

 2

0
2 cos

L
C U b v

   

(4-122) 

 22 cos
L

C U b

   

(4-123) 

 34 cos
L

C U b

   

(4-124) 

the variations 0v  and   are expressed by Equation (4-108), modal expansions of the 

degrees of freedom (Equation (4-107)) which appear in the right hand side of 

Equations (4-98)-(4-101) are substituted, and both sides of Equations (4-98)-(4-101) 

are integrated along the span of the wing as shown in Equations (4-125)-(4-128).  
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After manipulations the right hand side RHS  in Equations (4-125)-(4-128) can be 

brought into the form given by, 

1 2
( ) ( )

c c c
RHS D t D t     (4-129) 

1 2
( ) ( )

cq cq cq
RHS D t D t     (4-130) 

1 2
( ) ( )

cM cM cM
RHS D t D t     (4-131) 

1 2
( ) ( )

cMq cMq cMq
RHS D t D t     (4-132) 

Where 1 2 1 2 1 2 1 2, , , , , , ,c c cq cq cM cM cMq cMqD D D D D D D D  are the m m  coefficient 

matrices defined by, 

 
2

1

0

2

0

cos tan( )

cos

T T T T

T T

L

v v v v

c L

L

v v v v

c L

C U b L R L R dz

C U b L R dz

   





    

  

           

          





D

D
 

 

(4-133) 

2 2

1

0

2

2

0

2 ( cos ) tan( )

2 cos

T T

T T

L

v v

cq L

L

v v

cq L

C U b L R dz

C U b L R dz

 



 



  

  

          

          





D

D
 

  

(4-134) 

 
2

2

1

0

2

2

0

2 cos tan( )

2 cos

T T T T

T T

L

v v

cM L

L

v v

cM L

C U b L R L R dz

C U b L R dz

     



 



    

  

           

          





D

D

 

 

(4-135) 



 
194 

 

 
2

3

1

0

3

2

0

4 cos tan( )

4 cos

T T

T T

L

cMq L

L

cMq L

C U b L R dz

C U b L R dz

   



   



  

  

          

          





D

D
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Comparing Equations (4-117)-(4-120) and Equations (4-125)-(4-128), it is evident that 

since the terms multipying the time derivative of the aerodynamic lag state 

( , ), ( , ), ( , ), ( , ), 1,2, 3ic icq icM icMqB z t B z t B z t B z t i   in Equations (4-117)-(4-120) do not 

depend on time, Equations (4-125)-(4-128) can be written as, 

1 2
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where ˆ ˆ ˆ ˆ( ), ( ), ( ), ( ), 1, 2, 3ic icq icM icMqB t B t B t B t i   are the transformed aerodynamic lag state 

vector of dimension 1m   defined by Equations (4-117)-(4-120). It should be noted 

that in passing from Equations (4-125)-(4-128) to Equations (4-137)-(4-140), it is 

assumed that the semi-chord length b  in the U b  term is constant along the span of 

the wing, which is so for rectangular wings. For tapered wings, it suffices to use the 

mean semi-chord length only in the U b  term in Equations (4-137)-(4-140). 

By augmenting Equation (4-109) with Equations (4-137)-(4-140), the final form of the 

nonlinear aeroelastic system of equations of the CAS configuration composite wing 

modeled as TWB, compressible aerodynamics is obtained in state space representation 

as shown in Equation (4-141), 
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In more compact form, Equation (4-141) is in the form, 

0NLAq Bq F    (4-147) 

Where q  is the state vector of dimension 14 1, NLm F  is the vector of nonlinear terms 

of dimension 14 1m  , and A  and B  are 14 14m m  coefficient matrices defined in 

Equation (4-141). 

Nonlinear aeroelastic respose of the composite wing modeled as TWB is performed in 

time domain by the direct integration of Equation (4-147) by the  Runge-Kutta method 

for the prescribed initial conditions. Time history plots are then processed for nonlinear 

aeroelastic stability analysis. 

4.4.3 Numerical Results and Discussions 

In this section, structural and unsteady aerodynamics models described are utilized 

along with the Ritz based solution methodology to obtain various results. As the first 

case, numerical verification studies are conducted to show the validity of the whole 

model and then linear and nonlinear results are presented for different TWB 

configurations. 

 

4.4.3.1 Validation Studies 

 

The structural TWB linear model has already been verified in Chapter 2 by comparing 

the natural frequencies of the stationary CAS configuration TWB with those 

determined by the finite element solution performed by MSC Nastran.  
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Unsteady aerodynamics model based on the representation of the lift and the moment 

by the compressible indicial functions approximated by the aerodynamic lag states is 

verified by the well-known experimental study of Barmby et al. [125]. The 

experimental flutter speed and flutter frequency results obtained for the aluminum 

alloy wing of NACA 16-1010 profile in the subsonic compressible flow regime are 

compared with the predictions of the present study. In the model used in the 

verification study, structural model is based on geometrically linear equations and 

exactly the same Ritz based methodology described for the nonlinear aeroelastic 

analysis of the composite wing is used. In this respect, seven trial functions ( 7)N   

are used in the series given in Equation (4-52) for the bending 0( )v  and torsional ( )  

degrees of freedom and first seven ( 7)m   eigenfunctions are used for the modal 

reduction of the nonlinear system. Flutter speed and frequency comparisons are made 

for the wing models given in Table 4-10. In order to adapt the present TWB structural 

model to the wing models of Barmby et al. [125], degrees of freedom are restricted to 

the flapwise bending deflection 0( )v  and the elastic twist ( )  and the assignments given 

by Equation (4-79) are made for the stiffness and mass properties. It should be noted 

that the “a” parameter in Table 4-10 specifies the nondimensional offset between the 

shear center and the mid-chord, as shown in Figure 4-35. A negative value of the “a” 

parameter indicates that the shear center is forward of the mid chord. Table 4-11 

compares the wind tunnel results of flutter Mach numbers and flutter frequencies with 

the proposed compressible indicial aerodynamics formulation. Results given in Table 

4-11 show that present linear aeroelastic analysis results are in good agreement with 

the experimental results of Barmby et al. [125] for all variants of the TWB models 

including the effect of the wing sweep angle Λ. 
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Table 4-10 Geometric and material properties of the wings used for the validation 

study [125] 

 

Model 

 
2( )EI Nm

 

 
2( )GJ Nm

 

( )L m  ( )b m  a  

 
2( )I Kgm

 

 

( / )lm Kg m

 

 
(deg)

 

40A 15 10.15 0.63 0.0509 -0.2 0.00024 0.339 0 

40A 15 10.15 0.63 0.0509 -0.2 0.00024 0.338 0 

40D 14.5 9.55 0.63 0.0509 -0.21 0.00023 0.322 15 

- 94.6 26.5 0.574 0.0713 -0.08 0.00054 0.464 45 

73 16.8 15.6 0.66 0.0509 -0.12 0.00022 0.476 30 

72 22.4 11.7 0.66 0.0509 -0.12 0.00024 0.524 15 

25A 18.5 5.6 0.813 0.0509 -0.2 0.00013 0.138 60 

15 54.7 13 0.813 0.0509 -0.08 0.00017 0.289 60 

12 156.8 41.3 0.422 0.0978 -0.07 0.00014 0.637 15 

15 54.7 13 0.813 0.0509 -0.08 0.00017 0.289 60 

13 152.4 31.82 0.462 0.0713 -0.08 0.00051 0.439 30 

14 94.62 26.49 0.574 0.0713 -0.08 0.00054 0.461 45 

24 30.96 8.06 0.553 0.0719 -0.02 0.00038 0.238 45 

 

Table 4-11 Critical Mach numbers and frequencies of different wing models. 
 

 

Model 

Flutter Mach Number Flutter Frequency 

Experimental Present Experimental Present 

40A 0.5 0.526 61 63 

40A 0.45 0.475 56 59 

40D 0.51 0.482 62 59 

- 0.81 0.788 37 41 

73 0.69 0.708 24 27 

72 0.59 0.61 30 34 

25A 0.79 0.766 29 26 

15 0.51 0.537 37 41 

12 0.79 0.812 55 59 

15 0.62 0.637 36 40 

13 0.68 0.704 61 63 

14 0.56 0.577 54 57 

24 0.54 0.556 49 53 
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4.4.3.2 Linear Aeroelastic Analysis of Composite Wings 

Prior to the nonlinear aeroelastic simulations of composite wings, linear aeroelastic 

analyses are performed to predict the stability margins for a better evaluation of 

nonlinear aeroelastic simulation results. The Ritz-based methodology is followed in 

the linear aeroelastic analysis of CAS TWBs configuration. Nine trial functions 

( 9)N   are used in the expansions given in Equation (4-52) for the all six degrees of 

freedom. For the modal reduction, the number of mode shapes to be included is found 

to be 7 ( 7)m   for a reasonable convergence. Setting the nonlinear vector 0NLF   in 

Equation (4-147), linear aeroelastic system of equations is obtained. Considering 

0
tq q e  where   is the complex valued eigenvalue of the aeroelastic system, one 

obtains the standard form of the generalized eigenvalue problem. Geometric and 

material properties of thin walled beams studied, are given in Table 4-12. 

Table 4-12 Geometric and material properties of composite wings used in aeroelastic 

numerical studies. 

Material properties Geometric properties 
�� (���) 206.8e9 � (�) 10 

�� (���) 5.17e9 � (�) 0.757 

�� (���) 5.17e9 � (�) 0.12 

��� (���) 3.1e9 ℎ (�)  0.03 

��� (���) 3.1e9 Λ (���. ) 15,30,45 

��� (���) 2.55e9 � (���. ) -75, - 45 

��� = ��� 0.25 � (�� ��⁄ ) 1528 

��� 0.25 � -0.3 
 

To see the effect of compressibility on the aeroelastic instability margins, linear 

aeroelastic analysis of the composite wings has also been performed by incompressible 

indicial unsteady aerodynamics utilizing approximation of the Wagner’s function by 

two aerodynamic lag terms and also by compressible indicial unsteady aerodynamics 

utilizing approximation of the indicial functions by a total of twelve aerodynamic lag 

terms. Table 4-13 presents the critical Mach numbers and corresponding critical 

frequencies for unswept wings (Λ = 0) for four different fiber angles of the CAS 
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configuration TWB. From the results given in Table 4-13, it is evident that 

compressibility accounts for reduction in aeroelastic instability speeds. Actually, 

instability speeds obtained by incompressible unsteady aerodynamics are not 

conservative. From Table 4-13, it is also seen that fiber angle of the CAS configuration 

TWB has a significant effect on the aeroelastic instability speed. For fiber angles other 

than −90◦, the aeroelastic instability type is flutter and as the absolute value of the fiber 

angle increases, flutter Mach number decreases and for the −90◦ fiber angle case, 

critical frequency becomes zero indicating divergence instability. For the wing with 

no sweep, fiber angle of −45◦ results in the highest critical Mach number. It is to be 

noted that as Figure 4-35 shows, fiber angle is measured from the chordwise axis and 

when the fiber angle is ±90◦, fibers are aligned along the wing axis. Moreover, for 

negative fiber angles, fibers are aligned towards the leading edge, hence leading edge 

side of the wing is stiffer than the trailing edge side. Therefore, for TWBs with negative 

fiber angles other than −90◦, flutter instability occurs at higher airspeeds compared to 

the TWBs with positive fiber angles. As a matter of fact, for positive fiber angles, 

critical Mach numbers are less than 0.3, consequently incompressible unsteady 

aerodynamics model is sufficient to study the aeroelastic instability characteristics. In 

the present study, results of composite wings with positive fiber angles are not 

presented since the main scope of the article is to investigate the aeroelastic stability 

of wings in the subsonic compressible flow regime. 

 

Table 4-13 Critical Mach number and frequencies of composite CAS configuration 

wings obtained by compressible and incompressible indicial unsteady aerodynamics. 

 

Fiber 

angle 

 

Critical Mach number Critical Frequency (rad/sec) 

compressible incompressible 
Diff. 

(%) 
compressible incompressible 

Diff. 

(%) 

-45 0.73 0.87 16.3 34.56 38.5 10.2 

-60 0.67 0.8 16.5 41.82 46.5 10.1 

-75 0.67 0.75 10.2 66.31 69.3 4.31 

-90 0.57 0.65 11.8 0 0 0 
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Figure 4-36 and Figure 4-37 show the effect of sweep angle on the critical Mach 

number and critical aeroelastic instability frequency for four different fiber angles of 

the CAS configuration TWB and for the range of the sweep angle −45◦ ≤ Λ ≤ 45◦. In 

Figure 4-36 and Figure 4-37, positive sweep angle implies backward-swept wing and 

negative sweep angle implies forward-swept wing. Critical Mach number results are 

presented in the range 0.3 ≤ M ≤ 0.85 since the unsteady aerodynamic model based on 

compressible indicial functions is valid in this range. For the fiber angle of −90◦, fibers 

are aligned along the wing axis and bending-twisting coupling effect due to the 

material anisotropy is non-existent. For this configuration, Figure 4-36 and Figure 4-37 

show that for forward-swept wings with negative sweep angle, divergence instability 

occurs and as the sweep angle is increased such that it becomes positive and the wing 

becomes backward-swept, critical Mach number increases and aeroelastic instability 

switches to flutter type. This is the typical effect of the wing sweep on the aeroelastic 

stability characteristics of wings which have no material coupling. It is seen that for 

fiber angles other than −90◦, extreme forward-swept wings also have low critical Mach 

numbers with divergence instability. However, for moderate forward sweep angles, 

critical Mach number can be increased significantly with the use of fiber angles other 

than −90◦ with the −45◦ fiber angle being the most effective in increasing the critical 

Mach number. For the wing with zero sweep angle, the highest critical Mach number 

occurs for the fiber angle of −45◦. For moderate backward-swept wings, off-axis fiber 

angles cause reduction of the critical Mach number. 
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Figure 4-36 Effect of sweep and fiber angles on the stability margins of composite 

wings using the compressible indicial aerodynamic model / Critical Mach number 

versus the sweep angle 

 

 

Figure 4-37 Effect of sweep and fiber angles on the stability margins of composite 

wings using the compressible indicial aerodynamic model / Critical frequency 

versus the sweep angle. 
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4.4.3.3 Nonlinear Aeroelastic Analysis of Composite Wings 

 

For the CAS configuration composite wings which are structurally modeled as TWBs, 

nonlinear aeroelastic analyses have been performed in time domain through the fourth 

order Runge-Kutta direct integration of the governing nonlinear aeroelastic system of 

equations given by Equation (4-147). In the numerical simulations performed, it is 

assumed that the composite wing is initially at rest and the wing is given an initial 

disturbance by assigning an initial value of 1.0e−06 to all modal coordinates. As it was 

discussed before, with the very low initial conditions given to the modal coordinates, 

it is aimed to start self-excited oscillations and depending on the intrinsic character of 

the aeroelastic system, the response of the system may attenuate or increase. In the 

following, time history plots and the associated phase plots, Poincare and Power 

Spectrum Density (PSD) diagrams are given for the response of the wing tip ( )z L . 

Material and geometric properties of the composite wing used in the simulations are 

given in Table 4-12. Initially, the nonlinear aeroelastic system of equations is verified 

by comparing the time domain solution obtained with the linear aeroelastic solution 

for a rectangular wing with no seep and for the fiber angle of −75◦ in the CAS 

configuration. Referring to Table 4-13, it is seen that the predicted flutter Mach 

number is 0.67 according to the linear structural analysis. Figure 4-38 gives the time 

history plots of the flapwise wing tip deflection at the subcritical, critical and 

supercritical Mach numbers. As it is shown in Figure 4-38a, in a nonlinear analysis for 

Mach values less than 0.67, disturbance generated by the initial conditions imposed, 

attenuate due to the aerodynamic damping. With the increase in the Mach values, an 

exchange of energy between the wing structure and the aerodynamic flow commences 

at the bifurcation speed which corresponds to the flutter Mach number obtained by the 

linear aeroelastic analysis and LCO starts, as shown in Figure 4-38b, beyond the 

critical Mach number, in the supercritical region, amplitude of LCO increases 

substantially and as seen in Figure 4-38c, the magnitude of oscillations of the flapwise 

deflection is much higher than the magnitude of the oscillations at the critical 

condition. 
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Figure 4-38 Nonlinear time history plots for three air speeds being (a) Subcritical 

(� = 0.99 ��) (b) Critical (� = ��) and (c) Supercritical (� = 1.01 ��) 

 

(c) 

 

(b) 

(a) 
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Bifurcation diagram of the unswept composite wing with the CAS configuration TWB 

structural model is presented in Figure 4-39 for fiber angles of −75◦ and −45◦. 

Bifurcation points in Figure 4-39 refer to the Mach number above which LCOs of the 

wing tip deflection and wing tip twist occur and below the bifurcation point 

oscillations die out. For the CAS configuration TWB with fiber angles of −75◦ and 

−45◦, bifurcation points are at Mach numbers 0.67 and 0.73, respectively. Bifurcation 

points identified by the nonlinear aeroelastic analysis coincide with the flutter Mach 

numbers determined by the linear aeroelastic analysis given in Table 4-13. Figure 4-39 

shows that for the −45◦ fiber angle case, not only the instability occurs at a higher Mach 

number, but post-flutter LCO amplitudes of the flapwise and torsional deformation of 

the wing tip are also lower than the −75◦ fiber angle case. This observation clearly 

shows that post-flutter response of the composite wing with fiber angle of −45◦ is also 

more well behaved compared to the −75◦ fiber angle case. It should be noted at Mach 

numbers sufficiently higher than the critical Mach number, nonlinear aeroelastic 

response becomes either quasi-periodic or chaotic, and for these responses, maximum 

amplitude of flapwise wing tip deflection and maximum wing twist angle are plotted 

in the bifurcation diagram shown in Figure 4-39. 
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Figure 4-39 The effect of fiber angle on the bifurcation diagram of the composite 

wing with zero sweep angle 

For the unswept wing with the CAS configuration fiber angle of −75◦, Figure 4-40, 

Figure 4-41 and Figure 4-42 give the time histories of the flapwise wing tip 

displacement and wing tip twist and their respective power spectral density functions 

(PSDs) at post-flutter Mach numbers, M/Mcritical = 1.01, 1.05, 1.09. From Figure 4-40, 

it is seen that for the low post-critical Mach number (M/Mcritical = 1.01), aeroelastic 

response is purely periodic. At the post-flutter Mach ratio of 1.05, Figure 4-41 shows 

that oscillation amplitudes increase and response is quasi-periodic and responses are 

composed of more than one dominant frequency. Finally, as seen in Figure 4-42, at the 

post-flutter Mach ratio of 1.09, nonlinear aeroelastic response becomes chaotic and 

PSD plots show that broadband range of dominant frequencies exist in the responses. 
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Figure 4-40 Response qualification of the composite wing with θ = −75◦ and zero 

sweep angle at M/Mcritical = 1.01 (a) Flapwise displacement (b) Torsional 

deformation.  

 

  

  

 

Figure 4-41 Response qualification of the composite wing with θ = −75◦ and zero 

sweep angle at M/Mcritical = 1.05, (a) Flapwise displacement (b) Torsional 

deformation (c) PSD of flapwise displacement (d) PSD of torsional deformation.    

(a) (b) 

(a) 

(c) 

(b) 

(d) 
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Figure 4-42 Response qualification of the composite wing with θ = −75◦ and zero 

sweep angle at M/Mcritical = 1.09, (a) Flapwise displacement (b) Torsional 

deformation (c) PSD of flapwise displacement (d) PSD of torsional deformation.    

For the composite wing with the CAS configuration fiber angle of −75◦, Figure 4-43 

gives the bifurcation diagram which shows the effect of the sweep angle on the 

nonlinear aeroelastic response of the wing. Figure 4-43 compares the oscillation 

amplitudes of the flapwise tip deflection and tip twist of the unswept (Λ = 0◦) and 

backward-swept wing (Λ = 30◦). For the backward-swept wing, critical Mach number 

determined by the nonlinear aeroelastic analysis is 0.692 and this result agrees with 

the linear aeroelastic analysis results depicted in Figure 4-36. As seen in Figure 4-43, 

for the −75◦ fiber angle configuration, with the introduction of the wing sweep, critical 

(a) 

(c) 

(b) 

(d) 
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Mach number increases and amplitudes of oscillations reduce compared to the unswept 

wing at the same post-critical Mach number. 

 

Figure 4-43 The effect of sweep angle on the bifurcation diagram of the composite 

wing with fiber angle θ = −75◦ 

To aid the interpretation of the nonlinear aeroelastic response of the composite wing 

with the −75◦ fiber angle configuration, phase plots, and Poincare maps at the plane 

0   are prepared for the unswept wing and backward-swept wings with the sweep 

angles Λ = 15◦, 30◦, 45◦. Figure 4-44, Figure 4-45 and Figure 4-46 present the phase 

portraits for the flapwise bending motion of the wing tip for the Mach ratios of 1.01, 

1.05 and 1.09, respectively. As Figure 4-44 shows, at the low post-critical Mach ratio 

(M/Mcritical = 1.01), nonlinear aeroelastic response of the wing is purely periodic with 

narrow closed orbits in the phase plot for all sweep angles. For the post-critical Mach 

ratio of 1.05, Figure 4-45 shows that nonlinear aeroelastic responses of wings with low 

sweep angles show quasi-periodic behavior which appears as closed thicker circuits in 

the phase plane. For the unswept wing, in the phase plane, there are two main thicker 

loops and as the sweep angle is increased, response of the wing becomes periodic 

again. Finally, for the higher post-critical Mach ratio of 1.09, phase plots given in 
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Figure 4-46 shows that nonlinear aeroelastic responses of the unswept wing and the 

wing with the sweep angle of 15◦ are chaotic which is evident from the numerous 

intermittent circuits. However, as the sweep angle is increased, nonlinear aeroelastic 

response of the wing tip becomes quasi-periodic again. Phase plots given in  Figure 

4-44, Figure 4-45 and Figure 4-46 all show that for the −75◦ fiber angle configuration, 

by increasing the backward sweep angle, nonlinear response of the wing becomes 

more well-behaved and the amplitude of oscillations of the flapwise bending motion 

of the wing tip reduces. 

 

  

  

  

 

Figure 4-44 Phase plane plots of the flapwise bending motion for different sweep 

angles at M/Mcritical = 1.01 and θ = −75◦, (a) Λ = 0◦ (b) Λ = 15◦ (c) Λ = 30◦ (d) Λ = 

45◦ 

 

(a) 

(c) 

(b) 

(d) 
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Figure 4-45 Phase plane plots of the flapwise bending motion for different sweep 

angles at M/Mcritical = 1.05 and θ = −75◦, (a) Λ = 0◦ (b) Λ = 15◦ (c) Λ = 30◦ (d) Λ = 

45◦. 

 

 

 

 

 

 

(a) (b) 

(c) (d) 
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Figure 4-46 Phase plane plots of the flapwise bending motion for different sweep 

angles at M/Mcritical = 1.09 and θ = −75◦, (a) Λ = 0◦ (b) Λ = 15◦ (c) Λ = 30◦ (d) Λ = 

45◦. 

Figure 4-47, Figure 4-48 and Figure 4-49 show the Poincare plots which are 

constructed for the flapwise bending degree of freedom of the wing tip 0( )v  at the 

section 0   by plotting crossings in both directions. At the low post-critical Mach 

ratio (M/Mcritical = 1.01), Figure 4-47 shows that for all sweep angles, there are single 

dots which are indicative of the periodic response. For the post-critical Mach ratio of 

1.05, Figure 4-48 shows that for the unswept wing, there are finite number of dots 

indicating quasi-periodic response. As the sweep angle is increased, number of dots in 

the Poincare maps decreases, and for the sweep angle of 45◦, there is again single dot 

which indicates purely periodic response which agrees with the last phase plot given 

in Figure 4-44. For the post-critical Mach ratio of 1.09, Poincare maps, given by the 

first two plots in Figure 4-49, for the unswept wing and the wing with the sweep angle 

(a) 

(c) 

(b) 

(d) 
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of 15◦ have numerous dots indicating chaotic response. It is seen that for the thicker 

orbits in the phase plane, the number of dots emerging in the Poincare plots is also 

high. 

 

  

  

  

 

Figure 4-47 Poincare plots for different sweep angles at the plane of � = 0°, 

M/Mcritical = 1.01 and θ = −75◦, (a) Λ = 0◦ (b) Λ = 15◦ (c) Λ = 30◦ (d) Λ = 45◦ 

 

 

(a) 

(c) 

(b) 

(d) 
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Figure 4-48 Poincare plots for different sweep angles at the plane of � = 0°, 

M/Mcritical = 1.05 and θ = −75◦, (a) Λ = 0◦ (b) Λ = 15◦ (c) Λ = 30◦ (d) Λ = 45◦. 
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Figure 4-49 Poincare plots for different sweep angles at the plane of � = 0°, 

M/Mcritical = 1.09 and θ = −75◦, (a) Λ = 0◦ (b) Λ = 15◦ (c) Λ = 30◦ (d) Λ = 45◦. 

 

A comprehensive study of the geometrically nonlinear aeroelastic behavior of swept 

composite wings structurally modeled as thin walled beams (TWB) is performed. The 

structural equations of motion are obtained for the CAS configuration TWB by 

including up to third order nonlinear terms. The unsteady compressible aerodynamics 

model is constructed in the time domain by using a novel indicial approximation, 

which allows the calculation of compressible indicial functions at any Mach number 

up to 0.85, by incorporating twelve aerodynamic lag states. To construct the nonlinear 

coupled-field system of equations, twelve auxiliary equations governing the 

aerodynamic lag states are included in the formulation. The nonlinear aeroelastic 

system of equations of the composite wing is solved by means of a Ritz based solution 

methodology utilizing the mode shapes of the geometrically linear TWB model to 

approximate the spatial variation of the degrees of freedom of the TWB. Time response 

(a) 

(c) 

(b) 

(d) 
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of the nonlinear aeroelastic system is obtained via the Runge-Kutta direct integration 

algorithm. The effects of lamination angle and sweep angle of the CAS configuration 

TWB on the post-critical response of the composite wing are studied in depth by 

providing bifurcation diagrams, phase portraits, Poincare maps and one side Power 

Spectral Density (PSD) plots.  

For composite wings structurally modeled as TWBs, the following items stand out as 

major conclusions of the study on the linear and nonlinear aeroelastic response under 

compressible unsteady aerodynamics. 

 Results show that critical speeds determined by the linear aeroelastic analysis 

of the composite wings via the frequency domain solution agree very well with 

the bifurcation speeds obtained by the time domain solutions of the nonlinear 

aeroelastic system of equations of the composite wing structurally modeled as 

TWB.  

 Compressibility accounts for reduction in aeroelastic instability speeds and 

instability speeds obtained by incompressible unsteady aerodynamics are not 

conservative. 

 For the composite wing with the CAS configuration TWB structural model, 

fiber angle is seen to be a very influential parameter on the instability speed of 

the composite wing. For negative fiber angles, the form of instability is of 

flutter type because fibers are oriented towards the leading edge and divergence 

instability is deferred and flutter instability occurs at higher airspeeds where 

the compressibility effect is not negligible compared to the TWBs with positive 

fiber angles.  

 Furthermore, it is shown that combination of the fiber angle of the CAS 

configuration and the sweep angle of the wing has significant effect on the 

critical speeds as well as the post-critical nonlinear aeroelastic response of the 

composite wing. For the low off-axis fiber angle of −75◦, it seen that aeroelastic 

response of forward swept wings can be improved significantly. Moreover, it 

is also shown in the article that as the backward sweep angle of wing is 
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increased, post-critical aeroelastic response of the wing becomes more well 

behaved compared to wings with low backward sweep angles. 

 It is evident that compressibility accounts for reduction in aeroelastic 

instability speeds especially at higher Mach numbers. Actually, instability 

speeds obtained by incompressible unsteady aerodynamics are not 

conservative. 
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CHAPTER 5 

 

 

 FLUTTER CHARACTERISTICS OF COMPOSITE WIND TURBINE 
BLADES WITH BENDING TWISTING COUPLING 

 

 

 

Bending-twisting coupling is used in composite wind turbine blades to alleviate loads 

in the high power output wind turbine systems with long blades. Increased bending 

and torsional flexibility of long wind turbine blades may cause flutter instability at 

lower wind speeds. For long blades, at the flutter condition, relative velocities at blade 

sections away from the hub centre are usually in the subsonic compressible range. In 

this chapter, the effect of the compressibility on the flutter characteristics of bend-twist 

coupled (BTC) composite blades has been investigated. Flutter analyses have been 

performed for the baseline blade and the BTC blades designed for the 5MW wind 

turbine of NREL. Beam model of the blade has been developed by making analogy 

with the structural model of the prewisted rotating TWB and utilizing the variational 

asymptotic beam section (VABS) method for the calculation of sectional properties of 

the wind turbine blades. To investigate the effect of compressibility on the flutter 

characteristics of the blades, aeroelastic analyses have been performed both in 

frequency and time domain utilizing unsteady aerodynamics via incompressible and 

compressible indicial functions and comparisons are made with the results of a 

multibody wind turbine simulation program. 

In this chapter, for the purpose of studying the effect of compressibility on the flutter 

characteristics, classical flutter analyses of composite wind turbine blades have been 

performed both in frequency and time domain utilizing unsteady aerodynamics via 

incompressible and compressible indicial functions. It is to be noted that, as explained 
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in detail in Chapter 3, in the literature exponential representations of compressible 

indicial functions are available only for certain Mach numbers. For the sections of the 

blade, which are in the compressible flow regime, to perform continuous calculation 

of the compressible indicial functions in the course of frequency domain solution of 

aeroelastic instability, approximation methodology which is presented for the 

calculation of compressible indicial functions at any Mach number in Chapter 3 has 

also been used in this chapter. Structural model of wind turbine blades is based on 

beam models which have been developed by making analogy with the rotating TWB 

and utilizing the VABS method for the calculation of sectional properties of the wind 

turbine blades. For the inboard blade sections, which are in the incompressible flow 

regime, structural blade model is integrated with the incompressible unsteady 

aerodynamics model utilizing Wagner’s function, and for the outboard blade sections, 

which are in the compressible flow regime, structural blade model is integrated with 

the compressible unsteady aerodynamics model based on compressible indicial 

functions. Aeroelastic system of equations are solved by the extended Galerkin method 

both for blades with no pretwist and with the prescribed pretwist of the NREL blade. 

The proposed approach allows for frequency domain solution of aeroelastic instability 

of wind turbine blades whose sections are both in incompressible and compressible 

flow regime. 

 Wind Turbine Blade Model 

NREL’s 5 MW wind turbine blade is inversely designed with 17 sections along the 

spanwise direction [127]. Inverse design process of the blade is described in the 

flowchart given in Figure 5-1.  
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Figure 5-1 Inverse design loop of a wind turbine blade with known cross-sectional 

beam properties 

The geometric properties of the inversely designed blade are taken from NREL’s 

report [128]. However, the transition region near the blade root is undefined in the 

NREL’s report. Therefore, the transition region of the blade is generated so that a 

smooth transition is achieved through the axis of the blade. The 3D reference blade 

design is shown in Figure 5-2. 

 

 

Figure 5-2 Three dimensional inversely designed reference blade [1] 

The chord lengths of the sections and the name of the airfoils are presented in Table 

5-1. Front and rear spars are placed such that the thickest section of the airfoils is 

bounded by the shear webs. The blade pitch axis passes through the center of the 

circular cross-section of the root and the middle of the spars, and the sections of the 

blades are arranged accordingly to pitch axis. The inversely designed blade is fully 

composed of GFRP material. The skins between the leading edge and front spar, and 

rear spar and trailing edge portions as well as two spars are made of ±45° biaxial 
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lamina. Furthermore, circular root blade section is composed of 0° and 90° UD GFRP 

plies placed with respect to the blade axis. Flange regions between the two shear webs 

on the pressure and suction side are shaded in dark brown in Figure 5-3 and are 

composed of 0° UD GFRP plies.  

Table 5-1 Geometrical properties of NREL’s 5 MW turbine blade 

Section Starting 
Point (m) 

Chord Length of 
Section (m) 

Airfoil Name 

0 3.542 Circular 
3.644 3.711 Transition 
5.467 4.050 Transition 
8.200 4.557 DU40_A17 

12.300 4.652 DU35_A17 
16.400 4.458 DU35_A17 
20.500 4.249 DU30_A17 
24.600 4.007 DU25_A17 
28.700 3.748 DU25_A17 
32.800 3.502 DU21_A19 
36.900 3.256 DU21_A20 
41.000 3.010 NACA643-618 
45.100 2.764 NACA643-618 
49.200 2.518 NACA643-618 
53.300 2.313 NACA643-618 
56.033 2.086 NACA643-618 
58.767 1.419 NACA643-618 
61.500 0.500 NACA643-618 

 

 

Figure 5-3 Flange region between the spars on pressure and suction sides [1] 
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For the design process, sectional edgewise, flapwise and torsional stiffness properties 

of inversely designed blade are closely matched to that of NREL’s 5 MW turbine blade 

by modifying the number of plies in each section by utilizing VABS through which 

the sectional properties of the beam-blade are calculated [129]. Utmost importance is 

given in the inverse design phase of the blade since the turbine blade ought to have 

comparable properties with the NREL’s blade in order to represent the loads on the 

turbine and power production correctly. 

Blade is divided into 17 sections, for each section of blade, appropriate laminate 

definitions are made for the upper and lower surfaces of the blade box blade between 

the already designed spar caps. The finite element models of the cross section profile 

are set up in PreVABS commercial code [130]. VABS code is used to process of the 

output of PreVABS model. The VABS code is capable of calculating the airfoil shape 

cross sectional beam properties of the blade which are highly comparable with the 

beam section properties of the known NREL’s 5 MW blade structure. The schematic 

description of the sections of the blade with distinct airfoil profiles is shown in Figure 

5-4. 

In Figure 5-4, ( , , )x y z  coordinate system is the rotating structural coordinate system 

established at the blade root and the conventional Theodorsen’s aerodynamic 

coordinate system ( , )ae zex z  for a blade section is also shown together with the 

structural coordinate system ( , , )x y z . In a blade section, , ,p p pu v w  are the translations 

of the shear center of the TWB wind turbine blade model in the ( , , )x y z  directions, 

respectively and ( , ), ( , ), ( , )x yz t z t z t   are the rotations about the ( , , )x y z  axes. 
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Figure 5-4 schematic description of the blade sections with distinct airfoil profiles 

Following design of the baseline blade, the number of composite layers in certain 

sections of the blade have been modified to have gradual thickness drops along the 

span of the blade. Figure 5-5 and Figure 5-6 compare the sectional flatwise bending 

stiffness and torsional stiffness of the inversely designed baseline blade and the NREL 

five-megawatt turbine blade. It is seen that the baseline turbine blade represents the 

sectional flatwise and torsional stiffness of the 5MW wind turbine blade of NREL 

reasonably well. It should be noted that the baseline blade design is not a detailed 

design and not a production blade. With the inverse design method, it is aimed to define 

a baseline blade that has a similar mass and stiffness distribution along the blade span 

as the blade of the NREL five-megawatt wind turbine. 
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Figure 5-5 Sectional flapwise bending stiffness of the reference and NREL’s 5MW 

wind turbine blade 

 

 

Figure 5-6 Sectional torsional bending stiffness of the reference and NREL’s 
5MW wind turbine blade 

Blades with bending-twisting coupling are created by modifying the spar cap plies at 

the outboard section of the blade. Note that the reference blade is an uncoupled blade 

that consists of on-axis GFRP plies in the flange region between the front and the rear 

webs. GFRP material are used in the spar cap plies in the design process of the blades. 
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The baseline blade, which is the inversely designed wind turbine blade having 

sectional stiffness properties matched to that of NREL’s 5 MW wind turbine blade, 

has full-GFRP material with 0° fiber angle configuration in the spar caps. Based on the 

outcome of the study by Sener [1] in the bend-twist coupled wind turbine blades off-

axis fiber angle range is decided to be 10o and 20o. Bend-twist coupling effect is 

exploited by utilizing GFRP material in spar cap plies oriented at 10º and 20º with 

respect to the blade axis. For all blade configurations, inboard 31.5 meter portion 

comprise of 0° GFRP plies. The outboard 30 meter portion of the blade is where the 

modifications take place by retaining GFRP plies with 10º and 20º fiber angles in the 

spar caps as depicted in Figure 5-7.  

 

Figure 5-7 Spar cap region with fiber angles of the spar cap plies oriented with 
respect to the blade axis  

In the present study, full GFRP bend-twist coupled blades are designed by modifying 

the baseline blade. Off-axis ply angle in the BTC sections of the BTC blades is taken 

as 10o and 20o and off-axis pressure and suction side spar cap plies are placed in the 

outboard 30 m of the blade. BTC blades are designed by rotating the unidirectional 

plies in the pressure and the suction side spar caps of the outboard 30 m of the baseline 

blade towards the leading edge by the fiber angle �. Table 5-2 describes the baseline 

and the BTC blade designs made. Since the same number of plies in the outboard 30 

m of the BTC blades (BTC_10 and BTC_20) is used as in the baseline blade, BTC 

blades have lower flatwise bending stiffness compared to the baseline blade in the 

bend-twist sections.  
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Table 5-2 Blade configurations studied 

Blades Description 

baseline 
Baseline GFRP blade with pressure/suction side GFRP spar cap plies 

along the blade axis (0 deg.) in the bend-twist sections of the blade. 

BTC_10 0 deg. plies in the bend-twist sections of GFRP_1 blade are made 10º. 

BTC_20 0 deg. plies in the bend-twist sections of GFRP_1 blade are made 20º. 

 

 Governing Aeroelastic Equations of the Rotating Beam-Blade Model 

In this section aeroelastic equations of the beam-blade are derived. In this respect, to 

generate the parametric expressions of the stiffness, mass and inertia terms associated 

with the sections of the blade, governing equations are derived assuming that the blade 

is structurally composed of a single cell box beam. Once the governing equations are 

obtained in parametric form, stiffness, mass and inertia terms which appear in the 

governing equations are replaced by the stiffness, mass and inertia properties of the 

blade sections determined by VABS for the real blade structure. In this respect, single 

cell box beam serves as a tool to come up with the constitutive equation relating the 

general beam stress-resultants and the generalized strain counterparts and also the 

mass and the inertia terms. The resulting beam-blade model is coupled with both 

incompressible and compressible unsteady aerodynamic models based on the 

incompressible and compressible indicial functions to come up with the aeroelastic 

system of equations. 

5.2.1 Basic Assumptions and Kinematic Relations Employed in the TWB 

Structural Model 

Figure 5-8 shows the wind turbine blade cross section in undeformed and deformed 

planes and the structural rotating coordinate system. Rotating coordinate system 

( , , )x y z  is placed at the root of the TWB blade and the local coordinate system ( , , )n s z  
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is defined at the mid plane of the cross section of the TWB such that s  is the axis 

tangent to the middle surface and n  is the axis perpendicular to the s  axis. The 

displacements u  and v  of any point on the beam cross section in the x  and y  directions 

can be defined in terms of the displacements of shear center P  and the rotation ( , )z t  

of the cross section about the shear center P , as shown in Figure 5-8. In the following, 

thin walled beam kinematics is based on the geometrically linear theory and cross-

sectional warping is neglected. 

 

Figure 5-8 Blade cross-section before and after deformation 

For the geometrically linear thin walled beam kinematics, neglecting the cross-

sectional warping, the 3-D displacements ( ( , , , ), ( , , , ), ( , , , ))u x y z t v x y z t w x y z t  are described 

in terms of the displacements ( , ), ( , ), ( , )p p pu z t v z t w z t  of the shear center and the twist 

angle ( , )z t  as [92], 

p

p

p y x

dx
u u y n

ds

dy
v v x n

ds

dy dx
w w x n y n

ds ds





 

       
       
                  

 

 

(5-1) 
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where, , ,p p pu v w   are the translations of the shear center of the thin walled wind turbine 

blade in the , ,x y z  directions, respectively and ( , ), ( , ), ( , )x yz t z t z t    are the rotations 

about the , ,x y z  axes.  It should be noted that displacements given by Equation (5-1) 

are explicitly valid for a single cell box beam. In the following, governing equations 

are derived assuming that the blade is structurally composed of a single cell box beam. 

The approximation of the linear strain tensor is adopted to derive the strain-

displacement relations. The nonzero components of the strain are defined by, 

zz

w

z






 (5-2) 

2
sz xz yz

dx dy
n

ds ds
       (5-3) 

nz xz yz

dy dx

ds ds
     (5-4) 

where ()� corresponds to differentiation with respect to the z  coordinate. 

By substituting displacement components in Equation (5-1) into the axial strain 

expression given by Equation (5-2), the nonzero axial strain can be rewritten as given 

in Equation (5-5), 

0 1

zz zz zz
n     (5-5) 

 where the strain components 0 1,zz zz   all include linear terms and their explicit 

expressions are given as, 

 

 (5-6) 

 (5-7) 

0

zz y x p
x y w      

1

zz y x

dy dx

ds ds
    
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In order to determine the expressions for the shear strains sz  and nz , local shear 

strains in the yz  plane yz  and xz  plane xz  given by Equations (5-8) and (5-9) are 

substituted into Equations (5-3) and (5-4). 

0y z x
v     (5-8) 

0x z y
u     (5-9) 

Following the substitution, the transverse shear strains sz  and nz  can be expressed 

as, 

0 1

sz sz sz
n     (5-10) 

0

nz nz
   

(5-11) 

where the explicit expressions of the shear strain components 0 1 0, ,sz sz nz     are given 

as, 

0

sz y x

dx dy

ds ds
     (5-12) 

1 2
sz
    (5-13) 

0

nz y x

dy dx

ds ds
     (5-14) 
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5.2.2 Constitutive relations 

The relationship between the stresses and strains in a layer in contracted form can be 

expressed in terms of the reduced stiffness coefficients 
ijQ  of the composite blade by 

Equation (5-15). 
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(5-15) 

The explicit expressions of the reduced stiffness coefficients 
ijQ  are given in 

APPENDIX A. 

5.2.3 Energy Expressions 

The governing equation of motion can be analytically derived using the Hamilton's 

principle in the absence surface shear forces, and thermal loadings as, 

 
2

1

1 2

0 0 0

( ) 0

, ,

0

t

cf

t

x y

T V V W dt

at t t t

u v w

  

     

   



     



 

 

 (5-16) 

where, , , cfT V V  and W are the kinetic energy, strain energy due to large strains, strain 

energy due to the centrifugal force and the work done by external loads, respectively.  

In the thin walled beam theory employed, it is assumed that the cross section of the 

TWB does not distort and geometrical dimensions stay invariant in its plane, implying 

that 0xx yy xy     . In addition, shell force and moment resultants due to the 

tangential normal stress ss  and the in-plane shear stress ns   are assumed to be small 
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and omitted [92]. Under these assumptions, the strain energy in terms of the nonzero 

3D stress and strain components can be expressed as, 

where the integral is taken over the whole cross-section of the blade and it is assumed 

that the blade has a length of �. Utilizing the strain displacement relations defined by 

Equations (5-6), (5-7) and Equations (5-12)-(5-14) and taking the integral along the 

wall thickness and along the contour of the cross-section of the thin walled blade, the 

strain energy due to the deformation of the blade caused by the external forces 

excluding the centrifugal force can be expressed as, 

0 0 0

0

1
( ) ( )

2

L

z x y y x y y x x zV T w Q u Q v M M M dz                    (5-18) 

where, zT  is the axial force, ,x yQ Q  correspond to the chord-wise and flap-wise shear 

forces, ,x yM M  are associated with the flap-wise bending moment (moment about x  

direction) and chord-wise bending moment (moment about y  direction), zM  

corresponds to the Saint –Venant twist moment.  

As described in Chapter 2, one dimensional beam stress and moment resultants and 

their generalized strain counterparts given in Equation (5-18) are related to each other 

through Equation (5-19). 

   F A D    
 (5-19) 

where the , ,F A D  are the one dimensional beam stresses and moment results For the 

geometrically linear TWB and neglecting warping,  the resulting stiffness matrix � 

becomes 6 × 6 Explicitly, one dimensional beam stress and moment resultants and 

 

 

(5-17) 
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their generalized strain counterparts given in Equation (5-18) are related to each other 

through Equation (5-19). Explicitly, Equation (5-19) can be expressed as, 
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(5-20) 

 

For a single cell thin walled beam, stiffness coefficients ���   are given by the contour 

integral of the stiffness coefficients , ,ij ij ijA B D  as shown in Chapter 2.3. For a wind 

turbine blade with airfoil shape, and multi-cell configuration, calculation of the 

stiffness coefficients through integration over the cross-section of the blade is a tedious 

work. The 6 × 6 stiffness matrix of the cross-section (�) of the thin walled blade can 

also be calculated using a separate, two-dimensional linear FEM analysis of an 

arbitrarily shaped composite cross section which is decoupled from the one-

dimensional global analysis for the beam. In this study, an improved finite element 

cross-sectional analysis code (VABS) is used to extract the beam sectional properties 

of the blade sections using the Timoshenko model for the stiffness matrix, as shown 

in Equation (5-20). In classical flutter, the critical flutter mode is the flapwise bending-

torsion coupling. For this reason, in the present study a further simplification is made 

in the degrees of freedom included in the governing equations and only the flapwise 

bending displacement ( 0v ), flapwise bending rotation  ( x ) and torsional rotation () 

are retained in the governing equations. Moreover, to study the effect of bending-

twisting coupling on the flutter characteristics of wind turbine blades, only the 

bending-twisting coupling coefficient 56a  is retained in the constitutive equation. With 

these simplifications, Equation (5-20) reduces to Equation (5-21). 
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(5-21) 

 

For the baseline and the bend-twist coupled blade configurations given in Table 5-2, 

Figure 5-9, Figure 5-10, Figure 5-11 and Figure 5-12 show the sectional flapwise 

bending 55( )a ,  flapwise transverse shear 33( )a , torsional stiffness 66( )a  and flapwise 

bending-torsion coupling stiffness 56( )a  of the inversely designed baseline blade and 

bend-twist coupled blades BTC 10 and BTC 20 described in Table 5-2. Sectional 

stiffnesses are presented only for the bend-twist coupled sections of the blade in the 

outboard 30 m of the blade. 

 

 

Figure 5-9 Sectional flapwise bending stiffness (��� ) of the blades 
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Figure 5-10 Sectional flapwise transverse shear stiffness (��� )of the blades 

 

 

 

 

Figure 5-11 Sectional torsion stiffness (��� ) of the blades 
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Figure 5-12 Sectional flapwise bending –torsion coupling stiffness (���) of the 

blades 

 

Utilizing the simplified constitutive equation given by Equation (5-21), Equation 

(5-18) can be expressed as in Equation (5-22). 
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(5-22) 

In the process of the derivation of the equations of motion of the blade, one needs to 

express the variation of the kinetic energy. Equation (5-23) gives the variation of the 

kinetic energy of the blade, 
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where  is the average mass density of the composite laminate of the walls of the blade 

and the position vectorR of an arbitrary point in the deformed rotating blade with 

respect to the center of the hub is given by, 

0
ˆˆ ˆ( ) ( ) ( )R x u i y v j z w R k        (5-24) 

where the displacements components , ,u v w  are given by Equation and 
0

R is the 

distance from the hub center to the blade root. For a blade rotating at an angular 

velocity   about the y  axis shown in Figure 5-4, the acceleration of an arbitrary point 

( )R  in the deformed rotating TWB can be expressed as, 

ˆˆ ˆ
x y z

R a i a j a k    
(5-25) 

where, 
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(5-26) 

In Equation (5-26), the effects of the Coriolis and centrifugal terms induced by angular 

velocity are clearly identified. The variation of the kinetic energy can then be 

expressed as, 

    2 2

1 0 0 4 5 4x x x
T b v v b b b dz                    (5-27) 

where, the distribution of non-vanishing inertia terms, mass per unit length 1( )b  and 

mass moment of inertia about the ,x y  axes 4 5( , )b b  along the blade  span are defined 

in Chapter 2, and in log scale variation of the mass and inertia terms are presented in 

Figure 5-13. 
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Figure 5-13 variation of the mass per unit span (��) and mass moment of inertia 

(��, ��) along the blade span 

Rotary blades are subjected to centrifugal forces and in the present study the effect of 

centrifugal forces is also taken into account. The centrifugal force acting on the 

rotating beam at a spanwise location z can be expressed as,  

   2 2
0

L

c

z

F R z dz R z       (5-28) 

where,   is the density of the TWB and ( )R z  is defined as, 
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 (5-29) 

The contribution of the centrifugal force to the strain energy in the TWB can be 

expressed as, 
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(5-30) 
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where, ,u v  are the 3-D displacements in the edgewise and flapwise directions, 

respectively and cF   is the centrifugal force. By substituting the displacements defined 

by Equation (5-1) and the centrifugal force defined by Equation (5-28) into Equation 

(5-30), the variation of the strain energy due to centrifugal force is obtained in explicit 

form as in Equation (5-31).  
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(5-31) 

5.2.4 Unsteady aerodynamics models 

The last portion of the Hamiltonian in Equation (5-16) is the variation of work done 

by the external loadings. The only loading considered in this study is the one due to 

the unsteady aerodynamics. Hence, one can write W  as, 

 0

0

( , ) ( ) ( , ) ( )
L

ae ae
W L z t v z M z t z dz     (5-32) 

Where aeL  and aeM  are the unsteady aerodynamic lift and pitching moment.  

For a large wind turbine blade, the aerodynamics for a single blade is similar to that of 

a fixed wing but with a free stream velocity that varies linearly from the root to the tip. 

It is also assumed that the shed wake of the preceding blade dies out sufficiently fast 

so that the oncoming blade essentially encounters still air. In the following, both the 

incompressible and compressible unsteady aerodynamics models based on indicial 

functions are introduced by referencing Chapter 3. In the present study, the static 

deformation of the blade and the mean steady aerodynamic loads are not considered, 

and the flutter occurrence is investigated with respect to the undeformed blade. One 

common assumption in both models is the attached flow assumption since the 

aerodynamic models are based on small disturbance theory. Thus, intrinsic flutter 
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characteristics of the wind turbine blade has been investigated for small deformation 

of the blade about a static deformation state utilizing linear unsteady aerodynamics. 

However, the current model can be improved by including stall aerodynamics using 

models such as ONERA stall aerodynamics as a future study.  

5.2.4.1 Incompressible unsteady aerodynamics based on Wagner’s function 

 

By referencing Chapter 3, the general form of the unsteady incompressible 

aerodynamic lift inc
aeL and pitching moment inc

aeM expressed in terms of Wagner’s 

function are given by Equations (5-33) and (5-34). 
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where , b rU , ,LC a  are the air density, semi-chord length of the blade, relative wind 

speed, lift curve slope and the nondimensional offset between the shear center and the 

mid-chord, respectively. W  is the incompressible indicial function, Wagner’s 

function, and 0.5 ( , )cw z t , 0.75 ( , )cw z t  are the downwash terms at the mid-chord and three-

quarter chord of the blade and the are given by Equations (3-9). A negative value of 

the a  parameter indicates that the shear center is forward of the mid chord. For a wind 

turbine blade rotating at an angular velocity of   , the relative velocity rU at blade 

section z  measured from the hub center is given by Equation (5-35). 
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i ( )rU U z    (5-35) 

As discussed in Chapter 3, the integrals appearing in Equations (5-33) and (5-34) are 

handled by using the approximate representation of the Wagner’s function given by, 
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where �(�) represents the step function and 1 0.165, 2 0.335 , 1 0.335,  2 

0.3. Substituting the approximation of the Wagner’s function into the integral 

expressions in Equations (5-33) and (5-34), one can express the integrals in terms of 

aerodynamic lag terms ( , )iB z t  as, 
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where, by making use of the Leibniz integral rule, it can be shown that the aerodynamic 

lag terms ( , )iB z t have to satisfy Equation (5-38). 

0.75( ) ( , ); 1,2r
i i i c

U
B B w z t i

b
     (5-38) 

For 3-D blades with finite span, to reflect the 3-D effects, lift curve slope and the 

position of the three-quarter chord position, where the downwash is calculated, are 

modified according to Equation (5-39) only in the circulatory lift and moment 

expressions in Equations (5-33) and (5-34). 

 



 
242 

 

2
2

1 2

L l

AR
C c

AR
AR

 
     

 (5-39) 

where, �� is the aspect ratio. 

Substituting the approximation of the integral in Equation (5-37) and the downwash at 

the mid-chord and three-quarter chord into the unsteady lift and moment expressions, 

Equations (5-33) and (5-34), the final form of the unsteady lift and moment are 

obtained as given by Equation (5-40) and (4-41). 
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(5-41) 

 

5.2.4.2 Compressible Unsteady Aerodynamics Based on Compressible Indicial 

Functions 

 

In the present study, to study the effect of compressibility on the flutter characteristics 

of wind turbine blades, explicit expressions for the unsteady aerodynamic loading in 

the subsonic compressible flow regime in time domain are obtained using indicial 

aerodynamics. For arbitrary small motions of the thin airfoil in the subsonic flow, with 

respect to the baseline axis placed at the leading edge of the airfoil, downwash velocity 

corresponding to pitching and plunging motions can be expressed as, 
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(5-42) 
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where the downwash velocity is divided into two parts; 0v rw v U    indicates the 

plunging motion and w     is the pitching motion of the airfoil. 

Compressible aerodynamic loads in the Theodorsen’s coordinate which is located at a 

distance ( 1)b a   behind the leading edge are defined in terms of the indicial functions 

as; 

 

 
0

2

0

( , )
, ( ,0) ( ) ( )

,
2 ( ,0) ( ) ( )

t

c r v r
ae L r v c c

t

r r
L r cq cq

U dw z U
L z t C U b w z t t d

b d b

dw zU U
C U b w z t t d

b d b





 


    




    



           
          





 

(5-43) 

 

 

2

0

0

3

0

0

( , )
, 2 ( ,0) ( ) ( )

,
4 ( ,0) ( ) ( )

t

c r v r
ae L r v cM c

t

r r
L r cMq cMq

U dw z U
M z t C U b w z t t dt

b d b

dw zU U
C U b w z t t dt

b d b





 


   




   



            
          





 

(5-44) 

where the set of aerodynamic indicial functions in the Theodorsen’s coordinate 

( , , , )c cM cq cMq    are related to the indicial functions defined with respect to the axis 

located at the leading edge of the airfoil as, 
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(5-45) 

where, c   and cM  are the indicial lift and pitching moment functions due to the unit 

step change of the plunging motion ( )vw  and 
cq  and 

cMq are the indicial lift and 

pitching moment functions due to the unit step change of the pitching motion ( )w  
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about the coordinate located at the leading edge of the airfoil. It should be noted that 

to simplify the writing, Mach dependency of the indicial functions is not shown in the 

lift and pitching moment expressions given by Equations (5-43) and (5-44). 

Similar to the incompressible case, approximate representations of the Mach number 

dependent compressible indicial functions, defined with respect to the leading edge of 

the airfoil, may be utilized to handle the integrals appearing given in the unsteady lift 

and moment expressions in Equations (5-43) and (5-44). Equation  

(5-46) gives the approximate representations of the compressible indicial functions 

which are used in the present study. It should be noted that in the literature, coefficients 

of the exponential representations of the indicial functions are obtained numerically 

for a limited number of Mach numbers ( 0.5, 0.6, 0.7, 0.8)M  . For the frequency 

domain solution of the flutter in the compressible flow regime, compressible indicial 

functions have to be calculated for any Mach number. For this purpose, as described 

in detail in Chapter 3 a methodology is used to extract the coefficients of the 

approximate representations of the compressible indicial functions for any Mach 

number less than 0.8. 
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(5-46) 

 

Based on method comprehensively explained in Chapter 2, once the Mach dependent 

base coefficients 
, , ,( ( ), 1, 2, 3)ic icM icq icMq M i   of the lift and the moment compressible 

indicial functions for the plunging and pitching motion with respect to the coordinate 
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system established at the leading edge of the airfoil are determined for any Mach 

number, base coefficients with respect to the axis located at ( 1)b a   aft of the leading 

edge can be determined utilizing the relations given by Equation (5-47),  
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(5-47) 

 
Where 1,2, 3i  . It should be noted that these relations are the same as those given by 

Equations (5-45) for the indicial functions themselves owing to the fact that, the 

approximate exponential representation of the four indicial functions are defined with 

the same Mach-independent power coefficients ( , 1,2,3)i i  . 

The integrals in the lift and moment expressions in Equations (5-43) and (5-44) are re-

expressed by substituting the exponential representations of the indicial functions, 

defined with respect to the axis located at ( 1)b a   aft of the leading edge, in the 

integrals as shown in Equation (5-48). 
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(5-48) 

By defining the integrals involving the exponential terms in Equation (5-48) as the 

aerodynamic lag terms  , , , ,ic icq icM icMqB z t , assuming that the wing is initially at rest (
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( ,0) ( ,0) 0vw z w z  ) and making use of the Leibniz integral rule, Equation (5-48) is 

transformed into Equation (5-49). 

   
3

1 0
1

, ( , ) ,
c v ic ic

i

D z t w z t B z t 


   

   
3

2 0
1

, ( , ) ,
cq icq icq

i

D z t w z t B z t 


   

   
3

3 0
1

, ( , ) ,
cM v icM icM

i

D z t w z t B z t 


    

   
3

4 0
1

, ( , ) ,
cMq icMq icMq

i

D z t w z t B z t 


    

 

 

 

(5-49) 

 

When the Leibniz integral rule is applied to the integrals involving the exponential 

terms in Equation (5-49), it can be shown that the aerodynamic lag terms 

 , , , ,ic icq icM icMqB z t  are defined by Equation (5-50), 
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It should be noted that three aerodynamic lag terms are used for each indicial function 

so a total number of twelve aerodynamic lag terms would exist in the description of 

the 3D unsteady aerodynamic loads in the subsonic compressible flow. Finally, 

unsteady compressible aerodynamic lift ( , )c
aeL z t  and pitching moment ( , )c

aeM z t  about 

the Theodorsen’s coordinate in terms of indicial functions are expressed as, 
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To include 3-D effects of the finite span wing, lift curve slope 
LC 

 is obtained from 

Diederich general formula as [100],  
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

 
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
       

 

 

(5-53) 

Where M is the Mach number and lc   is the 2D lift curve slope. 

5.2.5 Governing Equation of Motion of the Beam-Blade Model 

The geometrically linear form of aeroelastic governing equations of motion have been 

derived through the Hamilton’s principle, by including the expressions for the 

variations of the strain energy due to deformation, strain energy due to centrifugal 

force and the kinetic energy in Equation (5-16). As it is mentioned previously, to study 

the classical flutter phenomenon in a simplified way, in the governing equations, and 

only the flapwise bending displacement ( 0v ), flapwise bending rotation ( x ) and the 

torsional rotation () are retained in the governing equations. Moreover, to study the 

effect of bending-twisting coupling on the flutter characteristics of wind turbine 

blades, only the bending-twisting coupling is retained in the constitutive equation 

given by Equation (5-21).  
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Application of the Hamilton’s principle yields Equations (5-54)-(5-56) as the 

governing aeroelastic equations of motion for the beam-blade. In Equations (5-54)-

(5-56), if the compressibility effect is neglected, then unsteady aerodynamic lift and 

moment expressions ( , )aeL z t  and ( , )aeM z t are equal to their incompressible 

counterparts given by Equations (5-40) and (5-41). On the other hand, if the 

compressibility effect is included, then for the sections of the blade which are in the 

incompressible flow regime, ( , )aeL z t  and ( , )aeM z t are again equal to their 

incompressible counterparts given by Equations (5-40) and (5-41), and for the sections 

of the blade which are in the compressible flow regime, ( , )aeL z t and ( , )aeM z t are 

equal to their compressible counterparts given by Equations (5-51) and (5-52). 
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

 

(5-54) 

(5-55) 

(5-56) 

5.2.6 Solution methodology 

5.2.6.1 Solution of the Aeroelastic System of Equations of the Beam-Blade 

Neglecting Compressibility Effects 

 

When the compressibility effects are neglected, unsteady lift and moment expressions 

given by Equations (5-40) and (5-41) are used in the aeroelastic system of Equations 

(5-54)-(5-56), and the Extended Galerkin`s Method (EGM) is employed for the 

solution of aeroelastic instability speed and frequency. For the incompressible 

unsteady aerodynamics, structural degree of freedom vector, which is composed of the 
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flapwise bending deflection ( 0v ), flapwise bending rotation ( x ) and the torsional 

deformation (), is augmented with the aerodynamic variables which are the 

aerodynamic lag states 1B  and 2B . The variables of the aeroelastic system are denoted 

by the symbol   as shown in Equation (5-57). 

 1 2, , , ,o xv B B       (5-57) 

For the incompressible aerodynamics, governing aeroelastic system of equations 

comprise of Equations (5-54)-(5-56), and Equation (5-38) for the two aerodynamic lag 

states 1 2,B B .  

In order to employ the EGM, structural and aerodynamic variables are separated 

spatially and temporally as, 

   ( , ) ( ) ( )
T

z t z q t      (5-58) 

where, 

   ,1 ,2 ,( ) ( ) ( )... ( )
T

Nz z z z       

   ,1 ,2 ,( ) ( ) ( )... ( )
T

Nq t q t q t q t     

 

(5-59) 

 

where, ,i is the polynomial shape function of degree i which satisfies the essential 

boundary conditions and N is the highest degree of the polynomial that is retained in 

the shape function vector  ( )z . In the present study, to achieve convergence for 

flutter solutions, polynomials up to 9th degree (N =9) are taken as the shape functions

 ( ( ) ; 1...9)iz z i   . The state vector of the generalized time dependent 

variables of the aeroelastic system is defined by Equation (5-60). 
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           
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x
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T T TTT

v B B

q

q t q t q t q t q t q t 
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     
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(5-60) 

In the governing aeroelastic system of equations given by Equations (5-54)-(5-56) and 

Equation (5-38), the structural variables ( 0, ,xv   ) and incompressible aerodynamic 

variables ( 1 2,B B ) are substituted by their spatially and temporally separated forms 

given by Equation  (5-58).  Then, in the implementation of the EGM, Equation (5-54) 

is multiplied by v , Equation (5-55) is multiplied by 
x

 , Equation (5-56) is 

multiplied by  , for i=1 Equation (5-38) is multiplied by
1B

 and for i=2 Equation 

(5-38) is multiplied by 
2B

 and the resulting equations are integrated along the blade 

span with respect to z.  As a result of implementing EGM, the general aeroelastic 

system of equations are obtained as, 

   

   
5 3 5 5

5 5
0

in c in c
s a str aN N N N

inc
s a N N

q q

q

 



           

    

 M M C

K K
 

(5-61) 

where, sM and inc
aM are the structural and the incompressible aerodynamic mass 

matrices, inc
aC is the incompressible aerodynamic damping matrix, and sK  and inc

aK

are the structural and the incompressible aerodynamic stiffness matrices. Explicit 

definitions of the matrices are given in Appendix G. 

Equation (5-61) is expressed in state space form by augmenting the state vector of the 

generalized time dependent variables  ( )q t by the time derivatives of the generalized 

time dependent structural variables, as shown in Equation (5-62). 

          08 1
( ) ( ) ( ) ( ) ( )

x

T
T T TT

vN X
X t q t q t q t q t   

   

(5-62) 

With the definition of the augmented the state vector of the generalized time dependent 

variables, Equation (5-61) is transformed into Equation (5-63). 
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 
 

 
   

8 8 8 8

0
inc inc inc
a s a s a

N N N N

X X

 

                 

C M M K K 0

I 0 0 I

 

 

(5-63) 

where I is the identity matrix of order 3 5N N  and 0 is the zero matrix of order 3 3N N

Equation (5-63) can then be re-written in a more compact state space form as, 

   X X   
 A  (5-64) 

where the coefficient matrix A  is given by Equation (5-65). 

   
1

inc inc inc
a s a s a

                     

C M M K K 0
A

I 0 0 I
 (5-65) 

The solution to Equation (5-64) is assumed to be in the form of, 

   0
tX(t) X e  (5-66) 

where   0X is an amplitude vector and  is the eigenvalue, both of which can be 

complex quantities, in general. After inserting Equation (5-66) into Equation (5-64), 

the eigenvalue problem is obtained as in Equation (5-67). 

 
(5-67) 

Solution of (5-67) yields the eigenvalues r and the corresponding eigenvectors

 0 ( 1,2,...8 )
r

X r N . The real part of the eigenvalue r is the measure of the 

damping of the rth mode and the imaginary part of the eigenvalue r is the rth 

frequency of the damped oscillation of the beam-blade. To predict the onset of 

aeroelasic instability, for varying relative wind speeds, eigenvalue solutions are 

performed until the aerodynamic damping, which is the real part of the eigenvalue r

, becomes zero. Relative wind speed corresponding to the zero aerodynamic damping 

is the aeroelastic instability speed. At this speed, the imaginary part of the eigenvalue 

gives the frequency associated with the aeroelastic instability. If the frequency comes 

out as zero, then aeroelastic instability is divergence instability and if the frequency is 

    0 0A X X
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non-zero, aeroelastic instability is flutter instability. With this approach, frequency 

domain solution of the aeroelastic instability speed and frequency of the beam-blade 

can be obtained very fast. It should be noted that for a rotating wind turbine blade, 

relative wind velocity depends on both the inflow wind speed and the rotational speed 

of the blade. Hence, one needs to perform aeroelastic instability analysis either at a 

fixed wind speed and determine the flutter rotational speed, or determine the flutter 

wind speed corresponding to a specified rotational speed of the rotor. 

Moreover, time domain solution of Equation (5-64) gives the time response of the 

aeroelastic system for a prescribed initial condition. With the time domain solution 

approach, aeroelastic instability speed and frequency can also be identified by 

performing solutions at different relative wind speeds ( )
r

U  until diverging oscillations 

are obtained. 

5.2.6.2 Solution of the Aeroelastic System of Equations of the Beam-Blade 

Including Compressibility Effects 

 

In the present study, the compressibility effects are included into the solution process 

by switching from incompressible unsteady aerodynamics to compressible unsteady 

aerodynamics for blade sections away from the blade root. Compressibility effects are 

included starting from the blade section at which the relative velocity becomes higher 

than Mach 0.3. Figure G1 in Appendix G2 gives the schematic of the wind turbine 

blade whose sections are both in the incompressible and compressible flow regime.  

In the compressible flow regime, the solution process for the aeroelastic instability 

speed and frequency by the EGM is essentially the same as the process described for 

the incompressible unsteady aerodynamics case. For the blade sections which are in 

the compressible flow regime, structural degree of freedom vector, which is composed 

of the flapwise bending deflection ( 0v ), flapwise bending rotation  ( x ) and the 

torsional deformation (), is augmented with the twelve the aerodynamic lag states 

defined for the compressible lift and pitching moment indicial functions corresponding 



 
253 

 

to the plunging and pitching motions, respectively. Hence, for the compressible 

unsteady aerodynamics case, variables of the aeroelastic system are given by Equation 

(5-68). 

1 2 3 1 2 3 1

2 3 1 2 3

, , , , , , , , , ,

, , , ,
o x c c c cq cq cq cM

cM cM cMq cMq cMq

v B B B B B B B

B B B B B

       
 

(5-68) 

Similar to the incompressible case, in the governing aeroelastic system of equations 

given by Equations (5-54)-(5-56) and Equation (5-50), the structural variables ( 0, ,xv  

) and compressible aerodynamic variables ( , , , , 1,2,3)ic icq icM icMqB B B B i   are substituted 

by their spatially and temporally separated forms given by Equation (5-58) where 

 ( )q t is now defined using the variables of the aeroelastic system involving 

compressible aerodynamics given by Equation (5-68).  Extended Galerkin Method is 

applied in the same way as in the incompressible case by multiplying each equation 

by the polynomial shape function ( )z  corresponding to the relevant structural and 

aerodynamic variable and integrating over the span of the beam-blade with respect to 

z. As in the incompressible case, to achieve convergence for flutter solutions, 

polynomials up to 9th degree (N =9) are taken as the shape functions

 ( ( ) ; 1...9)iz z i   . As described in Appendix G2, at relative wind speeds near 

the onset of flutter, it is assumed that for a length of la from the blade root, the blade is 

in the incompressible flow regime, and the outboard portion of the blade is in the 

compressible flow regime. In the inboard sections of the blade where the 

incompressible aerodynamics is applicable, governing system of equations comprise 

of 5 equations (Equations (5-54)-(5-56) and Equation (5-38), i=1, 2) with 5N number 

of generalized time dependent variables ( )q t in discretized form. Whereas, in the 

outboard sections of the blade where the compressible aerodynamics is applicable, the 

governing system of equations comprise of 15 equations (Equations (5-54)-(5-56) and 

Equation (5-50), i=1,2,3) with 15N number of generalized time dependent variables 
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( )q t in discretized form. To apply the EGM in a unified way, same size aerodynamic 

mass, aerodynamic damping and aerodynamic stiffness matrices are needed in the 

incompressible and the compressible regions. To achieve this, incompressible 

aerodynamic mass, aerodynamic damping and aerodynamic stiffness matrices are 

augmented by adding zero elements to equate the sizes of the matrices with the 

compressible counterparts. In the compressible flow regime, the generalized time 

dependent variable vector is defined by Equation (5-69). 

       
 

     
1 2 3

( )

( ) ( ) ( ) ( ) ( ) ( ) ... ( )
x c c cMq

str

T

TT T TTT

v B B B

q t

q t q t q t q t q t q t q t

       
     
 

 (5-69) 

In the incompressible range, the same generalized time dependent variable vector is 

kept, but zero elements are placed in the relevant positions of the aerodynamic mass, 

damping and stiffness matrices, and the expressions for the incompressible unsteady 

lift and pitching moment given by Equations (5-40) and (5-41) along with the auxiliary 

equations defining aerodynamic lag states, Equation (5-38), are utilized when applying 

the EGM. In this respect,  
1
( )

cBq t  is replaced by  
1
( )Bq t  and  

2
( )

cBq t is replaced by 

 
2
( )Bq t . In the compressible range, unsteady compressible lift and pitching moment 

given by Equations (5-51) and (5-52) along with the auxiliary equations defining 

aerodynamic lag states, Equation (5-50) , are utilized when applying EGM. Finally, 

with application of the EGM, unified aeroelastic system of equations is obtained as, 

 

   

   
15 3 15 15

15 15
0

total total
s a str aN N N N

total
s a N N

q q

q

 



           

    

 M M C

K K  

(5-70) 

where total
aM , total

aC and total
aK are the overall aerodynamic mass, damping and 

stiffness matrices obtained by merging the corresponding incompressible and 

compressible aerodynamic mass, damping and stiffness matrices. Explicit expressions 
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for the overall aerodynamic mass, damping and stiffness matrices for the blade whose 

inboard sections are in the incompressible flow regime and outboard sections are in 

the compressible flow regime are given in Appendix G2. Similar to the incompressible 

case, Equation (5-70) is expressed in state space form by augmenting the state vector 

of the generalized time dependent variables (Equation (5-69)) by the time derivatives 

of the generalized time dependent structural variables, as shown in Equation (5-71). 

          018 1
( ) ( ) ( ) ( ) ( )

x

T
T T TT

vN
X t q t q t q t q t 

     (5-71) 

With the definition of the augmented the state vector of the generalized time dependent 

variables given by Equation (5-71), Equation (5-70) is transformed into Equation 

(5-72). 
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(5-72) 

where I  is the identity matrix of order 3 15N N  and 0 is the zero matrix of order 

3 3N N . Equation (5-72) can be re-written in more compact form as, 

   X X   
 A  

(5-73) 

where the coefficient matrix A  is given by Equation (5-74) and the solution for the 

eigenvalues and the eigenvectors is performed similarly as described for the 

incompressible case.  

   
1

total total total
a s a s a

                     

C M M K K 0
A

I 0 0 I
 (5-74) 
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 Time Domain Flutter Analysis of Wind Turbine Blades by the Multibody 

Simulation of the Wind Turbine 

To compare the aeroelastic instability results obtained by the present methodology, for 

the incompressible unsteady aerodynamics case, aeroelastic instability of the wind 

turbine blade is also studied by performing time domain analysis of the multibody 

model of the wind turbine system. For this purpose, time domain flutter analysis has 

been performed by the wind turbine multibody simulation program PHATAS [131] 

for validation purposes. Table 5-3 gives main wind turbine properties used in the 

multibody simulation of the wind turbine system in PHATAS. For the baseline wind 

turbine system, certain properties of NREL’s wind turbine are modified, but in essence 

both turbine definitions are similar. 

 

Table 5-3 Main properties of the reference the wind turbine system established in 
PHATAS 

Wind turbine properties 
Baseline wind turbine 

definition in PHATAS 

Nominal power 5 MW 

Number of blades 3 

Number of blade elements used                    17 

Blade prebent at the tip 0 m 

Demanded rated generator torque  37880 Nm 

Gearbox ratio 105 

Blade length 61.5 m 

Rotor conicity 0o 

Rotor tilt angle 0o 

Hub height 100 m 

Hub mass 50,000 kg 

Hub inertia 100000 kgm2 

 

To study the effectiveness of bending twisting coupling induced in composite blades 

on the aeroelastic stability characteristics of wind turbine blades, a realistic reference 

wind turbine model is needed to perform aeroelastic time marching multibody 
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simulations. In the present study, the reference wind turbine and blade designs are 

established utilizing some of the known properties of NREL’s 5 MW turbine [128].   

Figure 5-14 Drive train model in PHATAS shows the components of the drive train of 

the multibody model of the 5 MW turbine generated in PHATAS.  

 

  

Figure 5-14 Drive train model in PHATAS 

 

In PHATAS, blade is modeled as a coupled non-linear beam. Geometric non-linearity 

is taken into account during the calculation of the displacements when the curvature is 

integrated twice along the deformed blade axis. In the beam formulation, warping is 

neglected and the same form of the constitutive equation relating the flapwise shear 

force, flapwise bending moment and the torsional moment to the respective 

deformation measures given in Equation (5-21) is used in the simulation performed by 

PHATAS. In the beam-blade model generated in PHATAS, blade is again defined by 

the sectional beam properties calculated by VABS. 

 Free Vibration Analysis of the Blades 

Before performing time domain flutter simulation by the wind turbine multibody 

simulation tool PHATAS, free vibration analysis results of a single rotor blade 

obtained by the present methodology are compared with the results obtained by the 
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BLADEMODE [132] which is a companion code of PHATAS. The same beam-blade 

model used in the wind turbine system set up in PHATAS is used in the 

BLADEMODE. BLADEMODE considers small vibrations about an equilibrium state 

and with the linearized equations of motion, frequency domain based analysis can be 

performed making it possible to find the natural frequencies for increasing wind or 

rotor speeds. In the present study, natural frequencies are compared for the stationary 

blade under no load to ensure that the structural dynamic models of the blades used in 

the present study and the beam-blade models used by PHATAS are similar. 

In the current methodology, by excluding the aerodynamic mass, damping and 

stiffness matrices from Equation (5-63) and assuming harmonic motion 

    0
iwtX X e , one obtains the standard form of a generalized free vibration 

eigenvalue problem and the eigenvalues w can be calculated. 

For the baseline blade and bend-twist coupled blades defined in Table 5-2, Table 5-4 

gives the comparison of the first six natural frequencies of the baseline blade and the 

bend-twist coupled blades calculated by the present model and the BLADEMODE. 

For the three blades and the six modes, the natural frequencies determined by the 

present solution method and BLADEMODE agree with each other within 5% on the 

average. More importantly, both solution methods predict the same trend for the 

variation of the natural frequency with the off axis fiber angle. Table 5-4 shows that 

lowest four modes are flapwise bending modes and with an increase in the fiber angle, 

flapwise bending frequencies of the first four modes decrease.  
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Table 5-4 Comparison of first six natural frequencies of the baseline blade and bend-

twist coupled blades calculated by the present model and the BLADEMODE 

Mode 
Solution 
Method 

Base line (Hz) BTC_10  (Hz) BTC_20 (Hz) 

1 
Present  
FOCUS 

0.8 (1st F1) 

0.76 (1st F) 
0.78 (1st F) 
0.73 (1st F) 

0.7 (1st F) 
0.66 (1st F) 

2 
Present  
FOCUS 

2.11 (2nd F) 
1.99 (2nd F) 

1.96 (2nd F) 
1.86 (2nd F) 

1.77 (2nd F) 
1.67 (2nd F) 

3 
Present  
FOCUS 

4.31 (3rd F) 
4.07 (3rd F) 

4.07 (3rd F) 
3.86 (3rd F) 

3.68 (3rd F) 
3.46 (3rd F) 

4 
Present  
FOCUS 

7.49 (4th  F) 
7.05 (4th  F) 

6.85 (4th  F) 
6.54 (4th  F) 

6.22 (4th  F) 
5.95 (4th F) 

5 
Present  
FOCUS 

9.54 (1st T) 
9.22 (1st T) 

9.76 (1st T) 
9.3 (1st T) 

9.21 (5th F) 
8.7 (5th F) 

6 
Present  
FOCUS 

11 (5th F) 
10.33 (5th F) 

10.26 (5th F) 
9.73 (5th F) 

9.89 (1st T) 
9.5 (1st T) 

1 “ F ” and “ T ” indicate flapwise bending and torsion modes 

 Time Domain Flutter Analysis by PHATAS 

In order to investigate the aeroelastic stability of wind turbine blades presented in 

Table 5-2, overspeed analyses are performed with PHATAS utilizing the 5 MW 

reference wind turbine system defined in Table 5-3. Overspeed analysis simulates the 

idling rotor with a fixed blade pitch angle in response to a gradually increasing wind 

speed. Overspeed analysis is performed without using any blade control and applying 

slowly increasing wind velocity. In the overspeed analysis, rotor blades are given an 

initial rotational speed, rotor is disconnected from the generator, blade pitch angles are 

set to a fixed angle and pitch controller is not turned on. Far field wind speed is slowly 

increased, resulting in an increase of the rotational speed without any bound since the 

pitch controller is not turned on. Using this loadcase, the required output signals for 

investigating the onset of flutter are obtained for increasing wind and rotor speed. The 

time domain analysis results are monitored for output parameters relevant to the flutter 

analysis. Flapwise and torsional blade tip displacements and rotational speed of the 

rotor are the main monitored parameters.  
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In order to make the PHATAS model as similar as possible to the present aeroelastic 

model used for the classical flutter analysis, lagging flag is turned off and only the 

flapping flag and blade torsion flags are turned on. Moreover, tower and yaw dynamics 

are turned off and the blade pitch angle is set to a very small value since the present 

model assumes that the blade does not have an initial pitch angle. Likewise, geometric 

twist is also taken as zero for all blade sections. In the aerodynamic model, sectional 

incompressible aerodynamic coefficients are taken as specified for the NREL blade 

[128] and dynamic stall model is turned off since the present numerical model does 

not also have stall aerodynamics. Initial rotor speed is taken as 4 RPM and vertical 

wind shear is not considered. Detailed procedure of obtaining the flutter wind and 

rotational speeds from the time responses of the rotational speed of the rotor, flapwise 

and torsional deformation of the blade tip and angle of attack and lift coefficient of the 

blade sections using overspeed analysis of the PHATAS code is comprehensively 

studied previously by authors [133] [134]. The presence of the aeroelastic instability 

is identified by plotting the time responses obtained by the overspeed analysis for 

increasing wind speed. For the bend-twist coupled blade BTC_20 defined in Table 5-2, 

Figure 5-15 presents the gradually increasing wind speed at the hub height and the 

corresponding rotational speed of the rotor.  

  

Figure 5-15 Gradually increasing wind speed at the hub height and the 

corresponding rotational speed of the rotor / Bend-twist coupled blade BTC_20 
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In Figure 5-15, it is seen that the oscillation of the rotor speed starts at about 72 seconds 

followed by the slight drop in the rotational speed. After the slight drop, rotational 

speed continues to increase gradually while the amplitude of the oscillation of the 

rotational speed grows, as shown in the zoomed figure.  

Figure 5-16 shows the time responses of the flapwise bending displacement and the 

torsional rotation of the blade tip for the bend-twist coupled blade BTC_20. Diverging 

oscillations of the flapwise blade tip displacement and the torsional rotation occur 

more or less at about the same time as the expansion seen in the response of the rotor 

speed. Diverging oscillations indicate the occurrence of classical flutter. From the 

flapwise bending displacement and torsional rotation responses of the blade tip shown 

in Figure 5-16, it can be deduced that the onset of flutter occurs at about 73 seconds. 

At this time, from Figure 5-15, the wind speed is about 10.7 m/s and the corresponding 

rotational speed is about 23.8 RPM.  

 

 

In Figure 5-17 and Figure 5-18, it is seen that expansion of the rotor speed occurs at 

about 80 and 66.26 seconds for the baseline and the BTC_10, respectively. Diverging 

Figure 5-16 Time responses of the flapwise deflection and torsional rotation of the 

blade tip / Bend-twist coupled blade BTC_20 
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oscillations of the flapwise blade tip displacement and the torsional deformation occur 

a little earlier than the expansion seen in the response of the rotor speed. From the rotor 

speed responses, it can be deduced that the suspected flutter rotational speed is about 

23.54 RPM. Figure 5-17 and Figure 5-18 also show that expansion in the torsional 

deformation takes place before the kink in the flapwise deformation.  

 

Figure 5-17 Torsional deformation (Deg.), flapwise displacement (m) of the blade tip, 

rotor speed (RPM) and wind speed (m/s) for the baseline blade obtained by the overspeed 

analysis  
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Figure 5-18 Torsional deformation (Deg.), flapwise displacement (m) of the blade tip, 

rotor speed (RPM) and wind speed (m/s) for the BTC_10 blade obtained by the overspeed 

analysis 

 

Figure 5-19, Figure 5-20 and Figure 5-21 show the FFT (Logarithmic scale) of the 

flapwise displacement and torsional deformation time responses of the baseline,  

BTC_10 and BTC_20 at the tip section of the blades, respectively. Frequency response 

plots show that the flutter frequencies of the flapwise displacement and the torsional 

deformation are close to each other. The flutter frequencies for baseline, BTC_10 and 

BTC_20 are 6.51, 7.6 and 7.31, respectively. 
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Figure 5-19 Frequency response plots of the time history of the flapwise (green 

line) and the torsional deformations (blue line) of the blade tip of the baseline 

blade 

 

Figure 5-20 Frequency response plots of the time history of the flapwise (green 

line) and the torsional deformations (blue line) of the blade tip of the BTC_10 

blade 
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Figure 5-21 Frequency response plots of the time history of the flapwise (green 

line) and the torsional deformations (blue line) of the blade tip of the BTC_20 

blade 

 Comparison of Time Domain Flutter Analysis Results of PHATAS and the 

Present Frequency Domain Flutter Results for Incompressible 

Aerodynamics and Blades with no Pretwist 

In the overspeed analysis performed by PHATAS, both the rotational speed and the 

wind speed vary. Wind speed is increased gradually and given as input. The flutter 

instability is decided by monitoring the oscillations in the rotational speed and the 

flapwise bending displacement and the torsional rotation of the blade tip. In the present 

numerical model developed, one can specify the inflow wind speed as input, and the 

related flutter rotational speed is then calculated for different blade configurations. Or, 

alternatively the rotor speed can be specified as input and the flutter wind speed can 

be determined. In the comparison study performed with the numerical model 

developed and PHATAS, flutter rotational speeds are compared. In order to compare 

the flutter rotational speeds obtained from the time domain responses predicted by 

PHATAS and the present frequency domain solution method, the wind speed at the 

time when the blade first starts to have diverging oscillations in PHATAS is given as 
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the input wind speed to the present model. Thus, the flutter rotational speeds calculated 

by the present model and PHATAS can be directly compared with each other. For 

instance, for the bend-twist coupled blade BTC_20, as explained in Section 5.5, the 

flutter rotational speed obtained by PHATAS is about 23.8 RPM and the 

corresponding wind speed is about 10.7 m/s. Hence, in the present model input wind 

speed is specified as 10.7 m/s and the flutter rotational speed is calculated as 25.7 

RPM. Table 5-5 compares the flutter rotational speeds and frequencies of the untwisted 

blades calculated with the present model and PHATAS for the baseline blade and for 

the bend-twist coupled blades BTC_10 and BTC_20. It should be noted that in the 

present frequency domain solution, flutter frequency is directly obtained. For the 

PHATAS simulation, flutter frequencies are determined through the fast Fourier 

transform analysis of the time response of the deformation mode that enters into the 

flutter first. It is noted that for the three blades, flutter rotational speeds determined by 

the present solution method and the PHATAS agree with each other within 6.5% on 

the average. Moreover, similar to the natural frequency results, both solution methods 

predict the same trend for the variation of the flutter rotational speed with the off axis 

fiber angle of the bend-twist coupled blades. 

Table 5-5 Comparison of flutter rotational speeds and frequencies of without pretwist 

calculated by present model and PHATAS  

Aeodynamic model 

 
Baseline  BTC_10   BTC_20  

Wind speed (m/sec) 11 10.2 10.7 

Present model 
Incompressible Indicial 

aerodynamics 

Flutter rotational speed 
(rad/s) 

2.63 2.55 2.69 

Flutter frequency (Hz) 6.4 6.65 6.7 

PHATAS 
Incompressible unsteady BEM 

aerodynamics 

Flutter rotational speed 
(rad/s) 

2.465 2.4 2.492 

Flutter frequency (Hz) 6.51 7.6 7.31 
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Bend-twist coupled blades BTC_10 and BTC_20 have lower flapwise bending 

stiffness than the baseline blade but they also have higher torsional stiffness compared 

to the baseline blade. On the other hand, bend-twist flexibility of the bend-twist 

sections of the BTC blades is substantially higher than the baseline blade. Higher bend-

twist flexibility has a lowering effect on the flutter rotational speed. In the BTC blades, 

as seen in Figure 5-7, fibers are oriented towards the leading edge in the main spar 

caps. Hence, bending-twisting coupling works toward decreasing the effective angle 

of attack of the blade sections and has positive effect on lowering the loads. All these 

effects should be considered together in comparing the flutter characteristics of the 

baseline and the BTC blades. From Table 5-5, it is seen that for the BTC blade with 

10o off-axis fiber angle (BTC_10), flutter rotational speed decreases compared to the 

flutter rotational speed of the baseline blade, and for the BTC blade with 20o off-axis 

fiber angle (BTC_20) flutter rotational speed slightly increases compared to the flutter 

rotational speed of the baseline blade. It is deduced that the combined effect of the 

reduction in the flapwise bending stiffness and increase in the bending-twisting 

flexibility are the main reasons for the drop in the flutter rotational speed of the 

BTC_10 blade compared to the flutter rotational speed of the baseline blade. The 

increase of the torsional stiffness and the load reduction due to the off-axis fiber angle 

of the BTC_10 blade do not compensate the effects of the lower flapwise bending 

stiffness and increased bending-twisting flexibility of the BTC_10 blade, and 

consequently the flutter rotational speed of the BTC_10 blade decreases slightly 

compared to the flutter rotational speed of the baseline blade. On the other hand, for 

the BTC_20 blade, increase in the off-axis fiber angle accounts for increased torsional 

stiffness as well as higher load reduction and these effects dominate such that the 

flutter rotational speed of the BTC_20 blade increases compared to the flutter 

rotational speed of the baseline blade. 
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 Comparison of Time Domain Flutter Analysis Results of PHATAS and the 

Present Frequency Domain Flutter Results for Incompressible 

Aerodynamics and Blades with Pretwist 

The next comparison is performed for the blades with pretwist. In the present study, 

as discussed previously in Chapter 2, the pretwist model of Librescu [92] is adopted, 

and the pretwist is applied before any deformation takes place. In this model, the inertia 

and stiffness quantities are determined in the rotated coordinate system ( , , )t t tx y z .  The 

transformation between the fixed coordinate system ( , , )x y z  and the rotated coordinate 

system ( , , )t t tx y z  is given by, 

 

where, ( )z  is the pretwist angle and in Figure 5-8 pretwist ( )z  could replace the 

elastic twist . Due to the pretwist, stiffness and the inertia terms of the thin walled 

beam-blade become a function of the pretwist angle ( )z . Following the application 

of the transformation given by Equation (5-75), stiffness ( )ija  and inertia terms ( )ib  

become a function of the pretwist angle ( )z . Appendix C gives the transformed 

stiffness ( )ija  and inertia terms ( )ib  obtained after applying the transformation given 

by Equation (5-75). It should be noted that in the present model which is based on the 

small disturbance theory, since the static deformation of the blade and the mean steady 

aerodynamic loads are not considered for the unsteady aeroelastic instability analysis, 

pretwist does not affect the steady aerodynamic loads. However, in the unsteady blade 

element momentum aerodynamics model used in PHATAS, pretwist affects the steady 

loads.  
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Figure 5-22 shows the variation of the pretwist in wind turbine blade sections. Pretwist 

distribution in Figure 5-22 is same as the pretwist of the NREL 5MW wind turbine 

blade.  

 

Figure 5-22 Pretwist distribution along blade span 

 

Table 5-6 compares the flutter rotational speeds and frequencies of the blades with 

pretwist calculated with the present model and PHATAS for the baseline blade and for 

the bend-twist coupled blades BTC_10 and BTC_20. It is noted that for the three 

blades, flutter rotational speeds determined by the present solution method and 

PHATAS again agree with each other within 6% on the average. Both solution 

methods predict the same trend for the variation of the flutter rotational speed with the 

off axis fiber angle of the bend-twist coupled blades. Moreover, comparison of Table 

5-5 and Table 5-6 reveal that for the baseline blade and the BTC_10 blade, flutter 

rotational speeds slightly decrease when pretwist is included, and for the BTC_20 

blade, flutter rotational speed slightly increases for the blade with pretwist. Both the 

present model and PHATAS predict the same trend for the variation of the flutter 

rotational speeds with the pretwist for the three blades. 
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The comparison study showed that the present method captures variations of the flutter 

rotational speed with the off-axis fiber angle and the pretwist reasonably well when 

compared to the results of the wind turbine multibody simulation program PHATAS. 

 Table 5-6 Comparison of flutter rotational speeds and frequencies of blades with 

pretwist calculated by the present model and PHATAS  

Aerodynamic model 
Blades Baseline  BTC_10   BTC_20  

Wind speed (m/sec) 10.6 9.9 10.8 

Present model 

Incompressible indicial 
aerodynamics 

Flutter rotational speed 
(rad/s) 

2.55 2.535 2.73 

Flutter frequency (Hz) 6 6.6 6.8 

PHATAS 

Incompressible unsteady 
BEM aerodynamics 

Flutter rotational speed 
(rad/s) 

2.42 2.38 2.533 

Flutter frequency (Hz) 6.38 7.44 7.34 

 Effect of compressibility on the flutter rotational speed of composite blades 

The effect of compressibility on the rotational speed of the composite blades has been 

investigated by performing aeroelastic analysis using incompressible and 

compressible aerodynamics based on incompressible and compressible indicial 

functions. Utilizing the results of the flutter solutions performed using incompressible 

aerodynamics, incompressible range from the blade root is decided based on the 

relative velocity information at the flutter condition for the baseline and BTC blades. 

It is assumed that the blade is in the incompressible flow regime for Mach numbers 

less than or equal to 0.3 which is calculated using the relative velocity. As defined in 

Appendix G, it is assumed that for a length of  la  from the blade root, the blade is in 

the incompressible flow regime, and in the outboard portion of the blade, blade is in 

the compressible flow regime. It should be noted that the overspeed analysis performed 

with PHATAS showed that the flutter wind speeds are between 10-11 m/s. In the 
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present approach, for studying the effect of compressibility on the flutter 

characteristics of composite blades, the wind speed is taken as 10 m/s for the three 

blades and flutter rotational speeds are calculated for the same wind speed condition. 

For the constant wind speed of 10 m/s, at the flutter condition the incompressible range 

from the blade root ( ��) for the baseline and BTC (BTC_10 and BTC_20) blades are 

calculated as 38 m, 39.5 m and 37.5 m, respectively. Based on these lengths, the 

number of sections which are in the incompressible flow regime for the baseline, 

BTC_10 and BTC_20 blades is taken as 10  (��
��� = 10) and the rest of the blade 

sections are assumed to be in the compressible flow regime.  

Table 5-7 compares the flutter rotational speeds and frequencies of the untwisted 

baseline blade and BTC blades calculated by implementing the incompressible and the 

combined incompressible-compressible unsteady aerodynamic models based on 

indicial functions. It is evident from the results that compressibility has a decreasing 

effect on the flutter rotational speed. Flutter rotational speeds calculated by using the 

combined incompressible-compressible unsteady aerodynamic model are 6.44%, 

6.64% and 7.8% lower than the flutter rotational speeds obtained by neglecting 

compressibility for the baseline, BTC_10 and BTC_20 blades, respectively. Lowering 

of the flutter rotational speed due to the compressibility is in accordance with the 

findings in the [135] [136]. Table 5-8 compares the flutter rotational speeds and 

frequencies of the baseline blade and BTC blades with pretwist. As in the untwisted 

blade case, flutter rotational speeds calculated by using the combined incompressible-

compressible unsteady aerodynamic model based on indicial functions are lower than 

the flutter rotational speeds obtained by neglecting compressibility. It is noted that the 

incompressible flutter results are not conservative, hence in the aeroelastic stability 

study of long wind turbine blades, compressibility effects must be taken into 

consideration.  
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Table 5-7 Comparison of flutter rotational speeds and frequencies of blades without 

pretwist calculated by the present model using incompressible and combined 

incompressible-compressible aerodynamics / Wind speed=10m/s 

Aerodynamic model Blades Baseline  BTC_10   BTC_20  

Incompressible 
indicial aerodynamics  

Flutter rotational speed 
(rad/sec) 

2.64 2.56 2.7 

Flutter frequency (Hz) 6.4 6.65 6.7 

Combined 
Incompressible-
Compressible 

indicial aerodynamics  

Flutter rotational speed 
(rad/sec) 

2.468 2.393 2.489 

Flutter frequency (Hz) 6.02 6.29 6.34 

 

 Table 5-8 Comparison of flutter rotational speeds and frequencies of blades with 

pretwist calculated by the present model using incompressible and combined 

incompressible-compressible aerodynamics / Wind speed=10m/s 

Aerodynamic model Blades Baseline  BTC_10   BTC_20  

Incompressible 
indicial aerodynamics  

Flutter rotational speed 
(rad/sec) 

2.555 2.535 2.74 

Flutter frequency (Hz) 6 6.6 6.8 

Combined 
Incompressible-
Compressible 

indicial aerodynamics 

Flutter rotational speed 
(rad/sec) 

2.416 2.383 2.554 

Flutter frequency (Hz) 5.64 6.27 6.4 

 

For the untwisted baseline blade, Figure 5-23 shows the time responses of the flapwise 

displacement of the blade tip obtained by the time domain solution of the linear 

aeroelastic system of equations (Equation (5-73)) utilizing the combined 

incompressible-compressible unsteady aerodynamics based on indicial functions for 

three different rotational speeds. Runge-Kutta integration method has been used for 

the time domain solution. Specifically, time responses are presented for the subcritical 

rotational speed of 2.46 rad/sec, for the flutter rotational speed of 2.468 rad/sec and for 

the supercritical rotational speed of 2.48 rad/sec at the constant wind speed of 10 m/s. 
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For rotational speeds less than the critical speed, disturbance, generated by the initial 

conditions imposed, attenuate due to the aerodynamic damping, as seen in Figure 

5-23a. With the increase in the rotational speed, amplitude of the oscillations grows 

and the response becomes undamped at the instability speed which corresponds to the 

flutter rotational speed (Figure 5-23b). For the rotational speed higher than the flutter 

rotational speed, in the supercritical region, amplitude of the oscillations increases 

exponentially as shown in Figure 5-23c. It should be noted that for the impending blade 

flutter, linear aeroelastic analysis suffices, since the flapwise bending displacement 

and the torsional rotation of the blade tip are small in the initial phase of the blade 

flutter.  

For the subcritical rotational speed of 2.3 rad/s, time domain solution of Equation 

(5-73) corresponding to a disturbance of 0.01 velocity initial conditions for flapwise 

bending displacement and zero displacement initial conditions has been performed for 

the untwisted blades utilizing the combined incompressible-compressible unsteady 

aerodynamics based on indicial functions. It is to be noted that the subcritical rotational 

speed of 2.3 rad/s is closest to the flutter rotational speed of the BTC_10 blade without 

pretwist, and it is expected that the response of the BTC_10 blade takes the longest 

time to damp out. Figure 5-24 gives the flapwise bending displacement and the 

torsional rotation responses of the blade tip for the baseline, BTC_10 and the BTC_20 

blades. Time responses given in Figure 5-24 show that for the BTC_10 blade, the 

flapwise bending displacement and the torsional rotation responses of the blade tip 

damp out in a longer time compared to the corresponding responses of the baseline 

and the BTC_20 blades. This observation is in accordance with the frequency domain 

flutter results given in Table 5-7 since the rotational speed of 2.3 rad/s is closest to the 

flutter rotational speed of the BTC_10 blade. 
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Figure 5-23 Time responses of the flapwise blade tip displacement for the baseline 

blade and for three rotational speeds (a) Subcritical (Ω = 2.46 rad/s ) (b) Flutter 

(Ω = 2.468 rad/s) and (c) Supercritical (Ω = 2.48 rad/s )  

 

 

(a) (b) 
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Figure 5-24 Flapwise bending displacement and torsional rotation responses of the 

blade tip for the baseline, BTC_10 and the BTC_20 blades at the subcritical 

rotational speed Ω = 2.3 rad/s 

In this chapter, a frequency domain solution methodology of the classical flutter 

phenomenon of composite wind turbine blades has been presented by including the 

effect of the compressibility. Flutter analyses have been performed for the baseline 

blade and the BTC blades designed for the 5MW wind turbine of NREL. Beam model 

of the blade has been developed by making analogy with the structural model of the 

prewisted rotating thin walled beam introduced in Chapter 2 and utilizing the VABS 

method for the calculation of the sectional properties of the wind turbine blades. The 

effect of compressibility has been incorporated into the unsteady aerodynamics model 

using the compressible indicial functions. The linear aeroelastic system of equations 

of the composite wind turbine blade has been solved by implementing the extended 

Galerkin method.  

Compressibility has been included into the unsteady aerodynamic model only for the 

outboard blade sections which are in the compressible flow regime exceeding Mach 

0.3. For the sections of the blade, which are in the compressible flow regime, to 

perform continuous calculation of the compressible indicial functions in the course of 

frequency domain solution of aeroelastic instability, an approximation methodology is 

presented for the calculation of compressible indicial functions at any Mach number. 
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Inboard sections of the blade which are exposed to relative velocities less than Mach 

0.3 are assumed to be in the incompressible flow regime. Incompressible and 

compressible regions of the blade are seamlessly integrated utilizing the Extended 

Galerkin Method of solution to come up with the eigenvalue problem for the 

determination of the flutter rotational speed and flutter frequency.   

For the incompressible unsteady aerodynamics case, the present solution methodology 

has been compared with the time domain aeroelastic instability analysis of the wind 

turbine blades by the multibody simulation program PHATAS. The comparison study 

showed that the present method captures variations of the flutter rotational speed with 

the off-axis fiber angle and the pretwist reasonably well when compared to the results 

of the wind turbine multibody simulation program PHATAS.  

Aeroelastic instability analysis results of the untwisted blades and the blades with 

pretwist showed that compressibility has a decreasing effect on the flutter rotational 

speed, and that the incompressible flutter results are not conservative. The present 

frequency domain approach for the aeroelastic stability analysis of long wind turbine 

blades is deemed to be very advantageous compared to other approaches which usually 

require time domain solutions, such as coupled CFD and structural FE methods. 

Especially, in the initial design phase of wind turbine blades, the effect of frequent 

design changes on the aeroelastic stability characteristics of composite wind turbine 

blades can be assessed very effectively in terms of model preparation and solution time 

with the approach presented in this study. This study shows that with use of 

compressible indicial functions, the effect of compressibility can also be taken into 

account in the frequency domain aeroelastic stability analysis of long wind turbine 

blades whose outboard sections are inevitably in the compressible flow regime at the 

onset of flutter. 
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CONCLUSION 

 

 

In the present study, an efficient aeroelastic model based on an analytical composite 

thin walled beam model including geometrical nonlinearity and the indicial functions 

approach for modeling the unsteady aerodynamics has been studied and formulated. 

To the best of author’s knowledge, the comprehensive treatment of nonlinear 

aeroelasticity of aircraft wings and wind turbine blades structurally modeled as 

nonlinear anisotropic thin walled beams incorporating the effect of the compressibility 

in the unsteady aerodynamic model is addressed for the first time in literature. The 

methodology developed in this work enables the systematic examination of divergence 

(static instability), flutter (dynamic instability), and qualification of post-flutter 

dynamic response utilizing the aeroelastic tailoring concept.  

Specifically, the major conclusions of this thesis study include: 

 In the structure part, a composite rotating thin walled beam model including 

geometrical nonlinearity based on an existing linear thin walled beam model 

has been developed. The linear model has been validated against the FE 

software. Improved structural models are specifically developed for the CAS 

and the CUS layup  TWBs to exploit the flapwise bending-torsion, extension-

chordwise bending coupling in the CAS-TWB and extension-torsion, flapwise 

bending-chordwise bending coupling in the CUS-TWB. It is shown that for 

both CAS and CUS TWBs, in general, natural frequencies increase with 

rotational speed which is a sign of centrifugal stiffening effect. Results showed 

that as the rotational speed increases, mode switching from flapwise to 

chordwise bending and vice versa, and from torsional mode to flapwise 

bending mode. Pretwist causes stiffening effect at higher fiber angles and at 

low angular velocities for both CAS and CUS configurations, and it is mostly 

effective on the torsional mode. In the frequency range studied, the main 

difference between the CAS and the CUS configurations is the higher torsional 
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frequency of the CAS configuration for higher fiber angles (−30° < � <

−90°) compared to the CUS configuration. CAS configuration TWB offers a 

more separate bending-torsion frequency range and might have a higher flutter 

speed than the CUS configuration. 

 In the aerodynamic part, the unsteady Mach dependent compressible 

aerodynamics model is constructed in the time domain by using a novel indicial 

approximation, which allows to perform direct stability analysis of 

compressible indicial functions at any Mach number up to 0.85, by 

incorporating twelve aerodynamic lag states.  

 In the aeroelastic part, a comprehensive study of the geometrically nonlinear 

aeroelastic behavior of pretwisted, tapered and swept composite wings 

structurally modeled as thin walled beams (TWB) subjected to incompressible 

and compressible unsteady aerodynamics is performed. The aeroelastic 

equations of motion are obtained for the CAS configuration TWB in the most 

general form by including second order nonlinear strain displacement relations, 

nonuniform geometric features such as wing taper, pretwist, and warping 

restraint and transverse shear effects are taken into account. Flutter speeds 

determined by the linear aeroelastic analysis of composite structures via 

frequency domain solution. Nonlinear aeroelastic respose of the composite 

wing modeled as TWB is performed in time domain by the direct integration 

of aeroelastic governing equation of motion by the  Runge-Kutta method for 

the prescribed initial conditions. Post flutter bahavior of the composite 

structures has been studied using bifurcation diagram, phase portrait, PSD, FFT 

and Poincaro map.  It is shown that, Fiber angle of the CAS configuration TWB 

is a very influential parameter on the flutter speed of the composite wing. For 

the positive fiber angles the instability is in the form of divergence and for 

negative fiber angle is in the form of flutter. Besides the flutter speed, the fiber 

angle of the CAS configuration TWB has a significant effect on the post-flutter 

LCO behavior of the composite wing. Besides the flutter speed, the fiber angle 

of the CAS configuration TWB has a significant effect on the post-flutter LCO 

behavior of the composite wing. Post-flutter responses of composite wings 
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with three different off-axis fiber angles (−75◦, −60◦, −45◦) showed that 

although the flutter speed of the composite wing with −45◦ off-axis fiber angle 

is higher than the flutter speed of the −60◦ fiber angle case, from post-flutter 

response point of view, −60◦ fiber angle is preferable, since the well behaved 

post-flutter range is wide and the amplitudes of the LCOs are low compared to 

the −75◦ fiber angle case. For the −45◦ fiber angle case, bifurcation speed is 

highest but flapwise bending displacement and torsional deformation 

amplitude curves are nearly vertical. The effect of pretwist causes the flutter 

speed to increase, but at the same time nonlinearity becomes slightly weaker. 

Wing taper ratio has a stabilizing effect on the stability margins of the wing. 

For untapered wings the flutter speed decreases and the wing is more prone to 

flutter instability at smaller speeds compared to a tapered wing. For the low 

off-axis fiber angle of −75◦, it seen that aeroelastic response of forward swept 

wings can be improved significantly. Moreover, it is also shown in the study 

that as the backward sweep angle of wing is increased, post-critical aeroelastic 

response of the wing becomes more well behaved compared to wings with low 

backward sweep angles. It is evident that compressibility accounts for 

reduction in aeroelastic instability speeds especially at higher Mach numbers. 

Actually, instability speeds obtained by incompressible unsteady 

aerodynamics are not conservative. 

 In the last chapter, a frequency domain solution methodology of the classical 

flutter phenomenon of composite wind turbine blades has been presented by 

including the effect of the compressibility. Flutter analyses have been 

performed for the baseline blade and the BTC blades designed for the 5MW 

wind turbine of NREL. Aeroelastic instability analysis results of the untwisted 

blades and the blades with pretwist showed that compressibility has a 

decreasing effect on the flutter rotational speed, and that the incompressible 

flutter results are not conservative 
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FUTURE WORK 

 

 

The emergence of new structural geometries and materials generates major challenges 

to the aeroelastic discipline. Aeroelastic analysis of high aspect ratio aircraft wing and 

wind turbine blade made of from composite materials subjected to unsteady 

aerodynamics including geometrical non-uniformity and nonlinearity was the main 

scope of the present study. The following are some of the studies that which are 

recommended as future work.  

 Coupling of nonlinear aerodynamic models with current nonlinear structure 

model to investigate flutter speeds and post-flutter behaviors. The proposed 

aerodynamic models are;   

 Dynamic stall aerodynamics for modeling separated flow at high torsion angles 

like ONERA or Beddoes-Leishman type dynamic stall aerodynamics  

 Higher order nonlinear piston theory for extending current aeroelastic model 

to cover supersonic flight regime. 

 Utilizing variable stiffness concept for the improvement of structural dynamic 

and aeroelastic characteristics of thin walled composite beams.  

 Development of geometrically exact beam model for fixed and rotary wings 

and coupling with the proposed incompressible and compressible unsteady 

aerodynamics models based on indicial functions. 

 Multicell TWB configuration as structural model to investigate more realistic 

airfoil shape of cross section with wing double or more boxes.    

 Extension of the six degree of freedom beam-blade model to cover all of 

normal, shear and coupling stiffnesses in the most general form of governing 

equations. 

 Modeling of structural damping in the composite aircraft wings and turbine 

blades and its influence on the aeroelastic instability and response. 

 



 
282 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
283 

 

REFERENCES 

 

[1]  Ö. Şener, "Determination of the bending twisting coupling potential of 

composite materials via digital image correlation and its implementation in 

wind turbine blades," Middle East Technical University, MS.c thesis, Ankara, 

2017. 

[2]  J. Locke and U. Valencia, "Design Studies for Twist-Coupled Wind Turbine 

Blades, Sandia National Laboratories," Report No. SAND2004-0522, 2004. 

[3]  M. Capellaro, "Design Limits of Bend Twist Coupled Wind Turbine Blades," 

in 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and 

Materials Conference, Honolulu, Hawaii, 2012.  

[4]  C. Bottasso, F. Campagnolo, A. Croce and C. Tibaldi, "ptimization‐based study 

of bend–twist coupled rotor blades for passive and integrated passive/active 

load alleviation," Wind Energy, vol. 16, p. 1149–1166, 2013.  

[5]  M. O. Gözcü, M. N. Olgun and A. Kayran, "Investigation of the Effect of Off-

Axis Spar Cap Plies on Damage Equivalent Loads in Wind Turbines with 

Superelement Blade Definition," in AIAA Science and Technology Forum and 

Exposition 2014, AIAA 2014-1223, National Harbor, MD, 2014.  

[6]  K. Hayat and S. K. Ha, "Load mitigation of wind turbine blade by aero-elastic 

tailoring via unbalanced laminates composites," Composite Structures, vol. 

128, p. 122–133, 2015.  

[7]  M. Gözcü, T. Farsadi, Ö. Şener and A. Kayran, "Assessment of the Effect of 

Hybrid GFRP-CFRP Usage in Wind Turbine Blades on the Reduction of 

Fatigue Damage Equivalent Loads in the Wind Turbine System," in AIAA 

Science and Technology Forum and Exposition, 33rd Wind Energy Symposium, 

Florida, 2015.  



 
284 

 

[8]  "wikimedia Commons," 20 May 2015. [Online]. Available: 

https://commons.wikimedia.org/. 

[9]  M. H. Hansen, "Aeroelastic instability problems for wind turbines," wind 

energy, vol. 10, no. 6, 2007.  

[10]  M. O. L. Hansen, N. J. Sørensen, S. Voutsinas, N. Sørensen and H. A. Madsen, 

"State of the art in wind turbine aerodynamics and aeroelasticity," Progress in 

aerospace sciences, vol. 42, no. 2, pp. 285-330, 2006.  

[11]  L. Leishman and J. Gordon, "Challenges in modeling the unsteady 

aerodynamics of wind turbines," in ASME-IMECE, Wind Energy Symposium, 

2002.  

[12]  D. Lobitz and P. Veers, "Aeroelastic behavior of twist-coupled HAWT blades," 

in ASME-IMECE Wind Energy Symposium, 1998.  

[13]  D. Lobitz, "Aeroelastic stability predictions for a MW‐sized blade," Wind 

Energy, vol. 7, no. 3, pp. 211-224, 2004.  

[14]  B. C. Owens, D. T. Griffith, B. R. Resor and J. E. Hurtado, "Impact of modeling 

approach on flutter predictions for very large wind turbine blade designs," in 

merican Helicopter Society 69th Annual Forum, Phoenix, 2013.  

[15]  B. C. Owens and D. T. Griffith, "Aeroelastic stability investigations for large-

scale vertical axis wind turbines," Journal of Physics: Conference Series, IOP 

Publishing, vol. 524, no. 1, 2014.  

[16]  A. R. Stäblein, M. H. Hansen and G. Pirrung, "Fundamental aeroelastic 

properties of a bend–twist coupled blade section," Journal of Fluids and 

Structures, vol. 68, pp. 72-89, 2017.  



 
285 

 

[17]  P. Pourazarm, Y. Modarres‐Sadeghi and M. Lackner, "A parametric study of 

coupled‐mode flutter for MW‐size wind turbine blades," Wind Energy, vol. 19, 

no. 3, pp. 497-514, 2015.  

[18]  P. Pourazarm, L. Caracoglia, M. Lackner and Y. Modarres-Sadeghi, 

"Stochastic analysis of flow-induced dynamic instabilities of wind turbine 

blades," Journal of Wind Engineering and Industrial Aerodynamics, vol. 137, 

pp. 37-45, 2015.  

[19]  M.-S. Jeong, S.-J. Y. I. Lee and K.-C. Park, "Torsional stiffness effects on the 

dynamic stability of a horizontal axis wind turbine blade," Energies, vol. 6, no. 

4, pp. 2242-2261, 2013.  

[20]  T. Buhl, H. Markou, H. Hansen, K. Thomsen and F. Rasmussen, "Aeroelastic 

Stability Analysis and Passive Instability Suppression," in European Wind 

Energy Conference and Exhibition, Athens, 2006.  

[21]  D. C. Janetzke and R. V. Krishna, "Whirl flutter analysis of a horizontal-axis 

wind turbine with a two-bladed teetering rotor," Solar Energy, vol. 31, no. 2, 

pp. 173-182, 1983.  

[22]  H. J. T. Kooijman, "Bending-torsion coupling of a wind turbine rotor blade," 

Energy Research Foundation ECN, Netherlands, 1996. 

[23]  D. W. Lobitz, P. S. Veers, G. R. Eisler, D. J. Laino, P. G. Migliore and G. Bir, 

"The use of twist-coupled blades to enhance the performance of horizontal axis 

wind turbines," Sandia National Laboratories, SAND2001-1003, Albuquerque, 

2001. 

[24]  P. K. Chaviaropoulos, N. N. Soerensen, M. O. L. Hansen, I. G. Nikolaou, K. A. 

Aggelis, J. Johansen and M. Gaunaa, "Viscous and aeroelastic effects on wind 

turbine blades. The VISCEL project. Part II: Aeroelastic stability 

investigations," Wind Energy, vol. 6, no. 4, pp. 387-403, 2003.  



 
286 

 

[25]  K. Hayat, A. G. d. Lecea, C. D. Moriones and S. K. Ha, "Flutter performance 

of bend–twist coupled large-scale wind turbine blades," Journal of Sound and 

Vibration, vol. 370, pp. 149-162, 2016.  

[26]  K. Hayat and K. Sung, "Flutter performance of large-scale wind turbine blade 

with shallow-angled skins," Composite Structures, vol. 132, pp. 575-583, 2015. 

[27]  S. R. Vatne, "Aeroelastic instability and flutter for a 10 MW wind turbine," 

Master thesis, Norwegian University of Science and Technology, 2011. 

[28]  L. Shruti and Y. Modarres-Sadeghi, "Supercritical and subcritical dynamic 

flow-induced instabilities of a small-scale wind turbine blade placed in uniform 

flow," Journal of Fluids and Structures, vol. 54, pp. 936-946, 2015.  

[29]  T. Liu, Y. Ren and X. Yang, "Nonlinear aeroelastic stability analysis of wind 

turbine blade with bending–bending–twist coupling," Journal of Fluids and 

Structures, vol. 42, pp. 488-502, 2013.  

[30]  D. O. Yu and O. J. Kwon, "Predicting wind turbine blade loads and aeroelastic 

response using a coupled CFD–CSD method," Renewable Energy, vol. 70, pp. 

184-196, 2014.  

[31]  C. A. Baxevanou, P. Chaviaropoulos, S. G. Voutsinas and N. S. Vlachos, 

"Evaluation study of a Navier–Stokes CFD aeroelastic model of wind turbine 

airfoils in classical flutter," Journal of wind engineering and industrial 

aerodynamics, vol. 96, no. 8, pp. 1425-1443, 2008.  

[32]  C. Arakawa, O. Fleig, M. Iida and M. Shimooka, "Numerical approach for noise 

reduction of wind turbine blade tip with earth simulator," Journal of the Earth 

Simulator, vol. 2, no. 3, pp. 11-33, 2005.  

[33]  J. N. Sørensen, "Viscous effects on wind turbine blades," ET-AFM-9902, 

Department of Energy Engineering, Technical University of Denmark, 1999. 



 
287 

 

[34]  P. K. Chaviaropoulos, I. G. Nikolaou, K. Aggelis, N. N. Sørensen, B. 

Montgomerie and H. V. Geyr, "Viscous and aeroelastic effects on wind turbine 

blades: the Viscel Project," in European wind energy conference, Copenhagen, 

2001.  

[35]  G. Xu and L. N. Sankar, "Computational study of horizontal axis wind 

turbines," Journal of Solar Energy Engineering transactions of ASME, vol. 122, 

no. 1, pp. 35-39, 2000.  

[36]  M. O. L. Hansen, J. N. Sørensen, S. Voutsinas, N. Sørensen and H. A. Madsen, 

"State of the art in wind turbine aerodynamics and aeroelasticity," Progress in 

aerospace sciences, vol. 42, no. 4, pp. 285-330, 2006.  

[37]  Z. Qin, "Vibration and Aeroelasticity of Advanced Aircraft Wings Modeled as 

Thin-Walled Beams--Dynamics, Stability and Control," Doctoral dissertation, 

virginia technical university, 2001. 

[38]  S. A. Sina, T. Farsadi and H. Haddadpour, "Aeroelastic Stability and Response 

of Composite Swept Wings in Subsonic Flow Using Indicial Aerodynamics," 

Journal of Vibration and Acoustics, vol. 135, no. 5, pp. 051019-1-14, 2013.  

[39]  T. Farsadi and J. Javanshir, "Expansion of Indicial Function Approximations 

for 2-D Subsonic Compressible Aerodynamic Loads," in SME International 

Mechanical Engineering Congress and Exposition , 2012.  

[40]  E. Bruhn, Analysis and design of flight vehicle structures, S.R. Jacobs, 1973.  

[41]  X. Cai, P. Pan, J. Zhu and R. Gu, "The Analysis of the Aerodynamic Character 

and Structural Response of Large-Scale Wind Turbine Blades," Energies, vol. 

6, no. 7, pp. 3134-3148, 2013.  

[42]  M. J. Patil, D. H. Hodges and C. E. S. Cesnik, "Nonlinear aeroelastic analysis 

of complete aircraft in subsonic flow," Journal of aircraft, vol. 37, no. 5, pp. 

753-760, 2000.  



 
288 

 

[43]  V. Vlasov, Thin-walled elastic beams, National Technical Information Service, 

1984.  

[44]  S. Timoshenko, Vibration Problems in Engineering, New York: D.Van 

Nostrand Company INC., 1937.  

[45]  S. Timoshenko, "Theory of bending, torsion and buckling of thin-walled 

members of open cross section," Journal of the Franklin Institute, vol. 239, no. 

4, pp. 249-268, 1945.  

[46]  A. Gjelsvik, The theory of thin walled bars, Wiley, 1981.  

[47]  O. Bauchau, "A beam theory for anisotropic materials," journal of applied 

mechanics, vol. 52, no. 2, pp. 416-422, 1985.  

[48]  O. Bauchau, B. Coffenberry and L. Rehfield, "Composite box beam analysis: 

Theory and experiments," Journal of Reinforced plastic and composites, vol. 6, 

no. 1, pp. 25-35, 1987.  

[49]  J. N. R. B. and L.-S. T., "A vlasov theory for fiber reinforced beams with thin 

walled open cross sections," International journal of solids and structures, vol. 

20, no. 3, pp. 277-297, 1984.  

[50]  E. Mansfield and A. Sobey, "The fibre composite helicopter blade: Part i: 

Stiffness properties: Part ii: Prospects for aeroelastic," Aeronautical Quarterly, 

vol. 30, no. 2, pp. 413-449, 1979.  

[51]  L. C. Bank, "Shear coefficients for thin-walled composite beams," Composite 

Structures, vol. 8, no. 1, pp. 47-61, 1987.  

[52]  L. C. Bank and T. P. Melehan, "Shear coefficients for multicelled thin-walled 

composite beams," Composite Structures , vol. 11, no. 4, pp. 259-276, 1989.  



 
289 

 

[53]  J. K. Suresh and V. T. Nagaraj, "Higher-order shear deformation theory for 

thin-walled composite beams," Journal of Aircraft, vol. 33, no. 5, pp. 978-986, 

1996.  

[54]  Z. Qin and L. Librescu, "Static and dynamic validations of a refined thin-walled 

composite beam model," AIAA journal, vol. 39, no. 12, pp. 2422-2424, 2001.  

[55]  Z. Qin and L. Librescu, "On a shear-deformable theory of anisotropic thin-

walled beams: further contribution and validations," Composite Structures, vol. 

56, no. 4, pp. 345-358, 2002.  

[56]  L. Librescu and O. Song, Thin-walled composite beams: theory and 

application, Springer, 2006.  

[57]  D. Moore, "A non-linear theory for the behaviour of thin-walled sections 

subject to combined bending and torsion," Thin Walled Structures, vol. 4, no. 

6, pp. 449-466, 1986.  

[58]  M. M. Attard, "Nonlinear theory of non-uniform torsion of thin-walled open 

beams," Thin-Walled Structures, vol. 4, no. 2, pp. 101-134, 1986.  

[59]  G. v. Erp, C. Menken and F. Veldpaus, "The non-linear flexural-torsional 

behaviour of straight slender elastic beams with arbitrary cross sections," Thin-

Walled Structures, vol. 6, no. 5, pp. 285-404, 1988.  

[60]  K. Bhaskar and L. Librescu, "A geometrically non-linear theory for laminated 

anisotropic thin-walled beams," International Journal of Engineering Science, 

vol. 33, no. 9, pp. 1331-1344, 1995.  

[61]  X. Wang and Z. Qin, "Nonlinear modal interactions in composite thin-walled 

beam structures with simultaneous 1: 2 internal and 1: 1 external resonances," 

Nonlinear Dynamics, vol. 86, no. 2, pp. 1381-1405, 2016.  



 
290 

 

[62]  C. S. A. Petre and L. Librescu, "Aeroelastic divergence of multicell wings 

taking their fixing restraints into account," Revue de Mecanique Appliquee, vol. 

19, no. 6, pp. 689-698, 1961.  

[63]  L. Librescu and S. Thangjitham, "The warping restraint effect in the critical and 

subcritical static aeroelastic behavior of swept forward composite wing 

structures," SAE Technical Paper, 1989.  

[64]  L. Librescu and O. Song, "Static aeroelastic tailoring of composite aircraft 

swept wings modelled as thin-walled beam structures," in Fifth Japan-U.S. 

Conference on Composite Materials, TOKYO.  

[65]  O. Song and L. Librescu, "Free vibration and aeroelastic divergence of aircraft 

wings modelledas composite thin-walled beams," in 32nd Structures, 

Structural Dynamics, and Materials Conference, 1991.  

[66]  L. Librescu and O. Song, "On the static aeroelastic tailoring of composite 

aircraft swept wings modelled as thin-walled beam structures," Composites 

Engineering, vol. 2, no. 5-7, pp. 497-512, 1992.  

[67]  C.-H. Hong and I. Chopra, "Aeroelastic stability analysis of a composite rotor 

blade," Journal of the American Helicopter, vol. 30, no. 2, pp. 57-67, 1985.  

[68]  D. H. C. Cesnik and M. Patil, "Aeroelastic analysis of composite wings," in 

37th Structure, Structural Dynamics and Materials, Salt Lake City, 1996.  

[69]  Z. Qin and L. Librescu, "Aeroelastic instability of aircraft wings modelled as 

anisotropic composite thin-walled beams in incompressible flow," Journal of 

fluids and structures , vol. 18, no. 1, pp. 43-61, 2003.  

[70]  Z. Qin and L. Librescu, "Dynamic aeroelastic response of aircraft wings 

modeled as anisotropic thin-walled beams," Journal of aircraft, vol. 40, no. 3, 

pp. 532-543, 2003.  



 
291 

 

[71]  H. Haddadpour, M. Kouchakzadeh and F. Shadmehri, "Aeroelastic instability 

of aircraft composite wings in an incompressible flow," Composite Structures, 

vol. 83, no. 1, pp. 93-99, 2008.  

[72]  S. Na, J.-S. Song, J.-H. Choo and Z. Qin, "Dynamic aeroelastic response and 

active control of composite thin-walled beam structures in compressible flow," 

Journal of Sound and Vibration, vol. 330, no. 21, pp. 4998-5013, 2011.  

[73]  L. Li, V. V. Volovoi and D. Hodges, "Cross-Sectional Design of Composite 

Rotor Blades," Journal of the American Helicopter Society, vol. 53, no. 3, pp. 

240-251, 2008.  

[74]  U. K. Chakravarty, "On the modeling of composite beam cross-sections," 

Composites Part B: Engineering, vol. 42, no. 4, pp. 982-991, 2011.  

[75]  N.-L. R. F., T. S. R. and B. S. W., "Application of Bend- Twist Coupled Blades 

for Horizontal Axis Tidal Turbines," Renewable Energy, vol. 50, pp. 541-550, 

2013.  

[76]  R. Bunton and C. Denegri, "Limit cycle oscillation characteristics of fighter 

aircraft,," Journal of Aircraft , vol. 37, p. 916, 2000.  

[77]  Z. Yang and L. Zhao, "Analysis of limit cycle flutter of an airfoil in 

incompressible flow," Journal of Sound and Vibration, vol. 123, no. 1, 1988.  

[78]  M. Conner, D. Tang, E. Dowell and L. Virgin, "Nonlinear behavior of a typical 

airfoil section with control surface freeplay: A numerical and experimental 

study," Journal of Fluids and Structures, vol. 11, no. 89, 1997.  

[79]  B. Lee and P. LeBlanc, "Flutter Analysis of a Two-Dimensional Airfoil with 

Cubic Non-linear Restoring Force," Tech. Rep. NRC No. 25438,aeronautical 

Note NAE-AN-36, Canada, 1986. 



 
292 

 

[80]  T. Liu, "nonliear aeroelastic response analysis of rotor blade modeled as 

composite thin-walled structure," Taiyangneng Xuebao/Acta Energiae Solaris 

Sinica, vol. 33, no. 1, pp. 105-112, 2012.  

[81]  A. v. Rooij, "AEROELASTIC LIMIT-CYCLE OSCILLATIONS 

RESULTING FROM AERODYNAMIC NON-LINEARITIES," Technische 

Universiteit Delft, PhD thesis, Netherlands, 2017. 

[82]  E. Dowell, J. Edwards and T. Strganac, "Nonlinear aeroelasticity," Journal of 

aircraft, vol. 40, no. 5, pp. 857-874, 2003.  

[83]  L. Liu, Y. Wong and B. Lee, "Application of the centre manifold theory in non-

linear aeroelasticity," Journal of Sound and vibration, vol. 234, no. 4, pp. 641-

659, 2000.  

[84]  S. Preidikman and D. Mook, "Time-domain simulations of linear and nonlinear 

aeroelastic behavior," Journal of Vibration and Control, vol. 6, no. 8, pp. 1135-

1175, 2000.  

[85]  B. D. Hall, D. T. Mook, A. H. Nayfeh and S. Preidikman, "Novel strategy for 

suppressing the flutter oscillations of aircraft wings," AIAA journal, vol. 39, no. 

10, pp. 1843-1850, 2001.  

[86]  D. S. Woolston, "An investigation of effects of certain types of structural 

nonlnearities on wing and control surface flutter," Journal of the Aeronautical 

Sciences, vol. 24, no. 1, pp. 57-63, 1957.  

[87]  B. Lee and J. Desrochers, "Flutter analysis of a two-dimensional airfoil 

containing structural nonlinearities," Technical report, National Aaeronautical 

Establishment Ottawa, Ontario, 1987. 

[88]  S. Price, B. Lee and H. Alighanbari, "Postinstability behavior of a two-

dimensional airfoil with a structural nonlinearity," Journal of Aircraft, vol. 31, 

no. 6, pp. 1395-1401, 1994.  



 
293 

 

[89]  K. Kim, "Nonlinear aeroelastic analysis of aircraft wing-with-store 

configurations," Ph.D. thesis, Texas A&M University, 2004. 

[90]  D. Tang and E. Dowell, "Effects of geometric structural nonlinearity on flutter 

and limit cycle oscillations of high-aspect-ratio wings," Journal of fluids and 

structures , vol. 19, no. 3, pp. 291-306, 2004.  

[91]  M. J. Patil, D. H. Hodges and C. E. Cesnik, "Limit-cycle oscillations in high-

aspect-ratio wings," Journal of fluids and structures, vol. 15, no. 1, pp. 107-

132, 2001.  

[92]  L. Librescu and O. Song, Thin walled composite beams: theory and application, 

Netherlands: Springer, 2006.  

[93]  L. W. Rehfield and A. R. Atilgan, "Toward understanding the tailoring 

mechanisms for thin walled composite tubular beam," in Symp. on mechanics 

of composite materials, ASME , NY, USA, 1989.  

[94]  O. Song, L. Librescu and S. Y. Oh, "Vibration of pre-twisted adaptive rotating 

blades modeled as anisotropic thin-walled beams," AIAA Journal, vol. 39, no. 

2, pp. 285-295, 2001.  

[95]  L. L. L. Meirovitch and S. S. Na, "Control of Cantilever Vibration via Structural 

Tailoring and Adaptive Materials," AIAA Journal, vol. 35, no. 8, pp. 1309-

1315, 1997.  

[96]  T. Theodorsen, "General Theory of Aerodynamic Instability and the 

Mechanism of Flutter," NACA report, 1935. 

[97]  R. Loewy, "A Two-Dimensional Approximation to the Unsteady 

Aerodynamics of Rotary Wing," Journal of the Aeronautical Sciences, vol. 24, 

no. 2, pp. 81-92, 1957.  



 
294 

 

[98]  J. M. Greenberg, "Airfoil in Sinusoidal Motion in a Pulsating Stream," NACA 

TN No. 1326, USA, 1947. 

[99]  H. Wagner, "Uber die Entstehung des dynamischen Auftriebes von 

Tragfl ̈ugeln," pp. 17-35, February 1925.  

[100] R. L. Bisplingho, H. Ashley and R. L. Halfman, aeroelasticity, New York: 

Dover publications, 1996.  

[101] T. V. Karman and W. R. Sears, "Airfoil Theory for Non-Uniform Motion," 

Journal of the aeronautical Sciences, vol. 5, no. 10, pp. 379-390, 1938.  

[102] R. L. Bisplinghoff, H. Ashley and R. L. Halfman, Aeroelasticity, Cambridge: 

Addison-Wesely publishing, 1962.  

[103] H. Haddadpour and R. Firouz-Abadi, "Evaluation of quasi-steady aerodynamic 

modeling for flutter prediction of aircraft wings in incompressible flow," Thin-

walled structures, vol. 44, no. 9, pp. 931-936, 2006.  

[104] R. T. Jones, "The unsteady lift of a wing of finite aspect ratio," National 

Advisory Committee for Aeronautics. Langley Aeronautical Lab. 

[105] M. Karpel, "Design for active flutter suppression and gust alleviation using 

state-space aeroelastic modeling," journal of aircraft, vol. 19, no. 3, pp. 221-

227, 1982.  

[106] E. Yates, "Calculation of Flutter Characteristics for Finite-span Swept Or 

Unswept Wings at Subsonic, Transonic, and Supersonic Speeds by a Modified 

Strip Analysis," Virginia Polytechnic Institute, PhD thesis, 1959. 

[107] T. Murray, "On the use of the indicial-function concept in the analysis of 

unsteady motions of wings and wing-tail combinations," NACA Technical 

Report 1188, USA, 1954. 



 
295 

 

[108] H. Lomax, "Indicial aerodynamics," AGARD Manual of Aeroelasticit, Pt. II, 

chapter 6, 1960. 

[109] G. J. Leishman, Principles of helicopter aerodynamics with CD extra, 

Cambridge university press, 2006.  

[110] J. Leishman, "Indicial lift approximations for two-dimensional subsonic flow 

as obtained from oscillatory measurements," Journal of Aircraft, vol. 30, no. 3, 

pp. 340-351, 1993.  

[111] B. Mazelsky, "Numerical determination of indicial lift of a two-dimensional 

sinking airfoil at subsonic Mach numbers from oscillatory lift coefficients with 

calculations for Mach number 0.7," NACA Technical Note, No. 2562, 1951. 

[112] B. Mazelsky, "Determination of Indicial Lift and Moment of a Two 

Dimensional Pitching Airfoil at Subsonic Mach Numbers From Oscillatory 

Coefficients With Numerical Calculations for a Mach Number of 0.7," NACA 

Technical Note, No. 2613, 1952. 

[113] B. Mazelsky and J. A. Drischler, "Numerical determination of indicial lift and 

moment functions for a two-dimensional sinking and pitching airfoil at Mach 

numbers 0.5 and 0.6," NACA Technical Note, No. 2739, 1952. 

[114] J. G. Leishman, Principles of Helicopter aerodynamics, USA: cambridge 

university press, 2001.  

[115] P. Marzocca, L. Librescu and G. Chiocchia, "Aeroelastic response of a 2-D 

airfoil in a compressible flow field and exposed to blast loading," Aerospace 

Science and Technology, vol. 6, no. 4, p. 259–272, 2002.  

[116] W. F. Diederich, "A plan-form parameter for correlating certain aerodynamic 

characteristics of swept wings," NASA report- NACA-TN-2335 , USA, 1951. 

[117] A. Arena, W. Lacarbonara and P. Marzocca, "Nonlinear aeroelastic formulation 

for flexible high-aspect ratio wings via geometrically exact approach," in 



 
296 

 

Proceedings of the 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural 

Dynamics and Materials Conference, Colorado, USA, 2011.  

[118] K. Eskandary, M. Dardel, M. Pashaei and A. Moosavi, "Nonlinear aeroelastic 

analysis of high-aspect-ratio wings in low subsonic flow," Acta Astronaut, vol. 

70, pp. 6-22, 2012.  

[119] S. Shams, M. Sadr and H. Haddadpour, "An efficient method for nonlinear 

aeroelasticity of slender wings," Nonlinear Dynamics, vol. 67, p. 659–681, 

2012.  

[120] M. Patil, D. Hodges and C. Cesnik, "Characterizing the effects of geometrical 

nonlinearities on aeroelastic behavior of high-aspect-ratio wings," in 

Proceedings of the International Forum on Aeroelasticity and Structural 

Dynamics (IFASD 1999), Virginia, USA, 1999.  

[121] S. Shams, M. S. Lahidjiani and H. Haddadpour, "Nonlinear aeroelastic response 

of slender wings based on wagner function," Thin-Walled Structure, vol. 46, p. 

1192–1203, 2008.  

[122] E. Jacobs and A. Sherman, "Airfoil section characteristics as affected by 

variations of the reynolds number," Tech. rep., NACA Report No. 586, USA. 

[123] A. H. Nayfeh and D. T. Mook, Nonlinear oscillations, John Wiley & Sons, 

2008.  

[124] Z. Qin and L. Librescu, "On a shear-deformable theory of anisotropic thin-

walled beams: further contribution and validations," Composite Structures, vol. 

56, no. 4, pp. 345-358, 2002.  

[125] J. G. Barmby, H. J. Cunningham and I. Garrick, "tudy of effects of sweep on 

the flutter of cantilever wings," NASA report, USA, 1950. 



 
297 

 

[126] D. Tang and E. H. Dowell, "Experimental and Theoretical Study on Aeroelastic 

Response of High-Aspect-Ratio Wings," AIAA Journal, vol. 39, no. 8, pp. 

1430-1441, 2001.  

[127] M. O. Gözcü and A. Kayran, "Investigation of the effect of bending twisting 

coupling on the loads in wind turbines with superelement blade definition," 

Journal of physics: conference series, vol. 524, no. 1, 2014.  

[128] J. Jonkman, S. Butterfield, W. Musial and G. Scott, "Definition of a 5-MW 

Reference Wind Turbine Offshore System Development," National Renewable 

Energy Laboratory, NREL/TP-500-38060, 2009. 

[129] Ö. Şener, T. Farsadi and A. Kayran, "Effect of Fiber Orientation of Bend-Twist 

Coupled Blades on the Structural Performance of the Wind Turbine System," 

in 35th Wind Energy Symposium, AIAA SciTech Forum , Grapevine, TX, 2017. 

[130] W. Yu, J. Ho and D. Hodges, "Variational Asymptotic Beam Sectional Analysis 

- An Updated Version," International Journal of Engineering Science, vol. 59, 

pp. 40-64, 2012.  

[131] C. Lindenburg, "PHATAS Release “JAN-2012a” User’s Manual, Program for 

Horizontal Axis wind Turbine Analysis and Simulation," ECN-I--05-005 r10, 

2012. 

[132] L. C., "BLADEMODE Program for Rotor Blade Mode Analysis," ECN-C--02-

050, Knowledge Center WMC, Wieringerweft, The Netherlands, 2003. 

[133] T. Farsadi and A. Kayran, "Aeroelastic stability evaluation of bend-twist 

coupled composite wind turbine blades designed for load alleviation in wind 

turbine systems," in 34th Wind Energy Symposium, AIAA SciTech Forum, FL, 

USA, 2016.  

[134] F. T. and K. A., "Time domain flutter analysis of bend-twist coupled composite 

wind turbine blades and comparisons with the baseline blade," in world 



 
298 

 

congress on advances in civil, environmental and material research 

(ACEM16), Jeju Island, Korea, 2016.  

[135] K. Jones and M. Platzer, "Airfoil Geometry and Flow Compressibility Effects 

on Wing and Blade Flutter," in AIAA Paper No. 98-0517, 36th AIAA Aerospace 

Sciences Meeting, Nevada, USA, 1998.  

[136] F. P. and Y. C., "Effect of Modified Aerodynamic Strip Theories on Rotor 

Blade Aeroelastic Stability," AIAA Journal, vol. 15, no. 7, pp. 932-940, 1977.  

[137] America's Climate Choices: Panel on Advancing the Science of Climate 

Change; National Research Council, Washington, D.C.: The National 

Academies Press, 2010.  

[138] "America's Climate Choices: Panel on Advancing the Science of Climate 

Change," National Research Council : The National Academies Press, 

Washington, D.C., 2010. 

[139] H. Haddadpour and R. Firouz-Abadi, "Evaluation of quasi-steady aerodynamic 

modeling for flutter prediction of aircraft wings in incompressible flow," Thin-

walled structures, vol. 44, no. 9, pp. 931-936, 2006.  

[140] M. Gözcü, T. Farsadi, Ö. Şener and A. Kayran, "Assessment of the Effect of 

Hybrid GFRP-CFRP Usage in Wind Turbine Blades on the Reduction of 

Fatigue Damage Equivalent Loads in the Wind Turbine System," in AIAA 

SciTech, 33rd Wind Energy Symposium, Kissimmee, FL, 2015.  

[141] E. Voegele, "biomass," U.S. Energy Information Administration , 10 March 

2015. [Online]. Available: biomassmagazine.com. 

[142] J. Leishman, "Validation of approximate indicial aerodynamic functions for 

wo-dimensional subsonic flow," Journal of Aircraft, vol. 25, no. 10, pp. 914-

922, 1988.  



 
299 

 

[143] T. Farsadi and A. Kayran, "Time domain flutter analysis of bend-twist coupled 

composite wind turbine blades and comparisons with the baseline blade," in 

world congress on advances in civil, environmental and material research, Jeju 

Island, Korea, 2016.  

[144] T. Farsadi, O. Sener and A. Kayran, "Free vibration analysis of uniform and 

asymmetric composite pretwisted rotating thin walled beam," in Proceedings 

of the ASME International Mechanical Engineering Congress and Exposition, 

Florida, USA, IMECE2017-70531, 2017.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
300 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
301 

 

APPENDICES 

 

A.  CONSTITUTIVE EQUATIONS AND STIFFNESS COMPONENTS 

The Constitutive Equations; 

 

(A.1) 

 

(A.2) 

 

(A.3) 

 

(A.4) 

 

(A.5) 

 

(A.6) 

 (A.7) 

Where, 

 (A.8) 
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 (A.12) 

 (A.13) 
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11 11
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Q C
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13 23
12 12
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C C
Q C
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13 36

16 16
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C C
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C
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C
Q C
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23 36
26 26
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C C
Q C

C
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66 66

33

C
Q C
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 

44 44 55 55 45 45
, ,Q C Q C Q C  

4 2 2 4

11 11 12 66 22
cos 2( 2 )cos sin sinC C C C C      

4 2 2 4

12 12 11 22 66 12
cos ( 4 )cos sin sinC C C C C C       

2 2

13 13 23
cos sinC C C  

  3 3

16 11 12 66 12 66 22
2 cos sin ( 2 )cos sinC C C C C C C        

4 2 2 4

22 22 12 66 11
cos 2( 2 )cos sin sinC C C C C      
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 (A.14) 

 (A.15) 

 (A.16) 

 (A.17) 

 (A.18) 

 (A.19) 

 (A.20) 

and where, 
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(A.22) 

 
(A.23) 
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The components of the reduced stiffness matrix in Equation (2-1) are as follows, 

2 2

21 11 21 11 21 11 21
11 22 2

11 11 11

2A D B A A B B
K A

A D B

         
 

(A.29) 

2

21 21 11 21 11 21 11 21 21 11 21
12 22 2

11 11 11

B A D B B B A D A B D
K B

A D B

          
 

(A.30) 

21 21 11 21 21 11 21 11 21 21 11 21
13 22 2

11 11 11

D A D D B B B A F A B F
K D

A D B

          
 

(A.31) 

61 21 11 61 21 11 21 11 61 21 11 61
14 26 2

11 11 11

A A D A B B B A B A B B
K A

A D B

          
 

(A.32) 

61 21 11 61 21 11 21 11 61 21 11 61
15 26 2

11 11 11

B A D B B B B A D A B D
K B

A D B

          
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K D
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B D D D B F D A F B B
K F
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K F
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2 2

61 11 61 61 11 61 11 61 61 11
44 66 2

11 11 11

A D A B B B A B A B
K A

A D B

          
 

(A.41) 
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B.  ELEMENTS OF THE STIFFNESS MATRIX 

The following relations are explicit definitions of the 8 × 8 symmetric stiffness matrix, 

presented in Equation (4-108). 

stiffness Definition Nature and/or 

coupling involved 

Dimension 

11
a  

11

C

K ds  
Extensional [F] 

12
a  

14

C

dx
K ds

ds  

Extension –

Chordwise shear 

[F] 

13
a  

14

C

dy
K ds

ds  

Extension – 

Flpawise shear 

[F] 

14
a  

11 12

C

dy
K x K ds

ds

     
  

Extension – 

Chordwise 

bending 

[F.L] 

15
a  

11 12

C

dx
K y K ds

ds

     
  

Extension – 

Flapwise bending 

[F.L] 

16
a    14 15

2
C

K s K ds   
Extension – 

Torsion 

[F.L] 

17
a      11 12w

C

K F s K a s ds  
Extension – 

Warping 

[F.L2] 

18
a      2 2

11 12 13
2

n

C

K x y K r s K ds    
Extension – higher 

order coupling of 

Torsion 

[F.L2] 

22
a  

2 22

45
44 44

55C

Adx dy
K A ds

ds A ds

                              
  

Chordwise 

transverse shear 

[F] 

23
a  

2

45
44 44

55C

Adx dy
K A ds

ds ds A

              
  

Chordwise shear - 

Flpawise shear 

[F] 

24
a  

41 42

C

dx dy
K x K ds

ds ds

     
  

Chordwise shear – 

Chordwise 

bending 

[F.L] 

25
a  

41 42

C

dx dx
K y K ds

ds ds

     
  

Chordwise shear – 

Flapwise bending 

[F.L] 

26
a    44 45

2
C

dx
K s K ds

ds
   

Chordwise shear – 

Torsion 

[F.L] 
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27
a      41 42w

C

dx
K F s K a s ds

ds
  

Chordwise shear – 

Warping 

[F.L2] 

28
a      2 2

41 42 43
2

n

C

dx
K x y K r s K ds

ds
    

Chordwise shear – 

higher order 

coupling of 

Torsion 

[F.L2] 

33
a  

2 22

45
44 44

55C

Ady dx
K A ds

ds A ds

                              
  

Flpawise 

transverse shear 

[F] 

34
a  

41 42

C

dy dy
K x K ds

ds ds

     
  

Flpawise shear - 

Chordwise 

bending 

[F.L] 

35
a  

41 42

C

dy dx
K y K ds

ds ds

     
  

Flpawise shear - 

Flapwise bending 

[F.L] 

36
a    44 45

2
C

dy
K s K ds

ds
   

Flpawise shear – 

Torsion 

[F.L] 

37
a      41 42w

C

dy
K F s K a s ds

ds
  

Flpawise shear - 

Warping 

[F.L2] 

38
a      2 2

41 42 43
2

n

C

dy
K x y K r s K ds

ds
    

Flpawise shear - 

higher order 

coupling of 

Torsion 

[F.L2] 

44
a  

2

2

11 21 12 22

C

dy dy dy
K x K x K x K ds

ds ds ds

              
  

Chordwise 

bending 

[F.L] 

45
a  

11 21 12 22

C

dy dx dy dx
K yx K y K x K ds

ds ds ds ds

       
  

Chordwise 

bending - 

Flapwise bending 

[F.L] 

46
a    14 24 15 25

2
C

dy dy
s K x K K x K ds

ds ds

                           
  

Chordwise 

bending - Torsion 

[F.L] 

47
a     11 21 12 22w

C

dy dy
F s K x K a s K x K ds

ds ds

                          
  

Chordwise 

bending - Warping 

[F.L2] 

48
a      

  

2 2

11 21 12 13

22 23

2

2

n

C

n

dy
K x K x y x K r s K

ds ds
dy

K r s K
ds

                    


 

Chordwise 

bending – higher 

order coupling of 

Torsion 

 

[F.L2] 
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55
a  

11 21 12 22

C

dx dx dx
y K y K K y K ds

ds ds ds

                          
  

Flapwise bending 

moment 

[F.L] 

56
a    14 24 15 25

2
C

dx dx
s K y K K y K ds

ds ds

                           
  

Flapwise bending 

- Torsion 

[F.L] 

57
a     11 21 12 22w

C

dx dx
F s K y K a s K y K ds

ds ds

                          
  

Flapwise bending 

- Warping 

[F.L2] 

58
a      

  

2 2

11 21 12 13

22 23

2

2

n

C

n

dx
K y K x y y K r s K

ds ds
dx

K r s K
ds

                    


 

Flapwise bending 

- higher order 

coupling of 

Torsion 

[F.L2] 

66
a      44 54 45 55

2 2 4
C

K K K s K ds      
Torsion [F.L] 

67
a          41 51 42 52

2 2
w

C

K K F s K K a s ds      
Torsion - Warping [F.L2] 

68
a        

 

2 2

41 51 42 52

43 53

2 2 2

2

n

C

K K x y K K r s
ds

K K

              


 
Torsion - higher 

order coupling of 

Torsion 

[F.L2] 

77
a   2 2

11 21 22
( ) 2 ( ) ( ) ( )

w w

C

K F s K a s F s K a s ds   
Warping [F.L2] 

78
a       

      
    

2 2

11 21

12 22

13 23

2 2 2 ,

w

w n

C

w

K F s K a s x y

K F s K a s r s ds

K F s K a s

              

  

Warping - higher 

order coupling of 

Torsion 

[F.L2] 

88
a  

 

higher order 

coupling of 

Torsion 

[F.L2] 

 

 

 

 

 

    
  

  

2 2 2 2

11 21 31

2 2

12 22 32

2 2

13 23 33

2 ( )

2 ( ) 2 ( )

2 ( )

n

n n

C

n

x y x y K r s K K

r s x y K r s K K ds

x y K r s K K

                     


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C. AXES AND STIFFNESS QUANTITIES AND TRANSFORMATIONS 

a) Transformation of axes and their derivatives with pre-twist angle � = �� �⁄   

cos sinp px x y    (C.1) 

sin cosp py x y    (C.2) 

2 2 2 2 2cos 2 cos sin sinp p p px x x y y       (C.3) 

2 2 2 2 2sin 2 cos sin cosp p p py x x y y       (C.4) 

 2 2 2 2cos sin cos sinp p p p p pxy x y x y x y        (C.5) 

cos sin
p pdx dx dy

ds ds ds
    

(C.6) 

sin cos
p pdy dx dy

ds ds ds
    

(C.7) 

 2 2 2 2p px y x y    (C.8) 

2 22

2 2cos 2 cos sin sin
p p p pdx dx dy dx dy

ds ds ds ds ds
       

(C.9) 

2 22

2 2sin 2 cos sin cos
p p p pdy dx dy dx dy

ds ds ds ds ds
       

(C.10) 

2 2

2 2cos sin cos sin
p p p p p pdx dy dx dy dx dy dx dy

ds ds ds ds ds ds ds ds
   

          

 
(C.11) 

2 2cos cos sin sin
p p p p

p p p pdx dx dy dx dy
x x x y y
ds ds ds ds ds

   
        

 

(C.12) 

2 2cos sin sin cos
p p p p

p p p pdx dx dy dy dx
y x y x y
ds ds ds ds ds

   
        

 

(C.13) 

2 2sin cos sin cos
p p p p

p p p pdy dx dy dx dy
y x x y y
ds ds ds ds ds

   
        

 

(C.14) 
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2 2cos sin cos sin
p p p p

p p p pdy dx dy dy dx
x x y x y
ds ds ds ds ds

   
        

 

(C.15) 

( ) ( )pa s a s  (C.16) 

( ) ( )p

n n
r s r s  (C.17) 

( ) ( )p

w w
F s F s  (C.18) 

 

b) Stiffness quantities in terms of principal axes (��, ��) 

ij
a  Definition 

11
a  

11

pa  

12
a  

12 13
cos sinp pa a   

13
a  

12 13
sin cosp pa a   

14
a  

14 15
cos sinp pa a   

15
a  

14 15
sin cosp pa a   

16
a  

16

pa  

17
a  

17

pa  

18
a  

18

pa  

22
a  2 2

22 32 33
cos 2 cos sin sinp p pa a a      

23
a  2 2

23 23 22 33
cos sin cos sin cos sinp p p pa a a a         

24
a  2 2

24 34 25 35
cos cos sin cos sin sinp p p pa a a a         

25
a  2 2

24 34 25 35
cos sin sin cos cos sinp p p pa a a a         

26
a  

26 36
cos sinp pa a   

27
a  

27 37
cos sinp pa a   

28
a  

28 38
cos sinp pa a   
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33
a  2 2

22 23 33
sin cos sin cosp p pa a a      

34
a  2 2

34 24 25 35
cos cos sin sin cos sinp p p pa a a a         

35
a  2 2

24 34 25 35
sin cos sin cos sin cosp p p pa a a a         

36
a  

26 36
sin cosp pa a   

37
a  

27 37
sin cosp pa a   

38
a  

28 38
sin cosp pa a   

44
a  2 2

44 45 54 55
cos cos sin cos sin sinp p p pa a a a         

45
a  2 2

45 44 54 55
cos cos sin sin cos sinp p p pa a a a         

46
a  

46 56
cos sinp pa a   

47
a  

47 57
cos sinp pa a   

48
a  

48 58
cos sinp pa a   

55
a  2 2

44 45 55
sin 2 sin cos cosp p pa a a      

56
a  

56 46
cos sinp pa a   

57
a  

57 47
cos sinp pa a   

58
a  

58 48
cos sinp pa a   

66
a  

66

pa  

67
a  

67

pa  

68
a  

68

pa  

77
a  

77

pa  

78
a  

78

pa  

88
a  

88

pa  
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D. STRUCTURAL AND AERODYNAMIC MATRICES 

The stiffness and mass matrices of the structure models are given explicitly for �, � =

�, �, �, ⋯ , � as the following. 

CAS Configuration 

11

22

33

6 6
44

55

66

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

s

s

s

s sN N

s

s

M

M

M
M

M

M

M



 
 
 
 
 
 

      
 
 
 
 
 
 

 

 

 

(D.1) 

Where, 

11 1

0

( , )

L

s u u
i jM i j b dz    

(D.2) 

22 1

0

( , )

L

s v v
i jM i j b dz    

(D.3) 

33 1

0

( , )

L

s w w
i jM i j b dz    

(D.4) 

 44 4 12

0

( , )

L

s x x
i jM i j b b dz    

(D.5) 

 55 5 11

0

( , )
L

s y y

i j
M i j b b dz    

(D.6) 

   

   

66 4 12 5 11

0 0

10

0

( , )
L L

s

i j i j

L

i j

M i j b b dz b b dz

b dz

   

 

   

 

    



 



 

(D.7) 

 



 
312 

 

11 13 15

22 24 26

31 33 35

6 6
42 44 46

51 53 55

62 64 66

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

s s s

s s s

s s s

s s s sN N

s s s

s s s

K K K

K K K

K K K
K

K K K

K K K

K K K



 
 
 
 
 
 

      
 
 
 
 
 
 

 

 

 

(D.8) 

Where 

   

     

2
11 1 22

0 0

2
1

0

( , )

L L

s u u u u
i j i j

L

u u
i j

K i j b dz a dz

A R z b dz

   

 

 
   

 


 


 

(D.9) 

   13 12

0

( , )

L

s w u
i jK i j a dz 

 
   

(D.10) 

 15 22

0

( , )

L

s y u
i jK i j a dz 


   

(D.11) 

 24 33

0

( , )

L

s x v
i jK i j a dz 


   

(D.12) 

         2
22 33 1

0 0

( , )

L L

s v v v v
i j i jK i j a dz A R z b dz   

   
     

(D.13) 

   26 37

0

( , )

L

s v
i jK i j a dz 

 
   

(D.14) 

   2
33 1 11

0 0

( , )

L L

s w w w w
i j i jK i j b dz a dz   

 
     

(D.15) 

   31 12

0

( , )

L

s u w
i jK i j a dz 

 
   

(D.16) 
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 35 12

0

( , )

L

s y w
i jK i j a dz 


   

(D.17) 

 42 33

0

( , )

L

s v x
i jK i j a dz 


   

(D.18) 

 

   

2
44 33 4 12

0 0

55

0

( , )

L L

s x x x x
i j i j

L

x x
i j

K i j a dz b b dz

a dz

   

 

   

 

 


 

(D.19) 

     46 37 56

0 0

( , )

L L

s x x
i j i jK i j a dz a dz    

  
     

(D.20) 

 53 12

0

( , )
L

s w y

i j
K i j a dz 


   

(D.21) 

 51 22

0

( , )
L

s u y

i j
K i j a dz 


   

(D.22) 

 

   

2

55 22 5 11

0 0

44

0

( , )
L L

s y y y y

i j i j

L

y y

i j

K i j a dz b b dz

a dz

   

 

   

 

 


 

(D.23) 

   

         

     

       

2 2

66 4 12 5 11

0 0

2

66 4 12

0 0

2

5 11

0

2

10 77

0 0

( , )
L L

s

i j i j

L L

i j i j

L

i j

L L

i j i j

K i j b b dz b b dz

a dz A R z b b dz

A R z b b dz

b dz a dz

   

   

 

   

   

   

 

   

    

   
   

 
  

  
 

 

 



 

 

 

 

(D.24) 

     64 56 37

0 0

( , )
L L

s x x

i j i j
K i j a dz a dz    

  
    

(D.25) 
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   62 37

0

( , )
L

s v

i j
K i j a dz 

 
   

(D.26) 

 

CUS Configuration 

11 14 15

22 24 25

33 36

6 6
41 42 44 45

51 52 54 55

63 66

0 0 0

0 0 0

0 0 0 0

0 0

0 0

0 0 0 0

s s s

s s s

s s
s N N

s s s s

s s s s

s s

K K K

K K K

K K
K

K K K K

K K K K

K K



 
 
 
 
 
      
 
 
 
 
  

 

 

 

(D.27) 

Where. 

   

     

2
11 1 22

0 0

2
1

0

( , )

L L

s u u u u
i j i j

L

u u
i j

K i j b dz a dz

A R z b dz

   

 

 
   

 


 



 

(D.28) 

   14 25

0

( , )

L

s u x
j iK i j a dz 
 

   

(D.29) 

 15 22

0

( , )

L

s y u
i jK i j a dz 


   

(D.30) 

 24 33

0

( , )

L

s x v
i jK i j a dz 
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The mass, damping and stiffness matrices of the aerodynamic models are given 

explicitly for �, � = �, �, �, ⋯ , � as the following. 

Incompressible unsteady aerodynamic (based on Wagner’s Function) 
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Aerodynamic Stiffness Matrix 
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Compressible unsteady aerodynamic (based on Indicial Function) 
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Where, 
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E. SIMPLIFIED NONLINEAR EXPRESSIONS 

The following are the algebraic expressions obtained by substitution of Equation 

(4-60) into the nonlinear expressions defined in Equations (4-30)-(4-39) and (4-40)-

(4-48). 

Quadratic nonlinear terms 
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Cubic nonlinear terms 
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G. MASS, DAMPING AND STIFFNESS MATRICES 

 

G1.  Mass, Damping and Stiffness Matrices of the Beam-Blade Considering Only 

Incompressible Unsteady Aerodynamics  

A1. The non-zero sub-matrices (���
� ) of the structural mass matrix (��) of dimension 

5� × 3�  
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where � is the number of blade sections, �� is the length of the ith section ��, ��, �� are 

the mass and inertia terms defined by Eqn.(25) and  ( )z   is the shape 

function vector given by Eqn.(60).    
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A3. The non-zero sub-matrices (���
�����) of the incompressible aerodynamic mass 

matrix (��
���) of dimension 5� × 3�  



 
327 

 

   

 

 

1 1

0 0 0

1 1

0

1

0 1

17 17
2 3

11 12
1 1

17 17
3 4 2

21 22
1 1

41
1

,

1
,

8

i i

i i

i i

i i

i

i

L L

a inc T a inc T
i v i iv v

i iL L

L L

a inc T a inc T
i i i iv

i iL L

L

a inc T
v B

i L

b dz b a dz

b a dz b a dz



  

 

 

 

 



 

 

 

 





 

                  



  

  



   

   

 

m m

m m

m

 

1

1

1 1

0 2 2

17 17

42
1

17 17

51 52
1 1

, (0.5

, (0.5

i

i

i i

i i

L

a inc T
i i B

i L

L L

a inc T a inc T
v i iB B

i iL L

dz b a dz

dz b a dz







 





 

 

  

   

  

  

 

   

m

m m

 

A4. The non-zero sub-matrices (���
�����) of the incompressible aerodynamic damping 

matrix (��
���) of dimension 5� × 5�     
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where, �� is the relative velocity ��� = ���
� + (�Ω)��, �� is the inflow velocity, Ω 

is the rotating speed, � is the air density, � is the half chord and � is the offset 

coefficient. 

A5. The non-zero sub-matrices (��,�
�����) of the incompressible aerodynamic stiffness 

matrix (��
���) of dimension 5� × 5�     
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G2.  Mass, Damping and Stiffness Matrices of the Beam-Blade Considering both 

Incompressible and Compressible Unsteady Aerodynamics  

Figure G1 shows the schematic of the wind turbine blade studied including all the 

aerodynamic and structural parameters used in the formulation to calculate the flutter 

characteristics of wind turbine blades. It is assumed that for a length of la from the 

blade root, the blade is in the incompressible flow regime, and in the outboard portion 

of the blade, blade is in the compressible flow regime. In Figure G1,  ��
��� is the 

number of blade sections over which incompressible aerodynamics acts. 

  

 

Figure G1. Wind turbine blade sections in the incompressible and compressible 

flow regime 
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B1. The non-zero sub-matrices (���
� ) of the structural mass matrix (��) of dimension 

15� × 3� and the non-zero sub-matrices (���
� ) of the structural stiffness matrix (��) 

of dimension 15� × 5� are same as the incompressible case and they are given in 

items A1 and A2 in APPENDIX G1.  

B2. The non-zero sub-matrices (���
���) of the total aerodynamic mass matrix (��

�����) 

of dimension 15� × 3� 
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B3. The non-zero sub-matrices (���
���) of the total aerodynamic damping matrix 

(��
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B4. The non-zero sub-matrices (��,�
���) of the total aerodynamic stiffness matrix 

(��
�����) of dimension 15� × 15�     
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1 1

1 2

1

3 1

17 17
2 2

2,10 1 2,11 2

1 1

17
2 3

2,12 3 2,13 1

1

2 , 2 ,

2 , 4

i i

i cM i cM
inc inc
e ei i

i

i cM i cMq
inc
e i

L L

a t T a t T
L r i cM B L r i cM B

i N i NL L

L

a t T a t T
L r i cM B L r i cMq B

i N L L

C U b dz C U b dz

C U b dz C U b

   

   

   

   

 



 

   

 

 

   

  

  

 

k k

k k

   

   
1

1 1

2 3

1 1

1 11 1

17

1

17 17
3 3

2,14 2 2,15 3

1 1

44 1 1
1

,

4 , 4 ,

i

inc
e i

i i

i cMq i cMq
inc inc
e ei i

inc
i ie

c c

ei i

L

i N

L L

a t T a t T
L r i cMq B L r i cMq B

i N i NL L

L LN
a t r T r T

B BB B
i i ii NL L

dz

C U b dz C U b dz

U U
dz

b b

      

 



 

 

 

 

   



 

 

   

 

  

  

k k

k

   

   

1 1

2 22 2

1 1

3 13 1

2 2

17

1

17

55 2 2
1 1

17 17

66 3 77 1

1 1

88 2

,

,

inc

inc
i ie

c c

i i

i i

c cqc cq
inc inc
e ei i

cq cq

i

L LN
a t r T r T

B BB B
i ii iL L

L L

a t r T a t r T
B BB B

i ii N i NL L

a t r T
B B

iL

dz

U U
dz dz

b b

U U
dz dz

b b

U

b

 

 



 

 





 

 

   



   

   

 



  

  

k

k k

k

   

   

 
1 1

3 3

1 1

1 21 2

1

3 3

17 17

99 3

1 1

17 17

10,10 1 11,11 2

1 1

12,12 3

,

,

i i

cq cq
inc inc
e e i

i i

cM cMcM cM
inc inc
e ei i

i

cM cM

i

L L

a t r T
B B

ii N i N L

L L

a t r T a t r T
B BB B

i ii N i NL L

L

a t r T
B B

iL

U
dz dz

b

U U
dz dz

b b

U

b



 



 

 





   

 

   



 

   

 

  

  



k

k k

k

 

   

 
1

1 1

1 1

2 32 3

17 17

13,13 1

1 1

17 17

14,14 2 15,15 3

1 1

,

,

i

cMq cMq
inc inc
e e i

i i

cMq cMqcMq cMq
inc inc
e ei i

L

a t r T
B B

ii N i N L

L L

a t r T a t r T
B BB B

i ii N i NL L

U
dz dz

b

U U
dz dz

b b



 



 



   

 

   

 

   

  

  

k

k k

 

   

 

 

 

 

 

 

 

 

 

 

 

 




